SPECTRAL MULTIPLIERS IN A GENERAL GAUSSIAN SETTING
VALENTINA CASARINO, PAOLO CIATTI AND PETER SJOGREN

ABSTRACT. We investigate a class of spectral multipliers for an Ornstein—Uhlenbeck
operator £ in R™, with drift given by a real matrix B whose eigenvalues have nega-

tive real parts. We prove that if m is a function of Laplace transform type defined

in the right half-plane, then m(L) is of weak type (1,1) with respect to the in-

variant measure in R™. The proof involves many estimates of the relevant integral

kernels and also a bound for the number of zeros of the time derivative of the

Mehler kernel, as well as an enhanced version of the Ornstein—Uhlenbeck maximal

operator theorem.

1. INTRODUCTION

Given a measure space (X, ) and a self-adjoint operator L on L*(X, i), an im-
portant issue in harmonic analysis concerns the boundedness of the operator m(L),
where m : R — C is a Borel function. If E denotes a spectral resolution of L on R,
one can define m(L) for many functions m as

m(L) :/Rm(y) dE(v).

Great efforts have been devoted to finding minimal assumptions on the multiplier m
that will ensure the boundedness of m(L) on the Lebesgue spaces LP(X, i), both in
a strong and in a weak sense, when p # 2.

A few years ago, the authors started a program concerning harmonic analysis in
the Ornstein—-Uhlenbeck setting. In this framework, (X, ) is the Euclidean space
R™ equipped with a Gaussian measure dv.,, known as the invariant measure and
defined in Section [2| Further, L is replaced by the Ornstein—Uhlenbeck operator £,
defined as

Lf = —% i (QV2f) — (Br,Vf),  fe SR, (1.1)

where V and V? denote the gradient and the Hessian, respectively. In this formula,
@ and B are real n x n matrices; () is symmetric and positive definite, and the
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eigenvalues of B all have negative real parts. The space LP(R"™, dv,,) will be written
simply LP(7sc)-

Since in general £ has no self-adjoint or normal extension to L?(7,,), one cannot
invoke spectral theory to define m(L). Notice that self-adjointness and normality
may fail also for the Ornstein-Uhlenbeck semigroup (#;),.,, generated by £, which
was first introduced in [34]. The focus in this paper is on multipliers of Laplace
transform type. This class of multipliers was introduced some fifty years ago by E.
M. Stein in [36], in the context of Littlewood—Paley theory for a sublaplacian on a
connected Lie group G.

A function m of a real variable A > 0 is said to be of Laplace transform type if

+00 +0o0
m(\) = /\/ o(t)e ™ dt = —/ ©(t) jt “dt, N> 0, (1.2)
0 0

for some ¢ € L>(0,400). Observe that such a function m can be extended to an
analytic function in the half-plane Rz > 0. Thus we pay the price of a rather strong
condition on m, to prove, in return, a multiplier theorem for an operator £ which is
not necessarily normal. Observe that one obtains as m(L£) the imaginary powers £
of £, with v € R\ {0}, by choosing ¢(t) = const.t~"". Other significant examples of
functions of Laplace transform type may be found in [41].

The exact definition of m(L) for functions m of this type will be given in Section 3]
Here we present only a heuristic deduction of the kernel of m(L). If we simply replace
A by £ in the last expression in , we will get

m(ﬁ)——/o h (t)jt e £ dt. (1.3)

Here e™" = H, is the Ornstein-Uhlenbeck semigroup, whose kernel is the Mehler
kernel Ki(x,u) described in Section [2l We point out that the term kernel in this
paper refers to integration with respect to dv., except in one case as explained in
Section [§] Thus for each f € S(R") and all ¢ > 0

Htf /Kt T, u dVOO( )

This makes it plausible that the off-diagonal kernel of m(L) is

M (2, u) = — /O o) 0, () (1.4)

We will verify this formula later, though after splitting the integral and under some
restrictions. It will lead to an expression for the kernel in terms of () and B.

From now on, we assume that m is of Laplace transform type.

In the standard case Q = I and B = —I, the operator L is self-adjoint, and
the LP(d7v+) boundedness of m(L) follows for all 1 < p < oo from a general result
due to Stein [36, Ch. 4]. Moreover, J. Garcia-Cuerva, G. Mauceri, J. L.Torrea
and the third author proved in this case the weak type (1,1) of m(L) with respect
to dYso; see |24, Theorem 3.8]. For more recent results in the standard case, also
involving the Gaussian conical square function, we refer to |26, 27]; see also [39, [40],
where the author investigates multiplier theorems for systems of Ornstein—Uhlenbeck

tL



SPECTRAL MULTIPLIERS 3

operators. Overviews of this topic can be found in Urbina’s monograph [38, Chapter
6], Bogachev’s survey [6] and the references therein.

In the general case, when L is given by , the strong LP(7,,) boundedness of
m(L) follows for 1 < p < oo from [8, Prop. 3.8]. In the present paper, we consider
the endpoint case p = 1, where the strong boundedness does not hold.

Our main result is the following.

Theorem 1.1. If the function m is of Laplace transform type, then the multiplier
operator m(L) associated to a general Ornstein—Uhlenbeck operator L is of weak type
(1,1) with respect to the invariant measure d7yso.

Thus we shall prove the inequality
C
Yool € R" : m(L) f(x) > Ca} < - NI 2 (o) a >0, (1.5)

for all functions f € L'(y.), with C = C(n,Q, B). Our theorem extends Theo-
rem 3.8 in [24] to the framework of a general, not necessarily normal, Ornstein—
Uhlenbeck operator.

In this paper, we do not deal with holomorphic Hérmander-type functional calcu-
lus. For results in that context the reader is referred in particular to [§] and to [25].
The literature in this field is vast; good bibliographies are given in [8, 25| [35].

A careful study of other exponential integral inequalities in the Gaussian frame-
work may be found in [I7, 18, 19]. For strong and weak bounds of Laplace type mul-
tipliers between Lebesgue spaces in contexts different from the Ornstein—Uhlenbeck
setting, we refer, in particular, to [5, 21], 37, 33, 4]). The main semigroups and oper-
ators introduced in these papers, anyway, are symmetric, so that, unlike our case, a
spectral decomposition is allowed. In this regard, it is worth mentioning that several
interesting results concerning other issues of harmonic analysis in a nonsymmetric
Ornstein—Uhlenbeck context, such as square functions, maximal operators and vari-
ational bounds, have recently appeared in [I}, 2].

What follows next is a description of the structure of the paper, which also gives
a plan of the proof of Theorem

In Section 2, we introduce some terminology and recall from the authors’ earlier
papers [9} 10, 1T] a few estimates which are essential in our approach. Section gives
a rigorous definition of the multiplier operator, and in Subsection we split this
operator by splitting the integrals in and into parts taken over ¢ < 1 and
t > 1. Then in Section {4 the time derivative 0;K; of the Mehler kernel is computed
and estimated. This leads in Section [§ to some estimates for the kernels of the
different parts of the operator. There we also introduce some technical simplifications
that will reduce the complexity of the proof of Theorem [I.T} a further reduction will
be presented in Subsection [7.2] This proof is given in the remaining sections, in the
following way.

The operator part with ¢ > 1 is dealt with in Section [0} The part corresponding
to t < 1is further split into a local and a global part in Section |7} and several related
estimates are given. Section [8| contains the proof for the local part with standard
Calderén-Zygmund techniques. The remaining, global part is more delicate. For its
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kernel we will have a bound

1
/ |0 J (2, u)| dt <) ’/&Kt(:v,u) dt
0

where the integrals in the sum are taken between consecutive zeros of 0;K;. There-
fore, we will need an estimate of the number of zeros of 0;K;(z, u) as t runs through
the interval (0,1]. This number turns out to be controlled by a constant depend-
ing only on n and B, as verified in Section [0} We can then complete the proof of
the weak type (1,1) in Section There we also need an enhanced version of the
Ornstein—Uhlenbeck maximal operator theorem from [CCS2, Theorem 1.1]. Its proof
is given in the Appendix (Section [L1)).

We will write C' < co and ¢ > 0 for various constants, all of which depend only
on n, (Q and B, unless otherwise explicitly stated. If a and b are positive quantities,
a < b or equivalently b 2 a means a < Cb. When a < b and also b < a, we write
a ~ b. By N we denote the set of all nonnegative integers, and B(z,r) is the open
ball with center z and radius r. If A is a real n X n matrix, we write ||A| for its
operator norm on R™ with the Euclidean norm |- |. We will adopt the dot notation
for differentiation with respect to the time variable ¢, writing Kt = O K.

Y

The authors would like to thank Andrea Carbonaro for several helpful discussions.

2. PRELIMINARIES

In this section we collect some results from [9, (10} [IT] related to the Mehler kernel
of a general Ornstein—Uhlenbeck semigroup.

2.1. Some matrices and estimates.
In terms of the two real n x n matrices () and B introduced in Section 1, we define
for t € (0,400] the matrix

Q: = /Ot e BQeP ds. (2.1)

Since @ is real, symmetric and positive definite and the eigenvalues of B have negative
real parts, this integral is convergent and the matrix @); is symmetric and positive
definite and thus invertible, for all 0 < ¢t < oo.

