Calderén-Zygmund theory of nonlocal parabolic equations
with discontinuous coefficients

SUN-SIG BYUN, KYEONGBAE KIM AND DEEPAK KUMAR

ABSTRACT. We prove Calderén-Zygmund type estimates of weak solutions to non-homogeneous nonlo-
cal parabolic equations under a minimal regularity requirement on kernel coefficients. In particular, the
right-hand side is presented by a sum of fractional Laplacian type data and a non-divergence type data.
Interestingly, even though the kernel coefficients are discontinuous, we obtain a significant increment of
fractional differentiability for the solutions, which is not observed in the corresponding local parabolic
equations.

1. INTRODUCTION

1.1. Overview. In this paper, we study higher regularity properties for weak solutions to the following
non-homogeneous nonlocal parabolic equation:

u + L3 =(-A)3if+g inQr=Qx(0,7), (1.1)

where s € (0,1), T > 0 and 2 is an open and bounded set in R™ with n > 2. The nonlocal operators
appearing in problem (1.1) are defined by
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Here, f : R" x (0,7) — R and ¢ : Q1 — R are given measurable functions, A : R" x R” x (0,7) — R is
a given kernel coeflicient satisfying

L' < A(z,y,t) <L and A(w,y,t) = Ay, z,t) for (z,y,t) € R" x R" x (0,7) (1.2)

and for some constant L > 1, and v : R™ x (0,7') — R is the unknown. In addition, ® : R — R is a
measurable function satisfying ®(0) = 0 and

%w@—¢@»@—&>le—m%

n

B(€) — D) < LIE— €| for any £, € R, (13)

Nonlocal parabolic problems appear naturally in the physical world, e.g., as in anomalous diffusion
processes from the areas of physics, finance, biology, ecology, geophysics, and many others. Particularly,
the nonlocal nonlinear operators of the above types find their application in image processing [27] and
phase transition models [25].

It is known that when the leading operator appearing in (1.1) is linear and the right-hand side is
regular enough, then solutions enjoy higher Holder regularity, which in turn, yields improved Sobolev
regularity. These assertions can be justified by the functional analysis tools along with a precise integral
representation of the solution through suitable heat kernel type estimates. Unfortunately, when the
operator is nonlinear, the aforementioned techniques fail to apply. To this end, our objective is to obtain
a fine fractional Sobolev regularity for weak solutions to (1.1) by using purely analytic and geometric
techniques. In particular, we introduce a unified approach of covering arguments to obtain some uniform
measure density estimates for some level sets involving the solution, which we will explain in the sequel.
More precisely, our aim is to establish Calderén-Zygmund type estimates for weak solutions to (1.1)
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under a minimal regularity requirement on the kernel coefficient A = A(z,y,t). More precisely, we want
to find an extra condition on A besides (1.2) under which the following implication holds

q(n+2s+ sjg )

da dy dt dnt2eta=s)
F(z,t) — f(y,t) € LL, (Q x Qr; %) with f € LL_(0,T;L)(R")) and ge L. "  (Qr)
zweﬁl QXQT;M (1.4)
lz —yl* o |z —y|ntoa

q
estimates like (1.9). In particular, using the notion of fractional gradients introduced in [13,39]; that is,

for any ¢ € (2,00) and o € (O, (1 — %) min {s — 21— 5}) with the desired Calderén-Zygmund type

u(z,t) — u(y,t)

PIE for any 8 € [0,1),

dgu(z,y,t) =

the implication (1.4) can be rewritten as

q(n+2s+ jfg)

du dy di )withfeLq (0,T;LYR™) and ge L, "% ()

o=yl

dx dy dt
[z =yl

loc loc loc

d()fGLq (QXQT;

loc

= dsu € L (QxQT;

1.2. Some known results. For the elliptic problems, a self-improving property of a weak solution to
the problem:

LYu=(-N)if+g (1.5)

is obtained by Kuusi, Mingione and Sire [35] by introducing the notion of dual pairs. When ®(¢) = £ and
A = A(z,y) is Holder continuous, Calderén-Zygmund type estimate for (1.5) is established by Mengesha,
Schikorra and Yeepo [40] via commutator estimates. In addition, the aforementioned articles deal with
more general equations as source terms involve s-fractional Laplacian with § # 5. For operators with
possibly discontinuous coefficients, such as VMO coefficients, Nowak [42,43] obtain Calderén-Zygmund
type estimates when f = 0 by using the maximal function and the notion of dual pairs. We refer to [1]
for the global Calderén-Zygmund type estimate of (1.5) with A = 1, ®(¢) = &, f = 0 and the zero
Dirichlet condition on the exterior of the domain. The main tool employed in this work is the Green
function representation of the solution.

We now mention some related results for the case of nonlinear nonlocal operators. When ®(§) =
|€[P=2¢ with p > 2 and f = 0, Nowak and Diening [19] obtain sharp regularity results containing
borderline cases by establishing precise pointwise bounds in terms of fractional sharp maximal functions.
On the other hand, Calderén-Zygmund type estimates of solutions to the problem:

‘Ciu = (_AP)%fa

are established in [13] via a maximal function free technique which was first introduced in [2]. We mention
the work [22] as well for LP-theory of a strong solution to nonlocal elliptic equations. For additional
regularity results related to nonlocal elliptic equations, we refer to [5,8,9,12,14,15,17,18,23,24,32, 34,
36,37,41,44-46] and references therein.

For the parabolic problems, Auscher, Bortz, Egert and Saari [4] prove a self-improving property of
solutions to (1.1) with f = 0 by using functional analysis techniques. When ®(§) = ¢, A(z,y,t) =1 and
f = 0, Biccari, Warma and Zuazua [6] provide optimal regularity results of a weak solution by using a cut
off argument. For the LP-theory of strong solutions to nonlocal parabolic equations, we refer to [21,51].
We further mention [3,10,16,26,29-31, 38,48-50] and references therein for various regularity results of
nonlocal parabolic equations.

1.3. Main results. To explain the desired Carderén-Zygmund type estimate (1.4), we first introduce
the notion of dual pairs. For a measurable function F': R™ x R™ x (0,7) and 7 € (0, 1), we define

F t dx d
(:my,T) and o (A) = / zdy
|z =yl Alz =yl
Furthermore, we write du,+ = dp, dt. Then we observe that
dx dy dt
o =yl

DTF(z,y,t) = for any measurable set A C R™ x R"™.

dsu e L{ <Q x Qp; > <= D7dsue L] (2% Qr; dury), where 7 = 1% (1.6)

loc q—2
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From this observation, we deduce that the solution u improves its integrability order as well as the
differentiability order by achieving the same integrability as that of the associated non-homogeneous
term in the Sobolev scale and a substantial gain in the differentiability order.

We now introduce a nonlocal tail space. We say that u € LP(0,T; L3 (R™)) if

for any p € [1,00]. In particular, we write

1
N
, |u(y, 1) ,
Taily, o5 (u; By (zo) X I) = ][ r2s/ — = dy | dt if pe[l,o0)
P2 ’ I Re\ By (z0) |Y — To|"T2¢

t
Tail . (05 By (o) x 1) =sup 12 [ D)
tel R\ By (z0) |Y — To|"T2¢

where I C R is a bounded time interval. We note from Holder’s inequality that for any 1 < p; < ps < 00,

< o0
Lr(0,T)

and

Taily, 25 (u; Br(zo) % I) < Taily, o5 (u; Br(z0) X I). (1.7)
As usual, a solution to (1.1) is defined in the weak sense as below.

2(n+2s)

Definition 1.1. Let f € L2 (0,T;LL(R"™)) with dof € LE (Q x Qp; ‘ﬁ;_‘g’“ff) and g € L, """ (Qp).
We say that

S L120c (O,T; Wi)’f( )) N Cloc (0 T; Lloc(Q)) N Lﬁfc (O,T§ L%s (Rn))

is a weak solution to (1.1

cuddzdit [ - uy,t) (qﬁ(x,t)fgf)(y,t))/l(jiﬂd dy dt
// /tl/n/n< Iw yl |z =y

_ /(u¢>)(x t)d - /:/ / (2,1) y,t))(zb(x,t)—rj)(y,t))mdmdydt

to
/ / godxdt
t1

holds for any ¢ € L2(tq,ta; WS2(Q)) N W2 (tl, to; L? (Q)) with compact spatial support contained in €2
and (tl,tg) S (O,T)

We next introduce the notion of (4, R)-vanishing condition on A, for some § and R > 0. We say that
A is (9, R)-vanishing in Qp, if

sup ][ ][ ][ |A(z,y,t) — (A)r () |dz dy dt <6,
0<r<R, QT‘(ZU)CQT AT(tO) Br(-”«'o) BT(JJO)

where zg = (20, %) and

)0 ( ][ ][ A(z,y,t) dx dy. (1.8)
By (z0) / Br(z0)

We now observe the following scaling invariance property for the problem (1.1).
Lemma 1.2. Let Q,(29) € Qp. Suppose that A is (0, R)-vanishing in Qp. Then
u(rz + o, 7%t + tg)

TS

a(x,t) =
is a weak solution to
i+ L% = (-A) f+§ inQu,
where
f(z,t) = frz + zo, 7%t + to), §la,t) = rig(rz + zo, 725t + to)
and A(z,y,t) = A(rz + xo, ry + x0, 725t + to) is (5, %)—vamshmg in Q1.

We now introduce our main results.
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Theorem 1.1. Let u be a weak solution to problem (1.1). Let R > 0 and q € (2,00) be given,

and fir o € (0, (1 — %) min{sf 275,175}). Then there is a constant § = d(n,s,L,q,0) € (0,1)

such that if A is (6, R)-vanishing in Qr, f € L{ _(0,T; L} (R")) with dof € L{ (%; Q x QT)
(oie1223)

and g € L. "™  (Qr), then dsu € L} (M' Q x QT). Moreover, there is a constant ¢ =

loc loc \ |z—y|ntoa

¢(n,s,L,q,0) such that

1
q
Fof o
r(to)/ Br (z0) / Bz (o) [z —y|
< (£t
Ar(to) Y Br(zo) / Br(xo)
1 20 __ ntds
2 bl a(n+2s+22%) a(n+2s+ 2”‘7)
u—\u N g9g=27 —2
+C sup ][ %dw +c ][ (r57‘7|g|) n+t4ds dCL‘dt q
teAr(to) \Y Br(zo) T Qr(20)

1
q _ ot
+c ][ ][ / |do f1? dz dycff + cTailg,s (LL?(O)(% Qr(%)) )
Ar(t0) ) Br(20) J Br(wo) |z — yl r

whenever Q,(z9) € Qr and r € (0, R].

=

dsu

ro

2 da:dydt)

lz —y|"

et (00 g ()

Ts+o’
(1.9)

Remark 1. A few comments are in order for the restricted range of o in Theorem 1.1. In the elliptic case,
we observe that a similar type of result holds for all o € (0, min {s,1 — s}) (see [13, Theorem 1.2]). How-
ever, in our case, to handle the nonlocal parabolic tail induced by the non-homogeneous term f, we have

to impose the condition 7 € (O, s— %) (see (5.27) below). Therefore, from the observation (1.6), we de-

q
In this regard, if f = 0, then this restriction is removed and the results hold for a broader range of o

(see Theorem 1.2 below).

duce that the Calderén-Zygmund type estimate (1.9) holds under o € (0, (1 — %) min {s — 21— s})

Remark 2. As we pointed out earlier, in the elliptic case, from regularity results for (1.5) with g = 0,
we deduce a higher regularity of a weak solution u to (1.5). However, in the parabolic case, it does not

hold. More specifically, if g € Lf,,(2r) for some g > 2, then we find a solution f € L{,. (0.T; H31(2)) N
LI (0,T; LY(R™)) to

loc )
(=A)zf(,t) = g(,t) nQ
for a.e. t € (0,T) (see [13, Subsection 1.2]). This implies that u is a weak solution to

s

ug + L5 = (—A)2 f.
By Theorem 1.1, we deduce that

G 5 2 2
we Ll (O,T; V[/lita’q(ﬂ)) for any o € (0, (1 — (j) min {5 — g, 1-— s}) .

o2 2)
n+4s

Therefore, we consider a more general non-homogeneous term which consists of (—=A)% f and g.

We now select ¢ = . Since § < ¢, we do not obtain the desired result given in Theorem 1.2.

On account of Remark 1, we obtain an improved Sobolev regularity when we consider only non-
divergence data g.

Theorem 1.2. Let u be a weak solution to problem (1.1) with f = 0. Let R > 0 and q € (2,00) be
given, and fix o € (O, (1 - %) min {s,1 — s}) Then there is a constant 6 = d(n,s,L,q,0) € (0,1) such
o{viaes 22)

that if A is (6, R)-vanishing in Qr and g € L,,, "™ (Qr), then uw € L (0,T; Wlf)t”’q((l)) with the
estimate (1.9).

Remark 3. Let us compare the local Calderén-Zygmund theory and the nonlocal ones. It is known that
if v is a weak solution to

vy —div (BDv) = g,
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then we obtain the following implication

q(n+2)

g€ L, (Qp) = ve Ll (0,T; W,-9(Q)),

loc loc loc

whenever the coefficient B is d-vanishing for sufficiently small 6 depending only on the given data (see,
for instance, [7]). We observe that in the limiting case when ¢ — 0 and s — 1, the result in Theorem
1.2 is the same as the local one. However, in the nonlocal case, although the kernel coefficient is
discontinuous, Theorem 1.2 implies that the solution u obtains not only higher integrability but also
higher differentiability along the Sobolev-scale. This is in some sense a purely nonlocal phenomenon,
since in order to observe such results in the local case, the coefficient B is assumed to have some
fractional regularity in the literature (see [33]). A similar phenomenon for the nonlocal equations is
observed in [4,35,42,43] and references therein.

1.4. Working methods and novelties. We now briefly explain our approach to obtain the desired
estimates (A.15) and (1.9). As usual, keeping the relation (1.6) in mind, to prove that the fractional

gradient term dgu is in L{ (Q x Qr; %), it suffices to show that

/ Ny (g, t) € Q + [D7dgul(@,,1) > A}) dA < oo
0

holds for any @ = B x B x A, where B € Q is a ball and A € (0,7T) is a time interval. To do this, we
construct coverings for upper level sets of |D7dsu| inspired by the maximal function free technique as
introduced in [2]. Using an exit-time argument, we are able to construct coverings for the diagonal part
of the upper level sets. For the off-diagonal part, we use a reverse Holder-type inequality (see (5.48),
below) which is obtained regardless of the information that u solves (1.1). As in [35, Lemma 5.3], this
inequality contains additional correction terms involving diagonal cylinders which induce some serious
difficulties, as such cylinders do not come from any exit-time argument. We would like to mention that
in the elliptic case, Calder6n-Zygmund cube decomposition and an involved combinatorial argument
are used to overcome these difficulties (see [35]). However, in the parabolic case, there are additional
difficulties, since the correction terms contain L?-oscillation integrals by sup norm term (see the second
term of the right-hand side in (5.32) and Lemma 5.2 below). To this end, we employ Vitali’s covering
lemma along with an exit-time argument instead of Calderén-Zygmund cube decomposition in order
to construct coverings for upper-level sets of |[D7dsu|. We would like to mention that this argument
is new even in the elliptic case, and we believe that this argument can be applied to degenerate or
singular nonlocal parabolic equations. We also point out that due to the appearance of the additional
L?-oscillation integrals by sup norm term, functionals used to apply an exit-time argument also contain
a term of a similar kind which is usually not observed in the local parabolic problems (see (5.11)). We
will elaborate on how to take care of this term while obtaining a good bound on the measure of exit-time
cylinders in Remarks 6 and 7 below. Moreover, we use a non-trivial exit time radius in the covering

arguments in light of the rigorous tail estimates as in (5.25) and (5.26), since the additional L?-oscillation
2(n+2s)

terms by sup norm are estimated by the sum of L2-integral of dsu and dyf, L =4 -integral of ¢ and
tail terms of w and f (see Lemma 3.3). Consequently, by constructing suitable coverings, we are able to
make use of comparison estimates, which further require some higher Hélder continuity estimates along
with a self-improving property for limiting equations, and a boot strap argument to finally obtain the
desired result (see Section 6).

