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Abstract. We investigate a class of spectral multipliers for an Ornstein–Uhlenbeck
operator L in Rn, with drift given by a real matrix B whose eigenvalues have nega-
tive real parts. We prove that if m is a function of Laplace transform type defined
in the right half-plane, then m(L) is of weak type (1, 1) with respect to the in-
variant measure in Rn. The proof involves many estimates of the relevant integral
kernels and also a bound for the number of zeros of the time derivative of the
Mehler kernel, as well as an enhanced version of the Ornstein–Uhlenbeck maximal
operator theorem.

1. Introduction

Given a measure space (X,µ) and a self-adjoint operator L on L2(X,µ), an im-
portant issue in harmonic analysis concerns the boundedness of the operator m(L),
where m : R→ C is a Borel function. If E denotes a spectral resolution of L on R,
one can define m(L) for many functions m as

m(L) =

∫
R
m(ν) dE(ν).

Great efforts have been devoted to finding minimal assumptions on the multiplier m
that will ensure the boundedness of m(L) on the Lebesgue spaces Lp(X,µ), both in
a strong and in a weak sense, when p 6= 2.

A few years ago, the authors started a program concerning harmonic analysis in
the Ornstein–Uhlenbeck setting. In this framework, (X,µ) is the Euclidean space
Rn equipped with a Gaussian measure dγ∞, known as the invariant measure and
defined in Section 2. Further, L is replaced by the Ornstein–Uhlenbeck operator L,
defined as

Lf = −1

2
tr
(
Q∇2f

)
− 〈Bx,∇f〉 , f ∈ S(Rn), (1.1)

where ∇ and ∇2 denote the gradient and the Hessian, respectively. In this formula,
Q and B are real n × n matrices; Q is symmetric and positive definite, and the
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eigenvalues of B all have negative real parts. The space Lp(Rn, dγ∞) will be written
simply Lp(γ∞).

Since in general L has no self-adjoint or normal extension to L2(γ∞), one cannot
invoke spectral theory to define m(L). Notice that self-adjointness and normality
may fail also for the Ornstein–Uhlenbeck semigroup (Ht)t>0, generated by L, which
was first introduced in [34]. The focus in this paper is on multipliers of Laplace
transform type. This class of multipliers was introduced some fifty years ago by E.
M. Stein in [36], in the context of Littlewood–Paley theory for a sublaplacian on a
connected Lie group G.

A function m of a real variable λ > 0 is said to be of Laplace transform type if

m(λ) = λ

∫ +∞

0

ϕ(t)e−tλ dt = −
∫ +∞

0

ϕ(t)
d

dt
e−tλ dt, λ > 0, (1.2)

for some ϕ ∈ L∞(0,+∞). Observe that such a function m can be extended to an
analytic function in the half-plane <z > 0. Thus we pay the price of a rather strong
condition on m, to prove, in return, a multiplier theorem for an operator L which is
not necessarily normal. Observe that one obtains as m(L) the imaginary powers Liγ
of L, with γ ∈ R \ {0}, by choosing ϕ(t) = const. t−iγ. Other significant examples of
functions of Laplace transform type may be found in [41].

The exact definition of m(L) for functions m of this type will be given in Section 3.
Here we present only a heuristic deduction of the kernel of m(L). If we simply replace
λ by L in the last expression in (1.2), we will get

m(L) = −
∫ +∞

0

ϕ(t)
d

dt
e−tL dt. (1.3)

Here e−tL = Ht is the Ornstein-Uhlenbeck semigroup, whose kernel is the Mehler
kernel Kt(x, u) described in Section 2. We point out that the term kernel in this
paper refers to integration with respect to dγ∞, except in one case as explained in
Section 8. Thus for each f ∈ S(Rn) and all t > 0

Htf(x) =

∫
Kt(x, u) f(u) dγ∞(u) .

This makes it plausible that the off-diagonal kernel of m(L) is

Mϕ(x, u) = −
∫ +∞

0

ϕ(t) ∂tKt(x, u) dt. (1.4)

We will verify this formula later, though after splitting the integral and under some
restrictions. It will lead to an expression for the kernel in terms of Q and B.

From now on, we assume that m is of Laplace transform type.
In the standard case Q = I and B = −I, the operator L is self-adjoint, and

the Lp(dγ∞) boundedness of m(L) follows for all 1 < p < ∞ from a general result
due to Stein [36, Ch. 4]. Moreover, J. Garćıa-Cuerva, G. Mauceri, J. L.Torrea
and the third author proved in this case the weak type (1, 1) of m(L) with respect
to dγ∞ ; see [24, Theorem 3.8]. For more recent results in the standard case, also
involving the Gaussian conical square function, we refer to [26, 27]; see also [39, 40],
where the author investigates multiplier theorems for systems of Ornstein–Uhlenbeck
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operators. Overviews of this topic can be found in Urbina’s monograph [38, Chapter
6], Bogachev’s survey [6] and the references therein.

In the general case, when L is given by (1.1), the strong Lp(γ∞) boundedness of
m(L) follows for 1 < p < ∞ from [8, Prop. 3.8]. In the present paper, we consider
the endpoint case p = 1, where the strong boundedness does not hold.

Our main result is the following.

Theorem 1.1. If the function m is of Laplace transform type, then the multiplier
operator m(L) associated to a general Ornstein–Uhlenbeck operator L is of weak type
(1, 1) with respect to the invariant measure dγ∞.

Thus we shall prove the inequality

γ∞{x ∈ Rn : m(L) f(x) > Cα} ≤ C

α
‖f‖L1(γ∞), α > 0, (1.5)

for all functions f ∈ L1(γ∞), with C = C(n,Q,B). Our theorem extends Theo-
rem 3.8 in [24] to the framework of a general, not necessarily normal, Ornstein–
Uhlenbeck operator.

In this paper, we do not deal with holomorphic Hörmander-type functional calcu-
lus. For results in that context the reader is referred in particular to [8] and to [25].
The literature in this field is vast; good bibliographies are given in [8, 25, 35].

A careful study of other exponential integral inequalities in the Gaussian frame-
work may be found in [17, 18, 19]. For strong and weak bounds of Laplace type mul-
tipliers between Lebesgue spaces in contexts different from the Ornstein–Uhlenbeck
setting, we refer, in particular, to [5, 21, 37, 33, 4]). The main semigroups and oper-
ators introduced in these papers, anyway, are symmetric, so that, unlike our case, a
spectral decomposition is allowed. In this regard, it is worth mentioning that several
interesting results concerning other issues of harmonic analysis in a nonsymmetric
Ornstein–Uhlenbeck context, such as square functions, maximal operators and vari-
ational bounds, have recently appeared in [1, 2].

What follows next is a description of the structure of the paper, which also gives
a plan of the proof of Theorem 1.1.

In Section 2, we introduce some terminology and recall from the authors’ earlier
papers [9, 10, 11] a few estimates which are essential in our approach. Section 3 gives
a rigorous definition of the multiplier operator, and in Subsection 3.2 we split this
operator by splitting the integrals in (1.2) and (1.3) into parts taken over t < 1 and
t > 1. Then in Section 4 the time derivative ∂tKt of the Mehler kernel is computed
and estimated. This leads in Section 5 to some estimates for the kernels of the
different parts of the operator. There we also introduce some technical simplifications
that will reduce the complexity of the proof of Theorem 1.1; a further reduction will
be presented in Subsection 7.2. This proof is given in the remaining sections, in the
following way.

The operator part with t > 1 is dealt with in Section 6. The part corresponding
to t < 1 is further split into a local and a global part in Section 7, and several related
estimates are given. Section 8 contains the proof for the local part with standard
Calderón-Zygmund techniques. The remaining, global part is more delicate. For its
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kernel we will have a bound∫ 1

0

|∂tKt(x, u)| dt ≤
∑∣∣∣∣∫ ∂tKt(x, u) dt

∣∣∣∣ ,
where the integrals in the sum are taken between consecutive zeros of ∂tKt. There-
fore, we will need an estimate of the number of zeros of ∂tKt(x, u) as t runs through
the interval (0, 1]. This number turns out to be controlled by a constant depend-
ing only on n and B, as verified in Section 9. We can then complete the proof of
the weak type (1, 1) in Section 10. There we also need an enhanced version of the
Ornstein–Uhlenbeck maximal operator theorem from [CCS2, Theorem 1.1]. Its proof
is given in the Appendix (Section 11).

We will write C < ∞ and c > 0 for various constants, all of which depend only
on n, Q and B, unless otherwise explicitly stated. If a and b are positive quantities,
a . b or equivalently b & a means a ≤ Cb. When a . b and also b . a, we write
a ' b. By N we denote the set of all nonnegative integers, and B(x, r) is the open
ball with center x and radius r. If A is a real n × n matrix, we write ‖A‖ for its
operator norm on Rn with the Euclidean norm | · | . We will adopt the dot notation
for differentiation with respect to the time variable t, writing K̇t = ∂tKt.

The authors would like to thank Andrea Carbonaro for several helpful discussions.

2. Preliminaries

In this section we collect some results from [9, 10, 11] related to the Mehler kernel
of a general Ornstein–Uhlenbeck semigroup.

2.1. Some matrices and estimates.
In terms of the two real n×n matrices Q and B introduced in Section 1, we define

for t ∈ (0,+∞] the matrix

Qt =

∫ t

0

esB QesB
∗
ds. (2.1)

SinceQ is real, symmetric and positive definite and the eigenvalues ofB have negative
real parts, this integral is convergent and the matrix Qt is symmetric and positive
definite and thus invertible, for all 0 < t ≤ ∞.

It will be convenient to write

|x|Q = |Q−1/2
∞ x|, x ∈ Rn,

which is a norm on Rn, and |x|Q ' |x|. Further, we let R(x) denote the (positive
definite) quadratic form

R(x) =
1

2
|x|2Q =

1

2

〈
Q−1
∞ x, x

〉
, x ∈ Rn.

The invariant measure is given by

dγ∞(x) = (2π)−n/2
(

detQ∞
)−1/2

exp(−R(x)) dx.

Notice that dγ∞ is normalized.
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We will also use the one-parameter group of matrices

Dt = Q∞ e
−tB∗ Q−1

∞ , t ∈ R, (2.2)

introduced in [10]. From [10, formula (2.3) and Lemma 2.1] we know that

Dt =
(
Q−1
t −Q−1

∞
)−1

Q−1
t etB, t > 0. (2.3)

and

Dt = etB +Qt e
−tB∗ Q−1

∞ , t > 0. (2.4)

By means of a Jordan decomposition of B∗, the following estimates were proved in
[10, Lemma 3.1]

ect |x| . |Dt x| . eCt |x| and e−Ct |x| . |D−t x| . e−ct |x|,

holding for t > 0 and all x ∈ Rn. The same bounds are true with Dt replaced by
e−tB or e−tB

∗
; in particular,

ect |x| . |e−tB x| . eCt |x| and e−Ct |x| . |etB x| . e−ct |x| (2.5)

for t > 0 and x ∈ Rn.
From these inequalities one deduces (see [10, Lemma 3.2])

‖Q−1
t ‖ ' (min(1, t))−1, (2.6)

‖Q−1
t −Q−1

∞ ‖ . t−1 e−ct. (2.7)

Finally, we recall the following lemma, proved in [11, Lemma 2.3].

