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Abstract. We investigate the geometry of smooth hyperelliptic curves that possess additional involu-

tions, especially from the point of view of the Prym theory. Our main result is the injectivity of the

Prym map for hyperelliptic Z2
2-coverings over hyperelliptic curves of positive genus.

1. Introduction

A smooth complex hyperelliptic curve C is a Riemann surface of genus g > 1 that is a double covering of
the Riemann sphere P1. Having such a map makes hyperelliptic curves distinguishable and more accessible
in many aspects since, for example, they can be described by an equation of the form y2 = F (x) and in
this way one can see an hyperelliptic curve as a subvariety of a weighted projective plane.

A covering f : C ′ → C will be called hyperelliptic if both curves are hyperelliptic. Such assumption is
actually quite strong: if f is cyclic and unbranched then deg(f) = 2 (see [20],[21]). If f is a hyperelliptic
double covering, then the number of branch points has to be at most 4 and there are constrains on a line
bundle that defines the covering (see Section 3 for details). On the other hand, surprisingly, a non-Galois
étale triple covering of a genus 2 curve is hyperelliptic (see [14]).

The Prym theory investigates the (connected component of) kernel of the norm map Nmf : JC ′ → JC
that can also be seen as a complementary abelian subvariety to the image of Jacobian f∗(JC) inside JC ′

and is called the Prym variety of the covering. One can then consider the Prym map that assigns to a
covering its Prym variety.

The Prym map restricted to the locus of hyperelliptic double coverings is never injective (see the
bigonal construction, [17], or Corollaries 3.2 and 3.5). Motivated by this fact, we investigate the Prym
map of hyperelliptic Klein coverings, i.e. 4 : 1 Galois coverings with Galois group isomorphic to the
Klein group Z2

2 and both curves are hyperelliptic. In [6] we have shown the injectivity of the Prym map
for the special case of étale coverings over a genus 2 curve. Now, we are able to show the injectivity of
the hyperelliptic Prym map in full generality (any genus and including ramified coverings). We show in
Theorems 4.10, 4.13, 5.12 and 5.14 the following:

Theorem 1.1. Let RHg,b be the moduli space of hyperelliptic Klein coverings over a curve of genus
g > 1 which are simply ramified in b points. We also include the cases g = 1, b = 8 and g = 1, b = 12.
Then the corresponding Prym maps on RHg,b for b ∈ {0, 4, 8, 12} are (globally) injective.

The proofs of these theorems are based on geometric characterizations of such coverings and the
description of the 2-torsion points of the involved Jacobians in terms of the Weierstrass points. In all the
cases we construct an explicit inverse of the Prym map.

It has been shown that the Prym map of double coverings branched in at least 6 points (hence not
hyperelliptic) is globally injective ([17]). Since hyperelliptic coverings make the bound on the number of
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branched points sharp, one may believe that our result is an important step in showing global injectivity
of Klein Prym maps (both étale and branched).

The paper is organised as follows: Section 2 contains the necessary basic facts about involutions on
hyperelliptic curves, following the top-down perspective. In Section 3 we recall the constructions for
double hyperelliptic coverings to see the bottom-up perspective. Having both perspectives gives us a
possibility to show what kind of data is needed to set up a Klein covering construction.

In Section 4, we generalise results from [6], i.e. we prove the injectivity of the Prym map for étale
hyperelliptic Klein coverings of any genus and we also prove the so-called mixed case, i.e. coverings
ramified in 8 points.

In Section 5, we show the injectivity of the Prym map for Z2
2 hyperelliptic coverings branched in 12

points and another mixed case, namely coverings branched in 4 points. The Figures 1-4 appearing in this
article have been produced using the software Inkscape.
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2. Preliminaries

In this section we describe the geometry of hyperelliptic curves that contain at least one more involution
and its corresponding covering from the top-down perspective. Some of the results can already be found
in [12] that is devoted to hyperelliptic curves with extra involutions.

We start by recalling some basic facts about involutions on hyperelliptic curves. Let H be a hyperel-
liptic curve of genus g(H) = g. For simplicity, the hyperelliptic involution will always be denoted by ι
(or ιH if it is important to remember the curve). Let W = {w1, . . . , w2g+2} denote the set of Weierstrass
points, which is the same as the set of ramification points of the hyperelliptic covering. The following
propositions are well-known facts (see for example [23]).

Proposition 2.1. Let H be a hyperelliptic curve and ι the hyperelliptic involution. Then ι commutes with
any automorphism of H. Every automorphism of H is a lift of an automorphism of P1 and it restricts
to a permutation of W . In particular, if Zn2 ⊂ Aut(H) then n ≤ 3.

Proposition 2.2. Let τ ∈ Aut(H) be a (non-hyperelliptic) involution on H. By Hτ = H/τ we denote
the quotient curve. If g(H) = 2k then both τ and ιτ have exactly 2 fixed points and g(Hτ ) = g(Hιτ ) = k.
If g(H) = 2k + 1 then either τ is fixed point free and ιτ has 4 fixed points or τ has 4 fixed points and ιτ
is fixed point free.

In order to make statements easier and more compact we abuse the notation by saying that a genus 1
curve with a chosen double covering of P1 is called hyperelliptic.

Corollary 2.3. With the notation from Proposition 2.2, the curves Hτ and Hιτ are hyperelliptic whose
hyperelliptic involution lifts to the involution ι on H.

Assume there are two involutions σ, τ ∈ Aut(H) such that στ = τσ, (i.e., ⟨σ, τ⟩ ≃ Z2
2). In such a

case, the covering H → H/⟨σ, τ⟩ will be Galois with the deck group isomorphic to the Klein four-group.
Since we are interested in Prym maps, we make another natural assumption, namely ι /∈ ⟨σ, τ⟩, hence
g(H/⟨σ, τ⟩) > 0. The groups satisfying both conditions will be called Klein subgroups.

We start by excluding the case when the genus of the curve is even, using the following fact.

Lemma 2.4. Let H be a hyperelliptic curve of genus g(H) = 2k. Then, there does not exist a Klein
subgroup ⟨σ, τ⟩ ⊂ Aut(H).
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Proof. If g(H) is even, then |W | = 4k + 2, hence the action of the subgroup ⟨σ, τ⟩ ∼= Z2 × Z2 cannot be
free on W . On the other hand, Proposition 3.1 and Figure 1 show that the ramification points of any
double covering cannot be Weierstrass, see also [12, Lemma 1]. □

Now, we are left with two cases, either g(H) = 4k + 1 or g(H) = 4k + 3. The next proposition is
essentially rephrasing [6, Lemma 2.13].

Proposition 2.5. Let H be a hyperelliptic curve with the group of commuting involutions ⟨ι, σ, τ⟩ ⊂
Aut(H). Then

• there exists a unique Klein subgroup of fixed point free involutions if and only if g(H) = 4k + 1.
• there exists a unique Klein subgroup of involutions with fixed points if and only if g(H) = 4k+3.

Proof. Assume g(H) = 2n + 1. Without loss of generality, by Proposition 2.2, we can assume σ, τ are
fixed point free. Then the existence of the group of the fixed point free involutions is equivalent to the
fact that the involution στ is fixed point free.

Denote by gα the genus of the quotient curve H/α for α an involution and by g0 the genus of H/⟨σ, τ⟩.
According to Accola’s Theorem ([1, Theorem 5.9]) for the group ⟨σ, τ⟩ we obtain

2(2n+ 1) + 4g0 = 2gσ + 2gτ + 2gστ

2n+ 1 + 2g0 = gσ + gτ + gστ

= 2n+ 2 + gστ .

Since the left-hand side is odd, στ is fixed point free if and only if n = 2k.
Analogously, the group ⟨ισ, ιτ⟩ contains στ , so it contains only involutions with fixed points if and

only if n = 2k + 1.
The uniqueness of the groups follows from the fact that any other subgroup contains ι or contains

both fixed-point free involutions and involutions with fixed points. □

3. Hyperelliptic double coverings

In this section, we focus on the bottom-up perspective. According to Proposition 2.2, there are three
possibilities for a hyperelliptic double covering, namely étale coverings and coverings branched in 2 or 4
points.

3.1. Coverings branched in 2 points. Let us assume H is hyperelliptic and f : C → H is a covering
branched in 2 points. Firstly, we show a necessary and sufficient condition for C to be hyperelliptic.

