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Abstract. We prove Calderón-Zygmund type estimates of weak solutions to non-homogeneous nonlo-
cal parabolic equations under a minimal regularity requirement on kernel coefficients. In particular, the

right-hand side is presented by a sum of fractional Laplacian type data and a non-divergence type data.
Interestingly, even though the kernel coefficients are discontinuous, we obtain a significant increment of

fractional differentiability for the solutions, which is not observed in the corresponding local parabolic

equations.

1. Introduction

1.1. Overview. In this paper, we study higher regularity properties for weak solutions to the following
non-homogeneous nonlocal parabolic equation:

ut + LΦ
Au = (−∆)

s
2 f + g in ΩT ≡ Ω× (0, T ), (1.1)

where s ∈ (0, 1), T > 0 and Ω is an open and bounded set in Rn with n ≥ 2. The nonlocal operators
appearing in problem (1.1) are defined by

LΦ
Au(x, t) = p.v.

ˆ
Rn

Φ

(
u(x, t)− u(y, t)

|x− y|s

)
A(x, y, t)

|x− y|n+s
dy

and

(−∆)
s
2 f(x, t) = p.v.

ˆ
Rn

(f(x, t)− f(y, t))
1

|x− y|n+s
dy.

Here, f : Rn × (0, T )→ R and g : ΩT → R are given measurable functions, A : Rn × Rn × (0, T )→ R is
a given kernel coefficient satisfying

L−1 ≤ A(x, y, t) ≤ L and A(x, y, t) = A(y, x, t) for (x, y, t) ∈ Rn × Rn × (0, T ) (1.2)

and for some constant L ≥ 1, and u : Rn × (0, T ) → R is the unknown. In addition, Φ : R → R is a
measurable function satisfying Φ(0) = 0 and{

(Φ(ξ)− Φ(ξ′))(ξ − ξ′) ≥ L−1|ξ − ξ′|2,
|Φ(ξ)− Φ(ξ′)| ≤ L|ξ − ξ′| for any ξ, ξ′ ∈ R.

(1.3)

Nonlocal parabolic problems appear naturally in the physical world, e.g., as in anomalous diffusion
processes from the areas of physics, finance, biology, ecology, geophysics, and many others. Particularly,
the nonlocal nonlinear operators of the above types find their application in image processing [27] and
phase transition models [25].

It is known that when the leading operator appearing in (1.1) is linear and the right-hand side is
regular enough, then solutions enjoy higher Hölder regularity, which in turn, yields improved Sobolev
regularity. These assertions can be justified by the functional analysis tools along with a precise integral
representation of the solution through suitable heat kernel type estimates. Unfortunately, when the
operator is nonlinear, the aforementioned techniques fail to apply. To this end, our objective is to obtain
a fine fractional Sobolev regularity for weak solutions to (1.1) by using purely analytic and geometric
techniques. In particular, we introduce a unified approach of covering arguments to obtain some uniform
measure density estimates for some level sets involving the solution, which we will explain in the sequel.
More precisely, our aim is to establish Calderón-Zygmund type estimates for weak solutions to (1.1)
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under a minimal regularity requirement on the kernel coefficient A = A(x, y, t). More precisely, we want
to find an extra condition on A besides (1.2) under which the following implication holds

f(x, t)− f(y, t) ∈ Lqloc

(
Ω× ΩT ;

dx dy dt

|x− y|n+σq

)
with f ∈ Lqloc(0, T ;L1

s(Rn)) and g ∈ L
q(n+2s+

2σq
q−2 )

n+4s

loc (ΩT )

=⇒ u(x, t)− u(y, t)

|x− y|s ∈ Lqloc

(
Ω× ΩT ;

dx dy dt

|x− y|n+σq

)
(1.4)

for any q ∈ (2,∞) and σ ∈
(

0,
(

1− 2
q

)
min

{
s− 2s

q , 1− s
})

with the desired Calderón-Zygmund type

estimates like (1.9). In particular, using the notion of fractional gradients introduced in [13,39]; that is,

dβu(x, y, t) :=
u(x, t)− u(y, t)

|x− y|β
for any β ∈ [0, 1),

the implication (1.4) can be rewritten as

d0f ∈ Lqloc

(
Ω× ΩT ;

dx dy dt

|x− y|n+σq

)
with f ∈ Lqloc(0, T ;L1

s(Rn)) and g ∈ L
q(n+2s+

2σq
q−2 )

n+4s

loc (ΩT )

=⇒ dsu ∈ Lqloc

(
Ω× ΩT ;

dx dy dt

|x− y|n+σq

)
.

1.2. Some known results. For the elliptic problems, a self-improving property of a weak solution to
the problem:

LΦ
Au = (−∆)

s
2 f + g (1.5)

is obtained by Kuusi, Mingione and Sire [35] by introducing the notion of dual pairs. When Φ(ξ) = ξ and
A = A(x, y) is Hölder continuous, Calderón-Zygmund type estimate for (1.5) is established by Mengesha,
Schikorra and Yeepo [40] via commutator estimates. In addition, the aforementioned articles deal with
more general equations as source terms involve s̃-fractional Laplacian with s̃ 6= s

2 . For operators with
possibly discontinuous coefficients, such as VMO coefficients, Nowak [42, 43] obtain Calderón-Zygmund
type estimates when f = 0 by using the maximal function and the notion of dual pairs. We refer to [1]
for the global Calderón-Zygmund type estimate of (1.5) with A = 1, Φ(ξ) = ξ, f = 0 and the zero
Dirichlet condition on the exterior of the domain. The main tool employed in this work is the Green
function representation of the solution.

We now mention some related results for the case of nonlinear nonlocal operators. When Φ(ξ) =
|ξ|p−2ξ with p > 2 and f = 0, Nowak and Diening [19] obtain sharp regularity results containing
borderline cases by establishing precise pointwise bounds in terms of fractional sharp maximal functions.
On the other hand, Calderón-Zygmund type estimates of solutions to the problem:

LΦ
Au = (−∆p)

s
p f,

are established in [13] via a maximal function free technique which was first introduced in [2]. We mention
the work [22] as well for Lp-theory of a strong solution to nonlocal elliptic equations. For additional
regularity results related to nonlocal elliptic equations, we refer to [5, 8, 9, 12, 14, 15, 17, 18, 23, 24, 32, 34,
36,37,41,44–46] and references therein.

