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1 Introduction

Let S = NA be a Damek-Ricci space, i.e., the semidirect product of a (connected and
simply connected) nilpotent Lie group N of Heisenberg type [9] and the one-dimensional
Lie group A = R acting on N by anisotropic dilations. When S is equipped with a
suitable left-invariant Riemannian metric g, S becomes a (noncompact, simply con-
nected) homogeneous harmonic Riemannian space [6, 7]. Conversely, every such space
is a Damek-Ricci space if we exclude R™ and the “degenerate” case of real hyperbolic
spaces (see [8], Corollary 1.2). We refer to [10] for a nice introduction to the geometry
and harmonic analysis on Damek-Ricci spaces.

We can identify S with the unit ball B in s via the Cayley transform C' : S — B
5, 10]:

C
S=NA=2B={(V,Zt)€s: |V?+|Z*+* < 1}.

Heres=n®a=0v® 3P aand n = v & 3 are the Lie algebras of S and N, respectively,
where 3 is the center of n and v its orthogonal complement in n, and a = LieA ~ R is a
1-dimensional Lie algebra with a scalar product.

In the ball model, endowed with the transported metric v = C'~1*~g, the geodesics
through the origin are the diameters, i.e., C(Exp,rw) = thfw for » € R and w € s,
|w| = 1, and the Riemannian sphere S(r) of radius r > 0 (centered at the origin) is just
the Euclidean sphere S(R) of radius R = th § (see, [10], Thm. 10).

For nonsymmetric S the geodesic spheres S(r) are not homogeneous, i.e., there is
no subgroup of isometries acting transitively on them. We do have the analogue of the
group M of symmetric space theory, namely the group of orthogonal automorphisms of
the H-type Lie algebra n = v & 3, which however is not transitive on the unit sphere
SPte = 9B (p = dimv, ¢ = dim3).

Let vg() be the induced metric on S(r), and let Lg;) be the associated induced
Laplacian (the “angular” Laplacian). Since S(r) ~ SP*9 is not homogeneous, an explicit
formula for Lg(, is still lacking and its spectrum is unknown. Only partial results have
been obtained in the biradial and in the v-radial case [1, 2].

In this paper we compute the angular Laplacian on the lowest dimensional non-
symmetric Damek-Ricci space, namely the 7-dimensional space S = N A where N is the
complexified Heisenberg group. Here the induced metric on S(r) ~ S° takes a relatively
simple form (albeit non-homogeneous), and one can work out some of the general features
of Lgy. The approach is completely different from that in [2]. In section 2 we do a
calculation in pure Riemannian geometry by working in bispherical coordinates on SS.
We confirm the general result in [2] about the v-radial part of Lg,), and we give additional
details on the non-v-radial part. This is quite complicated, even in this simple example,
and a full spectral analysis of Lg() seems out of reach at the moment.

In section 3 we present a more intrinsic approach. Instead of coordinates, we use
moving frames adapted to the (local) decomposition of the tangent bundle on S® ~
S(R) into horizontal and vertical parts. The horizontal distribution on S° is defined
as the kernel of the non-round part of the induced metric. It is a smooth distribution
of dimension 4 at generic points of S®. Using the explicit form of the induced metric,
one easily proves that the angular Laplacian is the sum of a term proportional to the



round Laplacian plus a differential operator L’ which is purely vertical. This gives a nice
interpretation of the result obtained in section 2 using coordinates, and it is analogous
to the symmetric case situation [4]. The computation of L' requires an explicit basis
for vertical vector fields. This presents several subtleties, but it is set up and almost
completed in subsection 3.3.

2 Calculation in coordinates

2.1 The induced metric in bispherical coordinates on S°

Let S = NA be the lowest (=7) dimensional non-symmetric Damek-Ricci space. Then
q = 2 (dimension of the center 3 of n), p = 4 (dimension of the orthogonal complement
v of 3 in n), i.e., 3 = R? and v = R*, with commutations (cf. [10], p. 67)

V., V'] =[(a,b,c,d),(a’,V,c,d)]
= (abl —ba' +dc’ — ed';ad — ca’ + bd — db').
N is just the 6-dimensional complexified Heisenberg group. We have the endomorphisms

Ji, Jo of v defined by [V, V'] = ((J1V, V'), (J3V,V')), and given explicitly as 4 x 4 matrices
in the canonical basis of R* by:

0 -1 0 0 00 —1 0
1 0 0 0 00 0 -1
J1_0001’J2_1000’
0 0 —1 0 01 0 0
whence
0 0 0 1
0 0 —1 0
hh=1 o 1 o o
-10 0 0

Write the unit sphere in s =0 ® 3 ® a = RS as
S ={(V,Z,t) eR'@R*®R: |V + |22 +12 =1},

and let ygs be the round metric on S°. Then the metric vg in geodesic polar coordinates
(rw) = (r,(V, Z,t)) € [0,+00) x S is given by vg = dr? + vg(), where the induced
metric on the Riemannian sphere S(r) is the following r-dependent metric on S° (cf. [1],
Theorem 3.3):

2 2
sy = 4sh? L g0 + 4sh? 2 {‘[v, dV] + tdZ — Zdt‘ + (<J1J2v, dV) + z1dzs — zgdzl>

1
(1 —tthL)2 + th?5[Z]2)? (thQ 5 VI (s1dz—20d2) (21)
2 2

2
F2th E(1—tth 2) (21[V, dV]y— 2V, dV]y) + (1=t th )2 —th? 2 |Z2) (S JyV, dV>> } .



Here Z = (21, 29) € 3 and if V = (v1,v9,v3,v4) € 0 then

[‘/, dV]l = <J1V, dV) = Uldvg — UQd’Ul + U4d’U3 — U3d?}4,
[‘/, dV]g = <J2V, dV) = ’U1dU3 — Ugd'Ul + UQdU4 — U4d"02,
(J1. LV, dV) = vydvy — vidvg + vedvg — v3dvs.

Of course the differentials dV', dZ, dt in (2.1) are not all independent, namely (V, dV')+
(Z,dZ) + tdt = 0.

Remark 2.1. We use the following notation from now on. If wy,w, are 1-forms, then
obviously w; ® wy is different from ws ® wy. To simplify our formulas, we shall always
omit the tensor product symbol and write wywy for the symmetrized product divided by
2, i.e., wiws = (w1 @ wy + we ® wy)/2. Then, for instance,

(w1 + wa)? = w? + W2 + 2wiws.

We interpret the induced metric (2.1) as the sum of a constant curvature term plus a
“perturbation” term (the curly bracket).

The problem is to write down this metric in a suitable coordinate system on S,
9i; = (Vs()ij, compute the inverse metric ¢, and then compute the angular Laplacian
L,y by the usual Riemannian formula

1 i ij ING\ 4 i
Lsqy = ﬁ@' (V997 0;) = g”8,0; + <T\;_> 97 0; + (0,97 0;, (2.2)

where g = det g;; and summation over repeated indices is understood.

We use bispherical coordinates on S°
(p, ¢, ,w) € [0,1] x [0, 7] x [0,27] x S*
defined as follows. Let
S'=1{(0,2,0): |Z] =1} =S"NR?,
§ = {(V,0,0): [V]=1}=S°ARY,
be the unit spheres in 3 and v, respectively, and let
S2={(0,Z,t): |ZP+t? =1} =S"N(R* D R)
be the unit sphere in 3 ® a. Any & = (V, Z,t) € S can be parametrized in the form
V= \/1—7p2w

t = pcos¢ (2.3)
Z = psin ¢ w,



where p?> =t +|Z]? =1 — |V|?, and
0<p<1l, 0<¢<m wes, &= (osa,sina)ecs, 0<a<2n. (2.4)

The choices of p, ¢, a, w are unique except when V =0 or Z = 0. We do not specify yet
any coordinate system on S? but write w = (ay, as, az, as) with |w|?> = a3 +a3+ai+a3 =1
and round metric

Vg3 = |d(,u|2 = da% + da% + da§ + dai, where aida; + asdag + aszdas + asdas = 0.