Proposition 3.1. Let f : C → H be a covering of a hyperelliptic curve H branched in 2 points P,Q ∈ H.
Then C is hyperelliptic if and only if P = ιQ and the line bundle defining the covering is OH(w) for
some Weierstrass point w.

Proof. Let η ∈ Pic1(H) be the element defining the covering f : C → H, so η2 = OH(P +Q). Suppose
P = ιQ and η = OH(w) with w a Weierstrass point. By the projection formula

h0(C, f∗η) = h0(H, η ⊗ f∗OC)

= h0(H, η) + h0(H,OH)

= 2

Since deg f∗η = 2, this implies that C is hyperelliptic.
Now assume that C is hyperelliptic. Let hC and hH be the hyperelliptic divisors on C, respectively

on H. Notice that the hyperelliptic involution on C is a lift of the hyperelliptic involution on H. Since
every automorphism of C commutes with the hyperelliptic involution, the ramification locus of f is
invariant under the hyperelliptic involution, so either it consists of two points conjugated to each other
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or of two Weierstrass points. In the latter case, η is a square root of OH(w1 + w2), where w1, w2 are
Weierstrass points, but a necessary condition for the hyperelliptic involution ι to lift to an involution on
C is ι∗η ≃ OH(hH)⊗ η−1 ≃ η, that is, η2 ≃ OH(hH), a contradiction. Therefore, the branch locus is of
the form {P, ιP}. By the projection formula

2 = h0(C,OC(hC)) = h0(H, f∗(f
∗OH(w))) = h0(H,OH(w)) + h0(H,OH(w)⊗ η−1)

with w ∈ H a Weierstrass point. This implies that η is of the form OH(w). □

One constructs a commutative diagram of hyperelliptic curves (left Diagram 3.1) starting from 2g+3
given points in P1. Let [y], [z], [w1], . . . , [w2g+1] ∈ P1. Let H be the hyperelliptic genus g curve ramified
in z, w1, . . . , w2g+1 mapping to the corresponding points with brackets in P1, and let y1, y2 be the fibre
over [y]. Let f : C → H be a double covering branched in y1, y2 and defined by O(z). The hyperelliptic
curve C of genus 2g can also be constructed in the following way. Let p : P1 → P1 be the double covering
branched in [y], [z]. For i = 1, 2 denote by [y′], [z′], [wi1], . . . , [w

i
2g+1] ∈ P1 the respective preimages. Then

C is a double covering of P1 branched in [wi1], . . . , [w
i
2g+1]. Clearly, the preimages of [y′], [z′] in C coincide

with the appropriate preimages of y1, y2, z (see right Diagram (3.1)).

(3.1) C2g

2:1

!!

2:1

}}
H ′
g

2:1 !!

Hg

2:1}}
P1

C

2:1

��

f // H

2:1

��
P1 p // P1

Figure 1. Hyperelliptic coverings ramified in two points
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According to [19], the the Prym variety of an étale double covering f : C → H over an hyperelliptic
curve is isomorphic to the product of the Jacobians of the curves, obtained as the quotients by the two
other involutions on C. In this case, since C is hyperelliptic one of these quotient curves is isomorphic
to P1 and the other is the hyperelliptic curve H ′ of genus g, appearing in the left Diagram 3.1, defined
by exchanging the role of y and z. Hence, the Prym variety P (C/H) of the covering f : C → H is
isomorphic to JH ′. The distribution of the Weierstrass points is illustrated in Figure 1.

Corollary 3.2. The construction shows that the Prym map of a double covering branched in 2 points is
never injective, since the Jacobian of H ′ does not recognise the branching points. In particular, if one
moves a point [z] in P1, one gets a one dimensional family of coverings C → H with the same Prym.

3.2. Étale coverings and coverings branched in 4 points. Now, we consider a hyperelliptic curve
Y of genus g ≥ 2 and a double étale covering π : X → Y , so X is of genus 2g−1, that is, Y is the quotient
of X by a fixed point free involution τ . According to [5, Proposition 4.2] X is hyperelliptic if and only if
the 2-torsion point η defining π is of the form η = OY (w1 −w2) where w1 and w2 are Weierstrass points.
Assume that X is hyperelliptic and let ι be the hyperelliptic involution. Let Y ′ := X/⟨ιτ⟩, which is of
genus g− 1. The double covering f : X → Y ′ is ramified in four points. The hyperelliptic involution ι on
X descends to an hyperelliptic involution on Y ′, denoted by j (see Diagram (3.2)).

Conversely, starting from a hyperelliptic curve Y ′ of genus g− 1 we can give a necessary and sufficient
condition for X to be hyperelliptic.

Proposition 3.3. Let Y ′ be a hyperelliptic curve of genus g−1 and f : X → Y ′ a double covering ramified
in four points defined by a line bundle η ∈ Pic2(Y ′), such that η2 ≃ OY ′(B), where B is the branch locus
of the covering. Then X is hyperelliptic if and only if η = OY ′(hY ′), with hY ′ the hyperelliptic divisor
on Y ′ and B ∈ |2hY ′ | is reduced.

Proof. Since f∗OX ≃ OY ′ ⊕ η−1, by using the projection formula one computes

H0(X, f∗OY ′(hY ′)) = H0(Y ′,OY ′(hY ′))⊕H0(Y ′,OY ′).

So dimH0(X, f∗OY ′(hY ′)) = 3. According to Clifford’s Theorem [2, Chapter III] X is hyperelliptic and
f∗hY ′ is a multiple of the hyperelliptic divisor. Suppose that X is hyperelliptic and the double covering
f : X → Y ′ is given by a line bundle η such that η2 ≃ OY ′(B), with B the (reduced) branch locus
of f . From the commutativity of the Diagram (3.2) the union of B and the set of Weierstrass points
of Y ′ map to the branch locus of the map Y → P1, which has cardinality 2g + 2. This implies that
B ∈ |2hY ′ |, so η is a square root of OY ′(2hY ′). Since X = Spec(OY ′ ⊕ η−1) the involution j on Y ′ lifts
to an involution on X if and only if j∗η ≃ η. Then, either η = OY ′(hY ′) or h0(Y ′, η) = 1. In the latter
case, if η = OY ′(p1 + q1), then j(p1) = p1 and j(q1) = q1, that is, η is defined by the sum of Weierstrass
points, say η = OY ′(w1 + w2). Since X is hyperelliptic, f∗η ∈ |2hX | but this contradicts the projection
formula. Therefore, η = OY ′(hY ′).

(3.2) X2g−1

π

""

f

{{
Y ′
g−1

2:1 $$

Yg

2:1||
P1

X2g−1

2:1

��

f // Y ′
g−1

2:1

��
P1 p // P1

One can see this construction from the perspective of points in P1. Let [x], [y], [w1], . . . , [w2g] ∈ P1 and
let Yg be the hyperelliptic genus g curve branched in these points. Let X2g−1 → Yg be the étale double
covering defined by O(x − y), where x, y are the preimages of [x], [y] respectively. On the other hand



6 PAWE L BORÓWKA, ANGELA ORTEGA

X2g−1 can be also constructed in the following way. Let p : P1 → P1 be the double covering branched
in [x], [y]. For i = 1, 2 denote by [wi1], . . . , [w

i
2g] ∈ P1 the respective preimages under p. Then X2g−1 is

a double covering of P1 branched in [wi1], . . . , [w
i
2g]. The curve Y ′

g−1 is constructed as double cover of P1

branched in [w1], . . . , [w2g] and one obtains the commutativity of the right Diagram (3.2). The covering
X2g−1 → Y ′

g−1 is branched in x, ιx, y, ιy and defined by the hyperelliptic bundle (see Figure 2).

Figure 2. Distribution of Weierstrass points on hyperelliptic covers

□

3.2.1. The Prym map. Let RH
g−1,4 := {(Y ′, B) | B ∈ |2hY ′ |} be the space parametrising double

coverings f : X → Y ′ ramified in four points where both curves are hyperelliptic, according to the
previous proposition this depends only on the choice of the branch divisor in |2hY ′ |. We denote by
JH
g ⊂ Ag the locus of the hyperelliptic Jacobians inside of the moduli space of principally polarised

abelian varieties of dimension g, and by JH,(1,2,...,2)
g the moduli of abelian varieties which are quotients

of hyperelliptic Jacobians by 2-torsions of the form wi − wj . Let RH
g := RH

g,0 be the moduli space of
hyperelliptic étale double coverings over curves of genus g. For b = 0, 4 we define the Prym map Prg,b as
the map which associates to a hyperelliptic double covering [X → Y ] ∈ RH

g,b its Prym variety P (X/Y ).