For the parabolic problems, Auscher, Bortz, Egert and Saari [4] prove a self-improving property of
solutions to (1.1) with f = 0 by using functional analysis techniques. When Φ(ξ) = ξ, A(x, y, t) ≡ 1 and
f = 0, Biccari, Warma and Zuazua [6] provide optimal regularity results of a weak solution by using a cut
off argument. For the Lp-theory of strong solutions to nonlocal parabolic equations, we refer to [21,51].
We further mention [3, 10, 16, 26, 29–31, 38, 48–50] and references therein for various regularity results of
nonlocal parabolic equations.

1.3. Main results. To explain the desired Carderón-Zygmund type estimate (1.4), we first introduce
the notion of dual pairs. For a measurable function F : Rn × Rn × (0, T ) and τ ∈ (0, 1), we define

DτF (x, y, t) :=
F (x, y, t)

|x− y|τ
and µτ (A) :=

ˆ
A

dx dy

|x− y|n−2τ
, for any measurable set A ⊂ Rn × Rn.

Furthermore, we write dµτ,t = dµτ dt. Then we observe that

dsu ∈ Lqloc

(
Ω× ΩT ;

dx dy dt

|x− y|n+σq

)
⇐⇒ Dτdsu ∈ Lqloc (Ω× ΩT ; dµτ,t) , where τ = qσ

q−2 . (1.6)
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From this observation, we deduce that the solution u improves its integrability order as well as the
differentiability order by achieving the same integrability as that of the associated non-homogeneous
term in the Sobolev scale and a substantial gain in the differentiability order.

We now introduce a nonlocal tail space. We say that u ∈ Lp(0, T ;L1
2s(Rn)) if∥∥∥∥ˆ

Rn

|u(x, ·)|
(1 + |x|)n+2s

dx

∥∥∥∥
Lp(0,T )

<∞

for any p ∈ [1,∞]. In particular, we write

Tailp,2s (u;Br(x0)× I) =

(
−
ˆ
I

(
r2s

ˆ
Rn\Br(x0)

|u(y, t)|
|y − x0|n+2s

dy

)p
dt

) 1
p

if p ∈ [1,∞)

and

Tail∞,2s (u;Br(x0)× I) = sup
t∈I

(
r2s

ˆ
Rn\Br(x0)

|u(y, t)|
|y − x0|n+2s

dy

)
,

where I ⊂ R is a bounded time interval. We note from Hölder’s inequality that for any 1 ≤ p1 ≤ p2 ≤ ∞,

Tailp1,2s (u;Br(x0)× I) ≤ Tailp2,2s (u;Br(x0)× I) . (1.7)

As usual, a solution to (1.1) is defined in the weak sense as below.

Definition 1.1. Let f ∈ L2
loc

(
0, T ;L1

s(Rn)
)

with d0f ∈ L2
loc

(
Ω× ΩT ; dx dy dt

|x−y|n

)
and g ∈ L

2(n+2s)
n+4s

loc (ΩT ).

We say that

u ∈ L2
loc

(
0, T ;W s,2

loc (Ω)
)
∩ Cloc

(
0, T ;L2

loc(Ω)
)
∩ L∞loc

(
0, T ;L1

2s(Rn)
)

is a weak solution to (1.1) ifˆ t2

t1

ˆ
Ω

−uφt dx dt+

ˆ t2

t1

ˆ
Rn

ˆ
Rn

Φ

(
u(x, t)− u(y, t)

|x− y|s

)
(φ(x, t)− φ(y, t))

A(x, y, t)

|x− y|n+s
dx dy dt

= −
ˆ

Ω

(uφ)(x, t) dx

∣∣∣∣∣
t=t2

t=t1

+

ˆ t2

t1

ˆ
Rn

ˆ
Rn

(f(x, t)− f(y, t))(φ(x, t)− φ(y, t))
1

|x− y|n+s
dx dy dt

+

ˆ t2

t1

ˆ
Ω

gφ dx dt

holds for any φ ∈ L2(t1, t2;W s,2(Ω)) ∩W 1,2
(
t1, t2;L2(Ω)

)
with compact spatial support contained in Ω

and (t1, t2) b (0, T ).

We next introduce the notion of (δ,R)-vanishing condition on A, for some δ and R > 0. We say that
A is (δ,R)-vanishing in ΩT , if

sup
0<r≤R,Qr(z0)⊂ΩT

−
ˆ

Λr(t0)

−
ˆ
Br(x0)

−
ˆ
Br(x0)

|A(x, y, t)− (A)r,x0(t)|dx dy dt ≤ δ,

where z0 = (x0, t0) and

(A)r,x0
(t) := −

ˆ
Br(x0)

−
ˆ
Br(x0)

A(x, y, t) dx dy. (1.8)

We now observe the following scaling invariance property for the problem (1.1).

Lemma 1.2. Let Qr(z0) b ΩT . Suppose that A is (δ,R)-vanishing in ΩT . Then

ũ(x, t) =
u(rx+ x0, r

2st+ t0)

rs

is a weak solution to

ũt + LΦ
Ã
ũ = (−∆)

s
2 f̃ + g̃ in Q1,

where

f̃(x, t) = f(rx+ x0, r
2st+ t0), g̃(x, t) = rsg(rx+ x0, r

2st+ t0)

and Ã(x, y, t) = A(rx+ x0, ry + x0, r
2st+ t0) is

(
δ, Rr

)
-vanishing in Q1.

