INVOLUTIONS ON HYPERELLIPTIC CURVES AND PRYM MAPS

PAWEL BOROWKA, ANGELA ORTEGA

ABSTRACT. We investigate the geometry of smooth hyperelliptic curves that possess additional involu-
tions, especially from the point of view of the Prym theory. Our main result is the injectivity of the
Prym map for hyperelliptic Z%-coverings over hyperelliptic curves of positive genus.

1. INTRODUCTION

A smooth complex hyperelliptic curve C'is a Riemann surface of genus g > 1 that is a double covering of
the Riemann sphere P'. Having such a map makes hyperelliptic curves distinguishable and more accessible
in many aspects since, for example, they can be described by an equation of the form y? = F(x) and in
this way one can see an hyperelliptic curve as a subvariety of a weighted projective plane.

A covering f: C' — C will be called hyperelliptic if both curves are hyperelliptic. Such assumption is
actually quite strong: if f is cyclic and unbranched then deg(f) = 2 (see [20],[21]). If f is a hyperelliptic
double covering, then the number of branch points has to be at most 4 and there are constrains on a line
bundle that defines the covering (see Section 3 for details). On the other hand, surprisingly, a non-Galois
étale triple covering of a genus 2 curve is hyperelliptic (see [14]).

The Prym theory investigates the (connected component of) kernel of the norm map Nmy : JC' — JC
that can also be seen as a complementary abelian subvariety to the image of Jacobian f*(JC) inside JC’
and is called the Prym variety of the covering. One can then consider the Prym map that assigns to a
covering its Prym variety.

The Prym map restricted to the locus of hyperelliptic double coverings is never injective (see the
bigonal construction, [17], or Corollaries 3.2 and 3.5). Motivated by this fact, we investigate the Prym
map of hyperelliptic Klein coverings, i.e. 4 : 1 Galois coverings with Galois group isomorphic to the
Klein group Z3 and both curves are hyperelliptic. In [6] we have shown the injectivity of the Prym map
for the special case of étale coverings over a genus 2 curve. Now, we are able to show the injectivity of
the hyperelliptic Prym map in full generality (any genus and including ramified coverings). We show in
Theorems 4.10, 4.13, 5.12 and 5.14 the following:

Theorem 1.1. Let RH4 be the moduli space of hyperelliptic Klein coverings over a curve of genus
g > 1 which are simply ramified in b points. We also include the cases g = 1,b =8 and g = 1,b = 12.
Then the corresponding Prym maps on RHgp for b € {0,4,8,12} are (globally) injective.

The proofs of these theorems are based on geometric characterizations of such coverings and the
description of the 2-torsion points of the involved Jacobians in terms of the Weierstrass points. In all the
cases we construct an explicit inverse of the Prym map.

It has been shown that the Prym map of double coverings branched in at least 6 points (hence not
hyperelliptic) is globally injective ([17]). Since hyperelliptic coverings make the bound on the number of
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branched points sharp, one may believe that our result is an important step in showing global injectivity
of Klein Prym maps (both étale and branched).

The paper is organised as follows: Section 2 contains the necessary basic facts about involutions on
hyperelliptic curves, following the top-down perspective. In Section 3 we recall the constructions for
double hyperelliptic coverings to see the bottom-up perspective. Having both perspectives gives us a
possibility to show what kind of data is needed to set up a Klein covering construction.

In Section 4, we generalise results from [6], i.e. we prove the injectivity of the Prym map for étale
hyperelliptic Klein coverings of any genus and we also prove the so-called mixed case, i.e. coverings
ramified in 8 points.

In Section 5, we show the injectivity of the Prym map for Z2 hyperelliptic coverings branched in 12
points and another mixed case, namely coverings branched in 4 points. The Figures 1-4 appearing in this
article have been produced using the software Inkscape.

Acknowledgements. The first author has been supported by the Polish National Science Center project
number 2019/35/D/ST1/02385. The second author warmly thanks for the hospitality during her stay at
the Jagiellonian University in Krakow, where part of this work was carried out. Her visit in Krakow was
covered by International Cooperation Funding Programme at the Faculty of Mathematics and Computer
Science of the Jagiellonian University under the Excellence Initiative at the Jagiellonian University.

2. PRELIMINARIES

In this section we describe the geometry of hyperelliptic curves that contain at least one more involution
and its corresponding covering from the top-down perspective. Some of the results can already be found
in [12] that is devoted to hyperelliptic curves with extra involutions.

We start by recalling some basic facts about involutions on hyperelliptic curves. Let H be a hyperel-
liptic curve of genus g(H) = g. For simplicity, the hyperelliptic involution will always be denoted by ¢
(or ¢ if it is important to remember the curve). Let W = {wy, ..., wog42} denote the set of Weierstrass
points, which is the same as the set of ramification points of the hyperelliptic covering. The following
propositions are well-known facts (see for example [23]).

Proposition 2.1. Let H be a hyperelliptic curve and ¢ the hyperelliptic involution. Then ¢ commutes with
any automorphism of H. Every automorphism of H is a lift of an automorphism of P! and it restricts
to a permutation of W. In particular, if Z§ C Aut(H) then n < 3.

Proposition 2.2. Let 7 € Aut(H) be a (non-hyperelliptic) involution on H. By H,. = H/T we denote
the quotient curve. If g(H) = 2k then both T and 7 have exactly 2 fized points and g(H;) = g(H,;) = k.
If g(H) = 2k + 1 then either T is fized point free and vt has 4 fized points or T has 4 fixed points and o1
is fized point free.

In order to make statements easier and more compact we abuse the notation by saying that a genus 1
curve with a chosen double covering of P! is called hyperelliptic.

Corollary 2.3. With the notation from Proposition 2.2, the curves H, and H,, are hyperelliptic whose
hyperelliptic involution lifts to the involution ¢ on H.

Assume there are two involutions o,7 € Aut(H) such that o7 = 70, (ie., (o,7) ~ Z3). In such a
case, the covering H — H/(o,7) will be Galois with the deck group isomorphic to the Klein four-group.
Since we are interested in Prym maps, we make another natural assumption, namely ¢ ¢ (o, 7), hence
g(H/{o,7)) > 0. The groups satisfying both conditions will be called Klein subgroups.

We start by excluding the case when the genus of the curve is even, using the following fact.

Lemma 2.4. Let H be a hyperelliptic curve of genus g(H) = 2k. Then, there does not exist a Klein
subgroup (o, 7) C Aut(H).
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Proof. If g(H) is even, then |W| = 4k + 2, hence the action of the subgroup (o, 7) = Zs X Zs cannot be
free on W. On the other hand, Proposition 3.1 and Figure 1 show that the ramification points of any
double covering cannot be Weierstrass, see also [12, Lemma 1]. O

Now, we are left with two cases, either g(H) = 4k + 1 or g(H) = 4k + 3. The next proposition is
essentially rephrasing [6, Lemma 2.13].

Proposition 2.5. Let H be a hyperelliptic curve with the group of commuting involutions (1,0,T) C
Aut(H). Then
o there exists a unique Klein subgroup of fized point free involutions if and only if g(H) = 4k + 1.
e there exists a unique Klein subgroup of involutions with fixed points if and only if g(H) = 4k + 3.

Proof. Assume g(H) = 2n + 1. Without loss of generality, by Proposition 2.2, we can assume o, T are
fixed point free. Then the existence of the group of the fixed point free involutions is equivalent to the
fact that the involution o7 is fixed point free.

