ON SOME IMPROVED WEIGHTED WEAK TYPE INEQUALITIES
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ABSTRACT. In this paper we obtain the sharp quantitative matrix weighted weak type
bounds for the Christ-Goldberg maximal operator My, in the case 1 < p < 2, im-
proving a recent result by Cruz-Uribe and Sweeting [8]. Also, in the scalar setting, we
improve a weak type bound obtained in [8] for Calderén—Zygmund operators.

1. INTRODUCTION

Last years, the study of matrix weighted function spaces has drawn the attention of a
number of authors. See for instance [1, 11, 21]. More in particular, quantitative matrix
weighted estimates have been a fruitful field of study. Our contribution falls within that
framework. To be more precise, in this paper we consider weighted weak type inequalities
of the form

(11) o € B [w@) T ) @) > o)l < 1 [ £,

both in the scalar and matrix settings. Here 1 < p < oo and T' is a given operator.
Suppose first that w is a scalar weight, that is, w is a non-negative locally integrable
function on RY. In this case inequalities (1.1) were first considered by Muckenhoupt and
Wheeden in [22], and then studied by many authors, see, e.g., [7, 20, 26].
Observe that there are more standard weighted weak type inequalities of the form

(1.2) wlz € R 1(f)(@)| > a} < / flPwds,

where w(E) = [, wdz for a measurable set E C R?. Even though inequalities of the
form (1.1) are interesting in their own right, they are relatively exotic compared to (1.2).

The situation is different in the matrix weight setting. Suppose that w = W is a
matrix weight, that is, W is an n x n self-adjoint matrix function with locally integrable
entries such that W (z) is positive definite for a.e. z € R%. For f: R? — C" and a linear
operator T, define T'(f) componentwise. Then the strong LP(WW') boundedness of T' means
that

/ W () PT (W f)(2)Pde < C / fPda,
R4 Rd

2020 Mathematics Subject Classification. 42B20, 42B25.

Key words and phrases. Matrix weights, quantitative bounds, weak type estimates.

The first author was supported by ISF grant no. 1035/21. The second author was supported by the
National Natural Science Foundation of China through project numbers 12222114 and 12001400. The
third author was supported by Spanish Ministerio de Ciencia e Innovacién grant PID2020-113048GB-
100. The fourth author was supported by Spanish Ministerio de Ciencia e Innovacién grant PID2022-
136619NB-100 and by Junta de Andalucia grant FQM-354.

1



WEIGHTED WEAK TYPE INEQUALITIES 2

and we see that (1.1) is its natural weak type counterpart, while (1.2) is meaningless in
the matrix setting.

In what follows, we assume that 7" is a Dini-continuous Calderén-Zygmund operator.
Given a matrix weight W and 1 < p < oo, define

Tywpf (x) = W () PT(W7 f)(z).
We also consider the Christ-Goldberg maximal operator defined by

Mugy f(2) i=sup o [ (W)W 7(0) ).
Q> ’Q| Q
For p = 2 this operator was defined by Christ—Goldberg [4] and for p > 1 by Goldberg [12].
Quantitative matrix weighted inequalities of the form (1.1) were first considered by
Cruz-Uribe et al. [6] in the case p = 1. In a very recent work by Cruz-Uribe and
Sweeting [8], the results of [6] have been extended to the case p > 1. Both results in [6, §]
can be formulated as follows.

Theorem A ([6, 8]). Let 1 <p < oco. Then

1+
(1.3) [Twpflleee S W14, I1f] e,
and the same bound holds for Myy,,.

In [17], the authors showed that in the case p = 1 the quadratic dependence on [WW]4
in (1.3) is best possible both for Ty, and Myy;.

Suppose now that p > 1. Consider Theorem A for My, in the matrix case and for
Twp in the scalar case. From the known strong type bound for My, (which is due to
Buckley [2] in the scalar case, and Isralowitz—Moen [13] in the matrix case) one can
conclude that

_1
(1.4) [Mwpfllree S WG e (1 <p<o0).

Also, by the Ay theorem of Hytonen [15], the same bound holds for T, , when 1 < p < 2.
Therefore, in both cases Theorem A provides a new bound for p satisfying 1 + % < L

p—1’
namely, for 1 < p < %5 It was conjectured in [8] that in this range (1.3) is sharp in

both cases considered above.

We will show that this conjecture is not true. For My, we obtain the sharp weak L?
bound for all 1 < p < 2. For T,,, we also obtain an improvement of Theorem A but our
new bound is probably not optimal. In order to state the sharpness part of our results,
let us define in the scalar setting

1

o, () = sup || Mypllzr—sree (t>1).

[w]a, <t
In the similar way define g, (). Our results read as follows.