We now introduce our main results.
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Theorem 1.1. Let u be a weak solution to problem (1.1). Let R > 0 and q ∈ (2,∞) be given,

and fix σ ∈
(

0,
(

1− 2
q

)
min

{
s− 2s

q , 1− s
})

. Then there is a constant δ = δ(n, s, L, q, σ) ∈ (0, 1)

such that if A is (δ,R)-vanishing in ΩT , f ∈ Lqloc

(
0, T ;L1

s (Rn)
)

with d0f ∈ Lqloc

(
dx dy dt
|x−y|n+σq ; Ω× ΩT

)
and g ∈ L

q(n+2s+
2σq
q−2 )

n+4s

loc (ΩT ), then dsu ∈ Lqloc

(
dx dy dt
|x−y|n+σq ; Ω× ΩT

)
. Moreover, there is a constant c =

c(n, s, L, q, σ) such that−ˆ
Λ r

2
(t0)

−
ˆ
B r

2
(x0)

ˆ
B r

2
(x0)

|ds+σu|q
dx dy dt

|x− y|n

 1
q

≤ c

(
−
ˆ

Λr(t0)

−
ˆ
Br(x0)

ˆ
Br(x0)

∣∣∣∣dsurσ
∣∣∣∣2 dx dy dt

|x− y|n

) 1
2

+ cTail∞,2s

(
u− (u)Br(x0)(t)

rs+σ
; Qr(z0)

)

+ c sup
t∈Λr(t0)

(
−
ˆ
Br(x0)

|u− (u)Qr(z0)|2

r2s+2σ
dx

) 1
2

+ c

(
−
ˆ
Qr(z0)

(
rs−σ|g|

) q(n+2s+
2σq
q−2 )

n+4s dx dt

) n+4s

q(n+2s+
2σq
q−2 )

+ c

(
−
ˆ

Λr(t0)

−
ˆ
Br(x0)

ˆ
Br(x0)

|dσf |q
dx dy dt

|x− y|n

) 1
q

+ cTailq,s

(
f − (f)Br(x0)(t)

rσ
; Qr(z0)

)
,

(1.9)

whenever Qr(z0) b ΩT and r ∈ (0, R].

Remark 1. A few comments are in order for the restricted range of σ in Theorem 1.1. In the elliptic case,
we observe that a similar type of result holds for all σ ∈ (0,min {s, 1− s}) (see [13, Theorem 1.2]). How-
ever, in our case, to handle the nonlocal parabolic tail induced by the non-homogeneous term f , we have

to impose the condition τ ∈
(

0, s− 2s
q

)
(see (5.27) below). Therefore, from the observation (1.6), we de-

duce that the Calderón-Zygmund type estimate (1.9) holds under σ ∈
(

0,
(

1− 2
q

)
min

{
s− 2s

q , 1− s
})

.

In this regard, if f = 0, then this restriction is removed and the results hold for a broader range of σ
(see Theorem 1.2 below).

Remark 2. As we pointed out earlier, in the elliptic case, from regularity results for (1.5) with g = 0,
we deduce a higher regularity of a weak solution u to (1.5). However, in the parabolic case, it does not

hold. More specifically, if g ∈ Lq̃loc(ΩT ) for some q̃ > 2, then we find a solution f ∈ Lq̃loc

(
0, T ;Hs,q̃

loc (Ω)
)
∩

Lq̃loc(0, T ;L1
s(Rn)) to

(−∆)
s
2 f(·, t) = g(·, t) in Ω

for a.e. t ∈ (0, T ) (see [13, Subsection 1.2]). This implies that u is a weak solution to

ut + LΦ
Au = (−∆)

s
2 f.

By Theorem 1.1, we deduce that

u ∈ Lq̃loc

(
0, T ;W s+σ,q̃

loc (Ω)
)

for any σ ∈
(

0,

(
1− 2

q̃

)
min

{
s− 2s

q̃
, 1− s

})
.

We now select q̃ =
q(n+2s+ 2σq

q−2 )
n+4s . Since q̃ < q, we do not obtain the desired result given in Theorem 1.2.

Therefore, we consider a more general non-homogeneous term which consists of (−∆)
s
2 f and g.

On account of Remark 1, we obtain an improved Sobolev regularity when we consider only non-
divergence data g.

Theorem 1.2. Let u be a weak solution to problem (1.1) with f = 0. Let R > 0 and q ∈ (2,∞) be

given, and fix σ ∈
(

0,
(

1− 2
q

)
min {s, 1− s}

)
. Then there is a constant δ = δ(n, s, L, q, σ) ∈ (0, 1) such

that if A is (δ,R)-vanishing in ΩT and g ∈ L
q(n+2s+

2σq
q−2 )

n+4s

loc (ΩT ), then u ∈ Lqloc

(
0, T ;W s+σ,q

loc (Ω)
)

with the
estimate (1.9).

Remark 3. Let us compare the local Calderón-Zygmund theory and the nonlocal ones. It is known that
if v is a weak solution to

vt − div (BDv) = g,
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then we obtain the following implication

g ∈ L
q(n+2)
n+4

loc (ΩT ) =⇒ v ∈ Lqloc(0, T ;W 1,q
loc (Ω)),

whenever the coefficient B is δ-vanishing for sufficiently small δ depending only on the given data (see,
for instance, [7]). We observe that in the limiting case when σ → 0 and s → 1, the result in Theorem
1.2 is the same as the local one. However, in the nonlocal case, although the kernel coefficient is
discontinuous, Theorem 1.2 implies that the solution u obtains not only higher integrability but also
higher differentiability along the Sobolev-scale. This is in some sense a purely nonlocal phenomenon,
since in order to observe such results in the local case, the coefficient B is assumed to have some
fractional regularity in the literature (see [33]). A similar phenomenon for the nonlocal equations is
observed in [4, 35,42,43] and references therein.

1.4. Working methods and novelties. We now briefly explain our approach to obtain the desired
estimates (A.15) and (1.9). As usual, keeping the relation (1.6) in mind, to prove that the fractional

