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Abstract. The main scope of this paper is to obtain non-compactness results for a linearly perturbed
version of the classical problem of prescribing the scalar and boundary mean curvatures of a compact
Riemannian manifold via conformal changes of the metric. One of the principal difficulties for the
study of the geometric problem is the loss of compactness due to bubbling of solutions. However, in
dimension three, under additional assumptions on the geometry of the manifold and the prescribed
curvatures, it has been possible to recover compactness by showing that blow-up points are isolated
and simple. In this work we prove that this property becomes false under arbitrarily small linear
perturbations of the boundary equation as soon as the restriction on the dimension is lifted. More
precisely, on a generic manifold of positive conformal class and dimension between four and seven,
we construct a solution for the case of negative prescribed scalar curvature that exhibits a clustering
blow-up point at the boundary which is non-umbilic and a local minimizer of the squared norm of the
trace-free second fundamental form.

1. Introduction

Given a compact Riemannian manifold (M, g) of dimension n ≥ 3 with boundary ∂M, a widely
studied geometric problem is the following one: given two smooth functions K and H find a metric
conformal to g whose scalar curvature is K and boundary mean curvature is H.
As it is well known, the geometric problem can be rephrased into the following one: given two smooth
functions K and H find a positive solution to the PDE

− 4(n− 1)

n− 2
∆gu+ Sgu = Ku

n+2
n−2 in M

2

n− 2

∂u

∂ν
+ hgu = Hu

n
n−2 on ∂M.

(1.1)

Here ∆g:= divg(∇) is the Laplace-Beltrami operator, Sg is the scalar curvature and hg the boundary
mean curvature associated to the metric g and ν is the outward unit normal vector to ∂M . The metric

g̃ = u
4

n−2 g is conformal to g and its scalar and boundary mean curvatures are nothing but K and H,
respectively.

The study began with the work of Cherrier [13] who gave a first criterion for the existence and
regularity of solution of (1.1). Successively, Escobar in a series of papers [21, 23, 22] found a solution
to (1.1) when either K = 0 (i.e. scalar flat metric) and H constant or H = 0 (i.e. minimal boundary)
and K is constant. The proof strongly relies on the dimensions of the manifold, on the properties of
the boundary (e.g. being or not umbilic) and on vanishing properties of the Weyl tensor (e.g. being
identically zero or not on the boundary or on the whole manifold). Important contributions in this
framework are due to the work of Marques in [34, 33], Almaraz [3], Brendle & Chen [9] and Mayer &
Ndiaye [35]. The case when K > 0 and H is an arbitrary constant, has been successfully treated by
Han & Li in [28, 27] and Chen, Ruan & Sun [12].
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There are a few results concerning the general case in which K and H are functions (not necessarily
constants) and all of them have been obtained for special manifolds (e.g. typically the unit ball or the
half sphere). In particular, we refer to the works of Ben Ayed, El Mehdi & Ould Ahmedou [7, 8] and
Li [29] when H = 0 and Abdelhedi, Chtioui & Ould Ahmedou [1], Chang, Xu & Yang [10], Djadli,
Malchiodi & Ould Ahmedou [19] and Xu & Zhang [44] when K = 0. The case when both K and H
do not vanish, has been studied by Ambrosetti, Li & Malchiodi [5] in a perturbative setting on the
n−dimensional unit ball and by Djadli, Malchiodi & Ould Ahmedou [18] on the three-dimensional half
sphere. Finally, we quote the result of Chen, Ho & Sun [11] where they found a solution to (1.1) when
H and K are negative functions provide the manifold has a boundary of negative Yamabe invariant.

Recently, Cruz-Blázquez, Malchiodi and Ruiz [15] considered a manifold whose scalar curvature
Sg ≤ 0 and the case K negative and H of arbitrary sign. They introduce the scaling invariant
quantity

Dn(p) =
√
n(n− 1)

H(p)√
|K(p)|

, p ∈ ∂M

and established the existence of a solution to (1.1) whenever Dn < 1 along the whole boundary. On
the other hand, if Dn > 1 at some boundary points they got a solution only in a three dimensional
manifold, for a generic choice of K and H. Let us describe more carefully their result. First of all, via
the conformal change of metric due to Escobar [23], one can assume that the mean curvature hg = 0
and Sg has constant sign (this will be also assumed understood in the rest of our paper), so problem
(1.1) reads as 

− 4(n− 1)

n− 2
∆gu+ Sgu = Ku

n+2
n−2 in M

2

n− 2

∂u

∂ν
= Hu

n
n−2 on ∂M.

(1.2)

Problem (1.2) is variational in nature, i.e. the solutions of (1.2) are critical points of the energy
functional defined on H1(M)

J(u) =
2(n− 1)

n− 2

∫
M
|∇gu|2 +

1

2

∫
M
Sgu2 − 1

2∗

∫
M
K(u+)2∗ − (n− 2)

∫
∂M

H(u+)2]

where 2∗ = 2n
n−2 and 2] = 2(n−1)

n−2 are the critical Sobolev exponent for M and the critical trace

embedding exponent for ∂M , respectively. In [15] the authors show that if Sg ≤ 0 and Dn < 1 along
the whole boundary, the functional becomes coercive and they found a global minimizer. On the other
hand, if there exists p ∈ ∂M such that Dn(p) > 1, they construct a sequence of functions ui such that
the energy J(ui)→ −∞ and the minimum point does not exist anymore. However, on a 3−dimensional
manifold they recover the existence of a positive solution by using a mountain pass type argument.
Their proof relies on a careful blow-up analysis: first they show that the blow-up phenomena occurs
at boundary points p with Dn(p) ≥ 1, with different behaviors depending on whether Dn(p) = 1
or Dn(p) > 1. To deal with the loss of compactness at points with Dn(p) > 1, where bubbling of
solutions occurs, it is shown that in dimension three all the blow-up points are isolated and simple
(the classification of blow-up points is given in Remark 1.1 below). The same strategy was also used
in [18] for the case K > 0 in the three dimensional half sphere. As a consequence, the number of
blow-up points is finite and the blow-up is excluded via integral estimates that hold true when Sg ≤ 0.
In that regard, n = 3 is the maximal dimension for which one can prove that the blow-up points with
Dn > 1 are isolated and simple for generic choices of K and H. In the closed case such a property is
assured up to dimension four (see [30]) but, as observed in [18], the presence of the boundary produces
a stronger interaction of the bubbling solutions with the function K.

Remark 1.1. Following standard terminology, it is useful to review the classical classes of blow-ups.
We say that p0 ∈ M is a blow-up point for a sequence of solutions ui if there exists a sequence pi in
M such that pi → p0 and ui(pi) → +∞. Blow-up points p ∈ M can be classified according to the
definitions introduced by Schoen in [43] (see also [18, Definitions 4.3, 4.4, 4.5]). p0 ∈ M is said to



CLUSTERS FOR A BOUNDARY YAMABE PROBLEM 3

be an isolated blow-up point for ui if there exists a sequence pi of local maxima of ui with pi → p0,
ui(pi)→ +∞ and such that there exist c > 0 and R > 0 in such a way that

0 < ui(x) ≤ c

dg(x, pi)
n−2
2

if x ∈ B(pi, R).

Moreover, p0 ∈M is said to be an isolated and simple blow-up point for ui if it is an isolated blow-up
point and the radial average

ûi(r) := r
n−2
2

1

|∂B(pi, r)|g

∫
B(pi,r)

uidσg

has a exactly one critical point in (0, R).

Motivated by the previous observations, in the present paper we choose to perturb linearly the
mean curvature boundary term, i.e. to study the problem

−4(n− 1)

n− 2
∆gu+ Sgu = Ku

n+2
n−2 in M,

2

n− 2

∂u

∂ν
+ εu = Hu

n
n−2 on ∂M,

(1.3)

where ε is a small and positive parameter, and to address the following question:

(Q) If n ≥ 4, does (1.3) admit solutions with a non-isolated (i.e. clustering) blow-up point?

Our main result provides a partial positive answer.

Theorem 1.2. Assume 4 ≤ n ≤ 7. Let π be the second fundamental form of ∂M. Assume

(i) Sg > 0,
(ii) H > 0 and K < 0 are constant functions such that Dn >1,

(iii) There exists p ∈ ∂M which is non-umbilic (i.e. π(p) 6= 0) and a non-degenerate minimum
point of ‖π(·)‖2.

Then for any k ∈ N, there exist pjε ∈ ∂M for j = 1, . . . , k and εk > 0 such that for all ε ∈ (0, εk) the

problem (1.3) has a solution uε with k positive peaks at pjε and pjε → p as ε→ 0, i.e., p is a clustering
blow-up point.

Remark 1.3. We recall that a point p ∈ ∂M is non-umbilic if the trace-free part of the second
fundamental form of ∂M does not vanish at p.. Since hg = 0, the tensor Tij = hij − hggij reduces
to the second fundamental form π whose components are hij and so p is non-umbilic if ‖π(p)‖ > 0.
Recently, Cruz-Blázquez and Pistoia in [16] proved that the non-degeneracy assumption (iii) is satisfied
for generic Riemannian metrics with minimal boundary, which can also be taken within the conformal
class of the original metric on M .

The main ingredients of our construction are the so-called bubbles, i.e. the solutions of the problem
− cn∆u = Ku

n+2
n−2 in Rn+

2

n− 2

∂u

∂ν
= Hu

n
n−2 on ∂Rn+

(1.4)

where cn := 4(n−1)
n−2 and Dn :=

√
n(n− 1) H√

|K|
> 1 (ν is the exterior normal vector to ∂Rn+). Solutions

to (1.4) are completely classified in [14] (see also [31]) . These are given by

Uδ,y(x) :=
1

δ
n−2
2

U

(
x− y
δ

)
, U(x) :=

αn

|K|
n−2
4

1

(|x̃|2 + (xn + Dn)2 − 1)
n−2
2

(1.5)

where αn := (4n(n− 1))
n−2
4 , x = (x̃, xn), y = (ỹ, 0) and δ > 0. The solutions we are looking for are

the sum of k positive bubbles which concentrate at the same boundary point p with the same speeds,
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i.e. in local coordinates (see (3.1) and (4.4)) around p

uε(x) ∼
k∑
j=1

1

δ
n−2
2

j

U

(
x− ηj
δj

)
where the all concentration parameters δj have the same speed with respect to ε and all the concen-
tration points ηj collapse to 0 as ε→ 0 (see (4.5), (4.6) and (4.7)).

Unfortunately this first approximation is not as good as one can expect. We need to refine it
adding some extra terms which solve the linear problem (3.2). To find these extra terms, it is crucial
the study of the linear theory developed in Section 2. The novelty is Theorem 2.1 which states the
non-degeneracy of the bubble (1.5), i.e. all the solution of the linearized problem

−cn∆v − n+ 2

n− 2
KU

4
n−2 v = 0 in Rn+,

2

n− 2

∂v

∂ν
− n

n− 2
HU

2
n−2 v = 0 on ∂Rn+,

(1.6)

are a linear combination of the functions

zi(x) :=
∂U

∂xi
(x), i = 1, . . . , n− 1, and zn(x) :=

(
2− n

2
U(x)−∇U(x) · (x+ Dnen) + Dn

∂U

∂xn

)
.

The proof relies on some new ideas which allow a comparison among solutions to the linear problem
(1.6) and the eigenfunctions of the Neumann problem on the ball equipped with the hyperbolic metric
(see Lemma 2.3). It is worthwhile to point out that Han & Lin in [27] and Almaraz in [2] related
similar linear problems in the case K ≥ 0 with some eigenvalue problems on spherical caps with
standard metric.
Once the refinement of the ansatz is made, we argue using a Ljapunov-Schmidt procedure. As it is
usual, the last step consists in finding a critical point of the so-called reduced energy and to achieve this
goal it is necessary to know the energy of each bubble together with its correction. The contribution of
the correction to the energy is relevant and, to capture it, it is necessary to know the exact expression
of the correction itself. This part is new and requires a lot of work. This is done in Section 3. Finally,
we can write the main terms of the reduced energy which come from the contribution of each peak ηj ,
the interaction between different peaks ηj and ηi and the linear perturbation ε−term. For example,
in dimension n ≥ 5 (up to some constants) it looks like

k∑
j=1

δ2
j

(
‖π(p)‖2 + Q(p)(ηi, ηj)

)
+
∑
i 6=j

(δiδj)
n−2
2

|ηi − ηj |n−2
− εδj

+ h.o.t. (1.7)

here Q(p) is the quadratic form associated with the second derivative of ‖π(·)‖2 at the point p which
is supposed to be positively definite (remind that p is a minimum point of π). Now, if we choose

δj ∼ ε and |ηj | ∼ η with ε2η2 ∼ εn−2

ηn−2

we can minimize the leading term in (1.7) as soon as the term “h.o.t.” is really a higher order term
and this is true only in low dimensions 4 ≤ n ≤ 7. We believe that this is not merely a technical issue.
It would be extremely interesting to understand if in higher dimensions the clustering phenomena ap-
pears if the blow-up point is umbilic, i.e. π(p) = 0. It is clear that in this case building the clustering
configuration is even more difficult than in the non-umbilic case, because the ansatz must be refined
at an higher order.

Remark 1.4. Even if our result holds true in low dimensions we decide to write all the steps of the
Ljapunov-Schmidt procedure in any dimensions because it would be useful in studying some related
problems. In particular, our argument allows to prove that if n ≥ 4 the problem (1.3) has always a
solution with one blow-up boundary point p which is non-umbilic and minimizes ‖π(·)‖. In fact, if
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k = 1 the expansion of the reduced energy in (1.7) holds true in any dimensions. We also refer to the
recent paper [17], where Cruz-Blázquez and Vaira construct a single blowing-up solution for a suitable
choice of non-constants K and H. The existence of solutions with a single blow-up point was studied
by Ghimenti, Micheletti & Pistoia in [25, 26, 24] when K = 0 and H = 1 in presence of a linear
non-autonomus perturbation.

Remark 1.5. We remark that very recently Ben Ayed & Ould Ahmedou [6] found solutions with
clustering blow-up points on half spheres of dimension greater than five for a subcritical approximation
of the geometric problem (1.1), with a nonconstant function K > 0 and H = 0. As far as we know,
our result is a pioneering work in the construction of solutions with clustering blow-up points for the
problem (1.3) with K and H not identically zero. In particular, it is the first time that this argument
is carried out with K < 0 and H > 0, which has been proved to be especially challenging due to the
existing competition between the critical terms of the energy functional.

Remark 1.6. Finally, we point out that the clustering phenomena for Yamabe-type equations have
been largely studied in the literature, although most of the results available concern the problem
on closed compact manifolds. Consider for instance the linear perturbation of the classical Yamabe
equation,

−∆gu+ Sgu+ εu = u
n+2
n−2 in M. (1.8)

It is known that in 3−dimensional manifolds all the solutions to (1.8) have isolated and simple blow-up
points (see Li and Zhu [32]). However, this property is lost in higher dimensions.
If n ≥ 7, Pistoia & Vaira [37] build a solution to (1.8) with a clustering (i.e. non-isolated) blow-up
point at a non-degenerate and non-vanishing minimum point of the Weyl’s tensor. In any dimensions
n ≥ 4 the clustering phenomena appears if the linear perturbation term εu is replaced with a function
hε converging to a suitable function h0 as showed by Druet & Hebey [20] and Robert & Vétois [40] if
n ≥ 6 and by Thizy & Vétois [42] if n = 4, 5.
The existence of solutions to (1.8) with a towering (i.e. isolated but non-simple) blow-up point has been
proved in dimensions n ≥ 7, by Morabito, Pistoia & Vaira [36] on symmetric nonlocally conformally
flat manifolds and by Premoselli [38] in the locally flat case.
In the spirit of [20, 40] it would be interesting to replace the linear perturbation term in (1.3) with
some functions hε in order to build a solution with a clustering blow-up point in any dimensions n ≥ 4.
Moreover, inspired by the above results we strongly believe that it would be possible to build solutions
to problem (1.3) with a towering blow-up point in any dimensions n ≥ 4. This will be the topic (at
least in a symmetric setting) of a forthcoming paper.

The paper is organized as follows. In Section 2 we study the linear problem (1.6). In Section 3
we find out the correction term. In Section 4 we sketch the main steps of the proof, which relies on
standard arguments typical of the Ljapunov-Schmidt procedure. However, since it involves a lot of
new delicate and quite technical estimates, in order to streamline the reading of the work, we have
decided to postpone them in the appendices.

In what follows we agree that f . g means |f | ≤ c|g| for some positive constant c which is indepen-
dent on f and g and f ∼ g means f = g(1 + o(1)).