Denote by g, the genus of the quotient curve H/« for o an involution and by go the genus of H/{o, 7).
According to Accola’s Theorem ([1, Theorem 5.9]) for the group (o, 7) we obtain

2@2n+1)+490 = 295 +29- + 29o-
2n+1+290 = 9o+ 9r+9gor
= 2n+2+4 gor.

Since the left-hand side is odd, o7 is fixed point free if and only if n = 2k.

Analogously, the group (to,:¢7) contains o7, so it contains only involutions with fixed points if and
only if n = 2k + 1.

The uniqueness of the groups follows from the fact that any other subgroup contains ¢ or contains
both fixed-point free involutions and involutions with fixed points. O

3. HYPERELLIPTIC DOUBLE COVERINGS

In this section, we focus on the bottom-up perspective. According to Proposition 2.2, there are three
possibilities for a hyperelliptic double covering, namely étale coverings and coverings branched in 2 or 4
points.

3.1. Coverings branched in 2 points. Let us assume H is hyperelliptic and f : C' — H is a covering
branched in 2 points. Firstly, we show a necessary and sufficient condition for C' to be hyperelliptic.

Proposition 3.1. Let f : C'— H be a covering of a hyperelliptic curve H branched in 2 points P,Q € H.
Then C' is hyperelliptic if and only if P = 1Q and the line bundle defining the covering is Op(w) for
some Weierstrass point w.

Proof. Let n € Pic'(H) be the element defining the covering f : C — H, so n?> = Oy (P 4 Q). Suppose
P =.Q and n = Oy (w) with w a Weierstrass point. By the projection formula

h(C, fn) = h(H,n® f.Oc)
= h°(H,n)+h°(H,Ox)
= 2
Since deg f*n = 2, this implies that C' is hyperelliptic.
Now assume that C' is hyperelliptic. Let hc and hy be the hyperelliptic divisors on C, respectively
on H. Notice that the hyperelliptic involution on C' is a lift of the hyperelliptic involution on H. Since

every automorphism of C' commutes with the hyperelliptic involution, the ramification locus of f is
invariant under the hyperelliptic involution, so either it consists of two points conjugated to each other
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or of two Weierstrass points. In the latter case, n is a square root of O (w; + ws), where wy, ws are
Weierstrass points, but a necessary condition for the hyperelliptic involution ¢ to lift to an involution on
Cis t*n~ Og(hg) @0~ ~n, that is, n> =~ Oy (hy), a contradiction. Therefore, the branch locus is of
the form {P,¢P}. By the projection formula

2 =h"(C,0c¢(hc)) = h°(H, f.(f*On(w))) = h°(H, Oy (w)) + h°(H, O (w) @ n~ ")

with w € H a Weierstrass point. This implies that 7 is of the form Oy (w). O

One constructs a commutative diagram of hyperelliptic curves (left Diagram 3.1) starting from 2g + 3
given points in P'. Let [y], [2], [w1], ..., [w2y+1] € P'. Let H be the hyperelliptic genus g curve ramified
in z,ws,...,ws,+1 mapping to the corresponding points with brackets in P!, and let y;,ys be the fibre
over [y]. Let f: C — H be a double covering branched in y1,y2 and defined by O(z). The hyperelliptic
curve C of genus 2¢g can also be constructed in the following way. Let p : P! — P! be the double covering
branched in [y], [2]. For i = 1,2 denote by [y/], [2], [w], ..., [wh,, ] € P' the respective preimages. Then
C'is a double covering of P! branched in [w}], ..., [w),,,]. Clearly, the preimages of [y'],[2'] in C coincide
with the appropriate preimages of y1, y2, z (see right Diagram (3.1)).

(3.1) Oy c—L .m
2:1 2:1
2:1 2:1
/
Hg H, pl p pl
Pl
C Dc x ..
20 5 ¢ x
+2 / 0fy) +2
H' O(z)
g
H
vy, B y 9
X _ X = = s X 1 - X .. X
z, — — Y, ™
/ \
' 1 p'
[yl [Z][w1] [wng]

X  Weierstrass point

C Ramification point

FIGURE 1. Hyperelliptic coverings ramified in two points
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According to [19], the the Prym variety of an étale double covering f : C — H over an hyperelliptic
curve is isomorphic to the product of the Jacobians of the curves, obtained as the quotients by the two
other involutions on C. In this case, since C' is hyperelliptic one of these quotient curves is isomorphic
to P! and the other is the hyperelliptic curve H' of genus g, appearing in the left Diagram 3.1, defined
by exchanging the role of y and z. Hence, the Prym variety P(C/H) of the covering f : C — H is
isomorphic to JH'. The distribution of the Weierstrass points is illustrated in Figure 1.

Corollary 3.2. The construction shows that the Prym map of a double covering branched in 2 points is
never injective, since the Jacobian of H' does not recognise the branching points. In particular, if one
moves a point [z] in P!, one gets a one dimensional family of coverings C — H with the same Prym.

3.2. Etale coverings and coverings branched in 4 points. Now, we consider a hyperelliptic curve
Y of genus g > 2 and a double étale covering 7 : X — Y, so X is of genus 2g — 1, that is, Y is the quotient
of X by a fixed point free involution 7. According to [5, Proposition 4.2] X is hyperelliptic if and only if
the 2-torsion point 7 defining 7 is of the form n = Oy (w; — wy) where w; and wy are Weierstrass points.
Assume that X is hyperelliptic and let ¢ be the hyperelliptic involution. Let Y’ := X/(t7), which is of
genus g — 1. The double covering f : X — Y is ramified in four points. The hyperelliptic involution ¢ on
X descends to an hyperelliptic involution on Y’, denoted by j (see Diagram (3.2)).

Conversely, starting from a hyperelliptic curve Y’ of genus g — 1 we can give a necessary and sufficient
condition for X to be hyperelliptic.

Proposition 3.3. Let Y’ be a hyperelliptic curve of genus g—1 and f : X — Y’ a double covering ramified
in four points defined by a line bundle n € Pic*(Y"), such that n* ~ Oy+(B), where B is the branch locus
of the covering. Then X is hyperelliptic if and only if n = Oy (hy/), with hy: the hyperelliptic divisor
onY’ and B € |2hy/| is reduced.

Proof. Since f.Ox ~ Oy @ n~', by using the projection formula one computes
HY(X, f*Oy(hy)) = H'(Y', Oy (hy:)) & H°(Y', Oy).

So dim H°(X, f*Oy(hy+)) = 3. According to Clifford’s Theorem [2, Chapter III] X is hyperelliptic and
f*hy is a multiple of the hyperelliptic divisor. Suppose that X is hyperelliptic and the double covering
f: X — Y'is given by a line bundle n such that n?> ~ Oy (B), with B the (reduced) branch locus
of f. From the commutativity of the Diagram (3.2) the union of B and the set of Weierstrass points
of Y’ map to the branch locus of the map ¥ — P!, which has cardinality 2g + 2. This implies that
B € |2hy|, so i is a square root of Oy (2hy). Since X = Spec(Oy+ & n~1) the involution j on Y lifts
to an involution on X if and only if j*n ~ 7. Then, either n = Oy (hy+) or h°(Y’,n) = 1. In the latter
case, if n = Oy (p1 + q1), then j(p1) = p1 and j(q1) = g1, that is, n is defined by the sum of Weierstrass
points, say n = Oy (w; + ws). Since X is hyperelliptic, f*n € |2hx| but this contradicts the projection
formula. Therefore, n = Oy (hy).

f
(32) X2g71 X2971 - Yg/—l
! Tr
2:1 lQ:l
Y/ Y,
9-1 g IP)l p ]P>1
Pl
One can see this construction from the perspective of points in P!. Let [z],[y], [w1], ..., [way] € P* and

let Yy be the hyperelliptic genus g curve branched in these points. Let X551 — Y, be the étale double
covering defined by O(z — y), where z,y are the preimages of [z], [y] respectively. On the other hand
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Xoy—1 can be also constructed in the following way. Let p : P! — P! be the double covering branched

in [z], [y]. For i = 1,2 denote by [wi],...,[w),] € P' the respective preimages under p. Then Xa,  is
a double covering of P! branched in [w{],...,[w},]. The curve Y;_, is constructed as double cover of P!
branched in [wn], ..., [wey] and one obtains the commutativity of the right Diagram (3.2). The covering

Xog—1 — Yg’_1 is branched in x,x,y, ty and defined by the hyperelliptic bundle (see Figure 2).

