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ABSTRACT. The main scope of this paper is to obtain non-compactness results for a linearly perturbed
version of the classical problem of prescribing the scalar and boundary mean curvatures of a compact
Riemannian manifold via conformal changes of the metric. One of the principal difficulties for the
study of the geometric problem is the loss of compactness due to bubbling of solutions. However, in
dimension three, under additional assumptions on the geometry of the manifold and the prescribed
curvatures, it has been possible to recover compactness by showing that blow-up points are isolated
and simple. In this work we prove that this property becomes false under arbitrarily small linear
perturbations of the boundary equation as soon as the restriction on the dimension is lifted. More
precisely, on a generic manifold of positive conformal class and dimension between four and seven,
we construct a solution for the case of negative prescribed scalar curvature that exhibits a clustering
blow-up point at the boundary which is non-umbilic and a local minimizer of the squared norm of the
trace-free second fundamental form.

1. INTRODUCTION

Given a compact Riemannian manifold (M, g) of dimension n > 3 with boundary OM, a widely
studied geometric problem is the following one: given two smooth functions K and H find a metric
conformal to g whose scalar curvature is K and boundary mean curvature is H.

As it is well known, the geometric problem can be rephrased into the following one: given two smooth
functions K and H find a positive solution to the PDE

An—1 n
- ("2)Agu +Syu = Kuw? in M
) ”a_ (1.1)
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Here A,:= divy(V) is the Laplace-Beltrami operator, S, is the scalar curvature and hy the boundary
mean curvature associated to the metric g and v is the outward unit normal vector to OM. The metric

4
g = un—2g is conformal to g and its scalar and boundary mean curvatures are nothing but K and H,
respectively.

The study began with the work of Cherrier [13] who gave a first criterion for the existence and
regularity of solution of (1.1). Successively, Escobar in a series of papers [21, 23, 22] found a solution
to (1.1) when either K = 0 (i.e. scalar flat metric) and H constant or H = 0 (i.e. minimal boundary)
and K is constant. The proof strongly relies on the dimensions of the manifold, on the properties of
the boundary (e.g. being or not umbilic) and on vanishing properties of the Weyl tensor (e.g. being
identically zero or not on the boundary or on the whole manifold). Important contributions in this
framework are due to the work of Marques in [34, 33], Almaraz [3], Brendle & Chen [9] and Mayer &
Ndiaye [35]. The case when K > 0 and H is an arbitrary constant, has been successfully treated by
Han & Li in [28, 27] and Chen, Ruan & Sun [12].
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There are a few results concerning the general case in which K and H are functions (not necessarily
constants) and all of them have been obtained for special manifolds (e.g. typically the unit ball or the
half sphere). In particular, we refer to the works of Ben Ayed, El Mehdi & Ould Ahmedou [7, 8] and
Li [29] when H = 0 and Abdelhedi, Chtioui & Ould Ahmedou [1], Chang, Xu & Yang [10], Djadli,
Malchiodi & Ould Ahmedou [19] and Xu & Zhang [44] when K = 0. The case when both K and H
do not vanish, has been studied by Ambrosetti, Li & Malchiodi [5] in a perturbative setting on the
n—dimensional unit ball and by Djadli, Malchiodi & Ould Ahmedou [18] on the three-dimensional half
sphere. Finally, we quote the result of Chen, Ho & Sun [11] where they found a solution to (1.1) when
H and K are negative functions provide the manifold has a boundary of negative Yamabe invariant.

Recently, Cruz-Bldzquez, Malchiodi and Ruiz [15] considered a manifold whose scalar curvature
Sy, < 0 and the case K negative and H of arbitrary sign. They introduce the scaling invariant
quantity

Du(p) = vl — 4 o

1K (p)]
and established the existence of a solution to (1.1) whenever ®,, < 1 along the whole boundary. On
the other hand, if ®,, > 1 at some boundary points they got a solution only in a three dimensional
manifold, for a generic choice of K and H. Let us describe more carefully their result. First of all, via
the conformal change of metric due to Escobar [23], one can assume that the mean curvature hy = 0
and S, has constant sign (this will be also assumed understood in the rest of our paper), so problem
(1.1) reads as

4(n—1 n
— MAgu—i-Sgu = Kun;—rg in M
n—2 (1.2)
2 Bu_H oM
- un—2 on .

Problem (1.2) is Variational in nature, i.e. the solutions of (1.2) are critical points of the energy
functional defined on H(

]. * #
Ty = A" / Vol +3 [ Spt =g [ K —m-2) [ ey
where 2* = Tllz and 2f = (::21) are the critical Sobolev exponent for M and the critical trace

embedding exponent for M, respectively. In [15] the authors show that if S; < 0 and ®,, < 1 along
the whole boundary, the functional becomes coercive and they found a global minimizer. On the other
hand, if there exists p € M such that ©,(p) > 1, they construct a sequence of functions wu; such that
the energy J(u;) — —oo and the minimum point does not exist anymore. However, on a 3—dimensional
manifold they recover the existence of a positive solution by using a mountain pass type argument.
Their proof relies on a careful blow-up analysis: first they show that the blow-up phenomena occurs
at boundary points p with ©,(p) > 1, with different behaviors depending on whether ©,,(p) = 1
or ©,(p) > 1. To deal with the loss of compactness at points with ©,(p) > 1, where bubbling of
solutions occurs, it is shown that in dimension three all the blow-up points are isolated and simple
(the classification of blow-up points is given in Remark 1.1 below). The same strategy was also used
in [18] for the case K > 0 in the three dimensional half sphere. As a consequence, the number of
blow-up points is finite and the blow-up is excluded via integral estimates that hold true when S; < 0.
In that regard, n = 3 is the maximal dimension for which one can prove that the blow-up points with
D, > 1 are isolated and simple for generic choices of K and H. In the closed case such a property is
assured up to dimension four (see [30]) but, as observed in [18], the presence of the boundary produces
a stronger interaction of the bubbling solutions with the function K.

Remark 1.1. Following standard terminology, it is useful to review the classical classes of blow-ups.
We say that pg € M is a blow-up point for a sequence of solutions wu; if there exists a sequence p; in
M such that p; — po and w;(p;) — +oo. Blow-up points p € M can be classified according to the
definitions introduced by Schoen in [43] (see also [18, Definitions 4.3, 4.4, 4.5]). po € M is said to
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be an isolated blow-up point for u; if there exists a sequence p; of local maxima of u; with p; — po,
u;(p;) — +oo and such that there exist ¢ > 0 and R > 0 in such a way that

0 < wui(z) < ¢ — if z € B(p;, R).

dg (Jj,pl) 2
Moreover, pg € M is said to be an isolated and simple blow-up point for u; if it is an isolated blow-up
point and the radial average

) =% e [
Ui\1r) i =7r U; a0,
[0B(pi; 7)lg !
B(pi,T)
has a exactly one critical point in (0, R).

Motivated by the previous observations, in the present paper we choose to perturb linearly the
mean curvature boundary term, i.e. to study the problem

4n—1 n
—("Q)Agu +Su=Kuvz  in M,
n— (1.3)
2 n
%—i—zsuzl—i’un—2 on OM,
n—20v

where ¢ is a small and positive parameter, and to address the following question:
(Q) If n >4, does (1.3) admit solutions with a non-isolated (i.e. clustering) blow-up point?

Our main result provides a partial positive answer.

Theorem 1.2. Assume 4 < n < 7. Let w be the second fundamental form of OM. Assume

(i) Sg >0,

(ii) H >0 and K <0 are constant functions such that ©, >1,

(iii) There exists p € OM which is non-umbilic (i.e. w(p) # 0) and a non-degenerate minimum

point of ||x(-)|*.

Then for any k € N, there exist pg € OM forj=1,...,k and €, > 0 such that for all € € (0,¢y) the
problem (1.3) has a solution u. with k positive peaks at pg and pg —pase — 0, i.e., p is a clustering
blow-up point.

Remark 1.3. We recall that a point p € dM is non-umbilic if the trace-free part of the second
fundamental form of OM does not vanish at p.. Since hy = 0, the tensor T;; = h;; — hyg;; reduces
to the second fundamental form 7 whose components are h;; and so p is non-umbilic if ||w(p)|| > 0.
Recently, Cruz-Blazquez and Pistoia in [16] proved that the non-degeneracy assumption (iii) is satisfied
for generic Riemannian metrics with minimal boundary, which can also be taken within the conformal
class of the original metric on M.

The main ingredients of our construction are the so-called bubbles, i.e. the solutions of the problem

n+2 . n
—cpAu = Kun—2 in R’

n_2$:Hun—2 on R

where ¢, := 4(7?:21) and ©,, := /n(n — 1)\/% > 1 (v is the exterior normal vector to dR’} ). Solutions

to (1.4) are completely classified in [14] (see also [31]) . These are given by

1 T —y Qp 1
Usy(z) = —=U ( 5 ) , Uz) = T = (1.5)
5 IK|™T (|22 + (zn + Dp)2 —1) 2

2

n—2

where o, == (dn(n —1)) 7 , x = (Z,z,), y = (,0) and 6 > 0. The solutions we are looking for are
the sum of k positive bubbles which concentrate at the same boundary point p with the same speeds,
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i.e. in local coordinates (see (3.1) and (4.4)) around p

w0~ % (757)

T 2
j—l(%

where the all concentration parameters d; have the same speed with respect to € and all the concen-
tration points 7); collapse to 0 as ¢ — 0 (see (4.5), (4.6) and (4.7)).

Unfortunately this first approximation is not as good as one can expect. We need to refine it
adding some extra terms which solve the linear problem (3.2). To find these extra terms, it is crucial
the study of the linear theory developed in Section 2. The novelty is Theorem 2.1 which states the
non-degeneracy of the bubble (1.5), i.e. all the solution of the linearized problem

—anU—n+2KUn 29 =0 in R}
n—2
2 @— HUj =0 on OR" o)
n—20v n—2 v=ro +
are a linear combination of the functions
oU 2 — oU
3i(z) == (’91‘( x),i=1,...,n—1, and 3,(z) ::< nU(z)—VU( ) (2 4+ Dnen) + 9Dy o >

The proof relies on some new ideas which allow a comparison among solutions to the linear problem
(1.6) and the eigenfunctions of the Neumann problem on the ball equipped with the hyperbolic metric
(see Lemma 2.3). It is worthwhile to point out that Han & Lin in [27] and Almaraz in [2] related
similar linear problems in the case K > 0 with some eigenvalue problems on spherical caps with
standard metric.

Once the refinement of the ansatz is made, we argue using a Ljapunov-Schmidt procedure. As it is
usual, the last step consists in finding a critical point of the so-called reduced energy and to achieve this
goal it is necessary to know the energy of each bubble together with its correction. The contribution of
the correction to the energy is relevant and, to capture it, it is necessary to know the exact expression
of the correction itself. This part is new and requires a lot of work. This is done in Section 3. Finally,
we can write the main terms of the reduced energy which come from the contribution of each peak 7;,
the interaction between different peaks n; and 7; and the linear perturbation e—term. For example,
in dimension n > 5 (up to some constants) it looks like

k
> 157 (I @)I” + Q) (i my)) + Z — — ;| + hot. (1.7)
— "'72 ‘
Jj=1 i#]
here Q(p) is the quadratic form associated with the second derivative of ||7(-)||? at the point p which
is supposed to be positively definite (remind that p is a minimum point of 7). Now, if we choose
n—2
d; ~ € and |n;| ~ n with n?

nn72

we can minimize the leading term in (1.7) as soon as the term “h.o.t.” is really a higher order term
and this is true only in low dimensions 4 < n < 7. We believe that this is not merely a technical issue.
It would be extremely interesting to understand if in higher dimensions the clustering phenomena ap-
pears if the blow-up point is umbilic, i.e. 7(p) = 0. It is clear that in this case building the clustering
configuration is even more difficult than in the non-umbilic case, because the ansatz must be refined
at an higher order.

