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1 Introduction

Let S = NA be a Damek-Ricci space, i.e., the semidirect product of a (connected and
simply connected) nilpotent Lie group N of Heisenberg type [9] and the one-dimensional
Lie group A ∼= R+ acting on N by anisotropic dilations. When S is equipped with a
suitable left-invariant Riemannian metric γS, S becomes a (noncompact, simply con-
nected) homogeneous harmonic Riemannian space [6, 7]. Conversely, every such space
is a Damek-Ricci space if we exclude Rn and the “degenerate” case of real hyperbolic
spaces (see [8], Corollary 1.2). We refer to [10] for a nice introduction to the geometry
and harmonic analysis on Damek-Ricci spaces.

We can identify S with the unit ball B in s via the Cayley transform C : S → B
[5, 10]:

S = NA
C∼= B = {(V, Z, t) ∈ s : |V |2 + |Z|2 + t2 < 1}.

Here s = n⊕ a = v⊕ z⊕ a and n = v⊕ z are the Lie algebras of S and N , respectively,
where z is the center of n and v its orthogonal complement in n, and a = LieA ≃ R is a
1-dimensional Lie algebra with a scalar product.

In the ball model, endowed with the transported metric γB = C−1 ∗γS, the geodesics
through the origin are the diameters, i.e., C(Expe r ω) = th r

2
ω for r ∈ R and ω ∈ s,

|ω| = 1, and the Riemannian sphere S(r) of radius r > 0 (centered at the origin) is just
the Euclidean sphere S(R) of radius R = th r

2
(see, [10], Thm. 10).

For nonsymmetric S the geodesic spheres S(r) are not homogeneous, i.e., there is
no subgroup of isometries acting transitively on them. We do have the analogue of the
group M of symmetric space theory, namely the group of orthogonal automorphisms of
the H-type Lie algebra n = v ⊕ z, which however is not transitive on the unit sphere
Sp+q = ∂B (p = dim v, q = dim z).

Let γS(r) be the induced metric on S(r), and let LS(r) be the associated induced
Laplacian (the “angular” Laplacian). Since S(r) ≃ Sp+q is not homogeneous, an explicit
formula for LS(r) is still lacking and its spectrum is unknown. Only partial results have
been obtained in the biradial and in the v-radial case [1, 2].

In this paper we compute the angular Laplacian on the lowest dimensional non-
symmetric Damek-Ricci space, namely the 7-dimensional space S = NA where N is the
complexified Heisenberg group. Here the induced metric on S(r) ≃ S6 takes a relatively
simple form (albeit non-homogeneous), and one can work out some of the general features
of LS(r). The approach is completely different from that in [2]. In section 2 we do a
calculation in pure Riemannian geometry by working in bispherical coordinates on S6.
We confirm the general result in [2] about the v-radial part of LS(r), and we give additional
details on the non-v-radial part. This is quite complicated, even in this simple example,
and a full spectral analysis of LS(r) seems out of reach at the moment.

In section 3 we present a more intrinsic approach. Instead of coordinates, we use
moving frames adapted to the (local) decomposition of the tangent bundle on S6 ≃
S(R) into horizontal and vertical parts. The horizontal distribution on S6 is defined
as the kernel of the non-round part of the induced metric. It is a smooth distribution
of dimension 4 at generic points of S6. Using the explicit form of the induced metric,
one easily proves that the angular Laplacian is the sum of a term proportional to the

2



round Laplacian plus a differential operator L′ which is purely vertical. This gives a nice
interpretation of the result obtained in section 2 using coordinates, and it is analogous
to the symmetric case situation [4]. The computation of L′ requires an explicit basis
for vertical vector fields. This presents several subtleties, but it is set up and almost
completed in subsection 3.3.

2 Calculation in coordinates

2.1 The induced metric in bispherical coordinates on S6

Let S = NA be the lowest (=7) dimensional non-symmetric Damek-Ricci space. Then
q = 2 (dimension of the center z of n), p = 4 (dimension of the orthogonal complement
v of z in n), i.e., z = R2 and v = R4, with commutations (cf. [10], p. 67)

[V, V ′] = [(a, b, c, d), (a′, b′, c′, d′)]

= (ab′ − ba′ + dc′ − cd′, ac′ − ca′ + bd′ − db′).

N is just the 6-dimensional complexified Heisenberg group. We have the endomorphisms
J1, J2 of v defined by [V, V ′] = (⟨J1V, V ′⟩, ⟨J2V, V ′⟩), and given explicitly as 4×4 matrices
in the canonical basis of R4 by:

J1 =


0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

 , J2 =


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

 ,

whence

J1J2 =


0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

 .

Write the unit sphere in s = v⊕ z⊕ a = R6 as

S6 = {(V, Z, t) ∈ R4 ⊕ R2 ⊕ R : |V |2 + |Z|2 + t2 = 1},

and let γS6 be the round metric on S6. Then the metric γS in geodesic polar coordinates
(r, ω) = (r, (V, Z, t)) ∈ [0,+∞) × S6 is given by γS = dr2 + γS(r), where the induced
metric on the Riemannian sphere S(r) is the following r-dependent metric on S6 (cf. [1],
Theorem 3.3):

γS(r) = 4 sh2 r
2
γS6 + 4 sh4 r

2

{∣∣∣[V, dV ] + tdZ − Zdt
∣∣∣2+ (⟨J1J2V, dV ⟩+ z1dz2 − z2dz1

)2
− 1(

(1− t th r
2
)2 + th2 r

2
|Z|2

)2(th2 r
2
|V |2(z1dz2−z2dz1) (2.1)

+2 th r
2
(1−t th r

2
)
(
z1[V, dV ]2−z2[V, dV ]1

)
+
(
(1−t th r

2
)2−th2 r

2
|Z|2

)
⟨J1J2V, dV ⟩

)2}
.
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Here Z = (z1, z2) ∈ z and if V = (v1, v2, v3, v4) ∈ v then
[V, dV ]1 = ⟨J1V, dV ⟩ = v1dv2 − v2dv1 + v4dv3 − v3dv4,

[V, dV ]2 = ⟨J2V, dV ⟩ = v1dv3 − v3dv1 + v2dv4 − v4dv2,

⟨J1J2V, dV ⟩ = v4dv1 − v1dv4 + v2dv3 − v3dv2.

Of course the differentials dV , dZ, dt in (2.1) are not all independent, namely ⟨V, dV ⟩+
⟨Z, dZ⟩+ tdt = 0.

Remark 2.1. We use the following notation from now on. If ω1, ω2 are 1-forms, then
obviously ω1 ⊗ ω2 is different from ω2 ⊗ ω1. To simplify our formulas, we shall always
omit the tensor product symbol and write ω1ω2 for the symmetrized product divided by
2, i.e., ω1ω2 = (ω1 ⊗ ω2 + ω2 ⊗ ω1)/2. Then, for instance,

(ω1 + ω2)
2 = ω2

1 + ω2
2 + 2ω1ω2.

We interpret the induced metric (2.1) as the sum of a constant curvature term plus a
“perturbation” term (the curly bracket).

The problem is to write down this metric in a suitable coordinate system on S6,
gij = (γS(r))ij, compute the inverse metric gij, and then compute the angular Laplacian
LS(r) by the usual Riemannian formula

LS(r) =
1
√
g
∂i
(√

g gij ∂j
)
= gij∂i∂j +

(
∂i
√
g

√
g

)
gij∂j +

(
∂ig

ij
)
∂j, (2.2)

where g = det gij and summation over repeated indices is understood.

We use bispherical coordinates on S6

(ρ, ϕ, α, ω) ∈ [0, 1]× [0, π]× [0, 2π]× S3

defined as follows. Let

S1 = {(0, Z, 0) : |Z| = 1} = S6 ∩ R2,

S3 = {(V, 0, 0) : |V | = 1} = S6 ∩ R4,

be the unit spheres in z and v, respectively, and let

S2 = {(0, Z, t) : |Z|2 + t2 = 1} = S6 ∩ (R2 ⊕ R)

be the unit sphere in z⊕ a. Any ξ = (V, Z, t) ∈ S6 can be parametrized in the form
V =

√
1− ρ2 ω

t = ρ cosϕ

Z = ρ sinϕ ω̃,

(2.3)
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where ρ2 = t2 + |Z|2 = 1− |V |2, and

0 ≤ ρ ≤ 1, 0 ≤ ϕ ≤ π, ω ∈ S3, ω̃ = (cosα, sinα) ∈ S1, 0 ≤ α ≤ 2π. (2.4)

The choices of ρ, ϕ, α, ω are unique except when V = 0 or Z = 0. We do not specify yet
any coordinate system on S3 but write ω = (a1, a2, a3, a4) with |ω|2 = a21+a22+a23+a24 = 1
and round metric

γS3 = |dω|2 = da21 + da22 + da23 + da24, where a1da1 + a2da2 + a3da3 + a4da4 = 0.

We have:

dV =
√
1− ρ2dω − ρ dρ√

1− ρ2
ω,

[V, dV ] = (1− ρ2)[ω, dω], dt = dρ cosϕ− ρ sinϕ dϕ,

dZ = dρ sinϕ ω̃ + ρ cosϕ dϕ ω̃ + ρ sinϕ dω̃ = (dz1, dz2),

tdZ − Zdt = ρ2dϕ ω̃ + ρ2 sinϕ cosϕ dω̃,

z1dz2 − z2dz1 = ρ2 sin2 ϕ dα, ⟨J1J2V, dV ⟩ = (1− ρ2)⟨J1J2ω, dω⟩,

z1[V, dV ]2 − z2[V, dV ]1 = ρ(1− ρ2) sinϕ (cosα[ω, dω]2 − sinα[ω, dω]1) .