We have:

(T pdp
dV = 1-— deCd — \/1—_7p2w,

[V,dV] = (1 - p*)[w,dw], dt =dpcosp— psin¢pdg,

dZ = dpsinp @ + pcospdp @ + psin g do = (dzy,dzy), (2.5)
tdZ — Zdt = p*d¢p & + p*sin ¢ cos ¢ di,

zidzy — 2odzy = pPsin® oda,  (J1 LV, dV) = (1 — p*){(J1Jow, dw),
(21[V,dV ]y — 22V, dV]1 = p(1 - p?) sin ¢ (cos afw, dwly — sin afw, dw];) .

Using (2.5), the round metric vgs = [dV|? + |dZ|* + dt? is computed to be

2

d
Y50 = 5 —pp2 +p? (d* + sin® ¢ da®) + (1 — p?) 7se. (2.6)

Using (2.5) and (2.6) in (2.1) gives the induced metric in bispherical coordinates:
Ys(r) = 4 sh? 5 (1—‘1_% +p? (al<b2 + sin? ¢da2) + (1 —p?) 753>
+4sh'z {p4 (d¢2 + sin? ¢da2) +(1— p2)2<[w, dw]? + [w, dw]2 + (Jy Jaw, dw)2>
+2p%(1 — p?) (dqb(cosoz (w, dwly + sin o [w, dwb) (2.7)

+ sin¢da<sin¢ (J1Jow, dw) — cos ¢(sin o [w, dw]; — cos a [w, dw]2)>)

(1= p%)? 2r 2.2
- (14—,02th2f—2pcosgz§thf)2 thg p7sin” g da
2 2

+2th% (1 —pcospthl) psingb(cosa lw, dw]y — sina [w,dwh)

2
+ <J1J2w,dw>< (1- pcosqbthg)2 — th? L p*sin® (25)‘| }



Here
[w, dw]; = arday — asday + agdas — azday,

[w, dw]s = aydas — azda; + asday — asdas, (2.8)
<J1J2w, dw) = a4da1 - alda4 + CLQdag — a,3da2.

Remarks.
1) The differential dp only occurs in the “unperturbed” part of the metric, i.e., in ~ygs,
thus the p-coordinate decouples from the other coordinates and

2) The differential d¢ occurs in the curly bracket only in the r-independent part (not
in the square bracket).
3) There are no terms in d¢ da so gga = 0.

The metric vg(,) is not homogeneous. However it is invariant under the group M of
orthogonal automorphisms of S. This group is trivial on a, and leaves 3 and v invariant.
Moreover, it is known that M is transitive on the unit spheres in 3 and v, i.e., on S x S3.
In view of this invariance, we can, as a first step, compute our metric at any convenient
point (@g,wp) € ST x S3, for example at &y = (1,0) (i.e., ag = 0) and wy = (1,0,0,0).
Let Py = (p, ¢, ag,wp). Since

CLQdaQ + agdag + CL4d6L4
Y
V1—a3—ai—a?

we take (ag,as,aq) as coordinates around Py on S3. Note that (Jywg,w) = [wo,w]; = as,
(Jowp, w) = [wo,w]s = ag, and (J;Jowy,w) = —ay. Setting a3 = 1 and as = a3 = a4 = 0
in (2.8) gives at Pp:

a1:\/1—a§—a§—ai, da; = —

[w, dw] = (dag, das),  (J1Jow,dw) = —day,

and of course da; = 0, vg3|p, = da? + da3 + da3. The metric (2.7) at the point Py in the
coordinate system (p, @, a, as, as, as) becomes

Vs lp, = 4sh* % (flfjg + p° (d¢* + sin® ¢ do®) + (1 — p*) (daj + daj + dai))
+4sh*Z {p4 <d¢2 + sin? gbdoz2> + (1 — p*)? <dag + da3 + dai)
+2p%(1 — p?) (dgb das + Singbda< —sin¢day + cosgbdag,)) (2.9)
(1—p*)?

— th? Z p*sin® ¢ dov
(14 p2th?L — 2pcospth )’ { ?

2
+2th 3 (1 — pcos ¢th g) psin ¢ das + da4(th2 %pQ sin® ¢ — (1 — pcos ¢ th §)2>] }



Note that the coordinates ¢ and as only couple with each other. Expanding the square
gives terms in da?, da3, da}, dadas, daday, dazdas. Reordering the coordinates as

(p, ¢, a2, ,a3,a4), we get from (2.9) the metric g;; =

block-diagonal form:

(Ys(r))ij at Py in the following

Gpp | O 0 0 0 0
0 | 966 Ypar | 0 0 0
0 9paz  YGazas 0 0 0 2 T 4 T
iilp = =4sh* = ~;; +4sh® = h;;, 2.10
gulry 01 0 0 |daa Yoas Yoas S5 7 st gy, (2:10)
0 O 0 gaag ga3a3 ga3a4
0 O 0 gaa4 ga3a4 ga4a4
where ;5 is the round metric at [,
10 0 0 0 0
P
0 |p? 0 0 0 0
g = V50 )il 00 0 [pFsi®g 0 o |
0 |0 0 0 1—p? 0
0 10 0 0 0 1—p?
and the “perturbation” term h;; is given by
0 0 0 0 0 0
0 p* pPP(l=p) 0 0 0
ho_ | 0P =p) (A=p»*] 0 0 O
R ) 0 0 hao  haas  Poay
0 0 0 hoas Pasas Pasas
0 0 0 hoas Nhasay Pagas
The 2 x 2 block in the plane (¢, as) is
2 4 2 2
9o¢  Yoas :4Sh2£<p 0 )+4Sh4z( p p(l_p>>
( 9éa  Jazas ) 2L 0 1= 2\ pPP(1=p*) (1-p*)?

The inverse of this block is

(

g¢¢
9°? g

g¢a2

aa2

):




The 3 x 3 lower block in h;; has entries (here R = th %)
(1—p*)? R*sin® ¢ >
(14 p?R*—2Rpcos¢)*)’

_ 4R?p*sin® ¢(1 — Rp cos ¢)2)
(14 p2R?—2Rpcos¢)® )’

(

hao = p4 sin? (b(l -

ha3a3 - (1 - p2)2 (1

2
<R2 p? sin® ¢ — (1 — Rp cos gb)2)
(1+ p? R? — 2Rpcos ¢) )7

ha4a4 - (1 - 02)2 (1 -

2(1 - p*)R* p sin® ¢(1 — Rp cos ¢))

Paas = p*(1 — p?) sin (cos —
s =p (L—p°)sing ¢ (14 p? R? — 2Rpcos ¢)

(1—p*)R? <R2 p? sin? ¢ — (1 — Rp cos gb)2>
haa4 = _p2(1 - p2) SiIl2 ¢<1 + 2 )7
(1+ R?p? —2Rpcos ¢)
2(1 — p*)?Rpsin ¢(1 — Rp cos ¢) <R2p2 sin? ¢ — (1 — Rpcos ¢)2>
hagas = — .
\ (14 p2R? — 2Rpcos ¢)°

Note the kernel in the denominators

(1+ p*R? — 2Rpcos¢)” = ((1 — Rt)> + R?|Z]?)*.

2.2 The inverse metric and the induced Laplacian

The first important check is to show that the square root of the metric determinant at
po is
V|, = 2°sh®Z ch®L p* (1 — p?) sin ¢, (2.11)

in agreement with the general formula for the Riemannian volume element in geodesic
polar coordinates on a Damek-Ricci space. Indeed this volume element reads Vol =
dr dog (), where the induced measure on the Riemannian sphere S(r) is [10]

dogiy = 2779 (sh D)™ (ch £)! dwgpia,

dwsn denoting the volume element of the round metric on S™. In bispherical coordinates
on SPT4 we have [1]

dwgpra = p? (1 — p?)2 71 (sin )7 dp dop dwgo—1 dwga—1.

In our case ¢ = 2, p =4, dwge-1 = dwgs1 = da, and dwgp-1|p, = dwss|p, = dasdasday.
Now by (2.10):

e the determinant of the 1 x 1 block is
Gop = 4(1 = P2)_1Sh2§§

8



e the determinant of the 2 x 2 block is
21p%(1 — p2)sh4§ Ch2§;
e the determinant of the 3 x 3 block is computed to be
20p%(1 — p*)?sh°L ch®Z sin® ¢.

This establishes (2.11).