Proposition 3.4. The relation given by left Diagram (3.2) induces an isomorphism

γ : [f : X → Y ′] 7→ [π : X → Y ]

fitting in the following commutative diagram
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(3.3) RH
g−1,4

γ //

Prg−1,4

�� ""

RH
g

Prg,0

��||
JH,(1,2,...,2)
g JH

g−1

where the diagonal arrows are the corresponding forgetful maps. In particular deg Prg−1 |RH
g−1,4

=
(

2g+2
2

)
and Prg |RH

g
is a P2-bundle.

Proof. It is well-known ([19]) that the Prym variety of an étale double coveringX → Y over a hyperelliptic
curve is isomorphic to the product of the Jacobians of the quotient curves X/ι ≃ P1 and X/ιτ , which
gives P (X/Y ) ≃ JY ′ as a principally polarized abelian variety. This proves the commutativity of the
top right triangle of the diagram. Similarly, we have P (X/Y ′) ≃ JY/⟨β⟩, with β = wi − wj ∈ JY [2]
the element defining the étale covering π. This shows the commutativity of the top left triangle of the
diagram. □

Corollary 3.5. Hyperelliptic Prym maps of étale double coverings and double coverings branched in 4
points are never injective.

3.3. Useful notation. We recall the following notation from [5] that helps with dealing with abelian
subvarieties. Let X be an abelian variety and Mi abelian varieties such that there exist embeddings
Mi ↪→ X for i = 1, ..., k. We write

X =M1 ⊞M2 . . .⊞Mk

if ϵM1 + ϵM2 + . . . + ϵMk
= 1, where ϵMi are the associated symmetric idempotents. In particular,

X = M ⊞ N if and only if (M,N) is a pair of complementary abelian subvarieties of X. If Mi’s are
general enough, then the decomposition is unique up to permutation, see [5, Proposition 5.2]. We will
also use the following notation. If f : X → Y is a covering and f∗ is not an embedding we will denote
the image Im(f∗(JY )) by JY ∗.

In the sequel we will denote by the same letter an automorphism of the covering curve and its extension
to the Jacobian, except for the hyperelliptic involution, whose extension is −1. We will also denote the
identity as 1. By mk we denote the multiplicity by k on an abelian variety.

4. Prym maps of hyperelliptic étale Klein coverings

In [6], we have considered étale Klein coverings of genus 2 curves and have shown that the Prym map
is injective in this case. We now generalise the result to hyperelliptic Klein coverings of higher genera.
Recall that a Klein subgroup ⟨η, ξ⟩ ≃ Z2 ×Z2 of JH[2] is called isotropic, respectively non-isotropic, if it
is isotropic (resp. non-isotropic) with respect to the Weil form e : JH[2]× JH[2] → F2.

4.1. From the bottom construction. Let H be a genus g hyperelliptic curve with Weierstrass points
w1, . . . , w2g−1, x, y, z ∈ H and let [w1], . . . , [w2g−1], [x], [y], [z] ∈ P1 be the corresponding set of 2g + 2

branched points. Set η = OH(x − y), ξ = OH(y − z). According to [5, Theorem 4.7], the covering C̃
associated to the non-isotropic Klein group G = {0, η, ξ, η+ξ} ⊂ JH[2] is hyperelliptic and since the 4 : 1

map C̃ → H is étale, C̃ is of genus 4g − 3. Let Cx be the double covering of H defined by ξ, Cy defined
by η + ξ and Cz defined by η; all three of genus 2g − 1 Then the Prym varieties of these coverings are
Jacobians of curves, denoted by Hx, Hy, Hz respectively, of genus g−1. Recall that for j ∈ {x, y, z}, the
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curve Hj is given by choosing [j], [w1], . . . , [w2g−1] as branch points. These curves fit into the following
commutative diagram (we draw only two curves to make it easier to read).

(4.1) C̃
et

  
et

~~
Cx

et

  
+4

~~

Cy
+4

  
et

~~
Hx

((

H

��

Hy

vvP1

Here +4, denotes a 2:1 map branched in 4 points and et stands for an étale 2:1 map.

4.2. Decomposition of JC̃. In order to decompose the Jacobian of C̃ and describe the Prym variety

P (C̃/H) of the covering C̃ → H, we will use a top-down perspective. Let C̃ be a hyperelliptic curve of

genus 4g − 3 with commuting fixed point free involutions σ, τ, στ ∈ Aut(C̃). Without loss of generality,

we can assume Cx = C̃/σ, Cy = C̃/τ, Cz = C̃/στ and H = C̃/⟨σ, τ⟩. With this notation, we have that

Hx = C̃/⟨σ, ιτ⟩ and the following diagram commutes

(4.2) C̃

+4

��

et

��
+4

��
Cσ

+4
��

Cιτ

+2

��

Cιστ

+2��
Hx

where Cα = C̃/α with α an involution. Analogously one checks thatHy = C̃/⟨τ, ισ⟩ andHz = C̃/⟨στ, ιτ⟩.

Proposition 4.1. The Jacobian of C̃ is decomposed in the following way

JC̃ = JH∗ ⊞ JHx ⊞ JHy ⊞ JHz.

In particular, P (C̃/H) = JHx ⊞ JHy ⊞ JHz.

Proof. The proof follows from straightforward computation. Firstly, note that Diagram 4.2 shows that

JHx is embedded in JCιστ which is embedded in JC̃, hence JHx is embedded in JC̃ with the restricted
polarisation type being four times the principal polarisation on JHx. Analogously, JHy and JHz are

also embedded in JC̃.
Since the covering C̃ → H is étale, by [3, Proposition 11.4.3], the pullback map is not an embedding,

so we denote the image of JH as JH∗. Moreover, JH∗ = Im(1 + σ + τ + στ). Since the hyperelliptic

involution extends to (−1) on JC̃ we have that JHx = Im(1 + σ − τ − στ), JHy = Im(1− σ + τ − στ),
JHz = Im(1−σ− τ +στ). Observe that sum of the endomorphisms defining these Jacobians is 4, which

is also the exponent of each subvariety in JC̃, so ϵJH∗ + ϵJHx + ϵJHy + ϵJHz = 1. Since, by definition,

the Prym variety is complementary to JH∗, we get that P (C̃/H) = JHx ⊞ JHy ⊞ JHz. □

Proposition 4.2. The addition map ψ : JHx×JHy×JHz −→ P (C̃/H) is a polarised isogeny of degree
42g−2 and its kernel is contained in the set of 2-torsion points.
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Proof. In order to compute the kernel of ψ we consider the description of JHj , for j ∈ {x, y, z}, as fixed
loci inside the Jacobian of C̃:

JHx ⊂ Fix(σ, ιτ), JHy ⊂ Fix(τ, ισ), JHz ⊂ Fix(στ, ισ).

Let (a, b, c) ∈ kerψ, then c = −a− b. Applying ισ and ιτ to c = −a− b we get

−a− b = ισ(−a− b) = −ιa− b and − a− b = ιτ(−a− b) = −a− ιb,

so ιa = a and ιb = b, that is, a, b and c are 2-torsion points in their respective Jacobians. This implies

(4.3) kerψ = {(a, b,−a− b) | a ∈ JHx[2], b ∈ JHy[2]}.

The restricted polarisation to JHj is of type (4, . . . , 4). Since P (C̃/H) is complementary to JH∗, it has
complementary type which is (1, . . . , 1, 1, 4, . . . , 4) with g − 1 fours. Moreover, ψ as an addition map is
polarised and the degree is exactly 42(g−1). □

Remark 4.3. We included a proof of Proposition 4.2 for the sake of completeness, although it is proven
in [22] (unpublished) and in the recently published book [15, Corollary 5.2.6].

4.3. The Prym map. Let RHg,0 denote the moduli space parametrising the pairs (H,G) with H a
hyperelliptic curve of genus g and G a Klein subgroup of JH[2] whose generators are differences of

Weierstrass points, so the corresponding covering curve C̃ is hyperelliptic of genus 4g − 3. We call the
elements of RHg,0 étale hyperelliptic Klein coverings. Set

δ := (1, . . . , 1︸ ︷︷ ︸
2g−2

, 4, . . . , 4︸ ︷︷ ︸
g−1

)

and let Aδ
3g−3 denote the moduli space of polarised abelian varieties of dimension 3g− 3 and polarisation

of type δ. The Prym map associates to the hyperelliptic Klein covering C̃ → H induced by (H,G), the

polarised Prym variety (P (C̃/H),Ξ), where Ξ is the restriction to P (C̃/H) of the principal polarisation

on JC̃.
The main aim of this section is to prove that the Prym map

PrH4g−3,g : RHg,0 → Aδ
3g−3, (H,G) 7→ (P (C̃/H),Ξ)

of étale hyperelliptic Klein coverings is injective. We will show this by constructing the inverse map
explicitly. We start by showing the following equivalence of data, which generalises [6, Theorem 3.1].