(2.5)

Using (2.5), the round metric γS6 = |dV |2 + |dZ|2 + dt2 is computed to be

γS6 =
dρ2

1− ρ2
+ ρ2

(
dϕ2 + sin2 ϕ dα2

)
+ (1− ρ2) γS3 . (2.6)

Using (2.5) and (2.6) in (2.1) gives the induced metric in bispherical coordinates:

γS(r) = 4 sh2 r
2

(
dρ2

1−ρ2
+ ρ2

(
dϕ2 + sin2 ϕ dα2

)
+ (1− ρ2) γS3

)
+ 4 sh4 r

2

{
ρ4
(
dϕ2 + sin2 ϕ dα2

)
+ (1− ρ2)2

(
[ω, dω]21 + [ω, dω]22 + ⟨J1J2ω, dω⟩2

)
+ 2ρ2(1− ρ2)

(
dϕ
(
cosα [ω, dω]1 + sinα [ω, dω]2

)
(2.7)

+ sinϕ dα
(
sinϕ ⟨J1J2ω, dω⟩ − cosϕ

(
sinα [ω, dω]1 − cosα [ω, dω]2

)))
− (1− ρ2)2(

1 + ρ2th2 r
2
− 2ρ cosϕ th r

2

)2[th2 r
2
ρ2 sin2 ϕ dα

+ 2 th r
2

(
1− ρ cosϕ th r

2

)
ρ sinϕ

(
cosα [ω, dω]2 − sinα [ω, dω]1

)
+ ⟨J1J2ω, dω⟩

( (
1− ρ cosϕ th r

2

)2 − th2 r
2
ρ2 sin2 ϕ

)]2}
.
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Here 
[ω, dω]1 = a1da2 − a2da1 + a4da3 − a3da4,

[ω, dω]2 = a1da3 − a3da1 + a2da4 − a4da2,

⟨J1J2ω, dω⟩ = a4da1 − a1da4 + a2da3 − a3da2.

(2.8)

Remarks.
1) The differential dρ only occurs in the “unperturbed” part of the metric, i.e., in γS6 ,

thus the ρ-coordinate decouples from the other coordinates and

gρρ =
1

gρρ
=

1− ρ2

4 sh2 r
2

, gρj = gρj = 0 ∀j ̸= ρ.

2) The differential dϕ occurs in the curly bracket only in the r-independent part (not
in the square bracket).

3) There are no terms in dϕ dα so gϕα = 0.

The metric γS(r) is not homogeneous. However it is invariant under the group M of
orthogonal automorphisms of S. This group is trivial on a, and leaves z and v invariant.
Moreover, it is known that M is transitive on the unit spheres in z and v, i.e., on S1×S3.
In view of this invariance, we can, as a first step, compute our metric at any convenient
point (ω̃0, ω0) ∈ S1 × S3, for example at ω̃0 = (1, 0) (i.e., α0 = 0) and ω0 = (1, 0, 0, 0).
Let P0 = (ρ, ϕ, α0, ω0). Since

a1 =
√

1− a22 − a23 − a24, da1 = −a2da2 + a3da3 + a4da4√
1− a22 − a23 − a24

,

we take (a2, a3, a4) as coordinates around P0 on S3. Note that ⟨J1ω0, ω⟩ = [ω0, ω]1 = a2,
⟨J2ω0, ω⟩ = [ω0, ω]2 = a3, and ⟨J1J2ω0, ω⟩ = −a4. Setting a1 = 1 and a2 = a3 = a4 = 0
in (2.8) gives at P0:

[ω, dω] = (da2, da3), ⟨J1J2ω, dω⟩ = −da4,

and of course da1 = 0, γS3|P0 = da22 + da23 + da24. The metric (2.7) at the point P0 in the
coordinate system (ρ, ϕ, α, a2, a3, a4) becomes

γS(r)|P0 = 4 sh2 r
2

(
dρ2

1−ρ2
+ ρ2

(
dϕ2 + sin2 ϕ dα2

)
+ (1− ρ2) (da22 + da23 + da24)

)
+ 4 sh4 r

2

{
ρ4
(
dϕ2 + sin2 ϕ dα2

)
+ (1− ρ2)2

(
da22 + da23 + da24

)
+ 2ρ2(1− ρ2)

(
dϕ da2 + sinϕ dα

(
− sinϕ da4 + cosϕ da3

))
(2.9)

− (1− ρ2)2(
1 + ρ2th2 r

2
− 2ρ cosϕ th r

2

)2[th2 r
2
ρ2 sin2 ϕ dα

+ 2 th r
2

(
1− ρ cosϕ th r

2

)
ρ sinϕ da3 + da4

(
th2 r

2
ρ2 sin2 ϕ−

(
1− ρ cosϕ th r

2

)2 )]2}
.
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Note that the coordinates ϕ and a2 only couple with each other. Expanding the square
gives terms in dα2, da23, da24, dαda3, dαda4, da3da4. Reordering the coordinates as
(ρ, ϕ, a2, α, a3, a4), we get from (2.9) the metric gij = (γS(r))ij at P0 in the following
block-diagonal form:

gij|P0 =


gρρ 0 0 0 0 0
0 gϕϕ gϕa2 0 0 0
0 gϕa2 ga2a2 0 0 0
0 0 0 gαα gαa3 gαa4
0 0 0 gαa3 ga3a3 ga3a4
0 0 0 gαa4 ga3a4 ga4a4

 = 4 sh2 r

2
γij + 4 sh4 r

2
hij, (2.10)

where γij is the round metric at P0,

γij = (γS6)ij|P0 =



1
1−ρ2

0 0 0 0 0

0 ρ2 0 0 0 0
0 0 1− ρ2 0 0 0
0 0 0 ρ2 sin2 ϕ 0 0
0 0 0 0 1− ρ2 0
0 0 0 0 0 1− ρ2

 ,

and the “perturbation” term hij is given by

hij =


0 0 0 0 0 0
0 ρ4 ρ2(1− ρ2) 0 0 0
0 ρ2(1− ρ2) (1− ρ2)2 0 0 0
0 0 0 hαα hαa3 hαa4

0 0 0 hαa3 ha3a3 ha3a4

0 0 0 hαa4 ha3a4 ha4a4

 .

The 2× 2 block in the plane (ϕ, a2) is(
gϕϕ gϕa2
gϕa2 ga2a2

)
= 4 sh2 r

2

(
ρ2 0
0 1− ρ2

)
+ 4 sh4 r

2

(
ρ4 ρ2(1− ρ2)

ρ2(1− ρ2) (1− ρ2)2

)
.

The inverse of this block is(
gϕϕ gϕa2

gϕa2 ga2a2

)
=

1

4 sh2 r
2

( 1
ρ2

0

0 1
1−ρ2

)
− 1

4 ch2 r
2

(
1 1
1 1

)
.
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The 3× 3 lower block in hij has entries (here R = th r
2
)

hαα = ρ4 sin2 ϕ

(
1− (1− ρ2)2R4 sin2 ϕ

(1 + ρ2R2 − 2Rρ cosϕ)2

)
,

ha3a3 = (1− ρ2)2
(
1− 4R2 ρ2 sin2 ϕ(1−Rρ cosϕ)2

(1 + ρ2R2 − 2Rρ cosϕ)2

)
,

ha4a4 = (1− ρ2)2
(
1−

(
R2 ρ2 sin2 ϕ− (1−Rρ cosϕ)2

)2
(1 + ρ2R2 − 2Rρ cosϕ)2

)
,

hαa3 = ρ2(1− ρ2) sinϕ

(
cosϕ− 2(1− ρ2)R3 ρ sin2 ϕ(1−Rρ cosϕ)

(1 + ρ2R2 − 2Rρ cosϕ)2

)
,

hαa4 = −ρ2(1− ρ2) sin2 ϕ

(
1 +

(1− ρ2)R2
(
R2 ρ2 sin2 ϕ− (1−Rρ cosϕ)2

)
(1 +R2ρ2 − 2Rρ cosϕ)2

)
,

ha3a4 = −
2(1− ρ2)2Rρ sinϕ(1−Rρ cosϕ)

(
R2ρ2 sin2 ϕ− (1−Rρ cosϕ)2

)
(1 + ρ2R2 − 2Rρ cosϕ)2

.

Note the kernel in the denominators(
1 + ρ2R2 − 2Rρ cosϕ

)2
=
(
(1−Rt)2 +R2|Z|2

)2
.

2.2 The inverse metric and the induced Laplacian

The first important check is to show that the square root of the metric determinant at
P0 is √

g|P0 = 26 sh6 r
2
ch2 r

2
ρ2 (1− ρ2) sinϕ, (2.11)

in agreement with the general formula for the Riemannian volume element in geodesic
polar coordinates on a Damek-Ricci space. Indeed this volume element reads Vol =
dr dσS(r), where the induced measure on the Riemannian sphere S(r) is [10]

dσS(r) = 2p+q
(
sh r

2

)p+q (
ch r

2

)q
dωSp+q ,

dωSn denoting the volume element of the round metric on Sn. In bispherical coordinates
on Sp+q we have [1]

dωSp+q = ρq (1− ρ2)
p
2
−1 (sinϕ)q−1 dρ dϕ dωSp−1 dωSq−1 .

In our case q = 2, p = 4, dωSq−1 = dωS1 = dα, and dωSp−1 |P0 = dωS3 |P0 = da2da3da4.