gradient term dsu is in Lqloc

(
Ω× ΩT ; dx dy dt

|x−y|n+σq

)
, it suffices to show that

ˆ ∞
0

λq−1µτ,t ({(x, y, t) ∈ Q : |Dτdsu|(x, y, t) > λ}) dλ <∞

holds for any Q = B × B × Λ, where B b Ω is a ball and Λ b (0, T ) is a time interval. To do this, we
construct coverings for upper level sets of |Dτdsu| inspired by the maximal function free technique as
introduced in [2]. Using an exit-time argument, we are able to construct coverings for the diagonal part
of the upper level sets. For the off-diagonal part, we use a reverse Hölder-type inequality (see (5.48),
below) which is obtained regardless of the information that u solves (1.1). As in [35, Lemma 5.3], this
inequality contains additional correction terms involving diagonal cylinders which induce some serious
difficulties, as such cylinders do not come from any exit-time argument. We would like to mention that
in the elliptic case, Calderón-Zygmund cube decomposition and an involved combinatorial argument
are used to overcome these difficulties (see [35]). However, in the parabolic case, there are additional
difficulties, since the correction terms contain L2-oscillation integrals by sup norm term (see the second
term of the right-hand side in (5.32) and Lemma 5.2 below). To this end, we employ Vitali’s covering
lemma along with an exit-time argument instead of Calderón-Zygmund cube decomposition in order
to construct coverings for upper-level sets of |Dτdsu|. We would like to mention that this argument
is new even in the elliptic case, and we believe that this argument can be applied to degenerate or
singular nonlocal parabolic equations. We also point out that due to the appearance of the additional
L2-oscillation integrals by sup norm term, functionals used to apply an exit-time argument also contain
a term of a similar kind which is usually not observed in the local parabolic problems (see (5.11)). We
will elaborate on how to take care of this term while obtaining a good bound on the measure of exit-time
cylinders in Remarks 6 and 7 below. Moreover, we use a non-trivial exit time radius in the covering
arguments in light of the rigorous tail estimates as in (5.25) and (5.26), since the additional L2-oscillation

terms by sup norm are estimated by the sum of L2-integral of dsu and d0f , L
2(n+2s)
n+4s -integral of g and

tail terms of u and f (see Lemma 3.3). Consequently, by constructing suitable coverings, we are able to
make use of comparison estimates, which further require some higher Hölder continuity estimates along
with a self-improving property for limiting equations, and a boot strap argument to finally obtain the
desired result (see Section 6).

We would like to remark that a similar covering argument along with Gehring’s Lemma (in the spirit
of [35]) can be used to obtain a self-improving property of weak solutions to (1.1) without imposing any
regularity assumption on the kernel coefficient A. Indeed, for the sake of completion, we prove a self-
improving property of weak solutions to (1.1) with f = g = 0 (see Appendix A). In addition, this result
generalizes the ones given in [4] by allowing nonlinear structure assumptions on the nonlocal operator.

1.5. Plan of the paper. This paper is organized as follows. In Section 2, we introduce some notations,
embedding inequalities, properties of the measure µτ,t, tail estimates. In Section 3, we derive some energy
estimates. Section 4 is devoted to establishing some comparison estimates. In Section 5, we construct
coverings of upper level sets of fractional gradients for weak solutions. Section 6 contains the proof of
the main theorem. We end the paper with two appendices. In the first appendix, we give the proof of a
self-improving property for weak solutions to (1.1) with f = g = 0, whereas the second appendix deals
with the existence of a weak solution to the corresponding boundary value problem of (1.1).
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2. Preliminaries and Notations

As usual, we write c to mean a general constant equal to or bigger than 1 and it possibly changes
from line to line. In addition, we employ parentheses to denote the relevant dependencies on parameters
such as c = c(n, s), and we denote

data = data(n, s, L, q, σ).

For a, b ∈ R+, by the notation a ≈n,s b, we mean that there is a constant c = c(n, s) such that b
c ≤ a ≤ cb.

A generic point z ∈ Rn+1 will be denoted by

z = (x, t) ∈ Rn × R.
We write parameters i, j, l, k and m to mean nonnegative integers. We denote a time interval as

Λr(t0) := (t0 − r2s, t0 + r2s).

The parabolic cylinder is defined by

Qr(z0) = Br(x0)× Λr(t0),

where Br(x0) denotes the ball in Rn centered at x0 with radius r. We write

Br(x0, y0) = Br(x0)×Br(y0), Br(x0) = Br(x0)×Br(x0)

and
Qr(x0, y0, t0) = Br(x0, y0)× Λr(t0), Qr(x0, t0) = Br(x0)× Λr(t0)

for any x0, y0 ∈ Rn, t0 ∈ R and r > 0. For a given measurable function h : ΩT → R, we write for any
Qr(z0) ⊂ ΩT ,

(h)Br(x0)(t) = −
ˆ
Br(x0)

h(x, t) dx and (h)Qr(x0) = −
ˆ
Qr(z0)

h(z) dz.

We denote the parabolic Sobolev conjugate of p ∈ [1,∞) by

p# = p

(
1 +

2s

n

)
. (2.1)

We are going to mention some lemmas starting with the following embedding result.

Lemma 2.1. (see [20, Lemma 2.3]) Let p ∈ [1,∞) and h ∈ Lp(0, T ;W s,p(Br)) ∩ L∞(0, T ;L2(Br)).
Then there is a constant c = c(n, s, p) such that

ˆ T

0

−
ˆ
Br

|h|p# dz ≤ c
(
rsp
ˆ T

0

ˆ
Br

−
ˆ
Br

|h(x, t)− h(y, t)|p

|x− y|n+sp
dx dy dt+

ˆ T

0

−
ˆ
Br

|h|p dz
)
×

(
sup

t∈(0,T )

−
ˆ
Br

|h|2 dx

) sp
n

.

In particular, we have thatˆ T

0

−
ˆ
Br

|h− (h)Br (t)|p# dz ≤ c
(
rsp
ˆ T

0

ˆ
Br

−
ˆ
Br

|h(x, t)− h(y, t)|p

|x− y|n+sp
dx dy dt

)

×

(
sup

t∈(0,T )

−
ˆ
Br

|h− (h)Br (t)|2 dx

) sp
n

.

Next, we list some properties of the measure µτ,t.

Lemma 2.2. There exists a constant Cn depending only on n such that

(1) For any x0 ∈ Rn, t0 ∈ R and R > 0, the following holds

µτ,t (QR(x0, t0)) = Cn
Rn+2s+2τ

τ
. (2.2)

(2) Let ρ and R be any positive numbers, and let x0 ∈ Rn. Then

µτ,t (QR(x0, t0))

µτ,t (Qρ(x0, t0))
=

(
R

ρ

)n+2s+2τ

. (2.3)

(3) Let Kr(x0, y0) be any cube in BR for r,R > 0 and x0, y0 ∈ Rn. Then

µτ,t (QR)

µτ,t
(
Kr(x0, y0)× Λr

) ≤ 2n
Cn
τ

(
R

r

)2n+2s

. (2.4)

(4) Let a ≥ 1. Then we have

µτ,t (QaR(x0, y0, t0)) ≤ ca2n+2sτ−1µτ,t (QR(x0, y0, t0)) (2.5)

for some constant c = c(n).
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Proof. Since the proofs of (1)-(3) follow from [13, Lemma 2.1], we only give the proof of (4). If x0 = y0,
(4) follows from (2). We assume x0 6= y0. Let

D = diam(BaR(x0), BaR(y0)).