Remark 1.4. Even if our result holds true in low dimensions we decide to write all the steps of the
Ljapunov-Schmidt procedure in any dimensions because it would be useful in studying some related
problems. In particular, our argument allows to prove that if n > 4 the problem (1.3) has always a
solution with one blow-up boundary point p which is non-umbilic and minimizes ||7(-)||. In fact, if
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k =1 the expansion of the reduced energy in (1.7) holds true in any dimensions. We also refer to the
recent paper [17], where Cruz-Bldzquez and Vaira construct a single blowing-up solution for a suitable
choice of non-constants K and H. The existence of solutions with a single blow-up point was studied
by Ghimenti, Micheletti & Pistoia in [25, 26, 24] when K = 0 and H = 1 in presence of a linear
non-autonomus perturbation.

Remark 1.5. We remark that very recently Ben Ayed & Ould Ahmedou [6] found solutions with
clustering blow-up points on half spheres of dimension greater than five for a subcritical approximation
of the geometric problem (1.1), with a nonconstant function K > 0 and H = 0. As far as we know,
our result is a pioneering work in the construction of solutions with clustering blow-up points for the
problem (1.3) with K and H not identically zero. In particular, it is the first time that this argument
is carried out with K < 0 and H > 0, which has been proved to be especially challenging due to the
existing competition between the critical terms of the energy functional.

Remark 1.6. Finally, we point out that the clustering phenomena for Yamabe-type equations have
been largely studied in the literature, although most of the results available concern the problem
on closed compact manifolds. Consider for instance the linear perturbation of the classical Yamabe
equation,

—Agu—l—Sgu—l—eu:u%g in M. (1.8)

It is known that in 3—dimensional manifolds all the solutions to (1.8) have isolated and simple blow-up
points (see Li and Zhu [32]). However, this property is lost in higher dimensions.

If n > 7, Pistoia & Vaira [37] build a solution to (1.8) with a clustering (i.e. non-isolated) blow-up
point at a non-degenerate and non-vanishing minimum point of the Weyl’s tensor. In any dimensions
n > 4 the clustering phenomena appears if the linear perturbation term eu is replaced with a function
he converging to a suitable function hg as showed by Druet & Hebey [20] and Robert & Vétois [40] if
n > 6 and by Thizy & Vétois [42] if n = 4, 5.

The existence of solutions to (1.8) with a towering (i.e. isolated but non-simple) blow-up point has been
proved in dimensions n > 7, by Morabito, Pistoia & Vaira [36] on symmetric nonlocally conformally
flat manifolds and by Premoselli [38] in the locally flat case.

In the spirit of [20, 40] it would be interesting to replace the linear perturbation term in (1.3) with
some functions h. in order to build a solution with a clustering blow-up point in any dimensions n > 4.
Moreover, inspired by the above results we strongly believe that it would be possible to build solutions
to problem (1.3) with a towering blow-up point in any dimensions n > 4. This will be the topic (at
least in a symmetric setting) of a forthcoming paper.

The paper is organized as follows. In Section 2 we study the linear problem (1.6). In Section 3
we find out the correction term. In Section 4 we sketch the main steps of the proof, which relies on
standard arguments typical of the Ljapunov-Schmidt procedure. However, since it involves a lot of
new delicate and quite technical estimates, in order to streamline the reading of the work, we have
decided to postpone them in the appendices.

In what follows we agree that f < g means |f| < ¢|g| for some positive constant ¢ which is indepen-
dent on f and g and f ~ g means f = g(1 + o(1)).
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20227HX33Z. The first and the third authors have been partially supported by INAAM — GNAMPA
Project “Fenomeni di blow-up per equazioni non lineari”, E55F22000270001S and by PRIN 2017JP-
CAPN.
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2. THE KEY LINEAR PROBLEM

First of all, it is necessary to study the set of the solutions for the linearized problem:

_AnD Ay 4 12 KUy =0 i RY,

2 Ov n 2 n (21)
HE—HHU"I*QU:O 0n8R+,
where v = —e,, is the exterior normal vector to R’} and
- «o 1
U(.CL‘) = Ul,xo(l)($7xn) = L - n—2 (2'2)
(K5 (|22 + (20 + D)2 = 1) 2
where & = (21,...,7,_1) € R" ! and z,, > 0, stands for the simplest solution to the boundary Yamabe

problem defined in (1.4) when ©,,(p) > 1.

Theorem 2.1. Letv € HY(R}) be a solution of (2.1). Then v is a linear combination of the functions
ou a (2—n)x;

bila) 1= 5 (@) = L

i K| (|22 + (2n + Dp)? — 1)2

L i=1,...,n—1 (2.3)

and

in(z) == (2 ; nU(:v) — VU (x) - (x + Dpey) + @n(?ii)

ap n—2 |z)? +1-D2 (24)

IK|"T 2 (|24 (n+Dn)2 —1)2

The proof of Theorem 2.1 will require some preliminary results. In particular it is useful to recall
the properties of the conformal Laplacian and boundary operator. For a given metric g, they are
defined as
4(n—1) 2 Ov
—A S d, Byv = ———

gV + Ogv an gV n—28y+

being S, and hy the scalar and boundary mean curvatures. If we choose a conformal metric of the

Lyv=— hgv,

n—2

4
form pn-2g, then L, and By are conformally invariant in the following sense:

n+2 1
Lgv=pr2L a4 (p v) and
() g 7 1 (25)
B,v=p»2B v
GU=p pﬁg(ﬂ )
Lemma 2.2. For every i =0,1,..., let us consider the following boundary eigenvalue problem:

12 . / _ z(z+n—2) R
{ v/ 4+ (n — 1) cothty; ( e +n) v =0, for0<t<T, (2.6)
%(T) = pyi(T) =0,
with p € R. Then the following hold true:
(i) If i = 0, the only bounded solutions are of the form ~y(t) = cicosht for ¢c; € R, and satisfy
(2.6) with p = pp := tanhT.
(ii) If i = 1, the only bounded solutions can be written in the form ~1(t) = cosinht with co € R,
and solve (2.6) with u = py := (tanh T')~ L.
(i) Ifi > 2 and p < p1, (2.6) does not admit bounded solutions.

Proof. The proofs for (i) and (i7) use the exact same argument, so for the sake of brevity we will only
show the proof for (i7)

Firstly, observe that sinht¢ solves the first equation of (2.6) with ¢ = 1, and it is positive and
bounded in [0, 7T]. Therefore, by linear ODE theory, we can write any solution to the equation in the
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form ~1(t) = c(t)sinht for some function c¢(t). Straightforward computations show that c(t) must
solve the following relation:

"(t)sinht + (2cosht + (n — 1) cothtsinht) ¢'(¢) = 0. (2.7)

If ¢(t) is non-constant, (2.7) can be integrated and its solutions can be calculated explicitly. For ¢
small enough, they present the asymptotic behavior

c(t) =c3 (1 —(n—=1)Int+ O(t)) , with eg # 0.

Thus, ¢(t) must be constant. The second part of (i7) can be proved by direct computation.

Finally, let us prove (iii). We will consider the unique solution to (2.6) with +;(T") = 1, so we study
the following situation:

v+ (n — 1) cothty! — (Z(s;z;tz) + n) v =0, for 0 <t <T,
WQ(T) = W,
Yi(T) = 1.

Let i > 2 and define u; = 7; — 71, with 77 denoting the unique solution to (2.6) with i = 1, p =
and 71 (7T') = 1. Then u; satisfies

sinh? ¢ sinh? ¢
wi(T) = 1 — p, (2.8)
(2% (T) =0.

u! + (n— 1) cothtu — (i(Hn*Z) + n) u; = 7(1'71)(””71)71,

Firstly, we will show that u(T) > 0, proving that u > p;. Assume by contradiction that u(T") < 0.

Then since u(T) = 0, there exists a small interval (t9,T") where u(t) > 0. By the first equation of

(2.8), since i > 2,

cosht ,
((t) >0, fortg <t <T. 2.9

smh (H) 20, forto (29)

Inequality (2.9) can be written in the more convenient way

ui (t) + (n = 1)

((sinh¢)" ') >0, fortg <t <T.

Consequently, (sinh T)"~1u(T) > (sinhto)" 'ul(ty). In view of this, if tg = 0, then u}(T) > 0, a
contradiction. However, if ¢g > 0, then w;(to) = u;(T") = 0 so there exists ¢ € (to,T") with u}(t1) =0,
again a contradiction.

To see that the inequality is strict we only need to show that there are no solutions for ¢ > 2 and
= 1. Let us define the sequence of linear operators

Ai(9)(t) = =¢"(t) = (n = 1) coth t ¢/(t) + (W

) o(t),

subject to the boundary conditions ¢(T') =1 and ¢'(T') = py. (i) implies that Ay admits no solution,
while (iz) gives us a positive function ¢; satisfying Aj(¢1) = 0. Therefore, A; is a non-negative
operator. Now, notice that the following relation holds:

A; :A1+(Z*1)(’L+n*1)
Consequently, A; is a positive operator if i > 2 and A;(¢) = 0 only admits the trivial solution. O
Lemma 2.3. Let n > 3. Denote by Bgr the ball of radius 0 < R < 1 centered at the origin of R™,

equipped with the hyperbolic metric
4 |dx|?

()

gH =
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The first eigenvalue of the Neumann boundary problem

Agp—np=0 inB
= uod on OBR.
2
s o = %, with corresponding eigenfunction given by ¢o(x) = i_:i}Q The second eigenvalue
sy = 1'5}?2 and the corresponding eigenspace is n—dimensional and generated by the family of
etgenfunctions

R i }
{gbl(m)l_kc‘z.zl,...,n .

Proof. Let dy denote the geodesic distance from the origin, given by dy(x) = In T_rm, and let (¢,0)
be the geodesic polar coordinates of a point in Bg\{0}, where 0 < ¢ < T =In1H and § € S*"!. In

these coordinates, the hyperbolic metric takes the form

gu = dt* + sinh® tggn-1,

where ggn—1 is the standard metric on S"~!, and (2.10) is equivalent to the following problem:

sinh? ¢

(2.11)
99 — %0 on 0Br.

{8t2+( 1) cotht92 + 212 _ g — 0 in By,

See [39] for more details. Using the fact that spherical harmonics generate L2(S"1), we write ¢(¢,6) =
> vi()&i(8), with & satistying the equation
Agnabi=i(i+n—2)&, i=0,1,...

Therefore, separating variables, we can rewrite (2.11) in the following form:

it

{ > (%' + (n— 1) cothty, — (% + n) ’n) & =0,
> (Vi(T) = py(T)) & = 0.

Since the functions &; are orthogonal the consequence is that each ~; is a solution of (2.6). By Lemma

2.2, if p = po =tanhT = there exists a solution for (2.6) associated to i = 0, and consequently
a solution for (2.11):

1+R27

¢o(t,0) = cosht.
¢o is non-negative in [0,7], so py must be the first eigenvalue of (2.10). Again by Lemma 2.2, for

p=p = (tanhT)~! = HR there exists a solution for (2.6) associated to ¢ = 1, which produces the

family of solutions for (2. 11)
{qﬁil(t, 0) =¢&(f)sinht: i=1,... ,n} .

The same result guarantees that any other solution of (2.6) must have p > p1, finishing the proof. O
Finally, we are in position to prove Theorem 2.1.

Proof of Theorem 2.1. This proof follows the ideas of [2, Lemma 2.2], with the fundamental difference
that our problem is equivalent to one on a geodesic ball in the Hyperbolic space and not in the
Euclidean sphere.