Now by (2.10):

• the determinant of the 1× 1 block is

gρρ = 4(1− ρ2)−1sh2 r
2
;
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• the determinant of the 2× 2 block is

24ρ2(1− ρ2)sh4 r
2
ch2 r

2
;

• the determinant of the 3× 3 block is computed to be

26ρ2(1− ρ2)2sh6 r
2
ch2 r

2
sin2 ϕ.

This establishes (2.11).

The main calculation is now to find the inverse of the 3×3 block in gij|P0 . Since γS(r)
is the sum of a constant curvature metric plus a “perturbation” term, and looking at
the inverse of the 2× 2 block, we expect that the inverse metric gij|P0 in the coordinate
frame (ρ, ϕ, a2, α, a3, a4) will take the form

gij|P0 =
1

4 sh2 r
2

γij − 1

4 ch2 r
2

kij, (2.12)

where γij is the inverse of γij,

γij =



1− ρ2 0 0 0 0 0
0 1

ρ2
0 0 0 0

0 0 1
1−ρ2

0 0 0

0 0 0 1
ρ2 sin2 ϕ

0 0

0 0 0 0 1
1−ρ2

0

0 0 0 0 0 1
1−ρ2


, (2.13)

and kij is a block-diagonal matrix of the form

kij =


0 0 0 0 0 0
0 1 1 0 0 0
0 1 1 0 0 0
0 0 0 kαα kαa3 kαa4

0 0 0 kαa3 ka3a3 ka3a4

0 0 0 kαa4 ka3a4 ka4a4

 , (2.14)

with the kij in the lower block depending on r, in general. In fact, we have the following
result.
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Proposition 2.2. The inverse of the 3× 3 block in gij|P0 has entries:

gαα|P0 =
1−R2

4R2

1

ρ2 sin2 ϕ
− 1−R2

4

1

sin2 ϕ
,

gαa3|P0 = −1−R2

4
cotϕ,

gαa4|P0 =
1−R2

4
,

ga3a3|P0 =
1−R2

4R2(1− ρ2)
− 1−R2

4
ka3a3 ,

ga4a4|P0 =
1−R2

4R2(1− ρ2)
− 1−R2

4
ka4a4 ,

ga3a4|P0 = −1−R2

4
ka3a4 ,

where ka3a3 = 1− ka4a4 , and

ka4a4 =
ρ2R2 sin2 ϕ

(
3 + ρ2R2 − 4ρR cosϕ

)
(1 + ρ2R2 − 2ρR cosϕ)2

= ρ2R2 sin2 ϕ

(
1

1 + ρ2R2 − 2ρR cosϕ
+

2(1− ρR cosϕ)

(1 + ρ2R2 − 2ρR cosϕ)2

)
,

ka3a4 =
ρR sinϕ

(
2 + 4ρ2R2 cos2 ϕ− ρR cosϕ

(
5 + ρ2R2

))
(1 + ρ2R2 − 2ρR cosϕ)2

= ρR sinϕ

(
1− ρ2R2

1 + ρ2R2 − 2ρR cosϕ
+

(1− ρR cosϕ)(1− ρ2R2)

(1 + ρ2R2 − 2ρR cosϕ)2

)
.

Proof. This is just brute force calculation for the 3× 3 block of gij|P0 in (2.10).

Since 1−R2

R2 = 1

sh2 r
2

and 1−R2 = 1

ch2 r
2

, we see that gij|P0 has indeed the claimed form

(2.12)-(2.14), with the 3× 3 block in kij given by

kij =

 1
sin2 ϕ

cotϕ −1

cotϕ ka3a3 ka3a4

−1 ka3a4 ka4a4

 . (2.15)

Note that the entries kαα = 1
sin2 ϕ

, kαa3 = cotϕ and kαa4 = −1 are rather simple and
r-independent, but the remaining entries ka3a3 , ka3a4 , ka4a4 are quite complicated and
explicitly depend on r.

By M -invariance, we can now claim that the inverse metric gij at any point P ∈ S6

will take the form (2.12), namely

gij|P =
1

4 sh2 r
2

γij − 1

4 ch2 r
2

kij, (2.16)
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with γij the inverse round metric at P (see below), and kij a suitable matrix with
kρi = 0,∀i, and the 5 × 5 block not necessarily in block-diagonal form, in general. The
expression of kij at a generic point P ∈ S6 will be quite complicated and will not
be given here. On the other hand the round metric on S6 and its inverse at a point
P = (ρ, ϕ, α, a2, a3, a4) can be obtained using the following formulae in (2.6).

The round metric on S3 in the coordinates (a2, a3, a4) is easily seen to be:

(γS3)ij =


1−a23−a24

1−a22−a23−a24

a2a3
1−a22−a23−a24

a2a4
1−a22−a23−a24

a2a3
1−a22−a23−a24

1−a22−a24
1−a22−a23−a24

a3a4
1−a22−a23−a24

a2a4
1−a22−a23−a24

a3a4
1−a22−a23−a24

1−a22−a23
1−a22−a23−a24

 .

From this one computes
det γS3 = 1

1−a22−a23−a24
,

and inverse metric

(γ−1
S3 )

ij =

 1− a22 −a2a3 −a2a4
−a2a3 1− a23 −a3a4
−a2a4 −a3a4 1− a24

 .

The round Laplacian on S3 can then be written in the form

LS3 = ∂2
a2
+ ∂2

a3
+ ∂2

a4
−
(
a2∂a2 + a3∂a3 + a4∂a4

)2 − 2
(
a2∂a2 + a3∂a3 + a4∂a4

)
. (2.17)

The round metric on S6, its inverse, and the square root of the metric determinant
at P = (ρ, ϕ, α, a2, a3, a4) are obtained from (2.6):

γij = (γS6)ij|P =



1
1−ρ2

0 0 0 0 0

0 ρ2 0 0 0 0
0 0 ρ2 sin2 ϕ 0 0 0
0 0 0
0 0 0 (1− ρ2)(γS3)ij
0 0 0

 ,

γij = (γ−1
S6 )

ij|P =



1− ρ2 0 0 0 0 0
0 1

ρ2
0 0 0 0

0 0 1
ρ2 sin2 ϕ

0 0 0

0 0 0
0 0 0 1

1−ρ2
(γ−1

S3 )
ij

0 0 0


,

√
γ =

√
det γij =

ρ2(1− ρ2) sinϕ√
1− a22 − a23 − a24

. (2.18)

From this one computes the round Laplacian on S6 (see also [1], (4.12)):

LS6 =
1
√
γ
∂i
(√

γ γij ∂j
)
= γij∂i∂j +

(
∂i
√
γ

√
g

)
γij∂j +

(
∂iγ

ij
)
∂j

= (1− ρ2)∂2
ρ +

(
2
ρ
− 6ρ

)
∂ρ +

1
ρ2
LS2 + 1

1−ρ2
LS3 , (2.19)
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where LS3 is the round Laplacian (2.17) on S3 (unit sphere in v), and

LS2 = ∂2
ϕ + cotϕ ∂ϕ +

1

sin2 ϕ
∂2
α

is the round Laplacian on S2 (unit sphere in z⊕ a).

Substitution of (2.16) in (2.2) gives the following result.

Theorem 2.3. The angular Laplacian at any point P ∈ S6 can be written in the form

LS(r) =
1

4 sh2 r
2

LS6 − 1

4 ch2 r
2

L′, (2.20)

where LS6 is the round Laplacian (2.19) on S6, and L′ is the differential operator on S6

L′ =
1
√
g
∂i
(√

g kij ∂j
)
= kij∂i∂j +

(
∂i
√
g

√
g

)
kij∂j +

(
∂ik

ij
)
∂j, (2.21)

where kij is the non-round part of the inverse metric in (2.16). Here
√
g =

√
det gij =

26 sh6 r
2
ch2 r

2

√
γ, with

√
γ =

√
det γij given by (2.18).

We observe that formula (2.20) for LS(r) remarkably reminds the symmetric-case
formula (cf. [4], (6.16)), but L′ is now r-dependent.

Using (2.14)-(2.15), we can write down the symbol kij∂i∂j of L′ at P0. Obviously it
depends on R in the terms ka3a3∂2

a3
+ ka4a4∂2

a4
+ 2ka3a4∂a3∂a4 , but its v-radial part (the

one with only the derivatives ∂ϕ and ∂α) is R-independent:

kϕϕ∂2
ϕ + kαα∂2

α = ∂2
ϕ +

1
sin2 ϕ

∂2
α,

as well as the terms

ka2a2∂2
a2
+ 2kϕa2∂ϕ∂a2 + 2kαa3∂α∂a3 + 2kαa4∂α∂a4 = ∂2

a2
+ 2∂ϕ∂a2 + 2cotϕ ∂α∂a3 − 2∂α∂a4 .

For the term
(

∂i
√
g

√
g

)
kij∂j in (2.21) we have (∂ϕ

√
g)/

√
g = cotϕ and

∂α
√
g|P0 = 0 = ∂a2

√
g|P0 = ∂a3

√
g|P0 = ∂a4

√
g|P0 ,

being
√
g ∝ 1√

1−a22−a23−a24
. Thus(

∂i
√
g

√
g

)
kij∂j = cotϕ ∂ϕ + cotϕ ∂a2 .

The last term (∂ik
ij) ∂j in (2.21) cannot be computed directly as it requires the

derivatives of kij (or gij) at P0, but we don’t have the expression of the inverse metric
away from P0. However, we can proceed indirectly as follows. Recall that the first-order
terms in (2.2) can also be written in terms of the Levi-Civita connection coefficients ωk

ij.
Let ∇ denote the covariant derivative in the full metric, and define ∇∂i∂j = ωk

ij∂k. Then

LS(r) = gij∇∂i∇∂j = gij∂i∂j − gijωk
ij∂k. (2.22)
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The coefficients ωk
ij are given in terms of the derivatives of the metric by

ωk
ij =

1
2
gkm (∂igmj + ∂jgmi − ∂mgij) .