Acknowledgements. The first author whishes to acknowledge financial support from FEDER-
MINECO Grant PID2021-122122NB-I00 and by J. Andalucia (FQM-116). The second author ac-
knowledges support of INDAM-GNAMPA project “Problemi di doppia curvatura su varietà a bordo
e legami con le EDP di tipo ellittico” and of the project “Pattern formation in nonlinear phenomena”
funded by the MUR Progetti di Ricerca di Rilevante Interesse Nazionale (PRIN) Bando 2022 grant
20227HX33Z. The first and the third authors have been partially supported by INdAM – GNAMPA
Project “Fenomeni di blow-up per equazioni non lineari”, E55F22000270001S and by PRIN 2017JP-
CAPN.
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2. The key linear problem

First of all, it is necessary to study the set of the solutions for the linearized problem: −
4(n−1)
n−2 ∆v + n+2

n−2 |K|U
4

n−2 v = 0 in Rn+,
2

n−2
∂v
∂ν −

n
n−2HU

2
n−2 v = 0 on ∂Rn+,

(2.1)

where ν = −en is the exterior normal vector to ∂Rn+ and

U(x) = U1,x0(1)(x̃, xn) =
αn

|K|
n−2
4

1

(|x̃|2 + (xn + Dn)2 − 1)
n−2
2

(2.2)

where x̃ = (x1, . . . , xn−1) ∈ Rn−1 and xn ≥ 0, stands for the simplest solution to the boundary Yamabe
problem defined in (1.4) when Dn(p) > 1.

Theorem 2.1. Let v ∈ H1(R+
n ) be a solution of (2.1). Then v is a linear combination of the functions

zi(x) :=
∂U

∂xi
(x) =

αn

|K|
n−2
4

(2− n)xi

(|x̃|2 + (xn + Dn)2 − 1)
n
2

, i = 1, . . . , n− 1 (2.3)

and

zn(x) :=

(
2− n

2
U(x)−∇U(x) · (x+ Dnen) + Dn

∂U

∂xn

)
=

αn

|K|
n−2
4

n− 2

2

|x|2 + 1−D2
n

(|x̃|2 + (xn + Dn)2 − 1)
n
2

(2.4)

The proof of Theorem 2.1 will require some preliminary results. In particular it is useful to recall
the properties of the conformal Laplacian and boundary operator. For a given metric g, they are
defined as

Lgv = −4(n− 1)

n− 2
∆gv + Sgv and, Bgv =

2

n− 2

∂v

∂ν
+ hgv,

being Sg and hg the scalar and boundary mean curvatures. If we choose a conformal metric of the

form ρ
4

n−2 g, then Lg and Bg are conformally invariant in the following sense:

Lgv = ρ
n+2
n−2L

ρ
4

n−2 g
(ρ−1v) and

Bgv = ρ
n
n−2B

ρ
4

n−2 g
(ρ−1v).

(2.5)

Lemma 2.2. For every i = 0, 1, . . ., let us consider the following boundary eigenvalue problem:{
γ′′i + (n− 1) coth tγ′i −

(
i(i+n−2)

sinh2 t
+ n

)
γi = 0, for 0 < t < T,

γ′i(T )− µγi(T ) = 0,
(2.6)

with µ ∈ R. Then the following hold true:

(i) If i = 0, the only bounded solutions are of the form γ0(t) = c1 cosh t for c1 ∈ R, and satisfy
(2.6) with µ = µ0 := tanhT.

(ii) If i = 1, the only bounded solutions can be written in the form γ1(t) = c2 sinh t with c2 ∈ R,
and solve (2.6) with µ = µ1 := (tanhT )−1.

(iii) If i ≥ 2 and µ ≤ µ1, (2.6) does not admit bounded solutions.

Proof. The proofs for (i) and (ii) use the exact same argument, so for the sake of brevity we will only
show the proof for (ii)

Firstly, observe that sinh t solves the first equation of (2.6) with i = 1, and it is positive and
bounded in [0, T ]. Therefore, by linear ODE theory, we can write any solution to the equation in the
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form γ1(t) = c(t) sinh t for some function c(t). Straightforward computations show that c(t) must
solve the following relation:

c′′(t) sinh t+ (2 cosh t+ (n− 1) coth t sinh t) c′(t) = 0. (2.7)

If c(t) is non-constant, (2.7) can be integrated and its solutions can be calculated explicitly. For t
small enough, they present the asymptotic behavior

c(t) = c3

(
1

t
− (n− 1) ln t+O(t)

)
, with c3 6= 0.

Thus, c(t) must be constant. The second part of (ii) can be proved by direct computation.

Finally, let us prove (iii). We will consider the unique solution to (2.6) with γi(T ) = 1, so we study
the following situation:

γ′′i + (n− 1) coth tγ′i −
(
i(i+n−2)

sinh2 t
+ n

)
γi = 0, for 0 < t < T,

γ′i(T ) = µ,

γi(T ) = 1.

Let i ≥ 2 and define ui = γi − γ1, with γ1 denoting the unique solution to (2.6) with i = 1, µ = µ1

and γ1(T ) = 1. Then ui satisfies
u′′i + (n− 1) coth tu′i −

(
i(i+n−2)

sinh2 t
+ n

)
ui = (i−1)(i+n−1)

sinh2 t
γ1,

u′i(T ) = µ− µ1,

ui(T ) = 0.

(2.8)

Firstly, we will show that u′i(T ) ≥ 0, proving that µ ≥ µ1. Assume by contradiction that u′i(T ) < 0.
Then since u(T ) = 0, there exists a small interval (t0, T ) where u(t) > 0. By the first equation of
(2.8), since i ≥ 2,

u′′i (t) + (n− 1)
cosh t

sinh t
u′i(t) ≥ 0, for t0 < t < T. (2.9)

Inequality (2.9) can be written in the more convenient way(
(sinh t)n−1u′i

)′ ≥ 0, for t0 < t < T.

Consequently, (sinhT )n−1u′i(T ) ≥ (sinh t0)n−1u′i(t0). In view of this, if t0 = 0, then u′i(T ) ≥ 0, a
contradiction. However, if t0 > 0, then ui(t0) = ui(T ) = 0 so there exists t1 ∈ (t0, T ) with u′i(t1) = 0,
again a contradiction.

To see that the inequality is strict we only need to show that there are no solutions for i ≥ 2 and
µ = µ1. Let us define the sequence of linear operators

Ai(φ)(t) = −φ′′(t)− (n− 1) coth t φ′(t) +

(
i(i+ n− 2)

sinh2 t

)
φ(t),

subject to the boundary conditions φ(T ) = 1 and φ′(T ) = µ1. (i) implies that A0 admits no solution,
while (ii) gives us a positive function φ1 satisfying A1(φ1) = 0. Therefore, A1 is a non-negative
operator. Now, notice that the following relation holds:

Ai = A1 + (i− 1)(i+ n− 1).

Consequently, Ai is a positive operator if i ≥ 2 and Ai(φ) = 0 only admits the trivial solution. �

Lemma 2.3. Let n ≥ 3. Denote by BR the ball of radius 0 < R < 1 centered at the origin of Rn,
equipped with the hyperbolic metric

gH =
4 |dx|2(

1− |x|2
)2 .
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The first eigenvalue of the Neumann boundary problem{
∆Hφ− nφ = 0 in BR,
∂φ
∂ν = µφ on ∂BR.

(2.10)

is µ0 = 2R
1+R2 , with corresponding eigenfunction given by φ0(x) = 1+|x|2

1−|x|2 . The second eigenvalue

is µ1 = 1+R2

2R and the corresponding eigenspace is n−dimensional and generated by the family of
eigenfunctions {

φi1(x) =
|x|xi

1− |x|2
: i = 1, . . . , n

}
.

Proof. Let dH denote the geodesic distance from the origin, given by dH(x) = ln 1+|x|
1−|x| , and let (t, θ)

be the geodesic polar coordinates of a point in BR\{0}, where 0 < t < T = ln 1+R
1−R and θ ∈ Sn−1. In

these coordinates, the hyperbolic metric takes the form

gH = dt2 + sinh2 tgSn−1 ,

where gSn−1 is the standard metric on Sn−1, and (2.10) is equivalent to the following problem:{
∂2φ
∂t2

+ (n− 1) coth t∂φ∂t +
∆Sn−1φ

sinh2 t
− nφ = 0 in BT ,

∂φ
∂t = µφ on ∂BT .

(2.11)

See [39] for more details. Using the fact that spherical harmonics generate L2(Sn−1), we write φ(t, θ) =∑
i γi(t)ξi(θ), with ξi satisfying the equation

−∆Sn−1ξi = i(i+ n− 2)ξi, i = 0, 1, . . .

Therefore, separating variables, we can rewrite (2.11) in the following form:{ ∑
i

(
γ′′i + (n− 1) coth tγ′i −

(
i(i+n−2)

sinh2 t
+ n

)
γi

)
ξi = 0,∑

i (γ′i(T )− µγi(T )) ξi = 0.

Since the functions ξi are orthogonal, the consequence is that each γi is a solution of (2.6). By Lemma
2.2, if µ = µ0 = tanhT = 2R

1+R2 , there exists a solution for (2.6) associated to i = 0, and consequently

a solution for (2.11):

φ0(t, θ) = cosh t.

φ0 is non-negative in [0, T ], so µ0 must be the first eigenvalue of (2.10). Again by Lemma 2.2, for

µ = µ1 = (tanhT )−1 = 1+R2

2R there exists a solution for (2.6) associated to i = 1, which produces the
family of solutions for (2.11): {

φi1(t, θ) = ξi(θ) sinh t : i = 1, . . . , n
}
.

The same result guarantees that any other solution of (2.6) must have µ > µ1, finishing the proof. �

Finally, we are in position to prove Theorem 2.1.

Proof of Theorem 2.1. This proof follows the ideas of [2, Lemma 2.2], with the fundamental difference
that our problem is equivalent to one on a geodesic ball in the Hyperbolic space and not in the
Euclidean sphere.

Let us denote g? = |K|U
4

n−2 g0. The scalar and boundary mean curvatures of Rn+ with respect to
g? are given by (1.1):

S? = −1, h? =
Dn(p)√
n(n− 1)

.
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By means of (2.5), it is possible to rewrite (2.1) as follows: ∆?v̄ − 1
n−1 v̄ = 0 in Rn+,

∂v̄
∂ν?
− Dn(p)√

n(n−1)
v̄ = 0 on ∂Rn+.

with v̄ = |K|−
n−2
4 U−1v. The differential operators are explicit and their expressions are given by:

∆?v̄ =

(
1− |x̃|2 − (xn + Dn(p))2

)2

4n(n− 1)
∆v̄ +

n− 2

2n(n− 1)

(
1− |x̃|2 − (xn + Dn(p))2

)
∇v̄ · (x+ Dn(p)en) ,

(2.12)

∂v̄

∂ν?
=

1− |x̃|2 − (xn + Dn(p))2

2
√
n(n− 1)

∂v̄

∂η
. (2.13)

Now let us denote by Φ the map given by

Φ = K−1 ◦ τDn(p) : Rn+ → B1(0) ⊂ Rn, (2.14)

where τDn(p) is the translation x→ x+Dn(p)en and K is the Cayley transform, which maps conformally
the ball of radius 1 centered at the origin of Rn to the half-space Rn+. It can be proved that, up to

composing with a certain isometry of Hn, Im(Φ) = BR(0) with R = Dn(p)−
√
Dn(p)2 − 1. Moreover,

Φ is a conformal map and satisfies

Φ∗gH =
|K|

n(n− 1)
U

4
n−2 g0, where gH =

4 |dx|2

(1− |x|2)2
on BR. (2.15)

Multiplying (2.12) by n(n − 1) and (2.13) by
√
n(n− 1) and applying (2.15), one can see that

v̂ = (Ū−1v) ◦ Φ−1 is in H1(BR) (see [26, Lemma 6]) and satisfies the following problem:{
∆Hv̂ − nv̂ = 0 in BR,

∂v̂
∂νH

= Dn(p)v̂ on ∂BR,

being

∆Hv̂ =

(
1− |x|2

)2

4
∆v̂ +

n− 2

2
∇v̂ · x, and

∂v̂

∂νH
=

1− |x|2

2

∂v̂

∂η

the Laplace-Beltrami operator and normal derivative on BR considered with respect to the hyperbolic

metric gH. Theorem 2.1 follows from Lemma 2.3, taking into account that Dn(p) = 1+R2

2R and

ẑi = ciφ
i
1 for every i = 1, . . . , n. (2.16)

�

3. The building block

Let p ∈ ∂M . The main ingredient to cook up our solutions are the bubbles defined in (1.5) together
with the correction found out in Proposition 3.1, i.e. the building block of the solutions we are looking
for is

Wp(ξ) := χ

((
ψ∂p

)−1
(ξ)

)[
1

δ
n−2
2

U

((
ψ∂p
)−1

(ξ)

δ

)
+

1

δ
n−4
2

Vp

((
ψ∂p
)−1

(ξ)

δ

)]
(3.1)

where ψ∂p : Rn+ → M are the Fermi coordinates in a neighborhood of p and χ is a radial cut-off
function, with support in a ball of radius R. Here U is the bubble defined in (2.2) and Vp solves (3.2).
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3.1. The correction of the bubble. Let us introduce the correction term as the function Vp : Rn+ →
R which is defined below.

Proposition 3.1. Let U be as in (2.2) and set

Ep(x) =
n−1∑
i,j=1

8(n− 1)

n− 2
hij(p)

∂2U(x)

∂xi∂xj
xn, x ∈ Rn+

where hij(p) are the coefficients of the second fundamental form of M at the point p ∈ ∂M . Then the
problem  −

4(n−1)
n−2 ∆V + n+2

n−2 |K|U
4

n−2V = Ep in Rn+,
2

n−2
∂V
∂ν −

n
n−2HU

2
n−2V = 0 on ∂Rn+,

(3.2)

admits a solution Vp satisfying the following properties:

(i)
∫
Rn+

Vp(x)zi(x)dx = 0 for any i = 1, . . . , n (see (2.3) and (2.4))

(ii) |∇αVp| (x) . 1
(1+|x|)n−3+α for any x ∈ Rn+ and α = 0, 1, 2

(iii)

|K|
∫
Rn+
U

n+2
n−2Vpdx = (n− 1)H

∫
∂Rn+

U
n
n−2Vp dx̃.

(iv) if n ≥ 5 ∫
Rn+

(
−4(n− 1)

n− 2
∆Vp +

n+ 2

n− 2
|K|U

4
n−2Vp

)
Vp ≥ 0,

(v) the map p 7→ Vp is C2(∂M).

Proof. First, we will introduce some notation to reduce ourselves to the study of a problem similar to

(2.1). Let Ū = |K|
n−2
4 U , then we can rewrite (3.2) as: −

4(n−1)
n−2 ∆v + n+2

n−2 Ū
4

n−2 v = f in Rn+,
2

n−2
∂v
∂ν −

n
n−2

Dn(p)√
n(n−1)

Ū
2

n−2 v = 0 on ∂Rn+,

Let Φ be as in (2.14). We set

f̂(Φ−1(x)) =
n(n− 2)

4
f(x)Ū(x)−

n+2
n−2

Arguing as in the proof of Theorem 2.1, we see that it is enough to consider the following problem for
v̂ = (Ū−1v) ◦ Φ−1 : {

∆Hv̂ − nv̂ = f̂ in BR,

∂v̂
∂νH

= Dn(p)v̂ on ∂BR,
(3.3)

By the area formula and (2.16):∫
Br

φk1(z)f̂(z)dµgH = cn

∫
Rn+
φk1(Φ−1(x))hij(p)

∂2U(x)

∂xi∂xj
xnU

−n+2
n−2

∣∣Jac Φ−1
∣∣ dx

= cn

∫
Rn+

zk(x)hij(p)
∂2U(x)

∂xi∂xj
xndx

= cn

n−1∑
i,j=1

i 6=j

∫ +∞

0

∫
Rn−1

xixjpk(x̃, xn)(
|x|2 − 1

)n+1dx̃dxn,
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being pk a polynomial in x with deg pk = 1 if k = 1, . . . , n−1, and deg pn = 2. To get the last identity
we have also used definitions (2.2), (2.3), (2.4) and the condition

∑
i h

ii(p) = 0. Now, if we take polar
coordinates in Rn−1 and use the fact that∫

Sn−2
r

pγ =
r2

γ(γ + n− 3)

∫
Sn−2
r

∆pγ

for every homogeneous polynomial pγ of degree γ, we can check that∫
Br

φk1(z)f̂(z)dµgH = 0 for all k = 1, . . . , n.

By elliptic linear theory, there exists a solution v̂ to (3.3) which is orthogonal to {φk1}nk=1. Consequently,
v = Ū(v̂ ◦ Φ) is a solution of (3.2) orthogonal to {zk}nk=1.

Given z ∈ BR, let Gz0 denote the Green’s function solving the problem ∆HGz − nGz = δz −
∑n

k=1
φk1(z)φk1
‖φk1‖L2

in BR,

∂Gz
∂νH
−Dn(p)Gz = 0 on ∂BR.