It will be convenient to write

7le = Qx|  zeR"
which is a norm on R", and |z|g ~ |z|. Further, we let R(x) denote the (positive
definite) quadratic form

<Q’1x,az>, r eR".

o0

1
R(z) = 5 |ol} =

N | —

The invariant measure is given by
oo () = (27) 2 (det Qu) ~* exp(—R(x)) d.

Notice that dv. is normalized.
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We will also use the one-parameter group of matrices

Di=Que™ Q. tER, (2.2)
introduced in [10]. From [I0, formula (2.3) and Lemma 2.1] we know that
D= (Q7' - Q) Qi e?,  t>0. (2.3)
and
Di=eP+ Qe QY t>0. (2.4)

By means of a Jordan decomposition of B*, the following estimates were proved in
[10, Lemma 3.1]

o] $|Deal S el and o] S [Dopa] S e al,

holding for ¢ > 0 and all z € R”. The same bounds are true with D, replaced by

— — * . .
e B or e7*B"; in particular,

e x| < ]e’tBa:] < et || and e Ct lz| < \eth| < e | (2.5)

for ¢t > 0 and z € R™.
From these inequalities one deduces (see [10, Lemma 3.2])

1Q; || ~ (min(1,¢))~", (2.6)
Q' — QI Stte .

Finally, we recall the following lemma, proved in [I1, Lemma 2.3].
Lemma 2.1. Let x € R" and |t| < 1. Then
|z — Dy x| ~ |t||z].

2.2. Spectrum and generalized eigenspaces of L.
Let Aq,...,\. be the eigenvalues of B. It is known that the spectrum of £ in
LP(Ys), 1 < p < o0, is

{—Zni/\i:niGN, izl,...,r}C{zE(C: Rz >0} U{0},
i=1

see [31), Theorem 3.1].

Each point A in this set is an eigenvalue of £. The corresponding generalized eigen-
functions, i.e., the functions annihilated by (£ —\)* for some k € N, are polynomials,
see [28, Theorem 9.3.20]. For each A they form a finite-dimensional space, and these
generalized eigenspaces together span a dense subspace of L?(7.,). In particular, 0
is an eigenvalue of £. The corresponding eigenspace, which we denote by &, is of
dimension 1 and consists of the constant functions. As shown in [12, Lemma 2.1],
this eigenspace is orthogonal to all other generalized eigenfunctions of £. We denote
by L3(7s) the orthogonal complement of & in L?(74).
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2.3. The Mehler kernel. For z,u € R™ and ¢ > 0 the Mehler kernel K; is given
by (see [10, formula (2.6)])

Ki(z,u) = (C(itt %;:)1/2 ef@ exp [—% Q7' = Q) (u—Dyz), u— D, x>] (2.8)

It is convenient to use this expression for K; when ¢t < 1. But for t > 1, we will
use the following alternative, which can be obtained from [10, first formula in the
proof of Proposition 3.3],

Ki(z,u) = ((Zest%io>l/2€R(x) exp [—% (Q;'e"(D_yu—1x),Dy (D_yu — :c)>] (2.9)

For 0 <t <1 we have the following estimates, proved in [11, (2.10)]

efi®) u— Dy x|?] efi() u— Dy x|?
e exp {—C % < Ky(z,u) < 73 exp [—c %] )

When t > 1 one has instead (see [11], (2.11)])

(2.10)

T 1
@ exp [— C|D_tu— x]é < Ki(z,u) < eB@exp [ ~3 |D_yu— x|2Q} (2.11)
We will actually use only the upper estimates here.

2.4. Polar coordinates. We will use a variant of polar coordinates first introduced
in [9]. Fix # > 0 and consider the ellipsoid

Es={x e R": R(z) =p}.
Any x € R", x # 0, can be written uniquely as

r=D,1,

for some T € Ez and s € R. We call (s,2) the polar coordinates of .
The Lebesgue measure in R™ is given in terms of (s, Z) by

1/2 N)—17|2
dy = e~ B % dSs(%) ds, (2.12)

where dSs denotes the area measure of Es. See [L0, Proposition 4.2] for a proof.

3. DEFINITION AND SPLITTING OF THE MULTIPLIER OPERATOR

3.1. Definition of the multiplier operator. We use the definition described in
Cowling et al. [I4] Section 2], which goes back to McIntosh [29]. The starting-point
in [I4] is an operator T defined on a Hilbert (or Banach) space, which in our case
will be L3(7), defined below. This operator is to be densely defined and one-to-one
with dense range, and its spectrum must be contained in a closed sector

S, ={z€C:|argz| <w} U{0},
for some w € (0,7/2). Further, the resolvent of 7" should satisfy the estimate
(T — 27 <Oz z€C\S,, (3.1)
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for some constant C', where we refer to the operator norm on the Hilbert space.

In order to apply the construction in [14], Section 2], we denote by Lo the generator
in L?(7s) of the semigroup H;. This semigroup is strongly continuous on L?(7s),
and its generator, as defined for instance in [22], Definition II1.1.2], is an unbounded,
closed operator in L*(7s), see [22, Theorem II.1.4]. Its domain D(Ly) = W22 is a
Sobolev space adapted to dvs, as verified in [32] or [28] Section 9.3]).

The invariance of the measure dv,, means that for any f € L?(74) and any ¢ > 0

<Htf7 1) = <f7 1>

Thus the orthogonal complement in L?(7.,) of the subspace of constant functions,
which we denote by L2(7), is invariant under the semigroup. The definition of the
generator says that for f € D(L,)

Laf =i 7 (Huf = ),

where the limit is taken in L?(74). It follows that (L5 f,1) = 0, and we see that the
restriction T of Ly to L2(7s) N D(L2) is an unbounded, closed operator on L2(7so).
Further, T is the generator of the semigroup given by the restriction of each H; to
L3 (Yoo)-

We will prove Theorem with L, replaced by 7. The theorem then follows,
since L, vanishes on &.

From the preceding section, it is clear that 7" has all the properties required in [14]
mentioned above, except possibly the inequality .

Aiming at (3.1]), we invoke [I5, Theorem 1 and Remark 6]. This yields the existence
of an angle 6, € (0,7/2) such that for each ¢ in the sector Sy, the operator H; is a
contraction on L?*(7.,), and the map ¢ — H; is analytic as a map from Sy, to the
space of bounded linear operators on L?(7,.). Moreover, the restriction of H; to
L?(7s) has the same two properties with respect to L3(7s). Then follows from
well-known arguments for bounded analytic semigroups (see [22, Theorem I1.4.6]).
Anyway, we give a concise proof of .

Fix a 6 € (0,0y); like 65 this 6 will only depend on n,  and B. If z is on the
negative real axis, we obtain from [20, Theorem 2.8] and the contraction property

+oo +oo ) )
(T —=2)"' = / e T2 gt = ™ / et gt gy (3.2)
0 0

for the second equality we moved the path of integration to the ray ¢ R, in C. Here
we want to let z = re’?, with r > 0 and ¢ € (7/2 — 0/2,7|. Then

0<0/2<0+¢p—7/2 < 0+7/2<m

and so
R(te?z) =trcos(d +¢) = —trsin(@ + ¢ —7/2) < —ctr.
For such z the second integral in (3.2)) converges, and by analyticity it equals e~ (T'—
zI)~t. Thus
+o00 C
I -=nt< [ erars
0

KN
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which proves for z in the upper half-plane, with w = 7/2—6/2. To deal with the
case when z is in the lower half-plane, it is enough to take the complex conjugate of
the equation and repeat the argument, because 7' is real. Thus is verified.

We now claim that 0 is not in the spectrum of T". This follows from the following
facts: first, one observes that the semigroup operator H; is compact for each ¢t > 0
(see [31), p. 45]). The restriction of H; to L(se) is compact as well, and [20, Theorem
2.20] implies that the generator T' consists only of eigenvalues. As a consequence, 0,
which is not an eigenvalue for T', does not belong to the spectrum of 7.

The resolvent (T — zI)~! is an analytic function of z in the resolvent set, see e.g.
[20, Lemma 2.2] In particular, its norm is bounded in a neighborhood of the origin.

This leads to the following improvement of (3.1)):
(T —=D) | <CA+z),  z€C\S, (3-3)

where S = {w € S, : Rw > €} for some € > 0.

The function m is of Laplace transform type and thus defined and analytic in the
right half-plane. Moreover, it is bounded on any sector S, with 0 < ¢ < 7/2. The
definition of m(7') in [I4] goes via a complex integral involving the resolvent of T'. To
make this integral convergent, we multiply the function m(z) by ¥(2) = 1/(1 + 2?),
following [14]. With w € (0,7/2) fulfilling (3.3), we fix a v € (w,7/2) and let " be
the path

[(t) = [t| et —00 <t < 00.
Now define

1
(1) = 5 [ WEm(e) (1 =)
which is a convergent integral because of , and let
m(T) = (7)™ (¥m)(T). (3.4)

Proposition 3.1. Let X # 0 be a generalized eigenvalue of T with generalized
eigenspace Ex. Then the restriction to €\ of m(T') (defined above) coincides with
the restriction to €y of the integral

d tT
— gOt— —Hdt.