This can now be computed using the general expression (2.7) of the metric. By separating
out the part relative to the round Laplacian, and keeping in mind the first-order term(

∂i
√
g

√
g

)
kij∂j already computed, we get by comparison of (2.22) with (2.2) that(

∂αk
αϕ + ∂ϕk

ϕϕ + ∂a2k
a2ϕ + ∂a3k

a3ϕ + ∂a4k
a4ϕ
)∣∣∣

P0

= 0,(
∂αk

αα + ∂ϕk
ϕα + ∂a2k

a2α + ∂a3k
a3α + ∂a4k

a4α
)∣∣∣

P0

= 0.

Thus there are no additional first-order terms in ∂ϕ, and no first-order terms in ∂α in L′.
The v-radial part of L′ at P0 is then

LS2 = ∂2
ϕ + cotϕ ∂ϕ +

1
sin2 ϕ

∂2
α (2.23)

=
(
t∂z1 − z1∂t

)2
+
(
t∂z2 − z2∂t

)2
+
(
z1∂z2 − z2∂z1

)2
.

By M -invariance, this result remains true at any point P ∈ S6. Indeed, the operator
LS2 is clearly invariant under the action of M on z ⊕ a (just rotations in the z-plane).
More specifically, the operators ∂2

α = (z1∂z2 − z2∂z1)
2 and (t∂z1 − z1∂t)

2 + (t∂z2 − z2∂t)
2

are separately M -invariant.
We will not compute the remaining first-order terms in (∂ik

ij) ∂j, as the non-v-radial
part of L′ (the one with the derivatives with respect to a2, a3.a4) is already quite compli-
cated. We have obtained:

Proposition 2.4. The operator L′ at P0 is given by

L′ = ∂2
ϕ + cotϕ ∂ϕ +

1

sin2 ϕ
∂2
α

+ ∂2
a2
+ 2∂ϕ∂a2 + cotϕ ∂a2 + 2cotϕ ∂α∂a3 − 2∂α∂a4

+ ka3a3∂2
a3
+ ka4a4∂2

a4
+ 2ka3a4∂a3∂a4

+
(
∂ik

ia2
)
∂a2 +

(
∂ik

ia3
)
∂a3 +

(
∂ik

ia4
)
∂a4 .

The v-radial part of L′ is given by (2.23) at every P ∈ S6.

2.3 The v-radial part of the spectrum

We can now look for the eigenfunctions of LS(r) on S6 that depend only on the coor-
dinates (ρ, ϕ, α) in the bispherical coordinate chart (ρ, ϕ, α, ω) of S6, i.e., independent
of ω = (a1, a2, a3, a4) ∈ Sp−1 = S3, or equivalently, the v-radial eigenfunctions of LS(r),
depending only on (t, Z). By Proposition 2.4, the v-radial part of the operator LS(r) at
any point P ∈ S6 is given by

LS(r) =
1

4 sh2 r
2

{
(1− ρ2)∂2

ρ +
(

2
ρ
− 6ρ

)
∂ρ +

1
ρ2
LS2

}
− 1

4 ch2 r
2

LS2 . (2.24)
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Recall that the regular eigenfunctions of the operator LS2 = ∂2
ϕ + cotϕ ∂ϕ + 1

sin2 ϕ
∂2
α

are the usual spherical harmonics Y m
n (ϕ, α), namely(

∂2
ϕ + cotϕ ∂ϕ +

1
sin2 ϕ

∂2
α

)
Y m
n = −n(n+ 1)Y m

n ,

where (up to normalization)

Y m
n (ϕ, α) = Pm

n (cosϕ) eimα, n ∈ Z+, m = −n, . . . , n,

Pm
n being the associated Legendre polynomials. Looking for (complex) solutions to

LS(r)χ = λχ in the factored form χ(ρ, ϕ, α) = f(ρ)Y (ϕ, α), we find they are given (up to
normalization) by

χk,l,m(ρ, ϕ, α) = R
(1,k−l+1/2)
l (2ρ2 − 1)ρk−lY m

k−l(ϕ, α), (2.25)

where R
(a,b)
l (x) is a Jacobi polynomial normalized so that R

(a,b)
l (1) = 1, and

k, l,m ∈ Z, k ≥ l ≥ 0, m = −(k − l), . . . , k − l.

The eigenvalues are the same as in the biradial case, namely

λk,l = −(k + l)(k + l + 5)

4 sh2 r
2

+
(k − l)(k − l + 1)

4 ch2 r
2

.

For m = 0 we get back the biradial eigenfunctions χk,l = χk,l,0 (those that depend only
on (ρ, ϕ), i.e., on (t, |Z|)), see [1].

Formula (2.24) has been generalized to any Damek-Ricci space in [2], Theorem 2.1. We
can check that the eigenfunctions χk,l,m in (2.25) agree with the functions χk,l,j,i in formula
(2.22) of [2] for p = 4 and q = 2. To this end, we just need to take m = ±j. Indeed the

associated Legendre polynomials P±j
k−l(cosϕ) are proportional to (sinϕ)jR

(j,j)
k−l−j(cosϕ), as

easily proved, and of course S
(2)
j,i (ω2) = S

(2)
j,±(α) = e±ijα is a basis for spherical harmonics

of degree j on Sq−1 = S1.

Formula (2.20) appears in [2] as formula (2.17) with L′ = LSq +L3, but the operator
L3 is not explicit. In this section we have obtained a more explicit form of the operator
L′ at a given point P0 ∈ S6 in the 7-dimensional example by working in bispherical
coordinates. More insight into the geometrical meaning of L′ will be given in the next
section.

As regards the non-v-radial part of the spectrum, this remains largely unknown, due
to the complicated form of L′. It is possible that the whole spectrum and eigenfunctions of
LS(r) can not be computed in closed form. For example, we don’t know if the eigenvalues
of LS(r) coincide exactly with the “biradial” ones λk,l, or if “new” eigenvalues will appear.
In this case the associated eigenspaces will carry no biradial or even v-radial element, a
completely new situation compared to the symmetric case. The general eigenfunctions
will be suitable linear combinations of spherical harmonics in L2(S6). However nothing
prevents, in principle, that the coefficients of these linear combinations depend explicitly
on r, in contrast with the symmetric case situation. We refer to [4], subsection 8.5, for a
more general discussion of this point for non-symmetric Damek-Ricci spaces.
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3 The approach by moving frames

In this section we present a different approach to the computation of the angular Lapla-
cian. It is based on a suitable (local) decomposition of the tangent bundle on S6 ≃ S(R)
into horizontal and vertical parts and on the use of moving frames adapted to this de-
composition rather than of coordinates.

3.1 The horizontal-vertical decomposition of the tangent bun-
dle

It is convenient to work in the ball model B of NA. The induced metric γS(R) on the
Euclidean sphere S(R) of radius R < 1 in B, identified with S6 by Rω → ω, is given by
(2.1) with R = th r

2
, namely it is the following R-dependent metric on S6:

γS(R) =
4R2

1−R2
γS6 +

4R4

(1−R2)2
hR, (3.1)

where hR is the smooth rank-2 tensor on S6 given by

hR|(V,Z,t) =
∣∣[V, dV ] + tdZ − Zdt

∣∣2+ (z1dz2 − z2dz1 + ⟨J1J2V, dV ⟩
)2

− 1

((1−Rt)2 +R2|Z|2)2

(
R2|V |2 (z1dz2 − z2dz1) (3.2)

+ 2R(1−Rt)
(
z1[V, dV ]2 − z2[V, dV ]1

)
+
(
(1−Rt)2−R2|Z|2

)
⟨J1J2V, dV ⟩

)2

.

Recall that for R = 1 we have h1 = limR→1 hR = Θ2 = |Θ|2, where Θ is the z-valued
1-form on S6 ∗ = S6 \ {(0, 0, 1)} given by (cf. [3], (3.20))

Θ|(V,Z,t) = [V, dV ] + tdZ − Zdt+
2(z2U1 − z1U2)

(1− t)2 + |Z|2
× (3.3)

×
{
z1dz2 − z2dz1 + z1[V, dV ]2 − z2[V, dV ]1 + (1− t)⟨J1J2V, dV ⟩

}
,

where U1 = (1, 0), U2 = (0, 1). Up to a scalar factor, Θ is the pull-back of the canonical
1-form on the group N by the generalized stereographic projection [3]. It can be extended
to a z-valued 1-form on B \{(0, 0, 1)}. Moreover, we have a decomposition of the tangent
bundle on S6 ∗ into its horizontal partHT (S6 ∗), defined as the kernel of Θ (or of h1 = Θ2),
and the vertical part V T (S6 ∗) (the orthogonal complement of kerΘ with respect to the
round metric), with dimHT (S6 ∗) = 4, dimV T (S6 ∗) = 2. It is proved in [3], Theorems
3.4 and 3.7, that the 1-form Θ, as well as its square, do not extend smoothly at the
pole (0, 0, 1), though they remain bounded there, and the same holds for the horizontal
distribution kerΘ.

For R < 1 the non-round part (3.2) of the induced metric (3.1) is smooth, and it is
related to h1 by (cf. [3])

R4hR = h1 ◦ δR,
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where δR is the dilation δR(V, Z, t) = (RV,RZ,Rt). Note that h1 (given by (3.2) with
R = 1) is well defined on B, so the composition h1◦δR is well defined for R < 1. However,
we anticipate that the equality h1 = Θ2 only holds on S6 ∗ but not on B (cf. Corollary
3.4). Thus, in general, the kernel of hR (which is just (kerh1) ◦ δR by Proposition 3.1)
will be different from ker(Θ2) ◦ δR = (kerΘ) ◦ δR for R < 1.