Then, by Green’s representation formula

ψ(z) =

n∑
k=1

∫
BR

φk1(z)φk1(w)∥∥φk1∥∥L2

ψ(w)dµgH(w)−
∫
BR

Gz(w)∆Hψ(w)dµgH(w)

−
∫
∂BR

Gz(w)

(
∂

∂νH
−Dn(p)

)
ψ(w)dµgH(w) (3.4)

Choosing ψ = v̂ in (3.4),

v̂(z) = −
∫
BR

Gz(w)f̂(w)dµgH(w),

then

|v̂(z)| ≤ cn
∣∣hij(p)∣∣ ∫

BR

|w − z|2−n |w + Dn(p)en|−3 dµgH(w).

By [4, Proposition 4.12] with α = 2 and α = n− 3,

v̂(z) ≤ cn
∣∣hij(p)∣∣ |z + Dn(p)en|−1 .

Hence, u = Ū(û ◦ Φ) satisfies the estimate (ii). To prove (iii), integrate by parts (3.3) to obtain:

n

∫
BR

v̂dµgH −
∫
BR

f̂dµgH = Dn(p)

∫
∂BR

v̂dsgH . (3.5)

By (2.15),

dµgH = (n(n− 1))−
n
2 |K|

n
2 U

2n
n−2 |dx|2 , (3.6)

dsgH = (n(n− 1))−
n−1
2 |K|

n−1
2 U

2(n−1)
n−2 |dx̃|2 . (3.7)

Therefore, by the area formula:∫
BR

f̂dµgH = cn

∫
Rn+
hij(p)

∂2U(x)

∂xi∂xj
xnU(x)dx = 0. (3.8)

Combining (3.5) and (3.8) with the relations (3.6) and (3.7), we get the desired equality.

Finally, integrating by parts we obtain

−
∫
BR

(∆Hv̂)v̂dµgH =

∫
BR

|∇Hv̂|2 dµgH −Dn(p)

∫
∂BR

v̂2dsgH . (3.9)
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By Lemma 2.3, we know that

inf


∫
BR

(
|∇Hψ|2 + nψ2

)
dµgH∫

∂BR
ψ2dsgH

:

∫
∂BR

ψφ0dsgH = 0

 = Dn(p).

If we showed that v̂ is orthogonal to φ0 in L2(∂BR), we would get:∫
BR

|∇Hv̂|2 dµgH + n

∫
BR

v̂2dµgH ≥ Dn(p)

∫
∂BR

v̂2dsgH . (3.10)

Then, combining (3.9) and (3.10), we obtain

−
∫
BR

(∆Hv̂)v̂dµgH + n

∫
BR

v̂2dµgH ≥ 0. (3.11)

By the properties of the conformal Laplacian, we know that

LHψ =
−4(n− 1)

n− 2
∆Hψ − n(n− 1)ψ = n(n− 1)L?φ,

with ψ ◦ Φ−1 = φ. Thus, multiplying (3.11) by 4(n−1)
n−2 , we obtain

0 ≤ n(n− 1)

∫
Rn+
L?
(
Ū−1v

)
Ū−1v dµ? + n(n− 1)

(
1 +

4

n− 2

)∫
Rn+
Ū

4
n−2 v2dx

= n(n− 1)

(
4(n− 1)

n− 2

∫
Rn+

(∆v)v dx+
n+ 2

n− 2

∫
Rn+
|K|U

4
n−2 v2 dx

)
.

We conclude the proof by showing that
∫
∂BR

v̂φ0dsgH = 0. We will use the fact that φ0 solves (2.10)

for µ = Dn(p)−1 and that v̂ is a solution of (3.3). Integrating by parts:

0 =

∫
BR

f̂φ0dµgH =

∫
BR

(φ0∆Hv̂ − v̂∆Hφ0) dµgH

=

∫
∂BR

(
∂v̂

∂νH
φ0 −

∂φ0

∂νH
v̂

)
dsgH =

(
Dn(p)− 1

Dn(p)

)∫
∂BR

v̂φ0dsgH ,

where the first identity can be proved using the same argument as in (i).
For the proof of (v) we can reason as in Proposition 7 of [26]. �

We end this section by giving a more careful description of the function Vp. In particular, we need
to detect the leading part of Vp and since its decay changes as n = 4 or n ≥ 5 we have to distinguish
the two cases.

Case n = 4. We decompose Vp into three parts: the main part w̄p is almost a rational function,
the second part ζp is a harmonic function with prescribed boundary condition and the third one ψp is
an higher order term. More precisely, let

Vp = w̄p + ζp + ψp (3.12)

where w̄p, ζp and ψp solve respectively the following problems

− 6∆w̄p = Ep(x), in R4
+ (3.13)

− 6∆ζp = 0 in R4
+

∂ζp
∂ν

= 2HUζp +

(
2HUw̄p −

∂w̄p
∂ν

)
, on ∂R4

+

(3.14)

and 
− 6∆ψp + 3|K|U2ψp = −3|K|U2(w̄p + ζp) in R4

+

∂ψp
∂ν

= 2HUψp, on ∂R4
+

(3.15)
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The following holds:

Lemma 3.2. Set

w̄0
p(x) :=

3∑
i,j=1
i 6=j

Mij(p)
x4xixj(

|x̃|2 + (x4 + D4)2 − 1
)2 , with Mij(p) =

2hij(p)α4

|K|
1
2

.

Then

w̄p(x)− w̄0
p(x) = O

(
1

1 + |x|2

)
and |∇w̄p(x)−∇w̄0

p(x)| = O
(

1

1 + |x|3

)
, (3.16)

|ζp| .
1

1 + |x|
and |∇ζp| .

1

1 + |x|2
(3.17)

|ψp| .
1

1 + |x|3
and |∇ψp| .

1

1 + |x|4
. (3.18)

Proof. First we observe that the estimates (3.17) and (3.18) follows by using the same arguments of
Proposition 3.1 applied to problems (3.14) and (3.15).
Now it remains to show (3.16).
We remark that we can write

w̄p = 2hij(p)∂2
ijzp, i, j = 1, . . . , 3 i 6= j

where zp solves the problem

−∆zp = U(x)x4 =
α4

|K|
1
2

x4

|x̃|2 + (x4 + D4)2 − 1
in R4

+. (3.19)

The aim is then to understand the main term of the solution zp of (3.19).
It holds that

x4 + D4

|x̃|2 + (x4 + D4)2 − 1
=

1

2
ln(|x̃|2 + (x4 + D4)2 − 1).

Thus if we take Φ0 a solution of

−∆Φ0 = ln
(
|x̃|2 + (x4 + D4)2 − 1

)
, in R4

+ (3.20)

and Φ1 a solution of

−∆Φ1 =
D4

|x̃|2 + (x4 + D4)2 − 1
in R4

+ (3.21)

then,

zp =
α4

|K|
1
2

(
1

2

∂Φ0

∂x4
− Φ1

)
solves (3.19).
The advantage of (3.20) and (3.21) over (3.19) is that, under a change of variables

−∆[Φ0(x̃, x4 −D4)] = ln(|x̃|2 + x2
4 − 1) = ln(|x|2 − 1) in R4

+

and

−∆[Φ1(x̃, x4 −D4)] =
D4

|x̃|2 + x2
4 − 1

=
D4

|x|2 − 1
in R4

+.

If we assume that Φ0(x̃, x4−D4) and Φ1(x̃, x4−D4) are radially symmetric, i.e. Φ̃0(|x|) = Φ0(x̃, x4−D4)

and Φ̃1(|x|) = Φ1(x̃, x4 −D4) then it is reduced to solve the equations

−Φ̃′′0 −
N − 1

r
Φ̃′0 = ln(r2 − 1) in (1,+∞)

and

−Φ̃′′1 −
N − 1

r
Φ̃′1 =

D4

r2 − 1
in (1,+∞).
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The general solutions are expressed as

Φ̃0(r) =
c1 + 3r4 − 2(r2 − 1)2 ln(r2 − 1)

16r2
,

Φ̃1(r) =
c2

r2
+

D4 ln(r2 − 1)

4r2
− D4 ln(r2 − 1)

4
,

with c1, c2 ∈ R. Using the symmetries of the coefficients hij (with the aid of computer assisted proof),
we get

w̄p(x) =

2x4

3∑
i,j=1
i<j

Mijxixj

(
|x̃|2 + (x4 + D4)2 − 1

)2 +O
(

1

(1 + |x|)2

)
in a C1−sense.

That concludes the proof.
�

Case n ≥ 5. We can decompose Vp = wp + ψp where wp solves

− cn∆wp + cn
n(n+ 2)

(|x̃|2 + (xn + Dn)2 − 1)2
wp = Ep(x) in Rn+, (3.22)

and ψp solves
− cn∆ψp + cn

n(n+ 2)

(|x̃|2 + (xn + Dn)2 − 1)2
ψp = 0, in Rn+

∂ψp
∂ν

=
nDn

(|x̃|2 + D2
n − 1)

ψp +

(
nDn

(|x̃|2 + D2
n − 1)

wp −
∂wp
∂ν

)
on ∂Rn+

(3.23)

We claim that

wp(x) =
βn
4n

∑n−1
i,j=1
j 6=i

hij(p)xixj(xn −Dn)

(|x̃|2 + (xn + Dn)2 − 1)
n
2

. (3.24)

Indeed, we look for a solution of (3.22) of the form

wp(x) =
q(x)

(|x̃|2 + (xn + Dn)2 − 1)
n
2

,

with q(x) a polynomial function. Straightforward computations show that q(x) has to verify the
equation

L(q(x)) = βnxn

n−1∑
i,j=1
i6=j

hij(p)xixj ,

being
L(q) = −(|x̃|2 + (xn + Dn)2 − 1)∆q + 2n∇q · (x+ Dnen)− 2nq

with βn := 2n(n−2)αn

|K|
n−2
4

.

Observe that it is possible to write

q(x) = βn

n−1∑
i,j=1
i6=j

hij(p)qij(x),

where every qij is a polynomial solving L(qij) = xixjxn. We note that L(xixjxn) = 4nxixjxn +
2nxixjDn and L(xixj) = 2nxixj , so

L
(

1

4n
xixj(xn −Dn)

)
= xixjxn.
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Therefore, (3.24) follows.

3.2. The energy of the building block. Let us define the energy Jε : H1(M)→ R

Jε(u) :=

∫
M

(
cn
2
|∇gu|2 +

1

2
Sgu2 −KG(u)

)
dνg − cn

n− 2

2

∫
∂M

HF(u) dσg

+ (n− 1)ε

∫
∂M

u2 dσg

(3.25)

where

G(s) :=

∫ s

0
g(t) dt, g(t) := (t+)

n+2
n−2 and F(s) :=

∫ s

0
f(t) dt, f(t) := (t+)

n
n−2 .

It is useful to introduce the integral quantities whose properties are listed in Appendix A:

Iαm :=

∫ +∞

0

ρα

(1 + ρ2)m
dρ (3.26)

and if p ∈ ∂M

ϕm(p) :=

∫ +∞

Dn(p)

1

(t2 − 1)m
dt and ϕ̂m(p) :=

∫ +∞

Dn(p)

(t−Dn(p))2

(t2 − 1)m
dt. (3.27)

We will assume that H and K are constant functions. We remark that Dn, ϕm and ϕ̂m are also
constant functions, so we will omit the dependence on p.

In the following result we compute the energy of the building block (3.1) (the proof is quite technical
and is postponed in Appendix B).

Proposition 3.3. It holds true that

Jε(Wp) = E− ζn(δ)
[
bn‖π(p)‖2 + o′n(1)

]
+ εδ

[
cn + o′′n(1)

]
where (see (3.26) and (3.27))

E :=
an

|K|
n−2
2

[
−(n− 1)ϕn+1

2
+

Dn

(D2
n − 1)

n−1
2

]
, an := α2]

n ωn−1I
n
n−1

n− 3

(n− 1)
√
n(n− 1)

, (3.28)

moreover (see Proposition B.2 for the definition of fn)

bn :=
1

2
fn +

n− 2

n− 1
α2
nωn−1I

n
n−1

1

|K|
n−2
2

(
4(n− 3)ϕ̂n−1

2
+ ϕn−3

2

)
, n ≥ 5 (3.29)

b4 :=
192π2

|K|
+
α2

4ω3I
4
3

|K|
(3.30)

and

cn := 2(n− 2)ωn−1α
2
n

1

|K|
n−2
2 (D2

n − 1)
n−3
2

Inn−1. (3.31)

Moreover

ζ4(δ) := δ2| ln δ| and ζn(δ) := δ2 if n ≥ 5.

and

o′n(1) =


O(δ) if n ≥ 6,

O(δ| ln δ|) if n = 5,

O(| ln δ|−1) if n = 4

and o′′n(1) =

{
O(δ) if n ≥ 5,

O(δ| ln δ|) if n = 4.
(3.32)
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4. Proof of Theorem 1.2

4.1. Preliminaries. Since (M, g) belongs to the positive Escobar class (i.e. the quadratic part of
the Euler functional associated to the problem is positive definite), we can provide the Sobolev space
H1(M) with the scalar product

〈u, v〉 :=

∫
M

(cn∇gu∇gv + Sguv) dνg

where dνg is the volume element of the manifold. We let ‖ · ‖ be the norm induced by 〈·, ·〉.
Moreover, for any u ∈ Lq(M) (or u ∈ Lq(∂M)) we denote the Lq− norm of u by ‖u‖Lq(M) :=

(
∫
M |u|

q dνg)
1
q (respectively ‖u‖Lq(∂M) := (

∫
∂M |u|

q dσg)
1
q where dσg is the volume element of ∂M .)

We have the well-known embedding continuous maps

i∂M : H1(M)→ Lt(∂M) iM : H1(M)→ L
2n
n−2 (M)

i∗∂M : Lt
′
(∂M)→ H1(M) i∗M : L

2n
n+2 (M)→ H1(M)

for 1 ≤ t ≤ 2(n−1)
n−2 .

Now given f ∈ L
2(n−1)
n (∂M) the function w1 = i∗∂M (f) in H1(M) is the unique solution of the equation

− cn∆gw1 + Sgw1 = 0 in M

∂w1

∂ν
= f on ∂M.

(4.1)

Moreover, if we let g ∈ L
2n
n+2 (M), the function w2 = i∗M (g) is the unique solution of the equation

− cn∆gw2 + Sgw2 = g in M

∂w2

∂ν
= 0 on ∂M.

(4.2)

By continuity of iM , i∂M we get

‖i∗∂M (f)‖ ≤ C1‖f‖
L

2(n−1)
n (∂M)

‖i∗M (g)‖ ≤ C2‖g‖
L

2n
n+2 (M)

for some C1 > 0 and independent of f and some C2 > 0 and independent of g.
Then we rewrite the problem (1.3) as

u = i∗M (Kg(u)) + i∗∂M

(
n− 2

2
(Hf(u)− εu)

)
, with g(u) := (u+)

n+2
n−2 and f(u) = (u+)

n
n−2

4.2. The ansatz. Having in mind Proposition 3.3, we fix a non-umbilic and non-degenerate minimum
point p ∈ ∂M of the function ‖π(·)‖2 with and we choose

d0 :=
cn

2bn‖π(p)‖2
(4.3)

where bn and cn are positive constants defined in (3.29), (3.30) and (3.31). For any integer k ≥ 1, we
look for solutions of (1.3) of the form

uε(ξ) :=

k∑
j=1

Wj(ξ)︸ ︷︷ ︸
:=W(ξ)

+Φε(ξ) ξ ∈M (4.4)

where

Wj(ξ) = χ

((
ψ∂p

)−1
(ξ)

)
Wj(ξ)
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and

Wj(ξ) :=
1

δ
n−2
2

j

U

((
ψ∂p
)−1

(ξ)− η(ε)τj

δj

)
+ δj

1

δ
n−2
2

j

Vp

((
ψ∂p
)−1

(ξ)− η(ε)τj

δj

)
.

Here χ is a radial cut-off function with support in a ball of radius R, the bubble U is defined in
(2.2) and Vp solves (3.2). Moreover,

τj ∈ C :=
{

(τ1, . . . , τk) ∈ R(n−1)k : τi 6= τj if i 6= j
}

(4.5)

and given d0 as in (4.3) the concentration parameters δj and the rate of the concentration points η(ε)
are choosen as follows:

δj := ε (d0 + η(ε)dj) , dj ∈ [0,+∞) and η(ε) := εα with α :=
n− 4

n
if n ≥ 5 (4.6)

or

δj := ρ(ε) (d0 + η(ε)dj) dj ∈ [0,+∞) and η(ε) :=
1

| ln ρ(ε)|
1
4

if n = 4 (4.7)

where ρ is the inverse function of ` : (0, e−
1
2 ) →

(
0, e

−1

2

)
defined by `(s) = −s ln s. We remark that

ρ(ε)→ 0 as ε→ 0.
Finally, the remainder term Φε(ξ) belongs to K⊥ defined as follows.
Let us define for i= 1, . . . , n, and j = 1, . . . , k

Zj,i(ξ) = χ

((
ψ∂p

)−1
(ξ)

)
Zj,i(ξ), with Zj,i(ξ) :=

1

δ
n−2
2

j

zi

((
ψ∂p
)−1

(ξ)− η(ε)τj

δj

)
where zi are given in (2.3)and (2.4).
We decompose H1(M) in the direct sum of the following two subspaces

K = span {Zj,i : i = 1, . . . , n, j = 1, . . . , k}
and

K⊥ :=
{
ψ ∈ H1(M) : 〈ψ,Zj,i〉 = 0, i = 1, . . . , n, j = 1, . . . , k

}
.