X cc x X
291 cc x
Y! / \
g-1
XX X X X x
29 Xy v2g
\ / \
1 1 1 P1
X W] [W2g]

X  Weierstrass point

C  Ramification point

F1GURE 2. Distribution of Weierstrass points on hyperelliptic covers

O

3.2.1. The Prym map. Let RY |, = {(Y',B) | B € [2hy/|} be the space parametrising double
coverings f : X — Y’ ramified in four points where both curves are hyperelliptic, according to the
previous proposition this depends only on the choice of the branch divisor in |2hy+|. We denote by

ng C A, the locus of the hyperelliptic Jacobians inside of the moduli space of principally polarised

abelian varieties of dimension g, and by gH’(1’2""’2) the moduli of abelian varieties which are quotients

of hyperelliptic Jacobians by 2-torsions of the form w; — w;. Let Rf = Rgo be the moduli space of
hyperelliptic étale double coverings over curves of genus g. For b = 0,4 we define the Prym map Pr,; as
the map which associates to a hyperelliptic double covering [X — Y] € Rg{b its Prym variety P(X/Y).

Proposition 3.4. The relation given by left Diagram (3.2) induces an isomorphism
yilf: X =Y )= X Y]

fitting in the following commutative diagram
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~
(3.3) R4 Ry
Pry_ 1.4 Pry o
H,(1,2,...,2) H
N/ JH,

(*37)

where the diagonal arrows are the corresponding forgetful maps. In particular degPry_1 |pu =
g—1,

and Pry | is a P2-bundle.

Proof. Tt is well-known ([19]) that the Prym variety of an étale double covering X — Y over a hyperelliptic
curve is isomorphic to the product of the Jacobians of the quotient curves X/t ~ P! and X /7, which
gives P(X/Y) =~ JY' as a principally polarized abelian variety. This proves the commutativity of the
top right triangle of the diagram. Similarly, we have P(X/Y') ~ JY/(B), with f = w; — w; € JY[2]
the element defining the étale covering w. This shows the commutativity of the top left triangle of the
diagram. 0

Corollary 3.5. Hyperelliptic Prym maps of étale double coverings and double coverings branched in 4
points are never injective.

3.3. Useful notation. We recall the following notation from [5] that helps with dealing with abelian
subvarieties. Let X be an abelian variety and M; abelian varieties such that there exist embeddings
M; — X fori=1,.... k. We write
X=MHBM,.. B M;

if enr, + €ar, + ... + enr, = 1, where €y, are the associated symmetric idempotents. In particular,
X = M BN if and ounly if (M, N) is a pair of complementary abelian subvarieties of X. If M,’s are
general enough, then the decomposition is unique up to permutation, see [5, Proposition 5.2]. We will
also use the following notation. If f : X — Y is a covering and f* is not an embedding we will denote
the image Im(f*(JY)) by JY™*.

In the sequel we will denote by the same letter an automorphism of the covering curve and its extension
to the Jacobian, except for the hyperelliptic involution, whose extension is —1. We will also denote the
identity as 1. By m; we denote the multiplicity by & on an abelian variety.

4. PRYM MAPS OF HYPERELLIPTIC ETALE KLEIN COVERINGS

In [6], we have considered étale Klein coverings of genus 2 curves and have shown that the Prym map
is injective in this case. We now generalise the result to hyperelliptic Klein coverings of higher genera.
Recall that a Klein subgroup (n, &) ~ Zg X Zy of JH|[2] is called isotropic, respectively non-isotropic, if it
is isotropic (resp. non-isotropic) with respect to the Weil form e : JH[2] x JH[2] — Fs.

4.1. From the bottom construction. Let H be a genus g hyperelliptic curve with Weierstrass points
Wi,y Wag—1,%,Y,2 € H and let [wi], ..., [wag_1], 2], [y],[2] € P! be the corresponding set of 2g + 2
branched points. Set n = Oy (z —y), € = Op(y — z). According to [5, Theorem 4.7], the covering C
associated to the non-isotropic Klein group G = {0,7,&,n+£} C JH[2] is hyperelliptic and since the 4 : 1
map C—>His étale, C is of genus 4g — 3. Let C be the double covering of H defined by &, C,, defined
by n + £ and C, defined by n; all three of genus 2g — 1 Then the Prym varieties of these coverings are
Jacobians of curves, denoted by H,, H,, H, respectively, of genus g—1. Recall that for j € {z,y, 2}, the
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curve H; is given by choosing [j], [w1], ..., [w2g—1] as branch points. These curves fit into the following
commutative diagram (we draw only two curves to make it easier to read).

CyCYC

IP)I

(4.1)

Here +4, denotes a 2:1 map branched in 4 points and et stands for an étale 2:1 map.

4.2. Decomposition of J C. In order to decompose the Jacobian of C and describe the Prym variety
P(CN' /H) of the covering C—>H , we will use a top-down perspective. Let C be a hyperelliptic curve of
genus 4g — 3 with commuting fixed point free involutions o, 7,07 € Aut(C). Without loss of generality,
we can assume C, = C/o, Cy = C/7,C. = CJor and H = C/{o, 7). With this notation, we have that

H, = C/{o,u7) and the following diagram commutes

(4.2) C

where C,, = C'/a with o an involution. Analogously one checks that H, = C/(r,10) and H, = C/{oT,.7).

Proposition 4.1. The Jacobian ofCN' is decomposed in the following way
JC=JH*BJH,8B.JH, B JH..
In particular, P(C/H) = JH, B JH, 8 JH,.

Proof. The proof follows from straightforward computation. Firstly, note that Diagram 4.2 shows that
JH, is embedded in JC,,, which is embedded in Jé, hence JH, is embedded in JC with the restricted
polarisation type being four times the principal polarisation on JH,. Analogously, JH, and JH, are
also embedded in JC.

Since the covering C — H is étale, by [3, Proposition 11.4.3], the pullback map is not an embedding,
so we denote the image of JH as JH*. Moreover, JH* = Im(1 4+ 0 + 7 4+ o7). Since the hyperelliptic
involution extends to (—=1) on JC we have that JH, = Im(1 + 0 — 7 — o7), JHy=Im(l—0+71—07),
JH, =Im(l —0 — 7+ 07). Observe that sum of the endomorphisms defining these Jacobians is 4, which
is also the exponent of each subvariety in Jé, SO €y + €jH, + €sH, + €7g, = 1. Since, by definition,

the Prym variety is complementary to JH*, we get that P(G/H) =JH,BJH,BJH,. O

Proposition 4.2. The addition map ¢ : JHy x JH, x JH, — P(é/H) s a polarised isogeny of degree
42972 qnd its kernel is contained in the set of 2-torsion points.
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Proof. In order to compute the kernel of ¢ we consider the description of JHj, for j € {z,y, 2z}, as fixed
loci inside the Jacobian of C":

JH, C Fix(o,tr), JH, C Fix(r,t0), JH, C Fix(oT,t0).
Let (a,b,c) € kertp, then ¢ = —a — b. Applying to and 7 to ¢ = —a — b we get
—a—b=1(-a—-b)=—wa—-b and —a—-b=17(—a—0b)=—a—b,
so ta = a and tb = b, that is, a,b and c are 2-torsion points in their respective Jacobians. This implies
(4.3) ker¢ = {(a,b,—a—b) | a € JH,[2], b€ JH,[2]}.