Lemma 2.1. Let x ∈ Rn and |t| ≤ 1. Then

|x−Dt x| ' |t| |x|.

2.2. Spectrum and generalized eigenspaces of L.
Let λ1, . . . , λr be the eigenvalues of B. It is known that the spectrum of L in

Lp(γ∞), 1 < p <∞, is{
−

r∑
i=1

ni λi : ni ∈ N, i = 1, . . . , r

}
⊂ {z ∈ C : <z > 0} ∪ {0},

see [31, Theorem 3.1].
Each point λ in this set is an eigenvalue of L. The corresponding generalized eigen-

functions, i.e., the functions annihilated by (L−λ)k for some k ∈ N, are polynomials,
see [28, Theorem 9.3.20]. For each λ they form a finite-dimensional space, and these
generalized eigenspaces together span a dense subspace of L2(γ∞). In particular, 0
is an eigenvalue of L. The corresponding eigenspace, which we denote by E0, is of
dimension 1 and consists of the constant functions. As shown in [12, Lemma 2.1],
this eigenspace is orthogonal to all other generalized eigenfunctions of L. We denote
by L2

0(γ∞) the orthogonal complement of E0 in L2(γ∞).
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2.3. The Mehler kernel. For x, u ∈ Rn and t > 0 the Mehler kernel Kt is given
by (see [10, formula (2.6)])

Kt(x, u) =
(det Q∞

det Qt

)1/2

eR(x) exp
[
−1

2

〈
(Q−1

t −Q−1
∞ )(u−Dt x) , u−Dt x

〉]
. (2.8)

It is convenient to use this expression for Kt when t ≤ 1. But for t ≥ 1, we will
use the following alternative, which can be obtained from [10, first formula in the
proof of Proposition 3.3],

Kt(x, u) =
(detQ∞

detQt

)1/2

eR(x) exp
[
−1

2

〈
Q−1
t etB(D−t u− x), Dt (D−t u− x)

〉]
. (2.9)

For 0 < t ≤ 1 we have the following estimates, proved in [11, (2.10)]

eR(x)

tn/2
exp

[
−C |u−Dt x|2

t

]
. Kt(x, u) .

eR(x)

tn/2
exp

[
−c |u−Dt x|2

t

]
. (2.10)

When t ≥ 1 one has instead (see [11, (2.11)])

eR(x) exp
[
− C |D−t u− x|2Q

]
. Kt(x, u) . eR(x) exp

[
− 1

2
|D−t u− x|2Q

]
. (2.11)

We will actually use only the upper estimates here.

2.4. Polar coordinates. We will use a variant of polar coordinates first introduced
in [9]. Fix β > 0 and consider the ellipsoid

Eβ = {x ∈ Rn : R(x) = β} .
Any x ∈ Rn, x 6= 0, can be written uniquely as

x = Ds x̃ ,

for some x̃ ∈ Eβ and s ∈ R. We call (s, x̃) the polar coordinates of x.
The Lebesgue measure in Rn is given in terms of (s, x̃) by

dx = e−s trB |Q1/2Q−1
∞ x̃|2

2 |Q−1
∞ x̃|

dSβ(x̃) ds , (2.12)

where dSβ denotes the area measure of Eβ. See [10, Proposition 4.2] for a proof.

3. Definition and splitting of the multiplier operator

3.1. Definition of the multiplier operator. We use the definition described in
Cowling et al. [14, Section 2], which goes back to McIntosh [29]. The starting-point
in [14] is an operator T defined on a Hilbert (or Banach) space, which in our case
will be L2

0(γ∞), defined below. This operator is to be densely defined and one-to-one
with dense range, and its spectrum must be contained in a closed sector

Sω = {z ∈ C : |argz| ≤ ω} ∪ {0},
for some ω ∈ (0, π/2). Further, the resolvent of T should satisfy the estimate

‖(T − zI)−1‖ ≤ C |z|−1, z ∈ C \ Sω, (3.1)
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for some constant C, where we refer to the operator norm on the Hilbert space.
In order to apply the construction in [14, Section 2], we denote by L2 the generator

in L2(γ∞) of the semigroup Ht. This semigroup is strongly continuous on L2(γ∞),
and its generator, as defined for instance in [22, Definition II.1.2], is an unbounded,
closed operator in L2(γ∞), see [22, Theorem II.1.4]. Its domain D(L2) = W 2,2

γ∞ is a
Sobolev space adapted to dγ∞, as verified in [32] or [28, Section 9.3]).

The invariance of the measure dγ∞ means that for any f ∈ L2(γ∞) and any t > 0

〈Htf, 1〉 = 〈f, 1〉.
Thus the orthogonal complement in L2(γ∞) of the subspace of constant functions,
which we denote by L2

0(γ∞), is invariant under the semigroup. The definition of the
generator says that for f ∈ D(L2)

L2f = lim
t→0

1

t
(Htf − f) ,

where the limit is taken in L2(γ∞). It follows that 〈L2f, 1〉 = 0, and we see that the
restriction T of L2 to L2

0(γ∞) ∩D(L2) is an unbounded, closed operator on L2
0(γ∞).

Further, T is the generator of the semigroup given by the restriction of each Ht to
L2

0(γ∞).
We will prove Theorem 1.1 with L2 replaced by T . The theorem then follows,

since L2 vanishes on E0.
From the preceding section, it is clear that T has all the properties required in [14]

mentioned above, except possibly the inequality (3.1).
Aiming at (3.1), we invoke [15, Theorem 1 and Remark 6]. This yields the existence

of an angle θ2 ∈ (0, π/2) such that for each t in the sector Sθ2 the operator Ht is a
contraction on L2(γ∞), and the map t 7→ Ht is analytic as a map from Sθ2 to the
space of bounded linear operators on L2(γ∞). Moreover, the restriction of Ht to
L2

0(γ∞) has the same two properties with respect to L2
0(γ∞). Then (3.1) follows from

well-known arguments for bounded analytic semigroups (see [22, Theorem II.4.6]).
Anyway, we give a concise proof of (3.1).

Fix a θ ∈ (0, θ2); like θ2 this θ will only depend on n, Q and B. If z is on the
negative real axis, we obtain from [20, Theorem 2.8] and the contraction property

(T − zI)−1 =

∫ +∞

0

e−t(T−zI) dt = eiθ
∫ +∞

0

e−te
iθT ete

iθzI dt; (3.2)

for the second equality we moved the path of integration to the ray eiθ R+ in C. Here
we want to let z = reiϕ, with r > 0 and ϕ ∈ (π/2− θ/2, π]. Then

0 < θ/2 < θ + ϕ− π/2 ≤ θ + π/2 < π

and so

<(t eiθz) = t r cos(θ + ϕ) = −t r sin(θ + ϕ− π/2) < −c t r.
For such z the second integral in (3.2) converges, and by analyticity it equals e−iθ (T−
zI)−1. Thus

‖(T − zI)−1‖ ≤
∫ +∞

0

e−ctr dt ≤ C

|z|
,



8 VALENTINA CASARINO, PAOLO CIATTI, AND PETER SJÖGREN

which proves (3.1) for z in the upper half-plane, with ω = π/2−θ/2. To deal with the
case when z is in the lower half-plane, it is enough to take the complex conjugate of
the equation (3.2) and repeat the argument, because T is real. Thus (3.1) is verified.

We now claim that 0 is not in the spectrum of T . This follows from the following
facts: first, one observes that the semigroup operator Ht is compact for each t > 0
(see [31, p. 45]). The restriction ofHt to L2

0(γ∞) is compact as well, and [20, Theorem
2.20] implies that the generator T consists only of eigenvalues. As a consequence, 0,
which is not an eigenvalue for T , does not belong to the spectrum of T .

The resolvent (T − zI)−1 is an analytic function of z in the resolvent set, see e.g.
[20, Lemma 2.2] In particular, its norm is bounded in a neighborhood of the origin.
This leads to the following improvement of (3.1):

‖(T − zI)−1‖ ≤ C (1 + |z|)−1, z ∈ C \ S∗ω, (3.3)

where S∗ω = {w ∈ Sω : <w ≥ ε} for some ε > 0.

The function m is of Laplace transform type and thus defined and analytic in the
right half-plane. Moreover, it is bounded on any sector Sφ with 0 < φ < π/2. The
definition of m(T ) in [14] goes via a complex integral involving the resolvent of T . To
make this integral convergent, we multiply the function m(z) by ψ(z) = 1/(1 + z2),
following [14]. With ω ∈ (0, π/2) fulfilling (3.3), we fix a ν ∈ (ω, π/2) and let Γ be
the path

Γ(t) = |t| eiν sgn t, −∞ < t <∞.
Now define

(ψm)(T ) =
1

2πi

∫
Γ

ψ(z)m(z) (zI − T )−1 dz,

which is a convergent integral because of (3.3), and let

m(T ) = ψ(T )−1(ψm)(T ). (3.4)

Proposition 3.1. Let λ 6= 0 be a generalized eigenvalue of T with generalized
eigenspace Eλ. Then the restriction to Eλ of m(T ) (defined above) coincides with
the restriction to Eλ of the integral

−
∫ +∞

0

ϕ(t)
d

dt
e−tT dt.

.

Notice that this is the integral from (1.3), and that its restriction to the finite-
dimensional, T -invariant subspace Eλ makes perfect sense. Further, m(T ) is deter-
mined by these restrictions, since the Eλ together span L2

0(γ∞) and m(T ) is bounded
on L2

0(γ∞), as proved by [8, Lemma 3.7].

Proof. Observe first that T
∣∣
Eλ

= λI +Rλ, where Rλ a nilpotent operator on Eλ. For

z ∈ C \ {λ} this leads to

(zI − T )−1
∣∣
Eλ

= ((z − λ)I −Rλ)
−1 = (z − λ)−1

(
I − Rλ

z − λ

)−1
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=
∑
j

1

(z − λ)j+1
Rj
λ,

where the sum is finite. Thus

(ψm)(T )
∣∣
Eλ

=
1

2πi

∫
Γ

ψ(z)m(z) (zI − T )−1
∣∣
Eλ
dz

=
1

2πi

∑
j

∫
Γ

ψ(z)m(z)
1

(z − λ)j+1
dz Rj

λ

=
∑
j

1

j!
(ψm)(j)(λ)Rj

λ

=
∑
i, k

1

i! k!
ψ(i)(λ)m(k)(λ)Ri+k

λ

=
∑
i

1

i!
ψ(i)(λ)Ri

λ

∑
k

1

k!
m(k)(λ)Rk

λ

= ψ(T )
∑
k

1

k!
m(k)(λ)Rk

λ.