4
Let us denote g, = |K|Un=2gy. The scalar and boundary mean curvatures of R’} with respect to
g« are given by (1.1):

D (p)

Se=-1, hy = ————.
n(n —1)
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By means of (2.5), it is possible to rewrite (2.1) as follows:
A*ﬁ—ﬁl_):() in R,
00 Du(p) =0 on OR"
W n(n—1) +

n—2
with o = |K|~ % U~!v. The differential operators are explicit and their expressions are given by:

2
o (1 _ 13 = (o +©n(p))2) gy 2 (1 B (4@ (p))2> - (2 4+ Dy plen)
* dn(n — 1) 2n(n —1) " " R
(2.12)
00 _ 1|3 = (au + Du(p))? 0 o.13)
o, NCCES Y |
Now let us denote by ® the map given by
®=K'org,( : R} — Bi(0) C R, (2.14)

where 79, () is the translation r — x+9,(p)e, and K is the Cayley transform, which maps conformally
the ball of radius 1 centered at the origin of R™ to the half-space R’}. It can be proved that, up to
composing with a certain isometry of H", Im(®) = Bg(0) with R = D,,(p) — v/Dn(p)? — 1. Moreover,
® is a conformal map and satisfies

K
LUﬁgo, where gy =
n(n—1)

4 |dz)?
(1 —Jaf?)?
Multiplying (2.12) by n(n — 1) and (2.13) by y/n(n —1) and applying (2.15), one can see that
= (U tw)o® 1 isin H'(BR) (see [26, Lemma 6]) and satisfies the following problem:
{ Agd —nd =0 in Bg,

O gy = on Bp. (2.15)

9 —9,(p)o on dBg,

v
being
2
2
N Ve
Agt = fAv+ 5 Vo-z, and
0o 1—|z|* 00
ove 2 0On
the Laplace-Beltrami operator and normal derivative on Br considered with respect to the hyperbolic
metric gg. Theorem 2.1 follows from Lemma 2.3, taking into account that ©,,(p) = 1‘552 and
5i = ci¢l forevery i=1,...,n. (2.16)

O

3. THE BUILDING BLOCK

Let p € OM. The main ingredient to cook up our solutions are the bubbles defined in (1.5) together
with the correction found out in Proposition 3.1, i.e. the building block of the solutions we are looking

for is
Wi(€) ::X<<¢5>—1(§)) [5"122(] ((w3)51<5>> . 5"124‘/” ((w,?)(s (s))

where ¢2 : R — M are the Fermi coordinates in a neighborhood of p and x is a radial cut-off
function, with support in a ball of radius R. Here U is the bubble defined in (2.2) and V), solves (3.2).

(3.1)
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3.1. The correction of the bubble. Let us introduce the correction term as the function V,, : R} —
R which is defined below.

Proposition 3.1. Let U be as in (2.2) and set

n—1
CH 1), 02U() ,
Bp(w) = izjzl “nog NP g, o T RS

where h¥ (p) are the coefficients of the second fundamental form of M at the point p € OM. Then the
problem

DAY 4 12 | K| U2V =, in RY,

%86%_7157@121/_0 on OR'!,

(3.2)

admits a solution V, satisfying the following properties:
f Vp(z)3i(x)dz =0 for anyi=1,...,n (see (2.3) and (2.4))

(i) IV“Vp\( ) S
(iif)

Wforany‘rel@i and o =0,1,2

K| [ UVyde=(n—1)H | U=V, di.
R? OR™

4 P
/ <—(:_2)AV +"+ K U 2v>v;,zo,

(iv) ifn>5

(v) the map p >V, is C?(OM).

Proof. First, we will introduce some notation to reduce ourselves to the study of a problem similar to
_ n—2
(2.1). Let U = |K| % U, then we can rewrite (3.2) as:

Argulng as in the proof of Theorem 2.1, we see that it is enough to consider the following problem for
o= (U"1v)odt:

S (3.3)

Agd — no f in Bp,
=9,(p)0 on JBg,

O
By the area formula and (2.16):

A g = ca | 1@ @) ()

oo xixipr (T a:n) -
= E — = dZdx,
n+1 ’
Rn—1

S (12 -
i#]
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being py a polynomial in x with degpy =1itk=1,...,n—1, and degp, = 2. To get the last identity
we have also used definitions (2.2), (2.3), (2.4) and the condition ), h*(p) = 0. Now, if we take polar
coordinates in R™~! and use the fact that

/ S
sn—2 Yy +n—3) Jon-2

for every homogeneous polynomial p” of degree v, we can check that
¥ (2)f(2)dpg, =0 forall k=1,...,n.
Br

By elliptic linear theory, there exists a solution % to (3.3) which is orthogonal to {¢¥}7_,. Consequently,

v="U(0o®) is a solution of (3.2) orthogonal to {3x}_;.

Given z € Bp, let G, denote the Green’s function solving the problem

k k
AgG, —nG, =6, — S 9% 4y B
o H¢1”L2

9G: _ 9, (p)G. =0 on OBR.

vy

Then, by Green’s representation formula

n

k y4 k w
s =3 [ AN i w) — [ Gw) At (w) gy ()

k=17 Br H(beHL? Br
9
- [, 60 (5 =24 ) w0 o (3.0
Choosing ¢ = 0 in (3.4),
() = — : G (w) f(w)dpg, (w),

then
0 < en B9 [ o =27 o Duplen ™ g )
By [4, Proposition 4.12] with o = 2 and aR: n—3,
i(2) < cn [R(p)| |2 + Dn(p)enl -

Hence, u = U(u o ®) satisfies the estimate (ii). To prove (iii), integrate by parts (3.3) to obtain:

n/ Odfigy —/ fd,ugH :©n(p)/ 0dsgy. (3.5)
Br Br dBR
By (2.15),
ditgy = (n(n —1))7% |K|? Un2 |da)?, (3.6)
_n—1 n=1 __2(n=1) o
dsgy = (n(n—1))" 2 |K| 2 U~z |dz|". (3.7)
Therefore, by the area formula:
. . 0%U
fdpg, = cn/ h* (p) (z) z,U(z)dz = 0. (3.8)
Br Ri 89518%

Combining (3.5) and (3.8) with the relations (3.6) and (3.7), we get the desired equality.

Finally, integrating by parts we obtain

[ Oy, = [ 1V g, - Du) [ sy (3.9)
Br Bgr OBRr
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By Lemma 2.3, we know that
Sy IV 4+ 19?) dg

faBR P2dsg, dBr

If we showed that © is orthogonal to ¢ in L?(0Bg), we would get:

in

¢¢Odng =0, = Qn(p)

/ Vb ? dpigy +n / P ditg, > Dnlp) / Pdsy,. (3.10)
Br Br dBr
Then, combining (3.9) and (3.10), we obtain
—/ (Agd)ddpg, +n/ 02 dpigy > 0. (3.11)
Br Br

By the properties of the conformal Laplacian, we know that

—4(n -1
Ly = TE_Q)AH@ZJ —n(n—1)¢ =n(n—1)L.o,
with ¢ 0 ! = ¢. Thus, multiplying (3.11) by 2= we obtain
_ _ 4 _
Ogn(n—l)/ L, (U_lv) U v du, +n(n—1) <1—|— )/ U7z 02da
R7 n=2/ Jry
4(n—1 2

:n(n—1)<(n)/ (Av)vdx+n+ / |K|Un42v2dac>.

n—2 R™ n—2 R™

T T

We conclude the proof by showing that [, 9Bg Upodsg, = 0. We will use the fact that ¢ solves (2.10)
for it = ®,(p)~" and that o is a solution of (3.3). Integrating by parts:
0= Foodpg, = / (PoAmd — DAmPo) digy

Br Br

— 90, 9%, _ 1 )
— /(93R <al/H ¢O aVH’U> ngH - <©n(p) D (p)> /63R ’U¢0d89H,

n
where the first identity can be proved using the same argument as in (i).
For the proof of (v) we can reason as in Proposition 7 of [26]. O

We end this section by giving a more careful description of the function Vj,. In particular, we need
to detect the leading part of V), and since its decay changes as n = 4 or n > 5 we have to distinguish
the two cases.

Case n = 4. We decompose V), into three parts: the main part @, is almost a rational function,
the second part (, is a harmonic function with prescribed boundary condition and the third one 1, is
an higher order term. More precisely, let

Vp=wp+ G+ 9y (3.12)
where w), ¢, and v, solve respectively the following problems
— 6Aw, =Ey(z), in R} (3.13)
—6AG =0 in Ri
9 0w (3.14)
5, = 2HUG + <2HUwp — 8}/’“) , on JR}
and
— 6AY, + 3|K|U?p, = —3|K|U*(w, + ) in RY
0 (3.15)
Oey = 2HUp, on aRi

ov
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The following holds:
Lemma 3.2. Set

~ TaTi T 2h% (p)ouy
wg(m) = Z Mz](p) 2 R with Mij(p) = ( 1
ij=1 (\x|2 + (x4 +D4)2 -1 K>
i#£j
Then
1 1
wa:—wox:(9<> and |V, (z) — Vol (x :O(), 3.16
pla) = wp(e) = O (1 ) and [Va(o) = Vap(@) =0 (s (3.16)
1 1
d 3.17
1 1
< < 1

Proof. First we observe that the estimates (3.17) and (3.18) follows by using the same arguments of
Proposition 3.1 applied to problems (3.14) and (3.15).

Now it remains to show (3.16).

We remark that we can write

Wy = 20" (p) 07 2p, i,j=1,...,3 i#}j
where z, solves the problem
(6% Ty

in RY. (3.19)

The aim is then to understand the main term of the solution z, of (3.19).
It holds that

Ty + Dy 1 -
TP+ (et oar =1 2 MEH @t D7),

Thus if we take ®g a solution of

~ A% =In (|7* + (24 + D02~ 1), in RY (3.20)

and ®; a solution of
Dy

|72 + (24 + D4)2 — 1

— 1@ _ P
P ]K\% 2 Oxy !
solves (3.19).

The advantage of (3.20) and (3.21) over (3.19) is that, under a change of variables
— Al@g(#, w1 — D)) = n(|7f2 + 2% — 1) = In(|a2 — 1) in R

— A, = in RY (3.21)

then,

and
A[D, (i 9,)] = D4 =D g
TAE T = = e T e R

If we assume that ®¢ (%, 24—94) and @, (&, £4—D,) are radially symmetric, i.e. ®g(|z|) = Po(Z, 24—D4)
and ®q(|z|) = ®1(Z, 24 — D4) then it is reduced to solve the equations

- N—-1-
—®) — —— &) =1In(r* —1) in (1, +o0)
and N1 o
=/ — Lz, 4 .
—(bl — T 1= 7127_1 1mn (1,—1—00)
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The general solutions are expressed as

~ 1+ 3t —2(r2 = 1)%In(r? — 1
do(r) = & e L),
167
- e Dyln(r?—1) Dyln(r?-1)
[6)) = = _
1(T) 7“2 + 47,2 4 )

with ¢, c2 € R. Using the symmetries of the coefficients h”/ (with the aid of computer assisted proof),
we get

3
2:1,‘4 Z Mijl‘il‘j

i,j=1
_ i<j 1 .
’l,Up(x) = S J 3 =+ O ((1—"_’1“)2> 1m a Cl_Sense.
(12 + (24 + D)2 - 1)
That concludes the proof.
O
Case n > 5. We can decompose V, = w,, + 1, where w,, solves
n(n+2) .
el e T 1~ Bel@) iR (3.2
and 1, solves
n(n + 2) .
— e Ay + cp— i, =0, in R"
P (22 + (zn + Dp)2 — 1)2 77 + (3.23)

oy no, no, ow,
ov (]:Z“|2+50%—1)¢p+ <(\i|2+©%1)wp ov
We claim that

) on OR’}

B 22;211 hi (p)l'izﬂj (:L'n - Qn)
wy(x) = H—2= — (3.24)
An (|2 + (zn + Dn)2 — 1)2

Indeed, we look for a solution of (3.22) of the form
q(x)
p(l’ = ~19 9 n
(1Z[* + (zn + Dp)? — 1)2
with ¢(x) a polynomial function. Straightforward computations show that ¢(x) has to verify the
equation

n—1
L(q(z)) = Buzn Y _ W (p)miz;,
z%]#zjl
being
L(q) = —(|2* + (xn + Dn)* = DAg + 2nVq - (z + Dpen) — 2ng
with 3, := M
K

Observe that it is possible to write
n_l .. ..
g(z) = B Y W (p)g” (@),

i,j=1
i#]

where every ¢ is a polynomial solving L’(qij ) = xizjx,. We note that L(x;zjz,) = dnziz;z, +
2nzix; Dy and L(ziz;) = 2na;xj, so

1
L <4n$l$]($n — C‘Dn)> = ZiT;Tp.
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Therefore, (3.24) follows.

3.2. The energy of the building block. Let us define the energy J. : H'(M) — R
1 —2
J.(u) = / (nggu\u 550 —Kes(u)> dv, —cn”T HF(u) doy
M oM (3.25)

+ (n — 1)6/ u? do,
oM

where
n+2

B(s) := /Osg(t) dt, g(t):= (tT)»—=2 and F(s):= /Os f(t)dt, f(t) := (fr)ﬁ‘

It is useful to introduce the integral quantities whose properties are listed in Appendix A:

(07

+oo p
i ::/ g 3.26
A G T (3.26)

and if p € OM

B S S e (et 1)
o)1= [t wd = [ EEE (3.27)

We will assume that H and K are constant functions. We remark that ©,, ¢, and ¢,, are also
constant functions, so we will omit the dependence on p.