Notice that this is the integral from , and that its restriction to the finite-
dimensional, T-invariant subspace £, makes perfect sense. Further, m(T') is deter-
mined by these restrictions, since the £, together span L2(7,) and m(T') is bounded
on L(7s), as proved by [8, Lemma 3.7].

Proof. Observe first that T‘Sx = A + R, where R, a nilpotent operator on &£,. For
z € C\ {\} this leads to

(=), = (=N =Ry =(z = )" (I - ZZEAA) i
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1 A
= — R
— \)J+r ™V
2wy
where the sum is finite. Thus

Wm)(@)s, =55 [ oG me) 1 -1)7 dz

2
_LZ/¢() ();d R
o —~Jr “ymmie (z — N\)itl =
1 .
=3 S @m0 R
;)
1 A
= ikl D) mP () R?Lk
1 i %
=D VN R Y mP )’y
7 k
1
=y(T) T m®(\) Ry,
— k!

From ({3.4) and (|1.2)), we conclude that

1
m(T)]e, = o m®™(\) RE
k

Lo ON"d s
+o00o d 1 8k I\ .

Here the sum equals

ZG—M % (—t)k Rl)c\ — oM pmtRy — T
k '

and the proposition follows. O

3.2. Splitting of the multiplier operator. Given ¢ € L*°(0, +00), we will restrict
the integral in (1.2)) to various intervals. For ¢ > 0 we let

+oo d A\
c(A)=— t) —e dt.
m == [ et g
But replacing € by 0 we also define, in a slightly inconsistent way,

1
d
mon) == [l e

and observe that
m(T) = my(T) +mo(T).
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Then (|1.4) hints that m.(T") and mgy(T") should have off-diagonal kernels
given by

M (z,u) = —/ Oogo(t) Ky(2,u)dt (3.5)
and )
Mo(z, u) = — /0 o(t) Ky, u) dt. (3.6)

As will be verified in Section [5|, M. is the kernel of m.(T') for any ¢ > 0, and we use
it in Section [6] to control my(T'). But M, is singular and is problematical on
the diagonal x = u. We shall need to consider separately the global and local parts
of mo(T); they will be suitably defined in Section [8]

4. THE TIME DERIVATIVE OF THE MEHLER KERNEL

We compute the derivative Kt = 0,K;(z,u) and estimate it for small and large t.
As a preparation, we work out the ¢ derivatives of some of the matrices introduced
in the previous section.

Lemma 4.1. For allt > 0 one has

Q= eBQetl: (4.1)
%Qtl _ _Q;1 Qt Q;l _ _Q;l etB QetB* Q;lv (42>
% det Q; = det Q tr(Q; ' Q) = det @, tr(Q; ' P Qe™™"); (4.3)
Dt = _Qoo B* e_tB* Q;ol = _Qoo B* Q;ol Dt' (44)

Proof. The equality (4.1)) trivially follows from (2.1)). To obtain (4.2)), one differen-
tiates the equation @, Q; ' = I and applies (4.1]). Since Q, is nonsingular, Jacobi’s
formula implies (4.3) (see [3, Fact 10.11.19]). Finally, we obtain the two equalities

in (4.4)) from (2.2]). O

It will be convenient to have two different expressions for the ¢ derivative of the
Mehler kernel, as follows.

Lemma 4.2. For all (z,u) € R® x R" and t > 0, we have
Ki(w,u) = Ky, u) Ni(z,u),
where the function Ny is given by
1 * 1 *
Ni(w,u) = =5 tr Q" e Q™) + 2 Q2 Q" (u— Dy )
_<QOOB*Q;01D1‘/$7 (Q;l_ngl) (u_Dtx>>7 (45>

| 2

and also by

1 _ . 1 . 2
Ny(z,u) = — §tr (Q; e Qe +§ ‘leetB Q7' e’ (D_yu— )|

—(Q;'Be'” (Dyu—1), e (D_yu—x))
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—(Q7' e Qu B* Q) D—yu, ¥ (D_yu — 1))
— <B* Q;l D_ju, D_ju— x>
=0+ I(z,u) + [ ;(x,u) + IVi(z,u) + Vi(x,u). (4.6)

Proof. Differentiating with respect to ¢t and applying Lemma , one obtains
Ki(z,u) =
Ki(z,u) [ — %tr (Q; ' e Qe + % (Q;' e Qe Q' (u—Dyx), u— D)
—{((Q" = Q) Qw B* QL Dy, (u—Dy)) |,

from which (4.5]) follows.
Next, we differentiate (2.9)), applying (4.3]) to the first factor, and then use ([2.4)

to rewrite the matrix D; in the exponent. The result will be

K(z,u) = Kt(x,U){ — %tf Q' Qe

dr 1 .
—i—% ) <Q[1 B (D_ju—2x), (P +Que™ QN D_ju— x)>] } (4.7)
The derivative here consists of two terms, the first term being
i-_1<Q_16tB(D cu—1x), P (D tu—x)>]
del 2N B ’ -

= % (Q;'e”Qe” Qe (D_yu—2x), e (D_yu—x))
—{(Q;'Be (D_yu—=x), e (D_yu— 1))
— <Qt_16tB Qoo B* Q' D_yu, e (D_ju— x)>,

where we applied and with ¢ replaced by —t. Notice that we have arrived
at the terms I1;, I11; and IV, in (4.6).

In the second term coming from the derivative in (4.7]), we observe some cancella-
tion; the term equals

dr 1
% [—5 <D—tu -, ngl (D—tu - x)>] = _<D—tu -z, B Q(:ol D4 U)> = Vi(%“),
where we used again (4.4). Summing up, we obtain (4.6[), and the lemma is proved.
O

Lemma 4.3. Let z,u € R". Then for 0 <t <1

U—Dt$|2

1 —D
Nl )] § 14 T2 gy = Pl

t (4.8)

+ |
and fort > 1

INi(z,u)| S |D_yu— x| |D_jul+e " |D_yu—z|* +e (4.9)
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Proof. For 0 <t <1, (4.8)) follows from (4.5)), by means of (2.6 and (2.7)).
When ¢t > 1 we get, starting from (4.6) and using (2.5 and (2.6)),

]. *
1] =5 | (@ e Qe g et
Similarly, we have
1 . 2
I (z,u)| = 5 ‘Ql/z B Q1 e (D_ju— x)‘ <e N\ D_yu—x

and also
\[11,(x,u)| < e |D_ju—z|”.
Proceeding as above, we further obtain
[IVi(z, u)| + [Vi(z, u)| S |D—yu — 2| [D_yul,
and is proved. O

5. ON THE MULTIPLIER KERNEL

In this section, we estimate some parts of the multiplier kernel and verify their
relevance for the corresponding parts of the operator. We also state some facts that
will simplify the proofs to come.

5.1. Estimates of kernels.  Without loss of generality, it will be assumed from
now on that

plloo < 1.

We first invoke a lemma from [I1, Lemma 5.1 and Remark 5.5].

Lemma 5.1. Let § > 0. Foro € {1,2,3} and x,u € R", one has
+o0 -
/ exp <—5 |D_yu— x|2> |D_yul”dt S 14 |27,
1

where the implicit constant may depend on 9, in addition to n, ) and B.

Proposition 5.2. (i) The integral (3.5 defining M. converges absolutely for any
e >0 and all x,u € R". Moreover,

|M1<I,U)| S eR(x)’ T, u € Rn; (51)
and for 0 <e <1
Me(z,w)| S &€ (14 [af),  z,ucR" (5.2)

(i) For any e >0, any f € L3(Vs) and a.a. x € R",

me(T) f(z) = / M. (,u) f(u) drysol). (5.3)
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Proof. Aiming at (i), we begin by estimating the kernel K,(z,u) = K;(z,u)Ny(z,u).
For 1 <t < 400 we use ) and (4.9). Then we can neglect the factors |D_; u— z|
in Ny(z,u) by also reducmg shghtly the positive coefficient in front of the same factor
in the exponent in . As a result,

|Ky(z,u)| S e exp (—c|D_yu—2|?) (|D_yul + ™), t>1. (5.4)

Lemma now implies ([5.1)).
For 0 < t < 1 we use instead (2.10) and (4.8)), and now we can neglect all powers

of |u — Dy z|?/t in Ny(z,u). This leads to
lu — Dy z|?

|Ky(z,u)| < eff® /2 exp (—c ;

) (¢ + Jaft712) < e (1)) /2

(5.5)
Integrating over ¢ < t < 1 and combining the result with (5.1]), we arrive at ({5.2)).
The claimed convergence is now clear, so (i) is verified.

For item (i), we need the following lemma.