We would like to remark that a similar covering argument along with Gehring’s Lemma (in the spirit
of [35]) can be used to obtain a self-improving property of weak solutions to (1.1) without imposing any
regularity assumption on the kernel coefficient A. Indeed, for the sake of completion, we prove a self-
improving property of weak solutions to (1.1) with f = g = 0 (see Appendix A). In addition, this result
generalizes the ones given in [4] by allowing nonlinear structure assumptions on the nonlocal operator.

1.5. Plan of the paper. This paper is organized as follows. In Section 2, we introduce some notations,
embedding inequalities, properties of the measure fi, ¢, tail estimates. In Section 3, we derive some energy
estimates. Section 4 is devoted to establishing some comparison estimates. In Section 5, we construct
coverings of upper level sets of fractional gradients for weak solutions. Section 6 contains the proof of
the main theorem. We end the paper with two appendices. In the first appendix, we give the proof of a
self-improving property for weak solutions to (1.1) with f = g = 0, whereas the second appendix deals
with the existence of a weak solution to the corresponding boundary value problem of (1.1).
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2. PRELIMINARIES AND NOTATIONS

As usual, we write ¢ to mean a general constant equal to or bigger than 1 and it possibly changes
from line to line. In addition, we employ parentheses to denote the relevant dependencies on parameters
such as ¢ = ¢(n, s), and we denote

data = data(n, s, L, q,0).
For a,b € R, by the notation a ~,, s b, we mean that there is a constant ¢ = ¢(n, s) such that % <a <cb.
A generic point z € R®*! will be denoted by

z=(x,t) e R" x R.
We write parameters i, j, [, k and m to mean nonnegative integers. We denote a time interval as
A (to) = (to — r2%, to + 12%).
The parabolic cylinder is defined by
@r(20) = Br(z0) X Ar(to),
where B, (z) denotes the ball in R™ centered at o with radius r. We write
B, (z0,y0) = Br(z0) X Br(y0), Br(zo) = Br(z0) X Br(zo)

and
Q- (0,Y0,t0) = Br(wo,90) X Ar(to), Qr(xo,t0) = Br(x0) X Ar(to)
for any xg,yo € R”, ty € R and r > 0. For a given measurable function h : Qp — R, we write for any

Qr(20) C Qr,

(1), o (1) = ][ ha,t)de and (h)g. ey = ][ h(z) dz.
B (z0) Qr(20)

We denote the parabolic Sobolev conjugate of p € [1,00) by

D :p<1+2§) . (2.1)

We are going to mention some lemmas starting with the following embedding result.

Lemma 2.1. (see [20, Lemma 2.5]) Let p € [1,00) and h € LP(0,T;W*P(B,)) N L*(0,T; L*(B,)).
Then there is a constant ¢ = ¢(n, s,p) such that

sp

/ ][ |h|P# dz<c(7“ / / ][ [z, t) = h(y, )" dxdydtJr/ ][ \h|pdz) sup ][ |h|? dx .
‘x_y|"+5p te(0,T)J B,

In particular, we have that

[ mwmorese(on [ f B2 )

sP

X ( sup ][ h—(h)57,(t)|2dx> .
te(0,1)J B,

Next, we list some properties of the measure g, ;.

Lemma 2.2. There exists a constant C,, depending only on n such that
(1) For any xo € R™, tg € R and R > 0, the following holds

Rn+2s+27—
pir (Qr(w0,t0)) = Cp———. (2.2)

(2) Let p and R be any positive numbers, and let xo € R™. Then

Mort (QR(I‘Q, to)) _ <R>n+23+27— (2 3)
trt (Qp(xo,to)) p ' ’
(3) Let K.(x0,y0) be any cube in Br for r,R > 0 and xo,yo € R™. Then
2n+2s
MT,t (QR) S QTL& <R) . (2'4)
Mr,t (ICr(xOuyO) X Ar) T r
(4) Let a > 1. Then we have
trt (Qar (o, Yo, t0)) < Ca2n+257_1ﬁbr,t (Qr(0,0,10)) (2.5)

for some constant ¢ = ¢(n).
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Proof. Since the proofs of (1)-(3) follow from [13, Lemma 2.1], we only give the proof of (4). If 2o = yo,
(4) follows from (2). We assume zg # yo. Let
D = diam(Byr(x0), Bar(¥o))-
If D < 4a, then Qur (o, Yo,t0) C Qioar(Zo,to). Thus by (3), we get

ca2n+23

port (Qar (w0, Y0,t0)) < pirt (Lr0ar(Z0,t0)) < prt (Qr(Z0,Y0,t0))

for some constant ¢ = ¢(n). If D > 4a, we observe
D <|x—y| <3D forany x € Byr(xo) and y € Bar(yo)-
Thus we have

2n+2s
(G’R) < Ca2n+2s
Dn—27‘ —

for some constant ¢ = ¢(n). This completes the proof. ]

prt (Qar(zo,Y0,t0)) < trt (Qr(xo, Yo, o))

We now give some useful estimates to control the parabolic tail.

Lemma 2.3. Let h € LP (Ag;L%(R")) and D"dzh € LP (Qs; dur,) where 8 € (0,1), § € [0,5] and

p € [1,00). Let Qp(20) € Q2, where zg € Qr, with 0 < r1 < 2. Suppose that there is a natural number
> 1 such that

Qa1,(20) € Q2.

Then for any integer k € [0,1], there are constants ¢, = c(n,p) and ¢ = &(n) independent of k and | such
that

Tail,, 25 (M;Qp(m))

p§+7
k 1 b 2—2ﬁl+§+f+ﬁ 1 %
i — ST 28 T ! T P
< cphy 222( ) *][ ID7dshlP dpiey |+ ephnt (*][ |D"dsh[? d#m)
i=1 TJQ,i,(20) P TJQ,
b X : |h = (h)B; (o) ()]
D D o el g
okt t€A,5,(t0)J By (o) (27p)
g 2Atatr [h = (h), (1) : 2\ Y h— (h)s, (1)
+ A pFHT tSeuAp2 ]{32 Qstr x + @ =)o (p) ailp,2p ( et Qz)

(2.6)
where

A, = 1 z:fm:172,...7
0 ifm=0,—-1,....

Proof. Using Minkowski’s inequality, we get that

h—(h
Taily, 25 (W;%(%))

l p P
<2 ][ / pPrmsT 1h = (1) 5 ) ()] dy| dt
- i=1 Ap(to) Bzip(wo)\Bziflp(wo) |y - x0|"+25
1
» 1
- _|h—=(h t ’
+ ][ / pQﬂ*877| ( )Bp:lijQ)[E )| dy dt
Ap(to) B2\B,1,(x0) |y - $O|

1
SR T 0 VAt (5 | R S N
+ ][ / p2P=sT £ dy| dt| =Y L+Ti+Ts.
<Ap<to> ( R\ B |y — o[ +28 L

-

i=1
From the estimate of 77" in [13, Lemma 2.6], we have

. 1 _
272,@2’ ? ][ (][ p P ik

I < —— h— (B, @y (D)ldy | dt| =273 1,
per 2 ( Ap(to) \/ By, (@0) 2o ;

Jj=1
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Using Holder’s inequality and then following the same line as for (2.12) in [13, Lemma 2.6], we obtain

1

i k P
(= s 1

YLy <Y A2 (f |Dngh|”duT,t>

j=1 =1 T Q,5 ,(20)

‘ o |h—(h)B,; (x0)(t)]
+ Z Ai,kQJ(S‘H—) sup ][ - 2?:_(30) dx,
Parnf t€A,(t0)J By; , (z0) (27p)’

for some constant ¢, = 2" 2P, where we have taken supremum for the time variable if j > k+1. Similarly,
we estimate 77 as

l o\ THE /1 5
T <2723 " n+ ey 27 (p) ( ][ |D™d; hl”durt>
Q2

i=1
2\ h— (h)p,(t
+ chy_ 2720 <> sup][ M de =T 1,
P teENo Bs 26+T

where ¢ = ¢(n). Lastly, we estimate T3 as

9 —2B+5+T 9 n+2f3  h—(h " P
Tzemave(f ([ () ( > pamrar 0L, N ) )
A, \JrR"\B, \P 2—-n ly[™*

where for the last term we have used the fact that

lyl(2 — 1)
2

=

ly — ol = [y| — [wo| = for any y € R" \ Ba.

We combine all the estimates I;, 7; and T3 and use Fubini’s theorem as in [13, Lemma 2.6] to get the
desired result (2.6). O

Remark 4. By tracking the choice of the constant ¢, appearing in Lemma 2.3, we find that ¢, < ¢, if
P=q
We end this section with the following iteration lemma.

Lemma 2.4. (See [28, Lemma 6.1]) Let ¢ : [1,2] — R be a nonnegative bounded function. For 1 <ry <

ro < 2, we assume that
Ao

1
¢(r1) < 50(r2) + ———,
(T‘2 — T‘1) s
where A\g > 0. Then, there is a constant ¢ = ¢(n, s) such that
qf)(l) S C/\o.

3. ENERGY ESTIMATES AND THE SOBOLEV-POINCARE INEQUALITIES

In this section, we give energy estimates and derive Sobolev-Poincaré type inequalities from the energy
estimates. We first give an energy inequality of a weak solution u to (1.1).

Lemma 3.1. Let u be a local weak solution to (1.1). Let 0 < p < r < 2p with Q2,(20) € Q. Then,
there is a constant ¢ = c(n, s, L) such that

2 k? 2
][ ][ / 1:+2s 2l drdydt+ sup ][ % dx
Ap(t0) ) B, (20) I By (o) |x* | ten,(to)d By(wo) P
n+2—2s 2(”+25)
gcriwﬂ u—k2dz+c( ! ) ][ ][ / f(f’ O 4 dy ar
(r=p)""2)] @, (z0) Ar(to) I Br(z0) I By (o) |x -yl

s T N (s (1) :
+C<J2T<ZO)(T ol)” dz> re(i1) T (R g )

r 2(n+2s) )
+c (7’ 7 P> Ta'ﬂ2,8 (f - (f)Br(zg)(t); QT('ZO)) 5

where k € R and ( )
2(n + 2s

= —, 3.2

tAniresrye (3.2)
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Proof. Since u — k is also a weak solution to (1.1), we may assume that k& = 0. Let us take a cutoff
function ¢ € C° (B m) such that
2

16
¥ =1on By(xg) and |Dy| < p—

and a smooth function n € C*°(R) such that

2s 2s 3 2s 2s 16
n=1lon (ty— e ,00)|, m=0on (—oo,tg— ST AT and |n| < ——-.
2 4 7,25 _ p23

With the aid of [11, Lemma 3.2], we deduce that

t t)? )2
ff [ 08 g gy [ L0,
Ar(to)d By (z0) J Br(zo) |z — y|t2s ten,.J B, (z0) res

2(1 s) ) 1 )
<ol wPdsvegmfl ulPasecf jgliuonia:
(r = )N, o) = P20z Qr(z0)

r

n+2s
Culy, O]
e (7“ - ) ]€x (t0) /"\B (wo) [y — To[" 20 ]{37.(%) (o) (1) doe it (3:3)
f(x,t) — f(y, 1)) (wpm)(z,t) — (wpn)(y,t))
* C]{\ (to)][B (20 ~/B (z0) vy dt

|z —y\"+s
+c(
r

n+s
T |f(x,t) — f(y ][
d [(wpn)(x,t)| de dt = E I;.
- P) ]{\,(to) /"\Br(zo) ly — o |”JrS (z0)

After a few simple algebraic computations along with the fact that p < r < 2p, we observe that Iy <cl.
Using Holder’s inequality, Lemma 2.1 and Young’s inequality, we have

1 1 2
3 24\ 77 I ,
ne(ff e ) (f <clff ) wgarff  wtdear
Qr(20) Qr(20) Qr(20) 8 Qr(20)

and
1
(n2s) — ¢ 2%\ %% n
I4§c< r ) Tail, 2, <M;QT(%)) /5/ +C< r > .
r—p re Qr(z0) r—p

2(n+2s) _ n
<ec < T ) Taﬂ%% <u (u)Br(aco)( )7Qr(ZO)) + 4y 2sj§[ |u|2da:dt +e ( r ) I,
/r - p Ts Q'r‘(z()) /r - p

where the constant 24 is defined in (2.1). On the other hand, we obtain

I
P S ORI D
A (to) ) By (o) J Br (o) |5C—y| 8

by Holder’s inequality and Young’s inequality. For the last two terms, we first observe that

|[f (@, t) = (f) B, (o) ()]
hale=c ( ) ][ (to) /"\B (To)]i (zo) ly — zo|nts (o), £} dey i

£ 1) = ()50 @) ][
d t)| da dt.
+c< > ]{\(to)/"\B (@) [y @™ Y BT(IO)K“W)(I, )| dz

By following the same line as in the estimate of I 2 in [13, Lemma 3.3], we estimate I5 as

I 2(n+2s) 2
Is+ 1 < = —|—c< ! > ][ ][ / |z, ) f(n 2l dx dy dt
8 r— Ar(to) ) Br(z0) J By (o) |z -y

+ cTaily ¢ (f = () B (zo) (1) QT(ZO)) :

Using the definitions of ¢ and 7, we estimate I as

t) )|? )|?
> ][ ][ / [u@, 1) n(fé’s)' drdydt + sup ][ e, OF 4|
Ap(to)J By(zo) J By(x0) |517 *y\ teA,(to)J B, (z0) 1Y

We combine the estimates I and I; for each i = 1,2,...,6 along with (3.3) to obtain (3.1). O

uyn

TS

uyn

rs

Next we give a gluing lemma.
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Lemma 3.2. (See [11, Lemma 4.5].) Let Q,(20) € Qp. Takep € C® (B;Tp (xo)) with ¢ =1 in B (20).
Then we have that
sup

(W), (1) = ()}, (t2)]
t1 ,tgeA,,(to)

t t
< cp*T 1][ / [u(z, ) n+2(g 1)|dydz+cp ][ / [ulz,t) - ni2§)|d dz
»(20) 7/ By(x0) |JU -yl o(20) JR™\ B, (x0) |y — o

) t
»(20) I B, (z0) |$ - | Qp(z0) JR™\B, (o) |y - 1’0|

+ cp%][ 9| dz
Qp(z0)

for some constant ¢ = ¢(n, s), where (u)qu (t) = W pr u(z, t)(x) dx.