The restricted polarisation to JHj is of type (4,...,4). Since P(C/H) is complementary to JH*, it has
complementary type which is (1,...,1,1,4,...,4) with g — 1 fours. Moreover, 1 as an addition map is
polarised and the degree is exactly 42(9—1). O

Remark 4.3. We included a proof of Proposition 4.2 for the sake of completeness, although it is proven
in [22] (unpublished) and in the recently published book [15, Corollary 5.2.6].

4.3. The Prym map. Let RH, o denote the moduli space parametrising the pairs (H,G) with H a
hyperelliptic curve of genus g and G a Klein subgroup of JH[2] whose generators are differences of
Weierstrass points, so the corresponding covering curve C is hyperelliptic of genus 4g — 3. We call the
elements of RH, o étale hyperelliptic Klein coverings. Set

§:=(1,...,1,4,....4)
—— ——

2g—2 g—1

and let Agg,:g denote the moduli space of polarised abelian varieties of dimension 3¢g — 3 and polarisation
of type §. The Prym map associates to the hyperelliptic Klein covering C — H induced by (H,G), the
polarised Prym variety (P(C/H),Z), where Z is the restriction to P(C/H) of the principal polarisation
on JC.

The main aim of this section is to prove that the Prym map

Pril 4 i RHgo— A, 5, (H,G)— (P(C/H),E)

of étale hyperelliptic Klein coverings is injective. We will show this by constructing the inverse map
explicitly. We start by showing the following equivalence of data, which generalises [6, Theorem 3.1].

Proposition 4.4. The following data are equivalent:

(1) a triple (H,n,§), with H a hyperelliptic curve of genus g and n and & differences of Weierstrasss
points such that Klein subgroup G = (n,&) of JH|[2] is non-isotropic;

(2) a hyperelliptic curve C of genus 4g — 3 with Z3 C Aut(C);

(3) a hyperelliptic curve H of genus g together with the choice of 3 Weierstrass points;

(4) a set of 2g + 2 points in P! with a chosen triple of them, up to projective equivalence (respecting
the triple).

Proof. Equivalences (1) < (3) < (4) are obvious. The equivalence (3) < (2) follows from §3.1. O

Corollary 4.5. The moduli space RH 4 is irreducible.

Proof. It follows from the equivalence (1) < (4) of the Proposition 4.4. O
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Lemma 4.6. Let JH,, JH,, JH, be as before and let P = P(C/H). Let Z = (JH, X JH, x JH,)[2] be
the set of 2-torsion points on the product and let Gp = ¢(Z). By mg we denote the multiplication by 2.
Consider the following commutative diagram

(4.4) JH, x JH, x JH, —" =P

| i

JH, x JH, x JH, —— P/Gp
Then the map p is a polarised isomorphism of principally polarised abelian varieties.

Proof. Note that JH, x JH,x JH, in the top left has product polarisation of type four times the principal
one. Hence, Z is an isotropic subgroup of the kernel of the polarising map. In particular msy, having Z
as its kernel, is a polarised isogeny (see also [3, Cor. 2.3.6]). Moreover, Z is also the kernel of 7p o,
hence both v and 7wp are polarised isogenies. Then, the isomorphism theorems yield the existence and
uniqueness of the isomorphism p. O

Corollary 4.7. Let = be the restricted polarisation on P and ¢= its polarising isogeny. Then Gp =
ker(¢=) N P[2] ~ Z37 2.

Proof. Clearly Gp C P[2] and since P/Gp is principally polarised, Gp is a maximal isotropic subgroup
of ker(¢z). Hence Gp C ker(¢=) N P[2] and the claim follows by computing the cardinalities.
O

Lemma 4.8. It holds Gp = JH, N JH,NJH,.

Proof. Let a € JH, N JH, N JH,, then a is fixed by all the involutions in J67 in particular it is a
2-torsion point. Hence a = a + a+ a € Imy(Z). Conversely, if a + b+ ¢ € Gp, with a € JH, =
Fix(o,7)%, b € JH, = Fix(t0,7)" and ¢ € JH, = Fix(t0,07)°, then a,b,c € P[2]. One checks that
a,b,c € JH, N JH, N JH..
O
Let 7 : C— H; be the 4:1 branched maps in the diagram (4.1) for j € {x,y, 2z} an let k : Pic*(C) —
Pic?(C) defined by D — D — 2g}, with 2¢3 the hyperelliptic divisor. Hence, we have injective maps
a; :=kom! : Pic'(H;) — Pic’(C) ~ JC.
Proposition 4.9. The maps «; have as common image in Gp C P[2] for j € {x,y,z}, the image of

2g — 1 Weierstrass points on each of the curves H;.
Proof. Observe that by construction
o, (Pict H,) N oy, (Pic! Hy) N, (Pic' H,) ¢ JH, N JH,NJH, = Gp.
On the other hand, for any Weierstrass point w € H,, image of a Weierstrass point w € C we have
TRw ~ W+ oW + 1TW + oTW ~ W + oW + TW + oTW

since 1 = w. Similarly, for every w = m, () or w = 7, (W) image of a Weierstrass point in C , one checks
that
W ~ W+ oW + TW + oTW.
U

Theorem 4.10. For g > 2 the hyperelliptic Klein Prym map Prfg_&g :RHgo0 — Agg_3 1s 1njective.
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Proof. Let (P,E) be a polarised variety in the image of the Prym map. Let G = P[2] N ker ¢=, which
is an isotropic subgroup in ker¢z. Let mp : P — P/G. According to Corollary 4.7, we have that
P/@G is principally polarised and by Lemma 4.6, P/G is polarised isomorphic to a product of the form
JH, x JHy x JHj3, for uniquely determined Jacobians JH;, JHs and JHj.

Now, since P is in the image of the Prym map and the H;, i € {1,2,3}, are actually isomorphic
to H;, for j € {x,y,z} corresponding to some points [z],[y],[z] € P'. Let f; : H; — P! be the hy-
perelliptic maps and W' the set of Weierstrass points on each H;. By Proposition 4.9 there exists
an automorphism of P! such that () fi(W?) consists of 2g — 1 points in such a way that a;j(wl) =
az(w?) = az(wd) € Gp, for all n € {1,...,2g — 1}. Moreover, there are uniquely determined points
[z], [y], [2] € P! that are images of the remaining Weierstrass points. In this way, we have constructed the
set {{wil, ..., [wag_1],[z], [y], 2]} of 2¢g + 2 points in P! with a distinguished triple. Hence, the obtained
map (P,Z) — {[wi],..., [wag—1], [2], [y], [2]} provides the inverse to the Prym map via the equivalence in
Proposition 4.4. O

Remark 4.11. Note that for g = 2, the curves H; are actually elliptic, so one uses the notion of 2-torsion
points instead of Weierstrass points and some steps are vacuous, see [6].

c cCcx x
ccc x x C
cccx " x
c ccCcXx X
+4 \/ o
8g-4 O(x1 -x2)
C.
(74
ccx X X
X CccCx X
cceZxx "% x "t
\__\/_/ X € cx x
4g-2 M
g 4g-2
+2 4 et
Qly-z)
H
y z
X Z°X X X s X %_Jx
HX 2g-1
2g+2
X  Weierstrass point a o o1 1 |:v1
© Ramification point X [yl [ [V‘q] [V‘é 1]
g-