In the following result we compute the energy of the building block (3.1) (the proof is quite technical
and is postponed in Appendix B).

Proposition 3.3. It holds true that
T W) = € = Ca(8) [Ballm(p) 2 + o, (1)] + 20 + 01 (1)
where (see (3.26) and (3.27))

an, Dn " n—3
= — |—-(n—=1)pns1 + — i | On = O‘EL w11y ) 3.28
K| (1= L)gnp (@%—1)21] b Ty ey 6P
moreover (see Proposition B.2 for the definition of f,)
1 n—2 , " 1 .
b 1= gt o s (400 = 3)@ucs +pus ), n 25 (3.29)
19272 alwsld
by = 47273 (3.30)
K| K|
and
1
tn = 2(n — 2)wn_102 ——— — I . (3.31)
K[z (95 -1) =
Moreover
C4(0) := 0%|Ind| and (n(8) := 6% if n > 5.
and
O(0) if n > 6, O) ifn>5
if n
(1) = { O Iné|) if n="5, and (1) = - 3.32
oh(1) =  OCImal) & o0 =1 06| mal) if n = 4. (3.52)

O(|lns|™Y) if n=4



CLUSTERS FOR A BOUNDARY YAMABE PROBLEM 16

4. PROOF OF THEOREM 1.2

4.1. Preliminaries. Since (M, g) belongs to the positive Escobar class (i.e. the quadratic part of
the Euler functional associated to the problem is positive definite), we can provide the Sobolev space
H'(M) with the scalar product

(u,v) :== / (cnVguV v + Sguv) duy
M

where dv, is the volume element of the manifold. We let || - || be the norm induced by (-, ).
Moreover, for any u € LY(M) (or u € L%(OM)) we denote the L9— norm of u by |ullrens) =

1 1
(Joy lul9dyg)a (vespectively [Jull Laanry == ( [y, [ul? dog)® where doy is the volume element of OM.)
We have the well-known embedding continuous maps

ions : HY(M) — LY(OM) inr s HY(M) — L2 (M)
i, LY (OM) — HY(M) i, L2 (M) — H (M)
2(n—1)
for1<t< %(. )
2(n—1
Now given f € L™ = (9M) the function wy = i,,(f) in H'(M) is the unique solution of the equation
—cpAgwy + Sqwy =0 in M
0 4.1
% = on OM. 4.1)
Moreover, if we let g € LH%(M ), the function wy = i},(g) is the unique solution of the equation
— cpAgqwa + Sqwa = g in M
4.2
Ows =0 on OM. 4.2)
v
By continuity of ips,150s we get
" < - - < .
Jine D < Calll s @l < Calal, s,

for some C7 > 0 and independent of f and some C5 > 0 and independent of g.
Then we rewrite the problem (1.3) as

w0 + i ("5 () — ) ) with gl = () and ) = ()72

4.2. The ansatz. Having in mind Proposition 3.3, we fix a non-umbilic and non-degenerate minimum
point p € M of the function ||7(-)||?> with and we choose

Cn
dy = ——"
26, |7 (p) |

where b, and ¢, are positive constants defined in (3.29), (3.30) and (3.31). For any integer k > 1, we
look for solutions of (1.3) of the form

(4.3)

k

us(€) =Y Wi +®(§) €M (4.4)

where
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and

—1 —1
1 ¥8) (&) —n(e)Ty 1 (W9) " (&) —nle)m
W;(§) = n—2U<(p S5 ’ +0j ==V . Os -
0;° ’ 9;° !

Here y is a radial cut-off function with support in a ball of radius R, the bubble U is defined in
(2.2) and V}, solves (3.2). Moreover,

7, €C = {(Tl,...,Tk) e RV . 7; if i #]} (4.5)

and given dy as in (4.3) the concentration parameters ¢; and the rate of the concentration points 7(¢)
are choosen as follows:
n J—

d; =€ (do+n(e)d;), dj € [0,+00) and n(e) := € with a := ifn>5 (4.6)

or

d; = p(e) (do +n(e)d;) dj € [0,400) and 7(e) := % ifn=4 (4.7)
[ Inp(e)|7

where p is the inverse function of ¢ : (0, 67%) — (O, %) defined by £(s) = —slns. We remark that

p(e) > 0ase—0.
Finally, the remainder term ®.(¢) belongs to K+ defined as follows.

Let us define fori=1,...,n,and j=1,...,k
-1
1 ((w;?) () - n(e)n)

240 = ((42) " (©) Z3u(6), with Z,,(6) = = 2

where 3; are given in (2.3)and (2.4).
We decompose H'(M) in the direct sum of the following two subspaces

K=span{Z;; : i=1,...,n, j=1,...,k}

and
Kt={peH (M) : (¢, 2;;)=0, i=1,...,n, j=1,...,k}.

4.3. The reduction process. We define the projections
Im: HY(M) - K It HY(M) - K*.

Therefore solving (4.1) is equivalent to solve the couple of equations

1t fu = 5, atu0) ~ e (252 (00 00 ) | =0 (48)

n—2

1 fuc = 5, au0) ~ e (252 (00— 00 ) | =0 (4.9)

where u, is defined in (4.4).

4.4. Solving the equation (4.8): the remainder term. We shall find the remainder term ®. € Kt
in (4.4). Let us rewrite the equation (4.8) as

£+ L(D.) + N (D) =0 (4.10)

where the error term €& 1is
o o n—2
£ =T+ {w — it (Kg(OW)) — iy (2 (Hf (W) — aW)) } :

the linear operator L is

n—2

£y = 1 { i (160 )2 — i3 (52 (5T W) 2. - c2,) ) |
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and the quadratic term N(®.) is
N(@2) =T =iy [K (5 (09 + @) — g (W) — ¢/ (W) @.)]
n—2

S 52 GOV 20 - v) 7 ) 2) | |
The following result holds true.
Proposition 4.1. For any compact subset A C (0,4+00)k x C (see (4.5)) there exists g > 0 such that

for any € € (0,e0) and for any (di,...,dg,71,...,7%) € A there exists a unique function ®. € K+
which solves equation (4.8). Moreover, the map (dy,...,dk,T1,...,7%) — Pe(d1,...,dg,T1,...,Tk) S
of class C* and
2 if n>7
2 2 .
£“|Ine|3 if n=26
[Pl <9 5 .
€2 if n=25
p(e) if n=4.

We omit the proof because it is standard and relies on the following two key results. First, we
estimate the size of the error term £. The proof is postponed in Appendix C.

Lemma 4.2. Let n > 4. For any compact subset A C (0,+00)* x C there exists g > 0 such that for
any € € (0,20) and for any (dy,...,dk,71,...,7%) € A it holds

g2 if n>7

2 2 .

e“|lnel3 if n=26
€<y s ,

€2 if n=5

p(e) if n=4.

Next, we study the invertibility of the linear operator £. The proof relies on Theorem 2.1 and can
be carried out as in [41].

Lemma 4.3. Let n > 4. For any compact subset A C (0,400)F x C there exist a positive constant
C >0 and g9 > 0 such that for any € € (0,¢0) and any (d1,...,dg, T1,...,7%) € A it holds

I£()] = Clloll-

4.5. Solving equation (4.9): the reduced problem. We know that solutions to problem (1.3)
are critical points of the energy functional J. defined in (3.25). Let us introduce the so-called reduced
energy

3€(d1,...,dk,7'1,...,7'k) = JE(W—F(DE) (411)
where the remainder term ®. has been found in Proposition 4.1.
We shall prove that a critical point of the reduced energy provides a solution to our problem.

Proposition 4.4. Assume 4 <n < 7. It holds true that
(1) If (dy,...,dp,71,...,7) € [0,+00)F x (R™)F is a critical point of the reduced energy (4.11),
then W + ®. is a critical point of J. and so it solves (1.3).
(2) The following expansion holds true
Jeldr, ..o dy, 11, i) = K€+ Kby (€) (cndo — by||m(p)]|*dF)
k

k
On
+0u(6) | b0 L Q0N — elrIF Y - >
i=1 2oy 1

i=1

n—2
dO

_ 7—].|n—2

ZZSn(dl7---7dk77'17---77'k)
+0(0n(e)),
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CO— uniformly with respect to (di,...,d,T1,...,7,) in a compact set of (0,400)* x C. Here
Q(p) is the quadratic form associated with the second derivative of p — ||m(p)||? (being zero
the first derivative), €, ¢, are constants defined in (3.28) and (3.31), respectively, and

2% n—2
Op =0y, wn—11,, 5.

2
Moreover

4(n—2)

0a(c) = Ou(e) == p2(O)|Inpl(e)] f n=4 and On(e) =2, On(e) = w ifn="5,6,T.

As we claimed above, we shall postpone in Appendix D the proof because even if it relies on stan-
dard arguments, it requires a lot of new elaborated and technical estimates.

4.6. Proof of Theorem 1.2: completed. The claim immediately follows by Proposition 4.4 taking

into account that the function §,(d1,...,dk, 71,...,7;) has a maximum point which is stable under
C%— perturbations.

APPENDIX A. AUXILIARY RESULTS

We have (see [2] Lemmas 9.4 and 9.5) the following results:

+o0 a 2
I%::/o apidp: Tt for a4 1< 2m

_|_I02)m a1 m+1°
2m
I%:mlgl-f—l? fOI"Oé+1<2m—|-2
2m —a —3
I;.;L = ?1%4»2, fOI' o+ 3 < 2m
In particular, if n > 4
_9 n—3 9 n—3 9 2(n—2)
Iy =1Iy"" = =1 v Lhoi=o ol L= (A.1)
We also set N N ( )2
0 1 *(t—2,
= —dt d ¢, = - dt.
o /@ I / . @@=

By straightforward computations we deduce the following results.