4.3. The reduction process. We define the projections

Π : H1(M)→ K Π⊥ : H1(M)→ K⊥.
Therefore solving (4.1) is equivalent to solve the couple of equations

Π⊥
{
uε − i∗M (Kg(uε))− i∗∂M

(
n− 2

2
(Hf(uε)− εuε)

)}
= 0 (4.8)

Π

{
uε − i∗M (Kg(uε))− i∗∂M

(
n− 2

2
(Hf(uε)− εuε)

)}
= 0 (4.9)

where uε is defined in (4.4).

4.4. Solving the equation (4.8): the remainder term. We shall find the remainder term Φε ∈ K⊥
in (4.4). Let us rewrite the equation (4.8) as

E + L(Φε) +N (Φε) = 0 (4.10)

where the error term E is

E := Π⊥
{
W − i∗M (Kg (W))− i∗∂M

(
n− 2

2
(Hf (W)− εW)

)}
,

the linear operator L is

L(Φε) := Π⊥
{

Φε − i∗M
(
Kg′ (W) Φε

)
− i∗∂M

(
n− 2

2

(
Hf′ (W) Φε − εΦε

))}
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and the quadratic term N (Φε) is

N (Φε) := Π⊥
{
− i∗M

[
K
(
g (W + Φε)− g (W)− g′ (W) Φε

)]
−i∗∂M

[
n− 2

2
H
(
f (W + Φε)− f (W)− f′ (W) Φε

)]}
.

The following result holds true.

Proposition 4.1. For any compact subset A ⊂ (0,+∞)k ×C (see (4.5)) there exists ε0 > 0 such that
for any ε ∈ (0, ε0) and for any (d1, . . . , dk, τ1, . . . , τk) ∈ A there exists a unique function Φε ∈ K⊥
which solves equation (4.8). Moreover, the map (d1, . . . , dk, τ1, . . . , τk) 7→ Φε(d1, . . . , dk, τ1, . . . , τk) is
of class C1 and

‖Φε‖ .



ε2 if n ≥ 7

ε2| ln ε|
2
3 if n = 6

ε
3
2 if n = 5

ρ(ε) if n = 4.

We omit the proof because it is standard and relies on the following two key results. First, we
estimate the size of the error term E . The proof is postponed in Appendix C.

Lemma 4.2. Let n ≥ 4. For any compact subset A ⊂ (0,+∞)k × C there exists ε0 > 0 such that for
any ε ∈ (0, ε0) and for any (d1, . . . , dk, τ1, . . . , τk) ∈ A it holds

‖E‖ .



ε2 if n ≥ 7

ε2| ln ε|
2
3 if n = 6

ε
3
2 if n = 5

ρ(ε) if n = 4.

Next, we study the invertibility of the linear operator L. The proof relies on Theorem 2.1 and can
be carried out as in [41].

Lemma 4.3. Let n ≥ 4. For any compact subset A ⊂ (0,+∞)k × C there exist a positive constant
C > 0 and ε0 > 0 such that for any ε ∈ (0, ε0) and any (d1, . . . , dk, τ1, . . . , τk) ∈ A it holds

‖L(φ)‖ ≥ C‖φ‖.
4.5. Solving equation (4.9): the reduced problem. We know that solutions to problem (1.3)
are critical points of the energy functional Jε defined in (3.25). Let us introduce the so-called reduced
energy

Jε(d1, . . . , dk, τ1, . . . , τk) := Jε(W + Φε) (4.11)

where the remainder term Φε has been found in Proposition 4.1.
We shall prove that a critical point of the reduced energy provides a solution to our problem.

Proposition 4.4. Assume 4 ≤ n ≤ 7. It holds true that

(1) If (d1, . . . , dk, τ1, . . . , τk) ∈ [0,+∞)k × (Rn)k is a critical point of the reduced energy (4.11),
then W + Φε is a critical point of Jε and so it solves (1.3).

(2) The following expansion holds true

Jε(d1, . . . , dk, τ1, . . . , τk) = kE + kθn(ε)
(
cnd0 − bn‖π(p)‖2d2

0

)
+ Θn(ε)

−bn k∑
i=1

Q(p)(τi, τi)− bn‖π(p)‖2
k∑
i=1

d2
i −

dn

|K|
n−2
2

∑
i<j

dn−2
0

|τi − τj |n−2


︸ ︷︷ ︸

=:Fn(d1,...,dk,τ1,...,τk)

+ o (Θn(ε)) ,
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C0− uniformly with respect to (d1, . . . , dk, τ1, . . . , τk) in a compact set of (0,+∞)k × C. Here
Q(p) is the quadratic form associated with the second derivative of p → ‖π(p)‖2 (being zero
the first derivative), E, cn are constants defined in (3.28) and (3.31), respectively, and

dn := α2?

n ωn−1I
n−2
n+2
2

.

Moreover

θ4(ε) = Θ4(ε) := ρ2(ε)| ln ρ(ε)| if n = 4 and θn(ε) := ε2, Θn(ε) := ε
4(n−2)
n if n = 5, 6, 7.

As we claimed above, we shall postpone in Appendix D the proof because even if it relies on stan-
dard arguments, it requires a lot of new elaborated and technical estimates.

4.6. Proof of Theorem 1.2: completed. The claim immediately follows by Proposition 4.4 taking
into account that the function Fn(d1, . . . , dk, τ1, . . . , τk) has a maximum point which is stable under
C0− perturbations.

Appendix A. Auxiliary results

We have (see [2] Lemmas 9.4 and 9.5) the following results:

Iαm :=

∫ +∞

0

ρα

(1 + ρ2)m
dρ =

2m

α+ 1
Iα+2
m+1, for α+ 1 < 2m

Iαm =
2m

2m− α− 1
Iαm+1, for α+ 1 < 2m+ 2

Iαm =
2m− α− 3

α+ 1
Iα+2
m , for α+ 3 < 2m.

In particular, if n ≥ 4

Inn = In−2
n =

n− 3

2(n− 1)
Inn−1, In−2

n−1 =
n− 3

n− 1
Inn−1, In−2

n−2 =
2(n− 2)

n− 1
Inn−1. (A.1)

We also set

ϕm :=

∫ +∞

Dn

1

(t2 − 1)m
dt and ϕ̂m :=

∫ +∞

Dn

(t−Dn)2

(t2 − 1)m
dt.

By straightforward computations we deduce the following results.

Lemma A.1. It holds true that

ϕn+1
2

=
1

n− 1

Dn

(D2
n − 1)

n−1
2

− n− 2

n− 1
ϕn−1

2
,

ϕn−1
2

=
1

n− 3

Dn

(D2
n − 1)

n−3
2

− n− 4

n− 3
ϕn−3

2

and

ϕ̂m := ϕm−1 + (D2
n + 1)ϕm −

1

m− 1

Dn

(D2
n − 1)m−1

.

Moreover ∫
Rn+

|x̃|α

(|x̃|2 + (xn + Dn)2 − 1)m
dx = ωn−1I

n−2+α
m ϕ 2m−n−α+1

2
, for n+ α < 2m (A.2)∫

Rn−1

|x̃|α

(|x̃|2 + D2
n − 1)m

dx = ωn−1(D2
n − 1)

n+α−1−2m
2 In−2+α

m , for n− 1 + α < 2m (A.3)∫
Rn+

x2
n|x̃|α

(|x̃|2 + (xn + Dn)2 − 1)m
dx = ωn−1I

n−2+α
m ϕ̂ 2m−n−α+1

2
, for n+ 2 + α < 2m (A.4)

We remind the expansion of the metric given in [21].
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Lemma A.2. Let (M, g) be a compact Riemannian manifold with boundary. If x = (x̃, xn) =
(x1 . . . , xn) are the Fermi coordinates centered at a point p ∈ ∂M , then the following expansion holds:

•
√
|g(x)| = 1− 1

2

(
‖π(p)‖2 + Ricν(p)

)
x2
n − 1

6R̄ij(p)xixj +O(|x|3),

• gij(x) = δij+2hij(p)xn+ 1
3R̄ikjl(p)xkxl+2∂h

ij

∂xk
(p)xkxn+(Rinjn(p) + 3hik(p)hkj(p))xn

2+O(|x|3)

• gan(x) = δan
• Γkij(x) = O (|x|)

where π(p) is the second fundamental form at p, hij(p) are its coefficients, R̄ikjl(p) and Rabcd(p) are
the curvature tensor of the boundary ∂M and M, respectively, R̄ij(p) = R̄ikjk(p) are the coefficients
of the Ricci tensor, and Ricν(p) = Rinin(p) = Rnn(p). Here the indices i, j, k = 1, . . . , n − 1 and
a, b = 1, . . . , n.

Finally, we recall the estimate:

||s+ t|q − sq| .

{
min{sq−1|t|, |t|q} if 0 < q ≤ 1

sq−1|t|+ |t|q if q > 1
for any s > 0 and t ∈ R. (A.5)

Appendix B. Proof of Proposition 3.3

First we need two technical propositions in which we compute the contribution of correction term
Vp to the energy.

Proposition B.1. Let n = 4 and w̄p the solution of (3.13) (the first term of the expansion of Vp in
(3.12)). Then ∫

B+
R
δ

|∇w̄p|2 =
64π2

|K|
‖π(p)‖2| ln δ|+O(1). (B.1)

Proof. We first reduce the integral into (B.1) to one in a simpler domain. Let Q+
r denote the upper

half of the ball of radius r in the ‖·‖∞ of R4, that is,

Q+
r =

{
x ∈ R4 : x4 ≥ 0 and − r ≤ xi ≤ r, i = 1, 2, 3.

}
and let A+( R4δ ,

R
δ ) the upper half of the annulus with radii r1 = R

4δ and r2 = R
δ .

Then, we can write
B+
R
δ

= Q+
R
2δ

t Ωδ,

with Ωδ := B+
R
δ

\ Q+
R
2δ

. Notice that Ωδ satisfies Ωδ ⊂ A+( R4δ ,
R
δ ). Then, by using also Lemma 3.2, we

get ∫
B+
R
δ

|∇w̄p|2 =

∫
Q+
R
2δ

|∇w̄p|2 +

∫
Ωδ

|∇w̄p|2 =

∫
Q+
R
2δ

∣∣∇w̄0
p

∣∣2 +

∫
Ωδ

|∇w̄p|2 +O(1),

and ∫
Ωδ

|∇w̄p|2 ≤
∫
A+( R

4δ
,R
δ

)
|∇w̄p|2 ≤ C

∫ R
δ

R
4δ

(1 + r)−4 r3dr = O(1).

Then ∫
B+
R
δ

|∇w̄p|2 =

∫
Q+
R
2δ

∣∣∇w̄0
p

∣∣2 +O(1).

The latter integral can be calculated explicitly with the help of mathematical software. Firstly, we
compute

∫ R
2δ

0

∫ R
2δ

−R
2δ

∫ R
2δ

−R
2δ

∫ R
2δ

−R
2δ

∣∣∣∣∣∂w̄0
p

∂xi

∣∣∣∣∣
2

dx1dx2dx3dx4 =
π2

30

 3∑
k>j
k 6=i

3∑
j=1
j 6=i

(
3M2

ij +M2
jk

) |ln δ|+O (1) ,
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for i = 1, 2, 3. Similarly,

∫ R
2δ

0

∫ R
2δ

−R
2δ

∫ R
2δ

−R
2δ

∫ R
2δ

−R
2δ

∣∣∣∣∣∂w̄0
p

∂x4

∣∣∣∣∣
2

dx1dx2dx3dx4 =
π2

30

 3∑
i,j=1
i<j

3M2
ij

 |ln δ|+O (1) .

Hence, by the definition of Mij(p) = 8
√

3

|K|
1
2
hij(p) :∫

Q+
R
2δ

∣∣∇w̄0
p

∣∣2 =
64π2

|K|
‖π(p)‖2 |ln δ|+O (1) ,

being ‖π(p)‖2 = h2
12(p) + h2

13(p) + h2
23(p). �

Proposition B.2. Let n ≥ 5. Let Vp a solution of (3.2), then there exists a non-negative constant fn
depending only on n and Dn such that∫

Rn+

(
−cn∆Vp +

n+ 2

n− 2
|K|U

4
n−2Vp

)
Vp = fn ‖π(p)‖2 .

Proof. Let decompose Vp = wp + ψp where wp solves (3.22) and ψp solves (3.23).
For sake of convenience, let us define

b(x̃, 0) =
nDn

(|x̃|2 + D2
n − 1)

wp(x̃, 0) +
∂wp
∂xn

∣∣∣∣
xn=0

.

Since Vp = wp + ψp (wp and ψp are defined in (3.22) and in (3.23) respectively) then∫
Rn+

(
−∆Vp +

n(n+ 2)

(|x̃|2 + (xn + Dn)2 − 1)2
Vp

)
Vp dx = βnh

ij(p)

∫
Rn+

xixjxn

(|x̃|2 + (xn + Dn)2 − 1)
n+2
2

Vp dx

= βnh
ij(p)

∫
Rn+

xixjxn

(|x̃|2 + (xn + Dn)2 − 1)
n+2
2

wp dx︸ ︷︷ ︸
Iwp

+βnh
ij(p)

∫
Rn+

xixjxn

(|x̃|2 + (xn + Dn)2 − 1)
n+2
2

ψp dx︸ ︷︷ ︸
Iψp

Let us evaluate separately Iwp and Iψp .

Iwp =βnh
ij(p)

∫
Rn+

xixjxn

(|x̃|2 + (xn + Dn)2 − 1)
n+2
2

wp dx

=
β2
n

4n
hij(p)hk`(p)

∫
Rn+

xixjxkx`xn(xn −Dn)

(|x̃|2 + (xn + Dn)2 − 1)n+1
dx︸ ︷︷ ︸

Iijk`

(B.2)

Notice that by symmetry reasons and the fact that hii(p) = 0 for every i = 1, . . . , n − 1, we can
write

β2
n

4n

n−1∑
i,j=1
i 6=j

n−1∑
k,`=1
k 6=l

hij(p)hk`(p)Iijk` =
β2
n

n

n−1∑
i,j=1
i<j

n−1∑
k,`=1
k<l

hij(p)hk`(p)Iijk`. (B.3)

In view of (B.3), if (i, j) 6= (k, `), there exists an index, let say i, such that i /∈ {j, k, `}. In that case,
it is easy to see that

hij(p)hk`(p)

∫
Rn+

xixjxkx`xn(xn −Dn)

(|x̃|2 + (xn + Dn)2 − 1)n+1
dx

= hij(p)hk`(p)

∫
Rn−1
+

∫ +∞

−∞

∂

∂xi

(
−1

2n

xjxkxlxn(xn −Dn)

(|x̃|2 + (xn + Dn)2 − 1)n+1

)
dxi

n∏
α=1
α 6=i

dxα = 0.
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Consequently,

hij(p)hk`(p)Iijk` =

n−1∑
i,j=1

hij(p)2

∫
Rn+

x2
ix

2
jxn(xn −Dn)

(|x̃|2 + (xn + Dn)2 − 1)n+1
dx.

For every i 6= j, using polar coordinates in Rn−3, we can see that∫
Rn+

x2
ix

2
jxn(xn −Dn)

(|x̃|2 + (xn + Dn)2 − 1)n+1
dx =

∫ +∞

0

∫ +∞

−∞

∫ +∞

−∞
x2
ix

2
jxn(xn −Dn)

×
∫ +∞

0

ωn−4r
n−4dr

(r2 + xi2 + xj2 + (xn + Dn)2 − 1)n+1
dxidxjdxn

=
ωn−4Γ

(
n−3

2

)
Γ
(
n+5

2

)
2n!

∫ +∞

0

∫ +∞

−∞

∫ +∞

−∞

xi
2xj

2xn(xn −Dn)

(x2
i + x2

j + (xn + Dn)2 − 1)
n+5
2

dxidxjdxn

=
ωn−4πΓ

(
n−3

2

)
Γ
(
n+5

2

)
n!(n− 1)(n+ 1)(n+ 3)

∫ +∞

0

xn(xn −Dn)

((xn + Dn)2 − 1)
n−1
2︸ ︷︷ ︸

f1(n,Dn)

.

Substituting in (B.2):

Iwp =
ωn−4πβn

2Γ
(
n−3

2

)
Γ
(
n+5

2

)
4n(n− 1)(n+ 3)(n+ 1)!

f1(n,Dn) ‖π(p)‖2 .