The main calculation is now to find the inverse of the 3 x 3 block in g;;|p,. Since vg(
is the sum of a constant curvature metric plus a “perturbation” term, and looking at
the inverse of the 2 x 2 block, we expect that the inverse metric g*|p, in the coordinate

frame (p, ¢, as, v, ag, ay) will take the form

. 1 . 1 .
1] — 1] o k@]
9"l 4sh?z T deh®L
where 7% is the inverse of v;;,
1—p2l0 0 0 0 0
0 |5 0 0 0 0
g 0 0 — 0 0 0
,Yzy — 1—p
0 [0 0 |mgey O O
0 |0 0 0 =% 0
0 |0 0 0 0 %
P

and kY is a block-diagonal matrix of the form

0lo o]l 0 0 0
0/1T 1] 0 0 0

i |01t o o 0
010 0] ko koas  faar |-
010 0Fkeas jasas  fasas
010 0Fkeas fasas  faaas

(2.12)

, (2.13)

(2.14)

with the k% in the lower block depending on r, in general. In fact, we have the following

result.



Proposition 2.2. The inverse of the 3 x 3 block in g;;|p, has entries:

(oo — L1 1- R 1
I = T pe p?sin® ¢ 4  sin®¢’
1—-R?
gaa3|P0 - 4 cot ¢7
oy 1—-R?
9P = 4

1— R? 1— R?
ga3a3|PO — _ k‘a3a3
4R2(1 — p?) 4
1 - R? 1 - R?
ga4a4|PO — o k.a4a4
4R2(1 — p?) 4
asa - R2 asa
g 3 4|Po — _ 4 k 304

Y

)

Y

\

where k%% =1 — k™% and
pasas _ p*R%sin® ¢(3 + p?R? — 4pRcos ¢)
(14 p?R? — 2pRcos ¢)?
_ 1 2(1 — pRcos ¢)
_ 2p2 2
prIsinT o (1 + p?R? — 2pRcos ¢ * (14 p2R%? —2pRcos¢)? )’
pRsin gz5<2 +4p? R% cos® ¢ — pRcos ¢(5 + p2R2)>

JREC.
(14 p2R? — 2pR cos ¢)?
G PR (1— pReos 9)(1 — p*R?)
= pRsing (11— 2R2 _ T 2R2 _ 2 )
\ 1+ p?R? —2pRcos¢p (14 p?R?% — 2pRcos ¢)

Proof. This is just brute force calculation for the 3 x 3 block of g;;|p, in (2.10).
we see that ¢g"/| g, has indeed the claimed form

(

]

1

: 1-R%2 1 P2 _
Since = sh2§ and 1-R* = Chgg,
(2.12)-(2.14), with the 3 x 3 block in k% given by
’ rg |COtO  —1
k7 = | “cotd | ke feaas (2.15)
_1 ka3a4 ka4a4
L k%% = cot¢ and k®™ = —1 are rather simple and

Note that the entries k** = et
r-independent, but the remaining entries k%%, k%% k%% are quite complicated and
explicitly depend on r.

By M-invariance, we can now claim that the inverse metric ¢ at any point P € S°

will take the form (2.12), namely
(2.16)

L/ - g _
Ple= s T



with 7% the inverse round metric at P (see below), and k% a suitable matrix with
k" = 0,Vi, and the 5 x 5 block not necessarily in block-diagonal form, in general. The
expression of kY at a generic point P € S% will be quite complicated and will not
be given here. On the other hand the round metric on S° and its inverse at a point
P = (p,¢,a,as,a3,a4) can be obtained using the following formulae in (2.6).

The round metric on S? in the coordinates (as, as, ay) is easily seen to be:

1-a3—a} azas azaq
lfagfagfai 1fa%fa§faz lfagfagfai
(ng)ij = lft:LQCLEC(Lz?’Qfa2 13a2(12a2(7:1a2 lfazaiccl;éfa2
2 G374y 2 a3—ay 27 437 4y
azaq azaq 1_‘13_“%

2__2__2 2__2_ 2 2__92_ 2
l—a5—a35—aj l—a5—a35—aj 1—a5—az—aj

From this one computes

1
det vgs = T a?—a?—a2’

a27a37a4
and inverse metric
1—a3 —asaz —agay
—1\ij 2
(7g3)? = | —agaz 1—a3 —azay
—asay —azay 1—a?

The round Laplacian on S® can then be written in the form
Lgs = 02, + 02, + 2, — (0200, + 3005 + 0200,)" — 2(020u, + 13005 + a404,).  (2.17)

The round metric on S®, its inverse, and the square root of the metric determinant
at P = (p, d,a, as,as, ays) are obtained from (2.6):

| 0 0 0 0 0
0 |p? 0 0 0 0
0 | 0 p?sin®o|0 0 0
Yii = (7S6)ij\P = 0 0 p 0 ¢ )
0 10 0 (1= p*)(7s3)3
0 |0 0
1—p%| 0 0 0 0 0
0 p% 0 0 0 0
- 0 0 1 0 0 0
ij —1\ij| p?sin? ¢
v = (746 )" P 0 0 J :
0o |0 o = (Vg8 )Y
0 0 0

V7 = /ety = pZ(l_pQ)S;n(bz. (2.18)

\/ l—ai—di—a
From this one computes the round Laplacian on S° (see also [1], (4.12)):

1 ) ) @\/7) ) ;
Lgs = —8; (VA7 8;) = 499,0; + (— 19, + (977 0,
s Vel (WV J) v j /7 Y ( v ) j
—(1- )P+ (% - 6p> 9y + hLse + 125 Lss, (2.19)

11



where Lgs is the round Laplacian (2.17) on S® (unit sphere in v), and

1
Lg2 = 07 + cotg 9y + Maﬁ
is the round Laplacian on S? (unit sphere in 3 & a).

Substitution of (2.16) in (2.2) gives the following result.

Theorem 2.3. The angular Laplacian at any point P € S can be written in the form
1 1

Loy = —=— Lgs — ——— 1L, 92.20
VIS T (2.20)

where Lgs is the round Laplacian (2.19) on S®, and L' is the differential operator on S°

1 ) ) ai\@) ) )
L' =—0 kY 0;) = kY0,0; + (— kY0; + (0;kY) 0, 2.21
\/g (\/g j) J \/g J ( ) J ( )

where k" is the non-round part of the inverse metric in (2.16). Here \/g = \/det g;; =
20sh®L ch®L, /7, with /7 = /dety;; given by (2.18).

We observe that formula (2.20) for Lg( remarkably reminds the symmetric-case
formula (cf. [4], (6.16)), but L’ is now r-dependent.

Using (2.14)-(2.15), we can write down the symbol £%9;0; of L’ at Py. Obviously it

depends on R in the terms k%92 + k™07 + 2k*3%9,,0,,, but its v-radial part (the
one with only the derivatives d, and 0,) is R-independent:

kOO 4 k0P = 0+ =07

sin? ¢ ~o’

as well as the terms

k29202 + 2k%%20,40,, + 2k*% 0004y + 2k 0004, = 02, + 20400, + 2c0td 00y — 204,04,
For the term <8i7‘f) k¥ 0; in (2.21) we have (04+/9)/1/9 = cot¢ and

8Of\/§|P0 =0= a602\/.5’190 = as\/§|Po = a4\/§|P07

i S S
being /g o Y e Thus

o; 3
(%) EY0; = cotg Oy + cot Oy, .
The last term (9;k")9; in (2.21) cannot be computed directly as it requires the
derivatives of k% (or g) at Py, but we don’t have the expression of the inverse metric
away from Fy. However, we can proceed indirectly as follows. Recall that the first-order
terms in (2.2) can also be written in terms of the Levi-Civita connection coefficients wf,.
Let V denote the covariant derivative in the full metric, and define Vy,0; = w0 Then
LS(r) = gijVaiVaj = g"j&»&j - gingC 8k. (2.22)

J

12



The coefficients wfj are given in terms of the derivatives of the metric by
wij = %gkm (algm] + ajgmz - aszg) .

This can now be computed using the general expression (2.7) of the metric. By separating
out the part relative to the round Laplacian, and keeping in mind the first-order term

<ai7\f> k79, already computed, we get by comparison of (2.22) with (2.2) that

=0,

(k™ + 0k + Dk + 00,k + 00, k%) |
0

=0.