Lemma A.1. It holds true that

_ 1 Dy n—2
SOnTH_n—l(@%—l)%l n—17"
1 D _n- 4
prt n—3(@%f1)"53 n—37%"
and 1 D
A 2 n
POm = Pm—1 t (:Dn + 1)30m - m— 1 (@% _ 1)m71‘
Moreover
/ _ Z* dr = wn_llfﬁf“aww, forn +a <2m (A.2)
ey (BT (o + D2~ 17 :

o s
/ N +‘:;|2 Ty dr = w,_1(D2 1) e n-2te forn—1+a<2m (A.3)
Rn— n

2|5
227 o
== — ITL @ m—n—o 2 2 A4
/Ri T @, s o Ty @ = vl " Pmanan, fornt2+a<im (A4)

We remind the expansion of the metric given in [21].
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Lemma A.2. Let (M,g) be a compact Riemannian manifold with boundary. If x = (Z,z,) =
(x1...,xy) are the Fermi coordinates centered at a point p € OM, then the following expansion holds:

o VIg@)=1=13 (In@)I? + Ric,(v)) a2 — L Rij (p)zia; + O(la),

o 99(x) = 621" (p)xn+3§ Rikjt(p)wrai+ 255" (p) 2 xn+(Ringn () + 3hik(p)hag (p) 2 +0(|2|)

i gan(x) = (5an

o I'li(x) = O(|z)
where (p) is the second fundamental form at p, h (p) are its coefficients, Rixji(p) and Rapea(p) are
the curvature tensor of the boundary OM and M, respectively, R;;(p) = Rixjx(p) are the coefficients
of the Ricci tensor, and Ric,(p) = Rinin(p) = Rpn(p). Here the indices i,5,k = 1,...,n — 1 and
a,b=1,... n.

Finally, we recall the estimate:
min{s? ¢, [t} if 0 < ¢ < 1

. for any s > 0 and ¢t € R. (A.5)
s+ |7 if g > 1

s +|7 = s S {

APPENDIX B. PROOF OF PROPOSITION 3.3

First we need two technical propositions in which we compute the contribution of correction term
V) to the energy.

Proposition B.1. Let n =4 and w, the solution of (3.13) (the first term of the expansion of V), in
(3.12)). Then

9 6472 9
L Vapl” = WIIW(ZD)H [Iné] + O(1). (B.1)

R

)

Proof. We first reduce the integral into (B.1) to one in a simpler domain. Let Q;' denote the upper
half of the ball of radius r in the [|-|| ., of R?, that is,

Q,T:{a:ER‘l:mZO and —rgxigr,izl,Z,B.}

and let A‘W%, %) the upper half of the annulus with radii r = 4% and 1o = %
Then, we can write
B} = Q% UQs,
s 25

with Q5 := B}, \ Q% . Notice that Qs satisfies Q5 C A (£, &), Then, by using also Lemma 3.2, we
5 20

450
get
_ _ _ _012 _
[owal= [ ol [ Vol = [ vePs [ va?sow,
B% Q% Qé QT}% Qé
and
/ |V, </ o |pr|2<c/R (14+7) "1 r3dr = O(1)
Qs n0s is
Then

The latter integral can be calculated explicitly with the help of mathematical software. Firstly, we
compute

B R R B |ou0 s
/ /R /R /R 3 7'3 dridxodrsdry = 0 ZZ(?;ij—i—Mfk) lnd|+ O (1),
LS R k>j j=1

ki g
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for ¢ = 1,2, 3. Similarly,

58 R R |oad| 2| <
—p T 2
jﬁ L/an/qu/aR ol | dmdzaduadss = 7o | 37 3M2 | g +0(1).
25 25 25 1,j=1
i<j
Hence, by the definition of M;;(p) = é{\g h¥ (p) :
647>
0 2
| 1
L, 1V = T @R nal + 01,
QR
26
being |7 (p)||* = b2y (p) + his(p) + h3s(p). O

Proposition B.2. Let n > 5. Let V,, a solution of (3.2), then there exists a non-negative constant fy,
depending only on n and ®,, such that

o G

Proof. Let decompose V}, = w), + 1, where w), solves (3.22) and 1, solves (3.23).
For sake of convenience, let us define

b(%,0) =

p>%=nwww.

noy, . ow,
Grroz—n &0 o,
Since V), = w, + ¢, (wp and 1, are defined in (3.22) and in (3.23) respectively) then

n(n +2) ) i TiTjTn
—AV, + — V, | Vi, dx = B,h% (p)/ J —V,dx
/1 ( Pr(EP 4 (en +D0)2 —1)2°7) 7 R% (‘@’2‘1'(33714‘971)2_1)%2 "

=:ﬁnh”<py/‘ ; s n+2u@dx-+ﬁnhﬂoﬁu/ ; s s
B (1 + (20 + D)2 — 1) B (1 + (20 + D)2 — 1)
L, I,

Let us evaluate separately I,,, and Iy, .

il iTp
. n+2 wp d:L‘

Iw = nhij
7 @Ammummwm—wz

2 e D )
— Dnpig hk@ / xlx]xkxﬁxn(xn n
an (p)h™(p) Ry (Z2 + (zn + Dp)2 — 1)nH1

Lijre

(B.2)

dzx

Notice that by symmetry reasons and the fact that h%(p) = 0 for every i = 1,...,n — 1, we can
write

62 n—1 n—1 62 n—1 n—1

D0 D WO W e = Y0 Y W (0B () Lije (B.3)
1,j=1 k=1 1,j=1 k=1
i#j  k#l i<j k<l

In view of (B.3), if (¢,7) # (k,£), there exists an index, let say 4, such that ¢ ¢ {j, k,¢}. In that case,
it is easy to see that

. . _9,)
BT () B¢ / xlxjxkl'ﬂxn(xn n d
()™ (p) - (Z2 + (zn + D)2 — 1) H1 T

_hZJ hkﬁ / /+oo 0 (— x]kall‘n( —@n) )dﬁfin%a:
R} Ox; \ 2n |$] + (zp +Dp)%2 — 1)l
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Consequently,

n—l 2222w, (2, — D)

W e = 3107 [ e

ij=1 RY

For every i # j, using polar coordinates in R”~3, we can see that

2.2
/ ﬂ?zx]xn($n_ /+00/+00/+oox 9 )
(1% + (2n + Dn)? *1”“
+o0o n—4
Wn—gT™" 2dr
X dadx.d
/0 (?"2+x T2+ (@n + D)7 — Dprd T
W P n+5 400 ptoo  pfoo 2.2 Y|
n—4 ' / / / 2222w (Tn n) —dadada
2l (27 + 22 4 (2 +Dp)? — 1) 2

wp—anl (253) T (242) / Tn(Tn — Dp)
" al(n—1)(n+1)(n+3) (£n +Dn)2 — 1) T

fl (n,@n)

Substituting in (B.2):

Let us now study the term Iy,,. Multiplying

TiljTn

Bk (p) /Ri (3P o+ D) 1)"7”% dz

/ (vaV% A e (Zin:;i)? i p¢p> dr — /B]Ri (?;Z’y;p di

/ (prwp et 1)2%%) ix

" /Rz OVW MN(ERE <Zin++§i>2 - 1)2“’5) e /am (EE 32 —yrtr

o TR

- /aRn a;;p /am (172 Tf;? —q) et

+/M (\prPJr (FF+ (Zin++@21)z . 1)2¢§) dx—/am P ;’:@@’% — 1)¢§ d7
n®,

no
= _ - Wyt dﬁc+/ b(z,0)w :Y:,O)dfc—/ — wpth, di
Am«m9+©g—n pp it [ POl ore (G2 + 22 —1) 7%

2 n(n+2) 2 nDp 2 -
+f, <‘W’p' TR (on+ D02 = 1>2%> - /m oz -1

-+

£3

We will study separately the terms with and without v,. By (3.24)

>hoa h (p)zi;
b(#,0) = On i 5
A (ER 23 - 1)




CLUSTERS FOR A BOUNDARY YAMABE PROBLEM 23

and arguing as before:

n—1
Qn/@2 ij

/ b(Z, 0)wy(F,0)di = ——n 5™ p (p)2/ L
oRY a 16n? ij=1 ro-1 (|22 + DR — 1)

Now, for i # j fixed,

400 p4oo 5 o +o0 Wi 4T‘n_4d7"
= T; Ty dx;dx;

(r? + a? +x +02-1)
_ Wrn—qI (TB F % /+OO /+OO X; .%'j da;ida:j
(@2 +22 + D, - 1)"F

3_

_wnfwf("%”)F("” (05 —1)2"
 (n=D)!n-3)(n—-1)(n+1)

Finally,
QnﬁnQWn gl (L3) r (L—%) (92 - 1)3_7"
b(%, 0)w,(Z,0) dz = — 2 2/ T n 2
L, 20t 0) e e &
Finally we address the terms with .
Since 1, solves (3.23) we can write
6 n—1
— Pn ij .
U= Z W (p)ys
i#
where 1;; solves
n(n + 2) .
- A 0] = ig — 07 R
Y R G D~ 1Y e
81/11']' n@n TiZ
— = i = D on 6]R”
on T+ (aE+ 03— 1) '

It is not difficult to check that 1);; is odd in z; and x; and even in all the other variables x4, { =
1,...,n—1, and so

T g 5 - 01 o
n/_l (32 + 22 —1)5 Yo (2,0)dz = 0 if (i,7) # (L, k). (B.4)

Moreover it holds that t;; = 1j; and v;; = 112(0452), where o;; permutes the z; and x; variables, i.e.

oij(xl,...,:ci,...,cvj,...,xn):(acl,...,a:j,...,a;i,...,a:n).
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Multiplying by v, in (3.23), integrating by parts and using (B.4) we immediately see that
n(n+2) 9 n®, 9
vl | i v
/Ri Ve rr (|7 + (2n +Dn)2 =12 7 Jomn |3 + (2p + D)2 =17
_ Dn / W (p)wia; "
an Jory (|7 + (2n +Dn)2 —1)7 "

n—1 n—1
- % > B (p) Y b (p) / e +I®$g — 1)%7[)(5(@, 0)di

i,j=1 l,k=1

it t#£n Rr—1
n—1 T
=D M)’ / L hyy(#,0)di
iz:_l (p) (|;Z'|2—|—©% _ 1)§¢1j($ ) X
P
n—1

= g ij 2 T1T2 3 )

= — h (p) / (’5:‘2 +D2 — 1)% ¢12(1’,0)dx
l’j: 2

i#j

Rn—1

’tz(n,@n)
= fa(n, D) 7 (p) 1%,

where 2 only depends on n and ©,, because the functions v;; do not depend on the point p.

24

Collecting all the previous estimates, we get a constant f,, which only depends on n and ©,, such

that

n+2 4
AHQQA%+ 2munz%>n=ﬁwmmW-
+

n —

Notice that f,, needs to be non-negative because V), satisfies Proposition 3.1-(iv).

Proof of Proposition 3.3. We write W, = x <(1/1g)_1 (5)) W with

W@wz;ZU<W@4“v+532%<W$”@0_

J 2 ) P} 1)

=U =V
and also W, = W = U + 6V with

w0=x<0£)1@00@wmdwa=x<cﬁ)lgﬁvgy

We have
- 1
JE(W)ZC/ |vg(u+5V)|2+/ Sg(Z/l+5V)2+(n—1)5/ U + 6V)?
2 M 2 M oM
}: I I3
2(n—1) n— n—
—(n—2)/ H{((LH—&V)*) = —uzﬂz—zl)} —(n—2)/ HU =
oM oM
Iy };
—”_2/ K[((uwvﬁ)%—u%}—”_Q KUns
2TL M 2TL M

16 ]7
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Estimate of Io By (A.2) (with « =0 and m =n —2) and (A.1),ifn>5
1 1
I = 50% | 8,(dx) (U(x)x(dx) + 8V, (x)x(0))* |g(0z)| 2 d

R}
1 0(8%) ifn>6
= 5289(]7)/ 3 .
2 R™ O3 nd|)  ifn=>5
2 o83 ifn>6
— 152 SQ(:ZL / o, __ da + ( 3) =
2 K77 Jre (|2 + (20 +D0)2 - 1) O0°|Ind]) ifn=5

S,(p) {(9(53) if n>6

n—1 "NEETT 0@ ) ifn=5

U?(x) dx + {

and if n =4

_047421 2S4(p) 1 - 2
n=SE | rere o O

d\ + 0(5?)