Let us now study the term Iψp . Multiplying (3.2) by ψp and integrating by parts we obtain:

βnh
ij(p)

∫
Rn+

xixjxn

(|x̃|2 + (xn + Dn)2 − 1)
n+2
2

ψp dx

=

∫
Rn+

(
∇vp∇ψp +

n(n+ 2)

(|x̃|2 + (xn + Dn)2 − 1)2
vpψp

)
dx−

∫
∂Rn+

∂vp
∂η

ψp dx̃

=

∫
Rn+

(
∇wp∇ψp +

n(n+ 2)

(|x̃|2 + (xn + Dn)2 − 1)2
wpψp

)
dx

+

∫
Rn+

(
|∇ψp|2 +

n(n+ 2)

(|x̃|2 + (xn + Dn)2 − 1)2
ψ2
p

)
dx−

∫
∂Rn+

nDn

(|x̃|2 + D2
n − 1)

wpψp dx̃

−
∫
∂Rn+

nDn

(|x̃|2 + D2
n − 1)

ψ2
p dx̃

=

∫
∂Rn+

∂ψp
∂η

wp −
∫
∂Rn+

nDn

(|x̃|2 + D2
n − 1)

wpψp dx̃

+

∫
Rn+

(
|∇ψp|2 +

n(n+ 2)

(|x̃|2 + (xn + Dn)2 − 1)2
ψ2
p

)
dx−

∫
∂Rn+

nDn

(|x̃|2 + D2
n − 1)

ψ2
p dx̃

=

∫
∂Rn+

nDn

(|x̃|2 + D2
n − 1)

wpψp dx̃+

∫
∂Rn+

b(x̃, 0)wp(x̃, 0) dx̃−
∫
∂Rn+

nDn

(|x̃|2 + D2
n − 1)

wpψp dx̃

+

∫
Rn+

(
|∇ψp|2 +

n(n+ 2)

(|x̃|2 + (xn + Dn)2 − 1)2
ψ2
p

)
dx−

∫
∂Rn+

nDn

(|x̃|2 + D2
n − 1)

ψ2
p dx̃

We will study separately the terms with and without ψp. By (3.24)

b(x̃, 0) =
βn
4n

∑n−1
i,j=1
i 6=j

hij(p)xixj

(|x̃|2 + D2
n − 1)

n
2
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and arguing as before:

∫
∂Rn+

b(x̃, 0)wp(x̃, 0) dx̃ = −Dnβ
2
n

16n2

n−1∑
i,j=1

hij(p)2

∫
Rn−1

xi
2xj

2

(|x̃|2 + Dn
2 − 1)n

dx̃.

Now, for i 6= j fixed,

∫
Rn−1

x2
ix

2
j

(|x̃|2 + D2
n − 1)n

dx̃

=

∫ +∞

−∞

∫ +∞

−∞
x2
ix

2
j

∫ +∞

0

ωn−4r
n−4dr

(r2 + x2
i + x2

j + D2
n − 1)

dxidxj

=
ωn−4Γ

(
n−3

2

)
Γ
(
n+3

2

)
2(n− 1)!

∫ +∞

−∞

∫ +∞

−∞

xi
2xj

2dxidxj

(x2
i + x2

j + Dn
2 − 1)

n+3
2

=
ωn−4πΓ

(
n−3

2

)
Γ
(
n+3

2

)
(D2

n − 1)
3−n
2

(n− 1)!(n− 3)(n− 1)(n+ 1)
.

Finally,

∫
∂Rn+

b(x̃, 0)wp(x̃, 0) dx̃ = −
Dnβn

2ωn−4πΓ
(
n−3

2

)
Γ
(
n+3

2

)
(D2

n − 1)
3−n
2

16n(n− 1)(n− 3)(n+ 1)!
‖π(p)‖2 .

Finally we address the terms with ψp.
Since ψp solves (3.23) we can write

ψp =
βn
4n

n−1∑
i,j=1
i6=j

hij(p)ψij

where ψij solves


−∆ψij +

n(n+ 2)

(|x̃|2 + (xn + Dn)2 − 1)2
ψij = 0, in Rn+

∂ψij
∂η
− nDn

(|x̃|2 + D2
n − 1)

ψij =
xixj

(|x̃|2 + D2
n − 1)

n
2

on ∂Rn+

It is not difficult to check that ψij is odd in xi and xj and even in all the other variables x`, ` =
1, . . . , n− 1, and so ∫

Rn−1

xixj

(|x̃|2 + D2
n − 1)

n
2

ψ`κ(x̃, 0)dx̃ = 0 if (i, j) 6= (`, κ). (B.4)

Moreover it holds that ψij = ψji and ψij = ψ12(σijx), where σij permutes the xi and xj variables, i.e.

σij(x1, . . . , xi, . . . , xj , . . . , xn) = (x1, . . . , xj , . . . , xi, . . . , xn).
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Multiplying by ψp in (3.23), integrating by parts and using (B.4) we immediately see that∫
Rn+
|∇ψp|2 +

∫
Rn+

n(n+ 2)

(|x̃|2 + (xn + Dn)2 − 1)2
ψ2
p −

∫
∂Rn+

nDn

|x̃|2 + (xn + Dn)2 − 1
ψ2
p

=
βn
4n

∫
∂Rn+

hij(p)xixj

(|x̃|2 + (xn + Dn)2 − 1)
n
2

ψp

=
βn
4n

n−1∑
i,j=1
i 6=j

hij(p)

n−1∑
`,κ=1
6̀=κ

h`κ(p)

∫
Rn−1

xixj

(|x̃|2 + D2
n − 1)

n
2

ψ`κ(x̃, 0)dx̃

=
n−1∑
i,j=1
i 6=j

hij(p)2

∫
Rn−1

xixj

(|x̃|2 + D2
n − 1)

n
2

ψij(x̃, 0)dx̃

=

n−1∑
i,j=1
i 6=j

hij(p)2

 ∫
Rn−1

x1x2

(|x̃|2 + D2
n − 1)

n
2

ψ12(x̃, 0)dx̃


︸ ︷︷ ︸

t2(n,Dn)

= f2(n,Dn)‖π(p)‖2,

where f2 only depends on n and Dn because the functions ψij do not depend on the point p.

Collecting all the previous estimates, we get a constant fn, which only depends on n and Dn, such
that ∫

Rn+

(
−cn∆Vp +

n+ 2

n− 2
|K|U

4
n−2Vp

)
Vp = fn ‖π(p)‖2 .

Notice that fn needs to be non-negative because Vp satisfies Proposition 3.1-(iv). �

Proof of Proposition 3.3. We write Wp = χ
((
ψ∂p
)−1

(ξ)
)
W with

W (ξ) :=
1

δ
n−2
2

U

((
ψ∂p
)−1

(ξ)

δ

)
︸ ︷︷ ︸

:=U

+δ
1

δ
n−2
2

Vp

((
ψ∂p
)−1

(ξ)

δ

)
︸ ︷︷ ︸

:=V

.

and also Wp =W = U + δV with

U(ξ) = χ

((
ψ∂p

)−1
(ξ)

)
U(ξ) and V(ξ) = χ

((
ψ∂p

)−1
(ξ)

)
V (ξ).

We have

Jε(W) =
cn
2

∫
M
|∇g(U + δV)|2︸ ︷︷ ︸

I1

+
1

2

∫
M
Sg(U + δV)2︸ ︷︷ ︸

I2

+ (n− 1)ε

∫
∂M

(U + δV)2︸ ︷︷ ︸
I3

−(n− 2)

∫
∂M

H

[(
(U + δV)+

) 2(n−1)
n−2 − U

2(n−1)
n−2

]
︸ ︷︷ ︸

I4

−(n− 2)

∫
∂M

HU
2(n−1)
n−2︸ ︷︷ ︸

I5

−n− 2

2n

∫
M
K
[(

(U + δV)+
) 2n
n−2 − U

2n
n−2

]
︸ ︷︷ ︸

I6

−n− 2

2n

∫
M
KU

2n
n−2︸ ︷︷ ︸

I7



CLUSTERS FOR A BOUNDARY YAMABE PROBLEM 25

Estimate of I2 By (A.2) (with α = 0 and m = n− 2) and (A.1), if n ≥ 5

I2 :=
1

2
δ2

∫
Rn+
Sg(δx) (U(x)χ(δx) + δVp(x)χ(δx))2 |g(δx)|

1
2 dx

=
1

2
δ2Sg(p)

∫
Rn+
U2(x) dx+

{
O(δ3) if n ≥ 6

O(δ3| ln δ|) if n = 5

=
1

2
δ2 Sg(p)
|K|

n−2
2

∫
Rn+

α2
n

(|x̃|2 + (xn + Dn)2 − 1)n−2 dx+

{
O(δ3) if n ≥ 6

O(δ3| ln δ|) if n = 5

= δ2 1

2
α2
nωn−1

2(n− 2)

n− 1
Inn−1

Sg(p)
|K|

n−2
2

ϕn−3
2

+

{
O(δ3) if n ≥ 6

O(δ3| ln δ|) if n = 5

and if n = 4

I2 =
α2

4

2
δ2Sg(p)
|K|

∫
B+
R
δ

1

(|x̃|2 + (x4 + D4(p))2 − 1)2 dx+O(δ2)

=
α2

4ω3

2
δ2Sg(p)
|K|

I2
2

∫ √
(Rδ +D4(p))

2−1

√
D2

4(p)−1

1√
λ2 + 1

dλ+O(δ2)

= −2α2
4ω3

3

Sg(p)
|K|

I4
3δ

2 ln δ +O(δ2)

Estimate of I3 By (A.3) (with α = 0 and m = n− 2) and (A.1), if n ≥ 4 that

I3 := (n− 1)εδ

∫
Rn−1

(U(x̃, 0)χ(δx̃, 0) + δVp(x̃, 0)χ(δx̃, 0))2 |g(δx̃, 0)|
1
2 dx̃

= (n− 1)εδ

∫
Rn−1

U2(x̃, 0) dx̃+

{
O(εδ2) if n ≥ 5

O(εδ2| ln δ|) if n = 4.

= (n− 1)εδ
1

|K|
n−2
2

α2
n

∫
Rn−1

1

(|x̃|2 + D2
n − 1)n−2 dx̃+

{
O(εδ2) if n ≥ 5

O(εδ2| ln δ|) if n = 4.

= εδ 2(n− 2)ωn−1α
2
n

1

|K|
n−2
2 (D2

n − 1)
n−3
2

Inn−1︸ ︷︷ ︸
:=cn

+

{
O(εδ2) if n ≥ 5

O(εδ2| ln δ|) if n = 4.

Estimate of I5 By (A.3) (with α = 2 and m = n− 1) and Lemma A.2, if n ≥ 4

I5 := −(n− 2)

∫
Rn−1

H (U(x̃, 0)χ(δx̃, 0))2] |g(δx̃, 0)|
1
2 dx̃

= −(n− 2)H

∫
∂Rn+

U2](x̃, 0) dx̃+
n− 2

6
δ2Rij(p)H

∫
Rn−1

U2](x̃, 0)x̃ix̃j dx̃+O(δ3)

= −(n− 2)H

∫
∂Rn+

U2](x̃, 0) dx̃

+ δ2α
2]
n (n− 2)

6(n− 1)

HRii(p)

|K|
n−1
2

∫
Rn−1

|x̃|2

(|x̃|2 + D2
n − 1)n−1 dx̃+O(δ3)

= −(n− 2)H

∫
∂Rn+

U2](x̃, 0) dx̃

+ δ2α
2]
n (n− 2)

6(n− 1)
ωn−1

HRii(p)

|K|
n−1
2 (D2

n − 1)
n−3
2

Inn−1 +O(δ3).
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Estimate of I7 By (A.2) (with α = 2 and m = n), (A.4) (with α = 0 and m = n), Lemma A.2 and
(A.1), if n ≥ 4

I7 := −n− 2

2n

∫
Rn+
K (U(x)χ(δx))2∗ |g(δx)|

1
2 dx

=
n− 2

2n
|K|

∫
Rn+
U2∗(x) dx− n− 2

4n

(
‖π(p)‖2 + Ricν(p)

)
δ2|K|

∫
Rn+
U2∗x2

n dx

− n− 2

12n
Rij(p)δ

2|K|
∫
Rn+
U2∗(x)x̃ix̃j dx+O(δ3)

=
n− 2

2n
|K|

∫
Rn+
U2∗(x) dx

− δ2n− 2

4n
α2∗
n

(
‖π(p)‖2 + Ricν(p)

)
|K|

|K|
n
2

∫
Rn+

x2
n

(|x̃|2 + (xn + Dn)2 − 1)n
dx

− δ2α2∗
n

n− 2

12n(n− 1)

Rii(p)|K|
|K|

n
2

∫
Rn+

|x̃|2

(|x̃|2 + (xn + Dn)2 − 1)n
dx+O(δ3)

=
n− 2

2n
|K|

∫
Rn+
U2∗(x) dx

− δ2n− 2

4n

n− 3

2(n− 1)
Inn−1ωn−1α

2∗
n

(
‖π(p)‖2 + Ricν(p)

)
|K|

n−2
2

ϕ̂n+1
2

− δ2α2∗
n

n− 3

2(n− 1)
Inn−1ωn−1

n− 2

12n(n− 1)

Rii(p)

|K|
n−2
2

ϕn−1
2

+O(δ3)

Estimate of I4 and I6 By Lemma A.2-(i), if n ≥ 4

I4 = −(n− 2)

∫
∂Rn+

H

[(
(U + δVp)

+
) 2(n−1)

n−2 − U
2(n−1)
n−2

]
(x̃, 0)|g(δx̃, 0)|

1
2 dx̃

= −2(n− 1)δH

∫
∂Rn+

U
n
n−2Vp dx̃−

n(n− 1)

n− 2
δ2H

∫
∂Rn+

U
2

n−2V 2
p dx̃+O(δ3)

and similarly

I6 = |K|δ
∫
Rn+
U

n+2
n−2Vp +

n+ 2

2(n− 2)
δ2|K|

∫
Rn+
U

4
n−2V 2

p +O(δ3).

Estimate of I1 First we have

I1 :=
cn
2

∫
M
|∇gUδ,p|2 dνg︸ ︷︷ ︸

:=I11

+ cnδ

∫
M
∇gUδ,p∇gVδ,p dνg︸ ︷︷ ︸

:=I21

+
cn
2
δ2

∫
M
|∇gVδ,p|2 dνg︸ ︷︷ ︸
:=I31

and we separately estimate the terms Ii1 with i = 1, 2, 3. Set Bδ := {x ∈ Rn+ : |δx| ≤ R}.
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Estimate of I1
1 By Lemma A.2-(ii)-(iii) we get

I1
1 =

cn
2

∫
Rn+
gab(δx)

∂

∂xa
(U(x)χ(δx))

∂

∂xb
(U(x)χ(δx))|g(δx)|

1
2 dx

= cn

∫
Bδ

[
|∇U |2

2
+

(
δhijxn +

δ2

6
Rikj`xkx` + δ2∂hij

∂xk
xkxn +

δ2

2
(Rinjn + 3hikhkj)x

2
n

)
∂U

∂xi

∂U

∂xj

]
×
(

1− δ2

2

(
‖π‖2 + Ricν

)
x2
n −

δ2

6
R`mx`xm

)
dx̃ dxn +O(δ3)

=

∫
Bδ

(
cn
2
|∇U |2 + δ2 cn

2
(Rinjn + 3hikhkj)x

2
n

∂U

∂xi

∂U

∂xj

)
×
(

1− δ2

2

(
‖π‖2 + Ricν

)
x2
n −

δ2

6
R`mx`xm

)
dx̃ dxn +O(δ3).