(uk™ + 0k + 00,k + Bu k> + D) |
0

Thus there are no additional first-order terms in 0,, and no first-order terms in 9, in L.
The v-radial part of L’ at P, is then
Lg» = 95+ cot ¢ 0y + 357504 (2.23)

= (t(?zl — 213,5)2 + (zf@z2 — 220t)2 + (z18Z2 — zgﬁzl)z.

By M-invariance, this result remains true at any point P € S% Indeed, the operator
Lg2 is clearly invariant under the action of M on 3 @ a (just rotations in the 3-plane).
More specifically, the operators 02 = (210,, — 200,,)? and (t0,, — 210;)* + (0., — 220;)*
are separately M-invariant.

We will not compute the remaining first-order terms in (9;k") 9;, as the non-v-radial
part of L’ (the one with the derivatives with respect to as, as.ay) is already quite compli-
cated. We have obtained:

Proposition 2.4. The operator L' at Py is given by

L' = 87 + cotg 9y + 02

sin’ ¢
+ 02, + 20404, + Ot Duy + 2€0td 0n0ay — 20004,
+ k%9307 + kU024 2k%™ Dy 0oy

+ (0:K192) Dy + (K192 By + (9k1) Dy

The v-radial part of L' is given by (2.23) at every P € S°.

2.3 The v-radial part of the spectrum

We can now look for the eigenfunctions of Lg(y on S® that depend only on the coor-
dinates (p, @, ) in the bispherical coordinate chart (p, ¢, a,w) of S°, i.e., independent
of w = (a1, a2,a3,a4) € SP~1 = S3, or equivalently, the v-radial eigenfunctions of Lg(),
depending only on (¢, 7). By Proposition 2.4, the v-radial part of the operator Lg( at
any point P € S is given by

1
Lsw) = m{(l =)0, + (,% - 6P> 9 + p%Lsﬂ} -
2

1
4 ch?

Lge. (2.24)
2
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Recall that the regular eigenfunctions of the operator Lg: = 6; + cot ¢ Oy + —5=0>

sin? ¢
are the usual spherical harmonics Y, (¢, o), namely

(%+@M¢%+§#ﬁgxr:—Mn+Umm
where (up to normalization)

Y"™(¢,a) = P"(cos @)™, ne€Z', m=-n,...,n,

n

P™ being the associated Legendre polynomials. Looking for (complex) solutions to
Lseyx = Ax in the factored form x(p, ¢, ) = f(p)Y (¢, ), we find they are given (up to
normalization) by

X o (05 @, @) = Rz(17k_l+1/2)(202 — DY (6, 0), (2.25)
where R\ (z) is a Jacobi polynomial normalized so that R”(1) = 1, and
klmeZ, k>1>0, m=—(k—10),... . k—1.

The eigenvalues are the same as in the biradial case, namely

(k+l)(k+l+5)+(k—l)(k;—l+1)'

Ay = —
o 4sh’z dch’s

For m = 0 we get back the biradial eigenfunctions xx; = Xk, (those that depend only
on (p, ¢), i.e., on (t,]2])), see [1].

Formula (2.24) has been generalized to any Damek-Ricci space in [2], Theorem 2.1. We
can check that the eigenfunctions xy;.m in (2.25) agree with the functions xj, ;; in formula
(2.22) of [2] for p =4 and ¢ = 2. To this end, we just need to take m = £75. Indeed the
associated Legendre polynomials P,fl(cos ¢) are proportional to (sin ¢)’ R,(jfll j(cos @), as

easily proved, and of course S J(QZ) (w2) = Sfj)[(a) = ¢+ i5 a basis for spherical harmonics
of degree j on S97! = St

Formula (2.20) appears in [2] as formula (2.17) with L' = Lgqs 4+ L3, but the operator
L is not explicit. In this section we have obtained a more explicit form of the operator
L’ at a given point Py € S% in the 7-dimensional example by working in bispherical
coordinates. More insight into the geometrical meaning of L’ will be given in the next
section.

As regards the non-v-radial part of the spectrum, this remains largely unknown, due
to the complicated form of L'. It is possible that the whole spectrum and eigenfunctions of
L,y can not be computed in closed form. For example, we don’t know if the eigenvalues
of Lg(y coincide exactly with the “biradial” ones Ay, or if “new” eigenvalues will appear.
In this case the associated eigenspaces will carry no biradial or even v-radial element, a
completely new situation compared to the symmetric case. The general eigenfunctions
will be suitable linear combinations of spherical harmonics in L?(S®). However nothing
prevents, in principle, that the coefficients of these linear combinations depend explicitly
on r, in contrast with the symmetric case situation. We refer to [4], subsection 8.5, for a
more general discussion of this point for non-symmetric Damek-Ricci spaces.
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3 The approach by moving frames

In this section we present a different approach to the computation of the angular Lapla-
cian. It is based on a suitable (local) decomposition of the tangent bundle on S ~ S(R)
into horizontal and vertical parts and on the use of moving frames adapted to this de-
composition rather than of coordinates.

3.1 The horizontal-vertical decomposition of the tangent bun-
dle

It is convenient to work in the ball model B of NA. The induced metric vgr) on the
Euclidean sphere S(R) of radius R < 1 in B, identified with S by Rw — w, is given by
(2.1) with R = thZ, namely it is the following R-dependent metric on S°:

4R? 4R*

YS(R) = 1_—}%2756 + mhm (3.1)

where hp is the smooth rank-2 tensor on S° given by

hR|(V,Z,t) = H‘/, dV] + tdZ — Zdt|2—|‘ (ZleQ — ZQle + <J1J2V, dV))Q

1 2 2
" (1= Rt?+ R2|Z]?)2 (R [VI7 (z1dz2 — 22d21) (3.2)

2
Recall that for R = 1 we have h; = limg_,; hg = ©% = |0|?, where O is the 3-valued
1-form on S®* =S¢\ {(0,0,1)} given by (cf. [3], (3.20))

Q(ZQUl — ZlUg)
(L= +[Z]

@|(V,Z,t) = [V,dV ]+ tdZ — Zdt + (3.3)

X {ZleQ — ZQle + 21 [V, dV]Q — ZQ[V, dV]l + (1 — t)<J1J2‘/, dV>},

where Uy = (1,0), Uy = (0,1). Up to a scalar factor, © is the pull-back of the canonical
1-form on the group N by the generalized stereographic projection [3]. It can be extended
to a 3-valued 1-form on B\ {(0,0,1)}. Moreover, we have a decomposition of the tangent
bundle on S%* into its horizontal part HT(S%*), defined as the kernel of © (or of hy = ©?),
and the vertical part VT(S®*) (the orthogonal complement of ker © with respect to the
round metric), with dim HT(S%*) = 4, dim VT(S®*) = 2. Tt is proved in [3], Theorems
3.4 and 3.7, that the 1-form O, as well as its square, do not extend smoothly at the
pole (0,0, 1), though they remain bounded there, and the same holds for the horizontal
distribution ker ©.

For R < 1 the non-round part (3.2) of the induced metric (3.1) is smooth, and it is
related to hy by (cf. [3])

R'hp = hy o 6p,
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where dp is the dilation 6g(V, Z,t) = (RV, RZ, Rt). Note that hy (given by (3.2) with
R = 1) is well defined on B, so the composition hj 00y is well defined for R < 1. However,
we anticipate that the equality h; = ©2 only holds on S®* but not on B (cf. Corollary
3.4). Thus, in general, the kernel of hr (which is just (ker hy) o 6z by Proposition 3.1)
will be different from ker(6©?) o 6z = (ker ©) o i for R < 1.

We define the horizontal distribution HT'(S(R)), R < 1, as the kernel of hg, i.e., as
the following R-dependent distribution on S°:

HT(S(R)) = kerhp = {X € T(S%) : hup(X,Y) =0, VY € T(5%}.

Since hg is smooth, HT(S(R)) is a smooth distribution of dimension 4 at generic
points of S8 but it will change dimension at some (zero-measure) point set of S°. Indeed
there are no continuous k-dimensional distributions (continuous fields of k-planes) on S°
for 1 < k <5 ([11], Theorem 27.18). For k = 1, this is the well known result that even
spheres do not admit continuous nowhere vanishing vector fields, or 1-forms by duality.