Lemma 5.3. Let f € L2(Vs) and x € R™. Then for any t > 0

Oy /Kt(x,u) u) dyso(u /Kt x,u) f(u) dys(u). (5.6)

Proof. Given t > 0, we replace ¢t by 7 in the right-hand side of (5.6, and then
integrate dr over the interval ty < 7 < t, for some fixed ¢y € (0,¢). If we can swap
the order of integration in the resulting double integral, we will get

/ /K z,u) f(u) dyso(u) dr = /(Kt(x,u) — Ky (z,u))) f(u) dyso(u).

Differentiating this equation with respect to ¢, we then obtain the lemma.
To see that Fubini’s theorem justifies this swap, it is enough to verify that

sup / ]KT(x,u)| dr < 0o (5.7)
u€ER™ J¢
for each x and each € > 0. But this follows from ([5.5)) for the integral over ¢ < 7 < 1
and from (5.4) and Lemma [5.1] for that over 7 > 1. The lemma is proved. O

To verify item (i) in the proposition, we observe that because of , the right-
hand side of defines for each z a functional on L2(7s,), whose norm is locally
uniformly bounded for x € R". Further, the operator m.(T") is bounded on the
same space (see [8, Lemma 3.7]). Since the generalized eigenspaces £, together span
L%(Vs0), it is enough to verify (5.3) on each Ex.

So let f € &, for some A. Slnce e f(x) = [ Ki(w,u)f(u) dyo(u), Proposition
and Lemma imply

mo(T)f(z) = —/ at/Kt 2, ) f (1) dryoo (1) dt

/ /Ktxu ) dryae (1) .
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Switching the order of integration, again by means of (5.7)), we conclude the proof

of (i) O
Proposition 5.4. (i) For 0 <t <1 and all x # u,
Ki(z,u) < e 1+ |2)) |z —u|™¢ (5.8)
and
Kol w)| < €™ (14 [o) o = uf~C. (5.9)
(ii) The integral defining Mg converges for all x # u, and
IMo(z,u)| < @ (14 |2)¢ |z —ul 7, T # u. (5.10)

(iii) For any f € L:(Vs) and a.a. x ¢ supp f,

mo(T)f(@) = [ Mol u) £ (w) drocl).

Proof. To verify (i), we start with the upper estimate in (2.10)

efil®) u — Dy x|?
Ki(x,u) < syz CXP (—c%)

and the first inequality in (5.5)), which implies

. _D,z|?
| (2, )| < e (1 + |]) 7172 exp (—c M) : (5.11)

Notice that this last estimate is also satisfied by K;(z,u).

We have |u— D, x| > |u—z|—|z— D, z|, and Lemmal[2.1|says that |z — D, z| ~ t|z|.
Thus |u — Dy x| > |u—x|/2 if t < c|Ju — z|/|z| for some ¢ > 0, and we conclude that
for 0 <t < 1Aclu— z|/|z| the right-hand side of is then controlled by
|u— |

t

If instead clu — z|/|z| <t < 1, it is enough to estimate the right-hand side of ([5.11])
by constant times

e (L4 Ja]) 172 < e (14 |2 ) Ju — 2] 7€

This proves both (5.8]) and (5.9).
Part (i) follows immediately from (5.9)), since |[M(z, u)| < fol Kt(:r,u)’ dt.
L

efil®) (1+ |z|) 172 exp <—c ) < efil®) (14 |z]) Ju — 2|27

To prove (iii), we can assume that ¢ vanishes for ¢ > 1. Then (5.9) leads to

Motz < 1

and this is uniform in €.

We will let € — 0 in (5.3)), with = ¢ supp f and a fixed f € L3(7s). Consider first
the right-hand side of (/5.3])

Kt(ac,u)‘ At <P 14 |2)C |z —u|C,  ztu  (5.12)
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Because of (5.9)), we see from and that, with ¢ supported in [0, 1], one
has M (x,u) — My(xz,u) as ¢ — 0, for any  # w. In the integral in the right-
hand side of (5.3)), we thus have pointwise convergence, and | f(u)| dy.(u) is a finite
measure. The estimate allows us to apply bounded convergence, and conclude
that

/MﬂMWM%M%/MMMNM%M, -0,

for x ¢ supp f. Moreover, the left-hand integral here is a function of z which
stays locally bounded in the complement of supp f, uniformly in €. So we also have
convergence in the sense of distributions in R" \ supp f.

To deal with the left-hand side of (5.3)), we claim that m.(T)f — mo(T)f in the
sense of distributions in R™, as € — 0. This will end the proof of (ii).

With v, T and ¢(2) = 1/(1 + 2?) as in Section 3, we have

1 me(z)

2mi Jp 1+ 22

To prove the claim, we let g € C§°(R"). It is enough to verify that
(me(T)f, g) = (m(T)f, g9), €—0,

with the scalar products taken in L?*(7,). Notice that it does not matter whether
we consider the convergence of the functions m.(T')f or the measures m.(T) f dVso-
We have

me(T) = (1 +T?) —

(2] —T)" dz.

1 me(z)
27m' r 1422

munﬁm:<u+ﬁ> (a1 - T>7mg>

27TZ/ 1+ 2 < [_T>71f7 (1+ T* g> dZ (513)

where T* is the adjoint of T in L?*(7.,), so that (14 (7™)?) g is another test function
in C5°(R™). Now me(z) = z [ ¢(t) e~ dt tends to m(z) for each nonzero z € T,
For such z we also have the bound |m.(2)| < ||¢]l |2]/H2z < 1. In the last integral in
, the integrand thus converges pointwise, and it is also dominated by constant
times

L - *
1+]z2 1z = T) " fllp2r) 1+ (7)) gll 2270

which is integrable along I" because of (3.3)). The dominated convergence theorem
now implies the claim and completes the proof of (iii) and that of Proposition . O

5.2. Simplifications. The preceding estimates allow some preliminary observations
that will simplify the proof of Theorem [L.1]

In we take f such that || f||1(,.) = 1. We can then assume that o in the
same estimate is large, in particular a > 2, since dv, is finite.

Further, we can focus mainly on points z in the ellipsoidal annulus

1
C, = {xeR": §loga§R(az‘) < 210ga}.

To justify this, we will follow closely the arguments in [I1], Section 6]. The first
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observation is that the set of points x for which R(z) > 2loga can be neglected,
because its dvy,, measure is no larger than C/a.

The next proposition deals with the remaining part of the complement of C, when
t > 1 and follows immediately from (|5.1)).

Proposition 5.5. Let x € R" satisfy R(x) < %log a, where a > 2. Then for all
uecR"?
|Mi(z,u)| S a.

A further simplification will be introduced in Subsection [7.2}

6. THE WEAK TYPE (1,1) FOR LARGE ¢

Proposition 6.1. For any f € L'(vx) such that || f||11(y..) = 1 and any a > 2,
1
av/Ioga

In particular, the operator my(T) is of weak type (1,1) with respect to the invariant
measure dVse-

Yoo {2 € Ca  [ma(T) f(2)| > 0} S

The estimate in this proposition means that for large o one has a slightly stronger
estimate than the classical weak type (1,1) bound. This phenomenon was already
observed for the Ornstein—Uhlenbeck maximal operator in [10, Section 6], for the
first-order Riesz transforms in [I1], Proposition 7.1]) and for the variation operator
of the Ornstein—Uhlenbeck semigroup in dimension one in [13, Proposition 3.1].

Proof. We will first use our polar coordinates to deduce a sharper version of the
estimate in Proposition [5.2)(7). If z € C, and u # 0, we can write © = Dy & and
u = Dyt with , & € E(1oga)2 and s > 0, 0 € R.

Let t > 1. Applying [10, Lemma 4.3 (3)], we obtain

|D_yu—x|=|Dy_tyt— DsZ| 2 |Z — 1.
Thus implies
Ki(z,u) < ef® exp ( —c|t — ﬂ|2> exp ( —c¢|D_yu—zl? ),
for some c.

Using this estimate instead of (2.11]), one can follow the proof of (5.1)) with an

extra factor exp (—c|Z — u|?). The result will be
‘/\/ll(x,u){ < fil® exp(—c’i—ﬂ’z), x € Cy,.
We can now finish the proof of Proposition by means of the following lemma,
which is the case 0 = 1 of [11l Lemma 7.2].

Lemma 6.2. Let f > 0 be normalized in L' (7). For a > 2

Yoo {:c:Dsj:eCa: eR(x)/eXP(_Cﬁ_af) J () dyoe(u) >a} < a\/ig&'

O
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7. LOCALIZATION

In order to study the weak type (1,1) for small ¢, we need a further splitting of
the operator mg(7"). Localization means considering that part of mo(7T) f(x) which
depends on the values of f in a ball of center x and radius essentially 1/(1 + |z|).
We start by "filling” R™ with balls of this type.

7.1. Local and global parts. With zy = 0, we select a sequence (z;);° of points
such that the open balls B; = B(z;,1/(1+|z;])), j =0,1,..., are pairwise disjoint,
and such that the family (B;)°is maximal with respect to this property.

In the sequel, we will often use notations like 3B; in the sense of concentric scaling.