Theorem 1.1. Forall1 < p < 2,

2
[ Mwp fllLree S W14, ISl ze,

and, moreover, this bound is sharp in the sense that oy (t) 2 tr forallt>1.
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Theorem 1.2. For all 1 < p < 2,

(1.5)

3 =

1T fllinee S Twlly 7 (log([wla, + €))7 | f]lor-

Some comments about these results are in order.

The example used to prove the sharpness part of Theorem 1.1 is a modification of
the corresponding example constructed in the case p = 1 by the authors in [17].
We emphasize that Theorem 1.2 is scalar, and it is not clear to us whether it can
be extended to the matrix case. Observe that the currently best known strong type
bound for Ty, in the matrix case is

1+

1
1Twpllesre S Wy, """ (1 <p<o0)

(see [23] for the case p = 2 and [5] for all p > 1). Very recently, the sharpness of this
estimate in the case p = 2 has been established by Domelevo, Petermichl, Treil and
Volberg [9]. Observe that the sharpness in the case p # 2 is still an open question.
The weak type bound for Ty, obtained in Theorem A provides a new result when
14 217 <1+ m, that is, when 1 < p < 2, and it is an important question whether

in this range the exponent 1 + 1—1) is sharp. Theorem 1.2 shows that this is not true
in the scalar case.

Even though we stated Theorem 1.2 for all 1 < p < 2, it provides a new bound in a
smaller range of p satisfying 1 + I% < p%l.

The same example as in Theorem 1.1 shows also that ¢g,(t) 2 t# for the Hilbert
transform H. For this reason it is tempting to conjecture that the right-hand side
2

of (1.5) can be improved to [w]f‘p forall 1 <p<2.

In a very recent paper [24], the authors obtained a multilinear version of Theorem
A for Calderén—Zygmund operators in the scalar setting. In the linear case they
recover the exponent 1 + 119 of [w]4,. Therefore it would be interesting to check
whether the approach used in the proof of Theorem 1.2 can be extended to the
multilinear setting.

We complement Theorems 1.1 and 1.2 by considering the corresponding weak type
bounds in the case p > 2. First consider Myy,,. Comparing the bounds in Theorem 1.1
and in (1.4), we see that % < zﬁ precisely when 1 < p < 2. Therefore, it is natural

to conjecture that (1.4) is sharp for p > 2. The sharpness of the strong type bound
follows easily by the standard power weight example. However, the weak type case is
more complicated. While we are not able to establish this conjecture, we obtain a close
result by showing that (1.4) is ‘almost’ sharp for p > 2.

Theorem 1.3. Let p > 2. Then, for allt > 1,

In

=

o, (1) 2 177 (log(t + €)) 7.

particular, this result shows that the exponent zﬁ in (1.4) cannot be decreased

when p > 2.
Consider now T, ,. By the Ay theorem [15],

[T pllzroe S Tw]a, 1 fllz, (= 2).
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We will show that this bound is best possible.
Theorem 1.4. Let p > 2, and let H be the Hilbert transform. Then, for allt > 1,

Observe that this result is much simpler than Theorem 1.3, namely, the example show-
ing the sharpness here is much more elementary compared to the example used in the
proof of Theorem 1.3.

The paper is organized as follows. Section 2 contains some preliminary facts. In
Section 3 we prove Theorems 1.1 and 1.3, and in Section 4 we prove Theorems 1.2
and 1.4.

Throughout the paper we use the notation A < B if A < C'B with some independent
constant C. We write A~ Bif A < B and B < A.

2. PRELIMINARIES

2.1. Dyadic lattices, sparse families and Calder6n—Zygmund operators. Given
a cube Qy C RY, let D(Qy) denote the set of all dyadic cubes with respect to Qg, that
is, the cubes obtained by repeated subdivision of Q, and each of its descendants into 2%
congruent subcubes.

A dyadic lattice 2 in R? is any collection of cubes such that

(i) if Q € 2, then each child of Q) is in Z as well;

(ii) every 2 cubes @', Q" € 2 have a common ancestor, i.e., there exists Q € Z such

that @', Q" € D(Q);

(iii) for every compact set K C R¢, there exists a cube Q € Z containing K.

Lemma 2.1. There exist 3% dyadic lattices 9; such that for every cube Q C R there is
a cube R from some 9; which contains Q and |R| < 3¢|Q|.

This lemma and the above definition of a dyadic lattice can be found in [18].
Let 2 be a dyadic lattice. We say that a family S C Z is n-sparse, 0 < n < 1, if for
every cube @ € S,

U @|<a-nll

Q'eS:Q'CQ
In particular, if S C & is n-sparse, then defining for every @) € S,
Eo=Q\ | @,

Q'esS:Q'CQ
we obtain that |Eg| > n|@Q| and the sets { Eg}ges are pairwise disjoint. If the sparseness

number is nonessential we will skip it by simply saying that a family S is sparse.
The following result is an immediate combination of [18, Lemmas 6.3, 6.6].