From (3.4) and (1.2), we conclude that

m(T )
∣∣
Eλ

=
∑
k

1

k!
m(k)(λ)Rk

λ

= −
∑
k

1

k!

∫ +∞

0

ϕ(t)

(
∂

∂λ

)k
d

dt
e−λt dt Rk

λ

= −
∫ +∞

0

ϕ(t)
d

dt

∑
k

1

k!

(
∂k

∂λk
e−λt

)
dt Rk

λ.

Here the sum equals∑
k

e−λt
1

k!
(−t)k Rk

λ = e−λt e−tRλ = e−tT ,

and the proposition follows. �

3.2. Splitting of the multiplier operator. Given ϕ ∈ L∞(0,+∞), we will restrict
the integral in (1.2) to various intervals. For ε > 0 we let

mε(λ) = −
∫ +∞

ε

ϕ(t)
d

dt
e−λt dt.

But replacing ε by 0 we also define, in a slightly inconsistent way,

m0(λ) = −
∫ 1

0

ϕ(t)
d

dt
e−λt dt,

and observe that
m(T ) = m1(T ) +m0(T ).
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Then (1.4) hints that mε(T ) and m0(T ) should have off-diagonal kernels
given by

Mε(x, u) = −
∫ +∞

ε

ϕ(t) K̇t(x, u) dt (3.5)

and

M0(x, u) = −
∫ 1

0

ϕ(t) K̇t(x, u) dt. (3.6)

As will be verified in Section 5,Mε is the kernel of mε(T ) for any ε > 0, and we use
it in Section 6 to control m1(T ). But M0 is singular and (3.6) is problematical on
the diagonal x = u. We shall need to consider separately the global and local parts
of m0(T ); they will be suitably defined in Section 8.

4. The time derivative of the Mehler kernel

We compute the derivative K̇t = ∂tKt(x, u) and estimate it for small and large t.
As a preparation, we work out the t derivatives of some of the matrices introduced
in the previous section.

Lemma 4.1. For all t > 0 one has

Q̇t = etB QetB
∗
; (4.1)

d

dt
Q−1
t = −Q−1

t Q̇tQ
−1
t = −Q−1

t etB QetB
∗
Q−1
t ; (4.2)

d

dt
detQt = detQt tr(Q−1

t Q̇t) = detQt tr(Q−1
t etBQetB

∗
); (4.3)

Ḋt = −Q∞B∗ e−tB
∗
Q−1
∞ = −Q∞B∗Q−1

∞ Dt. (4.4)

Proof. The equality (4.1) trivially follows from (2.1). To obtain (4.2), one differen-
tiates the equation QtQ

−1
t = I and applies (4.1). Since Qt is nonsingular, Jacobi’s

formula implies (4.3) (see [3, Fact 10.11.19]). Finally, we obtain the two equalities
in (4.4) from (2.2). �

It will be convenient to have two different expressions for the t derivative of the
Mehler kernel, as follows.

Lemma 4.2. For all (x, u) ∈ Rn × Rn and t > 0, we have

K̇t(x, u) = Kt(x, u)Nt(x, u),

where the function Nt is given by

Nt(x, u) = −1

2
tr
(
Q−1
t etB QetB

∗)
+

1

2

∣∣Q1/2 etB
∗
Q−1
t (u−Dt x)

∣∣2
−
〈
Q∞B

∗Q−1
∞ Dt x , (Q−1

t −Q−1
∞ ) (u−Dt x)

〉
, (4.5)

and also by

Nt(x, u) =− 1

2
tr
(
Q−1
t etB QetB

∗)
+

1

2

∣∣Q1/2 etB
∗
Q−1
t etB (D−t u− x)

∣∣2
−
〈
Q−1
t B etB (D−t u− x) , etB (D−t u− x)

〉
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−
〈
Q−1
t etB Q∞B

∗Q−1
∞ D−t u , e

tB (D−t u− x)
〉

−
〈
B∗Q−1

∞ D−t u , D−t u− x
〉

=: It + IIt(x, u) + IIIt(x, u) + IVt(x, u) + Vt(x, u). (4.6)

Proof. Differentiating (2.8) with respect to t and applying Lemma 4.1, one obtains

K̇t(x, u) =

Kt(x, u)
[
− 1

2
tr
(
Q−1
t etB QetB

∗)
+

1

2

〈
Q−1
t etB QetB

∗
Q−1
t (u−Dt x) , u−Dt x

〉
−
〈
(Q−1

t −Q−1
∞ )Q∞B

∗Q−1
∞ Dt x , (u−Dt x)

〉 ]
,

from which (4.5) follows.
Next, we differentiate (2.9), applying (4.3) to the first factor, and then use (2.4)

to rewrite the matrix Dt in the exponent. The result will be

K̇t(x, u) = Kt(x, u)
{
− 1

2
tr
(
Q−1
t etB QetB

∗)
+
d

dt

[
−1

2

〈
Q−1
t etB (D−t u− x) , (etB +Qt e

−tB∗ Q−1
∞ )(D−t u− x)

〉]}
. (4.7)

The derivative here consists of two terms, the first term being

d

dt

[
− 1

2

〈
Q−1
t etB (D−t u− x) , etB (D−t u− x)

〉 ]
=

1

2

〈
Q−1
t etB QetB

∗
Q−1
t etB (D−t u− x) , etB (D−t u− x)

〉
−
〈
Q−1
t B etB (D−t u− x) , etB (D−t u− x)

〉
−
〈
Q−1
t etB Q∞B

∗Q−1
∞ D−t u , e

tB (D−t u− x)
〉
,

where we applied (4.2) and (4.4) with t replaced by −t. Notice that we have arrived
at the terms IIt, IIIt and IVt in (4.6).

In the second term coming from the derivative in (4.7), we observe some cancella-
tion; the term equals

d

dt

[
−1

2

〈
D−t u− x , Q−1

∞ (D−t u− x)
〉]

= −
〈
D−t u− x , B∗Q−1

∞ D−t u
)〉

= Vt(x, u),

where we used again (4.4). Summing up, we obtain (4.6), and the lemma is proved.
�

Lemma 4.3. Let x, u ∈ Rn. Then for 0 < t ≤ 1

|Nt(x, u)| . 1

t
+
|u−Dt x|2

t2
+ |x| |u−Dt x|

t
(4.8)

and for t ≥ 1

|Nt(x, u)| . |D−t u− x| |D−t u|+ e−ct |D−t u− x|2 + e−ct. (4.9)
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Proof. For 0 < t ≤ 1, (4.8) follows from (4.5), by means of (2.6) and (2.7).
When t ≥ 1 we get, starting from (4.6) and using (2.5) and (2.6),

|It| =
1

2

∣∣∣ tr(Q−1
t etB QetB

∗
)
∣∣∣ . e−ct.

Similarly, we have

|IIt(x, u)| = 1

2

∣∣∣Q1/2 etB
∗
Q−1
t etB (D−t u− x)

∣∣∣2 . e−ct |D−t u− x|2,

and also

|IIIt(x, u)| . e−ct |D−t u− x|2 .

Proceeding as above, we further obtain

|IVt(x, u)|+ |Vt(x, u)| . |D−tu− x| |D−tu|,

and (4.9) is proved. �

5. On the multiplier kernel

In this section, we estimate some parts of the multiplier kernel and verify their
relevance for the corresponding parts of the operator. We also state some facts that
will simplify the proofs to come.

5.1. Estimates of kernels. Without loss of generality, it will be assumed from
now on that

‖ϕ‖∞ ≤ 1.

We first invoke a lemma from [11, Lemma 5.1 and Remark 5.5].

Lemma 5.1. Let δ > 0. For σ ∈ {1, 2, 3} and x, u ∈ Rn, one has∫ +∞

1

exp
(
−δ |D−t u− x|2

)∣∣D−t u∣∣σ dt . 1 + |x|σ−1,

where the implicit constant may depend on δ, in addition to n, Q and B.

Proposition 5.2. (i) The integral (3.5) defining Mε converges absolutely for any
ε > 0 and all x, u ∈ Rn. Moreover,

|M1(x, u)| . eR(x), x, u ∈ Rn, (5.1)

and for 0 < ε < 1

|Mε(x, u)| . ε−C eR(x) (1 + |x|), x, u ∈ Rn. (5.2)

(ii) For any ε > 0, any f ∈ L2
0(γ∞) and a.a. x ∈ Rn,

mε(T )f(x) =

∫
Mε(x, u) f(u) dγ∞(u). (5.3)
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Proof. Aiming at (i), we begin by estimating the kernel K̇t(x, u) = Kt(x, u)Nt(x, u).
For 1 < t < +∞ we use (2.11) and (4.9). Then we can neglect the factors |D−t u−x|
in Nt(x, u) by also reducing slightly the positive coefficient in front of the same factor
in the exponent in (2.11). As a result,

|K̇t(x, u)| . eR(x) exp
(
−c |D−t u− x|2

)
(|D−t u|+ e−ct), t > 1. (5.4)

Lemma 5.1 now implies (5.1).
For 0 < t < 1 we use instead (2.10) and (4.8), and now we can neglect all powers

of |u−Dt x|2/t in Nt(x, u). This leads to

|K̇t(x, u)| . eR(x) t−n/2 exp

(
−c |u−Dt x|2

t

) (
t−1 + |x|t−1/2

)
. eR(x) (1+|x|) t−n/2−1.

(5.5)
Integrating over ε < t < 1 and combining the result with (5.1), we arrive at (5.2).
The claimed convergence is now clear, so (i) is verified.

For item (ii), we need the following lemma.

Lemma 5.3. Let f ∈ L2
0(γ∞) and x ∈ Rn. Then for any t > 0

∂t

∫
Kt(x, u) f(u) dγ∞(u) =

∫
K̇t(x, u) f(u) dγ∞(u). (5.6)

Proof. Given t > 0, we replace t by τ in the right-hand side of (5.6), and then
integrate dτ over the interval t0 < τ < t, for some fixed t0 ∈ (0, t). If we can swap
the order of integration in the resulting double integral, we will get∫ t

t0

∫
K̇τ (x, u) f(u) dγ∞(u) dτ =

∫
(Kt(x, u)−Kt0(x, u))) f(u) dγ∞(u).