We first verify that the balls 3B;, j = 0,1,..., cover R". To verify that a given
point x is in some 3B;, we can assume that |x| > 3, since otherwise = € 3B,. The
maximality property of the B; implies that the ball B(x,1/(1+ |z|)) must intersect
some B;, necessarily with j > 0. Then

1 1
|z mj|<1+| |+1~|—|xj|7 (7.1)
and so
1 1 1 1 3z 5
<l T Py S ety sk gy =gkl
Thus 1+ |z;| < 5(1 + |z|)/4, and implies
5 1 1 3
vl <y T2y 140y 14z
so that x € 3B;.
We will need another property of these balls: for any j and any x
x € 6B; = % < 11:||:Z|| <T. (7.2)

Indeed, if |z — z;| < 6/(1 + |z;|) we have
L4 |zl <1+ |z|+6/(1+ |zj]) < T4+ |z] <T7(1+ |z|),

and the other inequality follows in the same way.
This allows us to show that the balls (6B;)5° have bounded overlap, as follows.
Let x € 6By, so that x; € B(x,6/(1 + |z;])). Then

Bj = B(x;j, 1/(1+ |z;]) € Bz, 7/(1 + |z;])) € B(,49/(1 + |z])),

the last step by (7.2). Comparing Lebesgue measures, we have |B;| 2 (1 + |z])™
and |B(x,49/(1 + |z|))| < (1 4 |z|)~". Since the B, are pairwise disjoint, this can
occur for at most a bounded number of j. The bounded overlap is verified.

We now introduce functions supported in some of these balls, with which the local
part of mo(7") will be defined. Let first p; for each i@ = 0,1,... be a nonnegative,
smooth function supported in 4B; such that p; = 1 in 3B;. Its gradient should satisfy
|Vpi(x)| S 1+ |z|. The sum ) p; is locally finite and satisfies 1 < >~ p; < 1 and
also [V 3% py(w)] < 1+ lal.
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The functions we will use are
Pj
r. = .
’ ZZT’ Pi
Clearly, r; is nonnegative, smooth and supported in 4B;, and ) °r; = 1. For the
gradient, one has

|Vri(z)] S 1+ |z|. (7.3)

We will also need smooth functions 75, j =0, 1,..., again with values in [0, 1] but
having larger supports. They shall satisfy r; = 1 in 55; and supp7; C 65}, and like
the r; they shall also verify

V7 (2)] S 1+ |zl (7.4)
We observe that the functions 7; have bounded overlap and that
e @) ~ o= E(z;) for T € supp 7y, (7.5)

which follows from [I1, formula (2.9)] with y = x — x; when |z| is large and is trivial
in the opposite case.
Let

o) = 327 ) rw)

and note that for all x,u € R"
0 <n(x,u) <1. (7.6)
The following two lemmas express that 7(z,u) indicates how close the points x
and u are to each other, and also give an estimate of the gradient of n(z, ).
Lemma 7.1. (i) If n(z,u) > 0 for some points x and u, then |z — u| < ﬁlx\

(it) For any points with x # u
Ve n(z,w)| + [Vun(z, u)| < o —ul™

Proof. (i) Since n(x,u) > 0, there exists a j such that 7;(x) > 0 and r;(u) > 0. Thus
x € 6B; so that 1 + |z| ~ 1+ |z;| by (7.2), and u € 4B;. We get

6 4 1
+ < .

2 —u| < |z —zj|+|u—1z4 <

(77) We can assume that (z, u) is in the support of 7, and by continuity the conclusion
of (i) still holds. The inequality for V,n follows from (7.4) and (i). For V,n we
apply (7.2) to x and u with j as in (i), to get 1+ |z| ~ 1+ |u|. Now we can use (|7.3)
and (). O

11
3 T3 then

Lemma 7.2. If x and u are two points with |z — u| <
ri(u) >0 = ri(x) =1, j=0,1,..., (7.7)
and n(x,u) = 1.
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Proof. The last conclusion is a consequence of ([7.7) and the definition of n. The
implication ([7.7]) follows from

u < 4BJ = T € 5Bj,

or equivalently,

S

But

v — ;] <o —ul +u—z < 3

So it is enough to show that
1 1 1
— S ,
314 |z] = 1+ |y

which is obvious if |z;| < 2. In case |z;| > 2, we have

1 4 1
+- +|x|<1+ += +\x|<3(1+|x\)

L foy] < 1t fu—ay| o —ul +la] < 1+ :

1+ [ay|
0

We now split the multiplier operator mo(7") in a local and a global part. The local
part is defined by

mo(T)* f(x) = Y 75(x) mo(T) (fry) (x), [ € L' (v0)- (7.8)

This sum is locally finite and so well defined.

It was proved in Proposition (m) that the off-diagonal kernel of mg(T") is
Mo(z,u). To find that of mo(T)°°, take f € L'(7s). For almost all points
x ¢ supp f, thus not in supp fr; for any j, we have

T f(2) Zm ) [ Mot} () ) o)
where the sum is again locally ﬁnlte As a consequence,

mo(T)"° f /Mo z,u) n(z,u) f(u) dys(u),

and so the off-diagonal kernel of mq(T)%° is

ME(z,u) = Mo(z,u)n(z, ). (7.9)
We also define
mo(T)gIOb = mo(T) — mo(T)IOC.
Its off-diagonal kernel is
ME (2, u) = Mo(z,u) (1 —n(z,u)). (7.10)

Moreover, the next lemma says that mg(T)8°" is completely given by this kernel.
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Lemma 7.3. For any f € L'(vs) and a.a. z, one has

oDV f(a) = [ Mola,a) (1= (o) ) drel). - (711)

Proof. Our strategy will be to take a point £ € R™ and verify (7.11)) a.e. in the ball

1 1
B::B<f’§1+|£l)'

If x, u € B then

| P 1 1
r—ul < - ,
41+ €]
and we have
L fal < T Je] 4 o — €] < L [€ 4+ 5 o < 2 (L [e]).
x x — =
81+1& — 8
Combining these two estimates, we get
19 1 1 1

|z —ul < -

: 7.12
481+ |z 31+m| (7.12)

Thus Lemma [7.2] applies. We compute mo(T)°°(fxp)(x) for x € B, by means of
the definition (7.8) of mo(7T)"°. If for some j, the product fxpr; does not vanish
identically, there exists a point © € B with 7;(u) > 0. Then Lemma says that
rj(x) =1, and it follows that for x € B

o) (Fxe)e) = 3 ol D) xs i) () = () (waj> (@)
= mo(T)(fxB)(z),

since in the sums here, only a finite number of terms are nonzero The equality
obtained implies that mo( 8P (fxg)(z) = 0.

When we next apply the operator mg(T)%°" to f(1 — xg), we can use the off-
diagonal kernel in . As a result, we have for a.a. z € B

mo(T)# f () = mo(T)¥" (f(1 — x5))(z) =
/ Mo, u) (1 — 5z, w)) £(u) (1 — x5(u)) dyso(u) =
/ Mo(a, ) (1=11(z, w)) £ (1) dryoe (1 / Mo, ) (1=11(z, u) (1) x5(1) o ().

The last integral is 0, since here n(z,u) = 1 in view of (7.12]) and Lemma . We
have verified ((7.11]) a.e. in the ball B and thus almost everywhere. O
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7.2. A further simplification. The following proposition is complementary to
Proposition [5.5] and deals with the interior of C, when ¢ < 1.

Proposition 7.4. Let © € R™ satisfy R(z) < 1loga, where a > 2. Then for all
ue R"
MEP (2, u) < a.

Proof. If M&°"(z,u) # 0 then n(x,u) < 1, and Lemma (7.2 implies that |z — u| >
—L— From (5.10) we then obtain
I+|zlq
MG (2,u) S PO (1 + 12)C S a,
and the proposition is verified. 0

Thus we need to take the region {z : R(z) < iloga} into account only when
considering mg(T)".

8. THE LOCAL REGION
loc

In this section we shall prove the weak type (1,1) of the operator mg(7T')
In order to apply Calderon—Zygmund theory, we pass to Lebesgue measure. Set

qgrf(x) = e @) mo(T)loC (f() efit) )(x) (8.1)

loc

The relationship between gr and mo(7)° is clarified by the following result.

Proposition 8.1. If qr is of weak type (1,1) with respect to Lebesque measure, then
mo(T)°° is of weak type (1,1) with respect to the invariant measure.

Proof. By ([7.8) and the bounded overlap of the 7;, we have

Z'f’]mo (fr;)

o0

< |7 mo(T) (frj)Hleoo(%o)'
=0

lmo(T)° fll o () =

L1 (ve0)

The last sum may be rewritten as

> ([ DT @) mo(T) (£15) (0)]| e
j=0
=> (" 7@ ar (fr;e™) @) oo,

ZZ‘ER(%) 175 ar (frie Huoo Z 7 ar (Frje” '))HLW(dw);
7=0
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in the last two steps we used ([7.5)). The hypothesis of the proposition implies that
the last sum is dominated by constant times

D e O g = Do I rilleiomy = 120
j=0 Jj=0

which proves the assertion. ([l
We will now apply Calderén-Zygmund theory to the operator ¢r, in order to

prove its weak type (1,1) with respect to Lebesgue measure. First we verify the L?
boundedness.