The vertical distribution VT(S(R)) is defined as the orthogonal complement of
HT(S(R)) with respect to the round metric ygs (or to the full metric yg(g)). Again,
this is a smooth distribution of dimension 2 at generic points of S®. For instance at the
poles zo = (0,0, 1), we have hgl0.+1) = |[dZ|?, VR, so the horizontal subspace is just
HT,,(S(R)) = v and the vertical one is VT, (S(R)) = 3, VR.

Note that S° is not a fibre bundle with fibre S? = S? (there is no Hopf fibration for
S¢). Thus we do not have an interpretation of the horizontal/vertical distributions in
terms of base space/fibres of a global fibration, as in the case of symmetric Damek-Ricci
spaces [4]. Nevertheless, the local decomposition

T(S%) = HT(S(R)) ® VT(S(R)) (R<1)
will serve our purposes of describing the structure of the angular Laplacian.
The following result relates the kernels of hg on S® and of hy on S(R).

Proposition 3.1. Let h; be considered as a tensor field defined on B\ {(0,0,1)}. For
any vector fields X, Y on S(R), R < 1, we have

(h106R) (X 06r, Y 0dr) = (hi(X,Y)) o dx. (3.4)

Consequently, X is in the kernel of hy on S(R), R < 1, if and only if X o 0 is in the
kernel of h1 o8z on S%, and

HT(S(R)) =ker hg = ker(hy 0 6g) = (kerhy) o dg, VR < 1. (3.5)

Proof. We will prove (3.4) for Y = X. The general proof is similar but there are more
terms to keep track of, due to symmetrization in X and Y. Recall that if wy,wy are
1-forms, then

(w1 4+ w2)*(X,Y) = wi(X)wi(Y) 4+ wa(X)we (V) 4 w1 (X)wo (V) + wi (Y)wa(X).
For Y = X this simplifies to

(w1 +w2)2(X, X) = w1 (X)? + wa(X)? + 21 (X)wa(X) = (wr(X) +wn(X))% (3.6)
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Let X = (X,, 0v) + (X;,0z) + X,0,, where the components X,, X; = (X;1, X;2) and X,
are v-valued, 3-valued and R-valued functions, respectively. Then

X 00p = (Xy 00r,0v) + 3(X; 0 0r, 0z) + 5(Xa 0 0r)0;. (3.7)
Using (3.2) with R =1 and (3.6), we have for (V,Z,t) € B

2 2
hl(X, X)|(V,Z,t) = (<J1V, XU> + tXal — ZlXa) + (<J2‘/, XD> + tXég - ZQXu>

1
2 +1Z)2)2

2
+ (ZlXag - ZQXél + <J1J2V, Xu>> - ((1 _ t) <|V|2(2’1X32 - ZQXal)

+2(1 = ) (21( LV, Xy) — 22( 1V, X)) + (1 = 8)* = | Z]?) (1 JoV, XU>)2,

where we write X,, X; and X, for X, (V, Z,t), X;(V, Z,t) and X,(V, Z, t), for brevity. Here
hi(X, X) is considered as a function on B in order to compose with dg in the next step.

Composing the function hy(X, X) with dg and writing X, o dg for X,(RV, RZ, Rt),
etc, gives on the one hand

hi(X, X) 0 0r|(v.zy = M (X, X)|(rv.rZ,Rt)

2
= R2(<J1V, X, 00g) +tX;1 00k — 21X, 0 5R>
2
+ R2<<J2‘/, Xy o0 5R> + th,Q 00p — 23X, 0 (SR>

2
+ R? <21X32 0dp — 29X 00 + (J12V, X, 0 5R>)

1 311712
(1 = Rt)? + R2|Z]?)? (R [V[*(21X52 0 0r — 22X;1 0 0r)

+2R*(1 — Rt)(21(J2V, Xy 0 0r) — 22(J1V, X, 0 6))

2

+ R((1 = Rt)* — R*|Z]*)(J1V, X, o (5R>) ,
for (V,Z,t) € S%. On the other hand, when we compute (h1 o 5R) (X 00, X o 53) lov.z,0)
and use (3.7), we obtain exactly the same expression, as easily seen. ]

We remark that h; must be considered as a function on B\ {(0,0,1)} in the above
proposition in order to apply (3.5). In particular, since hy|p # ©?|p (cf. Corollary 3.4),
we cannot claim equality between ker hp and ker(©?) o 6z = (ker ©) o 5 for R < 1.

3.2 The induced Laplacian

Now let a superscript hor, ver denote restriction of a metric or a differential operator to
the horizontal, vertical subspaces. Decompose the round metric as

ver

Yso = V56 + V5

17



Then the metric in (3.1) decomposes as

Vs(R) = V$(r) + VSR (3.8)
where . AR2 X AR? AR
Vs$(r) = T- V5o Vst = 1o -2 Yso + A= Ro2 hg. (3.9)

(The term hg is of course vertical by the definition of the horizontal subspace as its
kernel.) Thus the horizontal part of the induced metric is proportional to the horizontal
part of the round metric, and the vertical part is the sum of a term proportional to vg"
and a term proportional to hr. Let

L56 ngr + ver

be the decomposition of the round Laplacian into its horizontal and vertical parts. Let
Lg(r) be the Laplacian of the induced metric (3.1). Then (3.8)-(3.9) imply the following
decomposmon

Ls(ry = L&{p) + Ls(n), (3.10)
where the horizontal part is
1—-R? 1
hor hor __ hor
bt = —qpe b5 = h‘“LSG’

er

and the vertical part L, is the differential operator associated with V$(r) 10 (3.9).

Proposition 3.2. The induced Laplacian Lgry can be written in the form

1 - R? 1 - R?
Lgry = IR Lgs — 1 L
1 1
= a7 Lss — =7 L,

where L' is the vertical differential operator defined by
1—-R? 1— R?

4 Ll — 4R2 ver ve(r ) (311)
Proof. Just add and subtract £ L”” in (3.10), to get
1 - R? ver 1 - R? ver
Lty =~ Lo+ (L4l =~ 14 =

This result gives a different perspective on formula (2.20) obtained in section 2 using
the coordinate frame approach. Namely, the induced Laplacian is the sum of a term
proportional to the round Laplacian plus a vertical term proportional to L’. This is
analogous to the symmetric case formula (see [4], Theorem 6.1), except that L’ is now
r-dependent.
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In order to explicitly compute L we need a basis X7, X, for vertical vector fields,
relative to which we can write

1 L = 1R Z’y VXZ-VX]- — Zg VXiVXj,
1 1

where g” and % are the inverse vertical metric and inverse vertical round metric in the
vertical frame {X7, X5}, and V, V5° denote the covariant derivatives in the full metric
and in the round metric, respectively. Of course, the symbol of L’ will be determined by

1-R, (1-R , ‘
1 L :Z R v — g | X;X; + first-order terms in X, Xs. (3.12)

Once we know X, X, we can easily compute the inverse metrics ¢ and v and the
symbol of L' at all points of S(R) ~ S® An interesting question is whether or not L’
commutes with the round Laplacian or, more generally, with the Euclidean Laplacian
on 5 = R7. Moreover, the commutator [ X, X,], which is needed to find the first-order
terms, will allow us to answer the following natural question: is the vertical distribution
integrable, i.e., is [ X7, X5] = aX; + bX for suitable functions a and b?

3.3 Search for a vertical basis

We now observe that the non-round part of the induced metric h; o dy is different from
©%0d0r = (©odp)? for R < 1. [Note that the equality ©? o 6 = (O o0 dg)? always holds
in general, as if = R(V, Z,t) € B with R < 1, then

0%, = O|(rv,rz,Rr) = (0% 0 0r)|(vz) = O3] + 032
2
= (61].)* + (62].)* = (‘91|(RV,RZ,Rt))2 + (92|(RV,RZ,Rt))2 = (@ ° 5R) Rr

where 6, 5 are the component 1-forms of © in (3.3), i.e., © = 6,U; + 6,Us.]