We define the horizontal distribution HT (S(R)), R < 1, as the kernel of hR, i.e., as
the following R-dependent distribution on S6:

HT (S(R)) = kerhR = {X ∈ T (S6) : hR(X,Y ) = 0, ∀Y ∈ T (S6)}.

Since hR is smooth, HT (S(R)) is a smooth distribution of dimension 4 at generic
points of S6, but it will change dimension at some (zero-measure) point set of S6. Indeed
there are no continuous k-dimensional distributions (continuous fields of k-planes) on S6

for 1 ≤ k ≤ 5 ([11], Theorem 27.18). For k = 1, this is the well known result that even
spheres do not admit continuous nowhere vanishing vector fields, or 1-forms by duality.

The vertical distribution V T (S(R)) is defined as the orthogonal complement of
HT (S(R)) with respect to the round metric γS6 (or to the full metric γS(R)). Again,
this is a smooth distribution of dimension 2 at generic points of S6. For instance at the
poles x± = (0, 0,±1), we have hR|(0,0,±1) = |dZ|2, ∀R, so the horizontal subspace is just
HTx±(S(R)) = v and the vertical one is V Tx±(S(R)) = z, ∀R.

Note that S6 is not a fibre bundle with fibre Sq = S2 (there is no Hopf fibration for
S6). Thus we do not have an interpretation of the horizontal/vertical distributions in
terms of base space/fibres of a global fibration, as in the case of symmetric Damek-Ricci
spaces [4]. Nevertheless, the local decomposition

T (S6) ∼= HT (S(R))⊕ V T (S(R)) (R < 1)

will serve our purposes of describing the structure of the angular Laplacian.

The following result relates the kernels of hR on S6 and of h1 on S(R).

Proposition 3.1. Let h1 be considered as a tensor field defined on B \ {(0, 0, 1)}. For
any vector fields X,Y on S(R), R < 1, we have(

h1 ◦ δR
)(
X ◦ δR, Y ◦ δR

)
=
(
h1(X,Y )

)
◦ δR. (3.4)

Consequently, X is in the kernel of h1 on S(R), R < 1, if and only if X ◦ δR is in the
kernel of h1 ◦ δR on S6, and

HT (S(R)) = kerhR = ker(h1 ◦ δR) =
(
kerh1

)
◦ δR, ∀R < 1. (3.5)

Proof. We will prove (3.4) for Y = X. The general proof is similar but there are more
terms to keep track of, due to symmetrization in X and Y . Recall that if ω1, ω2 are
1-forms, then

(ω1 + ω2)
2(X,Y ) = ω1(X)ω1(Y ) + ω2(X)ω2(Y ) + ω1(X)ω2(Y ) + ω1(Y )ω2(X).

For Y = X this simplifies to

(ω1 + ω2)
2(X,X) = ω1(X)2 + ω2(X)2 + 2ω1(X)ω2(X) =

(
ω1(X) + ω2(X)

)2
. (3.6)
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Let X = ⟨Xv, ∂V ⟩+ ⟨Xz, ∂Z⟩+Xa∂t, where the components Xv, Xz = (Xz1, Xz2) and Xa

are v-valued, z-valued and R-valued functions, respectively. Then

X ◦ δR = 1
R
⟨Xv ◦ δR, ∂V ⟩+ 1

R
⟨Xz ◦ δR, ∂Z⟩+ 1

R
(Xa ◦ δR)∂t. (3.7)

Using (3.2) with R = 1 and (3.6), we have for (V, Z, t) ∈ B

h1(X,X)|(V,Z,t) =
(
⟨J1V,Xv⟩+ tXz1 − z1Xa

)2
+
(
⟨J2V,Xv⟩+ tXz2 − z2Xa

)2
+
(
z1Xz2 − z2Xz1 + ⟨J1J2V,Xv⟩

)2
− 1

((1− t)2 + |Z|2)2

(
|V |2

(
z1Xz2 − z2Xz1

)
+ 2(1− t)

(
z1⟨J2V,Xv⟩ − z2⟨J1V,Xv⟩

)
+
(
(1− t)2 − |Z|2

)
⟨J1J2V,Xv⟩

)2

,

where we writeXv, Xz andXa forXv(V, Z, t), Xz(V, Z, t) andXa(V, Z, t), for brevity. Here
h1(X,X) is considered as a function on B in order to compose with δR in the next step.

Composing the function h1(X,X) with δR and writing Xv ◦ δR for Xv(RV,RZ,Rt),
etc, gives on the one hand

h1(X,X) ◦ δR|(V,Z,t) = h1(X,X)|(RV,RZ,Rt)

= R2
(
⟨J1V,Xv ◦ δR⟩+ tXz1 ◦ δR − z1Xa ◦ δR

)2
+R2

(
⟨J2V,Xv ◦ δR⟩+ tXz2 ◦ δR − z2Xa ◦ δR

)2
+R2

(
z1Xz2 ◦ δR − z2Xz1 ◦ δR + ⟨J1J2V,Xv ◦ δR⟩

)2
− 1

((1−Rt)2 +R2|Z|2)2

(
R3|V |2

(
z1Xz2 ◦ δR − z2Xz1 ◦ δR

)
+ 2R2(1−Rt)

(
z1⟨J2V,Xv ◦ δR⟩ − z2⟨J1V,Xv ◦ δR⟩

)
+R

(
(1−Rt)2 −R2|Z|2

)
⟨J1J2V,Xv ◦ δR⟩

)2

,

for (V, Z, t) ∈ S6. On the other hand, when we compute
(
h1 ◦ δR

)(
X ◦ δR, X ◦ δR

)
|(V,Z,t)

and use (3.7), we obtain exactly the same expression, as easily seen.

We remark that h1 must be considered as a function on B \ {(0, 0, 1)} in the above
proposition in order to apply (3.5). In particular, since h1|B ̸= Θ2|B (cf. Corollary 3.4),
we cannot claim equality between kerhR and ker(Θ2) ◦ δR = (kerΘ) ◦ δR for R < 1.

3.2 The induced Laplacian

Now let a superscript hor, ver denote restriction of a metric or a differential operator to
the horizontal, vertical subspaces. Decompose the round metric as

γS6 = γhor
S6 + γver

S6 .
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Then the metric in (3.1) decomposes as

γS(R) = γhor
S(R) + γver

S(R), (3.8)

where

γhor
S(R) =

4R2

1−R2
γhor
S6 , γver

S(R) =
4R2

1−R2
γver
S6 +

4R4

(1−R2)2
hR. (3.9)

(The term hR is of course vertical by the definition of the horizontal subspace as its
kernel.) Thus the horizontal part of the induced metric is proportional to the horizontal
part of the round metric, and the vertical part is the sum of a term proportional to γver

S6

and a term proportional to hR. Let

LS6 = Lhor
S6 + Lver

S6

be the decomposition of the round Laplacian into its horizontal and vertical parts. Let
LS(R) be the Laplacian of the induced metric (3.1). Then (3.8)-(3.9) imply the following
decomposition:

LS(R) = Lhor
S(R) + Lver

S(R), (3.10)

where the horizontal part is

Lhor
S(R) =

1−R2

4R2
Lhor
S6 =

1

4 sh2 r
2

Lhor
S6 ,

and the vertical part Lver
S(R) is the differential operator associated with γver

S(R) in (3.9).

Proposition 3.2. The induced Laplacian LS(R) can be written in the form

LS(R) =
1−R2

4R2
LS6 − 1−R2

4
L′

=
1

4 sh2 r
2

LS6 − 1

4 ch2 r
2

L′,

where L′ is the vertical differential operator defined by

1−R2

4
L′ =

1−R2

4R2
Lver
S6 − Lver

S(R). (3.11)

Proof. Just add and subtract 1−R2

4R2 Lver
S6 in (3.10), to get

LS(R) =
1−R2

4R2
LS6 +

(
Lver
S(R) −

1−R2

4R2
Lver
S6

)
.

This result gives a different perspective on formula (2.20) obtained in section 2 using
the coordinate frame approach. Namely, the induced Laplacian is the sum of a term
proportional to the round Laplacian plus a vertical term proportional to L′. This is
analogous to the symmetric case formula (see [4], Theorem 6.1), except that L′ is now
r-dependent.
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In order to explicitly compute L′ we need a basis X1, X2 for vertical vector fields,
relative to which we can write

1−R2

4
L′ =

1−R2

4R2

2∑
1

γij∇S6

Xi
∇S6

Xj
−

2∑
1

gij∇Xi
∇Xj

,

where gij and γij are the inverse vertical metric and inverse vertical round metric in the
vertical frame {X1, X2}, and ∇,∇S6

denote the covariant derivatives in the full metric
and in the round metric, respectively. Of course, the symbol of L′ will be determined by

1−R2

4
L′ =

2∑
1

(
1−R2

4R2
γij − gij

)
XiXj + first-order terms in X1, X2. (3.12)

Once we know X1, X2, we can easily compute the inverse metrics gij and γij and the
symbol of L′ at all points of S(R) ≃ S6. An interesting question is whether or not L′

commutes with the round Laplacian or, more generally, with the Euclidean Laplacian
on s = R7. Moreover, the commutator [X1, X2], which is needed to find the first-order
terms, will allow us to answer the following natural question: is the vertical distribution
integrable, i.e., is [X1, X2] = aX1 + bX2 for suitable functions a and b?