We now show that L2-oscillation integral by the sup-norm is estimated by the sum of L?-integral of dsu
and dy f, L7-integral of g, and tail terms of uw and f. Before giving the estimate, we define a function
G:QxQr > Rby

G(z,y,t) = g(, ). (3.4)
We directly deduce that
1
/ lg|” dz ~n,s p TQT/Q |GIP dpir - (3.5)
Lemma 3.3. Let u be a weak solution to (1.1) and let Q2,(z0) € Qp. Then we have
| — (Wq, ol co 2 U = (W)Bay (o) () ’
sup dxﬁf][ D7dsu|” dp-i + ¢ Tail,s( . ; Q2p(2 )
teAp(to)]éa,,(zo) p2ster T J o, (o) | |“ dpir.e 0 2,2 2p)s+ 20(20)
_ NG 2
Lo D" do fI? djins + co Tails « (f (f)Bz,;( o) );Q%(ZO))
T JQs,(20) (2p)
1 8 g
va (L (@ TIG) dune )
TJQa,(20)
(3.6)

where ¢y = ¢o(n, s, L) is a constant.

Proof. We may assume that 2o = 0. Using (3.1) with r = 2p and k = (u)q,, we have

u(z, t) = (u)q, |* lu = (u)qs, * c | a2 [ SR
sup][ ——r,—dr < c]§[ e Az + = D7dof|" dprs + ¢ 2p gl) dz
teA, /B, prete Q (2p)2st2 TJo | | ‘ Q2p (( S |)

2w

2p 2p

. u— (u)B,, (1) o (DB ) ’
+ ¢ | Tail, 25 ( 2p) ;Q2p | + Tailas (2p)7 3 Q2p .
Applying (A.3) and (2.2) to the first term and the third term in the right-hand side of the above inequality,
respectively, we obtain the desired estimate (3.6). O

4. COMPARISON ESTIMATES
This section is devoted to establishing comparison estimates. We now assume
7 € (0,min{s,1 — s}). (4.1)

Before proving comparison estimates, we first give two lemmas. The first one is a self-improving property
for weak solutions to the corresponding homogeneous problem of (1.1).

Lemma 4.1. Let w € L? (A3; W*2?(Bs)) N L™ (As; L3, (R™)) be a weak solution to
wi +£§w =0 in Q3.

Then there are constants €9 = €g(n, s, L) € (0,1) and ¢ = ¢(n, s, L) such that

1 1
1r 2(1+<g) 17/ 2 —

(7][ |D7—dsw|2(l+so) d,Uzq—,t) 0 S c (7]1 |D7—dsw|2 d/lr,t) + Tailoo,2s (%333@)7 Q3>
TJo, TJos 3+t

_ 2 3
+c (sup ][ lw = (w) 5, )17 (Qw)BS @)l dx) .
teEA3J B3 3 (s+7)
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Proof. By Theorem A.1 below, we have

1

2+4e€ —
][ / [ dyy ey w2+ 292 1§c][ / dow2 2292 ) 4 i, (L)) o
s o=y 0r 52, o=y (2r)°

1
|w = (w)B,, (1)[* )5
+c| su 2 dx
(teAlz),,, ]{3% (2r)2s

for some constant €; = €;(n,s, L) € (0,1), where Q2, C Q3. By taking ¢ = ¢ and using (2.2), we get

1 1
2(1+eq) 2 _
(1][ |D7dsw|2(l+€0) d,LLT,t) 0 <ec (1][ |DTdS’LU‘2 d/J,T,t) 4 Taﬂoo,2s (%,QQ'r)
T 7)o, (2r)s+7

1
lw — (w) gy, (1) )
-|- C Ssu —_— e dZE .
(p ]i (2r)2G+7)

The standard covering argument along with Lemma 5.2 gives the desired result (see [13, Lemma 3.1] for
more details). O

The second one is a higher Holder regularity of weak solutions to fractional parabolic equations with
locally constant coefficients with respect to the spatial variables.

Lemma 4.2. (See [11, Theorem 1.2]) Let v € L? (Ao; W*2(By)) N L (A2; L, (R™)) be a weak solution
to
vt + CiQ(t)v =0 QQ,

where we denote Aa(t) = Ao o(t) which is defined in (1.8). Then for any « € (0,min {2s,1}), there is a
constant ¢ = ¢(n, s, L, «) such that

1
1 - 2 .
[U]C“’%(Ql) <c (T][Q2 |D dsU‘Q d,uT,t) + CTaﬂoo,Qs ('U - (U)Bg (t); QQ) .

We are now in position to prove the following comparison lemma.

Lemma 4.3. Let Q4 € Qp. For any € > 0, there is a constant § = 0(n, s, L, €) such that for any weak
solution u to (1.1) satisfying

L[ o s . u— (e, .\
; o |D dsu| d/lr,t + Talloo,2s T, Q4 <1 (42)
4
and ,
2 2
1][ (@71G1) dune )+ 1][ D7 dof P dptrs + Taila,, (L —DEO) o,
TJoy TJo, 47
5 (4.3)
+ (][ |A— (A)z(t)|da:dydt) < 62,
Qa2
there is a solution v to
vt + EiQ(t)’U =0 1n Q2
such that .
;][ D7 dy(u— ) Pdpry <@ and  [|D7dy] ey < (4.4)

1

where ¢ = c¢(n, s, L, T).

Proof. The proof is divided into several steps for the ease of readability.
Step 1: Flirst comparison estimates. For a fixed weak solution u to problem (1.1), we consider the
following problem:

(4.5)

wy + Eiw =0 in Q3,
w =u in (Rn\Bg) X A3 UB3 X {—323}.

We intend to apply Lemma B.1 for the existence and uniqueness of w. To this end, it remains to show
that u, € L2(A3; W*2(By))*. Indeed, using the fact that u is a solution to problem (1.1), we find that
for all ¢ € L?(A3; W*2(By)) N CY(As; L?(By)), there holds

\ / <u,¢t>dt\ S N ——"
As As
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for some c depending only on n, s, L, u, f and ¢g. Thus, we have the existence of w € L? (Ag; W2 (B4)) N
C (A3; L3(B3)) N L> (A3; Ly, (R™)) satisfying (4.5). Then ¢ := u — w solves
@i+ L3u— LYw = (=A)2f+g inQs.

With the help of an approximation argument, we take ¢ as a test function to the above equation to see

that for every T e (—32%,32%], setting Ag := (—3%°, T, there holds

;/BB( (2, 7)) dm+/A3/n/n (z,1) )|2|A(xi1fl’+lsdddt
<[] e - rw e - e [ ] el

where we have used the fact that (-, —32%) = 0 in By and the first condition in (1.3). Noting the bounds
on A, the above expression yields

1/ ply,t)
- x, T da:—|—/ / / dz dy dt
2 33( is Jr SRR |x - y|”Jr2s

dx dy dt
< L2/ / / (z,t) z,t Y t) | ————
o y, ) lo(@,t) — ¢ )le_y‘nﬂ
dx dy dt
+2L2/ / / fz,t) = f(y, D) |z, t)| ————— P +L2/ / lgp| dz . (4.6)
Az J B3 "\B4 | | As J Bg
::JQ 3

For Ji, applying Hélder’s inequality and Young’s inequality, we observe that

(- roon2g) Uohidos )

c dx dy dt
~{ |D7dof|*dp., t) 2
7_][ ‘ 0f| ot + = 4,2 //\3 /34 L4 Sﬂ )| | |n+2$

where ¢ = ¢(n, s, L). On a similar account, we deduce that

J1

IN

IN

de dy dt
Iy < /A/B/\B (1£.6) = (a0 + 1 .0) = (N () ol D 0

- (/A /B e (f)m(t)'?dxdt)% (/AS /Bg p(a,t)?dx dt)é
+c(/A3 /B% <p|2dz>% /Ag (/Rn\& f(y,t)|yn(+i)34(t)|dy>zdt 5.

Noticing the fact that ¢(-,t) = 0 in R™ \ Bs, using the Sobolev-Poincaré inequality, we get

d:vdydt c - 2 . f—(f)Ba(t) ’
t) y,t 2 - D T Tailp,s | ——5277; )
<sz ) ), ], e PR+ Hf, 1070 e, (=200

where ¢ = ¢(n, s, L). Now for Js, using Holder’s inequality, Lemma 2.1 and Young’s inequality, we get

lo(z,t) — oy, 1) 1 2
Js <c (/ g(x,t)|"dx dt) / / / dx dy dt + — sup p(x,t)|*dx.
, | ( )| 4L2 is JBs JBs ‘x _ |n+25 4L2 tehs J B, ‘ ( )l

Therefore, using the estimates of Ji, Jo and Js in (4.6), taking supremum over T’ € (—3%,32%%] and
recalling the definition of G from (3.4) along with (3.5), we obtain

1
sup][ (u—w)?(x,t) de + f][ |D™ds(u —w)|? dpr s
Bs TJQs

teAs,

1 5 - ¢ 2
< (][ (4577|G|)W duT,t) + E][ |D"do f?dpirs + CTailz,s(M; Q4) <cd?, (47
TJQ, TJQ, 47
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where we have also used (2.2) and (4.3).
Step 2: Uniform self-improving inequality for w. We first observe from Lemma 4.1 that

1 1
2(1+eq) 2 —
<1][ \Dfdsw\Q(HeO)de,t) ’ §c<1][ \DTdSw\Qd,um) + ¢ Tailo 26 (%;%)
TJo, TJos 3T
1
|w — (w) By (1) )5
+c| su —dx| ,
(tGApS ]{BS 32(s+7)

where €y = eg(n, s, L) € (0,1) and ¢ = ¢(n, s, L). Furthermore, by using (4.7), we have

1 1 1
1 2 1 2 1 2
( ][ D" dyw? d,m> < <][ D7 dy(u — w)|2duT,t> + (][ |Dfdsu2du7,t> <e
Qs TJQs TJQs
Using (3.6) with a slight modification, (4.7) and (4.2), we next have

1 1

— t 2 2 _ t 2 2 _ 2
(Sup][ = ()5, (1) dx) §C<Sup][ IU<2u>B(>Id$> +c(sup][ |u2wld$) <
t€A3J By 3 (s+7) teA3J By 3 (s+7) teAsJ Bs 3 (s+7)

For the tail term, a simple computation together with (4.7) and (4.2) yields
. w — (W), (t) ‘ w — uf? u— (u)B,(t)
Talloogs (354»7" Q > < sup ][ . W dr + Talloo 2s ?, Q3

teA3J B

N

Consequently,

1
1 3(T+e0)
<][ |Dfdsw|2<1+fo>dum) Y <e (4.8)
TJQ,

Step 3: Second comparison estimates. For w as in Step 1, we consider the following problem:

vy + £32(t)’11 =0 in Q27
v =w in (R"\ By) x Ay U By x {—22%}.

Similar to Step 1, we have the existence of a unique solution v € L? (Ag; W*2(B3)) N C (Ag; L?(B2)) N
L> (Ag; L3, (R™)) to the problem (4.9). Taking ¢ := v — w as a test function (upon approximation) to

(4.9)

G+ LA, w0 — LAmw = Lyw — L3, pw  in Qs
and then using (1.3) and Holder’s inequality, we obtain

1
/ D732 dytrs + sup / 13z, O)Pde
teAs J By

w(z, t) — wly, )|, 1) = Py, 1)]
<c/A2 /32 /B2 (x,t) — (A)2(2)] 2 — g dx dy dt

1 3 1 ﬁ
ol d,m) (T )™
Q2
€0
2(1+eg)
(/ // \ &5 dmdydt) o
As J By J By

Finally, up on using the vanishing condition on A and (4.8), the above expression yields

1 0
f/ |D7ds(v — w)|* dpr s < 5T , (4.10)
T JQ,

for some ¢ = ¢(n, s, L). Coupling (4.7) with (4.10) and using triangle inequality, we get the first part of
(4.4) by taking ¢ sufficiently small depending on n, s, L and e.
Step 4: Uniform bound on |D7dsv|. From Lemma 4.2 along with (4.1), we observe that

1

2

T |'U(.T,t) - U(yv t)|
[D7dsvllpoe () = sup  —
@yeo, 1T =Yl

1 ' _
<c (;]Z |D ds’l)|2 d,ur,t) + cTailoo 25 (v — (V) B, (t); Q2) ,
Q2

where ¢ = ¢(n, s, L, 7). Proceeding as in Step 2 and [13, Lemma 3.3], it can be shown that the right-hand
side quantity of the above expression is bounded by a uniform constant ¢ = ¢(n, s, L, 7). This completes
the proof of the lemma. O

We finish this section by giving a non-scaled version of the above lemma and this directly follows from
Lemma 4.3 along with a scaling argument (see Lemma 1.2).
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Lemma 4.4. Let Q20p,(2i) € Qp. For any € > 0, there is a constant § = §(n, s, L, €) such that for any
weak solution u to (1.1) satisfying

2
1][ 9 . u—= (U)320 '(m-)(t)

- |D"dsu|” dper ¢ + Tailog 25 it s Qoop, (1) | <1
= Qmpi(zi) lo'e] (20pi)s+T P ()

and

2 2
1][ s—T i K 1 T 2 . fﬁ (f)320p~(93i)(t)
! ((200)71GY durs |+ 1 |D7dof dyar + o, L2020 Qg (24)
(T 220p; (#i) T Qz0p, (21) (20p:)

2
+ (][ |A - (A)lopivl'i (t)‘ dx dy dt) < 627
Q10p; (2:)

then there exists a solution v to
v + ﬁilopi,zi(t)v =0 in Qiop, (2i)
such that

1
7][ D7d(u— o) dpirs <& and [ D7dgoll gy, (o) < 6 (4.11)
s, (20) s

T

where ¢ = ¢(n, s, L, T).

5. COVERINGS OF UPPER LEVEL SETS
In this section, we construct parabolic cylinders covering the upper level set of dsu, where
u€ L? (Ay; WH2(Bs)) N C (Ag; L*(Bs)) N L™ (A2 L3, (R™))
is a weak solution to the localized problem:
up + LYu = (—A)2f+g in Qo. (5.1)
In addition, we assume that f € L? (Ag; L! (R™)) and

/ D7 dul? + [D7dof|? + |G]Y dyir.s < oo,

Qo2

where p € [2, ¢],

and the constant v is defined in (3.2). Let us denote

1 2s
= = 5.3
Q=3 <q+ T T) (5.3)
to see that
2
s>74 — (5.4)
q
and
q7<gq, (5.5)

which follow from the choice of 7 given in (5.2). We point out that (5.4) and (5.5) are needed to handle
the tail induced by the right-hand side f and to employ Fubini’s theorem, respectively (see (5.27) and
(6.10)). We now present the main proposition of this section.

Proposition 5.1. Let 1 < r; <17y < 2,0 >0 and u be a weak solution to (5.1). Then, there are two

families of countable disjoint cylinders {Q,, (2i)};5, and {Qr, (xl,j,$27j>t0,j)}j>o such that

U = {(,y,t) € Qp, : |D7dsu(z,y,t)| > A} | | Q= (2) Ul U, @jzetog)
i>0 ’ >0 !
(5.6)
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whenever X > Ao, where

1_1 1 1
cra 1 ’ : u— (u)B,(t) lu— (u)q,|* , \?
)\0 = %a (*7[ D7d5u|p d,U/T,t) + Talloogs (72, QQ + sup ———x2 dx
(7"2 _ 7‘1)57 < T 0, ‘ 2s+T tehs ) By 22s5+27

1

073*% 1 1 { - q % . f- (f)BQ(t)‘ 1 o , %
mg <(T Q2 ‘D dOf' dlj’Tvt) Ta'llqu (277’Q2> + (F][QQ(Z | |) d“"'i) )
(5.7)

for some constant ¢ = c¢(n,s,L,q, 7). In particular, there exist constants a,, = a.(n,s,L,q,7) € (0,1],
ar =as(n,s,L,q,7) € (0,1] and ag = a4(n,s,L,q,7) € (0,1] such that

Zum (Qp, (2i)) + Zﬂm (QF, (x14, 72,5, t0,5))

i>0 >0
c ¢ ;
a D7 dal dys s [ D7 dofldpire (5.8
AP J g, n{|D7dyul>au N} (6N Jo,, (1D do fl>ars0} (58)
c
+ 7/ ‘GP/GO dﬂr,ta
(6N Jo,,nflc1>(agn)b- G5 1)
where we denote .
2n + 4s =
b= — T nd G = 7d . 5.9
ke wa Go= ([ b ae) (5.9
In addition, we get that
ﬁ
][ | D7 dsulP* dpr < cogN  for any j (5.10)
Q 1 (w1,5,%2,5,t0,5)

587,

J

and for some constant coq = Coa(n, s,p), where the constant py is defined in (2.1),

Remark 5. As we pointed out earlier, (5.2) is only employed to control the tail term of f. Thus if f =0,
we can remove the condition (5.2).