2
_ OZEW:;(SQSQ(}?) 122/ (?+’D4(P)) -1 1
2 |K| V)1 A2+ 1
204421“)3 Sg(P) 140 2
= — 1561
3 K] 30°In0 4+ O(67)

Estimate of Is By (A.3) (with & =0 and m =n —2) and (A.1), if n > 4 that

Iyi= (n=1)ed | (U0)x(07,0) + V(T 0)x(07, 0))? (62, 0)|2 di

O(e6?) if n >5
O(e6%1nd)) if n=4.
1 1 O(e6* ifn>5
=(n—-1ed—= 0‘%/ —dT+ ( 2)
K|z re-1 (|22 + D2 —1)" O(ed*|Ind])  ifn=4.
1 {(9(552) ifn>5

"KM @2 - 1) |0 ) ifn=4.

=(n—1)b U%(%,0)di + {

Rn—1

n'g

=cp

Estimate of Is By (A.3) (with « =2 and m =n — 1) and Lemma A.2, if n > 4
Iri=—(n-2) | H(U(0)x(620)% |9(67,0)|? d&
Rn—1

=—(m-2)H [ U%¥#0)di+ 5%Ri;(p)H U% (%,0)%;, di + O(5%)
8R1 Rn—l

n—2

= —(n-2)H [ U¥(%,0)di

OR™

2t §5) =12
—2)HRy; -
52an (n ) Rn(e)/ . ‘$| — dl‘+0(53)
6(n =1 |K|"2 e (122 + 9% - 1)
——(m-2H | U¥0)dz

OR"

Z(n-2) HR;i(p)

+ 6220 1"+ 0.

Wn— P =
6(n—1) KT (@2 — 1)
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FEstimate of Iy By (A.2) (with a = 2 and m =n), (A.4) (with @ =0 and m = n), Lemma A.2 and
(A1), ifn>4

n—2 * 1
Iy = - K (U()x(02))* |g(6)|? dz
n Ri
n—2 " n—2 . "
= |K| U? () dx — ([l (p)||* + Ricy (p)) 6% K| U? 22 dx
" RY RY
-2 x
-SRI | U ()3 de + O
12n Ri
n— 2 o
= |K| U® (z)dz
2n Ri
-2 o >+ Ric,(p)) |K 2
_5271 0‘121 (’W(p)H + ic (p))‘ ’ — Tn . da
I P g (Z + (o + D)2 — 1)
- n—=2 Ri(p)K| |z
— 522 . dz +0(5°
" n—1) K5 Jay (FRF @+ 02 -7 (9°)
-2 x
_ | K| U% (z)dz
2n R™
— 2 — * 2 + R v
g2 =3 (el Rie)
dn 2(n—1) K|"z 2
2 o+ N—3 o, n—2  Ri(p) 3
_ NI n
0, 2(n—1) n-1¥ 112n(n— 1) |K|L;2¢Tl +0(%)
Estimate of Iy and Is By Lemma A.2-(i), if n > 4
2(n—1) 2(n—1) 1
Ii=—(n- 2)/ H [((U +0V,)T) 2 —U 2 ] (2,0)|9(62,0)|2 di
OR™
(n—1)

= 2n-16H | U™V, di— "~ SPH | UnaV2di+0(5)
OR™ n-— OR™

and similarly

n 2
Is = K|6/ Unfivij H52|K\/ UnzV2 + O(5%).
R™ 2(n —2) R™ P

Estimate of I; First we have

I := cn/ ‘V9U57p’2 dv, —i—cnd/ VUs )V g Vs p dvg + %52/ ’ngts,p‘Z dvy
2 I M 2 Ju

::Il1 ::If ::If

and we separately estimate the terms I} with i =1,2,3. Set Bs := {x € R? : |dz| < R}.
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Estimate of I+ By Lemma A.2-(ii)-(iii) we get

=5 [, 000 5 U@ 5 O s
_ VUl e 20hij LT a2 ) QU 9U
= Cp /36 [ 9 + (5hwacn + 6 le]gl'k.%g +4 8$k TpTy + 5 (ijn + 3h’lk‘hk2j) x, 8952 856]‘

2 2
X <1 - % (Il l* + Ricy ) ax, — ‘;Remxeazm> di dzy, + O(6°)
Cn 2 2Cn
= 7‘VU’ + 6 °— (Rm]‘n + 3hikhkj) x
Bs \ 2 2

2 2
% <1 . % (||7TH2 + RiC,/) SC% — 56R€m55€33m> dz dx,, + 0(53)

220 00

”87351 a$]’

Moreover, by (A.4) (with a =0 or @« =2 and m =n — 1 and with a = 0 and m = n secondly), (A.2)
(with & = 2 and m = n — 1 first and with a = 2 and m = n secondly) and (A.1),ifn >5

en Cn . cn o R 8
=% [ VOP - L6 ()P + Rie,) [ a2vor - St [ pvop
R% : et Ry

2 - 1
o 2 —9 2 3 2 Ri y 21~12
L o (n=2) 5 Bl ()] + Ric <p>)/ _ 2| : iz + O(8)
2> a1 K et (FE T (@n + D2 1
. a2(n —2)2 2 | Ric, 2
U R LT N S
2 R” 4 |K| 2z R” (1Z]2 + (zn +Dp)? — 1)
_ caop(n — 2)252 (Ilm(p)II* + Ric, (p)) / s
_ en0m(n —2)* o Re(p) / |z[?
12n=1)  |Kk|"2 Jrr ([ZP + (20 +Dp)? — 1)1
_ cnon(n = 2)% 5 Rul(p) / |z[?
120 —1)  |g|"2° Jrr (122 + (@0 +D5)? = 1)"
o 2 9 2 3 2 Ri Y 2512
| 0 (2= 2% 55 Bl @)l o (p))/ 3 “ul! e+ O(6%)
2 -1 e e (12T (on + D22 = 1)
20 oN2(0 2 .
— cl ‘VUP _ Cna’n(n 2) (n 3)wn_1]'772,_152(||7r(p)H t_]‘:z’lcV(p))ng
2 R” 4(7’], — 1) |K’T 2
20 oN2( 2 .
o =220 -3) S R )
8(n—1) K|"z 2
cn(n — 2)2 Ru(p cna(n —2)%(n — 3) Ry(p)
S /S AR LT nog — —1 11?62 e
12(n_ 1) Wn—14p_1 ’K|nT—2 QOT?’ 24(n_ 1)2 Wn—14p_1 |K’nT72 Tl
cnal, (n—2)*(n —3) (3[lm(p)II* + Ric, (p))
ntn e " 52 Bl 53
4 (n—1)2 Hp |K]n772 Pn_l + 0(6°)
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and if n =4
2 .
+R1Cy(p>) x5
Ja ] VUI2 — cs0? (H7T(p)” 52/ _ 4 dr
b2 Ri| P K] B; (|27 + (24 +94)% = 1)°
1 5 Ru(p) 2/ |Z]?
— —cq0 1) _ dx
9 | K| By (IZ[* + (v4 + Dq)? = 1)3
2 3 2 4 Ric, 2172
+ Zega 2 Bl + Ric (p))52/ 3 i ————dr + 0(5?)
3 K| B (27 + (24 +D4)? — 1)
¢4 o 1 54 (IT®)II? + Ricy (p)) 1 o 1 Rulp)
= — - I 0“Iné T 6“Iné
9 Ri |VU‘ + 364&13(14 3 |K| + 9040.)3 113 |K‘
1 (3”7T(p)||2+RiC,,(p)) 49 2
- — 1:6°Iné 0%).
54 4&130[ ‘K| 3 n +O( )
Estimate of I? and I} if n >5
We have

1= ben [ g 08) 5 (U@(02) 5 (Vyla)x(00) lg(8) | o

oU dv, 5
"o B & +0(8%)

=6cn | VUVV,dx + §*2¢,h" (p) /
Rn
2 n n
S L K| [ UV de e SoH | U,
R’n 2 8Rn

—cn52/ ]VV\2+cn—52H Un- 2V2 n+2\K|<52 Uﬁvf—%(’)(é?’)
R? IR n- R7

<oo for n>5

since

UAVp+cn/ v, 0 e

Cn VUVV, = —cn/
OR™ ov

R}

i
2 nta n
_ Nt e UnSV, da + eyt H Un-2(%,0)V, dE
p p
n—2 R™ 2 OR™
+ +

n—1 » 02U
h* n
+ 8n -2 /Ri Q axi&pjm

=0

.. 2
2¢,hY (p)/ oU 9V dx = —2¢,h¥ (p )/R” xnaiUV}, dx
+

and

" O, Ox;j O0x;0x;
= —/ <—cn p> Vp dx
n
oV, 2

:—cn/ |vv;0|2+cn/ y, 2 N SLY Unz V2

i ory OV R"

2

:—cn/ YV, |2 + con H U%V2 nr SIK U2 V2

1 2 Jomy bon- R} '

and also

3= 6”52/ IVV, |2+ O(5%).
2" Jan

+

28
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Estimate of I? and I} if n =4
Let V), = wp + ¢, + 1 as in (3.12) and set wy, = w), + ¢, so that w, solves the problem
— 6Aw, = Ep(z) in RY
ow 4
a—szHUwp, on ORY
Then

1= e [ | g(00) 5 (U12)x(02) 5 (Vo) X0 g 60) o

2
S s |Ky/ U3V, dx + 2e,0H | U2V,
n—2 R4

4
oRY

y oU oV
2 i Y'p 2
+8212h (p)/ P 08+ OF) (B6)

2
S Lo |K|/ U3V, dz + 2c,6H | UV,
n — 2 R4

4
oRY

. oU ow
2 1] P 2
+0°12h (p)/ 8% 7z, -dz + O(57).

6

o 9y
/ 6351 oz de =O(1).

Here we have used the fact that

T
Let us study the last integral term of (B.6). Integrating by parts in x; and using the equation (B.5):

y oU Jw y oU x;
12h% ——Ldy = 121" —w —/ E
7 (p) / B axz 0z v 7 (p) /9+ B, (93:Z \x! gt T Wp

R

5 6 [

. oU x;
— 12pY L, — 6 / Vuw,|?
) [y o~ o 19

R
)

4 N (B.7)
+12 HUw§+6/ YV, - —w,
d'BT otBh ||
5 i
=6 [ [Vuyl+ 00,
B+
R
)
since
HUw? = O(1),
/ ., 0w =00
5
oU z; R 1\7° 1\ ' w1 R?
1 1+ = =001
/3+B+ 19z [ ”~5< +5> ( +5> > o~ oW
6
T R\ 2 R\ ' w1 R
1 1+ = —=0(1).
/mB; vur e (145) (105) 45 =0
5
By (B.6) and (B.7),
I = —652/+ |V, |* + O(52). (B.8)
B

R
Kl
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Analogously,

30
. 0452/ VY2 + O(82) :352/ V|2 + O@2). (B.9)
2 by By
bl k)
Finally, combining (B.8) and (B.9), we obtain
B+ = —352/ [V, + O (8%). (B.10)
Bj
bl
Now, using the fact that w, = w, + (, and the decay estimate (3.17) we get
Vw 2—/ Vo 2+/ vg2+/ Vw, V¢
f ot = vl [vGrs [ vav,
k) Kl k) k)
-~ Vw2+/ vg2+/ Ve
f st [ vl [ VG
Kl k) k)
_ 0w, _
k)

= [ 1w+ on)

R

)
since again, by using the decay properties, we get

[ (e v 2)
R

)
and

x
V¢, - —w, =0(1
/<9+BJ§ P |l" p ( )
)
and by using the problem solved by (p, i.e. (3.14), we get

o= [ ver-

Vi — G+ / <2HU<p i <2HUwp awp)) G
5 BL || 9B}
Kl 5

ov
5
= [ 1962+ o)
BR

5
from which it follows that

/ V6,12 = 01).
.