Proposition 4.4. The following data are equivalent:

(1) a triple (H, η, ξ), with H a hyperelliptic curve of genus g and η and ξ differences of Weierstrasss
points such that Klein subgroup G = ⟨η, ξ⟩ of JH[2] is non-isotropic;

(2) a hyperelliptic curve C̃ of genus 4g − 3 with Z3
2 ⊂ Aut(C̃);

(3) a hyperelliptic curve H of genus g together with the choice of 3 Weierstrass points;
(4) a set of 2g + 2 points in P1 with a chosen triple of them, up to projective equivalence (respecting

the triple).

Proof. Equivalences (1) ⇔ (3) ⇔ (4) are obvious. The equivalence (3) ⇔ (2) follows from §3.1. □

Corollary 4.5. The moduli space RHg,0 is irreducible.

Proof. It follows from the equivalence (1) ⇔ (4) of the Proposition 4.4. □
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Lemma 4.6. Let JHx, JHy, JHz be as before and let P = P (C̃/H). Let Z = (JHx × JHy × JHz)[2] be
the set of 2-torsion points on the product and let GP = ψ(Z). By m2 we denote the multiplication by 2.
Consider the following commutative diagram

(4.4) JHx × JHy × JHz
ψ //

m2

��

P

πP

��
JHx × JHy × JHz

p // P/GP

Then the map p is a polarised isomorphism of principally polarised abelian varieties.

Proof. Note that JHx×JHy×JHz in the top left has product polarisation of type four times the principal
one. Hence, Z is an isotropic subgroup of the kernel of the polarising map. In particular m2, having Z
as its kernel, is a polarised isogeny (see also [3, Cor. 2.3.6]). Moreover, Z is also the kernel of πP ◦ ψ,
hence both ψ and πP are polarised isogenies. Then, the isomorphism theorems yield the existence and
uniqueness of the isomorphism p. □

Corollary 4.7. Let Ξ be the restricted polarisation on P and ϕΞ its polarising isogeny. Then GP =
ker(ϕΞ) ∩ P [2] ≃ Z2g−2

2 .

Proof. Clearly GP ⊂ P [2] and since P/GP is principally polarised, GP is a maximal isotropic subgroup
of ker(ϕΞ). Hence GP ⊂ ker(ϕΞ) ∩ P [2] and the claim follows by computing the cardinalities.

□

Lemma 4.8. It holds GP = JHx ∩ JHy ∩ JHz.

Proof. Let a ∈ JHx ∩ JHy ∩ JHz, then a is fixed by all the involutions in JC̃, in particular it is a
2-torsion point. Hence a = a + a + a ∈ Imψ(Z). Conversely, if a + b + c ∈ GP , with a ∈ JHx =
Fix(σ, τ)0, b ∈ JHy = Fix(ισ, τ)0 and c ∈ JHz = Fix(ισ, στ)0, then a, b, c ∈ P [2]. One checks that
a, b, c ∈ JHx ∩ JHy ∩ JHz.

□

Let πj : C̃ → Hj be the 4:1 branched maps in the diagram (4.1) for j ∈ {x, y, z} an let k : Pic4(C̃) →
Pic0(C̃) defined by D 7→ D − 2g1

2 , with 2g1
2 the hyperelliptic divisor. Hence, we have injective maps

αj := k ◦ π∗
j : Pic1(Hj) → Pic0(C̃) ≃ JC̃.

Proposition 4.9. The maps αj have as common image in GP ⊂ P [2] for j ∈ {x, y, z}, the image of
2g − 1 Weierstrass points on each of the curves Hj.

Proof. Observe that by construction

αx(Pic
1Hx) ∩ αy(Pic1Hy) ∩ αz(Pic1Hz) ⊂ JHx ∩ JHy ∩ JHz = GP .

On the other hand, for any Weierstrass point w ∈ Hx, image of a Weierstrass point w̃ ∈ C̃ we have

π∗
xw ∼ w̃ + σw̃ + ιτ w̃ + στw̃ ∼ w̃ + σw̃ + τw̃ + στw̃

since ιw̃ = w̃. Similarly, for every w = πy(w̃) or w = πz(w̃) image of a Weierstrass point in C̃, one checks
that

π∗
jw ∼ w̃ + σw̃ + τw̃ + στw̃.

□

Theorem 4.10. For g ≥ 2 the hyperelliptic Klein Prym map PrH4g−3,g : RHg,0 → Aδ
3g−3 is injective.
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Proof. Let (P,Ξ) be a polarised variety in the image of the Prym map. Let G = P [2] ∩ kerϕΞ, which
is an isotropic subgroup in kerϕΞ. Let πP : P → P/G. According to Corollary 4.7, we have that
P/G is principally polarised and by Lemma 4.6, P/G is polarised isomorphic to a product of the form
JH1 × JH2 × JH3, for uniquely determined Jacobians JH1, JH2 and JH3.

Now, since P is in the image of the Prym map and the Hi, i ∈ {1, 2, 3}, are actually isomorphic
to Hj , for j ∈ {x, y, z} corresponding to some points [x], [y], [z] ∈ P1. Let fi : Hi → P1 be the hy-
perelliptic maps and W i the set of Weierstrass points on each Hi. By Proposition 4.9 there exists
an automorphism of P1 such that

⋂
fi(W

i) consists of 2g − 1 points in such a way that α1(w
1
n) =

α2(w
2
n) = α3(w

3
n) ∈ GP , for all n ∈ {1, . . . , 2g − 1}. Moreover, there are uniquely determined points

[x], [y], [z] ∈ P1 that are images of the remaining Weierstrass points. In this way, we have constructed the
set {[w1], . . . , [w2g−1], [x], [y], [z]} of 2g + 2 points in P1 with a distinguished triple. Hence, the obtained
map (P,Ξ) 7→ {[w1], . . . , [w2g−1], [x], [y], [z]} provides the inverse to the Prym map via the equivalence in
Proposition 4.4. □

Remark 4.11. Note that for g = 2, the curves Hi are actually elliptic, so one uses the notion of 2-torsion
points instead of Weierstrass points and some steps are vacuous, see [6].

Figure 3. Weierstrass points on hyperelliptic Klein coverings

4.4. The mixed case. Consider a smooth curve C̃ of genus 4g − 3, with g ≥ 2, admitting one fixed
point free involution σ and two involutions ιτ , ιστ with 4 fixed points each. The corresponding tower of
curves is the same as in the case of étale Klein coverings (see Diagram (4.1) or Figure 3). The starting
data is now the base curve Hσ,ιτ (for instance Hx in the diagram) of genus g − 1, a choice of two
pairs of conjugated points (branch points for the double covering Cx → Hx) and a Weierstrass point.

According to Proposition 4.1, JC̃ = JH∗ ⊞ JHx ⊞ JHy ⊞ JHz, therefore the associated Prym variety
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is P = P (C̃/Hx) = JH∗ ⊞ JHy ⊞ JHz. Moreover, since the restricted polarisation to JHx is of type
(4, . . . , 4), the Prym variety P is of type

δ := (1, . . . , 1︸ ︷︷ ︸
2g−1

, 4, . . . , 4︸ ︷︷ ︸
g−1

).

Consider the canonical addition map

ψ : JH∗ × JHy × JHz → P.

Since JH∗ ⊂ Fix(σ, τ), JHy ⊂ Fix(τ, ισ) and JHz ⊂ Fix(στ, ισ), we can conclude as before that

(4.5) kerψ = {(−(b+ c), b, c) | b ∈ JHy[2], c ∈ JHz[2]}.
Analogously to Lemma 4.6 we have:

Lemma 4.12. Let JH, JHy, JHz be as before and let P = P (C̃/Hx). Let Z = (JH × JHy × JHz)[2] be
the set of 2-torsion points on the product and let GP = ψ(Z). By m2 we denote the multiplication by 2.
Then one obtains the following commutative diagram

(4.6) JH × JHy × JHz
ψ′

//

m2

��

4:1

((

P

πP

��

JH∗ × JHy × JHz

ψ

88

JH × JHy × JHz
p // P/GP

where p is an isomorphism of principally polarised abelian varieties and the degrees of ψ, respectively πP ,
are 42g−2, respectively 4g−1.