Moreover, by (A.4) (with α = 0 or α = 2 and m = n− 1 and with α = 0 and m = n secondly), (A.2)
(with α = 2 and m = n− 1 first and with α = 2 and m = n secondly) and (A.1), if n ≥ 5

I1
1 =

cn
2

∫
Rn+
|∇U |2 − cn

4
δ2
(
‖π(p)‖2 + Ricν(p)

) ∫
Rn+
x2
n|∇U |2 −

cn
12
δ2R``(p)

n− 1

∫
Rn+
|x̃|2|∇U |2

+
cnα

2
n

2

(n− 2)2

n− 1
δ2

(
3‖π(p)‖2 + Ricν(p)

)
|K|

n−2
2

∫
Rn+

x2
n|x̃|2

(|x̃|2 + (xn + Dn)2 − 1)n
dx+O(δ3)

=
cn
2

∫
Rn+
|∇U |2 − cnα

2
n(n− 2)2

4
δ2 (‖π(p)‖2 + Ricν(p))

|K|
n−2
2

∫
Rn+

x2
n

(|x̃|2 + (xn + Dn)2 − 1)n−1
dx

− cnα
2
n(n− 2)2

4
δ2 (‖π(p)‖2 + Ricν(p))

|K|
n−2
2

∫
Rn+

x2
n

(|x̃|2 + (xn + Dn)2 − 1)n

− cnα
2
n(n− 2)2

12(n− 1)
δ2 R``(p)

|K|
n−2
2

∫
Rn+

|x̃|2

(|x̃|2 + (xn + Dn)2 − 1)n−1

− cnα
2
n(n− 2)2

12(n− 1)
δ2 R``(p)

|K|
n−2
2

∫
Rn+

|x̃|2

(|x̃|2 + (xn + Dn)2 − 1)n

+
cnα

2
n

2

(n− 2)2

n− 1
δ2

(
3‖π(p)‖2 + Ricν(p)

)
|K|

n−2
2

∫
Rn+

x2
n|x̃|2

(|x̃|2 + (xn + Dn)2 − 1)n
dx+O(δ3)

=
cn
2

∫
Rn+
|∇U |2 − cnα

2
n(n− 2)2(n− 3)

4(n− 1)
ωn−1I

n
n−1δ

2 (‖π(p)‖2 + Ricν(p))

|K|
n−2
2

ϕ̂n−1
2

− cnα
2
n(n− 2)2(n− 3)

8(n− 1)
ωn−1I

n
n−1δ

2 (‖π(p)‖2 + Ricν(p))

|K|
n−2
2

ϕ̂n+1
2

− cnα
2
n(n− 2)2

12(n− 1)
ωn−1I

n
n−1δ

2 R``(p)

|K|
n−2
2

ϕn−3
2
− cnα

2
n(n− 2)2(n− 3)

24(n− 1)2
ωn−1I

n
n−1δ

2 R``(p)

|K|
n−2
2

ϕn−1
2

+
cnα

2
n

4

(n− 2)2(n− 3)

(n− 1)2
ωn−1I

n
n−1δ

2

(
3‖π(p)‖2 + Ricν(p)

)
|K|

n−2
2

ϕ̂n−1
2

+O(δ3)
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and if n = 4

I1
1 =

c4

2

∫
R4
+

|∇U |2 − c4α
2
4

(
‖π(p)‖2 + Ricν(p)

)
|K|

δ2

∫
Bδ

x2
4

(|x̃|2 + (x4 + D4)2 − 1)3
dx

− 1

9
c4α

2
4

R``(p)

|K|
δ2

∫
Bδ

|x̃|2

(|x̃|2 + (x4 + D4)2 − 1)3
dx

+
2

3
c4α

2
4

(
3‖π(p)‖2 + Ricν(p)

)
|K|

δ2

∫
Bδ

x2
4|x̃|2

(|x̃|2 + (x4 + D4)2 − 1)4
dx+O(δ2)

=
c4

2

∫
R4
+

|∇U |2 +
1

3
c4ω3α

2
4I

4
3

(
‖π(p)‖2 + Ricν(p)

)
|K|

δ2 ln δ +
1

9
c4ω3α

2
4I

4
3

R``(p)

|K|
δ2 ln δ

− 1

54
c4ω3α

2
4

(
3‖π(p)‖2 + Ricν(p)

)
|K|

I4
3δ

2 ln δ +O(δ2).

Estimate of I2
1 and I3

1 if n ≥ 5
We have

I2
1 = δcn

∫
Rn+
gab(δx)

∂

∂xa
(U(x)χ(δx))

∂

∂xb
(Vp(x)χ(δx))|g(δx)|

1
2 dx

= δcn

∫
Rn+
∇U∇Vp dx+ δ22cnh

ij(p)

∫
Rn+
xn
∂U

∂xi

∂Vp
∂xj

dx+O(δ3)

= −δn+ 2

n− 2
|K|

∫
Rn+
U

n+2
n−2Vp dx+ cn

n

2
δH

∫
∂Rn+

U
n
n−2Vp

− cnδ2

∫
Rn+
|∇Vp|2︸ ︷︷ ︸

<∞ for n≥5

+cn
n

2
δ2H

∫
∂Rn+

U
2

n−2V 2
p −

n+ 2

n− 2
|K|δ2

∫
Rn+
U

4
n−2V 2

p +O(δ3)

since

cn

∫
Rn+
∇U∇Vp = −cn

∫
Rn+
U∆Vp + cn

∫
∂Rn+

U(x̃, 0)
∂Vp
∂ν

= −n+ 2

n− 2
|K|

∫
Rn+
U

n+2
n−2Vp dx+ cn

n

2
H

∫
∂Rn+

U
n
n−2 (x̃, 0)Vp dx̃

+ 8
n− 1

n− 2

∫
Rn+
hij(p)

∂2U

∂xi∂xj
xnU︸ ︷︷ ︸

=0

and

2cnh
ij(p)

∫
Rn+
xn
∂U

∂xi

∂Vp
∂xj

dx = −2cnh
ij(p)

∫
Rn+
xn

∂2U

∂xi∂xj
Vp dx

= −
∫
Rn+

(
−cn∆Vp +

n+ 2

n− 2
|K|U

4
n−2Vp

)
Vp dx

= −cn
∫
Rn+
|∇Vp|2 + cn

∫
∂Rn+

Vp
∂Vp
∂ν
− n+ 2

n− 2
|K|

∫
Rn+
U

4
n−2V 2

p

= −cn
∫
Rn+
|∇Vp|2 + cn

n

2
H

∫
∂Rn+

U
2

n−2V 2
p −

n+ 2

n− 2
|K|

∫
Rn+
U

4
n−2V 2

p

and also

I3
1 :=

cn
2
δ2

∫
Rn+
|∇Vp|2 +O(δ3).
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Estimate of I2
1 and I3

1 if n = 4
Let Vp = w̄p + ζp + ψp as in (3.12) and set wp = w̄p + ζp so that wp solves the problem

− 6∆wp = Ep(x) in R4
+

∂wp
∂ν

= 2HUwp, on ∂R4
+

(B.5)

Then

I2
1 = δc4

∫
R4
+

gab(δx)
∂

∂xa
(U(x)χ(δx))

∂

∂xb
(Vp(x)χ(δx))|g(δx)|

1
2 dx

= −δn+ 2

n− 2
|K|

∫
R4
+

U3Vp dx+ 2c4δH

∫
∂R4

+

U2Vp

+ δ212hij(p)

∫
B+
R
δ

x4
∂U

∂xi

∂Vp
∂xj

dx+O(δ2)

= −δn+ 2

n− 2
|K|

∫
R4
+

U3Vp dx+ 2c4δH

∫
∂R4

+

U2Vp

+ δ212hij(p)

∫
B+
R
δ

x4
∂U

∂xi

∂wp
∂xj

dx+O(δ2).

(B.6)

Here we have used the fact that ∫
B+
R
δ

x4
∂U

∂xi

∂ψp
∂xj

dx = O(1).

Let us study the last integral term of (B.6). Integrating by parts in xj and using the equation (B.5):

12hij(p)

∫
B+
R
δ

x4
∂U

∂xi

∂wp
∂xj

dx = 12hij(p)

∫
∂+B+

R
δ

x4
∂U

∂xi

xj
|x|
wp −

∫
B+
R
δ

Epwp

= 12hij(p)

∫
∂+B+

R
δ

x4
∂U

∂xi

xj
|x|
wp − 6

∫
B+
R
δ

|∇wp|2

+ 12

∫
∂′B+

R
δ

HUw2
p + 6

∫
∂+B+

R
δ

∇wp ·
x

|x|
wp

= −6

∫
B+
R
δ

|∇wp|2 +O(1),

(B.7)

since ∫
∂′B+

R
δ

HUw2
p = O(1),

∫
∂+B+

R
δ

x4
∂U

∂xi

xj
|x|
wp .

R

δ

(
1 +

1

δ

)−3(
1 +

1

δ

)−1 ωn−1

2

R3

δ3
= O(1),

∫
∂+B+

R
δ

∇wp ·
x

|x|
wp .

(
1 +

R

δ

)−2(
1 +

R

δ

)−1 ωn−1

2

R3

δ3
= O(1).

By (B.6) and (B.7),

I2
1 = −6δ2

∫
B+
R
δ

|∇wp|2 +O(δ2). (B.8)
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Analogously,

I3
1 :=

c4

2
δ2

∫
B+
R
δ

|∇Vp|2 +O(δ2) = 3δ2

∫
B+
R
δ

|∇wp|2 +O(δ2). (B.9)

Finally, combining (B.8) and (B.9), we obtain

I2
1 + I3

1 = −3δ2

∫
B+
R
δ

|∇wp|2 +O
(
δ2
)
. (B.10)

Now, using the fact that wp = w̄p + ζp and the decay estimate (3.17) we get∫
B+
R
δ

|∇wp|2 =

∫
B+
R
δ

|∇w̄p|2 +

∫
B+
R
δ

|∇ζp|2 +

∫
B+
R
δ

∇w̄p∇ζp

=

∫
B+
R
δ

|∇w̄p|2 +

∫
B+
R
δ

|∇ζp|2 +

∫
∂+B+

R
δ

∇ζp ·
x

|x|
w̄p

+

∫
∂′B+

R
δ

(
2HUζp +

(
2HUw̄p −

∂w̄p
∂ν

))
w̄p

=

∫
B+
R
δ

|∇w̄p|2 +O(1)

since again, by using the decay properties, we get∫
∂′B+

R
δ

(
2HUζp +

(
2HUw̄p −

∂w̄p
∂ν

))
w̄p = O(1)

and ∫
∂+B+

R
δ

∇ζp ·
x

|x|
w̄p = O(1)

and by using the problem solved by ζp, i.e. (3.14), we get

0 =

∫
B+
R
δ

|∇ζp|2 −
∫
∂+B+

R
δ

∇ζp ·
x

|x|
ζp +

∫
∂′B+

R
δ

(
2HUζp +

(
2HUw̄p −

∂w̄p
∂ν

))
ζp

=

∫
B+
R
δ

|∇ζp|2 +O(1)

from which it follows that ∫
B+
R
δ

|∇ζp|2 = O(1).

By Proposition B.1 we get ∫
B+
R
δ

|∇w̄p|2 =
64π2

|K|
‖π(p)‖2| ln δ|+O(1)

Then (B.10) reduces to

I2
1 + I3

1 = −3δ2

∫
Q+
R
2δ

|∇w̄p|2 +O(δ2) = −3δ2

∫
Q+
R
2δ

∣∣∇w̄0
p

∣∣2 +O(δ2) = −3
64π2

|K|
‖π(p)‖2δ2| ln δ|+O(δ2).

Conclusion.

We collect all the previous estimates and we take into account that

- the terms of order δ cancel because of Proposition 3.1-(iii)
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- the higher order terms which contain Ricν(p) and R``(p) (di order δ2 if n ≥ 5 and δ2| ln δ| if
n = 4) cancel, because by Lemma A.1 and the fact that Sg(p) = 2Ricν(p) +R``(p) + ‖π(p)‖2

δ2α2
nωn−1I

n
n−1

n− 2

n− 1

Ricν(p)

|K|
n−2
2

(
2ϕn−3

2
− (n− 3)(n− 1)ϕ̂n+1

2

)
= 0

and

δ2α2
n

n− 2

3(n− 1)
ωn−1I

n
n−1

R``(p)

|K|
n−2
2

(
−(n− 4)ϕn−3

2
− (n− 3)ϕn−1

2
+

Dn

(Dn − 1)
n−3
2

)
= 0.

Finally, we have if n = 4

Jε(W) = E− δ2| ln δ|
(

192π2

|K|
+ α2

4ω3I
4
3

1

|K|

)
︸ ︷︷ ︸

:=b4

‖π(p)‖2 + εδc4 +O(δ2).

and if n ≥ 5

Jε(W) = E− δ2(
1

2
fn + f1n︸ ︷︷ ︸
:=bn

)‖π(p)‖2 + εδcn +

{
O(δ3) if n ≥ 6

O(δ3| ln δ|) if n = 5
,

because the higher order terms which contain ‖π(p)‖2 reduces to

δ2α2
n

n− 2

n− 1
ωn−1I

n
n−1

‖π(p)‖2

|K|
n−2
2

(
ϕn−3

2
− (n− 1)(n− 3)ϕ̂n+1

2
− (n− 1)(n− 3)ϕ̂n−1

2
+ 3(n− 3)ϕ̂n−1

2

)
= −δ2 α2

n

n− 2

n− 1
ωn−1I

n
n−1

1

|K|
n−2
2

(
4(n− 3)ϕ̂n−1

2
+ ϕn−3

2

)
︸ ︷︷ ︸

:=f1n

‖π(p)‖2

and, by Proposition B.2,

1

2

∫
Rn+

(
−cn∆Vp +

n+ 2

n− 2
|K|U

4
n−2Vp

)
Vp =

1

2
fn‖π(p)‖2

Here the energy of the bubble E is constant and is computed in the remark below. �

Remark B.3. The energy of the bubble is given by

E =
cn
2

∫
R+
n

|∇U |2 − n− 2

2n
K

∫
Rn+
U2∗ − (n− 2)H

∫
∂Rn+

U2]

where cn := 4(n−1)
n−2 and

U(x̃, xn) :=
αn

|K|
n−2
4

1

(|x̃|2 + (xn + Dn)2 − 1)
n−2
2

and αn := (4n(n− 1))
n−2
4 and Dn :=

√
n(n− 1) H√

|K|
.

We recall that U satisfies (1.4). Hence

cn
2

∫
Rn+
|∇U |2 =

cn(n− 2)

4
H

∫
∂Rn+

U2] − 1

2
|K|

∫
Rn+
U2∗
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Then

E = − 1

n
|K|

∫
Rn+
U2∗ +H

∫
∂Rn+

U2]

= − 1

n
|K| α

2∗
n

|K|
n
2

∫
Rn+

1

(|x̃|2 + (xn + Dn)2 − 1)n
dx̃ dxn

+H
α2]
n

|K|
n−1
2

∫
∂Rn+

1

(|x̃|2 + D2
n − 1)n−1

dx̃

Now, by using (A.3) with α = 0 and m = n− 1 we get for n ≥ 4∫
∂Rn+

1

(|x̃|2 + D2
n − 1)n−1

dx̃ = ωn−1
n− 3

n− 1

Inn−1

(D2
n − 1)

n−1
2

.

Instead, by using (A.2) with α = 0 and m = n we get∫
Rn+

1

(|x̃|2 + (xn + Dn)2 − 1)n
dx̃ dxn = ωn−1

n− 3

2(n− 1)
Inn−1ϕn+1

2
.

Collecting all the previous terms, by Lemma A.1

E = −α
2∗
n (n− 3)

2n(n− 1)
ωn−1I

n
n−1

ϕn+1
2

|K|
n−2
2

+
α2]
n (n− 3)

n− 1
ωn−1I

n
n−1

H

|K|
n−1
2 (D2

n − 1)
n−1
2

= α2]

n ωn−1I
n
n−1

n− 3

n− 1

1

|K|
n−2
2

[
−α

2∗−2]
n

2n
ϕn+1

2
+

H

|K|
1
2 (D2

n − 1)
n−1
2

]

= α2]

n ωn−1I
n
n−1

n− 3

(n− 1)
√
n(n− 1)︸ ︷︷ ︸

:=an

1

|K|
n−2
2

[
−(n− 1)ϕn−1

2
+

Dn

(D2
n − 1)

n−1
2

]
.

Appendix C. Proof of Lemma 4.2

In the following we use the following notation

Wj(ξ) :=
1

δ
n−2
2

j

U

((
ψ∂p
)−1

(ξ)− η(ε)τj

δj

)
︸ ︷︷ ︸

:=Uj

+δj
1

δ
n−2
2

j

Vp

((
ψ∂p
)−1

(ξ)− η(ε)τj

δj

)
︸ ︷︷ ︸

:=Vj

.

and

Uj(ξ) = χ

((
ψ∂p

)−1
(ξ)

)
Uj(ξ), Vj(ξ) = χ

((
ψ∂p

)−1
(ξ)

)
Vj(ξ).

Proof. Let

γM := i∗M (Kg (W)) and γ∂M := i∗∂M

(
n− 2

2
(Hf (W)− εW)

)
.

By using the equations that γM and γ∂M satisify (see (4.1), (4.2)) we get
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‖E‖2 = cn

∫
M
|∇g (W − γM − γ∂M )|2 dνg +

∫
M
Sg (W − γM − γ∂M )2 dνg

= −cn
∫
M

[∆g (W − γM − γ∂M ) (W − γM − γ∂M )] dνg

+

∫
M
Sg (W − γM − γ∂M )2 dνg

+ cn

∫
∂M

∂

∂ν
(W − γM − γ∂M ) (W − γM − γ∂M ) dσg

=

k∑
j=1

[∫
M

(−cn∆gWj + SgWj −Kg(Wj)) E dνg︸ ︷︷ ︸
+cn

∫
∂M

(
∂

∂ν
Wj −

n− 2

2
Hf(Wj) +

n− 2

2
εWj

)
E dνg

]
︸ ︷︷ ︸

=:(I)

+

∫
M
K

 k∑
j=1

g(Wj)− g

 k∑
j=1

Wj

 E dνg︸ ︷︷ ︸
=:(II)

+
n− 2

2
cn

∫
∂M

H

 k∑
j=1

f(Wj)− f

 k∑
j=1

Wj

 E dνg︸ ︷︷ ︸
=:(III)

• Let us estimate (I), which is the sum of the contribution of each peak. We estimate each term
in the sum and for the sake of simplicity, we replace Wj by W. Each term looks like∫

M

(
−cn∆gU −KU

n+2
n−2 +K (g(U)− g(U + δV))− cnδ∆gV

)
E︸ ︷︷ ︸

(I1)

+

∫
∂M

(
cn
∂U
∂ν
− 2(n− 1)HU

n
n−2

)
E︸ ︷︷ ︸

(I2)

+ 2(n− 1)

∫
∂M

(
H (f(U)− f(U + δV)) +

2δ

n− 2

∂V
∂ν

)
E︸ ︷︷ ︸

(I3)

+

∫
M
SgWE︸ ︷︷ ︸
(I4)

+ 2(n− 1)ε

∫
∂M
WE︸ ︷︷ ︸

(I5)

.