Lemma 8.2. The operator qr is bounded on L*(dx).

Proof. Starting with (8.1)) and (7.8), we then apply the bounded overlap of the 7
and ([7.5). We get
Z mo(T) (frje ) (z)

[larstras = [
i / S (@)mo(T) (fr;¢™0) (@) de

1) / 5 @ymo(T) (r; e0) (@) dree(a)

2

dx

[e.e]

A
NER

0

.
Il

dyoo ().

A

<
Il
o

) [Jmo(T) (71,) (@)

For mo(T), which is of Laplace transform type, the L? boundedness with respect to
the invariant measure follows from [8, Lemma 3.7] (we remark that this boundedness
is also a consequence of some results in [I5] and [16], which can be applied here since
[32, Lemma 2.2] exhibits a linear change of coordinates in R™ reducing the setting to
the case where () = I and (), is a diagonal matrix). As a consequence of the above,
we have

Yoo (u)

/|qTf(x)|2 dr < i iC) / ’f(u) ri(u) eR® 2
=0

concluding the proof. ([l

We need a lemma from [I1].
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Lemma 8.3. Let p, r > 0 with p+r/2 > 1. Assume that n(z,u) > 0 and x # u.
Then for 6 >0

1 2

- D

/ t P exp (—(5 M) lz|"dt < Clu — x| 27"+
0

Here the constant C' may depend on 0, p and r, in addition ton, () and B.

Proof. To see that this follows from [11, Lemma 8.1], it is enough to observe that
Lemma [7.1)7) leads to |u — 2| < 1/(1 + |z]), i.e., (z,u) € L4 in the terminology of
[11]. O

We shall now find the off-diagonal kernel Q(x,u) of the operator ¢r from (8.1)),
defined for integration against Lebesgue measure, that is,

irf(@) = [ Qo flu)du, a f supp .
It will be convenient to introduce another kernel

Ki(z,u) == e B K, (x,u)

- (%) e [ 01t -0 P - i)

We recall from ([7.9)) and Proposition that the off-diagonal kernel of mq(7T)%°

18

MY () = Mo (e, w) (e, u) = — / (1) Ko(, u) dt 5(z, u).

From this and (8.1)) it follows that

Oz, u) = e @ ML(2,u) = —/0 o(t) Ky(z,u) dt n(z,u). (8.2)

We will need expressions for some derivatives of KC;; for similar results about the
derivatives of K; we refer to [II, Lemma 4.1].

Using ([2.3)), one sees that
Op, Ki(z,u) = ICy(x, w) Pu(t, z,u),

where
Polt,z,u) =(Q; ' e ey, u— Dy ). (8.3)
Similarly, or as an immediate consequence of [I1} formula (4.2)],
Oy Ki(z,u) = —Ky(z,u) (Q; " P (D_yu— ), ). (8.4)

The following three technical lemmata give expressions and estimates for deriva-
tives of Ky = 0KC;/0t. Before stating them, we notice that

ICt(x, u) = e @) Kt(x, u) = e @) Ki(z,u) Ny(x,u) = Ky(z,u) N(z,u), (8.5)
with Ny(z,u) from Lemma [1.2]
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Lemma 8.4. For x, u € R" and t > 0, one has
(1) O, Ki(,u) = Ky(, u) Se(t, z,u);
(17) O, K, u) = Ky(,u) Re(t, x,u),
where the factors Si(t, z,u) and Re(t,x,u) are given by
Su(t,z,u) = Ny(z,u) Pe(t, z,u) — (Q; ' eP Qe Q' P er, u— Dy )
+ <Qt_1 BePey, u— D, a:> + <Qt_1 ePey, Qe B e QY x> , (8.6)
and
Ro(t,z,u) = —Ni(z,u) (Q; e (D_yu— ), ef)
+HQ; ' e Qe Qe (D_yu—1x), e)
—<Q{1 Be®(D_ju—1), €g> — <Qt’1 P QB QL D_yu, €g>. (8.7)
Proof. To prove (i), we start by observing that
O, K, 1) = 0y (Ky(, u) Py(t, 2z, u))
= Ki(z,u) N(z,u) Pe(t, z, u) + Ki(z,u) 0, ((Q; ' P e, u— Dy )),

where we used (8.3)). Applying (4.2) and (4.4]) to the last derivative here, one arrives
at (8.6), and (i) is verified.
To prove (i), we proceed similarly, using (8.4) to write

D, Ko (2, 1) = =Ky Ny(z, ) (Q7' e (D_yu—1), e)

— Ki(a,u) 0, ((Q7 e (D—yu — ), er)) -
As in the case of (i), this leads to and (7). O

To bound S, and Ry, one concludes from [I1, formula (4.5)] that (notice the

distinction between our P, and the P; used in [11] )

|Po(t,z,u)| < |u— Dy x|/t 0<t<l. (8.8)
Lemma 8.5. One has for 0 <t <1 and all z, u € R

| lu— D, z|? N lu— D, z|? N lu — Dy x| N |lu — D, z| N ||
12 t3 t 12 t’
Proof. We first bound the product Ny(z,u) Py(t, z,u) appearing in (8.6). Because of
(4.8) and (8.8]), we have for 0 <t <1

1 |u— D z|? |lu— Dyz|\ |u— Dyx|
| Ni(z,u)Po(t, z,u)| S (; t— 7 || . ;

|Se(t, z,u)| S [=

3 2
<|u—Dtx|+|u—Dt:v| 2 |lu — Dy x| ‘

~ 12 t3 12

Estimating also the other terms in , one arrives at the lemma. 0

+ |



SPECTRAL MULTIPLIERS 25

Lemma 8.6. Fort € (0,1] and all x, u € R"

lu— D;x|*  |u— Dy |u— D;xl ||
(Re(t,x,u)| < |z 2 + " + 2 + +7.
Proof. For t € (0, 1] we have by (8.7) and (4.§)
u—Dx u— Dz u—Dx u
Rt 2, 0)| < | N, )| 1= 2 ’+' Derl = Doal 1
1 |u— Dz lu—Dyz|\ |u—Dyx| |u— Dyx| |z
S+ —— —.
~ (t T Tl r e T
Here we estimated |u|/t by |u — D, z|/t* + |z|/t. The lemma follows. O

Proposition 8.7. For all (xz,u) such that n(x,u) # 0 and x # u, one has
1
/ \Ki(z,u)| dt S |u—a|™
0

Proof. From (8.5 (2.10) and (4.8)) we obtain

1
/‘Kt(x,uﬂdt
0
1 2 2
_n |Dy x — ul 1 |u— D x| |lu — Dy x|
< [t P bt N Y (I it = 20 g
N/o 2exp( c : t+ 2 + |z| ;
. Dy — uf?
< / % exp (_CM) < +lﬂ) i@
0 t t Vit

Because of Lemma the last integral is controlled by |u—x|~", and the proposition
is proved. ([l

We are now ready to prove standard Calderén-Zygmund bounds for the off-diagonal
kernel of gr with respect to Lebesgue measure.

Proposition 8.8. For all (z,u) such that n(x,u) # 0 and v # u, the following
estimates hold:

|1Q(z, u)| S Ju—a|™; (8.9)
‘Vm Q(x, u)| <|u—a " (8.10)
V. Q(z,u)| S Ju—a| " (8.11)

Proof. In the light of (8.2)) one has
]qu]‘/ ’thudt
where we used both and Proposition E Thus is verified.
-i

In order to prove ( we first observe that

(x,u) /‘Ktxu|dt<]u—:r;]"

|00, (Q(z,u))| S / |0a, Ki(z,u )| dtn(z, u) /0 ‘I'Ct(:c,u)|dt’8un(x,u)|. (8.12)
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The last term here satisfies the desired estimate because of Proposition [8.7] and

Lemma [7.1](ii).
Using Lemma [8.4)7) and then (2.10) and Lemma [8.5 we can estimate the first

term in (8.12) by
1 1 N - D 2
/ |1Ct(x7u> Sg(t,l’,u)’ dt 5 / t 2 exp (_Cw)
0 0

lu—Dyx|”  |u— D)  |u—Dw| |u—Dux| |zl
X - — | dt
('33' A

1 2
n - D 1
< / % exp (_!ufml) (@ N _) it
0 t/t

Proposition says that the last expression is controlled by |u — x|, so that
is proved.

The verification of is analogous, with Ry(t,z,u) instead of S,(t,z,u). It
is enough to observe that Lemma implies that |R,(t,x,u)| is controlled by the
right-hand side in the statement of Lemma [8.5] U

By means of Lemma [8.2] Proposition and Proposition we finally arrive at
the goal of this section.

Proposition 8.9. The operator mo(T)1°¢ is of weak type (1,1) with respect to the
mvariant measure dvso .