In particular, GP = ker(ϕΞ)∩P [2]. One also computes, as in Lemma 4.8, that GP = JH∗∩JHy∩JHz.
Let RHg,8 denote the moduli space parametrising hyperelliptic Klein coverings over hyperelliptic curves
of genus g − 1 simply ramified in 8 points, so the covering curve is of genus 4g − 3.

Theorem 4.13. For g ≥ 2 the Prym map

PrH4g−3,g−1 : RHg−1,8 → Aδ
3g−1, ([C̃ → H ′]) 7→ (P (C̃,H ′),Ξ)

is injective.

Proof. The proof is very similar to that one of Theorem 4.10. Consider (P,Ξ) a polarised abelian variety
in the image of PrH4g−3,g−1. The subgroup G := P [2] ∩ kerϕΞ is isotropic and according to Lemma 4.12
the quotient is isomorphic, as principally polarised abelian varieties, to a product JH1 × JH2 × JH3

of uniquely determined Jacobians JH1, JH2 of dimension g − 1 and one Jacobian JH3, of dimension g.
Without loss of generality and keeping the notation as above, we set JH1 = JHy and JH2 = JHz for
some points [y], [z] ∈ P1 and set H := H3.

Consider the image JH∗ of JH in P . The map m2 : JH∗ → JH∗, multiplication by 2, factors through
the restriction to JH∗ of the quotient map πP : P → P/G, since kerπ ⊂ kerm2.

(4.7) JH∗ m2 //

πP |JH∗

!!

JH∗

JH

4:1

β

==
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Let V4 := kerβ, which is a subgroup of JH generated by two 2-torsion points. Let πj : C̃ → Hj the 4 : 1

branched maps for j ∈ {y, z} and π0 : C̃ → H the étale 4 : 1 map (see Diagram 4.1). Consider the map

k : Pic4(C̃) → Pic0(C̃) defined as before. So the maps αj := k ◦ π∗
j are injective for j ∈ {x, y} and

α0 := k ◦ π∗
0 : Pic1(H) → Pic0(C̃) ≃ JC̃

has in its kernel 3 Weierstrass points (i.e. its pullback under π0 is ∼ 2g1
2), whose differences generate V4.

The argument in Proposition 4.9 shows that

αy(Pic
1Hy) ∩ αz(Pic1Hz) ∩ α0(Pic

1H) = JHy ∩ JHz ∩ JH = G.

Therefore, one can find a suitable automorphism of P1 such that the images of the hyperelliptic maps
from Hj and H consist of 2g − 1 points in P1 and their Weierstrass points have G as common image in

P ⊂ JC̃. In order to determine the remaining point [z] ∈ P1, we consider the two Weierstrass points
y, z ∈ H above [y], [z] ∈ P1, whose images are not in G. Then there is a unique point x ∈ H (necessarily
a Weierstrass point), such that V4 = ⟨OH(x− y),OH(y − z)⟩. One recovers the base curve H ′ := Hx as
the only hyperellitptic curve branched in [x], [w1], . . . , [w2g−1] ∈ P1. Applying the equivalence (2) ⇔ (3)

of Proposition 4.4 one recovers the Klein covering C̃ → H ′ (see Figure 3). □

Corollary 4.14. The following data are equivalent:

(1) a triple (W,W ′, B) of disjoint sets of points in P1 such that W is of cardinality 2g-1, W ′ is a
pair of points and B is a point (up to a projective equivalence respecting the sets);

(2) a hyperelliptic genus 4g − 3 curve with a choice of a Klein subgroup of involutions ⟨σ, ιτ⟩, where
σ, τ are fixed point free;

(3) a hyperelliptic genus g−1 curve together with a Weierstrass points x and two pairs of points y, ιy
and z, ιz.

Remark 4.15. Although from our point of view, the mixed case is less natural, it can be seen as the
starting point of [8].

5. Branched Z2
2-coverings over hyperelliptic curves

5.1. From the top curve. Let C̃ be a hyperelliptic curve of genus 4g + 3 admitting a subgroup of
automorphisms generated by three commuting involutions, namely σ, τ and the hyperelliptic involution
ι. By Proposition 2.5 we have

|Fix(τ)| = |Fix(σ)| = |Fix(ιστ)| = 0, |Fix(στ)| = |Fix(ισ)| = |Fix(ιτ)| = 4.

For the convenience of the reader, we write α ∈ {σ, τ, ιστ} and β ∈ {ισ, ιτ, στ}. By Cα = C̃/α, we
denote the quotient curves of genus 2g+2 and Tβ the quotient curves of genus 2g+1. We have the
following commutative diagrams

(5.1) C̃

et

��

et

��
Cτ

+2
��

+2

��

Cσ

+2
��

+2

��
Hτ,ισ

''

Hσ,στ

��

Hσ,ιτ

wwP1

C̃

+4

��

+4

��
+4

��
Tστ

+4 ��

Tιτ

+4

��

Tισ

+4��
E

��
P1
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where Hα,β is the genus g + 1 curve quotient of C̃ by the subgroup ⟨α, β⟩ and E is the quotient of C̃ by
⟨ισ, ιτ⟩ which is the unique quotient curve of genus g in the tower. Here +4, respectively +2, denotes
a 2:1 map branched in 4, respectively 2 points. By Corollary 2.3, all the positive genus curves in both
diagrams are hyperelliptic.

In order to describe the images of the Jacobians of the quotient curves in JC̃, we analyse the behaviour
of the 2-torsion points under the pull-back maps. According to [3, Prop 11.4.3], JTβ and JE are embedded

in JC̃ whereas the image of JCα is not, so its image will be denoted by JC∗
α. Moreover, Diagram (5.2)

shows that JHα,β is not embedded in JC̃, so we will use the notation JH∗
α,β for its image.

(5.2) C̃
+4

!!
et

||
Cα

+2 ""

Tβ

et}}
Hα,β

By construction, JTβ = Im(1 + β), JE = Im(1 − σ − τ + στ). Moreover, we have that JH∗
τ,ισ =

Im(1− σ + τ − στ), JH∗
σ,στ = Im(1 + σ + τ + στ), JH∗

σ,ιτ = Im(1 + σ − τ − στ).
One can easily compute that

(1− σ + τ − στ) + (1 + σ + τ + στ) + (1 + σ − τ − στ) + (1− σ − τ + στ) = 4

which shows that JC̃ = JE ⊞ JH∗
τ,ισ ⊞ JH∗

σ,ιτ ⊞ JH∗
σ,στ . As a result we get that

P (C̃/E) = JH∗
τ,ισ ⊞ JH∗

σ,ιτ ⊞ JH∗
σ,στ .

5.1.1. 2-torsion points on Jacobians. We shall describe the images of the 2-torsion points in JC̃ of the
Jacobians of the quotient curves. We start by recalling well-known results concerning 2-torsion points on
hyperelliptic Jacobians.

Lemma 5.1. Let W = {w1, . . . , w2g+2} be the set of Weierstrass points on a hyperelliptic curve C of
genus g. Let S = {s1, . . . , s2k} ⊂ {1, . . . , 2g + 2} be a set of even cardinality with 2k ≤ g + 1. By
Sc we denote the complement of S in {1, . . . , 2g + 2}. We consider degree 0 divisors as elements of
JC = Pic0(C) hence equality means linear equivalence of divisors.

(1) For all i, j ≤ 2g+2, we have wi−wj = wj−wi ∈ JC[2]. Consequently, a divisor D =
∑
s∈S ±ws

does not depend on a particular choice of pluses and minuses, as long as its degree equals 0.
(2) We have the equality

∑
si∈S ±ws =

∑
t∈Sc ±wt, as long as degrees of both sides equal 0.

From now on, we will write PS =
∑k
i=1(ws2i − ws2i−1) to have degree 0 automatically and hence make

notation more consistent.

(3) If g is even then for every P ∈ JC[2], P ̸= 0 there exists a unique S of even cardinality with
|S| ≤ g + 1 such that P = PS.

(4) If g is odd then for every P ∈ JC[2], P ̸= 0 there exists a unique S of even cardinality with |S| ≤ g
such that P = PS or unique complementary pair S, Sc of cardinality g + 1 such that PS = PSc .