Proof. We first define the functional

L 1
P B 9 1
@D (ZOa T) = ][ |DTds’LL|p d,uTyt —+ T% sup ][ % dx
Qr(z0) teA,(to)J By (z0) 7

1 ~ q 1 v
+ g (][ |D7d0f|q d“‘r,t) + g <][ (7‘57T|GD’Y d.u'r,t>
Q. (z0) Q:(20)

for any zp € @, and r > 0 with Q,(29) C Q2. The rest of the proof is divided into 8 steps.
Step 1. Coverings for the diagonal part. Let us take

1
e (O % w0 o el
Ao = o = D7 dsul? du-, ) + Tailoo, 26 ( 2220Q ) + (sup][ 2 dx)
0 (r2—7"1)5T < T Q2| | t 2 9s+7 2 rens) B, 925427

(([71_][92 |D7'd0f|qd’u/7_’t) a +Taﬂqys (W7Q2) + (%]Zgz (25*T|G|)'y dNT,t)’Y> 7

(5.12)

(5.11)

Mr—'ra 1
+ NG
(7“2 —7r1) s 0

where M > 1 and k € (0,1] are free parameters which we will determine later (see (5.18) and (5.35)).
More precisely, the parameter M will be used to handle the diagonal part and the parameter s will be
used to handle the non-diagonal part. We next take a positive integer jo > 5 such that

16(co + ¢+ 2¢4)?

) < gjo(s-7-%) (5.13)
11—t %~

where ¢y is the constant determined in Lemma 3.3, and ¢ and ¢, are the constants determined in (2.6).
Using (5.3), we observe that the number jy depends only on n,s,L,q and 7. We then note for any
20 € QTla

Q

5% ><2j0+3R112 (ZO) C QTQ’
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where we denote

W |=

Ris =273 x57% x (s(ry —r1))*. (5.14)
Let us now define for A > Aq,

0<p<R1,2

D, = {Zerrl : sup ©Op (zo,p)>/@)\}.

Since 7 < 1, we observe that for any zp € Q,, and r € [’Rl,g, 5% x 2j°+37€1,2},

1
P 1 ~ 1 A

][ D7l dpey |+ 5 ][ D7 doflTdprs )+~ ][ (I dpary | < 2
Q. (20) 0 \Jo,(z0) 0 \Jo,(z0) 4

holds by assuming

Q=
2=

M Z 210n(j0+4+5s_1)875Tn. (515)
In addition, using Lemma 3.3 and the fact that 7 < 1 with v < 2, we have

1
2 3
u— (u >
v sup ][ —| (25)&:( 0l dx
teAr(to)d Br(zo) T

1 1
3 2 vy
< co <][ |D” dsul? duf,t> +co <][ |D"do f|? duf,t> +co <][ ((2r)*~"IG|)” dum> (5.16)
Qar(20) Qar(20) Q2 (20)

u — () By, (29) (1) 1 = (f)Bay(zo)(t)
T_'—(T); QQT(ZO)> +co7?2 Tail s (Tj), QQT(ZO)>7

T T

=+ C()T% Tailg,Qs (

where the constant ¢g is determined in Lemma 3.3. By Holder’s inequality and (2.6), we further estimate
T, and T5 as

Ty + Ty < cor? Tailp 25 (u — ((1;)7,]?;(:0)(75” ; Q2T(ZO)> +cor? Tailg s (|f — (]E;f,;;(IO)(tH ; er(zo)>

9 \*TTHY 3 9 \TtF a
< cpep | =—— D7d.ul? ) +coc () <][ D7d q)
o (Rl,z) <][2| - ) "I\ R 2‘ of]

5n 5n

(5.17)
where the constants ¢, ¢, and ¢ are determined in Lemma 2.3. Using Remark 4 and Holder’s inequality
to the third term on the right-hand side of (5.17), we deduce from (5.16) that

1

2 2
1 — 2 A
T sup ][ —|u (gs )—327( ol dr| < fia
teA(to)) By (o) r 4

5n

M = (cocq + co)210nUotatss™1) o= 5 (5.18)

which clearly satisfies (5.15). As a result, we observe that for any zp € Q,, andr € | Ry 2, 5% x 200T3R 1 5,

holds by taking

Op(z0,7) < KA. (5.19)
Therefore, for each z € Dy, there is an exit radius p, < Ry 2 such that
Op (z,p,) > kXA and Op(z,p) <kA ifp, <p< 5% x 2j°+3R172. (5.20)

We first observe that if Q,(z1) N Qy(22) # 0 with § <7 < 2p, then we have Q,(22) C Q5%p(z1). Thus we
apply Vitali’s covering lemma to the collection {Qqs0,_(2)}:¢p,,, in order to find a family of mutually
disjoint countable cylinders
{Quop., )} suchthat Diac Qo) € U@y, (20 (5.21)
- 20€D A =0
In addition, by the proof of Vitali’s covering lemma, we get that for any z € D), there is ¢ such that

200 _ o do+1
— = 27°0p, <277 p,. and  Qio, (2) C Q.1

o G (5.22)
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where we denote

pi =2%p,.  for each i. (5.23)

From (5.20), we have

' u— (o, o? \}
=i (20 1€h,., () By, @) P

1 ) 1 .
w5 L i) w5 (£ () TION duns
Qi’zi (24) Qﬂzi (2:)

We first note from (2.6) with 8 = s, § = s and k = jy that

u— (u o et 2s
7—% Tail, 2. (M,Q% (zi ) < szz + +2 <][

(2p)s*7

(5.24)

Q=
2=

S =

|D"dsu|? duﬂt)

24 p(#1)

fu = (W), o (D

1
l 3z
1 .
+cry E 1 (=stm) sup ][ dx
teny;, () By (2) (2p)2star

Jj=jo+1

1
1o 2\ - 2
oty e (7) (Sup f o=l dm)
p teA2J By 22s+27

é 2\ 5tT u— (u)B,(t)
+ W (;) Talloo,2s (T,Q2 )

(5.25)

where p = p,, and [ is the positive integer such that 2j0+1R172 < 2lpzi < 2j°+2R1,2. ‘We point out that
for the last tail term in (5.25), we have taken supremum in the time variable for the expression in (2.7).

Similarly, we observe

o i (g 0

1
_ a ! . 2s _
Zz s+‘r+ (][ |D7d0f‘q d/JJ‘r,t) +Cq Z 21(—s+‘r+7) (][ |DTdof‘q d/~£‘r,t> (526)
Qyj, (i) Qyj, (i)

Jj=jo+1
v (277 ][ ID7dof|% d T (TR R OO LA R
q P) o 0 Tt (2—T1)"+2$ P q,s o7 ;&2 |,

where we have used Hélder’s inequality for the third and fourth terms in the right-hand side of (5.26).
We combine (5.16) with r = p.,, (5.25) and (5.26) together with (5.4), (5.23) and Remark 4 to get

1
1 ][ |u_( )sz (Zi)l2 d 2
T sup —T X
teAPZi (t;) szi (x4) pzf+2

1 1
P 5 q
s(f |DTdsu|pduT,t) +<][ DTdofquum> +(][ ((p)"IG1) dum>
Qp, (24) Qp, (20) Qp, (21)

l 1
z : i(—s+T) Y] B |U - )32( )‘ 2 (527)
2 or (ZJ7 2 pZ1) r (2J0 R1 2) (tSEuAP; 22s427 e

Jj=jo+1

1 T4 28 1
i(—S+T+2TS) Y 2 a4 ][ T q a
+ CoCq |: } 2 4 C'_')D (ZJ7 2 pzl) + 2j0R1,2 o |D dof‘ dﬂ‘ﬁt

Jj=jo+1

. L)sn <Taﬂoo‘25 (%L()Q ) + Tail,. . (%;Qz)) 7

(ro —r

1
P

+ cocC

where ¢ = ¢(n,s,L,q,7). We here highlight that (5.4) is necessary to handle the sixth term in the
o0 . o do(—s+r+2s
right-hand side of (5.27), as > 9i=s+7+%) < % We further estimate the right-hand side

j=jo+1 1-2
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2

T

of (5.27) using (5.4), (5.13), (5.14), (5.18) and (5.20) as

1
= (Wa,., ol \*?
sup T da:
teApZi (ti) \- B,JZi (x4) Pz;

1 1
P q vy
T T q sS—T )‘
<(][ D dSUI”duf,t) +<][ D doflqduf,t> +(][ ((p)"I1)" dum> + 5
Qp; (21) Qp,; (24) Qp,; (24)

Plugging the above estimate into (5.24) along with (5.23), we find that

v ~ 3 . 1
A< o (f |Dfdsu|PduT,t> +3 (f IDTdoflqduT,t> +3 (f ((p)*"IG1)" dum>
QPi (ZI) Qpi (Z’L) Qpi (Zl)

for some constant ¢ = ¢(n, s, L, q, 7). Therefore we deduce that one of the following must hold:

1

A P A
”—Sc][ DT dpn, | . < S ][
3 20, (50 355

|D7d0f|[jd/i7‘,t> :

Qp, (zi
X ( (5.28)
KA ¢ e K
5 <3 <][ ((0)*71G))" dum>
Q=)
If the first inequality or the second inequality in (5.28) holds, then we get
C C ~
o Q) < o [ DT AP des o8 e (@u(e) € i [ DT dof i
e (kAP Jo,, (z0) ' e (KON Jo,, (z) '
(5.29)

On the other hand, if the third inequality in (5.28) holds, we observe that

c s—T c s—T —
Mt (sz(z7)) < (K(S)\)’Y /Q (=) ((pl) |G’|)’Y dlLLT7t = (H(S)\)’Y /Q (25) ((pl) |G|)7GOGO 1d:u"r,t'

We note from (5.9) that

y—br y—br

Yy vy
PTG <) (/ Igl”> <ep]CT <][ anitely d/m)
Qpi<zi) QP@ (23)

y—br

<e (][ (o) "IG3])" dum>
Qp, (2i)

Using the above two estimates along with the third inequality in (5.28), we have

c
(0 () € — YGo djirs. .
prt (Qp (21)) BN /Qpi(m |G"Go dpr s (5.30)
We combine (5.29) and (5.30) to see that
C C C

pirt (Qp; (2:)) < / D7 dgul? dpr,; + / |D7do f|% dpr,s + / G|"Go dpirs.
¢ (@l (kAP Qpim)' i (KON Jo,, (2 e (OrA)'T o, (m' t

i

A suitable choice of the constants G, = au(n,s,L,q,7) € (0,%], ay = ag(n,s,L,q,7) € (0,1] and
ag = ag(n,s,L,q,7) € (0,1] yields

C

tre (Qp; (21)) < =<7

C
(KA)P /Qp,iui)m{mdswaum

|D"dsu|® dpre + ~/
(KON Jo,. (z)n{ID7do f>asr7}

|D7do f|? dpr,e

C

|G|"Go dpur,e.
(ROA)br /Qpi (z0)N{IG]7 > (agrdN)br G}

(5.31)

Remark 6. We here remark on the second term appearing on the right-hand side of (5.11). We first note
that this term is used to handle parabolic tail terms. Since u € C (—225, 228, L2(B2)), there may exist
some points zg € @, such that ©p(zp, pz,) > kA and

1

TR . lu—(w)q,. ()] A
][ |D7dsul? dpr < A with 73 sup ][ 23_2;) (o) de | > r ,
Q.4 (20) 2 1€, (t0)J By, (20) P 2

Nl
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where p,, is the exit-radius of the point zy. However, from energy estimates and rigorous tail estimates,
we still have a sufficiently good bound on the measure of such cylinders as in (5.31), which is an essential
ingredient to obtain L4-regularity of D7 dsu.

Step 2. Coverings for off-diagonal parts. We first note that for any (z,y,t) € Q,, and r €
(O, 5% x 2j0+37€172}, we have

Q,-(l‘, y7 t) C QT2’
where the parameter Rq 2 is defined in (5.14). Let us define

1 1
? u— (o (20| :
B0 Qo) = [ 10ttt )+ (o [ M Ce ey,
9, (20) teA,(to)J By(0) r

1 ~ ]
+3 (f |DTdof|qduT,t> ,
Q. (20)

for any Q,(z0) € Q2. Then we first note that for any p < r |

1
2 2 gts+T 2 3
u— (u 2 —
sup ][ Ju= o, 2(+)2Q”| dx <2(T) sup <][ lu= (o, Q(Qi)fJ d:ﬂ) .
ter, \JB, P p tea, \UJB, T

We now intend to employ exit-time arguments, to this end, we first introduce a set function which is
defined by

(5.32)

s+
A(B.) = (Wm) if dist (B},BE) >, (5.33)
1 if dist (B}, B?) <,
where B, = B! x B?. We next define a functional
% 2
|D"dsul? d,lir,t) + A (Br(z1,22)) > Epr (u; Qr(xa, to))- (5.34)
d

=1

Oop (u; Qr(z1,x2,%0)) = (fg

r(z1,22,t0)

We then observe from (2.4) and (5.19) that for any r € [5_37%1,2, 5% x 2j0+37€1}2},

Oop (u; Qp (w1, w2,t0)) < A
holds by taking

- (5.35)
K= , )
2450 5% (O, + 1)
where the constants C,, and jj are determined in (2.4) and (5.13), respectively. Let us define
ODy = q (z1,72,t0) € Qp, : sup  Oop (u; Qu(w1,T2,t0)) > A
0<P§57%R1,2
For each (x1,x2,t0) € OD), there is an exit-time radius 7 < 5_%73172 such that
Oop (u; Qp(x1,22,t0)) <A if p>T and Oop (u; Qr(x1,x2,t0)) > A (5.36)

Using Vitali’s covering lemma, we find a collection A= {szo@- (215,225, tO,j)}j>0 whose elements are

mutually disjoint and satisfy

15,725, %0,5),

obyclJo,

%QjUFj(
i>0

where we denote by 7; the exit-time radius of the point (1, x2, j,t0 ;). Therefore, we have

{(I‘,y,t) € QTl : |D7d8u(‘ray7t)| > >‘} C U Qség_(l‘l,ﬁxljvto,j)a (537)
>0 !
where we denote

7, = gior, (5.39)
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Remark 7. We give some remarks on the functional defined in (5.34). We first note that the second
term in the right-hand side of (5.34) is needed to obtain a bound on the LP#-norm of D"dsu (see (5.48),
below). We now explain how to obtain a good upper bound on the measure of o (@1,5,2,5,t0,;) € A
which is an essential ingredient to get Li-regularity of D”d,u. Indeed, by (2.5), (5.13) and (5.38), we
observe

pirt (Qr, (w15, 22,5, t0,5)) < cpire (Qr, (21,5, T2,5.t0,5))

for some constant ¢ = ¢(n, s, A, ¢, 7), which implies that it suffices to investigate a good upper bound on
the measure of Qr (215,22 j,t0,7). Suppose that the selected cylinder Qz, (71,5, %2, to,;) is close to the
diagonal. In the next step, we will see that such a cylinder is indeed contained in a diagonal cylinder
which we did choose in step 1. Therefore, the measure of Qr (1 7,2 ,%0,;) has a good upper bound as
in (5.31).