Lemma 2.2. If § C & s n-sparse and m > 2, then one can represent S as a disjoint
uniton § = UJL;S;, where each family S; is m—sparse.

The following statement is implicit in [10]. We will give its proof for the sake of
completeness.
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Lemma 2.3. Let a family S C & be g—sparse. For a non-negative locally integrable o
and v > 0, set
1
F={QeS: 7<= [ ¢<4v}.
Ql Jq

Then there exist pairwise disjoint subsets Gg C Q,Q € F, such that for all () € F,

/9058/ ®.
Q Gq

Go=Q\ |J @

QeF:Q'cQ

Proof. Define

Then the sets {Gg}ger are pairwise disjoint. Next, let P; be the maximal cubes of the
family {@Q’' € F : Q" € @Q}. Then they are pairwise disjoint, and

SIPI= 1@\ Gol < Slal

J

Hence,
QI < /902/ WrZ/so
Q Gaq j P
Y
< [ ernXipi< [ o+lal
Gq j Gq 2
From this, v|Q| < 2 [ Go P and the statement follows from the definition of F'. O

Given a sparse family S, define for non-negative locally integrable ¢ the sparse operator

As by
1s)) = Y (17 | #) et

QeS

We say that T'is a Dini-continuous Calderéon—Zygmund operator if T is a linear operator
of weak type (1,1) such that

Tf(x)= [ K(z,y)f(y)dy forall z & supp f

R”

with kernel K satisfying the smoothness condition

|z — 2| 1
K(z,y)— K2,y §w<
| K (2, y) — K(2', )] Pl N

for |x — 2’| < |x — y|/2, where w is a modulus of continuity such that fol w(t) < .

t
The following result is well known, see, e.g., [19] for a short proof.
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Theorem 2.4. Let T' be a Dini-continuous Calderon—Zygmund operator. There exist
3% dyadic lattices 9; with the following property: for every compactly supported and
integrable f, there exist ng-sparse families S; C 9; such that

3(1

(2.1) Tf(@)] < As;(1f1)()

Jj=1
almost everywhere.

2.2. Matrix weights. Recall first that a scalar weight w satisfies the scalar A,,p > 1,

condition if . . )
1 \P—
[w] 4, = sup —/w —/w_ﬂl < 00.
Q <|Q| Q >(|Q| Q >

We will use the following sharp reverse Holder property from [16].

Proposition 2.5. There exists a constant cq > 0 such that for all w € A, and every cube
Q CRY,

1/r
2.2 2—
22) (@ ") <2a ],
where r =1+

Cd[w]A
Turn now to matrix weights. Given a n X n matrix W, define its operator norm by

W)= suwp [Wul.

ueCn:|ul=1

Observe that if {e;} is the standard orthogonal basis of C", then
(2:3) W= IWel.
j=1

Further, if V, W self-adjoint positive definite n X n matrices, then ||[VW| = |[WV||.
We say that a matrix weight W € A,,p > 1, if

p/p
_ 1/1) p|P' g d )
[W]a, = sp|Q|/ |Q|/|| Wiy) 7| dy) " de < o

This definition was given by Roudenko [25]. Observe that for the scalar valued weights
w we obtain the standard A,-constant [w]4,. It was also shown in [25] that if W € A,,

then for any u € C", the scalar weight |W/P(z)u|P belongs to the scalar A, and
(2.4) (WP (2)ulla, < [W]a,.
We say that W e A, if
(W]a, == sup ess sup — / W ()W (y)~||dz < oo.
ve@ Q|

Recall (see [12, Prop. 1.2]) that given a norm p on C", there is a self-adjoint and
positive definite matrix A, called a reducing operator, such that

p(u) >~ |Au| (ue C").
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Using this result, given a p > 1 and a cube @ C R? one can define a reducing operator
Vo,p such that

1/p’

1 /
2.5) Vol = (17 [ WG as) " e e,
Q
For Vi, such defined we will use the following standard properties.

Proposition 2.6. For any f € L*(Q),

o vaw s < (7 [ ray)

Proof. By Holder’s inequality,

'Q‘/ Vel < <|@r/ Va7 >H”'dy)1/p/ (Tcln/my)rpdy)l/p_

Next, using (2.3), (2.5) and that the matrices W~'/?(y) and V,,, commute in operator
norm, we obtain

n

, 1/p’ 1 L L , 1/p’
(|Q| / 1V >||pdy) < Z(@ /Q - /p<y>vc;pej|pdy)
j=1

n
—1
S Z ’VQ,pVQ,p€j| S n,
j=1
which, along with the previous estimate, completes the proof. Il

Proposition 2.7. Assume that W € A,,p > 1. There is a constant cq > 0 such that for
s =1+ —=2—,
Cd[W]AP

1 /s
(igr [ W @o,lras) ™ < W1,
QI Jq
Proof. Combining (2.2) with (2.4) and (2.3), we obtain

1 1/
2.6 — / WYP(2)Vo,|[Pdx) < / WYP(2)Vp.,||Pda.
(2.6) (g7 L IV )" L IV
Further, by (2.3) and (2.5),

1
ol /Q WY () Vo lPde < Wi,

which completes the proof. U

3. THE CHRIST-GOLDBERG MAXIMAL OPERATOR

In this section we prove Theorems 1.1 and 1.3. The proof of Theorem 1.1 will be based
on several ingredients. The first one is a pointwise sparse bound for the local dyadic
Christ—Goldberg maximal operator deﬁned by

Mol @)= _swp oo [ W@ ) )y
ReD(Q),R>x ’R|
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In what follows, Vi, denotes the reducing operator defined by (2.5).