If we had hy 0 dgr = ©2 0 i for R < 1 (i.e., hy|p = ©?|p), we could use (3.5) to get
ker(hy o 0r) = (ker hy) o 6g = ker(©?) o §r = (ker ©) o 6 for R < 1. Moreover, we could
immediately claim that a vertical basis is given by X; o, = T} 2 0 dr, where T} 5 are the
vector fields that are dual to ) 5 in the sense that 61 o(X) = (172, X) for any vector field
X, where (,) is the round metric. Indeed, this also implies 6; 500r(X) = R*(Ty 2005, X),
VX, soif H satisfies (0150 dg)(H) = 0, then (T} 2 00r, H) = 0. Note that {0,602} is not
dual to {77,T5} in the sense of 6;(T;) = d;;, in fact we have 0,(7;) = (1;,1;) # 6i;, the
set {T', T} being not orthonormal (or even orthogonal), in general. Now 7} and T3 can
be obtained from 6, and 6y (cf. (3.3), see also [3], the formula after (3.20)) by turning

19



all differentials into gradient operators, whence

2R22 %

(1— Rt)> + R?| Z)?

x {210, = 20-, + R(V.0v]s = 2[V,0v)) + (1 = RO(AEY 0v) |,
2R21 %

(1— Rt) + R?|Z|?

X {zI@Q - 22821 + R(Zl[‘/, 8‘/]2 — 22[‘/, 8\/]1) + (1 - Rt)(Jp]gV, 8\/>}

(
Ty 0 6p|(v,ze = [V, Ov] + 10, — 210, +

Ty 0 6p|(v,z4 = [V, Ov]a 4+ 10., — 220, —

(3.13)
However, we have the following result.
Proposition 3.3. For all (V,Z,t) € S® and all R < 1, we have
2 2 2
%(@ © 53) }(V,Z,t) = %(91 © 5R) |(V,Z,t) + %(92 © 53) ‘(V,Z,t)
= [V, dV] +tdZ — Zdt|* + (21dzs — zd21 + (J1TV,dV))
1

= L= R +|Z)) (212 — 2d 3.14
((1—Rt)2+R2IZ|2)2(< (7 +1219)) (2122 — 20d2) (3.14)

+2R(1 — Rt)(z1[V,dV]s — 2[V,dV]1) + ((1 — Rt)*—R*| Z|*)(J1 ],V dV))g.

Proof. This is a long computation using the formulae for 6, p = %91- 0 0gr. In the course
of the calculation, the following identity (which is easy to prove) is used:

(1= Rt)>+ R Z]?)? + 4Rt (1 — Rt + R?|Z|?) —4R?|Z)> = (1—- R*(#*+|2%))*. O

Comparing (3.14) with (3.2), we see that indeed hy o §r # (6; o 53)2 + (A2 0 53)2 for
R < 1, due to the coefficient of (21dzs — z2dz1) in the round bracket of the third term,
namely

1-R*(*+|Z]) =1-R*+ R*|V| # R*|V|?, VR<1
Equivalently, (3.14) implies that ©2|3 is given by

Oz = |[V.dV] + tdZ — Zdt|* + (z1dz — zodzy + (J1 TV, dV))”

(- t)21+ Z)? ((1 — (£ + |Z|2)) (z1dzy — 22d2) (3.15)

+2(1 = t)(z1[V.dV]s — o[V, dV]1) + (1 = t)*—=|Z|*) (1 ]2V, dV>> :

for all (V,Z,t) € B. (Just let (RV,RZ,Rt) = (V',Z',¥') € B in (3.14), multiply by R*
and drop primes in the end.) Comparing (3.15) and (3.2) (with R = 1) we obtain

Corollary 3.4. On the domain B\ {(0,0,1)} we have
hy = ©?+F, (3.16)
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where F' is the smooth rank-2 tensor field given by

a(V, Z,t)
L—t)2+|Z%)
41 =t)B(V, Z, 1)
(1 =12+ [Z]?)?
2((1 -1 —1Z2)B(V. Z,1)

(L=1)2+[Z])?

Flwzy = G S (21dzy — 20dz)?

(ZleQ — ZQle) (Zl [Vv, dV]Q — ZQ[V, dV]l)

(ZleQ — 22d21)<J1J2‘/, dV>,

Y(V,Z,t) € B\ {(0,0,1)}, with

a(V,Z,t) = (1— (&2 +]22)* = V|4,
BV, Z,t)=1— (2 +|Z]>+ |V]?).

Now the functions a and 8 vanish at the boundary S®* of B\ {(0,0,1)} (the sphere
“at infinity” for R = 1, where F' = 0 and we regain h; = ©?), but they are nonzero on the
interior B. Thus hy|p # ©?%|5, and the horizontal distribution HT(S(R)) = (ker h;) o dg
will be different from (ker ©)odr = (ker 6; Nker ;) 00 for R < 1 at generic points of S°.
Consequently, the vectors fields T3 5 0 0 in (3.13) are not vertical for R < 1, in general.

This makes the search for a vertical basis X7, Xo more difficult than expected. The
problem is to find two 1-forms wy,ws on S¢ depending on R, such that w? + w3 = hg in
(3.2) for all R < 1. Then HT(S(R)) = kerw; N kerws, and X; 5 will be obtained from
w12 by turning differentials into gradients. We have derived a formula for one of the two
1-forms, say w;, which is actually R-independent, but got stuck in the computation of
wy. Let us briefly elaborate on that.

First we need to fix the basis of the cotangent bundle we shall be working with. Note
that we can easily exhibit a vector field which is R-independent and horizontal for all
R < 1. Consider the coordinate vector 9, from bispherical coordinates in section 2 (recall
that p> =t? + |Z|*> =1 — |[V|?). Using (2.3), we can rewrite 9, as

0, = (55, 0v) + (32, 07) + 50,
= — £x(V,0v) + S ((Z,02) + t0,).

1—p?

To avoid singularities, let us multiply this by p(1 — p?), to get the vector field
Hy = p(1 = p*)0, = =p*(V,0v) + (1 = p*) ((Z,92) + 10,).

It is easily checked that Hy is in ker © Nker F' C ker hy on B\ {(0,0,1)} (cf. (3.16)), or
equivalently, it is in

ker(© o 0g) Nker(F odgr) C kerhr, VR <1,

so Hy is horizontal for all R. This explains why the p-coordinate plays no role in the
non-round part hg of the metric (which is vertical). Note that Hy vanishes for p = 0,1,
i.e., at the submanifolds S® (unit sphere in v) and S? (unit sphere in 3 & a) of S°.
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We can then use as a basis of the cotangent space T,(S®)* at z = (V, Z, ) the following

set of 1-forms:
(o = —p*(V,dV) + (1 — p*)((Z,dZ) + tdt)

] = <J1‘/, dV>
g = <J2‘/, dV>
3 = <J1<]2‘/, dV>

aq = tdz; — z1dt

(5 = tng — ngt.

The 1-form o is dual to Hy and it is orthogonal to o; (1 < j < 5) with respect to the
round metric. Note that the 1-form zydzy — 22dz; depends linearly on oy, as, being

ZleQ — ngZl == ZTIOZ5 - ZTQOé4. (317)

We assume p # 0,1 (i.e., (Z,t) # (0,0), V #0), and ¢ # 0, so that ay and ay are linearly
independent.
We expand the tensor field hg in (3.2) in terms of a;, 1 < 4,7 <5, as

hR = Zh” a; X a;.
Comparison with (3.2) gives the following values of the coefficients h;; = hj;:

(h -1 4R?(1—Rt)%22 By — 1 4R2(1—Rt)22?
11 — - ((1—Rt)2+R2 Zz)za 22 — - ((1—Rt)2+R2|Z|2)2’
Bae — 1 ((1—Rt)?>—R?|Z|?)? Booy — 4R?(1—Rt)?21 20
33 — - ((1—Rt)2+R2 22227 12 — ((1—Rt)2+R2|Z|2)2’

oo — 2R(1—Rt)((1—Rt)>—R?|Z|?)22 e — _ 2R(1-Rt)((1—Rt)2—R%|Z|*)z
13 (1-Rt)?+R?|Z|?)? ’ % ((1-Rt)*+R?|Z|?)? ’
. 22 R4‘V|4 . 22 R4|v|4
hag =1+ 7 (1 - ((1—Rt)2+R2|Z\2)2> ’ hss =1+ = (1 - ((1—Rt)2+R2|Z|2)2> )
e — —z12 (1 _ R4V o 1_ 2RO-ROR2|V[2:3 (3.18)
45 +2 ((1—Rt)2+R2[Z[2)2 ) » 14 t(1—Rt)2+R2|Z|?)2>
By — 2ROZROR2|V 212 By — —22 (1 — R2|V\2((17Rt)27R2|Z|2)>
24 t(I—Rt)2+R2|Z[?)2 34 t (1—Rt)>+RZ|Z[%)2 ’
J 2R(1—Rt)R?|V 22122 Boe — 1 — 2R(1—Rt)R?|V|222
15 t(1—Rt)2+R2|Z|2)2 25 t(1—Rt)2+R2|Z|?)2>