Differentiating this equation with respect to t, we then obtain the lemma.
To see that Fubini’s theorem justifies this swap, it is enough to verify that

sup
u∈Rn

∫ ∞
ε

|K̇τ (x, u)| dτ <∞ (5.7)

for each x and each ε > 0. But this follows from (5.5) for the integral over ε < τ < 1
and from (5.4) and Lemma 5.1 for that over τ > 1. The lemma is proved. �

To verify item (ii) in the proposition, we observe that because of (5.2), the right-
hand side of (5.3) defines for each x a functional on L2

0(γ∞), whose norm is locally
uniformly bounded for x ∈ Rn. Further, the operator mε(T ) is bounded on the
same space (see [8, Lemma 3.7]). Since the generalized eigenspaces Eλ together span
L2

0(γ∞), it is enough to verify (5.3) on each Eλ.
So let f ∈ Eλ for some λ. Since e−tT f(x) =

∫
Kt(x, u)f(u) dγ∞(u), Proposition 3.1

and Lemma 5.3 imply

mε(T )f(x) = −
∫ ∞
ε

ϕ(t) ∂t

∫
Kt(x, u)f(u) dγ∞(u) dt

= −
∫ ∞
ε

ϕ(t)

∫
K̇t(x, u)f(u) dγ∞(u) dt.
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Switching the order of integration, again by means of (5.7), we conclude the proof
of (ii). �

Proposition 5.4. (i) For 0 < t ≤ 1 and all x 6= u,

Kt(x, u) . eR(x) (1 + |x|)C |x− u|−C (5.8)

and ∣∣∣K̇t(x, u)
∣∣∣ . eR(x) (1 + |x|)C |x− u|−C . (5.9)

(ii) The integral (3.6) defining M0 converges for all x 6= u, and

|M0(x, u)| . eR(x) (1 + |x|)C |x− u|−C , x 6= u. (5.10)

(iii) For any f ∈ L2
0(γ∞) and a.a. x /∈ supp f ,

m0(T )f(x) =

∫
M0(x, u) f(u) dγ∞(u).

Proof. To verify (i), we start with the upper estimate in (2.10)

Kt(x, u) .
eR(x)

tn/2
exp

(
−c |u−Dt x|2

t

)
and the first inequality in (5.5), which implies

|K̇t(x, u)| . eR(x) (1 + |x|) t−1−n/2 exp

(
−c |u−Dt x|2

t

)
. (5.11)

Notice that this last estimate is also satisfied by Kt(x, u).
We have |u−Dt x| ≥ |u−x|−|x−Dt x|, and Lemma 2.1 says that |x−Dt x| ' t|x|.

Thus |u−Dt x| ≥ |u− x|/2 if t < c|u− x|/|x| for some c > 0, and we conclude that
for 0 < t < 1 ∧ c|u− x|/|x| the right-hand side of (5.11) is then controlled by

eR(x) (1 + |x|) t−1−n/2 exp

(
−c |u− x|

2

t

)
. eR(x) (1 + |x|) |u− x|−2−n.

If instead c|u− x|/|x| < t ≤ 1, it is enough to estimate the right-hand side of (5.11)
by constant times

eR(x) (1 + |x|) t−1−n/2 . eR(x) (1 + |x|)C |u− x|−C .

This proves both (5.8) and (5.9).

Part (ii) follows immediately from (5.9), since |M0(x, u)| ≤
∫ 1

0

∣∣∣K̇t(x, u)
∣∣∣ dt.

To prove (iii), we can assume that ϕ vanishes for t ≥ 1. Then (5.9) leads to

|Mε(x, u)| ≤
∫ 1

ε

∣∣∣K̇t(x, u)
∣∣∣ dt . eR(x) (1 + |x|)C |x− u|−C , x 6= u (5.12)

and this is uniform in ε.

We will let ε→ 0 in (5.3), with x /∈ supp f and a fixed f ∈ L2
0(γ∞). Consider first

the right-hand side of (5.3).
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Because of (5.9), we see from (3.5) and (3.6) that, with ϕ supported in [0, 1], one
has Mε(x, u) → M0(x, u) as ε → 0, for any x 6= u. In the integral in the right-
hand side of (5.3), we thus have pointwise convergence, and |f(u)| dγ∞(u) is a finite
measure. The estimate (5.12) allows us to apply bounded convergence, and conclude
that ∫

Mε(x, u)f(u) dγ∞(u)→
∫
M0(x, u)f(u) dγ∞(u), ε→ 0,

for x /∈ supp f . Moreover, the left-hand integral here is a function of x which
stays locally bounded in the complement of supp f , uniformly in ε. So we also have
convergence in the sense of distributions in Rn \ supp f .

To deal with the left-hand side of (5.3), we claim that mε(T )f → m0(T )f in the
sense of distributions in Rn, as ε→ 0. This will end the proof of (ii).

With ν, Γ and ψ(z) = 1/(1 + z2) as in Section 3, we have

mε(T ) = (1 + T 2)
1

2πi

∫
Γ

mε(z)

1 + z2
(zI − T )−1 dz.

To prove the claim, we let g ∈ C∞0 (Rn). It is enough to verify that

〈mε(T )f, g〉 → 〈m(T )f, g〉, ε→ 0,

with the scalar products taken in L2(γ∞). Notice that it does not matter whether
we consider the convergence of the functions mε(T )f or the measures mε(T )f dγ∞.
We have

〈mε(T )f, g〉 =

〈
(1 + T 2)

1

2πi

∫
Γ

mε(z)

1 + z2
(zI − T )−1f dz, g

〉
=

1

2πi

∫
Γ

mε(z)

1 + z2

〈
(zI − T )−1f , (1 + (T ∗)2) g

〉
dz, (5.13)

where T ∗ is the adjoint of T in L2(γ∞), so that (1 + (T ∗)2) g is another test function
in C∞0 (Rn). Now mε(z) = z

∫∞
ε
ϕ(t) e−tz dt tends to m(z) for each nonzero z ∈ Γ.

For such z we also have the bound |mε(z)| ≤ ‖ϕ‖∞ |z|/<z . 1. In the last integral in
(5.13), the integrand thus converges pointwise, and it is also dominated by constant
times

1

1 + |z|2
‖(zI − T )−1f‖L2(γ∞) ‖(1 + (T ∗)2) g‖L2(γ∞),

which is integrable along Γ because of (3.3). The dominated convergence theorem
now implies the claim and completes the proof of (iii) and that of Proposition 5.4. �

5.2. Simplifications. The preceding estimates allow some preliminary observations
that will simplify the proof of Theorem 1.1.

In (1.5) we take f such that ‖f‖L1(γ∞) = 1. We can then assume that α in the
same estimate is large, in particular α > 2, since dγ∞ is finite.

Further, we can focus mainly on points x in the ellipsoidal annulus

Cα =

{
x ∈ Rn :

1

2
logα ≤ R(x) ≤ 2 logα

}
.

To justify this, we will follow closely the arguments in [11, Section 6]. The first
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observation is that the set of points x for which R(x) > 2 logα can be neglected,
because its dγ∞ measure is no larger than C/α.

The next proposition deals with the remaining part of the complement of Cα when
t > 1 and follows immediately from (5.1).

Proposition 5.5. Let x ∈ Rn satisfy R(x) < 1
2

logα, where α > 2. Then for all
u ∈ Rn ∣∣M1(x, u)

∣∣ . α.

A further simplification will be introduced in Subsection 7.2.

6. The weak type (1, 1) for large t

Proposition 6.1. For any f ∈ L1(γ∞) such that ‖f‖L1(γ∞) = 1 and any α > 2,

γ∞ {x ∈ Cα : |m1(T )f(x)| > α} . 1

α
√

logα
.

In particular, the operator m1(T ) is of weak type (1, 1) with respect to the invariant
measure dγ∞.

The estimate in this proposition means that for large α one has a slightly stronger
estimate than the classical weak type (1, 1) bound. This phenomenon was already
observed for the Ornstein–Uhlenbeck maximal operator in [10, Section 6], for the
first-order Riesz transforms in [11, Proposition 7.1]) and for the variation operator
of the Ornstein–Uhlenbeck semigroup in dimension one in [13, Proposition 3.1].

Proof. We will first use our polar coordinates to deduce a sharper version of the
estimate (5.1) in Proposition 5.2(i). If x ∈ Cα and u 6= 0, we can write x = Ds x̃ and
u = Dσ ũ with x̃, ũ ∈ E(logα)/2 and s ≥ 0, σ ∈ R.

Let t ≥ 1. Applying [10, Lemma 4.3 (i)], we obtain

|D−t u− x| = |Dσ−t ũ−Ds x̃| & |x̃− ũ|.
Thus (2.11) implies

Kt(x, u) . eR(x) exp
(
− c |x̃− ũ|2

)
exp

(
− c |D−t u− x|2

)
,

for some c.
Using this estimate instead of (2.11), one can follow the proof of (5.1) with an

extra factor exp (−c |x̃− ũ|2). The result will be∣∣M1(x, u)
∣∣ . eR(x) exp

(
− c

∣∣x̃− ũ∣∣2), x ∈ Cα.

We can now finish the proof of Proposition 6.1 by means of the following lemma,
which is the case σ = 1 of [11, Lemma 7.2].

Lemma 6.2. Let f ≥ 0 be normalized in L1(γ∞). For α > 2

γ∞

{
x = Ds x̃ ∈ Cα : eR(x)

∫
exp

(
− c

∣∣x̃− ũ∣∣2) f(u) dγ∞(u) > α

}
.

C

α
√

logα
.

�
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7. Localization

In order to study the weak type (1, 1) for small t, we need a further splitting of
the operator m0(T ). Localization means considering that part of m0(T )f(x) which
depends on the values of f in a ball of center x and radius essentially 1/(1 + |x|).
We start by ”filling” Rn with balls of this type.

7.1. Local and global parts. With x0 = 0, we select a sequence (xj)
∞
0 of points

such that the open balls Bj = B(xj, 1/(1 + |xj|)), j = 0, 1, . . . , are pairwise disjoint,
and such that the family (Bj)

∞
0 is maximal with respect to this property.

In the sequel, we will often use notations like 3Bj in the sense of concentric scaling.
We first verify that the balls 3Bj, j = 0, 1, . . . , cover Rn. To verify that a given

point x is in some 3Bj, we can assume that |x| ≥ 3, since otherwise x ∈ 3B0. The
maximality property of the Bj implies that the ball B(x, 1/(1 + |x|)) must intersect
some Bj, necessarily with j > 0. Then

|x− xj| <
1

1 + |x|
+

1

1 + |xj|
, (7.1)

and so

|xj| < |x|+
1

1 + |x|
+

1

1 + |xj|
≤ |x|+ 1

4
+

1

2
≤ |x|+ 3

4

|x|
3

=
5

4
|x|.

Thus 1 + |xj| < 5(1 + |x|)/4, and (7.1) implies

|x− xj| <
5

4

1

1 + |xj|
+

1

1 + |xj|
<

3

1 + |xj|
,

so that x ∈ 3Bj.
We will need another property of these balls: for any j and any x

x ∈ 6Bj ⇒ 1

7
<

1 + |x|
1 + |xj|

< 7. (7.2)

Indeed, if |x− xj| < 6/(1 + |xj|) we have

1 + |xj| < 1 + |x|+ 6/(1 + |xj|) ≤ 7 + |x| ≤ 7(1 + |x|),
and the other inequality follows in the same way.

This allows us to show that the balls (6Bj)
∞
0 have bounded overlap, as follows.