Lemma 3.1. There exists a sparse family S C D(Q) such that for every r > 0 and for
a.e. v € Q,

B1) My ey <2Y (HWl/%x)vR,puﬁ / rvR,;W1/p<y>f<y>rdy)r><3<x>.

ReS

Proof. We will use almost the same argument as in [14, Section 5.1.2]. Let Mg denote
the standard local dyadic maximal operator in the scalar setting, that is,

1
Mp(r) = sup —/gp.

R>z,RED(Q)

Consider the set

Qi={zxeQ: M|V W7 f]) >2’Q—|/\VQ WP L)

Then Q] < $|Q[. Write Q as the union of the maximal pairwise disjoint dyadic cubes,
Q0 =U;R;.
Assume that x € Q and R € D(Q) is such that z € R and RN (Q \ Q) # 0. Then

1 1/p —~1/p 1/p 1 Up
@/R\W/ (@)W P (y) fy)ldy < [WHP(a )VQPH|R|/|VQ WYP(y) £(y)|dy

< AW Vol [ VasW ) iy
From this, setting
‘Fjj = {I’ S RJ : Mg,W,pf(x) # M]%j,W,pf(x>}7
we obtain that for z € U;F; U (Q \ ),
M wpf (@) < 2AWYP @)WVl [ Vo, W) f(y)ld
Q.Wp Q.p ’Q| Q.p y)lay.
Hence, for all z € @,
M) < 2 (uwﬂ% Wouligy | Wab "))y ) oo

+ ZMR wpl (T)XR\F;-

From this, for any r > 0,

r

My fa) < 2T(||W“P< Wl o / Vo W ey f <y>|dy> Yo

+ Z M}d%j,mpf<x)rXRj .
J

Iterating this estimate, we obtain a 1-sparse family S C D(Q), for which (3.1) holds. [
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Our second ingredient is a sparse operator defined in the scalar-valued setting for a
sparse family S C Z and a sequence of non-negative functions A := {A\g}ges by

Thst(z) = Aglx) rclﬂ/;/})m(%)

QeS

Lemma 3.2. Suppose that there exist r > 1 and A > 0 such that
1 1/r
sup (—/ )\Q(x)rdx> < A.
Qes |Q| Q

[T st 100 S Ar'||a]|pr.
Proof. Let us show first that T} s is bounded on L@ and
(3.2) T\ sVl perry S AP 1] parry -
By Holder’s inequality and by sparseness,
5 L2 (g [
Qe 2 |Q|

/Rd(TA,sw)SD Z/)‘QSD |é|/¢
s Ay [ owensa | o,

QeS
QesS

Then

From this, applying Holder’s inequality again, we obtain

/Rd(TA,sw)so S AlMepll o |M | i S AT lloll o (1901 L2y,

which, by duality, implies (3.2).

Take v > 0 which will be chosen later on. Using the standard Calderén—Zygmund
decomposition, write the set Q := {x € R? : M7+ (z) > v} as the union of the maximal
cubes Q; € Z, and set

b:— , g =1 —b.
, |le/ xa, v

Then, observing that for x g 2, T) sb(z) = 0, and using (3.2), we obtain
{o e RT: Thst(x) > 1} < Q]+ {z ¢ Q: Thsg(z) > 1}
Sl + (A7)
Optimizing this expression with respect to 7, we obtain
{o € R": Thstp(x) > 1} S AF'|[¢ o,
which completes the proof. O
Proof of Theorem 1.1. We start by showing that

(3.3) 1My flliree S WA, fIle-
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The proof follows some ideas used in [6]. By Lemma 2.1, it suffices to prove the theorem
for the dyadic maximal operator Mm@/,p f (where the supremum is taken over all cubes
Q € Z containing the point ). In turn, by the standard limiting argument, given a fixed
cube () € 9, it suffices to prove the theorem for Mg,W,p f.

Applying Lemma 3.1 with » = p along with Proposition 2.6 yields

M0 3 (I @V l? [ 0Py ) xn(o),

ReS
From this, setting
Ar(x) == [|[WYP(2) Vg7,
we obtain that
IME s pll oo zoe S ITasIE poe
Now, Lemma 3.2 along with Proposition 2.7 implies

1Ty slliopree S W,

which, along with the previous estimate, proves (3.3).