3.3 Search for a vertical basis

We now observe that the non-round part of the induced metric h1 ◦ δR is different from
Θ2 ◦ δR = (Θ ◦ δR)2 for R < 1. [Note that the equality Θ2 ◦ δR = (Θ ◦ δR)2 always holds
in general, as if x = R(V, Z, t) ∈ B with R < 1, then

Θ2|x = Θ2|(RV,RZ,Rt) = (Θ2 ◦ δR)|(V,Z,t) = θ21|x + θ22|x
= (θ1|x)2 + (θ2|x)2 = (θ1|(RV,RZ,Rt))

2 + (θ2|(RV,RZ,Rt))
2 =

(
Θ ◦ δR

)2|(V,Z,t),
where θ1,2 are the component 1-forms of Θ in (3.3), i.e., Θ = θ1U1 + θ2U2.]

If we had h1 ◦ δR = Θ2 ◦ δR for R < 1 (i.e., h1|B = Θ2|B), we could use (3.5) to get
ker(h1 ◦ δR) = (kerh1) ◦ δR = ker(Θ2) ◦ δR = (kerΘ) ◦ δR for R < 1. Moreover, we could
immediately claim that a vertical basis is given by X1,2 = T1,2 ◦ δR, where T1,2 are the
vector fields that are dual to θ1,2 in the sense that θ1,2(X) = ⟨T1,2, X⟩ for any vector field
X, where ⟨, ⟩ is the round metric. Indeed, this also implies θ1,2◦δR(X) = R2⟨T1,2◦δR, X⟩,
∀X, so if H satisfies (θ1,2 ◦ δR)(H) = 0, then ⟨T1,2 ◦ δR, H⟩ = 0. Note that {θ1, θ2} is not
dual to {T1, T2} in the sense of θi(Tj) = δij, in fact we have θi(Tj) = ⟨Ti, Tj⟩ ̸= δij, the
set {T1, T2} being not orthonormal (or even orthogonal), in general. Now T1 and T2 can
be obtained from θ1 and θ2 (cf. (3.3), see also [3], the formula after (3.20)) by turning
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all differentials into gradient operators, whence

T1 ◦ δR|(V,Z,t) = [V, ∂V ]1 + t∂z1 − z1∂t +
2Rz2

(1−Rt)2 +R2|Z|2
×

×
{
z1∂z2 − z2∂z1 +R

(
z1[V, ∂V ]2 − z2[V, ∂V ]1

)
+ (1−Rt)⟨J1J2V, ∂V ⟩

}
,

T2 ◦ δR|(V,Z,t) = [V, ∂V ]2 + t∂z2 − z2∂t −
2Rz1

(1−Rt)2 +R2|Z|2
×

×
{
z1∂z2 − z2∂z1 +R

(
z1[V, ∂V ]2 − z2[V, ∂V ]1

)
+ (1−Rt)⟨J1J2V, ∂V ⟩

}
.

(3.13)
However, we have the following result.

Proposition 3.3. For all (V, Z, t) ∈ S6 and all R < 1, we have

1
R4

(
Θ ◦ δR

)2∣∣
(V,Z,t)

= 1
R4

(
θ1 ◦ δR

)2∣∣
(V,Z,t)

+ 1
R4

(
θ2 ◦ δR

)2∣∣
(V,Z,t)

=
∣∣[V, dV ] + tdZ − Zdt

∣∣2 + (z1dz2 − z2dz1 + ⟨J1J2V, dV ⟩
)2

− 1

((1−Rt)2 +R2|Z|2)2

((
1−R2(t2 + |Z|2)

)
(z1dz2 − z2dz1) (3.14)

+ 2R(1−Rt)
(
z1[V, dV ]2 − z2[V, dV ]1

)
+
(
(1−Rt)2−R2|Z|2

)
⟨J1J2V, dV ⟩

)2

.

Proof. This is a long computation using the formulae for θi,R = 1
R2 θi ◦ δR. In the course

of the calculation, the following identity (which is easy to prove) is used:(
(1−Rt)2+R2|Z|2

)2
+4Rt

(
(1−Rt)2+R2|Z|2

)
− 4R2|Z|2 =

(
1−R2(t2+ |Z|2)

)2
.

Comparing (3.14) with (3.2), we see that indeed h1 ◦ δR ̸=
(
θ1 ◦ δR

)2
+
(
θ2 ◦ δR

)2
for

R < 1, due to the coefficient of (z1dz2 − z2dz1) in the round bracket of the third term,
namely

1−R2
(
t2 + |Z|2

)
= 1−R2 +R2|V |2 ̸= R2|V |2, ∀R < 1.

Equivalently, (3.14) implies that Θ2|B is given by

Θ2
∣∣
(V,Z,t) =

∣∣[V, dV ] + tdZ − Zdt
∣∣2 + (z1dz2 − z2dz1 + ⟨J1J2V, dV ⟩

)2
− 1

((1− t)2 + |Z|2)2

((
1− (t2 + |Z|2)

)
(z1dz2 − z2dz1) (3.15)

+ 2(1− t)
(
z1[V, dV ]2 − z2[V, dV ]1

)
+
(
(1− t)2−|Z|2

)
⟨J1J2V, dV ⟩

)2

,

for all (V, Z, t) ∈ B. (Just let (RV,RZ,Rt) = (V ′, Z ′, t′) ∈ B in (3.14), multiply by R4

and drop primes in the end.) Comparing (3.15) and (3.2) (with R = 1) we obtain

Corollary 3.4. On the domain B \ {(0, 0, 1)} we have

h1 = Θ2 + F, (3.16)
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where F is the smooth rank-2 tensor field given by

F |(V,Z,t) =
α(V, Z, t)

((1− t)2 + |Z|2)2
(z1dz2 − z2dz1)

2

+
4(1− t)β(V, Z, t)

((1− t)2 + |Z|2)2
(z1dz2 − z2dz1)

(
z1[V, dV ]2 − z2[V, dV ]1

)
+

2
(
(1− t)2 − |Z|2

)
β(V, Z, t)

((1− t)2 + |Z|2)2
(z1dz2 − z2dz1)⟨J1J2V, dV ⟩,

∀(V, Z, t) ∈ B \ {(0, 0, 1)}, with{
α(V, Z, t) = (1− (t2 + |Z|2))2 − |V |4,
β(V, Z, t) = 1− (t2 + |Z|2 + |V |2) .

Now the functions α and β vanish at the boundary S6 ∗ of B \ {(0, 0, 1)} (the sphere
“at infinity” for R = 1, where F = 0 and we regain h1 = Θ2), but they are nonzero on the
interior B. Thus h1|B ̸= Θ2|B, and the horizontal distribution HT (S(R)) = (kerh1) ◦ δR
will be different from (kerΘ)◦δR = (ker θ1∩ker θ2)◦δR for R < 1 at generic points of S6.
Consequently, the vectors fields T1,2 ◦ δR in (3.13) are not vertical for R < 1, in general.

This makes the search for a vertical basis X1, X2 more difficult than expected. The
problem is to find two 1-forms ω1, ω2 on S6, depending on R, such that ω2

1 + ω2
2 = hR in

(3.2) for all R < 1. Then HT (S(R)) = kerω1 ∩ kerω2, and X1,2 will be obtained from
ω1,2 by turning differentials into gradients. We have derived a formula for one of the two
1-forms, say ω1, which is actually R-independent, but got stuck in the computation of
ω2. Let us briefly elaborate on that.

First we need to fix the basis of the cotangent bundle we shall be working with. Note
that we can easily exhibit a vector field which is R-independent and horizontal for all
R ≤ 1. Consider the coordinate vector ∂ρ from bispherical coordinates in section 2 (recall
that ρ2 = t2 + |Z|2 = 1− |V |2). Using (2.3), we can rewrite ∂ρ as

∂ρ = ⟨∂V
∂ρ
, ∂V ⟩+ ⟨∂Z

∂ρ
, ∂Z⟩+ ∂t

∂ρ
∂t

= − ρ
1−ρ2

⟨V, ∂V ⟩+ 1
ρ

(
⟨Z, ∂Z⟩+ t∂t

)
.

To avoid singularities, let us multiply this by ρ(1− ρ2), to get the vector field

H0 = ρ(1− ρ2)∂ρ = −ρ2⟨V, ∂V ⟩+ (1− ρ2)
(
⟨Z, ∂Z⟩+ t∂t

)
.

It is easily checked that H0 is in kerΘ ∩ kerF ⊂ kerh1 on B \ {(0, 0, 1)} (cf. (3.16)), or
equivalently, it is in

ker(Θ ◦ δR) ∩ ker(F ◦ δR) ⊂ kerhR, ∀R ≤ 1,

so H0 is horizontal for all R. This explains why the ρ-coordinate plays no role in the
non-round part hR of the metric (which is vertical). Note that H0 vanishes for ρ = 0, 1,
i.e., at the submanifolds S3 (unit sphere in v) and S2 (unit sphere in z⊕ a) of S6.
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We can then use as a basis of the cotangent space Tx(S
6)∗ at x = (V, Z, t) the following

set of 1-forms: 

α0 = −ρ2⟨V, dV ⟩+ (1− ρ2)
(
⟨Z, dZ⟩+ tdt

)
α1 = ⟨J1V, dV ⟩
α2 = ⟨J2V, dV ⟩
α3 = ⟨J1J2V, dV ⟩
α4 = tdz1 − z1dt

α5 = tdz2 − z2dt.

The 1-form α0 is dual to H0 and it is orthogonal to αj (1 ≤ j ≤ 5) with respect to the
round metric. Note that the 1-form z1dz2 − z2dz1 depends linearly on α4, α5, being

z1dz2 − z2dz1 =
z1
t
α5 − z2

t
α4. (3.17)

We assume ρ ̸= 0, 1 (i.e., (Z, t) ̸= (0, 0), V ̸= 0), and t ̸= 0, so that α4 and α5 are linearly
independent.