Estimate of (I1). We have

|(I1)| . ‖E‖H1(M) ‖Aδ‖L 2n
n+2 (M)
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with

Aδ = −cn∆g (U + δV)−K U
n+2
n−2 +K (g(U)− g(U + δV)) .

Now, in local coordinates, the Laplace-Beltrami operator reads as:

∆g φ = ∆φ+
(
gij − δij

)
∂2
ijφ− gijΓkij∂kφ. (C.1)

and so by the decay of U and Vp (see Proposition 3.1) and by Lemma A.2 in variables x = δy
with |δy| ≤ R

Aδ(y) = −δ−
n+2
2 cn∆U(y)χ(δy)− 8(n− 1)

n− 2
δ−

n
2 hij(p)∂2

ijU(y)χ(δy)yn − δ−
n+2
2 Kχ

n+2
n−2 (δy)U

n+2
n−2 (y)

+ δ−
n+2
2 Kχ

n+2
n−2 (δy) (g(U)− g(U + δVp))− δ−

n
2 cn∆Vp + δ−

n−2
2 Λ(y)

= δ−
n+2
2 K

(
χ(δy)− χ

n+2
n−2 (δy)

)
U

n+2
n−2 (y)

+ δ−
n+2
2 Kχ

n+2
n−2 (δy) (g(U)− g(U + δVp)) + δ−

n
2Kχ(δy)g′(U)Vp(y) + δ−

n−2
2 Λ(y)

where

|Λ(y)| . 1

1 + |y|n−2
if |δy| ≤ R.

Finally,

‖Aδ‖
L

2n
n+2 (M)

.
∥∥∥K (χ(δy)− χ

n+2
n−2 (δy)

)
U

n+2
n−2 (y)

∥∥∥
L

2n
n+2 (Rn+)

+ δ
∥∥∥K (χ(δy)− χ

n+2
n−2 (δy)

)
U

4
n−2 (y)Vp(y)

∥∥∥
L

2n
n+2 (Rn+)

+
∥∥∥Kχn+2

n−2 (δy)
(
g(U + δVp)− g(U)− δg′(U)Vp(y)

)∥∥∥
L

2n
n+2 (Rn+)

+ δ2 ‖Λ‖
L

2n
n+2 (B(0,R/δ))

.


δ2 if n ≥ 7

δ2| ln δ|
2
3 if n = 6

δ
n−2
2 if n = 4, 5,

because by by (A.5)

∣∣(g(U + δVp)− g(U)− δg′(U)Vp(y)
)∣∣ .

U
6−n
n−2 (δVp)

2 if n ≥ 6

U
6−n
n−2 (δVp)

2 + (δVp)
n+2
n−2 if n = 4, 5

which implies

∥∥(g(U + δVp)− g(U)− δg′(U)Vp(y)
)∥∥
L

2n
n+2 (Rn+)

.

{
δ
n+2
n−2 if n ≥ 6

δ2 if n = 4, 5.

and also

δ2 ‖Λ‖
L

2n
n+2 (B(0,R/δ))

.


δ2 if n ≥ 7

δ2| ln δ|
2
3 if n = 6

δ
n−2
2 if n = 4, 5.
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Estimate of (I2). We have

(I2) = 2(n− 1)

∫
∂M

(
2

n− 2

∂U
∂ν
−HU

n
n−2

)
E

. ‖E‖H1(M)

∥∥∥∥ 2

n− 2

∂U
∂ν
−HU

n
n−2

∥∥∥∥
L

2(n−1)
n (∂M)

.

and ∥∥∥∥ 2

n− 2

∂U
∂ν
−HU

n
n−2

∥∥∥∥
L

2(n−1)
n (∂M)

=

∫
∂M

(
2

n− 2

∂U
∂ν
−HU

n
n−2

) 2(n−1)
n

 n
2(n−1)

.

(∫
∂Rn+

(
2

n− 2

∂U(ỹ)

∂ν
χ(δỹ)−HU

n
n−2 (ỹ)χ

n
n−2 (δỹ)

)√
|g(δỹ)|dỹ

) n
2(n−1)

.

(∫
∂Rn+

HU
2(n−1)
n−2 (ỹ)

(
χ(δỹ)− χ

n
n−2 (δỹ)

) 2(n−1)
n

dỹ

) n
2(n−1)

. δ2

Estimate of (I3). We have

|(I3)| . ‖E‖H1(M)

∥∥∥∥H (f(U)− f(U + δV)) +
2δ

n− 2

∂V
∂ν

∥∥∥∥
L

2(n−1)
n (∂M)

and by the decay of Vp and (A.5)∥∥∥∥H (f(U)− f(U + δV)) +
2δ

n− 2

∂Vδ,p
∂ν

∥∥∥∥
L

2(n−1)
n (∂M)

.

∥∥∥∥H (f(U)− f(U + δVp))χ
n
n−2 (δỹ) +

2δ

n− 2

∂Vp
∂ν

χ(δỹ)

∥∥∥∥
L

2(n−1)
n (∂Rn+)

. δ

∥∥∥∥Hf′(U + δθVp)Vpχ
n
n−2 (δỹ)− n

n− 2
HU

2
n−2Vpχ(δỹ)

∥∥∥∥
L

2(n−1)
n (∂Rn+)

. δ
∥∥∥H (χ n

n−2 (δỹ)− χ(δỹ)
)
f′(U + δθVp)Vp

∥∥∥
L

2(n−1)
n (∂Rn+)

+ δ
∥∥Hχ(δỹ)

(
f′(U + δθVp))− f′(U)

)
Vp
∥∥
L

2(n−1)
n (∂Rn+)

.

{
δ2 if n ≥ 5

δ2| ln δ|
2
3 if n = 4.

because by (A.5) ∣∣(f′(U + δθVp))− f′(U)
)
Vp
∣∣ . δU 4−n

n−2V 2
p .

Estimate of (I4). By Hölder’s inequality

|(I4)| .
∫
M
|U||E| dνg + δ

∫
M
|V||E| dνg . ‖E‖

(
‖U‖

L
2n
n+2 (M)

+ δ ‖V‖L2(M)

)
,
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with

‖U‖
L

2n
n+2 (M)

.


δ2 if n ≥ 7

δ2| ln δ|
2
3 if n = 6

δ
n−2
2 if n = 4, 5

and

‖V‖L2(M) .


δ2 if n ≥ 7

δ2| ln δ|
1
2 if n = 6

δ
n−2
2 if n = 4, 5

Estimate of (I5). By Hölder’s inequality

|(I5)| . ε
(
‖U‖

L
2(n−1)
n (∂M)

+ δ ‖V‖L2(∂M)

)
‖E‖ ,

with

‖U‖
L

2(n−1)
n (∂M)

.

{
δ if n ≥ 5

δ| ln δ|
2
3 if n = 4

and

‖V‖L2(∂M) .


δ

3
2 if n ≥ 6

δ
3
2 | ln δ|

1
2 if n = 5

δ if n = 4.

Finally, collecting all the previous estimates, by the choice of δj in (4.6) and (4.7)

|(I)| .



ε2 if n ≥ 7

ε2| ln ε|
2
3 if n ≥ 6

ε
3
2 if n = 5

ρ(ε) if n = 4.

• Let us estimate the interaction terms (II) and (III).
Set for any h = 1, . . . , k B+

h = B+(η(ε)τh, η(ε)σ/2) where σ > 0 is small enough and ∂′B+
h =

B+
h ∩ ∂R

n
+. Since σ is small then B+

h ⊂ B
+
R and ∂′B+

h ⊂ ∂
′B+
R and they are disjoints.

We remark that in B+
2R(0) we get

Wi(x) .
δ
n−2
2

i

|x− η(ε)τi|n−2
.

Then∣∣∣∣∣∣
∫
M
K

∑
j

g(Wj)− g

∑
j

Wj

 E
∣∣∣∣∣∣ .

∥∥∥∥∥∥g
∑

j

Wj

−∑
j

g(Wj)

∥∥∥∥∥∥
L

2n
n+2 (M)

‖E‖
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Hence

‖ . . . . . . ‖
L

2n
n+2 (M)

.

[∫
B+

2R\B
+
R

| . . . . . . |
2n
n+2 |g(x)|

1
2 dx

]n+2
2n

+

[∫
B+
R\

⋃
hB

+
h

| . . . . . . |
2n
n+2 |g(x)|

1
2 dx

]n+2
2n

+
k∑

h=1

[∫
B+
h

| . . . . . . |
2n
n+2 |g(x)|

1
2 dx

]n+2
2n

≤
k∑
i=1

[∫
B+
R

(1− χ2∗(|x|))|Wi|2
∗ |g(x)|

1
2 dx

]n+2
2n

+

[∫
B+
R\

⋃
hB

+
h

|Wi|2
∗ |g(x)|

1
2 dx

]n+2
2n

+

k∑
h=1

∫
B+
h

∣∣∣∣∣∣|Wh|2
∗−2

∑
i 6=h

Wi

∣∣∣∣∣∣
2n
n+2

|g(x)|
1
2 dx


n+2
2n

+

k∑
h=1

∫
B+
h

∣∣∣∣∣∣
∑
i 6=h

Wi

∣∣∣∣∣∣
2∗

|g(x)|
1
2 dx


n+2
2n

Let us estimate each term.

k∑
i=1

[∫
B+

2R\B
+
R

(1− χ2∗(|x|))|Wi|2
∗ |g(x)|

1
2 dx

]n+2
2n

.
k∑
i=1

[∫
Rn+\B

+
R

δni
|x− η(ε)τi|2n

dx

]n+2
2n

.
k∑
i=1

δ
n+2
2

i

η(ε)
n+2
2

∫
Rn+\B

+
R
η(ε)

1

|y − τi|2n
dy


n+2
2n

.

ε
(1−α)n+2

2 if n ≥ 5

(ρ(ε))3| ln ρ(ε)|
3
4 if n = 4.

[∫
B+
R\

⋃
hB

+
h

|Wi|2
∗ |g(x)|

1
2 dx

]n+2
2n

.

[∫
B+
R\

⋃
hB

+
h

δni
|x− η(ε)τi|2n

dx

]n+2
2n

.
k∑
i=1

δ
n+2
2

i

η(ε)
n+2
2

∫
Rn+\B

+
R
η(ε)

1

|y − τi|2n
dy


n+2
2n

.

ε
(1−α)n+2

2 if n ≥ 5

(ρ(ε))3| ln ρ(ε)|
3
4 if n = 4.

Now for n ≥ 7

k∑
h=1

∫
B+
h

∣∣∣∣∣∣|Wh|2
∗−2

∑
i 6=h

Wi

∣∣∣∣∣∣
2n
n+2

|g(x)|
1
2 dx


n+2
2n

.
k∑

h=1

∑
i 6=h

∫
B+
h

δ
4n
n+2

h

|x− εατh|
8n
n+2

δ
n(n−2)
n+2

i

|x− εατi|
2n(n−2)
n+2

dx


n+2
2n

.
k∑

h=1

∑
i 6=h

δ2
hδ

n−2
2

i

(∫
B+
h

1

|x− εατh|
8n
n+2

dx

)n+2
2n

.
k∑

h=1

∑
i 6=h

δ2
hδ

n−2
2

i

(∫
B+
εασ/2

1

|y|
8n
n+2

dy

)n+2
2n

. ε
n+2
2

+αn−6
2
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while for n = 4, 5, 6

k∑
h=1

∫
B+
h

∣∣∣∣∣∣|Wh|2
∗−2

∑
i 6=h

Wi

∣∣∣∣∣∣
2n
n+2

|g(x)|
1
2 dx


n+2
2n

.
k∑

h=1

∑
i 6=h

δ2
hδ

n−2
2

i

η(ε)
6−n
2

∫
B+
σ
2

1

(|ỹ|2 + (yn + Dnδhη(ε)−1)2 − δ2
hη(ε)−2)

4n
n+2

dx

n+2
2n

.
k∑

h=1

∑
i 6=h

δ2
hδ

n−2
2

i

η(ε)
6−n
2

∫
B+
σ
2

1

(|y|2 + (δhη(ε)−1)2(D2
n(p)− 1))

4n
n+2

dy

n+2
2n

.


ε4| ln ε|

2
3 if n = 6

ε3 if n = 5

(ρ(ε))3| ln ρ(ε)| if n = 4.

At the end

k∑
h=1

∫
B+
h

∣∣∣∣∣∣
∑
i 6=h

Wi

∣∣∣∣∣∣
2∗

|g(x)|
1
2 dx


n+2
2n

.
k∑

h=1

∑
i 6=h

[∫
B+
h

δni
|x− η(ε)τi|2n

dx

]n+2
2n

.

ε
(1−α)n+2

2 if n ≥ 5

(ρ(ε))3| ln ρ(ε)|
3
4 if n = 4.

For the term (III) we get

|(III)| .

∥∥∥∥∥∥
∑
j

f(Wj)− f

∑
j

Wj

∥∥∥∥∥∥
L

2(n−1)
n (∂M)

‖E‖

Hence

‖ . . . . . . ‖
L

2(n−1)
n (∂M)

.

[∫
∂′B+

2R\∂′B
+
R

| . . . . . . |
2(n−1)
n |g(x̃, 0)|

1
2 dx

] n
2(n−1)

+

[∫
∂′B+

R\
⋃
h ∂
′B+
h

| . . . . . . |
2(n−1)
n |g(x̃, 0)|

1
2 dx

] n
2(n−1)

+

k∑
h=1

[∫
∂′B+

h

| . . . . . . |
2(n−1)
n |g(x̃, 0)|

1
2 dx

] n
2(n−1)

≤
k∑
i=1

[∫
∂′B+

R

(1− χ2](x̃, 0))|Wi|2
] |g(x̃, 0)|

1
2 dx

] n
2(n−1)

+

[∫
∂′B+

R\
⋃
h ∂
′B+
h

|Wi|2
] |g(x̃, 0)|

1
2 dx

] n
2(n−1)

+

k∑
h=1

∫
∂′B+

h

∣∣∣∣∣∣|Wh|2
]−2
∑
i 6=h

Wi

∣∣∣∣∣∣
2(n−1)
n

|g(x̃, 0)|
1
2 dx


n

2(n−1)

+

k∑
h=1

∫
∂′B+

h

∣∣∣∣∣∣
∑
i 6=h

Wi

∣∣∣∣∣∣
2]

|g(x̃, 0)|
1
2 dx


n

2(n−1)
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Now

k∑
i=1

[∫
∂′B+

2R\∂′B
+
R

|Wi|2
] |g(x̃, 0)|

1
2 dx

] n
2(n−1)

.
k∑
i=1

[∫
Rn−1\∂′B+

R

δn−1
i

|x̃− η(ε)τ̃i|
2(n−1)(n−3)

n−2

dx̃

] n
2(n−1)

.
k∑
i=1

δ
n
2
i

η(ε)
n
2

∫
Rn−1\∂′B+

R
η(ε)

1

|ỹ − τ̃i|2(n−1)
dx̃


n

2(n−1)

.

{
ε(1−α)n

2 if n ≥ 5

(ρ(ε))2| ln ρ(ε)|
2
3 if n = 4

Similarly[∫
∂′B+

R\
⋃
h ∂
′B+
h

|Wi|2
] |g(x̃, 0)|

1
2 dx

] n
2(n−1)

.

{
ε(1−α)n

2 if n ≥ 5

(ρ(ε))2| ln ρ(ε)|
2
3 if n = 4

Now for n ≥ 5

k∑
h=1

∫
∂′B+

h

∣∣∣∣∣∣|Wh|2
]−2
∑
i 6=h

Wi

∣∣∣∣∣∣
2(n−1)
n

|g(x̃, 0)|
1
2 dx


n

2(n−1)

.
k∑

h=1

∑
i 6=h

δhδ
n−2
2

i

[∫
∂′B+

h

1

|x̃− η(ε)τ̃h|
4(n−1)
n

dx̃

] n
2(n−1)

.
k∑

h=1

∑
i 6=h

δhδ
n−2
2

i

[∫
∂′B+

η(ε)σ/2

1

|ỹ|
4(n−1)
n

dx̃

] n
2(n−1)

. ε
n
2

+αn−4
2

and for n = 4

k∑
h=1

∫
∂′B+

h

∣∣∣∣∣∣|Wh|
∑
i 6=h

Wi

∣∣∣∣∣∣
3
2

|g(x̃, 0)|
1
2 dx


2
3

. ρ(ε).