Turn to the second part of the theorem by showing the sharpness of (3.3) in the
scalar case. We will show that for every natural N > 100, there is a weight w such
that [w]a, ~ N and ||[Myp||rr—ree = N?P. From this we will clearly obtain that
o, (1) 2 8277,

The construction of the example is a modification of that in [17]. We begin with the
notations presented there. For k = 3,..., N we denote J, = [2¥,281). We will split Jj,
into small intervals. Set I, = [2F, 2% + k) and Ly = Jp \ I = [2" + k,2¥1). Let L, and
L} be the left and right halves of Ly, respectively. Next we define (L; ) to be the right
half of L, and (L;)! the left half of L;". Then

e when (L) = [a],b]) is defined, let (L; )7 = [al™", b)) satisfy that
1

T R [0 G R i
o when (L)) = [c],d}) is defined, let (L) = [c/™, d)"") satisfy that
At =di 1Y = I
The process is stopped when we have (L, )*~! and (L;})*~! defined, and we simply define
Ly, | L]
(L) = k2 e D (= e = i ey

Now we have
Je=1,0 U ((LyY U(Lf)) = I,U U Lj.
Jj=1 j=1

Define
[logy k] -1

X1, + Z 2XLJ+k Z XLJ

j=|logy k]

Wy = 2k+1
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and our weight on [0, 2V7?] is

N
Xos) (@) + 3 200Dy (z),  x € [0,2VH),
k=3
w(z) = 9(N+1)p—1 o N1

w(2N+2 _ l’), = [2N-i—17 2N+2]‘

Finally we extend w(z) from [0, 2V*2] to R periodically with period 2V+2. Since w'/?(x) >
x on I, we have

[w! P M (x5 > {z € (1,00) s w!P(x) M (xpo1)) > 1}
N N
> [{z € (L,00) s w'P(x) > 2} 2> || =Y ko~ N
k=3 k=3

From this, ||[My,|lzr—ree = N?*P. Hence, in order to prove the claim, it remains to
check that [w]a4, ~ N. Since w is periodic on R and symmetrical on [0,2V"2], it suffices

to prove that
I)/1 p—1
sup w(—/w_pil) ~ N
rcpen+y ()N g
First, observe that

L] =279(2"—k), j=1,2,...,k—1,  |LE=2"%2" k).

Hence when I = [0,2V!] we have

|logy k|—1
wi_[) - (N+1)<8+22k‘+1)(p 1)(1{:2k+1Jr Z 2]|LJ +k Z |LJ ))
‘ ’ k=3 =|log, k| J=1
N
~ 2—(N+1) <8 + 22(k+1)(p—1)k2k+1) ~ N2N(p—1)
k=3
and since 1 < p < 2,
1
i / v
[logo kJ-1
— 9—(N+1) (8—1—22 (k+1) (k‘? p- 1+ Z 2 v 1|LJ|+k P Z |L5€|>>
k=3 =|log, k| J=1
N . k ; ) [logy k| —1
~ 9~ (N+1) (8+22—<k+1> (kzﬂj + Y, 2T Y 2k_j>>
k=3 j=|log, k| j=1

N
< 9=(N+1) (8 +Y (k2 4k 4 k—ﬁ))
k=3

~ 9N
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%(ﬁ/jw_pllyl ~ N.

We are left to prove that for any I C [0,2V "], there holds that

(3.4) 17(7?(% /Iw—pil)p_l < N.

As that in [17], our weight is a step function (one may view U]Uz? k=1 Li as a single
interval but it is not necessary), and the jump of w from the interval [0,8) to I3 is 2%
for each two other adjacent intervals from the definition of w, the jump is at most 2P,
From this observation we have the following

Thus

Claim A. If I intersects at most m intervals from the definition of w, then

I
wil) < maxw(z) < 2T =2CHD o5 inf w(x).
‘[l xzel zel
In what follows we will prove (3.4) according to the size of I.

Case 1. |I| < 8. In this case, note that in each J;, (k > 3), (L;)*',(L;)* and
(L)*=1, (L)* are the smallest intervals, and

e _ _ E 1
(L) = LD = 1D = D =1 =5 > 5
Hence I intersects at most 17 intervals from the definition of w, and we are in position
to apply Claim A with m = 17.

Case 2. |I| > 8. In this case, we may assume || € (2¥0, 2k0+1] with some ko > 3. We
may further assume ky < N — 10 as otherwise

wl) (1 [ et _w(0,2%) 1
G L) 5 e (o )

Case 2a. [ C [0,2*19). Then similarly to above,

2N+1

_ 1 \p-l
w P—l) ~ N.

ko+10
w(f)(i/wpll>p—1<w([0,2k0+1°])< 1 /20 wpll>p_1:k:0.
1] \|I| J; ™ [[0, 280 10][ A [0, 280 10T

Case 2b. [ ¢ [0,2%*10]. Then I C [2%F9 2N*1] Denote by ¢, the center of Ly.