Proof. A proof can be found in any of [10]. □

In the case of C̃, we number the Weierstrass points as follows. Start with any Weierstrass point
and call it w1. Then we denote σw1, τw1, στw1 the other 3 Weierstrass points in the fibre of the map

C̃ → Hσ,στ . Note that the four Weierstrass points are indeed different because σ, τ are fixed point free
and στ have fixed points outside the set of Weierstrass points. Then proceed in the same way with the
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rest of the Weierstrass points. Since there are 2(4g + 3) + 2 of them on C̃, in the end we will get the

following numbering W C̃ = {w1, σw1, τw1, στw1, w2, σw2, . . . , τw2g+2, στw2g+2} of Weierstrass points of

C̃. One has to be aware that we made a particular choice, however in Remark 5.3, we will show that a
different choice will only result in a permutation of indices and will not affect the results obtained.

For convenience, a Weierstrass point of C̃ when written in brackets will denote its image in the

corresponding quotient curve. We start writing down 2-torsion points of JE. Since E = C̃/⟨ισ, ιτ⟩, on
can easily check that WE = {[w1], . . . , [w2g+2]}. Setting ei := wi + σwi + τwi + στwi and considering

JE as a subvariety of JC̃, one checks that

(5.3) {ei − ej : 1 ≤ i < j ≤ 2g + 2} ⊂ JE[2].

Note that ei−ej represents [wi]− [wj ] ∈ JE, so Lemma 5.1 shows that the sums of up to g+1
2 elements

with disjoint indices give, on one hand, different points of JC̃ and on the other, represent all possible
2-torsion points on JE. Therefore, we get that JE[2] is generated by (5.3).

For the description of the 2-torsion points of JTβ , we will compute explicitly one case, namely T :=

Tστ = C̃/στ . In this case, one checks that WT = {[w1], [τw1], . . . , [w2g+2], [τw2g+2]}. Again, denote by
vi = wi + στwi and v

′
i = τwi + σwi, so the 2-torsion points of JT are generated by

⟨vi − vj , v
′
i − vj , vi − v′j , v

′
i − v′j : 1 ≤ i < j ≤ 2g + 2⟩

considered as embedded in JC̃[2]. Indeed, using Lemma 5.1 one checks that, by adding up to at most
2g + 1 generators, we generate all 24g+2 2-torsion points of the image of JT .

For the computation of JH∗
α,β [2] one has to take into account that half of the 2-torsion points on the

quotient come from the 4-torsion points of JHα,β . We will compute explicitly the points on JH∗
σ,στ [2]

(and we will denote the curve by H). Note that H is a quotient of T (see Diagram (5.2)) hence we can
use vi, v

′
i to represent 2-torsion points on JH. Set H := Hσ,στ .

Recall that the map π : T → H = T/σ is an étale double covering of hyperelliptic curves of gen-
era 2g + 1 and g + 1 as illustrated in Figure 5.2. The set of Weierstrass points of H equals WH =
{[w1], . . . , [w2g+2], u2g+3, u2g+4} and the covering is defined by a two torsion point u2g+3−u2g+4 ∈ JH[2].
In particular, π∗(u2g+3 − u2g+4) = 0.

Set ui := vi + v′i and write the following subgroup of JH∗[2]:

U := ⟨ui − uj : 1 ≤ i < j ≤ 2g + 2⟩ .
The same computation as for JE shows that the subgroup U has 22g elements, so it is 25% of all 2-torsion
points of JH∗. We can write the preimages π−1(u2g+3) = x + ιx and π−1(u2g+4) = y + ιy, for some
x, y ∈ T . Now, we are able to represent the preimage of π∗([wi]− u2g+3) as:

π∗([wi]− u2g+3) = ui − g1
2 = vi − v′i ∈ JT.

Note that, together with U , we can represent all these 2-torsion points as {PS =
∑
i∈S vi−v′i : |S| < g+1},

(where S can be also of odd cardinality), so we get 22g+1 points which represent 50% of the 2-torsion
points on JH∗, precisely the points that come from the 2-torsion points on JH.

The trickiest part is to represent 2-torsion points in JH∗ that come from 4-torsion points in JH, say
R, satisfying 2R = u2g+3 − u2g+4. There are precisely 22g+1 of them. We will use the fact from Lemma
5.1 that

u2g+3 − u2g+4 =
∑
i≤g+1

[w2i]− [w2i−1] as divisors in JH.

Now, π−1([wi]) = {[wi], [τwi]} ⊂ T . Since vi ∈ Pic2(C̃) represents [wi] and v′i represents [τwi], we set
Qi ∈ {vi, v′i} and define Q =

∑
i≤g+1Q2i−Q2i−1. There are precisely 22g+2 of such representations with

the relation
Q = Q′ ⇔ ∀j(Qj = Q′

j) or ∀j(Qj ̸= Q′
j).
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Therefore, we have defined 22g+1 points in JT [2] (seen as embedded in JC̃[2]). In order to show that
indeed π∗(R) = Q it is enough to note the following facts. Firstly, the cardinalities of both sets (of possible
Q’s and possible π∗(R)’s) are equal to 22g+1. Secondly, for every Q we have that Nmπ(Q) = u2g+3−u2g+4.
Thirdly, by definition, we have that Nmπ ◦π∗ = m2, where m2 is the multiplication by 2, therefore

Nmπ(Q) = u2g+3 − u2g+4 = 2R = Nmπ(π
∗(R))

and lastly, π∗(R) are 2-torsion points and Q are the only 2-torsion points of JT with the property that
Nmπ(Q) = u2g+3 − u2g+4.

In the following proposition we compile the analogous results for all other curves JH∗
α,β .

Lemma 5.2. We have the following generators of subgroups of 2-torsion points as embedded in JC̃[2]:

JE[2] = ⟨(wi + σwi + τwi + στwi)− (wj + σwj + τwj + στwj) : 1 ≤ i < j ≤ 2g + 2⟩ ,
JH∗

σ,στ [2] = JE[2] + ⟨wi + στwi − τwi − σwi : 1 ≤ i ≤ 2g + 2⟩+

+

〈 ∑
k≤g+1

(Q2k −Q2k−1) : Qi ∈ {wi + στwi, σwi + τwi}

〉
,

JH∗
τ,ισ[2] = JE[2] + ⟨wi + τwi − σwi − στwi : 1 ≤ i ≤ 2g + 2⟩+

+

〈 ∑
k≤g+1

(Q2k −Q2k−1) : Qi ∈ {wi + σwi, τwi + στwi}

〉
,

JH∗
σ,ιτ [2] = JE[2] + ⟨wi + σwi − τwi − στwi : 1 ≤ i ≤ 2g + 2⟩+

+

〈 ∑
k≤g+1

(Q2k −Q2k−1) : Qi ∈ {wi + τwi, σwi + στwi}

〉
,

JTστ [2] = JE[2] + ⟨(wi + στwi)− (σwj + τwj), (wi + στwi)− (wj + στwj) : 1 ≤ i, j ≤ 2g + 2⟩ ,
JTισ[2] = JE[2] + ⟨(wi + σwi)− (στwj + τwj), (wi + σwi)− (wj + σwj) : 1 ≤ i, j ≤ 2g + 2⟩ ,
JTιτ [2] = JE[2] + ⟨(wi + τwi)− (στwj + σwj), (wi + τwi)− (wj + τwj) : 1 ≤ i, j ≤ 2g + 2⟩ .

Proof. The proof is completely analogous to what we have done for JH∗
σ,στ . One only needs to change the

subscripts depending on the involution by which it is divided. For example, for Hσ,ιτ , the only involution
with fixed points is ιτ , so Qi ∈ {wi + τwi, σwi + στwi}. □

Remark 5.3. Note that a different choice of Weierstrass points w1, . . . , w2g+2 ∈ C̃ will only result in
a permutation of indices because all sets of generators are invariant under ⟨σ, τ⟩. In particular, the
statement of Lemma 5.2 does not depend on the numbering of the Weierstrass points we started with.