FIGURE 3. Weierstrass points on hyperelliptic Klein coverings

4.4. The mixed case. Consider a smooth curve C of genus 4g — 3, with ¢ > 2, admitting one fixed
point free involution ¢ and two involutions ¢7, to7 with 4 fixed points each. The corresponding tower of
curves is the same as in the case of étale Klein coverings (see Diagram (4.1) or Figure 3). The starting
data is now the base curve H, . (for instance H, in the diagram) of genus g — 1, a choice of two
pairs of conjugated points (branch points for the double covering C, — H,) and a Weierstrass point.
According to Proposition 4.1, JC = JH* 8 JH, B JH, B JH,, therefore the associated Prym variety
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is P = P(CN'/Hx) = JH*HW JH, B JH,. Moreover, since the restricted polarisation to JH, is of type
(4,...,4), the Prym variety P is of type

0:=(1,...,1,4,...,4).
—— e —
2g—1 g—1
Consider the canonical addition map
Y:JH* x JH, x JH, = P.
Since JH* C Fix(o,7), JH, C Fix(7,t0) and JH. C Fix(o7,t0), we can conclude as before that
(4.5) kery) = {(—(b+¢),b,c) | be JH,[2], c € JH.[2]}.
Analogously to Lemma 4.6 we have:
Lemma 4.12. Let JH,JH,, JH, be as before and let P = P(C/H,). Let Z = (JH x JH, x JH)[2] be

the set of 2-torsion points on the product and let Gp = (Z). By mo we denote the multiplication by 2.
Then one obtains the following commutative diagram

(4.6) JH x JH, x JH, v P

ma JH* x JH, x JH. P

p

JH x JH, x JH, P/Gp

where p is an isomorphism of principally polarised abelian varieties and the degrees of 1, respectively mp,
are 42972 respectively 4971,

In particular, Gp = ker(¢=)NP[2]. One also computes, as in Lemma 4.8, that Gp = JH*NJH,NJH..
Let RH,4s denote the moduli space parametrising hyperelliptic Klein coverings over hyperelliptic curves
of genus g — 1 simply ramified in 8 points, so the covering curve is of genus 4g — 3.

Theorem 4.13. For g > 2 the Prym map

Pril s i RHg 15— Ay, ([C— H))— (P(C,H'),E)

1s injective.

Proof. The proof is very similar to that one of Theorem 4.10. Consider (P, Z) a polarised abelian variety
in the image of Prfg_gjg_l. The subgroup G := P[2] N ker ¢= is isotropic and according to Lemma 4.12
the quotient is isomorphic, as principally polarised abelian varieties, to a product JH; x JHy X JHj
of uniquely determined Jacobians JH7, JH> of dimension ¢ — 1 and one Jacobian JHj3, of dimension g.
Without loss of generality and keeping the notation as above, we set JH; = JH, and JHy = JH, for
some points [y], [z] € P! and set H := H3.

Consider the image JH* of JH in P. The map ms : JH* — JH*, multiplication by 2, factors through
the restriction to JH* of the quotient map 7p : P — P/G, since ker m C ker ma.

ma

(4.7) JH*

B
TP|JH* 4:1

JH

JH*
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Let V} := ker 3, which is a subgroup of JH generated by two 2-torsion points. Let 7; : C—>H jthed:1
branched maps for j € {y,z} and 7y : C — H the étale 4 : 1 map (see Diagram 4.1). Consider the map

k : Pic*(C) — Pic’(C) defined as before. So the maps a; := k o 7} are injective for j € {z,y} and
ag = ko : Pic'(H) — Pic®(C) ~ JC

has in its kernel 3 Weierstrass points (i.e. its pullback under 7 is ~ 2g3), whose differences generate V.
The argument in Proposition 4.9 shows that

ay (Pic! H,) Na,(Pic* H,) Nag(Pic* H) = JH,NJH.NJH = G.

Therefore, one can find a suitable automorphism of P! such that the images of the hyperelliptic maps
from H; and H consist of 2g — 1 points in P! and their Weierstrass points have G' as common image in
P C JC. In order to determine the remaining point [z] € P!, we consider the two Weierstrass points
y,z € H above [y], [z] € P!, whose images are not in G. Then there is a unique point x € H (necessarily
a Welerstrass point), such that Vy = (Og(z — y), O (y — 2)). One recovers the base curve H' := H, as
the only hyperellitptic curve branched in [z], [w1], ..., [way—1] € P'. Applying the equivalence (2) < (3)
of Proposition 4.4 one recovers the Klein covering C' — H' (see Figure 3). O

Corollary 4.14. The following data are equivalent:
(1) a triple (W, W', B) of disjoint sets of points in P! such that W is of cardinality 2g-1, W' is a
pair of points and B is a point (up to a projective equivalence respecting the sets);
(2) a hyperelliptic genus 49 — 3 curve with a choice of a Klein subgroup of involutions {c,.7), where
o, T are fived point free;
(3) a hyperelliptic genus g — 1 curve together with a Weierstrass points © and two pairs of points y, 1y
and z,1z.

Remark 4.15. Although from our point of view, the mixed case is less natural, it can be seen as the

starting point of [8].

5. BRANCHED Z%—COVERINGS OVER HYPERELLIPTIC CURVES

5.1. From the top curve. Let C be a hyperelliptic curve of genus 4g + 3 admitting a subgroup of
automorphisms generated by three commuting involutions, namely o, 7 and the hyperelliptic involution
t. By Proposition 2.5 we have

| Fix(7)| = | Fix(0)| = | Fix(wo1)| = 0, |Fix(o7)| = | Fix(to)| = | Fix(e7)| = 4.

For the convenience of the reader, we write « € {o,7,t07} and 8 € {i0,tr,07}. By C, = é/a, we
denote the quotient curves of genus 2g+2 and T3 the quotient curves of genus 2g+1. We have the
following commutative diagrams

(5.1) c

G
7N R
C- C,
+2 +2
H. H, H,

T,LO o,0T oLt

~ i

Pl
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where H, g is the genus g + 1 curve quotient of C by the subgroup («a, 8) and E is the quotient of C by
(1o, vr) which is the unique quotient curve of genus ¢ in the tower. Here +4, respectively +2, denotes
a 2:1 map branched in 4, respectively 2 points. By Corollary 2.3, all the positive genus curves in both
diagrams are hyperelliptic. N

In order to describe the images of the Jacobians of the quotient curves in JC', we analyse the behaviour
of the 2-torsion points under the pull-back maps. According to [3, Prop 11.4.3], J1 and JE are embedded
in JC whereas the image of JC,, is not, so its image will be denoted by JC*. Moreover, Diagram (5.2)
shows that JH, g is not embedded in JC, so we will use the notation JH,, 5 for its image.

(5.2) C

Hq g

By construction, JTg = Im(1 + ), JE = Im(1 — 0 — 7 + 7). Moreover, we have that JH? , =
Im(l-o+71—o07), JH; ,, =Im(l1+0+7+o07), JH;  =Im(l+0—7—07).

One can easily compute that
(l-oc+7—0n)+(l+0+7+07)+(l+0—7—07)+(1—0c—7+07)=4
which shows that JC = JEB JH?, B JH?, B JH; .. As aresult we get that

Lo o,LT

P(C/B) = JH,, B JH,, B JH,,,.
5.1.1. 2-torsion points on Jacobians. We shall describe the images of the 2-torsion points in JC of the
Jacobians of the quotient curves. We start by recalling well-known results concerning 2-torsion points on
hyperelliptic Jacobians.