By Proposition B.1 we get

)

_ 6472
/B+ ‘va‘Q =

I (p)II* 18] + O(1)
. 1N
)
Then (B.10) reduces to

6472
Vad|* + 0(6%) = —3°—
Q+
QES R

B+ 1= -3 /Q+ \Vi,|* + 05?) = —352/ W||7T(p)H252|ln5| + 0(6%).
25

Conclusion.

We collect all the previous estimates and we take into account that

- the terms of order § cancel because of Proposition 3.1-(iii)
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- the higher order terms which contain Ric,(p) and Ry (p) (di order 62 if n > 5 and 6%|Ind| if
n = 4) cancel, because by Lemma A.1 and the fact that S;(p) = 2Ric,(p) + Ree(p) + |7 (p)||?

2 2 n ”*QRiCu(P)< e Y )_
5anwn_1In,1n_1|K‘n%2 28077,773 (n—3)(n 1)g0nT+1 =0

and
—2 Ru(p) Dy
62&31 " Wn— ,:;L_ — —(n—4 n-3 —(n—3 n-1+ ——= =0.

Finally, we have if n = 4

9 19272 5 4 1 5 )
J.(W) = & — §%|In 4| ] +044W31r3m |7(p)||? + edeq + O(52).

:=by

and if n > 5
1 0(8°) ifn>6
J-(W) =e—a2<2fn+f;>uw<p>u2+s<5cn+{O s m s
N—_—— ( | n ’) on=
=b,

because the higher order terms which contain ||7(p)||? reduces to

n—2 7 (p)]1? .
e CE Y i e (¢zz = (= 1)(n = 3)puss — (n = 1)(n = 3)pus
n—2 1 .
= 0o e i (400 = 3)@uct + pus ) ()|
~

and, by Proposition B.2,

1 n+2 4 1
5 [ (Fentvys 20, ) ¥, = Sl

R7

Here the energy of the bubble € is constant and is computed in the remark below

Remark B.3. The energy of the bubble is given by

- 2 *
" x| v? —(n—2)H/ U?
2n R oR™

_6tn 2 _
€= M|VU|

where ¢, := 4(::21) and
1

- (077}
U(.Q?,.%'n) = n—2 n—2
K% (|22 + (2p + D)2 —1) 2

and a, = (4n(n — 1))717_2 and D, 1= y/n(n — 1)\/%

We recall that U satisfies (1.4). Hence

-2 1 x
cn IVU|? = MH U2 _ K] 2
2 Jrn 4 OR™ 2 R™
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Then
1 .
¢=—"|K|| v¥+H | U¥
n R OR™
1 a? 1
= ——|K ”n/ — dz dx
KT foy TP+ @207 =17 4
off
1
“n dz

+H—— =
\K|"z Jorn (|27 +DF —1)"!

Now, by using (A.3) with « =0 and m =n — 1 we get for n > 4

/ 1 dN n—3 I;’Z—l
p T = Wp—1 T -
orr (|Z)* +27 —1)»! Tin-1(oz - 1)

Instead, by using (A.2) with & = 0 and m = n we get

1 n—3
d~d = - 71” n .
/Ri (|j’2 + (:L'n + @n)2 - 1)” L aTn Wn 12(n _ 1) n—l@%l
Collecting all the previous terms, by Lemma A.1
ol (n—3) Prntl o2 (n—3) H
€= =1 W n- e S wp—11y_ - o
2n(n —1) " "1|KTQ n—1 n n1|K’Tl(©%—1)Tl
*_of
of n n—3 1 04721 2 H
= O w1l n—2 | ntl + —
24 n n—3 1 9,
=, Wn— I _ — —(n — 1 ot + |
n nlnl(n_l)\/m|K|22[ ( )‘PQ (9%_1)71

=an

APPENDIX C. PROOF OF LEMMA 4.2

In the following we use the following notation

Wi(e) = Lv(wg) <f>—”<€>fj)+5j 1 ((w;?) © —n(sm)'
1) j

v ‘

and

Proof. Let

=iy (Kg W) and yanr = iy <”;2 (Hf (W) — 5W)> .

By using the equations that vy; and gy satisify (see (4.1), (4.2)) we get
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IEN? = cn /M Vg OV =y — vour)|* dvg + /M Sy W — 1 — voumr)? dv,
S /M Ay OV — 721 — vo1r) OV — 121 — oar)] dvg

+ / Sg (W —YM — VaM)Q dl/g
M
0

+cn W W —ym —vom) W — v — vomr) doy
oM oV

k
= Z |:/M (—enAgWj + SgW; — Kg(W;)) € dv,
j=1

0 n—2 n—2
=:(I)
k k
o (Saom oS ) e
M j=1 j=1

n—9 k k
+— Cn/aMH<Zf(Wj)f(;Wj)>ng9

J=1

~~

=:(II1)

e Let us estimate (), which is the sum of the contribution of each peak. We estimate each term
in the sum and for the sake of simplicity, we replace W; by W. Each term looks like

/ (“enltt — KU 1 K (1) — gt +5V)) — cad V) €
M

(I)

ou _n_

WL 9(n — 1) HU
—i—/(?M(c 5 (n YHU 2)5

(I2)

+2(n—1) /aM (H (FU) = U + 5V)) + ﬂg‘:) £

(I3)

[ swe
&,_/
(1)
+2(n—1)e WE .

oM
(Is)

Estimate of (I1). We have

1S 1 oy 1461, 23 0
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with
n+2
As = —cpAg (U+OV) — KU2 + K (g(UU) — g(UU +6V)).
Now, in local coordinates, the Laplace-Beltrami operator reads as:
Agp= A0+ (g7 —6) 056 — gTF,0,0. (C.1)

and so by the decay of U and V), (see Proposition 3.1) and by Lemma A.2 in variables z = dy
with [0y| < R

8n—1) = i n nt2
0= ) 58 )O3 U (0w — 0~ F K (s U )

Asy) = —07"% ¢, AU (y)x(6y) —
+ 5T K2 (8y) (a(U) — a(U +6V,)) — 6~ 5 e AV, +67 "2 Aly)
= 0K (x(6y) — X 0)) U ()
+ 675 Kxn2 (0y) (0(U) — a(U + 8Vp)) + 85 Kx(0y)g'(U)Vpl(y) + 0% Aly)

where
1
A <~ _if |6yl < R.
AWIS T m=z 10wl <
Finally,
n+2 n+2
< —xn—2 n-2
451, 0y S [ (xO0) = X35 00) U5 0|
S|IK (x5 " (5y) ) U2 (n)V,
+ H (x( y) — X (y)) (y)zﬁy)‘LfﬁqRi)
n+2
2
+ 07 AL 2, (B(0,R/3))
2iftn>7
< 5ﬂm&%ﬁn—6
5 2 if n =4,5,

because by by (A.5)
6=n 2 .
, Un=2(6V,)" ifn>6
[(8(U +0V,) —a(U) = 0g Vo)) S 6w, iz
Un=2 (6V,)" + (6Vp)n—2 if n=4,5

which implies

[(0(t7 + 6V,) — a() = 36 @) Vo), 2 ) < {5“ et

L2 (R} 62 if n =4,5.
and also
2ifn>7
52 Al 2 < 5ﬂm&%ﬁn:6

7+2 (B(0,R/5)) ™
57 7 if n =4,5.
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Estimate of (I2). We have

(b)z%n—Dé&(niQif—HUn)S

2 o
—20v

<MMMJ ~ Hu

2(n 1)
2% onny

and

2n-1)
L (OM)

2(n—1)

9 U Zoob)) T
- = HU

§</ < 2 agsj)X(&?)—HUnnz( X”25y>\/Tydy>2(nnl)

2(n—1) n 2(n—1) 2(n—1)
S| HUE=E @) (x69) - 72 00) T dg
OR™
< 6

Estimate of (I3). We have

20 OV
)1 el [ G00) -t + o)+ 22 22
2% o)
and by the decay of V, and (A.5)
25 0Vs
H (@) — U + 6v) + 2|
H n—2 v 2% o)
20 0V, -
<o) - i+ v + 25 S|
L (8R )
Soflar i + sovvasn - M EUTAG)|
n—2 L (OR™)

2(n 1)

<o HH (™2 (69) — x(39) V(U + 66V}) V‘ (OR7)

+ 6 [[Hx(69) (F (U + 66V,)) — ' (U)) V, H 20-1)
8% ifn>5

< 2
6% né|s if n = 4.

(OR7})

because by (A.5)
((F(U +680V,)) — F(U)) V| < oU 3 22,
Estimate of (14). By Holder’s inequality

< < n
@15 [ el dvy+5 [ el < el (104 2

S Wlizn).

35
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with
5° ifn>7
241, 25 ) S 52|1;15;§ ifn =6
57 if n=4,5
and
5° ifn>7
Vlaan S 3 0%dlz ifn=6
5 ifn=4,5

Estimate of (I5). By Holder’s inequality

(T (e [ P I ]

n

with
) ifn>5
U 200-1) S s
L= (0M) dIn o3 ifn=4
and
3
02 ifn>6
Vll2oay S {62 Ind|z ifn=>5
) if n =4.

Finally, collecting all the previous estimates, by the choice of ¢; in (4.6) and (4.7)

2 iftn>7

EQHHEI% ifn>6
(DS &

g2 itn=>5

p(e) if n=4.

e Let us estimate the interaction terms (I7) and (I11).
Set for any h = 1,...,k B} = BT (n()7p,n(c)o/2) where ¢ > 0 is small enough and 0'B; =
B NOR%. Since o is small then B;f C B} and & B} C 8'B}; and they are disjoints.
We remark that in By, (0) we get

Wl(I) < v 000

Then

RS DSUSE DT D DS B SEI €l
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37
Hence
n+2
an 2n
...... 2n < e 2 g(2)]2 dx
vl g S [ / e gt ]
2n n;;f k 2n 1 n;;f
+ / ...... |72 |g(x)|2 da +Y° / . |n+z\g(g;)yzdx]
BE\U, By} h=1 /B

_ n+2 n+2
k otz nt2
< / (1= x* (|2)|[Wil* |g(2)|2 da + [/ Wil* [g(x )I?de]
; L By, Bi\U, Bif
_ n ”7-;;2 o n2+2
k n+2 k n
. 1 1
O I T YT TS LV S 8 I A D SN IS
h=1 h i#h h=1 By i#h
Let us estimate each term.
n+t2 n+2
. 2n 57’1 o
(1-— Wil |g(x < / —t———dx
;[/ 1 I g ] ;[an_ e ]
n+2
LI " (1—) 232 if n>5
f,z 5in+2 / ;gndy S ) 3 hhe
)T |Jrnst, [yl ()P p(e)|i  ifn =4
n(e)
n+2 n+2
* 1 2n 5TL 2n
L CE By B e et
£\Uy, B Bi\U, By |z —n(e)7]
nT+2
k 712»2 n (1704)”7‘” f > 5
< Z 0; _ / %dy < € 2 3 itn >
)= |Jrpst, |y Tl (p(e)3Inp()|  ifn=4.
n(e)
Now for n > 7
n+2
k % 2n
) / Wil 25 Wi g} da

h=1 i#h

_an_ n(n-2)

b 5t 5, "+
sy e o

he1izh |7 B |2 — €0 |nH? g — gaqy| T

n+2
k 9 n—2 1 2n
< 2 -
YT ([ e
h=1 i#h By |z — e%rp|nt
nt2

k 2 2n
n-2 1 nt2 | n—6
sy ([ ew) et

h=1 ih Blag s ly|n+2
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while for n =4,5,6

n+42
2n_ 2n
k n+2
2% —2 : 1
S [ w] ) e
h=1 h i#h
nT<0—2
i 626,7 > 1 !
ZZ + (1012 1y2 _ 52 N5 dr
et izn N(€ )7 By (|97 + (yn + Dndpn(e)~1)? — dpn(e)—2) n+2
n+2
2n
sy () 1 i
I 4Y
—1izn (e e)=" Bg (ly[* 4+ (0nn(e)~1)*(DA(p) — 1)) =+
€ |ln5|§ if n=6
<eed if n=5
(&) np(e)| i n=4,
At the end
2% nTtLQ n42
k ) k S on
Wil lg@)de| 2 | e
f; /B’T z#zh hzz:u;éh By le = n(e)mif*"
e ifn>5
S 3
()| pE)lt  ifn—a.
For the term (I11) we get
IIDIS D oFov) =1 Do w; €]l
J J 2(n _1) (OM)
Hence
< 2(n—1) - 1 2(n=1)
.. ... | 2t-1) < I " g(2,0)|2 dzx
L= (0M) &' B \0'BY,
2(n—1) k 2(n—1)
2(n—1) 5 1 2(n—1) -
+ / 2 (3,00 da S / 2 (3, 0)[F da
'B\U, 9'BF e |JoB}
kT ” y . ] y . ]
<[ a-FaonwiFigeoka x| | Wil |g(z,0)[* da
iz1 |/0'Bf o' B\, 0'B;F
_ 2(n—1) ﬁ ot 2<nn—1>

k n k
+Z/ Wil 23w, l9(,0)|2 dx +Z/

+
=1 i#h h=1 |Y9'By |izh

>
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67'7,— 1 2(nn— 1)
1

dz

2Ty
mq%m@mﬁd4 <y
=1

2(n—1)(n—3)