On the other hand, if the selected cylinder Qz, (1,5, %2 5,%0,;) € A is not close to the diagonal, then
from (5.36), we observe that there holds

S

1 I
4 - (Nm (Qr; (w15, %2,5,10.5)) Jor, (21,5025 0 )0{ID7dul > 24 }

2
ZEp,T (u; Qs (%t,j,h),j))] .
e

|D"dgul? d,LL7—7t>
(5.39)

2 (Br, (21,5, 72,)) "

Our approach to obtaining a good upper bound on the measure of such cylinders depends on the size of
E, - (u; Qr,; (za,, to,j)). Indeed, if E, - (u; Qr,; (zaj, to’j)) < 1—’\6, then the second term on the right-hand
side of (5.39) can be absorbed to the left-hand side. Thus we have a good upper bound on the measure
of O (71,5, 22,5,t0,5) € A (see (5.61) in step 6 below). We next suppose Eyr (u; Qr, (wa, to,;)) = 1—’\6
Then we first note that if

A<a+b+c= (%)p<a1’, (%)[1~<bq~ or (%)7 <, (5.40)

where a,b and ¢ are nonnegative constants. Applying this simple observation to (5.39), we get (5.64).

Thus it remains to obtain a suitable upper bound on the second term in the right-hand side of (5.64). To

this end, we find a suitable diagonal cylinder which was chosen in step 1 and contains Q5 1 (xa,to,;), and
ST

then we use some combinatorial arguments by taking advantage of the factor 2 (B;j (@15, l‘g,j)) (see step
7 for more details). As a result, we obtain a good upper bound on the measure of Qz, (21,j, 2 j,t0,;) € A.

Step 3. First elimination of off-diagonal cylinders. We now prove that if Oz, (21,5, 72;,%0,;) € A
satisfies

. 1
dist (BS%?J- (xl,j); BS%FJ' (.'L'QJ‘)) < b5 rj, (541)

then
Q5%Fj (Cﬂl,j, xZ,j;tO,j) C U Q5%p,; (Zl) . (542)

By (5.36), one of the followings must hold:

>

. A A
<][ | D" dsul? d/h,t) > 37 Epr (u; Qr; (w1, t0,4)) > 3 Epr (u; Qr; (w2, t0,4)) >
Qr; (¢1,5,®2,5,t0,5)

(5.43)

Suppose that the first inequality in (5.43) holds. We now observe
1_
5s

(
B .Tb(l'l,j,xg’j) C 85%?(1‘1’j).
3

Therefore, using (2.4), (5.12) and (5.35), we obtain

i »

P
¢ (Qr; (1,5, 2,5, %0,
][ D7 dl? s | > | et 720 f0) ][ D7 deul? dpirs | > R,
Q 2 (1,5,t0,5) Lort (95%; ($1,j7t0,j)) Qr; (z1,5,%2,5:t0,5)

587,
7 J

2
s

which implies that ©p ((w1,5,t0,7), 5

Q5§;j (#1,5,t0,5) C U QS%pi (i) -
K]

’fj) > kA. By the fact that 537; < Ry, and (5.20), (5.21) yields
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We next assume that the second inequality in (5.43) is true. By (5.35), we have ©p ((xl,j, to,5), 5%Fj) >
KA. Since Q 1 (Ild,mg,j,tod) CQ.oz. (a:l > to;) which follows by (5.41), we have

Q5%Fj (71,5, 72,5,%0,5) C Q5gFj (71,5,%0,5) C U Q5%Pi (i) -
i>0

Similarly, we get (5.42) if the third inequality in (5.43) holds. Thus, we now focus on the following
subfamily of A:

Q?j (w14, 22,5,t0,5) € A and
A= Q5 (w15, 22, t0,5) Q1 (21 22,t0,) ¢ U Q5zp (2;) for each i (5.44)
ST 30 s pi

Indeed, we take cylinders Q z (z;) instead of the cylinder Q 1 (2i), in order to eliminate other types

of nearly diagonal cylinders (see (5.52) below). "
Step 4. Off-diagonal estimates. We now obtain a bound on LP#-norm of D"dsu and a reverse

Holder’s inequality on cylinders which are far from the diagonal.
Lemma 5.2. Let Q = Q,.(x1,x2,ty) C Q2 be such that
dist(B,(z1), Br(z2)) > r. (5.45)

Then there is a constant ¢ = ¢(n, s,p,T) such that

1
( | D7 dgu|P# d/l,q—_’t> ” < c¢Opp (u; Q).
Q

Proof. We observe from (5.45) that

dist (Br(z1), Br(z2)) < |z —y| < 5dist (By(x1), Br(22)) (5.46)

whenever z € B,.(z1) and y € B,(z2). The above inequality and Jensen’s inequality yield that
r2n c(n)r??

< (Br(z1,22)) < =
c(n) dist (B, (x1), Br(x2))" %" ~ pr (B ) dist (B, (21), By(12))"

(5.47)

and

][ |D" dsul”# dprs
Qr(z1,22,t0)

C
< Foo e - dea
dist (B, (21), Br(z2))P# 7 m to)/ By (a1)

f’ (2, £) — (1) 5, oy (D)7 2
Qr(xg,to)

crP# (s+7) 1

<
~ dist (Br(x1), Br(z ))P#(9+T) Z P4 (7

=1,
+ crP#(s+7) ][ |(U)BT(x1)(t) — (u)Br(w2)(t)|p# "
dist (B, (z1), Br(z2))P#1 Ja, t0) 7P (s+7)

=J

for some constant ¢ = ¢(n, s,p). We now further estimate I, Iy and J as below.
Estimates of I; and I,. Using (5.45) and Lemma 2.1, we estimate I as

sp
1 - w— Nz n
Ia<c 7][ |D"dsul? dpire sup ][ | ;?H(Td tO)‘ ;
TJQr(zq,t0) teAr(to)J By (zq) r

where we have used the fact that

‘ 2

2
sup ][ |U — (U)Br(zd)(t)’ dx < sup ][ ‘u - (u)Qr(zdvtO) da.
teA,(to)J By(z4) r2star T teAn(to)d Br(za) r2st2r

Applying Young’s inequality to the above inequality, we see that there is a constant ¢ = ¢(7) such that

2

P#(SJF"' Z

dist (B, (1), By(x2)) e dlst (By(21), Bp(z2))P# 1)

2

Z Qr .’L'd,to))‘|

d=1

Tp#(s+7—) crp#(9+7)
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Estimate of J. We first note that
Py
2

2 _ ) - »
Z u— (u - U oot W0, (a.
J<c sup ][ | ( 2)(?:2( d,to)| de + |( )QT( to) ( )Q (22 t0)| 7

d=1t€A-(to) \/ By (xa) resTEr rp# (s+7)

where we denote the last term by J. In light of Jensen’s inequality, (5.46) and (5.47), we estimate J as

P

# P
- K - Py (s+7) L3
A A R B e § AL
r(z1,t0) J Br(z2) rP# o}
We finally combine all the estimates I, Is and J to get the desired result (5.48). O

Remark 8. Let Q?j (Il,j7x27j7t0,j) € .A By (541) and (544), we deduce QE’)%?} (1‘17]'71‘27]'71507]‘) satisfies
(5.45). In light of (5.36) and Lemma 5.2, there is a constant c,q = ¢oq(n, S, p, 7) such that

1
Py

][ |D7dsu|p# d/L7—7t < Cod)\- (548)
Q 1 (z15w2;5t0,5)

557

Step 5. Decomposition of the family A. We now decompose the family 4 into subfamilies AD) =
2 2

N AD{ and NDy = |J ND{ for

d=1 d=1

A
AD;I\_{Q_leB2><IEA: Ew(u;deI)gw} (5.49)
and

16

Recalling (5.35), (5.32) and (5.20), we observe that for any O, (1 j,2,%0,5) € N DY, there is an exit-
radius pz, 1,,) = T; such that (5.20) holds with zo = (z4,,t0,;). Thus, there is a cylinder Q,,(z;)
which is selected in (5.21) such that

ND;IZ{Q:leB%deA: Ep,T(u;deI)>)\}.

Pi j
Qaior, (T 5, t0,7) = QF, (Td,j:t0,5) C Q210p(md,t0)(xd,jvt0,j) - Qﬁpi (z:) and 5 < 27°D(20,t0) < 2pi-
(5.50)
We have used (5.22) to obtain the second observation in (5.50). Therefore, the set

Q7 (xa,,t0,j) CQ 1 (z:), where i is the smallest integer
Al =1 O (21,5, %25, t0,;) € NDY - ].( ! ) 5e P’/( ) ; (5.51)
satisfying (5.50) with p; < 2'F; < 2p;

is either a singleton or an empty set for any > 0. Then we will verify
pi < dist(Br, (z1,5), Br; (22,5))- (5.52)
Suppose not, then we have
lzq j — x| < |zg; — xa ;] + |Ta,; — x| < 5pi + 5%pi <2 x 5% p;,
where d' € {1,2} \ {d}. Consequently, we have
Or, (z1,5,72,5,t0,5) C Q5%pi(21)a

which contradicts the definition of A defined in (5.44), and the claim follows.
We next define for any k& > 0,

Agj,l,k = {Q?j (1’17]',1'27]'7150’]') € A;Ji,j,l : 2kpZ < diSt(BFj (xlyj)7BFj (II/'Q,]‘)) < 2k+1pi} (553)

to see that

NDS=UJU U A (5.54)

i § 1>0,k>0
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We next observe that, for every Qg (21,5, 22, j,t0,j) € N D¢, there holds

1

P

A (B?J (1’1,j,z27j))s+‘r Ep(u; Q?j (l’d’j,to,]‘)) <cA (B?J (1’1,j,$27j)) <][ |DTdSu‘p d,UJ‘,—’t)
Q

7 (zq,5,t0,5)

1
A (Br, i T2 ) q
i C ( J(a(;l,] 1’27])) <7[ |D7d0f|q d,U/T,t>
J Qr;(za,j:t0,5)

1
A (37(331 j7332j)) < S v A
i FTIG) dpirs |+
d Qr; (za,j:t0,5) ! 100

(5.55)
for some constant ¢ = ¢(n, s, L, ¢, T), where the constant 7; is determined in (5.38). Indeed, by following
the same lines as in the proof of (5.27), and using (5.13), (5.36) along with the fact that

A (B, (21,5, w2,5)) <A (Ber, (21,5, 22,5))

for any ¢ > 1, we get
1
1 lu— (W, , \”
A (Br. (x1,5,22,5)) T sup ][ — 27 dx
( J ( 7 J )) (tEAT»(tO) By (z0) r2s+27

1
P

< A (Br, (21,5, %2,5)) (7[

. QQjO?j (zq,j.t0,5)

|D"dsul? du77t>

1
A (Br, (21,5, 22,5 ; ! ’
" c ( ](§1J 1‘24)) ][ |D7—dof|q d,ur,t + (][ (T;—T‘GD'\/ d#r,t) + ﬁ
Q2j0?j (zq,jt0,5) Qo (za,j:t0,5)

for some constant ¢ = ¢(n, s, L, ¢, 7). Thus, using (5.32), (5.13) and (5.38), we get the desired estimate.
We end this step with the following lemma which is an essential ingredient for the next step.

Lemma 5.3. Let us fix i,1,k >0 and d € {1,2}. Then there is a constant ¢ = ¢(n, s, L,q,T) such that

> / |D7dulP dpiy,y < 270 / |D7dul? dpprs,  (5.56)
QFJ- (z1,5,22,5,t0,5)€ U A2 QFJ' (xa.j:t0.5) QS% (21)
i>0

J:lk i

> / D7 do f|7 dptry < 2" R / ID™dof|Tdure  (5.57)
Or; (ml,j,mz,j,to,j)e_.yo Aj,},z‘k Qs (zd,5t0,5) Q5% b (21)
and
> / (7 7IGY) dptrs < c27HHP) / (03 TIGI) dpirs. (5.58)
Qr; (21,5,%2,5,t0,5)€ U Af; Lk Qr; (zaj:to.5) 95%,” (z:)
FE I
Proof. We will prove only for d = 1 and we first claim that if
ﬂ Q5 (21,5,t0,5) #0 (5.59)

JjeJ
1
Or; (T1,5,m2,5,t0,5)€ U Aj 5,
20

holds for some index set J, then |J| < ¢2™(**) for some constant ¢ depending only on n,s,L,q
and 7, where |J| denotes the number of elements in the set J. To do this, suppose that (z1,ty) €
Njes @7 (z1,5,%0,5). Then, by the definition of the set A},M,k given in (5.53), we get

dist(z1, B, (x2,7)) < 2" p; + 27 < 2¥p; (5.60)
for some constant ¢ = ¢(n, s, L, q, 7), where we have used the fact that 7; < 2'=!p; by (5.51), (5.38) and
(5.13). Since {Qf, (xl,j»xz,j»to,j)}jeJ is a collection of mutually disjoint sets, we note from (5.59) that

{B;j (mg’j)}jeJ also consists of mutually disjoint sets. This along with (5.60) implies

|J| < ’BC?kPi

| B,

< Czn(k+l)
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for some constant ¢ = ¢(n, s, L, g, T), where we have used (5.38), (5.13) and the relation between 7; and
pi given in (5.51). This proves (5.59). We are now ready to prove (5.56) using an inductive argument.

We first note that the number of elements in U.AZ .k s finite, as each cylinder in U.AZ .k 1s of the

form Q = Q,., where 27{p; < r < 271y, is mutually disjoint and is contained in Qm. Let us denote
ji as the number of elements in UA” k- For a clear notation, we assume Al{j7l7k # (if j < j; and
Al =0ifj >4+ 1. By (5.5 O)7 we note Qr, (z1,5,%0,5) C Qﬁpi (2i). We first define
Dy = {Qﬁm(%) NQr(w1:to), Q1 (2:)\ O, (331,1,750,1)}-
Suppose Dy, is determined, for some k > 1, then we define
Diy1 = U {Fn Qs (@141, topt1)s F\ Qs (T 0415 T0,k+1) } -
FeDy,

In this way, we obtain a collection D;, such that for any choice of two elements F and F’ in Dj,, either
F=F or FNF' =0. Thus, we can write

QE’)%pi(zi) = U ‘F’ma
]:nzeDji
where Fp,,’s are mutually disjoint, and for any m and j € [1, j;], either
Fm C Qi (21,55 t0,5)  or  Fm N Qg (21,5, t0,5) = 0.
Moreover, there are mutually disjoint elements F,,, € D,, such that
Q5 (21,5, t0,5) = U Fm.-
Fm CQs; (x1,5,t0,5)

We note that for each F,,, the number of elements in J := {j € [1,5;] : Fon C QF,(z1,5,%0,7)} is at most
c2"*+0 " due to (5.59). As a result, by using the fact that 7; < 2p; (thanks to (5.50)), we have

> / |D7dsul? dpry = Z > / |D”dsul? dprs
Q5. (w1,5,t0,5)

1 .to, m
Qr; (z1,5.22,5, toJ)GL_JA”Lk J -FmCQr (21,5:t0,5)

_Z Z / |D” dsul? dpr s

Fm CQr (11 Ljoto,5)

< anth) Z/ |D"dsu|® dpsre

< CQn(l+k)/ |DTd5u|p d/lr,t
Q1 (=)
55 p;
for some constant ¢ = ¢(n, s, L, q,7), which implies the desired result (5.56). By following the same
lines as in the proof of (5.56) we can prove (5.57) and (5.58) by replacing (D" dsu,p) with (D"dyf,q)
and ((~S T|G])7, 1), respectively. 0

Step 6. Measure estimate of Q € AD,. We claim that for every Q € AD,, there holds
94

Ry
! AP on{|D d.ul> 3}

Indeed, on account of (5.36), we have

| D7 dsulP dpr . (5.61)

2 p
NP < 2P < | D™ dgul? dum> + 2P (A(K))P ZE (u; B x 1)] ) (5.62)
Q d=1
Using (5.62), (5.49) and the fact that
AP 1
|D7—dsu‘p du‘nt S <+t —F = |DTdsu|p d/’b‘r,t,
o) 8 pri(Q) Jon{|prd.u>2}

we deduce that
A1 /
20~ pri(Q) Jon{IDmdeul> 2}

| D7 dsulP dpir .
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This proves the claim of (5.61) as p < q.
Step 7. Measure estimate of Q € ND,. Our next aim is to estimate u,(Q) for @ € ND,.
With the aid of (5.61), (5.54) and Lemma 5.3, we prove the following result.