Lemma 5.1. Let W = {w1,...,wag42} be the set of Weierstrass points on a hyperelliptic curve C of
genus g. Let S = {s1,...,s9:} C {1,...,29 + 2} be a set of even cardinality with 2k < g+ 1. By
S¢ we denote the complement of S in {1,...,29 + 2}. We consider degree 0 divisors as elements of

JC = Pic®(C) hence equality means linear equivalence of divisors.
(1) Foralli,j < 2g+2, we have w; —w; = wj —w; € JC[2]. Consequently, a divisor D =} ¢ +w,
does not depend on a particular choice of pluses and minuses, as long as its degree equals 0.

(2) We have the equality y_, g Ftws =), g Twi, as long as degrees of both sides equal 0.

From now on, we will write Pg = Zle(wm — Wy, ,) to have degree 0 automatically and hence make
notation more consistent.
(3) If g is even then for every P € JC[2], P # 0 there exists a unique S of even cardinality with
|S| < g+ 1 such that P = Ps.
(4) If g is odd then for every P € JC|2], P # 0 there exists a unique S of even cardinality with |S| < g
such that P = Pg or unique complementary pair S, S¢ of cardinality g + 1 such that Ps = Pge.

Proof. A proof can be found in any of [10]. O

In the case of 67 we number the Weierstrass points as follows. Start with any Weierstrass point
and call it wy. Then we denote owy, 7wy, 07w the other 3 Weierstrass points in the fibre of the map
C — H, ,r. Note that the four Weierstrass points are indeed different because o, T are fixed point free
and o7 have fixed points outside the set of Weierstrass points. Then proceed in the same way with the
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rest of the Weierstrass points. Since there are 2(4g + 3) + 2 of them on 5’, in the end we will get the
following numbering W€ = {w1, owy, Twy, 07w, we, cws, . . . , TWagt2,0TWagt2} of Weierstrass points of
C. One has to be aware that we made a particular choice, however in Remark 5.3, we will show that a
different choice will only result in a permutation of indices and will not affect the results obtained.

For convenience, a Weierstrass point of C when written in brackets will denote its image in the
corresponding quotient curve. We start writing down 2-torsion points of JE. Since F = C /{to, 1), on
can easily check that W¥ = {[w1],...,[weg42]}. Setting e; := w; + ow; + Tw; + oTw; and considering
JE as a subvariety of J C , one checks that

(5.3) {e; —€;:1<i<j<29+2} CJE[]2].

Note that e; —e; represents [w;] — [w;] € JE, so Lemma 5.1 shows that the sums of up to 23+ elements

with disjoint indices give, on one hand, different points of J C and on the other, represent all possible
2-torsion points on JE. Therefore, we get that JE[2] is generated by (5.3).

For the description of the 2-torsion points of JT}3, we will compute explicitly one case, namely T :=
T,, = C/or. In this case, one checks that W7 = {[wy], [rw1], ..., [wagt2], [Twagt2]}. Again, denote by
v; = w; + oTw; and v; = Tw; + ow;, so the 2-torsion points of JT' are generated by

/_
i

vj, v — Vv — v 1 <d < j <29 +2)

(v; —vj,v
considered as embedded in JC [2]. Indeed, using Lemma 5.1 one checks that, by adding up to at most
2g + 1 generators, we generate all 2492 2-torsion points of the image of JT.

For the computation of JH 5[2] one has to take into account that half of the 2-torsion points on the
quotient come from the 4-torsion points of JH, . We will compute explicitly the points on JH . [2]
(and we will denote the curve by H). Note that H is a quotient of T (see Diagram (5.2)) hence we can
use v;, v) to represent 2-torsion points on JH. Set H := H, 7.

Recall that the map 7 : T — H = T/o is an étale double covering of hyperelliptic curves of gen-
era 2g + 1 and g + 1 as illustrated in Figure 5.2. The set of Weierstrass points of H equals W =
{lwn], ..., [weg+a], u2gts, U2g+4} and the covering is defined by a two torsion point ugyys —uzg+a € JH[2].
In particular, 7 (ugg1+3 — u2g44) = 0.

Set u; := v; + v} and write the following subgroup of JH*[2]:

Ui=(u—uj:1<i<j<29+2).

The same computation as for JE shows that the subgroup U has 229 elements, so it is 25% of all 2-torsion
points of JH*. We can write the preimages 7 !(ugg13) = @ + wx and 7! (ugg14) = y + 1y, for some
z,y € T. Now, we are able to represent the preimage of 7*([w;] — ugg+3) as:

7 ([wi] — U2g+3) = U;j — g% =v; — vg e JT.

Note that, together with U, we can represent all these 2-torsion points as { Ps = > ;g vi—v; : |S]| < g+1},
(where S can be also of odd cardinality), so we get 229! points which represent 50% of the 2-torsion
points on JH™*, precisely the points that come from the 2-torsion points on JH.

The trickiest part is to represent 2-torsion points in JH™* that come from 4-torsion points in JH, say
R, satisfying 2R = ugg43 — u2g44. There are precisely 22971 of them. We will use the fact from Lemma
5.1 that

Uggt3 — Uggtd = Z [wa;] — [wai—1] as divisors in JH.
i<g+1
Now, 7 Y([w;]) = {[wi], [rw;]} € T. Since v; € Pic*(C) represents [w;] and v/ represents [rw;], we set
Qi € {vi, v} and define Q = 7, |, Q2; — Q2;—1. There are precisely 229%2 of such representations with
the relation

RQ=0Q & V;(Q;=0Q) or ¥;(Q; # Q).
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Therefore, we have defined 229+ points in JT[2] (seen as embedded in JC[2]). In order to show that

indeed 7*(R) = @ it is enough to note the following facts. Firstly, the cardinalities of both sets (of possible

Q’s and possible 7*(R)’s) are equal to 22971, Secondly, for every @ we have that Nm, (Q) = uag43—uagt4.

Thirdly, by definition, we have that Nm, on™ = my, where ms is the multiplication by 2, therefore
Nm,(Q) = ugg43 — Ugg+a = 2R = Nm (7" (R))

and lastly, 7*(R) are 2-torsion points and @ are the only 2-torsion points of JT with the property that
Nm(Q) = uggr3 — Ugra.
In the following proposition we compile the analogous results for all other curves JH; 5.

Lemma 5.2. We have the following generators of subgroups of 2-torsion points as embedded in Jé[?] :

JE2] = ((w; + ow; + Tw; + o1w;) — (w; + owj + Tw; + otw;) : 1 <i<j<29+2),
JH; .. [2] = JE[2] + (w; + oTw; — Tw; —ow; : 1 <4 <29 +2) +

+ < D (Qan — Qai1) : Qi € {w; + oTwi, ow; +7wi}> ;

k<g+1
JH; ,,[2] = JE[2] + (w; + Tw; — ow; —oTw; : 1 <0 <29 +2) +

+ < > (Qak — Qar1) : Qi € {w; + owi, Tw; +U7'wi}>,

k<g+1
JH; 2] = JE22] + (w; + ow; — Tw; —oTw; : 1 <i <29 +2)+

+ < D (Qak — Qai1) : Qi € {wi + Twi, ow; + UT’LUz‘}> ;

k<g+1

JT,-2] = JE2] + ((w; + oTw;) — (ow; + Tw;), (w; + oTw;) — (w; + oTw;) : 1 <14,j <29+2),
JT,512] = JE2] + ((w; + ow;) — (oTw; + Tw;), (w; + ow;) — (wj +ow;) : 1 <14,5 <2g+2),
JT,; 2] = JE2] + ((w; + Tw;) — (67w, + ow;), (w; + T7w;) — (wj +7w;) : 1 <4,5 <2g+2).