Case 2b-a. [ contains some ¢ with & > kg + 9. Then the estimate is trivial since
IC (L)' U(L)! and w is a constant on I.

Case 2b-b. [ does not contain any cg. In this case we may assume I C (¢, cpyq) for
some ko +8 < ¢ < N. Suppose that I = [a,b] and a € (L})’ for some j. If j < {—ky—4,
then

2t ¢

(LY = 1LF 20 = S

ko+1
> kot

so that I will intersect at most (L))’ and (L;)’™ and we again apply Claim A with
m = 2.
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If j > 0 — ko — 3, note that then
rc U (Ifyu
Here i > ¢ — ko — 2 since

26 _ (04 1) 2t
2@—]60—1 > 25—]60—1

|(Le_+1)g_k0_2| =

Hence we have

w(l)
7| eSxSEIIIlf w(x)
¢ N 041 o
2 w(ly)+ 2 w(Lyy)) +wllew)
j=t—ko—3 i=l—ko—2
= 9ko9l—ko—39(€+1)(p—1)
¢ , . 041 . '
So omax{2/, 0} -2+ Y max{2, 0+ 1} - 2870 4 (0 4+ 1)262
< j=t—ko—3 i:kaOfQQZ <1

from which (3.4) follows immediately.

It remains to consider the case a € Ipy; U L, ;. However, in this case we just need to
discuss whether b € (L)’ with some j < ¢ — ko — 3 or not, which is completely similar.
This completes the proof. O

Remark 3.3. Recall that the Hilbert transform is defined by
t
Hf(x)=P.V. &dt.
RL — t
Let w be the weight constructed in the sharpness part of Theorem 1.1. Using that
H(xpo,)(x) > 1 for all z > 1, we have
[0t H (xo.1) |20 2 {z € (1,00) s w'/P(2) > x}| 2 N2

From this, exactly as for the maximal operator, we obtain that ¢y, (t) 2 th.

Remark 3.4. Recall that the scalar A, constant is defined by
1
[w] ., :=sup

w /Q M(wxo).

Given a matrix weight W and p > 1, define its A% , constant by

(Wlag, = sup [(WPul] 4.
ucCr

Then it is easy to show that Proposition 2.7 holds with s =1 + W As a result, a
,p

statement of Theorem 1.1 can be written in the form

1
1My fllzree S (W), Wase,) 711 F Lo
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Remark 3.5. Lemma 3.1 can also be used in order to give a simple proof of the strong
type bound

(3.5) Myl S VT [l (1< p < o0)

(see [2, 13]).
Indeed, as before, it suffices to prove (3.5) for Mg wp/+ By Lemma 3.1,

[ Muiorar < 3 [ 1wl (i [ Ve o)

RES

W, Y (% / Vg iy ) 1R

ReS

< / x)Pdz,

V2o f(x) = sup ﬁ / Vi W2 (y) £ (y) | dy.

R3z,RED(Q)
Next, the standard machinery based on the reverse Holder estimate shows that

My of(@) S Mop-<(If (@),

AN

where

1

where ¢ >~ [W],"". Hence,

| My £ W, [ Moy b @rde S W5 [ @,
which proves (3.5).
We conclude this section by proving Theorem 1.3.
Proof of Theorem 1.5. Denote
= [[Mpywll Lo Lpes.
Then trivially
1 _1
(3.6) lw»H(fw™?)|[Lree <N flLr,
where H stands for the Hardy operator

1 €T
= — t)dt
(0
By duality (3.6) is equivalent to that
(3.7) [# (w2 xE) | 1) S NE]Y

holds for any measurable set E, where o := w

Next let us choose specific w and E in (3.7). The construction of w here is actually
a slight modification of the one in the proof of Theorem 1.1. For k = ko(p) + 1, ko(p) +
2,..., where ko(p) is the minimal integer such that kP~! < 2F71 let J, = [2F 2F+1)
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and [ = [2,2% + k*7']. Then define (L;)’ and (L)’ with the same logic, and let
Ly = (L) U (L})’. For sufficiently large N, our weight on [0, 2V+?] is

N
Xjo.2kow+1y(T) + > 2+ D=1, (1), x € [0,2NF),

. k=ko(p)+1
w(x) = 2(N+1)p—17 T = 2N+1’
w(2N+2 _ a:)’ = [2N+17 2N+2]’
where
k [(p—1) logy k] -1
o ok+1 j -1
wy(z) = 2"y + Z QJXLi + kP Z X1
Jj=(p—1) log, k] j=1

With similar computations as before we get
o(Jy) 2 k27 4 T >
and
fwla, ~ N7~ (log N)P~.