5.2. From the bottom curve. In order to construct a Z2
2-branched covering of hyperelliptic curves, one

only needs to choose 2g+5 points in P1 with a distinguished triple, denoted by [w1], . . . , [w2g+2], [x], [y], [z].
Then, the curve E is the hyperelliptic curve that is a double cover of P1 branched in [w1], . . . , [w2g+2]
points. The curve Tx will be the double cover of E branched at yE , ιyE , zE , ιzE with the corresponding line
bundle being the hyperelliptic g1

2 . According to Proposition 3.3, Tx is hyperelliptic. Then the preimages

of xE become xT , x
′
T and therefore one chooses xT , x

′
T , ιxT , ιx

′
T as a branching for the map C̃ → Tx

with the line bundle being g1
2 . By construction (and Proposition 3.3), C̃ is a hyperelliptic curve of genus

4g + 3. The covering involution of the map Tx → E lifts to C̃, hence C̃ is a hyperelliptic curve with two
(additional) commuting involutions.

Moreover, the construction is uniquely defined up to a projective equivalence. To see this, one can

directly construct the curve C̃ as follows. Consider a Z2 × Z2-covering of P1 branched in [x], [y], [z] with
two simple ramifications on each fiber (the existence is shown in Remark 5.4). By Hurwitz formula the
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covering curve is of genus 0. Moreover, there are 8g+8 points over [w1], . . . , [w2g+2] and there is an action

of Z2 × Z2 on them. Then C̃ is constructed as the double cover branched in these 8g + 8 points. Since

the set of branching points is invariant under the action of Z2 ×Z2 the curve C̃ possesses two commuting
involutions. In this way, we constructed all the maps of the following commutative diagram.

(5.4) C̃

2:1

��

4:1 // E

2:1

��
P1 4:1 // P1

Remark 5.4. An example of such a covering of the projective line can be described as [x : y] → [x4+y4 :
2x2y2] with the branching points [1 : 0], [1 : −1], [1 : 1]. The deck transformations are explicitly described
as [x : y] → [−x : y] and [x : y] → [y : x].

We finish this section by showing the equivalence of data needed to built a branched Z2
2 covering.

Proposition 5.5. For g ≥ 1, the following data are equivalent:

(1) 2g + 5 points in P1 with a distinguished triple up to a projective transformation;

(2) a genus 4g + 3 hyperelliptic curve C̃ with 2 commuting involutions;
(3) a genus g hyperelliptic curve E with three pairs of points x, ιx, y, ιy, z, ιz up to an isomorphism;
(4) 3 genus g+ 1 hyperelliptic curves Hx, Hy, Hz that have branching points that can be glued to get

a set of 2g + 5 points with each of 3 distinguished points shared by precisely 2 curves.

Proof. The equivalence 1 ⇐⇒ 3 is given by the hyperelliptic covering. The equivalence 2 ⇐⇒ 3 follow
from the construction of branched Z2

2 coverings seen from top and from bottom. The implication 2 ⇒ 4
comes from taking 3 quotient curves by 3 Klein subgroups (see Diagram (5.1)) and 4 ⇒ 1 is obvious. □

5.3. Prym map. The aim of this section is to show that the Prym map for hyperelliptic Klein coverings

branched in 12 points is injective. In our construction the pullback of E under the 4:1 map C̃ → E
defines a subvariety with polarisation of type (4, . . . , 4) therefore, as a complementary subvariety of E in

JC̃, the Prym variety P corresponding to the map C̃ → E, has a polarisation Ξ of type

δ := (1, . . . , 1︸ ︷︷ ︸
2g+3

, 4, . . . , 4︸ ︷︷ ︸
g

).

Let RHg,12 denote the moduli space of pairs (E, {q1, q2, q3}) where E is a hyperelliptic curve and the
points {q1, q2, q3} ⊂ E are not pairwise conjugated. In view of Proposition 5.5 this moduli space
parametrises also the hyperelliptic Z2

2- coverings branched in 12 points.

Proposition 5.6. The moduli space RHg,12 is irreducible.

Proof. It follows from the equivalence (1) ⇔ (3) of the Proposition 5.5. □

We consider the Prym map

PrH4g+3,g : RHg,12 → Aδ
3g+3, (E, {q1, q2, q3}) 7→ (P (C̃/E),Ξ).

Observe that the image of this Prym map is contained in an irreducible component of Aδ
3g+3 whose

elements admit a Z2 × Z2 automorphism subgroup acting on them and leaving invariant the algebraic
class of the polarisation Ξ.

Recall that the Prym variety of C̃ → E decomposes as P (C̃/E) = JH∗
τ,ισ ⊞ JH∗

σ,ιτ ⊞ JH∗
σ,στ .
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Figure 4. Weierstrass and ramification points on hyperelliptic branched coverings

Lemma 5.7. We have the equality as subgroups of JC̃

JH∗
τ,ισ ∩ JH∗

σ,ιτ ∩ JH∗
σ,στ = JE[2] + ⟨wi + τwi − σwi − στwi : 1 ≤ i ≤ 2g + 2⟩

= JE[2] + Z2(w1 + τw1 − σw1 − στw1).

In particular, the intersection is of order 22g+1.

Proof. According to Lemma 5.1 (1) and Lemma 5.2, we have the inclusion from the right hand side of
the first equality. To prove the equality one uses the description of Lemma 5.2 and check the elements
of the form

∑
k≤g+1(Q2k −Q2k−1) can not be contained in the intersection. Indeed, there are precisely

2g + 2 summands, so two such divisors are linearly equivalent if and only if all summands coincide or
the summands are complementary. Since the involutions involved are different, for different curves some
summands (but not all) will be the same. The second equality follows from the fact that one can write

(wi + τwi + σwi + στwi)− (w1 + τw1 + σw1 + στw1)+

w1 + τw1 − σw1 − στw1 = (wi + τwi + σwi + στwi)− 2σw1 − 2στw1

∼ (wi + τwi + σwi + στwi)− 2σwi − 2στwi

= (wi + τwi − σwi − στwi).

□

Remark 5.8. Note that for Qi ∈ {wi + σwi, τwi + στwi}, Ri ∈ {wi + τwi, σwi + στwi} we have∑
k≤g+1

(Q2k −Q2k−1) +
∑
k≤g+1

(R2k −R2k−1) ∈ JH∗
σ,στ .
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This relation gives many of the elements in the kernel of the addition map JH∗
τ,ισ × JH∗

σ,ιτ × JH∗
σ,στ →

P (C̃/E).

Now, we would like to use a modified version of [18, Prop 3.1].

Proposition 5.9. Let (P,Ξ) be an element of Im(PrH4g+3,g). Then the group of automorphisms

{γ ∈ Aut(P,Ξ) | γ(x) = x, ∀x ∈ K(Ξ)}
is isomorphic to ⟨ισ, ιτ⟩ ≃ Z2 × Z2

Proof. Denote by f : C̃ → E a hyperelliptic Klein covering with P (C̃/E) = P (f) = P and Galois group
⟨ισ, ιτ⟩ ≃ Z2 × Z2. Note that K(Ξ) = f∗JE ∩ P (f) ⊂ Fix(τ) ∩ Fix(σ). Thus, there is an automorphism

γ̃ : JC̃ → JC̃ such that the following diagram commutes:

(5.5) 0 // K(Ξ) //

=

��

f∗JE × P
µ //

(id,γ)

��

JC̃

γ̃

��

// 0

0 // K(Ξ) // f∗JE × P
µ // JC̃ // 0

where µ is the addition map. Since γ is a polarised isomorphism, we get from Diagram 5.5 that
µ∗γ̃∗OJC̃(Θ̃) and µ∗OJC̃(Θ̃) are equal as polarisations.

Since µ∗ has a finite kernel, we have that γ̃∗OJC̃(Θ̃)⊗OJC̃(Θ̃)−1 is a torsion sheaf, hence it belongs

to Pic0(JC̃). Therefore, γ̃∗OJC̃(Θ̃) induces the canonical principal polarisation on JC̃ and γ̃ is a po-

larised isomorphism. Since C̃ is hyperelliptic, by the strong Torelli Theorem [3, Ex 11.12.19], there is an

automorphism γ̃C̃ of C̃ inducing γ̃.

Now, since f is branched, f∗ is an embedding of JE in JC̃ and by construction γ̃|JE = id. Hence γ̃C̃
is a lift of idE , so it lies in the group of deck transformations of the covering f that is equal to ⟨ισ, ιτ⟩.
This shows that γ 7→ γ̃C̃ gives a desired isomorphism, because the inverse map is just the restriction of

a deck transformation of JC̃ to P . □

Remark 5.10. Note that K(Ξ) contains 4-torsion points, so −1 does not belong to the group fixing
K(Ξ). Our result is stronger than [18, Prop 3.1] because we have shown the isomorphism for all Prym
varieties and not only for the general ones. Here have we used the fact that the top curve is hyperelliptic
and the covering is branched.