A“%ﬁﬁu—mam o

2(77,”71)

Syl T
S LT | oo s, AR

n(e)
_ [t ifn>5
Y ) mpe)i itn=4

Similarly

n RN FOD itn>5
/ W@kl 4
PERULOB] (PP pE)ff itn—1

Now for n > 5

. 2(7L7;1) ﬁ
i Ll
S mEEsw o)t
&' B ;

h=1 h l?éh

k n—2 [ 1 2(+_1)
sy | [

h=1 ith LJOBy | —n(e)Tn| ™~

k n—2 i 1 2(%_1) n n—4
S I B . It

h=1 i#h L 8'3:(5)0/2 |37| "

and for n =4

2
3

k 2
S UL S w o] <o),

w

h=1 |/0'By i#h
Finally
2t sy s
K o g(1-a)g ifn>5
S Yw] weopel o<y o
h=1 |79 Bu |izh (p(e)) IInp(e)|s  ifn=4

We collect all the above estimates and the claim follows.

APPENDIX D. PROOF OF PROPOSITION 4.4
The proof of (1) is standard. It is also standard to prove that
Je W+ @) = J(W) + O(HQ)EH2)

CY— uniformly with respect to (dy,...,dg,71,...,T) in a compact subsets of [0, +00)* x C.
We only need to estimate the leading term J.(W).
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We claim that

k
T W) = Je( Z/ KgOW)W; dv, — ch”;2 Hi(Wi)W; do,
i=1

7<t i<t oM

-~ -~

() (IT) (IIT)

+Z/ (cn VoWiV Wj + SWW; — KgWi)Wj) duy,

1<)

_Cnn;2/8MH<g<gwi> Zg Wi )W )dag

k k
_/ K (qs (ZW) —Z@(W,-)—g(wi)wj> dvg + (n —1)e Z/ WiW; do,
M S i—1

i#]

(D.1)

k
= k¢ — ZQL i) [bn|m( (pi)||? + o, (1)] - 52&(% + ol (1))
i=1

n—2 n-—2 n—2 n-2
Z 1 5i 2 5]’ 2 1 5i 2 5]’ 2
— 0 — +o .
K|S 2 | — T n(e)n2

The contribution of each single bubble is encoded in the first term (I) whose expansion is given
in Proposition 3.3. All the other terms come from the interaction among different bubble. First we
estimate the leading term (IT) + (II1).

For any h =1,...,k let B} := BT (n(e)7,,1(¢)%) C B}, provide ¢ is small enough and moreover B,
are disjoint each other and &’ B,J{ = B,J{ NORY.

Kg (Wi(2)) Wi(@)|g(x)|? de

v

+ [ 1 (el Ka W) W@l g(a) de

By
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Now, the main term in (II) is given by

Kg (Wi(2)) Wi@)|g(x)|? do =

n—2 — . _n=2 _ X
/+ Ky <5,_ U <w g'(g)ﬂ> +8:0; 2 Vp (ac Z.(6)71)> X
B; 7 i
_n=2 — 2 _

1
X — | l9(diy + n(e)m)|2 dy

5+ 1) = 5P + O+ 6,0,7 = 82)

/N

n—2 n—2
R 5.2 §.2
7 J 2*—1 v J
_ n_ U dy+o | ————
K| n(E)" 2 = 7 Jre ( ne) )
n—2 n—2 n—2 n—2
a2 0; % 0;° / 1 d P 0
= — pe— — _ n y + 0 o (A\n—2
O R R N e N ey

n—2 n—2 n—2 n—2
+00 n—2 5.2 8.2 1 5.2 5.2
2% r i J i J
= —a’ w _1/ ———drys — — — to| ———
"o @) TRt m - T k) ( n(e)"? )

=0n

n—2 n—2

n2 n2 ns2 ne2
=0, [ —2— - 4o 2.
(D2 — 1)3 n(e)" 2| — 7" k| n(e)"

< dx = (setting = n(e)y)
/ﬂ@1\3+(n(a)fi,n(5)g) |z —n(e)m|" 2 |z — n(e)Ts]"2
n+2 n—2

dzx

;% 9,7 / 1 1
= C—
nE)"  Jro\pr(n,g) [y — 7l ly — 72

n—2 n-2

5.2 4.2
=o| ——5

n(e)

and similarly

[ 0= () Ka 00 ) W @)lg(o)] da

R

n=2 n-2
0.2 4.2
n(e)
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For the interaction terms (II1), we argue as before, obtaining that

2(n — 1) » H{(W)W

9;% 9.7 H

=2(n— 1)« L— —
“n(e)2n — 1 KT SR

UZ=1 di(1 + o(1))

n—2 n-—2
; B n=2
_2n o Dajwny [ 60 O (140(1)
Ve —1) Jo (@+r)E 0" R n - K| (92 — 1)3
=bn
Then,
ﬁ n—2 n—2 n—2
2 5.2 1 5.2 §.2
(IT) + (IIT) ? = - — +o| —L
= L e i | e
since a simple computation shows that 9,, — b, = 0.
Now we evaluate the remaining terms.
For i # j
n—2 n—2 n—2 n—2

€ WiW;dvy| S e

i ? j ? / 1 1 dg _ O 57, 2 5,] 2
n(e)n=3  Jgo-1 [§ — T2 g — 752 n(e)n—2

oM
Now
Z |: ngingj + SgWZ'Wj — Kg(WZ)W]] dl/g n — 1 Z W dO'g
1<j M 1<j
—Z [/ —cn AW + SWs — KgW;)) W; dVg:| +ch/ < W )>W dog
1<J 1<)
and by using (C.1) we get that
n—2
5.2
|_CnAgWi + SgW’L - KQ(WZ)| S - n=2
(12 = n(e)Til® + (zn — n(e)Tim +Dndi)? — 67) 2
Hence
nT72
—en AW, + SWi — Kg Wdy}N / J
2 L, Contms s segpmy i 2 Juy @A =@

2

5.7 5 3 1 1 5,7 5”2
S 2(n—2 n(e)" / 2 7 =0 2
n(e) = ry |y — 772y — 7 77(6)"‘

and similary

n—=2 n—2

ov 2
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Now

=1 i#]

k k
6( WJEWM@ZMMM4
j=1

+
T
=t
&
&
T
™

It is immediate that

Jiy

(’)(5” 52] )

Now, outside the k— balls

.
#\Un Bi.

<Z/ |Wi

275] R\Uh B+

k k
& (Z WJ) &(Wj) - Zg(Wi)Wj] lg(2)|% do

=1 =1 i

) ) 5n;25n52
2 _ZI/V]»2 + W52 _QWZ»2> dr=o0 | —

because if i # j

Lo
B; \Uh Bi-:,_

57 on—2
U / i ’ dz
7 Jupu, st T @Rl = nE)n e

n—2 n—2
_ o0 5,2 0,2
~ e O\ e |
On each ball BJr we also have

[ () - S - ot o

dx

J=1 7]

Qﬁ(WthZW) )= > a(W)W.

dx+Z/ W;)| da

i#h j#h i#h
+Z/ WhW\da:<Z/ WE W2 4e) / W2 dx
i#£h i#h i#h
J#i
tey | WETWda
izh Y By

J#i
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Now if ¢ #£ h and n > 5 then

/ WE2WE < / % o dz
B " " B lr = n(e) Tl o — n(e)[*n2)

n—2 n—2
<5,2l5;l—2/ 1 1 _, d; % 0,7
~ @)™ Jatme/2) v — Tl ly — 72002 n(e)n—2

If, instead, n = 4 then

n—2
. o252 1
W2 2W2 < hl/B+ (7619@

- e 2P+ 1)
n(e)
Sh
9 n—2 n—-2 n—2
—2572 2 2
PRI O] B A
~ on(e)n? On n(e)n—2
If 4,5 # h then
il 5
* 0. 2 )
w2 1w < / i J
st S e e @m T e n@n
nt2 n—2 n=2 n=2
2 2 2 2
d; % 0, _, d; % 9,
one)n n(e)"?
If ¢ # h then
=3 5
* 5 2
w2 twy, < / J h
B B |z —n(e)m|" 2 [z — n(e)mn|" 2
ng2 a2 T
< 6, % 0 _ d; % 9,
onen n(e)"?
Finally, if ¢ # h
n—2 n—2
. n n 5.2 5.2
wref o (T
By B lx —mn(e)m* = nle) ()"~

In a similar way

/<9M § (Z WZ) N Zg(wl) - Zf(Wz)W] dvy

) i i#]

k 1 1
:Z/ [ ] |g(x)|2d;v—|—/ [ |g(x)|2 dz

he1 /0B 'BE\U, 0'BF

# 1

R I el

o'BY

n—2 n—2
5.2 4.2

= 0 kd ‘7

44
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Let us look at the main term of (D.1). Let Q(p) be the quadratic form associated with the second
derivative of p — ||m(p)||? (being zero the first derivative) If n = 4 by (4.7)

k k
> (621 8]) [ballw(p)|1* + 0, (1)] — &Y dilen + 0 (1))
1=1 =1
”;2 "5t e
B 5, 1 5,2 6,
Z nn—? ’7—, _ 7-‘|n—2 +o nn—Q
J<t ¢ J

Z (do +ndj)* (I p| + O(1)) by (@) + 5029 m) + O() + (1)
2

iy
Z (cn + 0l (1))

i=1
2 2
p
+o| =
e (7)
and the claim follows because of the choice of dy in (4.3) and the fact that since n = |In p|_i (see
(3.32))

0O

(1) = O(|Inp|) = o(n?).
I£5<n <7 by (4.6)

i k
25' [anﬂ'(pi)Hz—f—O;l(l)] —5251.(%_’_0%(1))
i=1 p
n—2 n—2 nid no2
L 0i°9° 1 5,7 0,7

=D Pl e

i< IK[zom T — T "

k 1
= 3o+ 1dy)ou [ |m DI + SN 7) + O6r°) + 01,(1)

=1

and the claim follows because of the choice of dy in (4.3) and the fact that since n = e (see (3.32))
/

ol (1) = O(e) = o(n?) if n = 6,7 and 0,,(1) = O(e|Ine|) = o(n?) if n = 5.

We point out that in higher dimensions n > 8 this is not true anymore.
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