Let x ∈ 6Bj, so that xj ∈ B(x, 6/(1 + |xj|)). Then

Bj = B(xj, 1/(1 + |xj|) ⊂ B(x, 7/(1 + |xj|)) ⊂ B(x, 49/(1 + |x|)),
the last step by (7.2). Comparing Lebesgue measures, we have |Bj| & (1 + |x|)−n
and |B(x, 49/(1 + |x|))| . (1 + |x|)−n. Since the Bj are pairwise disjoint, this can
occur for at most a bounded number of j. The bounded overlap is verified.

We now introduce functions supported in some of these balls, with which the local
part of m0(T ) will be defined. Let first ρi for each i = 0, 1, . . . be a nonnegative,
smooth function supported in 4Bi such that ρi = 1 in 3Bi. Its gradient should satisfy
|∇ρi(x)| . 1 + |x|. The sum

∑∞
0 ρi is locally finite and satisfies 1 ≤

∑∞
0 ρi . 1 and

also |∇
∑∞

0 ρi(x)| . 1 + |x|.



18 VALENTINA CASARINO, PAOLO CIATTI, AND PETER SJÖGREN

The functions we will use are

rj =
ρj∑∞
0 ρi

.

Clearly, rj is nonnegative, smooth and supported in 4Bj, and
∑∞

0 rj = 1. For the
gradient, one has

|∇rj(x)| . 1 + |x|. (7.3)

We will also need smooth functions r̃j, j = 0, 1, . . . , again with values in [0, 1] but
having larger supports. They shall satisfy r̃j = 1 in 5Bj and supp r̃j ⊆ 6Bj, and like
the rj they shall also verify ∣∣∇r̃j(x)

∣∣ . 1 + |x|. (7.4)

We observe that the functions r̃j have bounded overlap and that

e−R(x) ' e−R(xj) for x ∈ supp r̃j, (7.5)

which follows from [11, formula (2.9)] with y = x−xj when |x| is large and is trivial
in the opposite case.

Let

η(x, u) =
∞∑
j=0

r̃j(x) rj(u),

and note that for all x, u ∈ Rn

0 ≤ η(x, u) ≤ 1. (7.6)

The following two lemmas express that η(x, u) indicates how close the points x
and u are to each other, and also give an estimate of the gradient of η(x, u).

Lemma 7.1. (i) If η(x, u) > 0 for some points x and u, then |x− u| . 1
1+|x| .

(ii) For any points with x 6= u∣∣∇x η(x, u)
∣∣+
∣∣∇u η(x, u)

∣∣ . |x− u|−1.

Proof. (i) Since η(x, u) > 0, there exists a j such that r̃j(x) > 0 and rj(u) > 0. Thus
x ∈ 6Bj so that 1 + |x| ' 1 + |xj| by (7.2), and u ∈ 4Bj. We get

|x− u| ≤ |x− xj|+ |u− xj| <
6

1 + |xj|
+

4

1 + |xj|
.

1

1 + |x|
.

(ii) We can assume that (x, u) is in the support of η, and by continuity the conclusion
of (i) still holds. The inequality for ∇x η follows from (7.4) and (i). For ∇u η we
apply (7.2) to x and u with j as in (i), to get 1 + |x| ' 1 + |u|. Now we can use (7.3)
and (i). �

Lemma 7.2. If x and u are two points with |x− u| ≤ 1
3

1
1+|x| , then

rj(u) > 0 ⇒ r̃j(x) = 1, j = 0, 1, . . . , (7.7)

and η(x, u) = 1.
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Proof. The last conclusion is a consequence of (7.7) and the definition of η. The
implication (7.7) follows from

u ∈ 4Bj ⇒ x ∈ 5Bj,

or equivalently,

|u− xj| <
4

1 + |xj|
⇒ |x− xj| <

5

1 + |xj|
.

But

|x− xj| ≤ |x− u|+ |u− xj| <
1

3

1

1 + |x|
+

4

1 + |xj|
,

So it is enough to show that

1

3

1

1 + |x|
≤ 1

1 + |xj|
,

which is obvious if |xj| ≤ 2. In case |xj| > 2, we have

1+|xj| ≤ 1+|u−xj|+|x−u|+|x| ≤ 1+
4

1 + |xj|
+

1

3
+|x| < 1+

4

3
+

1

3
+|x| < 3(1+|x|).

�

We now split the multiplier operator m0(T ) in a local and a global part. The local
part is defined by

m0(T )locf(x) =
∞∑
j=0

r̃j(x)m0(T ) (frj) (x), f ∈ L1(γ∞). (7.8)

This sum is locally finite and so well defined.
It was proved in Proposition 5.4(iii) that the off-diagonal kernel of m0(T ) is
M0(x, u). To find that of m0(T )loc, take f ∈ L1(γ∞). For almost all points
x /∈ supp f , thus not in supp frj for any j, we have

m0(T )locf(x) =
∞∑
j=0

r̃j(x)

∫
M0(x, u)f(u) rj(u) dγ∞(u),

where the sum is again locally finite. As a consequence,

m0(T )locf(x) =

∫
M0(x, u) η(x, u) f(u) dγ∞(u),

and so the off-diagonal kernel of m0(T )loc is

Mloc
0 (x, u) =M0(x, u) η(x, u). (7.9)

We also define
m0(T )glob = m0(T )−m0(T )loc.

Its off-diagonal kernel is

Mglob
0 (x, u) =M0(x, u) (1− η(x, u)). (7.10)

Moreover, the next lemma says that m0(T )glob is completely given by this kernel.
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Lemma 7.3. For any f ∈ L1(γ∞) and a.a. x, one has

m0(T )globf(x) =

∫
M0(x, u) (1− η(x, u)) f(u) dγ∞(u). (7.11)

Proof. Our strategy will be to take a point ξ ∈ Rn and verify (7.11) a.e. in the ball

B := B

(
ξ,

1

8

1

1 + |ξ|

)
.

If x, u ∈ B then

|x− u| < 1

4

1

1 + |ξ|
,

and we have

1 + |x| ≤ 1 + |ξ|+ |x− ξ| < 1 + |ξ|+ 1

8

1

1 + |ξ|
≤ 9

8
(1 + |ξ|).

Combining these two estimates, we get

|x− u| < 1

4

9

8

1

1 + |x|
<

1

3

1

1 + |x|
. (7.12)

Thus Lemma 7.2 applies. We compute m0(T )loc(fχB)(x) for x ∈ B, by means of
the definition (7.8) of m0(T )loc. If for some j, the product fχB rj does not vanish
identically, there exists a point u ∈ B with rj(u) > 0. Then Lemma 7.2 says that
r̃j(x) = 1, and it follows that for x ∈ B

m0(T )loc(fχB)(x) =
∑
j

m0(T )(fχB rj)(x) = m0(T )loc

(∑
j

fχB rj

)
(x)

= m0(T )(fχB)(x),

since in the sums here, only a finite number of terms are nonzero The equality
obtained implies that m0(T )glob(fχB)(x) = 0.

When we next apply the operator m0(T )glob to f(1 − χB), we can use the off-
diagonal kernel in (7.10). As a result, we have for a.a. x ∈ B

m0(T )globf(x) = m0(T )glob
(
f(1− χB)

)
(x) =∫

M0(x, u) (1− η(x, u)) f(u) (1− χB(u)) dγ∞(u) =∫
M0(x, u) (1−η(x, u)) f(u) dγ∞(u)−

∫
M0(x, u) (1−η(x, u)) f(u)χB(u) dγ∞(u).

The last integral is 0, since here η(x, u) = 1 in view of (7.12) and Lemma 7.2. We
have verified (7.11) a.e. in the ball B and thus almost everywhere. �
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7.2. A further simplification. The following proposition is complementary to
Proposition 5.5 and deals with the interior of Cα when t < 1.

Proposition 7.4. Let x ∈ Rn satisfy R(x) < 1
2

logα, where α > 2. Then for all
u ∈ Rn

Mglob
0 (x, u) . α.

Proof. If Mglob
0 (x, u) 6= 0 then η(x, u) < 1, and Lemma 7.2 implies that |x − u| &

1
1+|x|Q

. From (5.10) we then obtain

Mglob
0 (x, u) . eR(x) (1 + |x|)C . α,

and the proposition is verified. �

Thus we need to take the region {x : R(x) < 1
2

logα} into account only when

considering m0(T )loc.

8. The local region

In this section we shall prove the weak type (1,1) of the operator m0(T )loc.
In order to apply Calderón–Zygmund theory, we pass to Lebesgue measure. Set

qTf(x) = e−R(x) m0(T )loc
(
f(·) eR(·) )(x). (8.1)

The relationship between qT and m0(T )loc is clarified by the following result.

Proposition 8.1. If qT is of weak type (1, 1) with respect to Lebesgue measure, then
m0(T )loc is of weak type (1, 1) with respect to the invariant measure.

Proof. By (7.8) and the bounded overlap of the r̃j, we have

‖m0(T )locf‖L1,∞(γ∞) =

∥∥∥∥∥
∞∑
j=0

r̃jm0(T ) (frj)

∥∥∥∥∥
L1,∞(γ∞)

.
∞∑
j=0

‖r̃jm0(T ) (frj)‖L1,∞(γ∞) .

The last sum may be rewritten as

∞∑
j=0

∥∥eR(x) e−R(x) r̃j(x)m0(T ) (frj) (x)
∥∥
L1,∞(γ∞)

=
∞∑
j=0

∥∥eR(x) r̃j(x) qT
(
f rj e

−R(·)) (x)
∥∥
L1,∞(γ∞)

'
∞∑
j=0

eR(xj)
∥∥r̃j qT (f rj e−R(·))∥∥

L1,∞(γ∞)
'

∞∑
j=0

∥∥r̃j qT (f rj e−R(·))∥∥
L1,∞(dx)

;
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in the last two steps we used (7.5). The hypothesis of the proposition implies that
the last sum is dominated by constant times

∞∑
j=0

∥∥f rj e−R(·)∥∥
L1(du)

=
∞∑
j=0

‖f rj‖L1(γ∞) = ‖f‖L1(γ∞),

which proves the assertion. �

We will now apply Calderón-Zygmund theory to the operator qT , in order to
prove its weak type (1, 1) with respect to Lebesgue measure. First we verify the L2

boundedness.

Lemma 8.2. The operator qT is bounded on L2(dx).

Proof. Starting with (8.1) and (7.8), we then apply the bounded overlap of the r̃j
and (7.5). We get∫

|qTf(x)|2dx =

∫ ∣∣∣∣∣
∞∑
j=0

e−R(x) r̃j(x)m0(T )
(
f rj e

R(·)) (x)

∣∣∣∣∣
2

dx

.
∞∑
j=0

∫ ∣∣e−R(x) r̃j(x)m0(T )
(
f rj e

R(·)) (x)
∣∣2 dx

.
∞∑
j=0

e−R(xj)

∫ ∣∣∣r̃j(x)m0(T )
(
f rj e

R(·)) (x)
∣∣∣2 dγ∞(x)

.
∞∑
j=0

e−R(xj)

∫ ∣∣∣m0(T )
(
f rj e

R(·)) (x)
∣∣∣2 dγ∞(x).