If D ≤ 4a, then QaR(x0, y0, t0) ⊂ Q10aR(x0, t0). Thus by (3), we get

µτ,t (QaR(x0, y0, t0)) ≤ µτ,t (Q10aR(x0, t0)) ≤ ca2n+2s

τ
µτ,t (QR(x0, y0, t0))

for some constant c = c(n). If D > 4a, we observe

D ≤ |x− y| ≤ 3D for any x ∈ BaR(x0) and y ∈ BaR(y0).

Thus we have

µτ,t (QaR(x0, y0, t0)) ≤ (aR)2n+2s

Dn−2τ
≤ ca2n+2sµτ,t (QR(x0, y0, t0))

for some constant c = c(n). This completes the proof. �

We now give some useful estimates to control the parabolic tail.

Lemma 2.3. Let h ∈ Lp
(

Λ2;L1
2β(Rn)

)
and Dτds̃h ∈ Lp (Q2; dµτ,t) where β ∈ (0, 1), s̃ ∈ [0, β] and

p ∈ [1,∞). Let Qρ(z0) b Q2, where z0 ∈ Qr1 with 0 < r1 < 2. Suppose that there is a natural number
l ≥ 1 such that

Q2lρ(z0) b Q2.

Then for any integer k ∈ [0, l], there are constants cp = c(n, p) and c̃ = c̃(n) independent of k and l such
that

Tailp,2β

(
h− (h)Bρ(x0)(t)

ρs̃+τ
;Qρ(z0)

)

≤ cpAk
k∑
i=1

2
i
(
−2β+s̃+τ+ 2s

p

)(
1

τ
−
ˆ
Q

2iρ
(z0)

|Dτds̃h|p dµτ,t

) 1
p

+ cpAk+1−l
2
−2βl+s̃+τ+ 2s

p

ρ
s̃+τ+ 2s

p

(
1

τ
−
ˆ
Q2

|Dτds̃h|p dµτ,t
) 1
p

+ c̃Al−k
l∑

j=k+1

2j(−2β+s̃+τ) sup
t∈Λ

2jρ
(t0)

−
ˆ
B

2jρ
(x0)

|h− (h)B
2jρ

(x0)(t)|
(2jρ)s̃+τ

dx

+ c̃Al−k
2−2βl+s̃+τ

ρs̃+τ
sup
t∈Λ2

−
ˆ
B2

|h− (h)B2(t)|
2s+τ

dx+
c̃

(2− r1)n+2s

(
2

ρ

)−2β+s̃+τ− 2s
p

Tailp,2β

(
h− (h)B2(t)

2s̃+τ
;Q2

)
,

(2.6)

where

Am =

{
1 if m = 1, 2, . . . ,

0 if m = 0,−1, . . . .

Proof. Using Minkowski’s inequality, we get that

Tailp,2β

(
h− (h)Bρ(x0)(t)

ρs̃+τ
;Qρ(z0)

)

≤
l∑
i=1

(
−
ˆ

Λρ(t0)

(ˆ
B2iρ(x0)\B2i−1ρ(x0)

ρ2β−s̃−τ |h− (h)Bρ(x0)(t)|
|y − x0|n+2β

dy

)p
dt

) 1
p

+

(
−
ˆ

Λρ(t0)

(ˆ
B2\B2lρ

(x0)

ρ2β−s̃−τ |h− (h)Bρ(x0)(t)|
|y − x0|n+2β

dy

)p
dt

) 1
p

+

(
−
ˆ

Λρ(t0)

(ˆ
Rn\B2

ρ2β−s̃−τ |h− (h)Bρ(x0)(t)|
|y − x0|n+2β

dy

)p
dt

) 1
p

=:
l∑
i=1

Ii + T1 + T2.

From the estimate of T
1
p−1

k in [13, Lemma 2.6], we have

Ii ≤
2−2βi

ρs̃+τ

i∑
j=1

(
−
ˆ

Λρ(t0)

(
−
ˆ
B2jρ(x0)

|h− (h)B2jρ(x0)(t)| dy

)p
dt

) 1
p

=: 2−2βi
i∑

j=1

Ii,j .
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Using Hölder’s inequality and then following the same line as for (2.12) in [13, Lemma 2.6], we obtain

i∑
j=1

Ii,j ≤ cp
k∑
j=1

Ak2j(s̃+τ+ 2s
p )

(
1

τ
−
ˆ
Q2jρ(z0)

|Dτds̃h|p dµτ,t

) 1
p

+

i∑
j=k+1

Ai−k2j(s̃+τ) sup
t∈Λρ(t0)

−
ˆ
B2jρ(x0)

|h− (h)B2jρ(x0)(t)|
(2jρ)s̃+τ

dx,

for some constant cp = 2n+2p, where we have taken supremum for the time variable if j ≥ k+1. Similarly,
we estimate T1 as

T1 ≤ 2−2βl
l∑
i=1

Il,i + cpAk+1−l2
−2βl

(
2

ρ

)s̃+τ+ 2s
p
(

1

τ
−
ˆ
Q2

|Dτds̃h|p dµτ,t
) 1
p

+ cAl−k2−2βl

(
2

ρ

)s̃+τ
sup
t∈Λ2

−
ˆ
B2

|h− (h)B2
(t)|

2s̃+τ
dx =: T1,1,

where c = c(n). Lastly, we estimate T2 as

T2 ≤ cT1,1 + c

(
−
ˆ

Λρ

(ˆ
Rn\B2

(
2

ρ

)−2β+s̃+τ (
2

2− r1

)n+2β

2−2β+s̃+τ |h− (h)B2
(t)|

|y|n+2β
dy

)p
dt

) 1
p

, (2.7)

where for the last term we have used the fact that

|y − x0| ≥ |y| − |x0| ≥
|y|(2− r1)

2
for any y ∈ Rn \B2.