Proof. The proof is completely analogous to what we have done for JH7 .. One only needs to change the
subscripts depending on the involution by which it is divided. For example, for H, ,,, the only involution
with fixed points is ¢7, so Q; € {w; + Tw;, ow; + oTW; }. O

Remark 5.3. Note that a different choice of Weierstrass points ws, ..., wag42 € C will only result in
a permutation of indices because all sets of generators are invariant under (o, 7). In particular, the
statement of Lemma 5.2 does not depend on the numbering of the Weierstrass points we started with.

5.2. From the bottom curve. In order to construct a Z3-branched covering of hyperelliptic curves, one
only needs to choose 2g+5 points in P! with a distinguished triple, denoted by [w1], ..., [wag+2], [2], [y], [2]-
Then, the curve E is the hyperelliptic curve that is a double cover of P! branched in [wq], ..., [wog+2]
points. The curve T, will be the double cover of E branched at yg, tyg, zg, t2zg with the corresponding line
bundle being the hyperelliptic g3. According to Proposition 3.3, T}, is hyperelliptic. Then the preimages
of xg become zr, 2’ and therefore one chooses zp,z), txr, txl as a branching for the map C — T,
with the line bundle being gi. By construction (and Proposition 3.3), Cisa hyperelliptic curve of genus
4g + 3. The covering involution of the map T,, — F lifts to 6, hence C is a hyperelliptic curve with two
(additional) commuting involutions.

Moreover, the construction is uniquely defined up to a projective equivalence. To see this, one can
directly construct the curve C as follows. Consider a Zg x Zs-covering of P! branched in [z], [y], [2] with
two simple ramifications on each fiber (the existence is shown in Remark 5.4). By Hurwitz formula the
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covering curve is of genus 0. Moreover, there are 8g+8 points over [wi],. .., [wag+2] and there is an action
of Zo X Zs on them. Then C is constructed as the double cover branched in these 8g + 8 points. Since
the set of branching points is invariant under the action of Zs x Zs the curve C possesses two commuting
involutions. In this way, we constructed all the maps of the following commutative diagram.

(5.4) 2. F

o |

Pl 4:1 Pl
Remark 5.4. An example of such a covering of the projective line can be described as [z : y] — [z +y?
2z%y?] with the branching points [1 : 0],[1 : —1],[1 : 1]. The deck transformations are explicitly described
as [z :y] = [—x:yland [z :y] = [y : 2]

We finish this section by showing the equivalence of data needed to built a branched Z3 covering.

Proposition 5.5. For g > 1, the following data are equivalent:
(1) 2g + 5 points in P with a distinguished triple up to a projective transformation;
(2) a genus 4g + 3 hyperelliptic curve C with 2 commuting involutions;
(3) a genus g hyperelliptic curve E with three pairs of points x,vx,y,y, z,tz up to an isomorphism;
(4) 3 genus g+ 1 hyperelliptic curves Hy, H,, H. that have branching points that can be glued to get
a set of 2g + 5 points with each of 3 distinguished points shared by precisely 2 curves.

Proof. The equivalence 1 <= 3 is given by the hyperelliptic covering. The equivalence 2 <= 3 follow
from the construction of branched Z3 coverings seen from top and from bottom. The implication 2 = 4
comes from taking 3 quotient curves by 3 Klein subgroups (see Diagram (5.1)) and 4 = 1 is obvious. [

5.3. Prym map. The aim of this section is to show that the Prym map for hyperelliptic Klein coverings
branched in 12 points is injective. In our construction the pullback of F under the 4:1 map C — FE
defines a subvariety with polarisation of type (4,...,4) therefore, as a complementary subvariety of E in

J 5, the Prym variety P corresponding to the map C' — E, has a polarisation = of type
0:=(1,...,1,4,...,4).
——— ——
2g+3 g

Let RH4,12 denote the moduli space of pairs (E,{¢1,¢2,¢3}) where E is a hyperelliptic curve and the
points {q1,¢2,93} C E are not pairwise conjugated. In view of Proposition 5.5 this moduli space
parametrises also the hyperelliptic Z2- coverings branched in 12 points.

Proposition 5.6. The moduli space RHy 12 is irreducible.

Proof. It follows from the equivalence (1) < (3) of the Proposition 5.5. O

We consider the Prym map
Pril o i RMHg12 = Ay s, (B {qi.a2.03}) = (P(C/E), ).

Observe that the image of this Prym map is contained in an irreducible component of Agg 43 whose
elements admit a Zy X Zo automorphism subgroup acting on them and leaving invariant the algebraic
class of the polarisation =. N N

Recall that the Prym variety of C' — E decomposes as P(C/E) = JH!, BJH;, BJH}

T,LO o,\LT o,0T"
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FIGURE 4. Weierstrass and ramification points on hyperelliptic branched coverings

Lemma 5.7. We have the equality as subgroups of JC
JH: ,NJH;  NJH; .. = JE<2]+ (w; +Tw; —ow; —oTw; : 1 <0 <29+2)
= JE[2] + Za(wy + Twy — owy — oTwy).

In particular, the intersection is of order 22971,

Proof. According to Lemma 5.1 (1) and Lemma 5.2, we have the inclusion from the right hand side of
the first equality. To prove the equality one uses the description of Lemma 5.2 and check the elements
of the form Zk<g+1(Q2k5 — @2k—1) can not be contained in the intersection. Indeed, there are precisely
2¢g 4+ 2 summands, so two such divisors are linearly equivalent if and only if all summands coincide or

the summands are complementary. Since the involutions involved are different, for different curves some
summands (but not all) will be the same. The second equality follows from the fact that one can write

(wi + Tw; + ow; + oTw;) — (w1 + Twy + ow + oTW )+
wy + 17wy —owy —oTwy = (w; + Tw; + ow; + oTw;) — 20wy — 20TW
~  (w; + Tw; + ow; + oTw;) — 20w; — 20TW;
= (w; + Tw; — ow; — oTW;).
[l
Remark 5.8. Note that for Q; € {w; + ow;, Tw; + o7w; }, R; € {w; + 7w, ow; + oTw;} we have

Z (Q2k - QQk—l) + Z (Rzk — RQkfl) S JH;U,,_.

k<g+1 k<g+1
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This relation gives many of the elements in the kernel of the addition map JH; , x JH; . x JH; ,. —
P(C/E).

Now, we would like to use a modified version of [18, Prop 3.1].

Proposition 5.9. Let (P,Z) be an element of Im(PréngS’g). Then the group of automorphisms
{7 € Awt(P,Z) | 7(x) =, Vo € K(2)}

is isomorphic to (Lo, 1T) ~ 7o X s

Proof. Denote by f: C — E a hyperelliptic Klein covering with P(C/E) = P(f) = P and Galois group
(to,4T) =~ Zo X Zsy. Note that K(Z) = f*JEN P(f) C Fix(7) N Fix(c). Thus, there is an automorphism
7 : JC — JC such that the following diagram commutes:

(5.5) 0—>K((E) —>f'JExP—~JC—>0

| |

0——>K(E)—> f*JExP—t5JC—>0

where p is the addition map. Since 7 is a polarised isomorphism, we get from Diagram 5.5 that

u*ﬁ*(’)Jé(é) and p*O,5(0©) are equal as polarisation~s. i

Since p* has a finite kernel, we have that 5*0,5(0) ® O,5(0)~! is a torsion sheaf, hence it belongs
to Pic’(J é) Therefore, 'Ny*? Jé((:)) induces the canonical principal polarisation on J C and 4 is a po-
larised isomorphism. Since C' is hyperelliptic, by the strong Torelli Theorem [3, Ex 11.12.19], there is an
automorphism 75 of C inducing 7.