Take £ = UN_, Ii. Then for fixed k and x € J;, we have

o(p)+1

H*(w%XE)(JE) = / N —wp(t)tXE(t) dt

+00 N
- / xe®dt ~ S L] ~ (N7 — k7).

j=k+1
In particular, if £ < N/2, then

1

H*(wrxg)(x) ~ NP.
Then it follows that

N/2 N/2
|H* (wPXE HLP (0) 2 Z NPV 5 (Jp) = Z NP k=1 ~ NPP' 1og N.
k=ko(p)+1 k=ko(p)+1

Since |E| ~ NP, by (3.7) we have

1

Np log N)¥ W]
NP~ (log[w]Ap)E
from which ¢y, (t) 2 tﬁ(log(t + e))_%, 0

4. CALDERON—ZYGMUND OPERATORS

In this section we prove Theorems 1.2 and 1.4. Let us start with some preparations
needed to prove Theorem 1.2. First, by Theorem 2.4, it suffices to prove this result for the
sparse operator Ag instead of T', where S C & and S is ny- Sparse Second, by Lemma 2.2,
one can split § = Uj " S;, where each S; will be at least ——sparse Therefore, Wlthout

loss of generality, we W111 assume in this section that S is ——sparse
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Given a cube @ € S, denote S(Q) = {Q' € S : Q' C Q}. We start with the following
weak type estimate for the sparse operator Agg)

Lemma 4.1. Let p > 2. For every measurable set E C Q,

1 2 1
[As@)(w™? xp)|[Lrew) S [w]4, log([w]a, +e)|E].

Proof. Since the A,-constant is invariant under pointwise multiplication by a constant,
it suffices to show that

(4.1) wiz € Q: Asi)(w rxu)(z) > 2} < [wl} (log([wla, + €)Y|El.

Let Mg denote the maximal operator restricted to a cube (). By the weak type bound
of M (see [2]),

w{r € Q: Mo(w rxp)(z) > 1/4} S [w]a,|El.
Therefore, setting

Gi={z € Q: Asig(w rxp)(@) > 2, Mo(w 7 x)(x) < 1/4},

we obtain
(4.2) w{z € Q : Asigy(w xg)(x) > 2} < [w]a|E| + w(G).
Denote
Fk = {Ql € S(Q) : 4_k_1 < @ IU*%XE < 4_k}
Q/
Then, for x € G,
Asi(w™rxp)(@) =Y Ap (w rxp)(z)
k=1

From this, for a natural N which will be chosen later on we have

w(G) < wlreQ: Y Ap(w rxg)(z) > 1}

k=1

+ wlreQ: Y Ap(w rxg)(z) > 1} =1+ 11
k=N+1

Let us start by estimating I. We have

N
1 _1
Ir <Y | Ap (w™pxE) | o)

k=1
By Lemma 2.3, there exist pairwise disjoint (for Q) € F},) sets G C @' such that

Ap (wrx <8 - wrxE) ) X ().
i 7 xe) Q,;,(@mg,, #))xe

Hence, by Holder’s inequality for weak norms,

/ Ap, (UF%XE /
Q Q

1 _1
’Q/’/C\?/g>XGQ/>w PXE

Q'EFy,
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_1 _1 1
<8 / (Mog)w ™+ x5 < 8]l (Moghw ™ | | E|F-
Q

By Theorem 1.1 (note that p’ < 2),
2

1 _ 2
[(Mog)w >l e S [ /p]A Mgl o v vy = (W15, 91| o7 21
Combining this with the previous estimate, we obtain by duality that

|Ag (w™? xE) o) S [w]4 | El7,
which implies
(4.3) I'< NPl | Bl

Turn to I1. Since > 77 . 277 < 1, we have

I < w{zxe@: i AFk(w_%XE)(:c)> i 2"

k=N+1 k=N+1
o0 1 B

< Z wi{r € Q: Ap (w rxgp)(z) > 27"}
k=N+1

< Zw{er 4kZXQ’ ) >27F}
k=N+1 Qe

© ¥ T uen T e
k=N-+1 REF" Q'€FL(R

where F}]" stands for the maximal cubes of F) (hence they are pairwise disjoint).
By sparseness, there is an absolute ¢ > 0 such that

reR: 30 xol@)>2) <Al
Q'er,(R

Combining this with the sharp quantltatlve reverse Holder property expressed in (2.2),

we obtain
c?k

w{r € R: Z xo(z) > 28} < e Maw(R).
Q'E€F(R)

° _ ek
11 < Z gkpe Wlap Z 4’kpw(R

k=N+1 REF

It follows that

By the disjointness of R and Holder’s inequality,

Z 47F Py (R) §4” ]R|/w "XE (R)