For m0(T ), which is of Laplace transform type, the L2 boundedness with respect to
the invariant measure follows from [8, Lemma 3.7] (we remark that this boundedness
is also a consequence of some results in [15] and [16], which can be applied here since
[32, Lemma 2.2] exhibits a linear change of coordinates in Rn reducing the setting to
the case where Q = I and Q∞ is a diagonal matrix). As a consequence of the above,
we have ∫

|qTf(x)|2 dx .
∞∑
j=0

e−R(xj)

∫ ∣∣∣f(u) rj(u) eR(u)
∣∣∣2 dγ∞(u)

'
∞∑
j=0

∫ ∣∣f(u) rj(u)
∣∣2 du ≤ ∫ |f(u)|2 du,

concluding the proof. �

We need a lemma from [11].
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Lemma 8.3. Let p, r ≥ 0 with p + r/2 > 1. Assume that η(x, u) > 0 and x 6= u.
Then for δ > 0∫ 1

0

t−p exp

(
−δ |u−Dt x|2

t

)
|x|r dt ≤ C |u− x|−2p−r+2.

Here the constant C may depend on δ, p and r, in addition to n, Q and B.

Proof. To see that this follows from [11, Lemma 8.1], it is enough to observe that
Lemma 7.1(i) leads to |u − x| . 1/(1 + |x|), i.e., (x, u) ∈ LA in the terminology of
[11]. �

We shall now find the off-diagonal kernel Q(x, u) of the operator qT from (8.1),
defined for integration against Lebesgue measure, that is,

qTf(x) =

∫
Q(x, u) f(u) du, x /∈ supp f.

It will be convenient to introduce another kernel

Kt(x, u) := e−R(x)Kt(x, u)

=
(det Q∞

det Qt

)1/2

exp
[
−1

2

〈
(Q−1

t −Q−1
∞ )(u−Dt x) , u−Dt x

〉]
.

We recall from (7.9) and Proposition 5.4 that the off-diagonal kernel of m0(T )loc

is

Mloc
0 (x, u) =M0(x, u) η(x, u) = −

∫ 1

0

ϕ(t) K̇t(x, u) dt η(x, u).

From this and (8.1) it follows that

Q(x, u) = e−R(x)Mloc
0 (x, u) = −

∫ 1

0

ϕ(t) K̇t(x, u) dt η(x, u). (8.2)

We will need expressions for some derivatives of Kt; for similar results about the
derivatives of Kt we refer to [11, Lemma 4.1].

Using (2.3), one sees that

∂x` Kt(x, u) = Kt(x, u)P`(t, x, u),

where

P`(t, x, u) =
〈
Q−1
t etB e` , u−Dt x

〉
. (8.3)

Similarly, or as an immediate consequence of [11, formula (4.2)],

∂u` Kt(x, u) = −Kt(x, u)
〈
Q−1
t etB (D−t u− x) , e`

〉
. (8.4)

The following three technical lemmata give expressions and estimates for deriva-
tives of K̇t = ∂Kt/∂t. Before stating them, we notice that

K̇t(x, u) = e−R(x) K̇t(x, u) = e−R(x) Kt(x, u)Nt(x, u) = Kt(x, u)Nt(x, u), (8.5)

with Nt(x, u) from Lemma 4.2.
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Lemma 8.4. For x, u ∈ Rn and t > 0, one has

(i) ∂x` K̇t(x, u) = Kt(x, u)S`(t, x, u);

(ii) ∂u` K̇t(x, u) = Kt(x, u)R`(t, x, u),

where the factors S`(t, x, u) and R`(t, x, u) are given by

S`(t, x, u) = Nt(x, u)P`(t, x, u)−
〈
Q−1
t etB QetB

∗
Q−1
t etB e` , u−Dt x

〉
+
〈
Q−1
t B etB e` , u−Dt x

〉
+
〈
Q−1
t etB e` , Q∞B

∗ e−tB
∗
Q−1
∞ x

〉
, (8.6)

and

R`(t, x, u) = −Nt(x, u)
〈
Q−1
t etB (D−t u− x) , e`

〉
+
〈
Q−1
t etB QetB

∗
Q−1
t etB (D−t u− x) , e`

〉
−
〈
Q−1
t B etB (D−t u− x) , e`

〉
−
〈
Q−1
t etB Q∞B

∗ Q−1
∞ D−t u , e`

〉
. (8.7)

Proof. To prove (i), we start by observing that

∂x` K̇t(x, u) = ∂t (Kt(x, u)P`(t, x, u))

=Kt(x, u)Nt(x, u)P`(t, x, u) +Kt(x, u) ∂t
(〈
Q−1
t etB e` , u−Dt x

〉)
,

where we used (8.3). Applying (4.2) and (4.4) to the last derivative here, one arrives
at (8.6), and (i) is verified.

To prove (ii), we proceed similarly, using (8.4) to write

∂u`K̇t(x, u) = −KtNt(x, u)
〈
Q−1
t etB (D−t u− x) , e`

〉
−Kt(x, u) ∂t

(〈
Q−1
t etB (D−t u− x) , e`

〉)
.

As in the case of (i), this leads to (8.7) and (ii). �

To bound S` and R`, one concludes from [11, formula (4.5)] that (notice the
distinction between our P` and the Pj used in [11] )

|P`(t, x, u)| . |u−Dt x|/t, 0 < t ≤ 1. (8.8)

Lemma 8.5. One has for 0 < t ≤ 1 and all x, u ∈ Rn

|S`(t, x, u)| . |x| |u−Dt x|2

t2
+
|u−Dt x|3

t3
+
|u−Dt x|

t
+
|u−Dt x|

t2
+
|x|
t
.

Proof. We first bound the product Nt(x, u)P`(t, x, u) appearing in (8.6). Because of
(4.8) and (8.8), we have for 0 < t ≤ 1∣∣Nt(x, u)P`(t, x, u)

∣∣ . (
1

t
+
|u−Dt x|2

t2
+ |x| |u−Dt x|

t

)
|u−Dt x|

t

.
|u−Dt x|

t2
+
|u−Dt x|3

t3
+ |x| |u−Dt x|2

t2
.

Estimating also the other terms in (8.6), one arrives at the lemma. �
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Lemma 8.6. For t ∈ (0, 1] and all x, u ∈ Rn

|R`(t, x, u)| . |x| |u−Dt x|2

t2
+
|u−Dt x|3

t3
+
|u−Dt x|

t2
+ +
|x|
t
.

Proof. For t ∈ (0, 1] we have by (8.7) and (4.8)∣∣R`(t, x, u)
∣∣ . ∣∣Nt(x, u)

∣∣ |u−Dt x|
t

+
|u−Dt x|

t2
+
|u−Dt x|

t
+
|u|
t

.

(
1

t
+
|u−Dt x|2

t2
+ |x| |u−Dt x|

t

)
|u−Dt x|

t
+
|u−Dt x|

t2
+
|x|
t
.

Here we estimated |u|/t by |u−Dt x|/t2 + |x|/t. The lemma follows. �

Proposition 8.7. For all (x, u) such that η(x, u) 6= 0 and x 6= u, one has∫ 1

0

∣∣K̇t(x, u)
∣∣ dt . |u− x|−n.

Proof. From (8.5) (2.10) and (4.8) we obtain∫ 1

0

∣∣K̇t(x, u)
∣∣ dt

.
∫ 1

0

t−
n
2 exp

(
−c |Dt x− u|2

t

) (
1

t
+
|u−Dt x|2

t2
+ |x| |u−Dt x|

t

)
dt

.
∫ 1

0

t−
n
2 exp

(
−c |Dt x− u|2

t

) (
1

t
+
|x|√
t

)
dt.

Because of Lemma 8.3, the last integral is controlled by |u−x|−n, and the proposition
is proved. �

We are now ready to prove standard Calderón-Zygmund bounds for the off-diagonal
kernel of qT with respect to Lebesgue measure.

Proposition 8.8. For all (x, u) such that η(x, u) 6= 0 and x 6= u, the following
estimates hold: ∣∣Q(x, u)

∣∣ . |u− x|−n; (8.9)∣∣∇xQ(x, u)
∣∣ . |u− x|−n−1; (8.10)∣∣∇uQ(x, u)
∣∣ . |u− x|−n−1. (8.11)

Proof. In the light of (8.2) one has

|Q(x, u)| =
∣∣∣∣∫ 1

0

ϕ(t) K̇t(x, u) dt

∣∣∣∣ η(x, u) ≤
∫ 1

0

∣∣K̇t(x, u)
∣∣ dt . |u− x|−n,

where we used both (7.6) and Proposition 8.7. Thus (8.9) is verified.
In order to prove (8.10), we first observe that∣∣∂x` (Q(x, u))

∣∣ . ∫ 1

0

∣∣∂x` K̇t(x, u)
∣∣ dt η(x, u) +

∫ 1

0

∣∣K̇t(x, u)
∣∣ dt ∣∣∂x` η(x, u)

∣∣. (8.12)
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The last term here satisfies the desired estimate because of Proposition 8.7 and
Lemma 7.1(ii).

Using Lemma 8.4(i) and then (2.10) and Lemma 8.5, we can estimate the first
term in (8.12) by∫ 1

0

∣∣Kt(x, u)S`(t, x, u)
∣∣ dt . ∫ 1

0

t−
n
2 exp

(
−c |u−Dt x|2

t

)
×

(
|x| |u−Dtx|2

t2
+
|u−Dtx|3

t3
+
|u−Dtx|

t
+
|u−Dtx|

t2
+
|x|
t

)
dt

.
∫ 1

0

t−
n
2 exp

(
−c |u−Dt x|2

t

)(
|x|
t

+
1

t
√
t

)
dt.

Proposition (8.3) says that the last expression is controlled by |u − x|−n−1, so that
(8.10) is proved.

The verification of (8.11) is analogous, with R`(t, x, u) instead of S`(t, x, u). It
is enough to observe that Lemma 8.6 implies that |R`(t, x, u)| is controlled by the
right-hand side in the statement of Lemma 8.5. �

By means of Lemma 8.2, Proposition 8.8 and Proposition 8.1 we finally arrive at
the goal of this section.

Proposition 8.9. The operator m0(T )loc is of weak type (1, 1) with respect to the
invariant measure dγ∞.

9. An auxiliary bound for 0 < t ≤ 1

In this section, we verify a bound on the number of zeros of the t derivative of
Kt in the interval (0, 1], which will be used in the next section to control the kernel

Mglob
0 .

Proposition 9.1. For (x, u) ∈ Rn × Rn, the number of zeros in I = (0, 1] of the
function t 7→ K̇t(x, u) is bounded by a positive integer depending only on n and B.