Now, since f is branched, f* is an embedding of JF in JC and by construction ;g = id. Hence y5
is a lift of idg, so it lies in the group of deck transformations of the covering f that is equal to (1o, t7).
This shows that v +— 75 gives a desired isomorphism, because the inverse map is just the restriction of
a deck transformation of JC to P. O

Remark 5.10. Note that K(Z) contains 4-torsion points, so —1 does not belong to the group fixing
K(E). Our result is stronger than [18, Prop 3.1] because we have shown the isomorphism for all Prym
varieties and not only for the general ones. Here have we used the fact that the top curve is hyperelliptic
and the covering is branched.

Corollary 5.11. Note that P = JH; 8 JH; B JH; .. is the isotypical decomposition for the group
defined in Proposition 5.9.

Now, we are ready to prove the main result of this section.
Theorem 5.12. For g > 0, the Prym map Prf;_s_&g 18 injective.

Proof. Let P € Im(Prf;Jr&g). By Proposition 5.9 we can construct the Klein four-group acting on P and
we can perform the isotypical decomposition to obtain three abelian subvarieties uniquely determined by
the action of Klein group on P, called A, B, C' (see Corollary 5.11). Let G = AN BN C and note that by
Lemma 5.7 the cardinality of G is 229%1.

Set A/G =: JH,, B/G =: JH,, C/G =: JH,. Since G contains only 2-torsions, we can extend the
quotient map to the map A — A/G — A such that the composition is multiplication by 2. Moreover,
since G is order 229%1 we get that A/G = JH, — A is of order 2, hence given by a 2 torsion of the form
wfgﬁrg — wfgﬂ_4 € ker JH, — A. We denote the remaining Weierstrass points of H by wi’, ... ,wfgﬁrQ.
By taking the images under the hyperelliptic covering, we get the points [wq], ..., [weg+2] € P
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Similarly to the étale case, for j € {z,y,z}, we can define a; = ko : Pic'(H;) — JC, (where
k(D) = D — 2g}) although note that «; is of degree 2, since 7 (waog13) = T*(wag14) = 2g3. However it
is still true that a;(wp) # aj(w,) for p # ¢ < 2g + 3. Therefore, we can renumber the Weierstrass points
of H, in such a way that o, (w*) = ay(wzﬁy) fori=1,...,29 + 2.

This compatibility allows us to show that having the hyperelliptic covering of H,, there exists an auto-

morphism of P! such that images of the Weierstrass points coincide, i.e. [ley] = [wZH’], i=1,...,29+2.
Since g > 1, this automorphism is unique. Moreover, by construction, we get that [wfgig] = [wfgig] =: [7]
and [wil 4] = [y], [wa,,] = [2] are distinct.

We can perform a similar argument for H, to get the unique automorphism of P! such that the images
of Weierstrass points of H, become {[w!*], ..., [wgq2], [x], [y]}-

Note that, although in the construction we have used a; that are a priori defined for a chosen C , in
fact we only need the equality of images of the Weierstrass points that lie in P, so the construction is
intrinsic. In this way, we have constructed a unique set of 2¢g 4+ 5 points of P! with a distinguished triple
(up to projective equivalence). This proves the injectivity of Pr}g] 3.9 O

Remark 5.13. Note that, unlike the étale case, a simple computation of degrees shows that P — P/G
cannot be a polarised isogeny, so we need to divide each subvariety individually.

5.4. The mixed case of 4g + 3. From up to bottom perspective, this case occurs when one starts with
a genus 4g + 3 curve with two fixed point free involutions o, 7 (with o7 having 4 fixed points) and takes
a group generated by (o, 7). The tower of curves can be found in Diagram 5.1 when we treat Hy, ,, as
the base curve. From what we have already described, one can easily deduce that in this case, the Prym
variety P(C/Hyor) = JE® JHY,, ® JH; .. Since most of the computations have already been done,

we will focus on stating the results and main steps.

For 6 =(1,...,1,2,4,...,4), define the Prym map:
—_——— ———
2g+1 g+1

H 5
Prigiz g1 i RHgr1a — Azgpo.
Theorem 5.14. For g > 0, the Prym map Prf;%’gﬂ 18 injective.

Proof. Firstly, for P € Im(PrgH’gH) we have a similar result as Proposition 5.9 in this case, so anal-
ogous to Corollary 5.11 we can distinguish three abelian subvarieties of P appearing in the isotypical
decomposition. One of the subvarieties is of dimension g denoted by JE and the other two by B and C.

By Lemma 5.2, we note that JEN BN C = JE[2] is of order 229 and BN C is of order 22971, Denote
by w1, ..., wss1o the Weierstrass points of E and [w1], ..., [wag42] their images in PL.

Using results from the proof of Theorem 5.12, by taking G = BNC', we see that there exist unique curves
H,, H. such that B = JH;, C'= JH} with the quotient maps given by the differences wgﬁr3 - wgfﬂ
for j =y, 2.

As before, consider the pullback map 7% : Pic'(E) — Pic'(C) and k : Pic*(C) — JC given by
k(D) = D — 2gi. Then ko n% : Pic'(E) — JC is a monomorphism and the map oj = komyy is of
degree 2 for j = y,z. Note that we can number the Weierstrass points on H,, i, using the condition
a; (leJ) =ag(w) for I =1,...,2¢9+ 2 and by the fact that we are in the Prym locus we get that, out of
four points wg’;r?,,wfgjg for j = y, 2, precisely two have the same projection to P! denoted by [z], and
we denote the image in P! of the other two by [y], [2] respectively. To summarise, starting from the Prym
variety P, we have constructed 2g + 5 points in P! with a chosen triple z,%, z and a distinguished point
x that yields the Prym variety we started with.

In this way, we have proved that the Prym map Pn{g +3,9+1 has an inverse, hence it is injective. [
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Corollary 5.15. In the process, we have shown that the following data equivalent.
(1) a triple (W, W', B) of disjoint sets of points in P* such that W is of cardinality 29+2, W' is a
pair of points and B is a point (up to a projective equivalence respecting the sets),
(2) a hyperelliptic genus 49+ 3 curve with a choice of a Klein subgroup of involutions (o, T) such that
o and T are fixed point free and o has 4 fived points,
(3) a hyperelliptic genus g + 1 curve together with a pair of Weierstrass points y,z and a pair of
points x,Lx.

6. FINAL REMARKS

We assumed g > 2 in the étale case, because g = 1 gives a trivial Prym and g = 0 is impossible. In
the branched case, we assumed g > 1. For g = 0 one gets that the Prym variety is the whole Jacobian.
However, it must be noted that the mixed case is 'non-trivial’ and the proof of Theorem 5.14 does not
work for g = 0. This case has been investigated in a joint paper of the first author with Anatoli Shatsila
where they have shown that the Prym map is generically of degree 2, see [7].

Remark 6.1. We would like to point out that throughout the paper we used coordinate-free point
of view. However, one can also work with equations. It can be checked that a hyperelliptic curve

given by y? = (z* + a;2® +1) - ... - (2* + a,2% + 1) has two additional commuting involutions given
by (z,y) — (—z,y) and (z,y) — (1, %) (see [23]). This curve is of genus 2n — 1 and since the family

depends on n parameters, one can use Propositions 4.4 and 5.5 to show that a hyperelliptic Klein covering
can be given by such an equation.
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