ReF ReF

§4p / p/p P w(R )\EOR|
ReFm (7 R



WEIGHTED WEAK TYPE INEQUALITIES 18

< 4[wla, Y |ENR| < 4w)a,|El.
ReF™
Thus, we obtain

c2k

o
< [w]a, |El Y 4fre Mla

k=N+1
Now observe that one can choose N ~ log([w]4, 4 €) so that

gkro Tola, <ok
for every k > N. Then we obtain that
IT S [w)a,|E).
Combining this estimate with (4.3) yields
w(G) S [w]h, (log([w]a, + €))?|E].
This along with (4.2) proves (4.1), and therefore the proof is complete. O

Remark 4.2. Observe that Lemma 4.1 implies easily its global version with Q = R% and
an arbitrary sparse family S. Indeed, by the limiting argument, one can assume that S
is finite. Then one can write S = U;S(Q;), where @; are the maximal cubes of S, and
apply (4.1) for each Q;.

An important ingredient in the proof of Theorem 1.2 is the following equivalence re-
lation of Cascante-Ortega—Verbitsky [3] saying that for every dyadic lattice ¥ and a
non-negative sequence {\g}oea,

(4.4 H%Am\wz(zjm(ﬁ@ Y reu@) w@)

Qe QReEZ,Q'CQ

hSA

Proof of Theorem 1.2. Let N denote the best possible constant in the inequality
1 _1
lw? As(fw™7)|[Lroe < N f] e

By duality this is equivalent to that for every measurable set E,
1 1
[As(wrxp)ll 1w (o) S NIEI7,
where o 1= w 7 1. Further, by (4.4),
1 1
@5 IAswi xn)lwin < (X re(om @ 2 teo(@)e@)",
Qes Q'eS(Q)

1
where )\fg = ﬁ fQ(wP.XE)dZB.
By Holder’s inequality for weak norms,

1 1 1
(4.6) > /\Q’U (@) Z/QAS@)(WXE)US [ As(@) (WP XB)| o000 (@) -
QRIES(Q
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Next, by Lemma 4.1 (note that p’ > 2),

1 _ L1
[As@) (wr X)Ly oo (o) = 1As@) (0 7 XE)| 10 (o)
2

< lo]4, log([o]a,, + 6)|E NQI =~ [wl}, log([w]a, + €)|EN QI
Combining this estimate with (4.6) and (4.5) yields

4D sl £ i) (T (g7 | wie)o@71Enar)
Qes
where ,
C([w]a,) = [w];, (log([w]a, +e))?.
Let r:=1+ Tl } as in Proposition 2.5. Then

1 1 1 N [([ENQ @
@/Q(“”’XE> : <@/Q“’> ( Q] )

J( 1 s (1ENQI\ &
2 <@/Qw> ( Q] )

: BN < ]} |Em@\)p w
S (i1 [ i) r@ 10 Qb < lu L (B0 Q.

QeSs

IN

Therefore,

Qes

By sparseness, take pairwise disjoint sets Eg C @ such that |Eg| ~ |@Q|. Then

[ENQ)| oy 1+%(1_%)
> (" ) ’<Z/ o

QeSs QES
1 1
_/ (Mxp) 70 < 1Bl S [wla, B
Rd T —

Combining the two previous estimates with (4.7), we obtain

(1+2)

1As(wr xe)l 1o (o) S C([w]a,)w]y, * IEI
Therefore,
(1+3) 7 I+ 1
N S C(lwla,)wly, " = [w],,” (og([w]a, +¢))7,
which completes the proof. U

Turn to the proof of Theorem 1.4. As we mentioned in the Introduction, the example
used here is much simpler than in the previous proofs.

Proof of Theorem 1./. Denote
= HHp,w”LT’—%p’O"'
Then, by duality,
_1 1 1
lw™? H(wrxe)|| o SNIEY (p = 2).
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Taking here £ = (0, 1), we obtain

1) ([ wbas) ([0 s

Let w, be a radial weight on R defined on [0, c0) by

g1, 0<az<1,

wel() := e > 1

Then the left-hand side of (4.8) is equivalent to e~*. Therefore, the lower bound ¢g, (t) 2 ¢
would follow if we show that [w.]a, Se™t

Denote ] ) o
Ap(we; I) = (m/[w€> (m/lwE p_l) :

Since w, is radial, it suffices to consider the intervals I C [0, 00).

Denote v.(z) := |z|~79). We will use the well known fact that [v.]4, =~ e~!. Hence,
the case where I C (1, 00) is trivial. Suppose that N[0, 1] # (). Then we have to consider
only two cases. Assume that |I| < 1. Then

Ap(we; I) <

Sup; we _ 4
— Se .

inf; w,
Suppose now that |/| > 1. Then
Ap(we; ) S sup Ay (we; (0, ).

h>2
Observe that for h > 2,

and X
1 _ 1 \p-1 - \p-1
(E/O We P—1>p S <_(€p—1 —+ hp_1)>p < hl*&
Therefore,
1

sup Ap(w; (0,h)) < -,

h>1 €
and the proof is complete. O
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