9. AN AUXILIARY BOUND FOR 0 <t <1

In this section, we verify a bound on the number of zeros of the t derivative of
K in the interval (0, 1], which will be used in the next section to control the kernel

M%lOb-
Proposition 9.1. For (z,u) € R x R", the number of zeros in I = (0,1] of the

function t — Kt(x,u) 18 bounded by a positive integer depending only on n and B.

Proof. Instead of K (z,u) we consider Nj(z,u) = 2(det Q;)? Ny(z, u), since the three
kernels Ky(x,u), Ni(z,u) and N;(x,u) have exactly the same zeros in I. From ({4.5])
we have

Nz, u) = — (det Q) tr ((det Q,)Q; ' P Q') (9.1)
+(Q e (det Q,)Q; " (u— Dy x), € (det Q)Q; " (u— Dy x))
— 2(det Q:) <Qoo B*Qy Dy, ((det Qr)Qy " — (det Qt)Q;ol) (u— Dy $)> ;

notice that here we have placed a factor det ), at each occurrence of Q; .
We denote by v;, 7 =1,...,J the eigenvalues of B, and observe that those which
are nonreal come in conjugate pairs, and that tv; < 0 for all j.

Claim 9.2. The function t — Ni(z,u) is a finite linear combination, with coeffi-
cients depending on (x,w), of terms which are given by a product of type H;.Izl emivit
multiplied by a polynomial in t with complex coefficients. Here m; € 7Z. Further,
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the quantities |m;| and the degrees of the polynomials are all bounded by a constant
depending only on n. This bound also applies to the number of terms.

Proof. Inspection shows that the last two terms in (9.1) are sums of scalar products
of vectors given by multiplying x or u from the left by various combinations of the
matrices €', e!B" D;, Q; and (det Q,)Q; ', the constant matrices B*, Q, Qo and
Q=!, and the scalar factor det Q;. The first term in is instead the trace of the
product of some of these matrices, multiplied by det ();. Let us examine precisely
how the matrices listed here depend on ¢.

We pass from R" to C" and make a Jordan decomposition of B via a change
of coordinates in C". Each Jordan block is of the form v;(I + R), where R is a
supertriangular and thus nilpotent matrix and I is the identity matrix, of some
dimension. Then exp(tv;(I+ R)) = €' P(t), where P(t) is a matrix with polynomial
entries in t. To arrive at exp(tB), we put these blocks together and then change
coordinates back. The result will be that in the coordinates we had before, each
entry of the matrix exp(¢B) is a sum over j of terms of type €"'p(t), where p(t) is a
complex polynomial that may depend on j and on the entry considered. The same
will be true for the entries of its adjoint exp(¢B*). From we then see that D; is
of the same form but with e* instead of e"/*. Considering the integral in (2.1, we
see that the matrix Q, has similar entries, now with terms e®¥"p(t). Since the
entries of the matrix (det Q,)Q; ' are given by minors of Q;, they will be a sum of
terms which are like those described in Claim [0.2] Finally, the scalar det @, also has
the same structure.

Claim now follows, since the bound on the |m;| and the degrees of the poly-
nomials is easily verified. 0]

We observe that Claim implies that N;(z,u) can be extended to an entire
function in ¢, and so the number of zeros in (0, 1] is finite.

This claim means that N;(z,u) is a sum of terms given by a function of (x,u)
times an expression of type

exp (Z mjz/jt> P(t) =exp (A +iu)t) P(t), (9.2)

where we write >, m;v; = A +ip and P(t) is a complex polynomial.

We will now find a linear differential operator in ¢, independent of x and u, that
annihilates all these expressions and thus also NV (z,u), for all (z,u). For this we
denote D = d/dt.

If 4 = 0 the expression in is annihilated by

(D . )\)1+degP )
If u # 0, the same expression is annihilated by the operator
(D S Z-lu)leregP'

Since N (x,u) coincides with its real part, there is also a term

exp ((A —ip)t) P(t), (9.3)
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again multiplied by a function of (z,u), in the sum forming N;(z,u). This term is
annihilated by

(D — A+ Z',u)l-&—degP'

Clearly both terms (9.2)) and (9.3|) are annihilated by the product of the two opera-

tors, which is
((D . /\)2 + ,ug))leregP '
Consider now all the terms in the sum giving N;(x,u). It folllows that N;(x,u) is
annihilated by a differential operator

where each P;(D) is of either of the following two types: a first-order operator
T\=D-\
or a second-order operator of the form
Sap = (D =N+,

Here A € R and p # 0. Clearly all these operators commute, and P(D) is a polyno-
mial in D with coefficients depending only on n and B, and with leading coefficient
1. The number of factors in P(D) has a bound also depending only on n and B.

Without restriction, we may assume that ;> 0 in each operator S, ,, and also
that the equation P(D)N;(z,u) = 0 does not allow suppression of any of the factors
P;(D) in the product defining P (D).

Proposition [9.1] is thus reduced to showing that the number of zeros of a real-
valued solution of the equation P(D)¢ = 0 in I = (0, 1] is bounded by a constant
depending only on the polynomial P.

Our next claim deals with one operator Ty or Sy .

Claim 9.3. Let A € R and p > 0, and let J C R be a closed interval of length less
than 1/u. Assume that ¢ € C*(J) is a real-valued function. If Sy, ¢ does not vanish
in the interior J° of J, then ¢ has at most two zeros in J. Further, if Sy ,¢ has at
most k zeros in J, then ¢ has at most 2k + 2 zeros in the same interval. The same
statements hold with S, replaced by T).

Proof. To prove the first assertion about Sy, , we may take A = 0 since

Soud(t) = e Sy, (e (1)),

and we will write S, for Sy ,. The same trick applies to T).

Since by hypothesis S, ¢ # 0 in J°, we may as well take S, ¢ > 0 there. We
assume by contradiction that ¢; < t < t3 are three zeros of ¢ in J. Then ¢"(t5) =
S, ¢(t2) > 0. We can then assume that ¢/(t3) > 0, since otherwise we consider
instead the function ¢(—t) in the interval —.J. For ¢t > t, sufficiently close to to we
have

D(t) = ¢ (ta)(t — tg) + % ¢ (t2)(t — t2)* + 0 ((t — t2)*) > 0.
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Since ¢(t3) = 0, the maximal value M of ¢ in the interval [to, t3] must be assumed
at some point ty; € (t2,t3). Clearly M > 0 and ¢'(t5;) = 0. An integration by parts
yields

to

M- / T =- oy - [ - oo

_ / (t — £2)6(¢) dt.

[2)

Since here —¢”(t) = p?o(t) — S, (1) < p?¢(t) < p*M we conclude that

tay —t2)? 1
( M 2) S —M2M|J‘2.

tam
MSMM/)@—Mﬁ:ﬁM
" 2 2

This leads to the contradiction |.J| > v/2/p, which proves the first assertion of the
claim. The second assertion follows from the first, applied in each of the intervals
obtained by deleting from J the zeros of ¢.

For T} it is enough to apply Rolle’s theorem to Ty = D. 0

Conclusion of the proof of Proposition[9.1, We know that P(D)N,(z,u) = 0, where

P(D) = [[ 7D,

and each P,(D) is T\ or Sy, for some with A € R, and g > 0 in the case of S, ,.
Choose a natural number « larger than all the values of p appearing here. Then
split [0, 1] into & closed subintervals of length 1/k, and let J be one of these subin-
tervals. Observe that Claim [9.3| applies to each P;(D) in J, since 1/k < 1/p.
Set for m € {2,3,..., K}

K
N(@,u) = [ ] PAD) Nl w),
and N (2, u) = Ny (z, u).

We will prove by induction that the function ¢ — N™ (z, u) has at most 2™ — 2
zeros in J, for m € {2,3,..., K + 1}. Here we fix (z,u). Proposition will then
follow from the case m = K + 1.

Starting with m = 2, we have P (D) N?(z,u) = 0, and N?(z,u) is not iden-
tically 0 for all t. By means of a conjugation with the factor e* as in the proof of
Claim we can assume that P;(D) is either Ty = D or Sp,. If P/(D) = D, then
N (z,u) is a nonzero constant; if P;(D) = Sy, we assume that t = ¢, € J is a
zero of /\/;(2) (z,u). Then M(Q)(w, u) is proportional to sin ((¢ — to)u) and can have no
other zero in J, because |J| < 1/u. The first induction step is verified.

Assume the induction step holds for m. Then Py, (D) N (z,u) = N{™ (2, v)
has at most 2™ — 2 zeros in J, and Claim implies that the number of zeros of
N (2 u) in J is at most 2(2™ — 2) + 2 = 2™ — 2. The induction is complete,
and so is the proof of Proposition 9.1} 0
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10. ESTIMATES IN THE GLOBAL REGION FOR SMALL ¢

In this section we estimate the operator m%lOb(T ) with kernel

—/0 cp(t)Kt(x,u)(l —n(z, u)) dt.

We shall need the following theorem. In order not to burden the exposition, we
postpone its proof to the appendix.