Proof. Instead of K̇t(x, u) we consider Nt(x, u) = 2(detQt)
2Nt(x, u), since the three

kernels K̇t(x, u), Nt(x, u) and Nt(x, u) have exactly the same zeros in I. From (4.5)
we have

Nt(x, u) =− (detQt) tr
(
(detQt)Q

−1
t etB QetB

∗)
(9.1)

+
〈
QetB

∗
(detQt)Q

−1
t (u−Dt x) , etB

∗
(detQt)Q

−1
t (u−Dt x)

〉
− 2(detQt)

〈
Q∞B

∗Q−1
∞ Dt x ,

(
(detQt)Q

−1
t − (detQt)Q

−1
∞
)

(u−Dt x)
〉

;

notice that here we have placed a factor detQt at each occurrence of Q−1
t .

We denote by νj, j = 1, . . . , J the eigenvalues of B, and observe that those which
are nonreal come in conjugate pairs, and that <νj < 0 for all j.

Claim 9.2. The function t 7→ Nt(x, u) is a finite linear combination, with coeffi-

cients depending on (x, u), of terms which are given by a product of type
∏J

j=1 e
mjνjt

multiplied by a polynomial in t with complex coefficients. Here mj ∈ Z. Further,
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the quantities |mj| and the degrees of the polynomials are all bounded by a constant
depending only on n. This bound also applies to the number of terms.

Proof. Inspection shows that the last two terms in (9.1) are sums of scalar products
of vectors given by multiplying x or u from the left by various combinations of the
matrices etB, etB

∗
, Dt, Qt and (detQt)Q

−1
t , the constant matrices B∗, Q, Q∞ and

Q−1
∞ , and the scalar factor detQt. The first term in (9.1) is instead the trace of the

product of some of these matrices, multiplied by detQt. Let us examine precisely
how the matrices listed here depend on t.

We pass from Rn to Cn and make a Jordan decomposition of B via a change
of coordinates in Cn. Each Jordan block is of the form νj(I + R), where R is a
supertriangular and thus nilpotent matrix and I is the identity matrix, of some
dimension. Then exp(tνj(I+R)) = eνjtP (t), where P (t) is a matrix with polynomial
entries in t. To arrive at exp(tB), we put these blocks together and then change
coordinates back. The result will be that in the coordinates we had before, each
entry of the matrix exp(tB) is a sum over j of terms of type eνjtp(t), where p(t) is a
complex polynomial that may depend on j and on the entry considered. The same
will be true for the entries of its adjoint exp(tB∗). From (2.2) we then see that Dt is
of the same form but with e−νjt instead of eνjt. Considering the integral in (2.1), we
see that the matrix Qt has similar entries, now with terms e(νj+νj′ )tp(t). Since the
entries of the matrix (detQt)Q

−1
t are given by minors of Qt, they will be a sum of

terms which are like those described in Claim 9.2. Finally, the scalar detQt also has
the same structure.

Claim 9.2 now follows, since the bound on the |mj| and the degrees of the poly-
nomials is easily verified. �

We observe that Claim 9.2 implies that Nt(x, u) can be extended to an entire
function in t, and so the number of zeros in (0, 1] is finite.

This claim means that Nt(x, u) is a sum of terms given by a function of (x, u)
times an expression of type

exp

(∑
j

mjνjt

)
P (t) = exp ((λ+ iµ)t)P (t), (9.2)

where we write
∑

jmjνj = λ+ iµ and P (t) is a complex polynomial.
We will now find a linear differential operator in t, independent of x and u, that

annihilates all these expressions and thus also Nt(x, u), for all (x, u). For this we
denote D = d/dt.

If µ = 0 the expression in (9.2) is annihilated by

(D − λ)1+degP .

If µ 6= 0, the same expression is annihilated by the operator

(D − λ− iµ)1+degP .

Since Nt(x, u) coincides with its real part, there is also a term

exp ((λ− iµ)t) P̄ (t), (9.3)
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again multiplied by a function of (x, u), in the sum forming Nt(x, u). This term is
annihilated by

(D − λ+ iµ)1+degP .

Clearly both terms (9.2) and (9.3) are annihilated by the product of the two opera-
tors, which is (

(D − λ)2 + µ2)
)1+degP

.

Consider now all the terms in the sum giving Nt(x, u). It folllows that Nt(x, u) is
annihilated by a differential operator

P(D) =
K∏
i=1

Pi(D),

where each Pi(D) is of either of the following two types: a first-order operator

Tλ = D − λ
or a second-order operator of the form

Sλ,µ = (D − λ)2 + µ2.

Here λ ∈ R and µ 6= 0. Clearly all these operators commute, and P(D) is a polyno-
mial in D with coefficients depending only on n and B, and with leading coefficient
1. The number of factors in P(D) has a bound also depending only on n and B.

Without restriction, we may assume that µ > 0 in each operator Sλ,µ, and also
that the equation P(D)Nt(x, u) = 0 does not allow suppression of any of the factors
Pi(D) in the product defining P(D).

Proposition 9.1 is thus reduced to showing that the number of zeros of a real-
valued solution of the equation P(D)φ = 0 in I = (0, 1] is bounded by a constant
depending only on the polynomial P .

Our next claim deals with one operator Tλ or Sλ,µ.

Claim 9.3. Let λ ∈ R and µ > 0, and let J ⊂ R be a closed interval of length less
than 1/µ. Assume that φ ∈ C2(J) is a real-valued function. If Sλ,µ φ does not vanish
in the interior J◦ of J , then φ has at most two zeros in J . Further, if Sλ,µφ has at
most k zeros in J , then φ has at most 2k + 2 zeros in the same interval. The same
statements hold with Sλ,µ replaced by Tλ.

Proof. To prove the first assertion about Sλ,µ , we may take λ = 0 since

S0,µ φ(t) = e−λt Sλ,µ
(
eλt φ(t)),

and we will write Sµ for S0,µ. The same trick applies to Tλ.
Since by hypothesis Sµ φ 6= 0 in J◦, we may as well take Sµ φ > 0 there. We

assume by contradiction that t1 < t2 < t3 are three zeros of φ in J . Then φ′′(t2) =
Sµ φ(t2) > 0. We can then assume that φ′(t2) ≥ 0, since otherwise we consider
instead the function φ(−t) in the interval −J . For t > t2 sufficiently close to t2 we
have

φ(t) = φ′(t2)(t− t2) +
1

2
φ′′(t2)(t− t2)2 + o

(
(t− t2)2

)
> 0.
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Since φ(t3) = 0, the maximal value M of φ in the interval [t2, t3] must be assumed
at some point tM ∈ (t2, t3). Clearly M > 0 and φ′(tM) = 0. An integration by parts
yields

M =

∫ tM

t2

φ′(t) dt = (t− t2)φ′(t)|tMt2 −
∫ tM

t2

(t− t2)φ′′(t) dt

= −
∫ tM

t2

(t− t2)φ′′(t) dt.

Since here −φ′′(t) = µ2φ(t)− Sµ φ(t) < µ2φ(t) ≤ µ2M we conclude that

M ≤ µ2M

∫ tM

t2

(t− t2)dt = µ2M
(tM − t2)2

2
≤ 1

2
µ2M |J |2.

This leads to the contradiction |J | ≥
√

2/µ, which proves the first assertion of the
claim. The second assertion follows from the first, applied in each of the intervals
obtained by deleting from J the zeros of φ.

For Tλ it is enough to apply Rolle’s theorem to T0 = D. �

Conclusion of the proof of Proposition 9.1. We know that P(D)Nt(x, u) = 0, where

P(D) =
K∏
i=1

Pi(D),

and each Pi(D) is Tλ or Sλ,µ for some with λ ∈ R, and µ > 0 in the case of Sλ,µ.
Choose a natural number κ larger than all the values of µ appearing here. Then

split [0, 1] into κ closed subintervals of length 1/κ, and let J be one of these subin-
tervals. Observe that Claim 9.3 applies to each Pi(D) in J , since 1/κ < 1/µ.

Set for m ∈ {2, 3, . . . , K}

N (m)
t (x, u) =

K∏
i=m

Pi(D) Nt(x, u),

and N (K+1)
t (x, u) = Nt(x, u).

We will prove by induction that the function t 7→ N (m)
t (x, u) has at most 2m − 2

zeros in J , for m ∈ {2, 3, . . . , K + 1}. Here we fix (x, u). Proposition 9.1 will then
follow from the case m = K + 1.

Starting with m = 2, we have P1(D)N (2)
t (x, u) = 0, and N (2)

t (x, u) is not iden-
tically 0 for all t. By means of a conjugation with the factor eλt as in the proof of
Claim 9.3, we can assume that P1(D) is either T0 = D or S0,µ. If P1(D) = D, then

N (2)
t (x, u) is a nonzero constant; if P1(D) = S0,µ we assume that t = t0 ∈ J is a

zero of N (2)
t (x, u). Then N (2)

t (x, u) is proportional to sin ((t− t0)µ) and can have no
other zero in J , because |J | < 1/µ. The first induction step is verified.

Assume the induction step holds for m. Then Pm(D)N (m+1)
t (x, u) = N (m)

t (x, u)
has at most 2m − 2 zeros in J , and Claim 9.3 implies that the number of zeros of

N (m+1)
t (x, u) in J is at most 2(2m − 2) + 2 = 2m+1 − 2. The induction is complete,

and so is the proof of Proposition 9.1. �
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10. Estimates in the global region for small t

In this section we estimate the operator mglob
0 (T ) with kernel

−
∫ 1

0

ϕ(t)K̇t(x, u)
(
1− η(x, u)

)
dt.

We shall need the following theorem. In order not to burden the exposition, we
postpone its proof to the appendix.

Theorem 10.1. The maximal operator defined by

Sglob
0 f(x) =

∫
sup

0<t≤1
Kt(x, u)

(
1− η(x, u)

)
|f(u)| dγ∞(u) (10.1)

is of weak type (1, 1) with respect to the invariant measure dγ∞.

This is a sharpened version of the weak type (1, 1) estimate for the corresponding
part of the maximal operator treated in [10], since the supremum in t is now placed
inside the integral. As a consequence, we can prove the following result, which will
complete the proof of Theorem 1.1.

Proposition 10.2. The operator mglob
0 (T ) is of weak type (1, 1) with respect to the

invariant measure dγ∞.

Proof of Proposition 10.2. Let N(x, u) be the number of zeros in (0, 1) of the function
t 7→ K̇t(x, u). Proposition 9.1 says that N(x, u) ≤ N̄ for some constant N̄ ≥ 1 that
is independent of (x, u) ∈ Rn × Rn (and dependent only of n and B). We denote
these zeros by t1(x, u) < · · · < tN(x,u)(x, u), and set t0(x, u) = 0, tN(x,u)+1(x, u) = 1.
Since Kt(x, u) vanishes at t = 0, it follows from the fundamental theorem of calculus
that∫ 1

0

∣∣∣K̇t(x, u)
∣∣∣ dt =

N(x,u)∑
i=0

∣∣∣∣∣
∫ ti+1(x,u)

ti(x,u)

K̇t(x, u)dt

∣∣∣∣∣
=

N(x,u)∑
i=0

∣∣Kti+1(x,u)(x, u)−Kti(x,u)(x, u)
∣∣

≤ 2

N(x,u)+1∑
i=0

Kti(x,u)(x, u) . N̄ sup
0<t≤1

Kt(x, u).