We expand the tensor field hR in (3.2) in terms of αj, 1 ≤ i, j ≤ 5, as

hR =
∑

hij αi ⊗ αj.

Comparison with (3.2) gives the following values of the coefficients hij = hji:

h11 = 1− 4R2(1−Rt)2z22
((1−Rt)2+R2|Z|2)2 , h22 = 1− 4R2(1−Rt)2z21

((1−Rt)2+R2|Z|2)2 ,

h33 = 1− ((1−Rt)2−R2|Z|2)2
((1−Rt)2+R2|Z|2)2 , h12 =

4R2(1−Rt)2z1z2
((1−Rt)2+R2|Z|2)2 ,

h13 =
2R(1−Rt)((1−Rt)2−R2|Z|2)z2

((1−Rt)2+R2|Z|2)2 , h23 = −2R(1−Rt)((1−Rt)2−R2|Z|2)z1
((1−Rt)2+R2|Z|2)2 ,

h44 = 1 +
z22
t2

(
1− R4|V |4

((1−Rt)2+R2|Z|2)2

)
, h55 = 1 +

z21
t2

(
1− R4|V |4

((1−Rt)2+R2|Z|2)2

)
,

h45 = − z1z2
t2

(
1− R4|V |4

((1−Rt)2+R2|Z|2)2

)
, h14 = 1− 2R(1−Rt)R2|V |2z22

t((1−Rt)2+R2|Z|2)2 ,

h24 =
2R(1−Rt)R2|V |2z1z2
t((1−Rt)2+R2|Z|2)2 , h34 = − z2

t

(
1− R2|V |2((1−Rt)2−R2|Z|2)

((1−Rt)2+R2|Z|2)2

)
,

h15 =
2R(1−Rt)R2|V |2z1z2
t((1−Rt)2+R2|Z|2)2 , h25 = 1− 2R(1−Rt)R2|V |2z21

t((1−Rt)2+R2|Z|2)2 ,

h35 =
z1
t

(
1− R2|V |2((1−Rt)2−R2|Z|2)

((1−Rt)2+R2|Z|2)2

)
.

(3.18)

The 5× 5 real symmetric matrix H = (hij) can be diagonalized in R5. The expected
eigenvalues should be of the form λ1, λ2 ̸= 0, corresponding to the 2-dimensional ver-
tical subspace V Tx(S(R)), and λ3 = λ4 = λ5 = 0, corresponding to a 3-dimensional

horizontal subspace H̃ such that HTx(S(R)) = H̃ ⊕ RH0. (Recall that kerhR should be
4-dimensional at generic points, and we have already separated out the 1-dim subspace
Rα0 in the cotangent space, so H will have 3-dim kernel.) Let v1, v2, v3, v4, v5 be an or-
thonormal basis of eigenvectors in R5, Hvj = λjvj (1 ≤ j ≤ 5), and let R be the matrix
whose columns are the vj. Then H = RDR−1, where D = diag(λ1, λ2, 0, 0, 0), and

hR =
∑

hij αi ⊗ αj =
∑

Rikλkδkl(R−1)lj αi ⊗ αj

=
∑

λk

(
Rikαi

)
⊗
(
Rjkαj

)
=
∑

λk ω̃k ⊗ ω̃k = λ1 ω̃
2
1 + λ2 ω̃

2
2,
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where ω̃k =
∑5

1Rikαi =
∑

(Rt)kiαi. Finally, assuming λ1, λ2 > 0, define ωi =
√
λi ω̃i

(i = 1, 2), to get hR = ω2
1 + ω2

2. To implement this program one needs to compute the
eigenvalues λ1,2 and the eigenvectors vj (1 ≤ j ≤ 5). Actually, we only need v1 and v2 to
compute ω1,2, but v3, v4, v5 will give us, by duality, a set of horizontal vectors that span
HTx(S(R)) together with H0.

The characteristic polynomial of H will have the form p(λ) = λ3(aλ2 + bλ + c). To
determine this, we use for the matrix H − λI the elementary rule according to which
adding to a row (column) a multiple of another row (column) does not change the value
of the determinant. After a few steps, we arrive at a matrix with 3 zeros on the first
row and the other entries in that row proportional to λ(2 − λ). Thus the determinant
vanishes for λ = 0 and λ = 2. But by (3.18) we easily get

traceH = 4 + |Z|2
t2

(
1− R4|V |4

((1−Rt)2+R2|Z|2)2

)
= λ1 + λ2.

We conclude that the nonzero eigenvalues are

λ1 = 2, λ2 = 2 + |Z|2
t2

(
1− R4|V |4

((1−Rt)2+R2|Z|2)2

)
. (3.19)

This is consistent with example 1 below (the case Z = 0), where one gets λ1 = λ2 = 2.
In this case there is a single eigenvalue, and the eigenvectors can be taken to be v1 =
1√
2
(1, 0, 0, 1, 0) and v2 =

1√
2
(0, 1, 0, 0, 1). The result (3.19) also agrees with example 2 (the

degenerate case of V = 0, treated as a 5× 5 problem), where λ1 = 2 and λ2 = 2 + |Z|2
t2

.
To complete our program we need to find the (normalized) eigenvectors v1, v2. For

Z ̸= 0, a normalized solution to Hv1 = 2v1 is given by

v1 =
1√
2|Z|

(
z1, z2, 0, z1, z2

)
,

as easily checked. Thus we get the 1-form

ω1 =
1
|Z|

(
z1α1 + z2α2 + z1α4 + z2α5

)
.

This can be rewritten as

ω1 =
1
|Z|

(
z1⟨J1V, dV ⟩+ z2⟨J2V, dV ⟩

)
+ 1

|Z|

(
z1(tdz1 − z1dt) + z2(tdz2 − z2dt)

)
= 1

|Z|

(
z1⟨J1V, dV ⟩+ z2⟨J2V, dV ⟩

)
+ t

|Z|(z1dz1 + z2dz2)− |Z|dt
= 1

|Z|(z1⟨J1V, dV ⟩+ z2⟨J2V, dV ⟩
)
+ td|Z| − |Z|dt

= (1− ρ2)
(
cosα⟨J1ω, dω⟩++sinα⟨J2ω, dω⟩

)
+ ρ2dϕ,

where (ϕ, α) are the angles from bispherical coordinates in (2.3), (2.4), ω ∈ S3, and we
used ⟨Z, dZ⟩ = |Z|d|Z|, and td|Z| − |Z|dt = ρ2dϕ.

We remark that ω1 is R-independent.
The computation of v2 is not that simple. Let v2 = (a1, a2, a3, a4, a5). As ⟨v2, v1⟩ = 0,

we get (a1 + a4)z1 + (a2 + a5)z2 = 0. We have not been able to solve the 5 equations in
Hv2 = λ2v2. For instance, we tried

v2 = (−az2, az1, a3,−bz2, bz1) (a, b ∈ R),
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but it did not work. On the other hand, if we write the 1-form ω2 as

ω2 =
√

λ2

(
a1α1 + a3α3 + a3α3 + a4α4 + a5α5

)
,

and try to match directly ω2
1+ω2

2 to hR in (3.2) we run into inconsistencies. For example,
if we match the diagonal components hii in (3.18), we get the following set of coefficients:

√
λ2a1 = ± z2((1−Rt)2−R2|Z|2)

|Z|((1−Rt)2+R2|Z|2) ,√
λ2a2 = ± z1((1−Rt)2−R2|Z|2)

|Z|((1−Rt)2+R2|Z|2) ,√
λ2a3 = ± 2R|Z|(1−Rt)

(1−Rt)2+R2|Z|2 ,
√
λ2a4 = ± z2

√
(t2+|Z|2)((1−Rt)2+R2|Z|2)2−R4|V |4|Z|2

t|Z|((1−Rt)2+R2|Z|2) ,
√
λ2a5 = ± z1

√
(t2+|Z|2)((1−Rt)2+R2|Z|2)2−R4|V |4|Z|2

t|Z|((1−Rt)2+R2|Z|2)

where the signs can be arranged using ⟨v2, v1⟩ = 0. However, these values are not
consistent with all the non-diagonal components. One can check that h12, h13, h23 and
h45 are correct with these values of aj, but h1,4, h2,4, h3,4, h1,5, h2,5, h3,5 have the wrong
values.

Since we do not know how to proceed further, we will leave this open.

Remark 3.5. For R = 1, the 1-forms θ1 and θ2 do not quite fit into our diagonalization
program. Indeed, if we expand θ1 =

∑
a′iαi and θ2 =

∑
b′jαj, then the vectors v′1 = (a′i)

and v′2 = (b′j) in R5 are not eigenvectors of the matrix H|R=1, in general. In fact, they
are not even orthogonal to each other, ⟨v′1, v′2⟩ ̸= 0. Nevertheless, θ21 + θ22 = h1 = ω2

1 +ω2
2.

There will be a 2 × 2 rotation, depending on the coordinates (V, Z, t), relating the two
sets of 1-forms.

Besides finding explicit formulae for X1, X2 and L′, one would also like, for R < 1,
to get a description of HTx(S(R)) and V Tx(S(R)) at generic points x = (V, Z, t) ∈ S6

analogous to [5], Theorem 7.10 for the symmetric case. This will be quite different in the
present case, as the horizontal/vertical subspaces will now depend on R, in general.

We conclude with two examples where the R-dependence has no influence.