= 2 (1 VG
The 5 X 5 real symmetric matrix # = (h;;) can be diagonalized in R®. The expected
eigenvalues should be of the form A, Ay # 0, corresponding to the 2-dimensional ver-
tical subspace VT, (S(R)), and A3 = Ay = A3 = 0, corresponding to a 3-dimensional
horizontal subspace H such that HT,(S(R)) = H & RH,. (Recall that ker h should be
4-dimensional at generic points, and we have already separated out the 1-dim subspace
Ray in the cotangent space, so H will have 3-dim kernel.) Let vy, vs,v3,v4, v5 be an or-

thonormal basis of eigenvectors in R®, Hv; = A\ju; (1 < j < 5), and let R be the matrix
whose columns are the v;. Then H = RDR ™', where D = diag(\1, A2,0,0,0), and

hr = Z hij a; Qa; = Z Rik)\kékl(R_l)lj a; ® a;
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where W), = Z? el = Z(Rt);ﬂal Finally, assuming A, Ao > 0, define w; = /\; 0
(i =1,2), to get hgp = w? + w3. To implement this program one needs to compute the
eigenvalues A 5 and the eigenvectors v; (1 < j <5). Actually, we only need v, and v, to
compute w2, but vs, v4, vs will give us, by duality, a set of horizontal vectors that span
HT,(S(R)) together with H,.

The characteristic polynomial of H will have the form p(\) = A3(a\? + A + ¢). To
determine this, we use for the matrix H — Al the elementary rule according to which
adding to a row (column) a multiple of another row (column) does not change the value
of the determinant. After a few steps, we arrive at a matrix with 3 zeros on the first
row and the other entries in that row proportional to A(2 — ). Thus the determinant
vanishes for A = 0 and A = 2. But by (3.18) we easily get

_ \Z\Q RYV[*
traceH =4 + <1—((1 4 R ) A1+ Ao

We conclude that the nonzero eigenvalues are

_ iz RV
M=2 do =2+ (1- il (3.19)

This is consistent with example 1 below (the case Z = 0), where one gets A\; = \y = 2.
In this case there is a single eigenvalue, and the eigenvectors can be taken to be v; =
%(1 0,0,1,0) and vy = i(O, 1,0,0,1). The result (3.19) also agrees with example 2 (the

degenerate case of V' = 0, treated as a 5 x 5 problem), where A\; =2 and \y =2+ ‘ I .
To complete our program we need to find the (normalized) eigenvectors vy, vs. For
Z # 0, a normalized solution to Hv; = 2v; is given by

U = ﬁ(zl,«%o?zl,zz),
as easily checked. Thus we get the 1-form
1

W1 = 17 (Z1CY1 + 2000 + 21004 + 22045)-

This can be rewritten as

w1 = 77 (1 (LV,dV) + 22(RV,dV)) + 7 (21(tdey — 21dt) + 25(tdzy — 2pdt))
= %( IV, dV) + 2(V,dV)) + m(zldzl + 29d2o) — | Z|dt
= 5 (2 (WV,dV) + 25( LV, dV)) + td| Z| — | Z|dt
= (1= p?)(cos a(Siw, dw) + +sin a{Jow, dw)) + p*de,
where (¢, ) are the angles from bispherical coordinates in (2.3), (2.4), w € 53, and we

used (Z,dZ) = |Z|d|Z|, and td|Z| — |Z|dt = p*d¢.

We remark that w; is R-independent.

The computation of v, is not that simple. Let vy = (aq, as, as, ag,as). As (vg, v1) =0,
we get (a; + aq)z1 + (ag + as)ze = 0. We have not been able to solve the 5 equations in
Huvy = Agvs. For instance, we tried

V2 = (_CLZQ, azy, as, _b227 bzl) (CL, b - R),
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but it did not work. On the other hand, if we write the 1-form w, as
Wo = 1/ )\2 <a1a1 + asaz + agiz + a404 + CL5OJ5),

and try to match directly w? 4+ w2 to hy in (3.2) we run into inconsistencies. For example,
if we match the diagonal components h;; in (3.18), we get the following set of coefficients:
z2((1-Rt)2—R?|Z|?)

4

VA1 = i\Z((((l—Rt;j*Rj'IZ'I;))’
21((1—Rt)=—R*|Z

VAas = £ eze)

| 2R|Z|(1-RY)
VA3 = £ g e

| 2/ @HZP) (A —RO)>+ R Z2)2 —RAV A 2]
VAsay = £ 1 Z](1—Rt)>+ R2| Z]2) ,
217/ (P4 ZP) (1= R)>+R2| Z]2 2 — RV 4] Z]?

(V205 =+ HZI((I—ReP+R2ZP)

where the signs can be arranged using (vg,v;) = 0. However, these values are not
consistent with all the non-diagonal components. One can check that his, hi3, heg and
hys are correct with these values of aj;, but hy4, hoa, hga, his, has, hss have the wrong
values.

Since we do not know how to proceed further, we will leave this open.

Remark 3.5. For R = 1, the 1-forms 6; and 6, do not quite fit into our diagonalization
program. Indeed, if we expand ¢ =} aja; and 0y = ) b, then the vectors vy = (a;)

(2
and vy = (b)) in R are not eigenvectors of the matrix H|p—1, in general. In fact, they
are not even orthogonal to each other, (v}, v}) # 0. Nevertheless, 67 + 63 = hy = w} + w3.
There will be a 2 x 2 rotation, depending on the coordinates (V, Z,t), relating the two
sets of 1-forms.

Besides finding explicit formulae for X7, X, and L', one would also like, for R < 1,
to get a description of HT,(S(R)) and VT,(S(R)) at generic points z = (V, Z,t) € S°
analogous to [5], Theorem 7.10 for the symmetric case. This will be quite different in the
present case, as the horizontal/vertical subspaces will now depend on R, in general.

We conclude with two examples where the R-dependence has no influence.

1) Let Z = 0, i.e., consider the points x = (V,0,t) € S5. Here F o dz|, = 0, VR, so
hy o dg|, = ©2 0 4|, and an orthonormal basis of VT,(S(R)) is

X1 =T 00g|vo = (J1V,0v) 4+ 10.,,
X2 = T2 e} 6R|(V,0,t) = <J2‘/, av> + t822.

Moreover, an orthogonal basis of HT,(S(R)) is given by H, and

Hy = —,02<J1V, Ov) + (1 - p2)t821,
Hy = _p2<J2V7 8V> + (1 - pZ)tazza
H3 - <J1J2V, a\/>
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Indeed these vectors are easily seen to be in the kernel of
hile = |[V,dV] + tdZ|* = ((LV,dV) + tdz1) + ((SV,dV) + tdz,)’

and they are orthogonal to each other. These bases are independent of R since hgl, is
independent of R. The subspaces HT,(S(R)) and VT,(S(R)) @ Rx can be described
exactly as in [5], Theorem 7.10, case (iii). Indeed, one easily checks that the set £(V') of
elements of v that are orthogonal and commute with V' is 1-dimensional and given by
RJ1JoV. The diagonalization program is a bit useless in this case, as hy is already a
sum of squares from the outset. In any case, one computes \; = Ay = 2, and of course
w1 = a1 + oy, Wy = Qg + Qs.