Lemma 5.4. There exists a constant ¢ = ¢(n, s, L,q,T) such that

> Q<5 D7 dsul? dpry + ¢y pir (Qpy (2)) - (5.63)

/ T >\
QEND,, Qry {|D7dsul>15}

Proof. Let Q = Q,(x1,x2,t9) € ND,. For convenience in notation, we set

Eﬂ@=mﬂwmwmm”%f

Q0. (Td,to)

a(s+7) )
chl (Q) _ Q((Br(l'lyl?)) ][ |D7dof|q dlfﬂr,t
290 Q. (zq,to0)

| D7 dsulP d,uﬂt> ,

0d
and

A (B, , Y(s+7) )
mi(g) - AT ( [ (@) |G dyirs |
o Q,io, (wasto)

where the set function 2((+) is defined in (5.33). We then note from (5.39), (5.49), (5.38) and (5.55) that
there is a constant ¢ = ¢(n, s, L, ¢, 7) such that

A2 T L e S R
1 (00 gy o) e @t @t e’

if Q € NDI N ND? and

Q=

é ; T up % c d % d d %
1S (ur,t(Q) /QH{ID%”'%}ID dsul dum> + [(]EU(Q)) +(E4Q))7 + (EX(Q)) }

if Q € ND¢NADY, where we denote d’ € {1,2}\ {d}. Using (5.40) and then multiplying ., (Q) along
with a few simple calculations, we obtain

C
CES (D7 d s dped
on{|D7dsu|>3}

c 2 c 2 c 2 (564)
+ 14 (Q) [)\p dZEi (Q)+ NG dZE? (Q) + %l ;EZ (Q)
=1 =1 =1
if @ € NDiNND2 and
C
T, Q S 7/ DTdsupd T

e (Q) AP on{|D7d.ul> %} | " (5.65)

+ 1re(Q) [ B (D) + E (Q) + 1 Ef (9)]

if Q € ND{ N AD¢. We next observe from (5.13), (2.3), (2.4) and (5.47) that

pee(Q) (@) < r )“%

) } 5.66
b Qo @arte)) o (Qrlaarte) =~ \dist(By (1), By () (00

for some constant ¢ = ¢(n, s, L, q, 7). On account of (5.51), (5.53), (5.54), (5.66) and (5.56), we find that

S roml@se S S (gmainem) (e D)

d 1,7 d
QENDY 4,7,k,1 QeAd

. Z (27(1+k>)’” / |D7dsul? dpsr; (5.67)

i,1,k>0 Q1 (=)
Z 5

IA

SCZ /

i>0 \ /2 1 (=

5% p;

|D"dsu|? dpry |
)
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where we denote P?Q = Q,.(x4,to) for a given cylinder Q = Q,.(z1,x2,to). For the last inequality, we

have used the fact that 00
N\ <« 2
Z (2 ) ~ aln2 (a>0).
4,70
Therefore, using (5.20), we obtain
D wr(QEHQ) <Ny pr (Qpi(24)) - (5.68)
QeND¢ i
As in (5.67) along with (5.57), (5.58) and (5.20), we have
qs _
> mQEHQ e Y (270) g [ |D7do 1" dpr
Q1

QeND¢ i,1,k>0 1 pi(md,to)
<A g (Qp,(2i))
i

and

i d <c e\ "? 57 5T " dpn
> md@EN@ <e 30 () [ (e s

QeN D¢ il k>0 (za,to)

S C)\’y Z MT,t (QPL (Zl))

for some constant ¢ = ¢(n, s, L, q, 7). Combining the above two inequalities, we get

1 1
> nelQ) | 5EHO) + 37EHQ)] < ¢ X i (0. (5.:69)
QeNDY i
where we denote @ = B! x B2 x A. Plugging (5.68) and (5.69) into (5.64) and (5.65), we obtain (5.63),
which completes the proof of the lemma. (|

Step 8. Completion of the proof. Considering (5.18) and (5.35), the constant % depends only on
n, s, L,q and 7. Therefore, if A > Ao which is determined in (5.12), then we find two families of countable
disjoint cylinders

{Qm(zl)}z and {QFj (xl’j’x2’j’t0’j}g?j (%1,5,22,5,t0,;)EA
so that
{(@,y,t) € Qpy + [D7dsu(z,y,t)| > A} C UQ5§p7(Zl)U U Q5§F7,(‘T1»j’x27j’t0,j)7
i j '
Qr; (x1,5,%2,5,t0,5) €A

which follows from the steps 2-3 along with (5.22), (5.37) and (5.44). In addition, using (5.48), (5.61),
(5.63) and (5.31) along with the choice of the constants a, = aGuk, ay = ayk and ag = agk given in
(5.31), we get (5.10) and (5.8). This completes the proof. O

Before ending this section, we give some estimates which are useful in the context of the comparison
Lemma 4.4.

Remark 9. Let Q. (2;) be the cylinder chosen in Lemma 5.1. Then we want to show that
2

(zi)) < (eh)? (5.70)

17 u— (U)B 2 (%)(t)
7]1 |D7dsu|2 d,uT,t +Taﬂoo,2$ e 5 Q
Q 2 (z)

T (4 X 5%pi)s+r 4)(5%/)7:
4x5s p;
and

2
ol

1 2 s—T R 1 T

7[ (x520) 7161) dun | +1f D7 do f1? dyir

TJ)Q 2 (z) TJQ 2 (2)

4x5's p; 4x5's p;

F=Ns 5 @@ ’
+ Tailg SaLAN :Q (z) | < (ed)?

2
(4>< 5%Pi)7 4x55 p;
(5.71)
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for some constant ¢ = ¢(n, s, L, ¢, 7). We first note from (5.14), (5.20) and (5.23) that there is a natural
number [ such that

5% % 2j0+27-\’,172 < 21 xp< 5% % 2j0+i’57-\;‘1727

where we denote p = 4 X 5%pi for a clear notation. After a few modifications of the proof for (2.6) with
p = o0, we deduce that

Tailoo 25 (% Qa(zi))

L lu— (W)B,, (;)(t)] g 2sltstr [u — (u)B, (t)]
<c 2](75+-r) sup ][ _72Jp ‘ dr + — sup ][ e dx
[; By (i) (2Jp)s+7' p5+7' By 9s+T

tEA, 5 (t5) tEAs

c 2\ T u— (u)B,(t)
+ W (5) Talloo,2s (?7622 9

where ¢ = ¢(n, s). Then using (5.7), (5.20) and the fact that

2 s+T 0 .
9—2sl () < ¢ and 22’(’5”) <c(n,s, 1),

5n
P ° i=1

Ry

N

s

we estimate the above term as
U — (U)B (2, (T
Tailse 2 (W;QJ@) < e\, (5.72)
D

where ¢ = ¢(n, s, L, ¢, 7). In addition, Holder’s inequality and (5.20) imply

1 1
1 ’ ’
<][ |D™dgul? dum> <c <][ |D™dgul? d;m> < e (5.73)
TJQz(2:) Qz(2:)

We combine the above two estimates to obtain (5.70). Similarly, with the aid of (1.7) and (2.6) along
with (5.4), we get that

Taila, (w; Qﬁ(%))
< Tailg, (%; Qﬁ(zi)>

l T+s
i(—s+r+28 1 - 2 1 T
<o Yoo (1] var(2) (L prdsttdn)’
TJQ, (=) P TJQ,

: 2\ HHE L (- De®),
fage (3) e (),

Hence, as in (5.72) and (5.73), there is a constant ¢ = ¢(n, s, L, ¢, 7) such that

1 . H . = (B (t
<T]ép(2i) |D dof|2 d/J:T,t> + Taily ¢ <(()p]§7()() ; Qp(%)) < A,

Q=
=

D7 dy f]7 dum>

Additionally, (5.20) and (5.35) yield that

2w

1 i)Y
7][ ((4 x 5% pip;)* \GI) dipri | < oA
Q 2 (=)

T
4x55 p;

We combine the above two inequality to show that (5.71) holds.
6. LY-ESTIMATE OF dsu

In this section, we prove our main theorem. Since we have established comparison estimates and
constructed coverings of upper level sets, we are able to obtain L?-estimate of dsu with the estimate
(1.9) via a bootstrap argument as in [13, Theorem 1.2]. Let us define

h
ph:2(1+f) . forh=0,1,2,.... (6.1)
n
Then there is a positive integer hy such that

Phy—1 < q < Dhy- (6.2)
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We now prove the following lemma which is an essential ingredient to use a boot strap argument.

Lemma 6.1. Let h € {0,1,...,hy — 1}. Suppose that u is a weak solution to (5.1) with
feLi(Ay; LYR™)  and / |D7dgulP* + |D7dy f|4 + |G| dpiry < 00.
Q2

Then there is a sufficiently small 6 = 0(n,s,L,q,7) € (0,1] independent of h such that if A is (9,2)-
vanishing in Qs, then we have that

. 1 . 1
(]Z D7 dul? du,,t>p <e ((]Z D7 dul duT,t) " 4 Tailoo 2, <WZB(” Q2)>
Q1 Qo 2
1 br
_ 2 2 By By
+c (sup][ % dx) +c <][ (2°771G)) o d,u,T,t) " (6.3)
teA2J By Q2

(e o)
J Qa2

for some constant ¢ = ¢(n, s, L, q, ), where the constant b, is defined in (5.9) and

_ {ph+1 if h <hg—1,

_ 6.4
P=Y¢  ifn=n,-1. (6-4)

Proof. Let us first fix 1 <r; <7y <2 and € > 0. Then we select \g as given in Lemma 5.1 with p = pp,
and select § = d(n, s, L, €) determined in Lemma 4.4. For any N > \g, we define a function ¢ : [1,2] - R
by

on(r) = (. el drs) (6.5)

where |D7dsu|ny = min {|D7dsul, N}. We now claim that for N > Ao, the following holds

br

ovr) < 2 ong e (f @ I6)F )" (6.

for some constant ¢ = ¢(n, s, L, q, 7). Using Fubini’s theorem, we observe that

/ |DTdSu|€V duT,t = / ﬁAﬁilﬂT,t ({($,y,t) S Qﬁ : |DTdSu|N($7y7t) > /\}) dA
0

T1

M)\o B
= / ﬁ/\p_lluT,t ({(x,y,t) € QT1 : |DTdSu|N(xay7t) > )‘}) dA
0

N
+/ f))‘pilﬂ‘r,t ({(x7y7t) € QTl : \DTdsu|N(x,y,t) > )‘}) dA =1y + I,
Mo

where M > 1 is a constant which will be determined later and N > M\g. We now estimate [; and Is.
Estimate of I;. A simple calculation yields that

It < g (Qry) (MAo)P.
Estimate of 5. By a change of variable and (5.6) of Lemma 5.1 with p = pp,, we get that

Nm~1 ~
I = / ﬁM(M)‘)pilluT,t ({(mayvt) € Q"'l : ‘D7d5u|N(w7y7 t) > MA}) dA
A

<> [ M e ({n € Q) () 5 1Dl (e t) > MAY) dA
i>0 7 Ao
NM™E N
+Z/ PMMNP ({(:c,y,t) €Q1 (21j,325,t05) : | D dsuln(z,y,t) > Mz\}) A
>0 Ao Tj
=:Is1+ Iz,

where we have used the fact that
{(@,y.t) € Qry ¢ [D7dsuln(2,y,t) > MA} C {(2,y,t) € Qp, : |D7dsul(z,y,t) > A}.

By assuming
M > cqeq, (6.7)
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where the constants ¢, = c.(n, s, L,7) and ¢q = cq(n, s, L, q,7) are given in Lemma 4.4 with p; replaced
by 5%;)1- and Remark 9, respectively, we now estimate I ; as

NM™?!

I < Z/ PM(MN)P~ Mr,t ({(%y,t) € ngm(zi) 2| D7ds(u — v)|n(z,y, t) > ./\/l)\}) d\

<§:/NM 1

PM(MN)P~ 3/ |D™ds(u — v)|? dpr.s dN

<o / M (0 (2) i

(6.8)
for some constant ¢ = ¢(n, s, L,q, 7). In the above estimates, we have used weak 1-1 estimates, (4.11)
and (2.3). On the other hand, using weak 1-1 estimates, (5.10), (2.1) and (6.1), we have that

NM™! B
Iy <p/\p2/ M)~ (ph)#-&-p—l/ | D7 dgu|Pr)# dprs dX
Q

1 (z1,5,m2,5,t0,5)
5S7j

— 2s

- ﬁ(Cod,h)(ph)#)\ﬁ71 /NM1
M= A

piri (Qr, (@15, 2,5,t0,5)) dA,
j 0
where the constant coqpn = Cod,n(n, S, pn,T) is determined in (5.10). Note that the constant ¢ = p x

,_omax (Coa,n)™ depends only on n, s, L,q and 7 and is bigger than the constant P(Coan)Pm)#, as
—0,1,..., o

hy depends only on n,s,q and 7 (see (6.2)). Hence, we have that

eNp—1 Nm~?!
I o < Z/ Hrt (Qa- (ﬂfl,jym,j,to,j)) dA (6.9)
M n Ao

for some constant ¢ = ¢(n, s, L, q, 7). Combine (5.8) with p = pp, (6.8) and (6.9) to see that

Nm~—t o 1 c
I < c/ APt (M"—%2 + — ) —/ |D™dsulP" dpir s dX
Ao M) AP S o, (D7 deul>au )
NME p—1 p—3 2 1 c | |ci
+c/ NP (./\/l_e n ) / D" dof|7 dpur. A
Ao M%) (0N QryN{ID7do fI>as5A}

NM™ _— 5 9 1 c
+ c/ AP (./\/lp_3e + —2) - / |G Go dpir s X =t Ji + Jo + J3
Ao M) (GA)br Qry N{|G|7>(agsN)r Gy '}

where the constants a,, ay and a4 are determined in (5.8), and the constants Gy and § are defined in
(5.9) and (5.3), respectively. Using Fubini’s theorem and taking M = M(n, s, L,q,7) > 1 which satisfies
(6.7) and then choosing € = €(n, s, L,q,7) € (0,1), we have that