Finally

k∑
h=1

∫
∂′B+

h

∣∣∣∣∣∣
∑
i 6=h

Wi

∣∣∣∣∣∣
2]

|g(x̃, 0)|
1
2 dx


n

2(n−1)

.

{
ε(1−α)n

2 if n ≥ 5

(ρ(ε))2| ln ρ(ε)|
2
3 if n = 4

.

We collect all the above estimates and the claim follows. �

Appendix D. Proof of Proposition 4.4

The proof of (1) is standard. It is also standard to prove that

Jε(W + Φε) = Jε(W) +O(‖Φε‖2)

C0− uniformly with respect to (d1, . . . , dk, τ1, . . . , τk) in a compact subsets of [0,+∞)k × C.
We only need to estimate the leading term Jε(W).
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We claim that

Jε(W) :=
k∑
i=1

Jε(Wi)︸ ︷︷ ︸
(I)

−
∑
j<i

∫
M
Kg(Wi)Wj dνg︸ ︷︷ ︸

(II)

−
∑
j<i

cn
n− 2

2

∫
∂M

Hf(Wi)Wj dσg︸ ︷︷ ︸
(III)

+
∑
i<j

∫
M

(cn∇gWi∇gWj + SgWiWj −Kg(Wi)Wj) dνg

− cn
n− 2

2

∫
∂M

H

(
F

(
k∑
i=1

Wi

)
−

k∑
i=1

F(Wi)− f(Wi)Wj

)
dσg

−
∫
M
K

(
G

(
k∑
i=1

Wi

)
−

k∑
i=1

G(Wi)− g(Wi)Wj

)
dνg + (n− 1)ε

∑
i 6=j

∫
∂M
WiWj dσg

= kE−
k∑
i=1

ζn(δi)
[
bn‖π(pi)‖2 + o′n(1)

]
− ε

k∑
i=1

δi(cn + o′′n(1))

−
∑
j<i

dn
1

|K|
n−2
2

δ
n−2
2

i δ
n−2
2

j

η(ε)n−2

1

|τi − τj |n−2
+ o

δ n−2
2

i δ
n−2
2

j

η(ε)n−2

 .

(D.1)

The contribution of each single bubble is encoded in the first term (I) whose expansion is given
in Proposition 3.3. All the other terms come from the interaction among different bubble. First we
estimate the leading term (II) + (III).
For any h = 1, . . . , k let B+

h := B+
(
η(ε)τh, η(ε)σ2

)
⊂ B+

R provide σ is small enough and moreover B+
h

are disjoint each other and ∂′B+
h = B+

h ∩ ∂R
n
+.

(II) =

∫
B+
i

Kg (Wi(x))Wj(x)|g(x)|
1
2 dx+

∫
B+
R\B

+
i

Kg (Wi(x))Wj(x)|g(x)|
1
2 dx

+

∫
B+
R

(1− χ2∗(|x|))Kg (Wi(x))Wj(x)|g(x)|
1
2 dx
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Now, the main term in (II) is given by∫
B+
i

Kg (Wi(x))Wj(x)|g(x)|
1
2 dx =∫

B+
i

Kg

(
δ
−n−2

2
i U

(
x− η(ε)τi

δi

)
+ δiδ

−n−2
2

i Vp

(
x− η(ε)τi

δi

))
×

×
(
δ
−n−2

2
j U

(
x− η(ε)τj

δj

)
+ δjδ

−n−2
2

j Vp

(
x− η(ε)τj

δj

))
|g(x)|

1
2 dx

= δ
n−2
2

i δ
n−2
2

j

αn

|K|
n−2
4

∫
B+
η(ε)σ
2δi

Kg(U + δiVp)×

×

 1(
|δiỹ + η(ε)(τ̃i − τ̃j)|2 + (δiyn + δjDn)2 − δ2

j

)n−2
2

 |g(δiy + η(ε)τi)|
1
2 dy

+O

δ n−2
2

i δ
n−2
2

j

η(ε)n−3

∫
B+
η(ε)σ
2δi

g(U + δiVp) dy


=

αn

|K|
n−2
4

δ
n−2
2

i δ
n−2
2

j

η(ε)n−2|τi − τj |n−2
K

∫
Rn+
U2∗−1 dy + o

δ n−2
2

i δ
n−2
2

j

η(ε)n−2


= − α2∗

n

|K|
n−2
2

δ
n−2
2

i δ
n−2
2

j

η(ε)n−2|τi − τj |n−2

∫
Rn+

1

(|ỹ|2 + (yn + Dn)2 − 1)
n+2
2

dy + o

δ n−2
2

i δ
n−2
2

j

η(ε)n−2


= −α2∗

n ωn−1

∫ +∞

0

rn−2

(1 + r2)
n+2
2

dr︸ ︷︷ ︸
:=dn

ϕ 3
2

δ
n−2
2

i δ
n−2
2

j

η(ε)n−2|τi − τj |n−2

1

|K|
n−2
2

+ o

δ n−2
2

i δ
n−2
2

j

η(ε)n−2



= −dn

(
Dn

(D2
n − 1)

1
2

− 1

)
δ
n−2
2

i δ
n−2
2

j

η(ε)n−2|τi − τj |n−2

1

|K|
n−2
2

+ o

δ n−2
2

i δ
n−2
2

j

η(ε)n−2

 .

Now ∣∣∣∣∣
∫
B+
R\B

+
i

Kg (Wi(x))Wj(x)|g(x)|
1
2 dx

∣∣∣∣∣
.
∫
Rn+\B+(η(ε)τi,η(ε)σ

2
)

δ
n+2
2

i

|x− η(ε)τi|n+2

δ
n−2
2

j

|x− η(ε)τj |n−2
dx = (setting x = η(ε)y)

= c
δ
n+2
2

i δ
n−2
2

j

η(ε)n

∫
Rn+\B+(τi,

σ
2

)

1

|y − τi|n+2

1

|y − τj |n−2
dx

= o

δ n−2
2

i δ
n−2
2

j

η(ε)n−2


and similarly ∣∣∣∣∣

∫
B+
R

(1− χ2∗(|x|))Kg (Wi(x))Wj(x)|g(x)|
1
2 dx

∣∣∣∣∣ = o

δ n−2
2

i δ
n−2
2

j

η(ε)n−2

 .
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For the interaction terms (III), we argue as before, obtaining that

2(n− 1)

∫
∂M

Hf(Wi)Wj

= 2(n− 1)αn
δ
n−2
2

i δ
n−2
2

j

η(ε)n−2|τi − τj |n−2

H

|K|
n−2
4

∫
Rn−1

U2]−1 dx̃(1 + o(1))

=
2(n− 1)α2]

n ωn−1√
n(n− 1)

∫ +∞

0

rn−2

(1 + r2)
n
2

dr︸ ︷︷ ︸
:=hn

δ
n−2
2

i δ
n−2
2

j

η(ε)n−2|τi − τj |n−2

Dn

|K|
n−2
2 (D2

n − 1)
1
2

(1 + o(1)).

Then,

(II) + (III) =
∑
j<i

dn
1

|K|
n−2
2

δ
n−2
2

i δ
n−2
2

j

η(ε)n−2

1

|τi − τj |n−2
+ o

δ n−2
2

i δ
n−2
2

j

η(ε)n−2


since a simple computation shows that dn − hn = 0.
Now we evaluate the remaining terms.
For i 6= j

∣∣∣∣ε∫
∂M
WiWj dνg

∣∣∣∣ . εδ
n−2
2

i δ
n−2
2

j

η(ε)n−3

∫
Rn−1

1

|ỹ − τ̃i|n−2

1

|ỹ − τ̃j |n−2
dỹ = o

δ n−2
2

i δ
n−2
2

j

η(ε)n−2


Now∑

i<j

[∫
M
∇gWi∇gWj + SgWiWj −Kg(Wi)Wj

]
dνg − 2(n− 1)

∑
i<j

∫
∂M

Hf(Wi)Wj dσg

=
∑
i<j

[∫
M

(−cn∆gWi + SgWi −Kg(Wi))Wj dνg

]
+
∑
i<j

cn

∫
∂M

(
∂Wi

∂ν
− n− 2

2
Hf(Wi)

)
Wj dσg

and by using (C.1) we get that

|−cn∆gWi + SgWi −Kg(Wi)| .
δ
n−2
2

i

(|x̃− η(ε)τ̃i|2 + (xn − η(ε)τi,n + Dnδi)2 − δ2
i )

n−2
2

Hence

∑
i<j

[∫
M

(−cn∆gWi + SgWi −Kg(Wi))Wj dνg

]
.
∑
i<j

∫
B+
R

δ
n−2
2

i

|x− η(ε)τi|n−2

δ
n−2
2

j

|x− η(ε)τj |n−2

.
δ
n−2
2

i δ
n−2
2

j

η(ε)2(n−2)
η(ε)n

∫
Rn+

1

|y − τi|n−2

1

|y − τj |n−2
= o

δ n−2
2

i δ
n−2
2

j

η(ε)n−2


and similary

∑
i<j

cn

∫
∂M

(
∂Wi

∂ν
− n− 2

2
Hf(Wi)

)
Wj dσg = o

δ n−2
2

i δ
n−2
2

j

η(ε)n−2
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Now ∫
M
K

G
 k∑
j=1

Wj

− k∑
j=1

G(Wj)−
∑
i 6=j

g(Wi)Wj


=

k∑
h=1

∫
B+
h

K

G
 k∑
j=1

Wj

− k∑
j=1

G(Wj)−
∑
i 6=j

g(Wi)Wj

 |g(x)|
1
2 dx

+

∫
B+
R\

⋃
hB

+
h

K

G
 k∑
j=1

Wj

− k∑
j=1

G(Wj)−
∑
i 6=j

g(Wi)Wj

 |g(x)|
1
2 dx

+

∫
B+
R

(1− χ2∗(|x|))K

G
 k∑
j=1

Wj

− k∑
j=1

G(Wj)−
∑
i 6=j

g(Wi)Wj

 |g(x)|
1
2 dx

It is immediate that∣∣∣∣∣∣
∫
B+
R

(1− χ2∗(|x|))K

G
 k∑
j=1

Wj

− k∑
j=1

G(Wj)−
2n

n− 2

∑
i 6=j

g(Wi)Wj

 |g(x)|
1
2 dx

∣∣∣∣∣∣
= O

δnj + δ2
i

δ
n−2
2

j δ
n−2
2

i

η(ε)n−2

 .

Now, outside the k− balls∣∣∣∣∣∣
∫
B+
R\

⋃
hB

+
h

K

G
 k∑
j=1

Wj

− k∑
j=1

G(Wj)−
∑
i 6=j

g(Wi)Wj

 |g(x)|
1
2 dx

∣∣∣∣∣∣
.
∑
i 6=j

∫
B+
R\

⋃
hB

+
h

(
|Wi|2

∗−2W 2
j + |Wj |2

∗−2W 2
i

)
dx = o

δ n−2
2

i δ
n−2
2

j

η(ε)n−2


because if i 6= j ∫

B+
R\

⋃
hB

+
h

|Wi|2
∗−2W 2

j .
∫
B+
R\

⋃
hB

+
h

δ2
i

|x− η(ε)τi|4
δn−2
j

|x− η(ε)τj |2(n−2)
dx

.
δ2
i δ
n−2
j

η(ε)n
= o

δ n−2
2

i δ
n−2
2

j

η(ε)n−2

 .

On each ball B+
h we also have∫

B+
h

∣∣∣∣∣∣K
G

 k∑
j=1

Wj

− k∑
j=1

G(Wj)−
∑
i 6=j

g(Wi)Wj

 |g(x)|
1
2

∣∣∣∣∣∣ dx
≤
∫
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h

∣∣∣∣∣∣G
Wh +
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i 6=h

Wi

−G(Wh)−
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g(Wh)Wj

∣∣∣∣∣∣ dx+
∑
i 6=h

∫
B+
h

|G(Wi)| dx
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i 6=h
j 6=i

∫
B+
h

|g(Wh)Wj | dx .
∑
i 6=h

∫
B+
h

W 2∗−2
h W 2

i + c
∑
i 6=h

∫
B+
h

W 2∗
i dx

+ c
∑
i6=h
j 6=i

∫
B+
h

W 2∗−1
i Wj dx
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Now if i 6= h and n ≥ 5 then∫
B+
h

W 2∗−2
h W 2

i .
∫
B+
h

δ2
h

|x− η(ε)τh|4
δn−2
i

|x− η(ε)τi|2(n−2)
dx

.
δ2
hδ
n−2
i

η(ε)n

∫
B+(τh,σ/2)

1

|y − τh|4
1

|y − τi|2(n−2)
= o

δ n−2
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i δ
n−2
2

j

η(ε)n−2

 .

If, instead, n = 4 then ∫
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h

W 2∗−2
h W 2

i .
δn−2
h δ

n−2
2

i

η(ε)n−2
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1

(|x|2 + 1)2
dx

.
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i

η(ε)n−2

∣∣∣∣ln η(ε)
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δ n−2
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i δ
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2
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η(ε)n−2
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If i, j 6= h then ∫
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h

W 2∗−1
i Wj ≤

∫
B+
h

δ
n+2
2
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|x− η(ε)τi|n+2

δ
n−2
2
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|x− η(ε)τj |n−2
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δ
n+2
2

i δ
n−2
2

j

η(ε)n
= o

δ n−2
2

i δ
n−2
2
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η(ε)n−2

 .

If i 6= h then ∫
B+
h

W 2∗−1
i Wh ≤

∫
B+
h

δ
n+2
2

i

|x− η(ε)τi|n+2

δ
n−2
2

h

|x− η(ε)τh|n−2

≤
δ
n+2
2

i δ
n−2
2

h

η(ε)n
= o

δ n−2
2

i δ
n−2
2
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η(ε)n−2


Finally, if i 6= h ∫

B+
h

W 2∗
i ≤

∫
B+
h

δni
|x− η(ε)τi|n

≤ δni
η(ε)n
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δ n−2
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n−2
2

j

η(ε)n−2
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In a similar way

∫
∂M

F(∑
i

Wi

)
−
∑
i

F(Wi)−
∑
i 6=j

f(Wi)Wj

 dνg
=

k∑
h=1

∫
∂′B+

h

[. . . . . .] |g(x)|
1
2 dx+

∫
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⋃
h ∂
′B+
h

[. . . . . .] |g(x)|
1
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+

∫
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R
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1
2
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δ n−2
2

i δ
n−2
2

j

η(ε)n−2

 .
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Let us look at the main term of (D.1). Let Q(p) be the quadratic form associated with the second
derivative of p→ ‖π(p)‖2 (being zero the first derivative) If n = 4 by (4.7)

k∑
i=1

(δ2
i | ln δi|)

[
b4‖π(pi)‖2 + o′n(1)

]
− ε

k∑
i=1

δi(cn + o′′n(1))

−
∑
j<i

dn
1

|K|
n−2
2

δ
n−2
2

i δ
n−2
2

j

ηn−2

1

|τi − τj |n−2
+ o

δ n−2
2

i δ
n−2
2

j

ηn−2


=

k∑
i=1

ρ2 (d0 + ηdj)
2 (| ln ρ|+O(1)) b4

[
‖π(p)‖2 +

1

2
η2Q(τi, τi) +O(η3) + o′n(1)

]
− ε

k∑
i=1

δi(cn + o′′n(1))

− ρ2

η2

∑
j<i

dn
1

|K|
d2

0

|τi − τj |2
+ o

(
ρ2

η2

)
and the claim follows because of the choice of d0 in (4.3) and the fact that since η = | ln ρ|−

1
4 (see

(3.32))

o′n(1) = O(| ln ρ|) = o(η2).

If 5 ≤ n ≤ 7 by (4.6)

k∑
i=1

δ2
i

[
bn‖π(pi)‖2 + o′n(1)

]
− ε

k∑
i=1

δi(cn + o′′n(1))

−
∑
j<i

dn
1

|K|
n−2
2

δ
n−2
2

i δ
n−2
2

j

ηn−2

1

|τi − τj |n−2
+ o

δ n−2
2

i δ
n−2
2

j

ηn−2


=

k∑
i=1

ε2(d0 + ηdj)
2bn

[
‖π(p)‖2 +

1

2
η2Q(p)(τi, τi) +O(η3) + o′n(1)

]
− ε

k∑
i=1

δi(cn + o′′n(1))

− εn−2

ηn−2

∑
j<i

dn
1

|K|
n−2
2

dn−2
0

|τi − τj |n−2
o

(
εn−2

ηn−2

)
and the claim follows because of the choice of d0 in (4.3) and the fact that since η = ε

n−4
n (see (3.32))

o′n(1) = O(ε) = o(η2) if n = 6, 7 and o′n(1) = O(ε| ln ε|) = o(η2) if n = 5.

We point out that in higher dimensions n ≥ 8 this is not true anymore.
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Via E. Orabona, 4, 70125 Bari (Italy)

E-mail address: sergio.cruz@uniba.it

Present address: Universidad de Granada, Departamento de Análisis Matemático, Campus Fuentenueva
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