2) Let V = 0, i.e., consider the points z = (0, Z,t) € S5. Here F odg|, # 0 for R < 1,
but hgl|, in (3.2) is still R-independent, namely we have

hR|m = (tle — Zldt)Q + (tng - ngt)Q + (ZleQ — ngZl)z. (320)

It follows that the horizontal subspace is just HT,(S(R)) = v, and the vertical one is the
orthogonal complement of x in § & a, i.e., VI(S(R)) ® Rx = 3@ a. As a basis of VT,
we can take X; = t0,, — 210, and Xy = t0,, — 200;.

We can also look for two 1-forms w; o such that w% + w% = hg. This is easily solved
geometrically by observing that the tensor fields in (3.20) is just the round metric on
S? (unit sphere in 3 @ a) written in Cartesian coordinates (21, z9,t). In order to write
it as a sum of squares, we need to go over to spherical polar coordinates, which are
precisely the angles (¢, ) from bispherical coordinates in (2.3), (2.4). Thus we get
hrle = d¢? + sin? pda? = w? + w2. We can then take as a basis of VT, the coordinate
vector fields t0)z — |Z|0; = 0 and 210., — 220., = O, which are vertical in this case.

We can also use (2.7). The term hg in this formula is just the one multiplying 4 sh4§,
so if we set p=1 (i.e., V =0) we get hg = dp? + sin® ¢ da?.

Note that the present case does not fit in the general diagonalization program as
we assumed V' # 0 there. (For V = 0 we have oy = as = a3 = 0 and the basis
becomes degenerate.) One way to deal with this case is to consider only the coefficients
has, hss, hys = hse, and just diagonalize this 2 x 2 matrix. We now have trace H =
2+ |f—2|2 =1+ t% A routine calculation gives the eigenvalues A\, = 1, A, = 1/t?, and the
1-forms w; = d¢, wy = sin ¢ da, in agreement with the above.

Another way to deal with this case is to ignore the degeneracy of the basis and
diagonalize the 5 x 5 matrix H|y—o. One gets \; = 2 and Ay = 2+ |Z|?/t?, in agreement
with the general result.

3.4 The vertical round metric on the sphere “at infinity”

We now present some calculation on the sphere “at infinity” S%* (R = 1) that could
generalize to the finite case (R < 1). There is no “induced metric” on S®* (the metric
(3.1) is infinite for R = 1). However, we do have the round metric yg6 = (,), and we
can study its restriction to the horizontal/vertical distributions. As already mentioned,
the horizontal distribution HT'(S%*) = ker(©?) = ker h; and the vertical one VT'(S®*) =
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HT(S%*)* do not extend smoothly at the pole (0,0,1) [3], but this will not concern us
here.
We start with the computation of the round metric components in the vertical basis

{T1, Ty} of VT(S%*) given by (3.13) with R = 1.
Proposition 3.6. Let v;; = (1;,1;) = vs6(1;,T;) (1 < 1,5 <2), then
- 1-— Z%A 212214
T = ( 21204 1 —22A (3.21)
where A = A(V, Z,t) is given for (V,Z,t) € S®* by
(L-@+lzP)”

AV, Z,t) = (=12 +12P)" (1=t +1212)"

(3.22)

Proof. We have
Y11 = <T17T1> = 91(T1)-

A routine computation gives
01 (TV)|(vzey = VP +|ZP+ 8 — 22 A(V, Z,t) = 1 — 25 A(V, Z,t).
The result for 795 is obtained in a similar way. For v9 = (T}, T3) = 61(13) we compute
01(1%) | v,z = 2122 A(V, Z, t). O

Remark 3.7. The functions 224, 22A, z;29A do not have a limit at the pole (0,0,1)
but they remain bounded there. Just set 1 —¢ = pcos¢, |Z| = psing, z; = |Z|cosa,
2y = |Z|sina, then |V|*> = p(2cos¢ — p), and the result follows as p — 0 (see [3], pp.
931 or 943).

Using (3.21) we obtain

detv;; =1 —|Z|*A, (3.23)
and the inverse vertical round metric in the frame {7}, T5}:
1 Z%A _ z120A
A Gilin= ] 2
T 1-ZPA  1-[Z]?A

We can then write down the symbol of the vertical round Laplacian.

Proposition 3.8. The vertical round Laplacian LY = Lgs|vr(ss «y is given by

v =T +T5 + — ‘Z‘QA (211> — 22T1)2 + first-order terms in Ty, T. (3.25)

Proof. By writing y'* =1 + 1—2\2%’ Y2 =1+ 1_’7%%, we have

2
g6 = Z YT T; + first-order terms
1
=T+ 15 4 = |Z|2A (23T7 + 2115 — z122(TV T + T5T1)) + first-order terms.

Now the round bracket is precisely (251} — 217%)?, up to first-order terms. O
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Formula (3.25) should be compared to the following formula for the vertical part of
the round metric.

Proposition 3.9. The vertical round metric on S®* is given by
ver 2
VYs6 = 9% + 83 + %(2162 — ,2’2(91) . (326)

Proof. We use the general formula ¢§" = Zf Vi 6; ® éj, where 6; is the vertical dual
coframe to Tj, i.e., 6; is a linear combination of ¢; and 0:(T;) = 0;5. By looking for
61 = aby + by, etc., we find a = vy, b =~'2 etc,, i.e., in general, ; = > 776;. Thus

W=D b0, =Y A0
=710 + 9705 + 77 (01 ® 02 + 02 @ 01)
=01 + 03+ 77z (zgﬁf + 2105 — 2122(01 ® 2 + 02 @ 01))

= 0% + 9% + %(zlﬁg — 2291)2. ]

Suppose now we wanted to repeat the analogous calculations for the round metric on
the vertical distribution VT'(S(R)), R < 1. We do not have a vertical basis X;, X, yet,
so we cannot proceed with the computations. However, we expect that formulae (3.21),
(3.23), (3.24), (3.25) and (3.26) could remain valid in a suitable basis X, X3, with the
kernel Ag in place of A, where

R4|v|4

Ar(V, Z,t) = ,
R< ) (1= Rt + B2 Z]2)”

Y(V, Z,t) € S°.

This is just A o dg if one takes for A the second formula in (3.22).

If one uses the “false” induced metric obtained by replacing hg in (3.1) with the right
hand side of (3.14), say kg, then one can work with the “vertical” basis X; o = T} 200 in
(3.13) and prove all the above results with A = Aodg, but A given by the first formula
in (3.22). The two Ar do not coincide, of course, as the two formulae in (3.22) define
two different functions on B\ {(0,0, 1)}, that only agree at the boundary S°*.

References

[1] R. Camporesi, Geodesic spheres and non radial eigenfunctions on Damek-Ricci
spaces, Indag. Math. 24 (2013) 313-345.

[2] R. Camporesi, The v-radial Paley-Wiener theorem for the Helgason Fourier trans-
form on Damek-Ricci spaces, Colloq. Math. 144 (2016) 87-113.

[3] R. Camporesi, The metric at infinity on Damek-Ricci spaces, Ann. Sc. Norm. Super.
Pisa Cl. Sci. (5) 20 (2020), no. 3, 925-949.

27



[4]

R. Camporesi, The angular Laplacian on symmetric Damek-Ricci spaces, Ann. Sc.
Norm. Super. Pisa Cl. Sci. (5) 23 (2022), no. 3, 1195-1291.

M.G. Cowling, A.H. Dooley, A. Koranyi, F. Ricci, An approach to symmetric spaces
of rank one via groups of Heisenberg type, J. Geom. Anal. 8 (1998) 199-237.

E. Damek, F. Ricci, A class of nonsymmetric harmonic Riemannian spaces, Bull.
Amer. Math. Soc. 27 (1992) 139-142.

E. Damek, F. Ricci, Harmonic analysis on solvable extensions of H-type groups, J.
Geom. Anal. 2 (1992) 213-248.

J. Heber, On harmonic and asymptotically harmonic spaces, Geom. Funct. Anal.
16 (2006) 869-890.

A. Kaplan, Fundamental solutions for a class of hypoelliptic PDE generated by
composition of quadratic forms, Trans. Amer. Math. Soc.

258 (1980) 147-153.

F. Rouviere, Espaces de Damek-Ricci, géométrie et analyse, Sémin. Congr. 7, Soc.
Math. France (2003) 45-100.

N. Steenrod, The topology of Fiber Bundles, Princeton University Mathematical

Series, vol. 14, Princeton University Press, Princeton, N. J., 1951.

28