We combine all the estimates Ii, T1 and T2 and use Fubini’s theorem as in [13, Lemma 2.6] to get the
desired result (2.6). �

Remark 4. By tracking the choice of the constant cp appearing in Lemma 2.3, we find that cp ≤ cq if
p ≤ q.

We end this section with the following iteration lemma.

Lemma 2.4. (See [28, Lemma 6.1]) Let φ : [1, 2]→ R be a nonnegative bounded function. For 1 ≤ r1 <
r2 ≤ 2, we assume that

φ(r1) ≤ 1

2
φ(r2) +

λ0

(r2 − r1)
5n
s

,

where λ0 > 0. Then, there is a constant c = c(n, s) such that

φ(1) ≤ cλ0.

3. Energy estimates and the Sobolev-Poincaré inequalities

In this section, we give energy estimates and derive Sobolev-Poincaré type inequalities from the energy
estimates. We first give an energy inequality of a weak solution u to (1.1).

Lemma 3.1. Let u be a local weak solution to (1.1). Let 0 < ρ < r ≤ 2ρ with Q2ρ(z0) b ΩT . Then,
there is a constant c = c(n, s, L) such that[
−
ˆ

Λρ(t0)

−
ˆ
Bρ(x0)

ˆ
Bρ(x0)

|u(x, t)− u(y, t)|2

|x− y|n+2s
dx dy dt+ sup

t∈Λρ(t0)

−
ˆ
Bρ(x0)

|u(x, t)− k|2

ρ2s
dx

]

≤ c rn+2−2s

(r − ρ)n+2
−
¨
Qr(z0)

|u− k|2 dz + c

(
r

r − ρ

)2(n+2s)

−
ˆ

Λr(t0)

−
ˆ
Br(x0)

ˆ
Br(x0)

|f(x, t)− f(y, t)|2

|x− y|n
dx dy dt

+ c

(
−
ˆ
Qr(z0)

(rs|g|)γ dz

) 2
γ

+ c

(
r

r − ρ

)2(n+2s)

Tailγ,2s

(
u− (u)Br(x0)(t)

rs
;Qr(z0)

)2

+ c

(
r

r − ρ

)2(n+2s)

Tail2,s
(
f − (f)Br(x0)(t);Qr(z0)

)2
,

(3.1)
where k ∈ R and

γ =
2(n+ 2s)

n+ 4s
. (3.2)
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Proof. Since u − k is also a weak solution to (1.1), we may assume that k = 0. Let us take a cutoff

function ψ ∈ C∞c
(
B ρ+r

2

)
such that

ψ ≡ 1 on Bρ(x0) and |Dψ| ≤ 16

r − ρ
,

and a smooth function η ∈ C∞(R) such that

η ≡ 1 on

(
t0 −

(
r2s + ρ2s

2

)
,∞
)
, η ≡ 0 on

(
−∞, t0 −

(
3r2s + ρ2s

4

)]
and |η′| ≤ 16

r2s − ρ2s
.

With the aid of [11, Lemma 3.2], we deduce that

I : = −
ˆ

Λr(t0)

−
ˆ
Br(x0)

ˆ
Br(x0)

|(uψη)(x, t)− (uψη)(y, t)|2

|x− y|n+2s
dx dy dt+ sup

t∈Λr

−
ˆ
Br(x0)

|(uψη)(x, t)|2

r2s
dx

≤ c r
2(1−s)

(r − ρ)2
−
¨
Qr(z0)

|u|2 dz + c
1

r2s − ρ2s
−
¨
Qr(z0)

|u|2 dz + c−
¨
Qr(z0)

|g||uψη| dz

+ c

(
r

r − ρ

)n+2s

−
ˆ

Λr(t0)

ˆ
Rn\Br(x0)

|u(y, t)|
|y − x0|n+2s

dy−
ˆ
Br(x0)

|(uψη)(x, t)| dx dt

+ c−
ˆ

Λr(t0)

−
ˆ
Br(x0)

ˆ
Br(x0)

(f(x, t)− f(y, t)) ((uψη)(x, t)− (uψη)(y, t))

|x− y|n+s
dx dy dt

+ c

(
r

r − ρ

)n+s

−
ˆ

Λr(t0)

ˆ
Rn\Br(x0)

|f(x, t)− f(y, t)|
|y − x0|n+s

dy−
ˆ
Br(x0)

|(uψη)(x, t)| dx dt =:
6∑
i=1

Ii.

(3.3)

After a few simple algebraic computations along with the fact that ρ < r ≤ 2ρ, we observe that I2 ≤ cI1.
Using Hölder’s inequality, Lemma 2.1 and Young’s inequality, we have

I3 ≤

(
−
¨
Qr(z0)

(rs|g|)γ
) 1
γ
(
−
¨
Qr(z0)

∣∣∣∣uψηrs
∣∣∣∣2#
) 1

2#

≤ c

(
−
¨
Qr(z0)

(rs|g|)γ
) 2
γ

+
I

8
+ r−2s−

¨
Qr(z0)

|u|2 dx dt

and

I4 ≤ c
(

r

r − ρ

)(n+2s)

Tailγ,2s

(
u− (u)Br(x0)(t)

rs
;Qr(z0)

)(
−
¨
Qr(z0)

∣∣∣∣uψηrs
∣∣∣∣2#
) 1

2#

+ c

(
r

r − ρ

)n
I1

≤ c
(

r

r − ρ

)2(n+2s)

Tailγ,2s

(
u− (u)Br(x0)(t)

rs
;Qr(z0)

)2

+
I

8
+ r−2s−

¨
Qr(z0)

|u|2 dx dt+ c

(
r

r − ρ

)n
I1,

where the constant 2# is defined in (2.1). On the other hand, we obtain

I5 ≤ c−
ˆ

Λr(t0)

−
ˆ
Br(x0)

ˆ
Br(x0)

|f(x, t)− f(y, t)|2

|x− y|n
dx dy dt+

I

8

by Hölder’s inequality and Young’s inequality. For the last two terms, we first observe that

I5 + I6 ≤ c
(

r

r − ρ

)n+s

−
ˆ

Λr(t0)

ˆ
Rn\Br(x0)

−
ˆ
Br(x0)

|f(x, t)− (f)Br(x0)(t)|
|y − x0|n+s

|(uψη)(x, t)| dx dy dt

+ c

(
r

r − ρ

)n+s

−
ˆ

Λr(t0)

ˆ
Rn\Br(x0)

|f(y, t)− (f)Br(x0)(t)|
|y − x0|n+s

dy−
ˆ
Br(x0)

|(uψη)(x, t)| dx dt.