Theorem 10.1. The maximal operator defined by
S (@) = [ sup Koo (1= (o) [F@)] drele)  (10)

0<t<1

is of weak type (1,1) with respect to the invariant measure drys.

This is a sharpened version of the weak type (1, 1) estimate for the corresponding
part of the maximal operator treated in [I0], since the supremum in ¢ is now placed
inside the integral. As a consequence, we can prove the following result, which will
complete the proof of Theorem [I.1]

Proposition 10.2. The operator mglob( )

invariant measure dvs .

Proof of Proposition [10.5 Let N(z,u) be the number of zeros in (0, 1) of the function
t— Ky(z,u). Proposmon 1| says that N(x,u) < N for some constant N > 1 that
is independent of (x,u) € R x R (and dependent only of n and B). We denote
these zeros by t1(x,u) < -+ < tnw(z,u), and set to(z,u) =0, tyu+i(r,u) = 1.
Since Ki(z,u) vanishes at ¢ = 0, it follows from the fundamental theorem of calculus

is of weak type (1,1) with respect to the

that
1 . N(CE,U) t7;+1(:1?,u) .
/ Ky(x, u)‘ dt = Z / Ky(x,u)dt
0 i—0 ti(z,u)
N(z,u)
= Z }Kti+1(ac,u) (ZE, U) - Kti(x,u) (ZL‘, U)‘
1=0

z,u)+1
Z e (T, u) S N sup Ky, u).

i—0 0<t<1

This inequality implies

minyso| < [ [

< N/ sup Ki(z,u) (1 —n(z,w)) | f(u)] dys(u),

0<t<1

(z, U) dt (1= n(z,w)) [f(u)] dyoo(u)

and Theorem yields
o 1
o {1 @) > 0} £ 2 [ 1))
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11. APPENDIX: PROOF OF THEOREM [10.1]

In the proof of this theorem, we take f > 0 normalized in L'(7,), and we fix a > 2.
We claim that we need only consider the intersection of the level set {SE°"f > o}
with the annulus C,. Clearly, the unbounded component of the complement of C,
can be neglected as in Subsection [5.2]

To deal with the bounded component, we first observe that the integral in the
definition ({10.1)) of SIObf(x) need only be taken over those u satisfying n(z,u) < 1.

But then Lemma shows that |z — u| > %ﬁ By Lemma [5.4(i), this implies
that Ki(x,u) < ef® (1 + |z[)°. Thus if z is in the bounded component of the

complement of C,, where R(z) < 1loga, it follows that K;(z,u) < a. The claim
follows by integration against f(u) dvyeo(u).

Thus we restrict = to C,; in particular |z] 2 1. We will write x and u # 0 as
r = D;% and v = D, 4, respectively, where Z, @ € Ez with f = (loga)/2 and
5§s>0, c eR.

Lemma 11.1. Let (z,u) be such that n(x,u) < 1, and let x € C,. Then

sup Ky(z,u) < e min (ja— 2|, |2|").
0<t<1

Proof. For the first bound, we use [10, Lemma 4.3(i)] to get |D;xz — u| 2 |z — ul,

which by (2.10) yields

= =12
sup Ky(z,u) < e sup 72 exp (—c il ) < ef@ )z — g™,
0<t<1 0<t<1 t

To get the second bound, we use the fact that |x — u| > —— ~ 1| as seen in the

Lfa] = Jaf
beginning of this section. Applying also Lemma [2.1] we obtain

|| ' S| —u| < |v— Dyx| + |Dyx —u| S tla| + | Dz — ul.
Thus |z|7' < t|z| or |z|~' < |Dy 2 —u|. In the first case, t~/2 < |z|", and the desired
estimate is immediate from (2.10). In the second case,

K < R@) =3 __C ) < GR@) |
t(x7u> ~ € exp t|l’|2 ~ € |CC|

The lemma is proved. UJ

Continuing the proof of Theorem [10.1], we have from Lemma that for x € C,

SEP £ () < RO /min (la — 2|7, |z[) f(u) dyeo(u) = A(z) + B(z),
where

Alw) =Jap e [ ) e (i) (111

{u: |z[<|a—2|~'}
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and
B(z) = @ / i — F £ () dryo ().
{u: |z|>|a—2|~1}

We will show that

Yoo {2 €Cq i Alx) >} St (11.2)
and

Yoo {7 € Cq : B(z) > a} Sa™l. (11.3)

Starting with (11.2]), we first observe that A(Z) < « for & € Ez with f = (log o) /2,
because

A@) <l e [ dya(w) £ (oga) va Sa.
Further, z = D,z € C, implies 0 ins < 1in view of [10, formula (4.3)]. Let
Ej={i € Es: A(D;&) > a for some s >0 with D,z € C,},
and define for = € Eg
so(Z) =inf{s: D;z € C, and A(DsZ) > a}.

Then 0 < so(Z) S 1 and A(Dgyiz &) = . Moreover, if A(D, ) > a for some
D,% € C,, then T € EO and s > so(Z). In the set C,, the expression ) for the
Lebesgue measure ylelds dx ~ y/logadSs ds, and so

c
Yoo {2 € Co s A(z) > a} S V/loga / / e BD®) 45 dS4(7).
Ey

s0(Z)

We now write R(D, &) = R(Dgy) &) + R(DsZ) — R(Dsyz) &) and apply the Mean
Value Theorem to the difference between the last two terms here, observing that
OsR(D, 7) ~ |Ds Z|* ~ log a because of [10, formula (4.3)]. This leads to

Yoo {r €Co: Alx) > a} S \/loga/ Doy @) / e~clsms0@loge g 15,(7)

o(Z)

< —R(Dso@) %) 1, (F). 11.4
S = [ ¢ a55(@) (11.4)

To deal with the last expression here, we insert the factor o' A(Dy ;%) = 1
in the integral, using the deﬁnition of A(.). The two exponentials will then
cancel. We also use the fact that \/loga < |Dgo@)| < 24y/log a, both to rewrite
the first factor in this definition and to extend the domain of integration in u to
{u: |&— 7| < 2(loga)~'/2}. The result is that the last quantity in is at most
constant times

1 n—1 ~
— (log)“ / / f(w) dyoo(u) dSs(Z) =
«Q B9 J{u: |[i—#|<2(log o) ~1/2}

1 n—1 1
— (loga) /f(u)/ dSs(E) dyse(u) S — /f ) dyoo (1) =
« (& la—F|<2(log @)~ 1/2} a
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This proves ((11.2]), and we move to (11.3)). Here we similarly have B(Z) < « for
T € Eg, and we can define Ej and s0(Z) as above, replacing A(.) by B(.). The rest
of the argument is only slightly different from that for ((11.2)); we now have

Yool € Co : B(x) > a} < !

~ Vlog a
1

v | i N
<= |t —Z|7" f(u) dyso(w) dS5(T)
a +/log a ES J{u: [a—&|>(log ) ~1/2/2} i
1 1 / ~ A 7
1L o | 0= 3" dS5(7) drec(u) <
a +/loga {&: |i—&|>(log )~ 1/2/2} ’
This is ((11.3)), and Theorem is proved.

In order to prove Proposition [10.2] Theorem [10.1] is enough, as we saw in the
preceding section. However, we take the opportunity to give the following related
result, which strengthens Theorem and also Theorem 1.1 in [I0] and may be of
independent interest.

Theorem 11.2. The operator S&°° defined by

S5 f(z) = / sup Ku(r,u) (1 — (z, w))|f(w)| drmo(u),  f € L'RY),

0<t<oo

[ e (< R(D.y ) dsala)

o |-

is of weak type (1,1) for the measure dvs.
This result is a consequence of Theorem and the following proposition.

Proposition 11.3. The operator S, defined by
Sof (@) = [ sup K u) (0] ),
satisfies the inequality
1

a+/loga

for all normalized functions f in L'(Vs) and all o > 2.

Yool 1 Socf(x) > a} < (11.5)

Proof. Let t > 1. We can again restrict = to C,, since K;(z,u) < ef® < o if
R(z) < (loga)/2. For z € C,, a combination of (2.11)) and [10, Lemma 4.3(i)]
implies

Ky(z,u) S ™ exp (—c @ — :i‘Q),
where we use polar coordinates with § = (log«)/2. The proposition now follows

from Lemma [6.2] O

Remark 11.4. The inequality (11.5]), which is sharp as verified in [10, Proposition
6.2], is slightly stronger than the weak type (1,1) estimate in Theorem m The

. . glob . . . . .
corresponding estimate for the operator S; " is false, since f approximating a point
mass at 0 gives a counterexample.
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Remark 11.5. In the case () = I and B = —1I an estimate similar to Lemma [I1.1
with a kernel M controlling from above the Mehler kernel K; in the global region,
has recently been proved in [7] (see, in particular, Definition 3.2 and Proposition 3.4

therein).

An earlier result of this type may be found in [30, Proposition 2.1]. These

estimates are sharp for significant values of (x,u), whereas our Theorem is
simpler, and sufficient for our needs. Moreover, Proposition is stronger than the
analogous bounds in [7] and [30].
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