1 .
Jl S 105"(]/9 |D dsuﬁv d‘LLTﬂg.
ro

On the other hand, if p < ¢, then we estimate

C NmE 1 5—3 2 1 C =
Ja < i/ A (M]F €+ S ) = / |D"do f|? dpar,e dX
AP I M=) (0N Q. N{|D7do f|>ar}

< = T a
= )\gfp/g |D"do fI" dpir.e (6.10)

(L

q—p
where we have used 1 < (/\T)) , Fubini’s theorem (thanks to the relation ¢ < g, from (5.5)) and the
P—g

fact that )\g—q <ec (fg |D7dy f|? d,uT,t) * . If p > §, Fubini’s theorem and Hélder’s inequality yield
r2

D
q

[D7do f|* dum> ;

IA

T2
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Q™

30
2

</ |D7do f| duf,t>

that
B <e / D7 do P dpiry < c

o

Similarly, we get that
Js < c/ (IGI"Go) ™ < ¢

By TT
(][ (23 T|G| b Nrt
Qry Q2
Consequently, combining all the estimates I1 and Iy and recalling (2.2) and (6.5), we obtain the desired
). We recall the definitions of A\ given in (5.7) and Gy given in (5.9). Then using Lemma 2.4
O

(6.11)

result (6.6).
and passing to the limit N — 0, we get (6.3)
With the aid of Lemma 6.1, we now prove our main theorem
Proof of Theorem 1.1. Let us fix Q,(z9) € Qr with r € (0, R]. We now take
2s

% <m1n{ ].—S}
q

T =
q—
Let us choose § = d(n, s, L, q,0) determined in Lemma 6.1. We claim that
1
][ |DTd8u|ﬁ d:u‘l'ﬂf < CR(U .f7g pOaﬁ) QT(ZO)) (612)
Qr (z0)
for some constant ¢ = ¢(data), where p is given in (6.4) with h = 0 and we denote
1
o u— (u 20 (€
(u f?gvpouﬁa QT( )) = <][ ‘DTdSu|p0 dﬂf,t) + Tailoo,2s ( (T)s]i:—( 0>( ) ) QT(ZO))
Qr(20)
2 3 p =
lu— (W, ol ’ s=r B 7
+ sup ][ — dx + ][ rr |G dpr
(temto) Brwo) T Q. (20) ( | |) o
1
. 7 B o
+ (][ |D7'd0f|q d,“/T,t) + Ta.llq s (M’ Q'r'(zo)) .
Qr(z0) r
To this end, we define for any x,y € R", ¢t € Ay and £ € R
s Tttt ; s Tttt
i 1) = u(r ;r—&-x;: + 1) f(m,t):f(r x—l—m;Tr + 1)’
~ o s—T 2s 1 _ 2s T _ (P(T;—'g)
gz, t)y=r""g (rsac +x1, 75t + tl) Az, y,t) = A (TSI +x1, 75y + 11,75t + t1) , @)= —
2
where 21 € Q= (20) and 7, = ( (‘f 1)) 7, in order to see that 4 is a weak solution to (5.1) with f = f
. Moreover, we observe that
@r.(21) C Q= (20)- (6.13)

g=g, A=A and o =
We now apply Lemma 6.1 with u = @, f = f, g = § and h = 0, and use change of the variables to get
(6.14)

1
< CR(U7 f,g7p07p7 Q’l‘s (21))
2.2) and (6.13),

that
][ |D™dul? dprt
Qi (Zl)
(6.15)

3
for some constant ¢ = ¢(data). After a few algebraic calculations along with Lemma 2.3, (

the expression in (6.14) is estimated as
<][ |DTdSu|ﬁ d/’h’,t) < cR (U f7g p07p7Q (ZO)))
Qrs (21)
(t2) with (z1,%2), (z2,t2) € Q%(zo) satisfying

X A _rs
svn

(z1,22)

! = B Ts
o BV

On the other hand, for any Q _rs
(5.45), we use Lemma 5.2 to obtain that
1

1
(f |D"dsul? dpm> <c (][ | D™ dgulP° dum>
Q

1
Po

_rs Ts

BV svn
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for some constant ¢ = ¢(data). As in (6.15) along with Lemma 2.3, (2.4) and (6.13), we deduce that

%
][ |D7dsu\’3 dpr ¢ <c ][
QLL Q

PO

| D" dsu|"® duf,t>

o %(Zo)
1 (6.16)
2 2
’U - (U)Q%(zo)|
+c sup ][ W dz
tGA%(to) B%(Io) V2

Since Q: (z0) is a compact set, there are finite mutually disjoint open sets Q. (z1,;) and Q. (1,5, T2,5, t2,5)
for some pOthS 21,1y (1717]', t27j), (IQ,]‘, t27j) S @g (Zo) such that

Q:r(20) C (U 9, (Zu)> U U2 (@1,225.t2,) | C Q= (20),
i J

and Q, (z1,;,22,t2 ;) satisfies (5.45). Combine (6.12) and (6.16) to see that

(][ |D7d5u|ﬁd/u"ﬂt> S cR (’LL, fagvp07ﬁaQ%(Z0))) . (617)
Q%(Zo)

Consequently, after a few simple calculations with Lemma 2.3, we estimate the right-hand side of (6.17)
to get that (6.12) holds. In addition, using the standard covering argument along with (6.16) and (6.17),

we prove that D7dsu € LY. (dpr4;Q x Q x (0,7)). If h = 0, then by recalling (2.2), (3.5), (5.9), (6.2),

loc

(6.4) and (6.11), we obtain dsu € L (dur;Qx Q x (0,T)) and the desired estimate (1.9). Let us

loc

assume that 7 > 0. We have shown that D"d,u € L' (dpr;Q x Q % (0,T)) and (6.16) and (6.17) with
p = p1. Thus, by following the same line as in the proof for (6.16) and (6.17) with pg replaced by p;1, we

have that
(£

1

> 1

i i
|D"dsul™ d#f,t> <c (][
Q

| D" dsu|"* duﬂt>

- %(Zo)
. (6.18)
2 2
|u - (u)Q%(Zo)|
+ec sup ][ e 4|
tEA%(to) B_r_(z0) (ﬁ)
for any Q ry = B s (w1,2) X A sy (t2) with (w1, 82), (w2, t2) € @ (20) satisfying (5.45) and
1
][ |DTdsU|P1 dﬂﬂ',t <cR (uyfvgvplyﬁvaL(ZO))) s (619)
Q%(Zo) v

where p; is the constant defined in (6.4) with h = 1. As a result, plugging (6.17) to the first term in
R (u, f,9,p1,P1, Qﬁ(zo))> and then after a few simple calculations with Lemma 2.3, we obtain (6.12)

with po = p1 and p = p1. In addition, using the standard covering argument along with (6.18) and
(6.19), we prove that D™dsu € L} (dur;Q x Qp). By iterating this procedure [, — 1 times, we obtain

loc
D7dgu € L (dpre; Q2 x Qp) with the estimate (6.12) with p = ¢. By recalling (2.2), (3.5), (5.9), (6.2),
(6.4) and (6.11), we conclude that dsu € L . (dpr;Q x Qp) with the desired estimate (1.9). O

We finish this section by proving Theorem 1.2.
Proof of Theorem 1.2. We note that in the proof of Lemma 6.1 and Theorem 1.1, we only use the
condition (5.2) to apply Fubini’s Theorem on the term D7d f (see (6.10)). Taking into account Remark
5, if f =0, then the constant 7 can be chosen in (0, min{s, 1 — s}). Consequently, we allow for choosing
o€ (O, (1 - %) min{s, 1 — 5}) considering (6.11) and we are able to prove the Theorem 1.2 by following

the same lines as in the proof of Theorem 1.1 with f = 0. O
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APPENDIX A. SELF-IMPROVING PROPERTY OF NONLOCAL PARABOLIC EQUATIONS

In this appendix, we prove a self-improving property of a weak solution u to (1.1) with f = g = 0.
Throughout this section, we take
. s 1—s
Tomm{2,2}. (A1)

Before proving Lemma 4.1, we are going to prove a reverse Holder’s inequality on diagonal parts and
obtain another covering lemma.

With the aid of the gluing lemma, we first obtain the following inequality.

Lemma A.1. Let u be a weak solution to (1.1) and let Q,(20) € Qp. Then for any < € (0,1], we have

2
u— (u >
[ ek,
Qp(20) P

2
u—(u 1|2 1 v
<¢ sup ][ | ( 2)32(79—600)( )‘ dx + % 7][ |D70dsu"¥ dMTO,t
teA,(to)J B, (zo0) p ST\ T0J9,(20)

| = (1) e (0) 2 2
+c— |D™do f|? dytrg, + c Taily 2, (%7 Qp(20)>
T0.Q,(z0) pere
2
. .f - f x t 2 1 s—T v
+ ¢ Taily, s <W;Qp(20) +c *][ (20)°TIGI)” dpirg e
P 7o QQ;)(ZO)

for some constants ¢ = ¢(n, s, L) and 8 = B(n, s), where the constant 7 is defined in (3.2).
Proof. We may assume that zg = 0. Note that
][ = (u)g, [2dz < c][ = (u), (D2 d= + c][ W), () — (W, 2z = L + I
Qp Qp p

In light of Lemma 2.1 with h, p and s, replaced by u, v and § = s + 79 (1 — %), respectively, we first

estimate I; as
2
(s +70) g
<c ][ |ID™dsu|” dpprg e | X sup][
70 Q teA,J B

25y
ny

[u— (U)Bp(t)|2d96> ,

2

P

Ilgc ][
Q P

where ¢ = ¢(n,s) and 5 = ~ (1 + %) We next apply Young’s inequality along with the fact that
% + 25 — 1, in order to get

ny
2
A i A R ) o ()0 d
< _ Odgu o, + — su ][ u— (u T
1 p o, Moot 9B teAIZ 5, B,(t)

fu— ()5, (1)) dz>

P

for any 9 € (0, 1] and for some constant 8 = (n, s). We now estimate I as
Boff lw)n,0) - (W, (@)P da
ApxA,
2 2
<off w0 - @i, @f darseff Jw o - wh, @) aar
ApxA, g ApxA, ? ?
eff @) - e, )
ApxA,

< c]{\ ‘(u)Bp(t) - (U)}gp (t)‘2 dt + Ctl,stﬁl& ‘(u)jgp (t1) — (u)jgp (tg)‘2 =Ip1+ I,

2
dtdt

where 9 is the given function in Lemma 3.2 and

u)? _
5,0 = T

Using the fact that ||¢||11 =, |B,| and Holder’s inequality, we have

1 2
-[2,1 < C]{\p W/B (u - (U)Bp (t)) dx

P

/B u(z, t)(x) d.

P

dt é CIl




Calderén-Zygmund theory of nonlocal parabolic equations with discontinuous coefficients 33

for some constant ¢ = ¢(n, s). Using Lemma 3.2, we get that

% 5251 |u z,t) —u(y,t)| ][ / u( t)]
2 ][ / |x—y|”+2s 1 dydz—|—cp " |y|n+2s dydz
21 |f(x [y, 1)l ][ / — f(y, )]
dydz+c dydz
][ / |.’B _ y|n+5 1 P n |y‘n+5

+ ][ gl iz =3 Do,
Q i=1

P

for some constant ¢ = c¢(n, s, L). We now estimate Iz 21 and Iz 2 5.
Estimate of 55 ;. Using Holder’s inequality and (2.2)7 we have

1
Ty ][ / |Dvdeu” ][ / dmdydt !
2,2,1 > p B, ‘.’E— |n 27 Y Q, /B, |ZE n+'y s5— 1+To(*71))

s+70 1 [ ’Y
<@ 7][ 1D dyul” dpiry ¢
1= (s+70) \10/g,

Estimate of I3 5. A simple algebraic computation yields that

lu(z,t) = (u)B, ()] (t) —u(y, )|
Lo < cp? ][ / s dy dz + cp? ][ / ‘y|n+28 dydz

< cIl2 + cTaily 4 (u — (u) B, (20) (1); Qp(20)) -

Similarly, we estimate I> 3 and Iz 24 as

1
2

s+To 1
Ioo3+ 1524 < Cfl) <][ - |DT°cl0f|2 dumt> + ¢p® Taily s (f —(f)B ID)( ); Qp(zo))
Q, (20

— S T0

Using Hélder’s inequality, (2.2) and (3.5), we estimate Iz 2 5 as

2
1 B ~y
12 2,56 > <c ][ ((2/))5 7—0|(;|)’y d,u“ro,t
7092 (20)
Take ¥ = ¢ for some constant ¢ = c¢(n, s, L) and combine all the above estimates to get (A.2). O
Remark 10. By estimating I in the proof of Lemma A.1 as
Il < £ |DT0dsu‘2d,u‘rg,t7
0 Qp(Z(J)
we find that for any 79 € (0, min{s,1 — s}), there holds
- z ? - x t 2
][ = Wesel ), 3][ D™ dyuf? dytng + + ¢ Tails o (%;QM))
Qp(20) p=eTeTo T0JQ,(z0) peTTo
1 - x t ?
+ec— |D™do f|* dirg.e + ¢ Taily,s (Lw; Qp(20)> (A.3)
0/, (20) pre

2
1 st K
vl tf (@G duns
T0JQs,(20)

for some constant ¢ = ¢(n, s, L).
In light of Lemma A.1, we now prove the following reverse Holder’s inequality.

Lemma A.2. Let u be a weak solution to (1.1) with f = g =0 and let Q2,(20) € Qr. Then we have

) 1 . , i ) [u — (4) By, (20) ()] :
B (u; Qp(20))” < co *][ |D™dsu|” dpirg,e |+ co Taily 2s 2550 s Q2p(20) |
T0 sz(zo) ( p)

where ¢g = co(n, s, L) and Es 7, (-) is defined in (5.32).
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Proof. From (2.2) and (3.1) with k = (u)g, (z,), f = 0 and g = 0, we deduce that

2 4= (Wa, ol oniss 4= (W, () :
. cr U — \U)Q.(20) cr . B, (z0)(t)
EQ,TO (U, Qp) S (T — p)n+2% o) r25+27'0 dz + (T — p)2n+45 Ta'll'Y,QS ( rstTo 7Q7‘(ZO)) 5

where ¢ = ¢(n, s, L). Using the estimate (A.2) with p = r, f = 0 and g = 0 into the first term in the
right-hand side of the above inequality and Holder’s inequality, we get

(r—p)"+2 \ 1o

2(n+2s) _ 2
r . u — (U) By, (20) (1)
Taily 25 | ———— 22—~ .
e (r - p) M2 ( @pern Q)

1 er™t? 1 0 5 v
Ea oz (us Qp) < ZEQ,TO (u; Qr) + ——> | — D™ dsu|” diprg e
Qap(20)

by taking ¢ € (0, 1) sufficiently small depending only on n,s and L. Additionally, for the tail term, we
have used Lemma 2.3. Finally, employing Lemma 2.4, we obtain the desired estimate (3.6). d

We next prove the following covering lemma.