This inequality implies∣∣∣mglob
0 (T )f(x)

∣∣∣ ≤ ∫ ∫ 1

0

∣∣∣K̇t(x, u)
∣∣∣ dt (1− η(x, u)) |f(u)| dγ∞(u)

. N̄

∫
sup

0<t≤1
Kt(x, u) (1− η(x, u)) |f(u)| dγ∞(u),

and Theorem 10.1 yields

γ∞

{
x :
∣∣∣mglob

0 (T )f(x)
∣∣∣ > α

}
.

1

α

∫
|f(u)| dγ∞(u).
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�

11. Appendix: Proof of Theorem 10.1

In the proof of this theorem, we take f ≥ 0 normalized in L1(γ∞), and we fix α > 2.

We claim that we need only consider the intersection of the level set {Sglob
0 f > α}

with the annulus Cα. Clearly, the unbounded component of the complement of Cα
can be neglected as in Subsection 5.2.

To deal with the bounded component, we first observe that the integral in the
definition (10.1) of Sglob

0 f(x) need only be taken over those u satisfying η(x, u) < 1.
But then Lemma 7.2 shows that |x − u| > 1

3
1

1+|x| . By Lemma 5.4(i), this implies

that Kt(x, u) . eR(x) (1 + |x|)C . Thus if x is in the bounded component of the
complement of Cα, where R(x) < 1

2
logα, it follows that Kt(x, u) . α. The claim

follows by integration against f(u) dγ∞(u).
Thus we restrict x to Cα; in particular |x| & 1. We will write x and u 6= 0 as

x = Ds x̃ and u = Dσ ũ, respectively, where x̃, ũ ∈ Eβ with β = (logα)/2 and
s ≥ 0, σ ∈ R.

Lemma 11.1. Let (x, u) be such that η(x, u) < 1, and let x ∈ Cα. Then

sup
0<t≤1

Kt(x, u) . eR(x) min
(
|ũ− x̃|−n, |x|n

)
.

Proof. For the first bound, we use [10, Lemma 4.3(i)] to get |Dt x − u| & |x̃ − ũ|,
which by (2.10) yields

sup
0<t≤1

Kt(x, u) . eR(x) sup
0<t≤1

t−n/2 exp

(
−c |x̃− ũ|

2

t

)
. eR(x) |x̃− ũ|−n.

To get the second bound, we use the fact that |x − u| & 1
1+|x| '

1
|x| as seen in the

beginning of this section. Applying also Lemma 2.1, we obtain

|x|−1 . |x− u| ≤ |x−Dt x|+ |Dt x− u| . t|x|+ |Dt x− u|.

Thus |x|−1 . t|x| or |x|−1 . |Dt x−u|. In the first case, t−n/2 . |x|n, and the desired
estimate is immediate from (2.10). In the second case,

Kt(x, u) . eR(x) t−
n
2 exp

(
− c

t|x|2

)
. eR(x) |x|n.

The lemma is proved. �

Continuing the proof of Theorem 10.1, we have from Lemma 11.1 that for x ∈ Cα

Sglob
0 f(x) . eR(x)

∫
min

(
|ũ− x̃|−n, |x|n

)
f(u) dγ∞(u) = A(x) +B(x),

where

A(x) = |x|n eR(x)

∫
{u: |x|≤|ũ−x̃|−1}

f(u) dγ∞(u) (11.1)
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and

B(x) = eR(x)

∫
{u: |x|>|ũ−x̃|−1}

|ũ− x̃|−n f(u) dγ∞(u).

We will show that

γ∞ {x ∈ Cα : A(x) > α} . α−1 (11.2)

and

γ∞ {x ∈ Cα : B(x) > α} . α−1. (11.3)

Starting with (11.2), we first observe that A(x̃) < α for x̃ ∈ Eβ with β = (logα)/2,
because

A(x̃) ≤ |x̃|n eR(x̃)

∫
Rn
f(u) dγ∞(u) . (logα)n

√
α . α .

Further, x = Ds x̃ ∈ Cα implies 0 < s . 1 in view of [10, formula (4.3)]. Let

E0
β = {x̃ ∈ Eβ : A(Ds x̃) > α for some s > 0 with Ds x̃ ∈ Cα},

and define for x̃ ∈ E0
β

s0(x̃) = inf{s : Ds x̃ ∈ Cα and A(Ds x̃) > α}.
Then 0 < s0(x̃) . 1 and A(Ds0(x̃) x̃) = α. Moreover, if A(Ds x̃) > α for some
Ds x̃ ∈ Cα, then x̃ ∈ E0

β and s > s0(x̃). In the set Cα, the expression (2.12) for the

Lebesgue measure yields dx '
√

logα dSβ ds, and so

γ∞ {x ∈ Cα : A(x) > α} .
√

logα

∫
E0
β

∫ C

s0(x̃)

e−R(Ds x̃) ds dSβ(x̃).

We now write R(Ds x̃) = R(Ds0(x̃) x̃) + R(Ds x̃) − R(Ds0(x̃) x̃) and apply the Mean
Value Theorem to the difference between the last two terms here, observing that
∂sR(Ds x̃) ' |Ds x̃|2 ' logα because of [10, formula (4.3)]. This leads to

γ∞ {x ∈ Cα : A(x) > α} .
√

logα

∫
E0
β

e−R(Ds0(x̃) x̃)

∫ ∞
s0(x̃)

e−c(s−s0(x̃)) logα ds dSβ(x̃)

.
1√

logα

∫
E0
β

e−R(Ds0(x̃) x̃) dSβ(x̃). (11.4)

To deal with the last expression here, we insert the factor α−1A(Ds0(x̃)x̃) = 1
in the integral, using the definition (11.1) of A(.). The two exponentials will then
cancel. We also use the fact that 1

2

√
logα ≤ |Ds0(x̃)x̃| ≤ 2

√
logα, both to rewrite

the first factor in this definition and to extend the domain of integration in u to
{u : |ũ− x̃| ≤ 2(logα)−1/2}. The result is that the last quantity in (11.4) is at most
constant times
1

α
(logα)

n−1
2

∫
E0
β

∫
{u: |ũ−x̃|≤2(logα)−1/2}

f(u) dγ∞(u) dSβ(x̃) =

1

α
(logα)

n−1
2

∫
f(u)

∫
{x̃: |ũ−x̃|≤2(logα)−1/2}

dSβ(x̃) dγ∞(u) .
1

α

∫
f(u) dγ∞(u) =

1

α
.
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This proves (11.2), and we move to (11.3). Here we similarly have B(x̃) < α for
x̃ ∈ Eβ, and we can define E0

β and s0(x̃) as above, replacing A(.) by B(.). The rest
of the argument is only slightly different from that for (11.2); we now have

γ∞{x ∈ Cα : B(x) > α} . 1√
logα

∫
E0
β

exp
(
−R(Ds0(x̃) x̃)

)
dSβ(x̃)

.
1

α

1√
logα

∫
E0
β

∫
{u: |ũ−x̃|>(logα)−1/2/2}

|ũ− x̃|−nf(u) dγ∞(u) dSβ(x̃)

=
1

α

1√
logα

∫
f(u)

∫
{x̃: |ũ−x̃|>(logα)−1/2/2}

|ũ− x̃|−n dSβ(x̃) dγ∞(u) .
1

α
.

This is (11.3), and Theorem 10.1 is proved.

In order to prove Proposition 10.2, Theorem 10.1 is enough, as we saw in the
preceding section. However, we take the opportunity to give the following related
result, which strengthens Theorem 10.1 and also Theorem 1.1 in [10] and may be of
independent interest.

Theorem 11.2. The operator Sglob defined by

Sglobf(x) =

∫
sup

0<t<∞
Kt(x, u) (1− η(x, u))|f(u)| dγ∞(u), f ∈ L1(Rn),

is of weak type (1, 1) for the measure dγ∞.

This result is a consequence of Theorem 10.1 and the following proposition.

Proposition 11.3. The operator S∞, defined by

S∞f(x) =

∫
sup
t≥1

Kt(x, u) |f(u)| dγ∞(u),

satisfies the inequality

γ∞{x : S∞f(x) > α} . 1

α
√

logα
(11.5)

for all normalized functions f in L1(γ∞) and all α > 2.

Proof. Let t ≥ 1. We can again restrict x to Cα, since Kt(x, u) . eR(x) < α if
R(x) < (logα)/2. For x ∈ Cα, a combination of (2.11) and [10, Lemma 4.3(i)]
implies

Kt(x, u) . eR(x) exp
(
− c

∣∣ũ− x̃∣∣2),
where we use polar coordinates with β = (logα)/2. The proposition now follows
from Lemma 6.2. �

Remark 11.4. The inequality (11.5), which is sharp as verified in [10, Proposition
6.2], is slightly stronger than the weak type (1, 1) estimate in Theorem 11.2. The

corresponding estimate for the operator Sglob
0 is false, since f approximating a point

mass at 0 gives a counterexample.
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Remark 11.5. In the case Q = I and B = −I an estimate similar to Lemma 11.1
with a kernel M controlling from above the Mehler kernel Kt in the global region,
has recently been proved in [7] (see, in particular, Definition 3.2 and Proposition 3.4
therein). An earlier result of this type may be found in [30, Proposition 2.1]. These
estimates are sharp for significant values of (x, u), whereas our Theorem 11.2 is
simpler, and sufficient for our needs. Moreover, Proposition 11.3 is stronger than the
analogous bounds in [7] and [30].
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Littlewood–Paley functions associated with general Ornstein-Uhlenbeck semigroups,
arXiv:2202.06136.

[3] D. S. Bernstein, Matrix Mathematics. Theory, Facts, and Formulas, (2009), Second
Edition, Princeton University Press.

[4] J. J. Betancor, E. Dalmasso, P. Quijano, BLO spaces associated with Laguerre polyno-
mials expansions, arXiv:2302.04356v1.
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[30] T. Menárguez, S. Pérez and F. Soria, The Mehler maximal function: a geometric proof
of the weak type 1, J. London Math. Soc. (2000), 61, 846–856.

[31] G.Metafune, D. Pallara and E. Priola, Spectrum of Ornstein-Uhlenbeck operators in Lp

spaces with respect to invariant measures, J. Funct. Anal. 196 (2002), 40–60.
[32] G. Metafune, J. Prüss, A. Rhandi, and R. Schnaubelt, The domain of the Ornstein-

Uhlenbeck operator on a Lp-space with invariant measure, Ann. Sc. Norm. Super. Pisa
Cl. Sci. 1, (2002) 471–487.

[33] A. Nowak and K. Stempak, Potential operators and Laplace type multipliers associated
with the twisted laplacian, Acta Mathematica Scientia 37, (2017), 280–292.

[34] L. S. Ornstein and G. E. Uhlenbeck, On the theory of Brownian Motion, Phys. Rev. 36,
(1930) 823–841.
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