1) Let Z = 0, i.e., consider the points x = (V, 0, t) ∈ S6. Here F ◦ δR|x = 0, ∀R, so
h1 ◦ δR|x = Θ2 ◦ δR|x, and an orthonormal basis of V Tx(S(R)) is{

X1 = T1 ◦ δR|(V,0,t) = ⟨J1V, ∂V ⟩+ t∂z1 ,

X2 = T2 ◦ δR|(V,0,t) = ⟨J2V, ∂V ⟩+ t∂z2 .

Moreover, an orthogonal basis of HTx(S(R)) is given by H0 and
H1 = −ρ2⟨J1V, ∂V ⟩+ (1− ρ2)t∂z1 ,

H2 = −ρ2⟨J2V, ∂V ⟩+ (1− ρ2)t∂z2 ,

H3 = ⟨J1J2V, ∂V ⟩.
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Indeed these vectors are easily seen to be in the kernel of

hR|x =
∣∣[V, dV ] + tdZ

∣∣2 = (⟨J1V, dV ⟩+ tdz1
)2

+
(
⟨J2V, dV ⟩+ tdz2

)2
and they are orthogonal to each other. These bases are independent of R since hR|x is
independent of R. The subspaces HTx(S(R)) and V Tx(S(R)) ⊕ Rx can be described
exactly as in [5], Theorem 7.10, case (iii). Indeed, one easily checks that the set k(V ) of
elements of v that are orthogonal and commute with V is 1-dimensional and given by
RJ1J2V . The diagonalization program is a bit useless in this case, as hR is already a
sum of squares from the outset. In any case, one computes λ1 = λ2 = 2, and of course
ω1 = α1 + α4, ω2 = α2 + α5.

2) Let V = 0, i.e., consider the points x = (0, Z, t) ∈ S6. Here F ◦ δR|x ̸= 0 for R < 1,
but hR|x in (3.2) is still R-independent, namely we have

hR|x =
(
tdz1 − z1dt

)2
+
(
tdz2 − z2dt

)2
+
(
z1dz2 − z2dz1

)2
. (3.20)

It follows that the horizontal subspace is just HTx(S(R)) = v, and the vertical one is the
orthogonal complement of x in z ⊕ a, i.e., V Tx(S(R)) ⊕ Rx = z ⊕ a. As a basis of V Tx

we can take X1 = t∂z1 − z1∂t and X2 = t∂z2 − z2∂t.
We can also look for two 1-forms ω1,2 such that ω2

1 + ω2
2 = hR. This is easily solved

geometrically by observing that the tensor fields in (3.20) is just the round metric on
S2 (unit sphere in z ⊕ a) written in Cartesian coordinates (z1, z2, t). In order to write
it as a sum of squares, we need to go over to spherical polar coordinates, which are
precisely the angles (ϕ, α) from bispherical coordinates in (2.3), (2.4). Thus we get
hR|x = dϕ2 + sin2 ϕ dα2 = ω2

1 + ω2
2. We can then take as a basis of V Tx the coordinate

vector fields t∂|Z| − |Z|∂t = ∂ϕ and z1∂z2 − z2∂z1 = ∂α, which are vertical in this case.
We can also use (2.7). The term hR in this formula is just the one multiplying 4 sh4 r

2
,

so if we set ρ = 1 (i.e., V = 0) we get hR = dϕ2 + sin2 ϕ dα2.
Note that the present case does not fit in the general diagonalization program as

we assumed V ̸= 0 there. (For V = 0 we have α1 = α2 = α3 = 0 and the basis
becomes degenerate.) One way to deal with this case is to consider only the coefficients
h44, h55, h45 = h54, and just diagonalize this 2 × 2 matrix. We now have traceH =

2 + |Z|2
t2

= 1 + 1
t2
. A routine calculation gives the eigenvalues λ1 = 1, λ2 = 1/t2, and the

1-forms ω1 = dϕ, ω2 = sinϕ dα, in agreement with the above.
Another way to deal with this case is to ignore the degeneracy of the basis and

diagonalize the 5× 5 matrix H|V=0. One gets λ1 = 2 and λ2 = 2+ |Z|2/t2, in agreement
with the general result.

3.4 The vertical round metric on the sphere “at infinity”

We now present some calculation on the sphere “at infinity” S6 ∗ (R = 1) that could
generalize to the finite case (R < 1). There is no “induced metric” on S6 ∗ (the metric
(3.1) is infinite for R = 1). However, we do have the round metric γS6 = ⟨, ⟩, and we
can study its restriction to the horizontal/vertical distributions. As already mentioned,
the horizontal distribution HT (S6 ∗) = ker(Θ2) = kerh1 and the vertical one V T (S6 ∗) =
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HT (S6 ∗)⊥ do not extend smoothly at the pole (0, 0, 1) [3], but this will not concern us
here.

We start with the computation of the round metric components in the vertical basis
{T1, T2} of V T (S6 ∗) given by (3.13) with R = 1.

Proposition 3.6. Let γij = ⟨Ti, Tj⟩ = γS6(Ti, Tj) (1 ≤ i, j ≤ 2), then

γij =

(
1− z22A z1z2A
z1z2A 1− z21A

)
, (3.21)

where A = A(V, Z, t) is given for (V, Z, t) ∈ S6 ∗ by

A(V, Z, t) =

(
1− (t2 + |Z|2)

)2(
(1− t)2 + |Z|2

)2 =
|V |4(

(1− t)2 + |Z|2
)2 . (3.22)

Proof. We have
γ11 = ⟨T1, T1⟩ = θ1(T1).

A routine computation gives

θ1(T1)|(V,Z,t) = |V |2 + |Z|2 + t2 − z22 A(V, Z, t) = 1− z22 A(V, Z, t).

The result for γ22 is obtained in a similar way. For γ12 = ⟨T1, T2⟩ = θ1(T2) we compute

θ1(T2)|(V,Z,t) = z1z2A(V, Z, t).

Remark 3.7. The functions z21A, z
2
2A, z1z2A do not have a limit at the pole (0, 0, 1)

but they remain bounded there. Just set 1 − t = ρ cosϕ, |Z| = ρ sinϕ, z1 = |Z| cosα,
z2 = |Z| sinα, then |V |2 = ρ(2 cosϕ − ρ), and the result follows as ρ → 0 (see [3], pp.
931 or 943).

Using (3.21) we obtain
det γij = 1− |Z|2A, (3.23)

and the inverse vertical round metric in the frame {T1, T2}:

γij =

(
1−z21A

1−|Z|2A − z1z2A
1−|Z|2A

− z1z2A
1−|Z|2A

1−z22A

1−|Z|2A

)
. (3.24)

We can then write down the symbol of the vertical round Laplacian.

Proposition 3.8. The vertical round Laplacian Lver
S6 = LS6|V T (S6 ∗) is given by

Lver
S6 = T 2

1 + T 2
2 + A

1−|Z|2A

(
z1T2 − z2T1

)2
+ first-order terms in T1, T2. (3.25)

Proof. By writing γ11 = 1 +
z22A

1−|Z|2A , γ
22 = 1 +

z21A

1−|Z|2A , we have

Lver
S6 =

2∑
1

γijTiTj + first-order terms

= T 2
1 + T 2

2 + A
1−|Z|2A

(
z22T

2
1 + z21T

2
2 − z1z2

(
T1T2 + T2T1

))
+ first-order terms.

Now the round bracket is precisely (z2T1 − z1T2)
2, up to first-order terms.
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Formula (3.25) should be compared to the following formula for the vertical part of
the round metric.

Proposition 3.9. The vertical round metric on S6 ∗ is given by

γver
S6 = θ21 + θ22 +

A
1−|Z|2A

(
z1θ2 − z2θ1

)2
. (3.26)

Proof. We use the general formula γver
S6 =

∑2
1 γij θ̃i ⊗ θ̃j, where θ̃i is the vertical dual

coframe to Ti, i.e., θ̃i is a linear combination of θj and θ̃i(Tj) = δij. By looking for
θ̃1 = aθ1 + bθ2, etc., we find a = γ11, b = γ12, etc., i.e., in general, θ̃i =

∑
γijθj. Thus

γver
S6 =

∑
γij θ̃i ⊗ θ̃j =

∑
γklθk ⊗ θl

= γ11θ21 + γ22θ22 + γ12(θ1 ⊗ θ2 + θ2 ⊗ θ1)

= θ21 + θ22 +
A

1−|Z|2A

(
z22θ

2
1 + z1θ

2
2 − z1z2(θ1 ⊗ θ2 + θ2 ⊗ θ1)

)
= θ21 + θ22 +

A
1−|Z|2A

(
z1θ2 − z2θ1

)2
. �

Suppose now we wanted to repeat the analogous calculations for the round metric on
the vertical distribution V T (S(R)), R < 1. We do not have a vertical basis X1, X2 yet,
so we cannot proceed with the computations. However, we expect that formulae (3.21),
(3.23), (3.24), (3.25) and (3.26) could remain valid in a suitable basis X1, X2, with the
kernel AR in place of A, where

AR(V, Z, t) =
R4|V |4(

(1−Rt)2 +R2|Z|2
)2 , ∀(V, Z, t) ∈ S6.

This is just A ◦ δR if one takes for A the second formula in (3.22).

If one uses the “false” induced metric obtained by replacing hR in (3.1) with the right
hand side of (3.14), say kR, then one can work with the “vertical” basis X1,2 = T1,2◦δR in
(3.13) and prove all the above results with AR = A ◦ δR, but A given by the first formula
in (3.22). The two AR do not coincide, of course, as the two formulae in (3.22) define
two different functions on B \ {(0, 0, 1)}, that only agree at the boundary S6 ∗.
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