Lemma A.3. Let 1 <1y <ry <2 and u be a weak solution to (5.1) with f = g = 0. Then, there are
two families of countable disjoint cylinders {Q,,(2i)},~, and { Qs (xl,j7$2,j,to,j)}j>0, such that

Uy = {(x,y,t) € Q7‘1 : |D70dsu($,y,t)| > )\} C (U QS%M (Zl)> U U Q5%Fj (.731,]‘,33273‘,7507]') (A4)
( J

whenever A > \g, where

1 1
1 2 " _ 2 2
o (7][ | D70d5u|2dum,t) + (sup £ ool dac>
(7"2 — rl)T T0J 0, teAzJ By 2 0

(A.5)
c L (u—(e(0)
+ 7572’]?&1100’ s (72’Q )
(rz2—mr1)’s ’ 20 ’
for some constant ¢ = ¢(n, s, L). In particular, we have
¢ T
Z'U'TOJ‘ (Qpi(zi)) < )\7/ | D™ dsul” dpiry (A.6)
i>0 Qr,{|D70dsu|>b, A}
c T
Z Horost (QFJ' (-131,]‘, 2,55 to,j)) < 2 / |D 0dsu|2 dﬂ’m,t + + Z Mo t (QPL (Zl)) (A7)
§>0 Q,,N{|D70d ul> {5} i>0

for some constant b, = by (n,s, L) € (0,1], where the constant 7y is defined in (3.2), and we also have

1

@
][ | D™ du|** dp, <cA for any j, (A.8)
Q 1 (21,5,m2,5:t0,5)

.

587

where the constant 24 is given in (2.1) with p = 2.
Proof. We first define a functional

1 1
2 9 3
u—(u)g, (2
00 Gor)= ({10l dune) + (s [ 0Dy,
Qr(zo0) teA,(to)J By (z0) r

for any zg € @, and r > 0 with Q,(z0) C Q2. Let us take

1 1
M2 —1 2 —
)\0 = % (i][ |Drodsu|2 d,LLT(),t) + Tailoo,zs (%7 QQ)
21 To o 2s+70

(ra —r1)~s

1 1
Mg k™! u—(We,|* , \?
+ — sup 7[32 de 5

(7“2 - 7"1)% teNs.
where M > 1 and k € (0, 1] are free parameters which will be determined later. We next take a positive
integer jo = jo(n, s, A) such that

16(co + ¢+ 2¢2)?
1—2-s+m

< do(s=70), (A.9)



Calderén-Zygmund theory of nonlocal parabolic equations with discontinuous coefficients 35

where ¢ is the constant determined in Lemma A.2, and é and ¢, are the constants determined in (2.6).
We then note that for any zp € Q,,,

Q

where R 2 is defined in (5.14). Let us now define for A > Ao,

5% X2j0+2R1,2 (ZO) < QTQ’

D, = {Zerrl : sup ©Op (zo,p)>/@)\}.

0<p<R1,2

We now take the constant M as in (5.18) with ¢ = 2. For any 2y € Q,, and r € [Rl,g, 5% x 20013y |,
we first note that
(—)D(ZOaT) S K/Aa

by following the same line as in the proof for (5.19) with p = 2. Therefore, there is an exit radius p, for
each z € D, such that

Op (z,p.) > kXA and Op(z,p) <kA ifp, <p< 5% x 2j0+3R172. (A.10)

We now apply Vitali’s covering lemma to find a family of mutually disjoint countable cylinders

{szopzl, (Zi)}»o such that D,y C U Q5%X2j0pzi (2). (A.11)
= i=0
We now denote
pi =2%p,.  for each i. (A.12)

From (A.10), we have

1

1 1

A 1 : lu—(u)gq,. (I :

KT < *][ |D™dul? dpprg,t |+ sup ][ 23-?2r:,( ) dr | . (A.13)
T4 70 Qp., (2:) t€M,,, (t:)J By (wi) Pz;

On account of Lemma A.2, Lemma 2.6 and (A.12), we estimate the right-hand side of (A.13) as

1
A 1 T K ~ 1 l 1(—s+T1 j
LAY —][ D dat |+ eoi S 2 Ce (2, 20).)
T0J 9, (2) L

2 2 .
To Jj=jo+1

0
1
(g o @ OF  \E L ewr o (ue W)
o 22 q ———— Tail, 9s | ——22;
+ Coc (2”721,2) (tseu/\z ]{32 22s+270 .r + (ro —r1)dm A2 2s+70 Q2

where ¢ = ¢(n, s, L) and [ is the positive integer such that 2j0+1R1’2 < 2lpzl. < 23'0'*‘2731,2. For the detailed
calculations of the above inequality, we refer to (5.25) and (5.27) with f = 0 and g = 0. As a result,
using (A.9) and (A.10), we find that

1
A 1 K
B co(Lf  praara,
70?2 To Qp7(zz)

for some constant ¢ = ¢(n, s, L). A suitable choice of the constant by = Bu(n, s, L) € (0, %] yields
v
(KA)Y Ja,, (z)n{|D70dyul>burA}

as the constant 79 depends only on s (see (A.1)). With (A.10) and (A.11), we follow the same lines as
in the proof of step 2 through step 8 given in Lemma 5.1 with p = 2, f = 0 and ¢ = 0. As a result,

Hro,t (Qpi (7)) <

| D™ dsul|” dpiry 1 (A.14)

by taking x as in (5.35) with ] replaced by 7'0%, we find that there is a collection of countable disjoint
cylinders {Q} gea such that

{(z,y,t) € Qp, ¢ |Ddgu(z,y,t)| >N} C | Q2 (2i) Ul U Q.. @2t |

i J

i>0 >0

C
ot (Qr; (21,5, 22,5, t0,5)) < */ D™ dgul? dptryt + ¢ > iyt (Qp, (2)
2]: 0 ( J J J ) 22 erQQ{\DTUdsuD%G} 0 EZ: 0 P
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and
_1
2%
][ | D™ dgul** dp, <cA for any j,
Q

1 (z1,5,%2,5,t0,5)
S

5Fj

where ¢ = ¢(n, s, L) (see (5.63)and (5.48) for the second and the third inequalities, respectively). Let

b, = byk. Then the above three observations and (A.14) yield the desired results as the constant 7
depends only on s. This completes the proof. O

We are now in the position to prove the following self-improving property for a weak solution to the
corresponding homogeneous problem of (1.1).

Theorem A.l. Let u be a weak solution to (1.1) with f = 0 and g = 0. Then there are constants
e=¢€(n,s,L) € (0,1) and c = ¢(n, s, L) such that

1

1 1
1 e 1 2 u—(u 2\ 2
L |D7'0d5a|2+€ dﬂ'ro,t S cl = |DT0dsu‘2dMTU,t +e sup ‘ ( )Q2T(ZO)|
2 25421
T0J 9,.(20) T0J Qa1 (20) t€A2r \J By, (2r)

+ cTaileo, 26 (%; Q2r(zo)>

(A.15)
whenever Qar(29) € Q.

Proof. Let us fix Q,(29) € Qr. We now define for any =,y € R, t € As and £ € R,

U (rx + zo, 72t + to)

- , fl(m,y,t) :A(T:r+:co,ry+z0,r25t—|—to) and <i>(£) =
TIS T

u(x,t) =

to see that @ is a weak solution to (5.1) with f =g =0, A= A and ® = &. Let us take ¢ € (0, 2#2_2>
which will be determined later. For each N > 0, we now define ¢y : [1,2] — R by

on(p) = <][

For A\g as defined in (A.5) with v = @, we claim that if N > )¢, then there is a constant ¢ = ¢(n, s, L)
such that for any 1 < r; < ry < 2,

P

P
)

on(r1) < %¢N(T2) + cAo. (A.16)

By Fubini’s theorem, we observe that

Mg
/ D™ d, a2 dps, :e/ Nl ({O, ¢ |D™dyiily > A}) dA
0

T1

N
+e/ A1 ({Qr, ¢ [D™dyi|n > A}) dA =t T+ J,
Mo

where dv = |D™da|* dpir, + and N > MXg with M > 1 to be determined later. We first estimate I as
I< chAg/ |D™d 2 dpiry s < cMENTT pirg £ (Q2)
Qa2

where ¢ = ¢(n, s, L). We next estimate J as

Nm~?!
J— 6/ M ({(@,,8) € vy ¢ |DPduiix > MA}) dA

Ao
Nm~! )
< 6/ MX T (Q 2 (z)) dX
1'220 Ao ( sspi( ))
Nm~?!
+ Ze/ MX Ty <{Q51~ (w1,5,22,5,t0,5) : |D0dst|n > M)\}) d\ =1 J1 + Ja,
j>0 /o T

where we have used the change of variables and (A.4). In light of the definition of the measure v, (A.10),
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(2.3) and (A.6), we estimate J; as

Nm™?
Ji < Z / x*l/ |D™dai|>dpir, ¢ X
Ao Q2 (21)

58 p
NM™!

X / MN"IN,, 4 (9, (1)) dA

IN

¢ NM"-
< ce/(\i) / / D™ dy | dpiry ¢ dA,
AY ¢ Q. N{|DT0d, it >by A}

where ¢ = ¢(n, s, L) and the constant b, is determined in Lemma A.3. Using Fubini’s theorem, we get

J1 < CCMC/ |DTOd u|NM 1d,UJ7'0,ta

r2
where ¢ = ¢(n, s, L), as ﬁ > 0 depends only on n and s. To estimate Jo, we first note from the weak
1-1 estimate and (A.8) that

24 -2

NM™ ) NMT 1 [ |D7dstuly 2
/ MNX T ({Q : |D™dsii|n > MA}) dX < c/ MEXET / N D™ dul dprg 1 dA
Ao Ixo Jo (MA)*#

Nm~?!
<c / MEE2ENT 1 (Q) d,
A

0

where we denote Q = Q ;?'(l'l’j,l'zj,to,j). We first note

1 [NMT / "NM™1
X Qry N{IDT0dy@i|>by A} Xo

c [NM™ 1
<< / (D™ d iy N
A Qry N{|DT0d, @] by A}

for some constant ¢ = ¢(n, s, L) as v < 2 and the constant b, depends only on n,s and L. Considering
the above two inequalities, (A.7) and the estimate J;, we estimate Jo as

|D™ it dpiry . dA

QryN{|DT0d | >by A}

NM™
Jo < ce/ M€+2_2#>\€_1/ |D™dti|*dpiry ¢ dX
A

0 Qry M{|DT0ds@|>by A}

chs”—Q#/ |D™ds )36 -1 dping
JQry

1 T ~ €
< 210n/ |D odsu‘?v+M*1dl‘Toxt
Q

2

2#

2—-2
by taking M = M(n, s, L) > 1 sufficiently large so that M < i (thanks to M+272# < /\/l
as M >1and e < 2#2_2). We next select € = €(n, s, L) < 1 such that

1
Jp < W/ ‘DTOd ?\;\64 1dMTO,t'
Q

T2

Combining all the estimates of I and J, we observe that
1
| D R e < [ 1Dl i < i [ D i+ e (Q2)
. o, .

holds if N > MM\g. After a few algebraic computations along with (2.2), we have (A.16). Applying
Lemma 2.4 to (A.16), we obtain

1

1

1 2Fe 1 2 7
<][ |DT°dSﬁ|?\,+E d,uTO,t> <c <][ |DT°dsﬁ|2duTo,t> + ¢ Tail 25 (u(u_z(),Q >

T0J 9, ToJ 9, 2577

1

|u — (ﬂ)Q22>2
+ ¢ su —_—2
teAP; (]{32 22s+27

for some constant ¢ = ¢(n, s, L). By passing to the limit N — oo and using the change of variables, we
get the desired estimate (A.15). O
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APPENDIX B. EXISTENCE AND UNIQUENESS

In this section, we present the existence result for the corresponding boundary value problem of
(1.1) and the standard energy estimate. Before stating the result, we first note from [47, Proposi-
tion 1.2 in Chapter 3] with V. = W*2(Q) and H = L%*(Q) that if h € L%(0,T;W*2(Q)) and h; €
(L2(0,T;W*2(Q))", then h € C([0,T]; L*(Q)) with the estimate

sup 1R( D)2z ) < cllhllLzo.mwe2(a)) + cllbellz20,mwe2 @) (B.1)
telo,

for some constant ¢ = ¢(n, s).
Lemma B.1. Let ' be an open and bounded set such that Q € Q. Suppose that

dx dy dt)
[z —yl* )’

g€ L5 (Qy), (B.2)

he L2(0,T; W2(Q)) N L>=(0,T; L3, (R™)) and hy € (L2(0,T; W*3()))".

feL?(0,T;LY(R™) with dof € L* <Q’ x Q x(0,T);

Then there is a unique weak solution u € L*(0,T; W*2(2)) N L> (0,T; L3,(R™)) N C([0,T]; L*(2)) to

u + L% = (—A)2f+g in Qx (0,7,
u=nh in R™\ Q x [0,T], (B.3)
u(-,0) = h(-,0) in Q

with the estimate

dx dy dt
sup /|uxt|2dx—|—/ //|d3 |?—=— T4
te(0,T) —y|"

n+t4s

T n+2s
dx dy dt . 2<n+2s)
e[ ][ s e Tl - (e (09 / s (B.4)
o JorJar |z —y|
T o drdy . 7 \2 2
+ CA // o |d5h‘ |:I: — y‘n + CT&IIQ’QS(h - (h)Q/ (t); QT) + C”htH(LQ(O,T;WS’2(Q/))*

for some constant ¢ = ¢(n,s, L, T,Q,Q).
Proof. From [13, Lemma 2.7], we observe that

o [ U0 = 1066 - o) T se Xt @)

is an element of the dual space of XS’Z(Q, Q). This implies that
(—A)2 f e (L0, T; W*(Q))".
Therefore, combining [10, Thoerem A.3] and [11, Lemma A.1], we find a unique weak solution u to (B.3).

We are now in the position to prove (B.4). Since u — h € L? (O,T; XS’Z(Q, Q’)), using the standard

approximation argument, we have

5 dxdydt
sup/|u— act|2dx+/// Ty
+€(0,T) n Jrn |33 -yl
/ <ht7 _h>X62(QQ/) (X:'Z(QQ’) dt +C/(; /|g u — )le

d dy dt dx dy dt
+C/ / / |do fl|ds (u - :ZAn / / / |dshl|ds(u )‘|xx_yy|n =hL+L+I3+ 14

(B.5)

<c

From (B.2) and Young’s inequality, we first estimate [; as

dx dy dt
B S ity +3 [ [ [ st w2
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We next estimate I with the help of (B.2) as below

n+4s

2ni2n) e dx d
I, <c / /|g| ntds +7 sup /\u— :ct|2dx+ / / / (u—nh |2 yd )
8 te(0,T) v Jor |z — |"

where we have used Lemma 2.1 and Young’s inequality. For the estimate of I3+ I, , we follow the same
line as in the estimate of J; 4+ J3 in [13, Lemma 2.7] to see that

1 [T dz dy dt dx dy dt ,
fotes g 0] ] e mP R ///Id PP 4 e Tail o = (For (0: 2)°
8Jo JarJar |z — 1yl o Jo —y"

T
+C/ / |d§h‘2dx7dyn +CT&ﬂgy25(h— (h)Q/(t),Q/T)Z
o JaorJor |z —

for some constant ¢ = ¢(n, s, L, 2, Q' T). We now plug the estimates of I;,I5 and I3 into (B.5) to see

that .
swp [ =@ oot [ [ [ jdua-np T
te(0,1) Jo aJa lz —y|"
T 2 dx dy dt 2(n+2g) Zizs
<o [ ot s o, (- (utey 2 +e ([ [ 1055 az)
o JarJo |z =yl
T
2 dxdy . 2 2
+ C/O // // ‘dsh| W + CTallz’Qs(h — (h)Q/(t),Q/T) =+ CHht||(L2(0,T;W312(Q’))*'
After a few simple calculations along with (B.1), we obtain the desired estimate (B.4). O
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