By following the same line as in the estimate of I2,2 in [13, Lemma 3.3], we estimate I5 as

I5 + I6 ≤
I

8
+ c

(
r

r − ρ

)2(n+2s)

−
ˆ

Λr(t0)

−
ˆ
Br(x0)

ˆ
Br(x0)

|f(x, t)− f(y, t)|2

|x− y|n
dx dy dt

+ cTail2,s
(
f − (f)Br(x0)(t);Qr(z0)

)2
.

Using the definitions of ψ and η, we estimate I as

I ≥

[
−
ˆ

Λρ(t0)

−
ˆ
Bρ(x0)

ˆ
Bρ(x0)

|u(x, t)− u(y, t)|2

|x− y|n+2s
dx dy dt+ sup

t∈Λρ(t0)

−
ˆ
Bρ(x0)

|u(x, t)|2

ρ2s
dx

]
.

We combine the estimates I and Ii for each i = 1, 2, . . . , 6 along with (3.3) to obtain (3.1). �

Next we give a gluing lemma.
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Lemma 3.2. (See [11, Lemma 4.5].) Let Qρ(z0) b ΩT . Take ψ ∈ C∞c
(
B 3ρ

4
(x0)

)
with ψ ≡ 1 in B ρ

2
(x0).

Then we have that

sup
t1,t2∈Λρ(t0)

∣∣∣(u)ψBρ(t1)− (u)ψBρ(t2)
∣∣∣

≤ cρ2s−1−
ˆ
Qρ(z0)

ˆ
Bρ(x0)

|u(x, t)− u(y, t)|
|x− y|n+2s−1

dy dz + cρ2s−
ˆ
Qρ(z0)

ˆ
Rn\Bρ(x0)

|u(x, t)− u(y, t)|
|y − x0|n+2s

dy dz

+ cρ2s−1−
ˆ
Qρ(z0)

ˆ
Bρ(x0)

|f(x, t)− f(y, t)|
|x− y|n+s−1

dy dz + cρ2s−
ˆ
Qρ(z0)

ˆ
Rn\Bρ(x0)

|f(x, t)− f(y, t)|
|y − x0|n+s

dy dz

+ cρ2s−
ˆ
Qρ(z0)

|g| dz

for some constant c = c(n, s), where (u)ψBρ(t) = 1
‖ψ‖L1

´
Bρ
u(x, t)ψ(x) dx.

We now show that L2-oscillation integral by the sup-norm is estimated by the sum of L2-integral of dsu
and d0f , Lγ-integral of g, and tail terms of u and f . Before giving the estimate, we define a function
G : Ω× ΩT → R by

G(x, y, t) = g(x, t). (3.4)

We directly deduce that ˆ
Qr

|g|p dz ≈n,s,p
1

r2τ

ˆ
Qr
|G|p dµτ,t. (3.5)

Lemma 3.3. Let u be a weak solution to (1.1) and let Q2ρ(z0) b ΩT . Then we have

sup
t∈Λρ(t0)

−
ˆ
Bρ(x0)

|u− (u)Qρ(z0)|2

ρ2s+2τ
dx ≤ c0

τ
−
ˆ
Q2ρ(z0)

|Dτdsu|2 dµτ,t + c0 Tail2,2s

(
u− (u)B2ρ(x0)(t)

(2ρ)s+τ
;Q2ρ(z0)

)2

+
c0
τ
−
ˆ
Q2ρ(z0)

|Dτd0f |2 dµτ,t + c0 Tail2,s

(
f − (f)B2ρ(x0)(t)

(2ρ)τ
;Q2ρ(z0)

)2

+ c0

(
1

τ
−
ˆ
Q2ρ(z0)

(
(2ρ)s−τ |G|

)γ
dµτ,t

) 2
γ

,

(3.6)

where c0 = c0(n, s, L) is a constant.

Proof. We may assume that z0 = 0. Using (3.1) with r = 2ρ and k = (u)Qρ , we have

sup
t∈Λρ

−
ˆ
Bρ

|u(x, t)− (u)Qρ |2

ρ2s+2τ
dx ≤ c−

¨
Q2ρ

|u− (u)Q2ρ |2

(2ρ)2s+2τ
dz +

c

τ
−
ˆ
Q2ρ

|Dτd0f |2 dµτ,t + c

(
−
ˆ
Q2ρ

(
(2ρ)s−τ |g|

)γ
dz

) 2
γ

+ c

[
Tailγ,2s

(
u− (u)B2ρ(t)

(2ρ)s+τ
;Q2ρ

)2

+ Tail2,s

(
f − (f)B2ρ(t)

(2ρ)τ
;Q2ρ

)2
]
.

Applying (A.3) and (2.2) to the first term and the third term in the right-hand side of the above inequality,
respectively, we obtain the desired estimate (3.6). �

4. Comparison estimates

This section is devoted to establishing comparison estimates. We now assume

τ ∈ (0,min{s, 1− s}) . (4.1)

Before proving comparison estimates, we first give two lemmas. The first one is a self-improving property
for weak solutions to the corresponding homogeneous problem of (1.1).

Lemma 4.1. Let w ∈ L2
(
Λ3;W s,2(B3)

)
∩ L∞

(
Λ3;L1

2s (Rn)
)

be a weak solution to

wt + LΦ
Aw = 0 in Q3.