Corollary 5.11. Note that P = JH∗
τ,ισ ⊞ JH∗

σ,ιτ ⊞ JH∗
σ,στ is the isotypical decomposition for the group

defined in Proposition 5.9.

Now, we are ready to prove the main result of this section.

Theorem 5.12. For g > 0, the Prym map PrH4g+3,g is injective.

Proof. Let P ∈ Im(PrH4g+3,g). By Proposition 5.9 we can construct the Klein four-group acting on P and
we can perform the isotypical decomposition to obtain three abelian subvarieties uniquely determined by
the action of Klein group on P , called A,B,C (see Corollary 5.11). Let G = A∩B ∩C and note that by
Lemma 5.7 the cardinality of G is 22g+1.

Set A/G =: JHx, B/G =: JHy, C/G =: JHz. Since G contains only 2-torsions, we can extend the
quotient map to the map A → A/G → A such that the composition is multiplication by 2. Moreover,
since G is order 22g+1 we get that A/G = JHx → A is of order 2, hence given by a 2 torsion of the form

wHx
2g+3 − wHx

2g+4 ∈ ker JHx → A. We denote the remaining Weierstrass points of H by wHx
1 , . . . , wHx

2g+2.

By taking the images under the hyperelliptic covering, we get the points [w1], . . . , [w2g+2] ∈ P1.
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Similarly to the étale case, for j ∈ {x, y, z}, we can define αj = k ◦ π∗
j : Pic1(Hj) → JC̃, (where

k(D) = D − 2g1
2) although note that αj is of degree 2, since π∗(w2g+3) = π∗(w2g+4) = 2g1

2 . However it
is still true that αj(wp) ̸= αj(wq) for p ̸= q < 2g+3. Therefore, we can renumber the Weierstrass points

of Hy in such a way that αx(w
Hx
i ) = αy(w

Hy

i ) for i = 1, . . . , 2g + 2.
This compatibility allows us to show that having the hyperelliptic covering of Hy there exists an auto-

morphism of P1 such that images of the Weierstrass points coincide, i.e. [w
Hy

i ] = [wHx
i ], i = 1, . . . , 2g+2.

Since g ≥ 1, this automorphism is unique. Moreover, by construction, we get that [wHx
2g+3] = [w

Hy

2g+3] =: [z]

and [wHx
2g+4] = [y], [w

Hy

2g+4] = [x] are distinct.

We can perform a similar argument for Hz to get the unique automorphism of P1 such that the images
of Weierstrass points of Hz become {[wHx

1 ], . . . , [wHx
2g+2], [x], [y]}.

Note that, although in the construction we have used αj that are a priori defined for a chosen C̃, in
fact we only need the equality of images of the Weierstrass points that lie in P , so the construction is
intrinsic. In this way, we have constructed a unique set of 2g + 5 points of P1 with a distinguished triple
(up to projective equivalence). This proves the injectivity of PrH4g+3,g. □

Remark 5.13. Note that, unlike the étale case, a simple computation of degrees shows that P → P/G
cannot be a polarised isogeny, so we need to divide each subvariety individually.

5.4. The mixed case of 4g+ 3. From up to bottom perspective, this case occurs when one starts with
a genus 4g + 3 curve with two fixed point free involutions σ, τ (with στ having 4 fixed points) and takes
a group generated by ⟨σ, τ⟩. The tower of curves can be found in Diagram 5.1 when we treat Hσ,στ as
the base curve. From what we have already described, one can easily deduce that in this case, the Prym

variety P (C̃/Hσ,στ ) = JE ⊕ JH∗
τ,ισ ⊕ JH∗

σ,ιτ . Since most of the computations have already been done,
we will focus on stating the results and main steps.

For δ = (1, . . . , 1︸ ︷︷ ︸
2g+1

, 2, 4, . . . , 4︸ ︷︷ ︸
g+1

), define the Prym map:

PrH4g+3,g+1 : RHg+1,4 −→ Aδ
3g+2.

Theorem 5.14. For g > 0, the Prym map PrH4g+3,g+1 is injective.

Proof. Firstly, for P ∈ Im(PrH4g+3,g+1) we have a similar result as Proposition 5.9 in this case, so anal-
ogous to Corollary 5.11 we can distinguish three abelian subvarieties of P appearing in the isotypical
decomposition. One of the subvarieties is of dimension g denoted by JE and the other two by B and C.

By Lemma 5.2, we note that JE ∩B ∩C = JE[2] is of order 22g and B ∩C is of order 22g+1. Denote
by w1, . . . , w2g+2 the Weierstrass points of E and [w1], . . . , [w2g+2] their images in P1.

Using results from the proof of Theorem 5.12, by takingG = B∩C, we see that there exist unique curves
Hy, Hz such that B = JH∗

y , C = JH∗
z with the quotient maps given by the differences w

Hj

2g+3 − w
Hj

2g+4

for j = y, z.

As before, consider the pullback map π∗
E : Pic1(E) → Pic4(C̃) and k : Pic4(C̃) → JC̃ given by

k(D) = D − 2g1
2 . Then k ◦ π∗

E : Pic1(E) → JC̃ is a monomorphism and the map αj := k ◦ π∗
JHj

is of

degree 2 for j = y, z. Note that we can number the Weierstrass points on Hx, Hy using the condition

αj(w
Hj

l ) = αE(wl) for l = 1, . . . , 2g+2 and by the fact that we are in the Prym locus we get that, out of

four points w
Hj

2g+3, w
Hj

2g+4 for j = y, z, precisely two have the same projection to P1 denoted by [x], and

we denote the image in P1 of the other two by [y], [z] respectively. To summarise, starting from the Prym
variety P , we have constructed 2g + 5 points in P1 with a chosen triple x, y, z and a distinguished point
x that yields the Prym variety we started with.

In this way, we have proved that the Prym map PrH4g+3,g+1 has an inverse, hence it is injective. □
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Corollary 5.15. In the process, we have shown that the following data equivalent.

(1) a triple (W,W ′, B) of disjoint sets of points in P1 such that W is of cardinality 2g+2, W ′ is a
pair of points and B is a point (up to a projective equivalence respecting the sets),

(2) a hyperelliptic genus 4g+3 curve with a choice of a Klein subgroup of involutions ⟨σ, τ⟩ such that
σ and τ are fixed point free and στ has 4 fixed points,

(3) a hyperelliptic genus g + 1 curve together with a pair of Weierstrass points y, z and a pair of
points x, ιx.

6. Final remarks

We assumed g ≥ 2 in the étale case, because g = 1 gives a trivial Prym and g = 0 is impossible. In
the branched case, we assumed g ≥ 1. For g = 0 one gets that the Prym variety is the whole Jacobian.
However, it must be noted that the mixed case is ’non-trivial’ and the proof of Theorem 5.14 does not
work for g = 0. This case has been investigated in a joint paper of the first author with Anatoli Shatsila
where they have shown that the Prym map is generically of degree 2, see [7].

Remark 6.1. We would like to point out that throughout the paper we used coordinate-free point
of view. However, one can also work with equations. It can be checked that a hyperelliptic curve
given by y2 = (x4 + a1x

2 + 1) · . . . · (x4 + anx
2 + 1) has two additional commuting involutions given

by (x, y) 7→ (−x, y) and (x, y) 7→ ( 1
x ,

y
x2n ) (see [23]). This curve is of genus 2n − 1 and since the family

depends on n parameters, one can use Propositions 4.4 and 5.5 to show that a hyperelliptic Klein covering
can be given by such an equation.
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[22] R. Rodŕıguez, S. Recillas, Prym varieties and fourfolds covers, Publ. Preliminares Inst. Mat. Univ. Nac. Aut. Mexico
686 (2001). arXiv:math/0303155.

[23] T. Shaska, Determining the automorphism group of a hyperelliptic curve, ISSAC 03, 248–254, ACM, New York, 2003.

P. Borówka, Institute of Mathematics, Jagiellonian University in Kraków, ul. prof. Stanis lawa  Lojasiewicza

6, 30-348 Kraków, Poland
Email address: pawel.borowka@uj.edu.pl

A. Ortega, Institut für Mathematik, Humboldt Universität zu Berlin, Unter den Linden 6, 10099 Berlin,
Germany

Email address: ortega@math.hu-berlin.de