Then there are constants ε0 = ε0(n, s, L) ∈ (0, 1) and c = c(n, s, L) such that(
1

τ
−
ˆ
Q2

|Dτdsw|2(1+ε0) dµτ,t

) 1
2(1+ε0)

≤ c
(

1

τ
−
ˆ
Q3

|Dτdsw|2 dµτ,t
) 1

2

+ Tail∞,2s

(
w − (w)B3(t)

3s+τ
;Q3

)

+ c

(
sup
t∈Λ3

−
ˆ
B3

|w − (w)B3(t)|2

32(s+τ)
dx

) 1
2

.
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Proof. By Theorem A.1 below, we have(
−
ˆ
Qr

ˆ
Br

|rε1ds+ε1w|
2+ε1 dx dz

|x− y|n

) 1
2+ε1

≤ c
(
−
ˆ
Q2r

ˆ
B2r

|dsw|2
dx dz

|x− y|n

)
+ cTail∞,2s

(
w − (w)B2r (t)

(2r)s
;Q2r

)

+ c

(
sup
t∈Λ2r

−
ˆ
B2r

|w − (w)B2r (t)|2

(2r)2s
dx

) 1
2

for some constant ε1 = ε1(n, s, L) ∈ (0, 1), where Q2r ⊂ Q3. By taking ε0 = ε1
2 and using (2.2), we get(

1

τ
−
ˆ
Qr
|Dτdsw|2(1+ε0) dµτ,t

) 1
2(1+ε0)

≤ c
(

1

τ
−
ˆ
Q2r

|Dτdsw|2 dµτ,t
) 1

2

+ Tail∞,2s

(
w − (w)B2r (t)

(2r)s+τ
;Q2r

)

+ c

(
sup
t∈Λ2r

−
ˆ
B2r

|w − (w)B2r (t)|2

(2r)2(s+τ)
dx

) 1
2

.

The standard covering argument along with Lemma 5.2 gives the desired result (see [13, Lemma 3.1] for
more details). �

The second one is a higher Hölder regularity of weak solutions to fractional parabolic equations with
locally constant coefficients with respect to the spatial variables.

Lemma 4.2. (See [11, Theorem 1.2]) Let v ∈ L2
(
Λ2;W s,2(B2)

)
∩L∞

(
Λ2;L1

2s (Rn)
)

be a weak solution
to

vt + LΦ
A2(t)v = 0 in Q2,

where we denote A2(t) = A2,0(t) which is defined in (1.8). Then for any α ∈ (0,min {2s, 1}), there is a
constant c = c(n, s, L, α) such that

[v]
Cα,

α
2s (Q1)

≤ c
(

1

τ
−
ˆ
Q2

|Dτdsv|2 dµτ,t
) 1

2

+ cTail∞,2s (v − (v)B2(t);Q2) .

We are now in position to prove the following comparison lemma.

Lemma 4.3. Let Q4 b ΩT . For any ε > 0, there is a constant δ = δ(n, s, L, ε) such that for any weak
solution u to (1.1) satisfying

1

τ
−
ˆ
Q4

|Dτdsu|2 dµτ,t + Tail∞,2s

(
u− (u)B4

(t)

4s+τ
; Q4

)2

≤ 1 (4.2)

and (
1

τ
−
ˆ
Q4

(
4s−τ |G|

)γ
dµτ,t

) 2
γ

+
1

τ
−
ˆ
Q4

|Dτd0f |2 dµτ,t + Tail2,s

(
f − (f)B4(t)

4τ
; Q4

)2

+

(
−
ˆ
Q2

|A− (A)2(t)| dx dy dt
)2

≤ δ2,

(4.3)

there is a solution v to

vt + LΦ
A2(t)v = 0 in Q2

such that
1

τ
−
ˆ
Q1

|Dτds(u− v)|2 dµτ,t ≤ ε2 and ‖Dτdsv‖L∞(Q1) ≤ c, (4.4)

where c = c(n, s, L, τ).

Proof. The proof is divided into several steps for the ease of readability.
Step 1: First comparison estimates. For a fixed weak solution u to problem (1.1), we consider the
following problem: {

wt + LΦ
Aw = 0 in Q3,
w = u in (Rn \B3)× Λ3 ∪B3 × {−32s}. (4.5)

We intend to apply Lemma B.1 for the existence and uniqueness of w. To this end, it remains to show
that ut ∈ L2(Λ3;W s,2(B4))∗. Indeed, using the fact that u is a solution to problem (1.1), we find that
for all φ ∈ L2(Λ3;W s,2(B4)) ∩ C1

0 (Λ3;L2(B4)), there holds∣∣∣∣ˆ
Λ3

〈u, φt〉dt
∣∣∣∣ ≤ cˆ

Λ3

‖φ(·, t)‖W s,2(B4)dt,
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for some c depending only on n, s, L, u, f and g. Thus, we have the existence of w ∈ L2
(
Λ3;W s,2(B4)

)
∩

C
(
Λ3;L2(B3)

)
∩ L∞

(
Λ3;L1

2s(Rn)
)

satisfying (4.5). Then ϕ := u− w solves

ϕt + LΦ
Au− LΦ

Aw = (−∆)
s
2 f + g in Q3.

With the help of an approximation argument, we take ϕ as a test function to the above equation to see
that for every T̃ ∈ (−32s, 32s], setting Λ̃3 := (−32s, T̃ ], there holds

1

2

ˆ
B3

(ϕ(x, T̃ ))2 dx+
1

L

ˆ
Λ̃3

ˆ
Rn

ˆ
Rn
|ϕ(x, t)− ϕ(y, t)|2 A(x, y, t)

|x− y|n+2s
dx dy dt

≤
ˆ

Λ̃3

ˆ
Rn

ˆ
Rn
|(f(x, t)− f(y, t))(ϕ(x, t)− ϕ(y, t))| dx dy dt

|x− y|n+s
+

ˆ
Λ̃3

ˆ
B3

|gϕ| dz,

where we have used the fact that ϕ(·,−32s) = 0 in B3 and the first condition in (1.3). Noting the bounds
on A, the above expression yields

1

2

ˆ
B3

(ϕ(x, T̃ ))2 dx+

ˆ
Λ̃3

ˆ
Rn

ˆ
Rn

|ϕ(x, t)− ϕ(y, t)|2

|x− y|n+2s
dx dy dt

≤ L2

ˆ
Λ̃3

ˆ
B4

ˆ
B4

|f(x, t)− f(y, t)| |ϕ(x, t)− ϕ(y, t)| dx dy dt
|x− y|n+s︸ ︷︷ ︸

=:J1

+ 2L2

ˆ
Λ̃3

ˆ
B3

ˆ
Rn\B4

|f(x, t)− f(y, t)| |ϕ(x, t)| dx dy dt
|x− y|n+s︸ ︷︷ ︸

=:J2

+L2

ˆ
Λ̃3

ˆ
B3

|gϕ| dz︸ ︷︷ ︸
=:J3

. (4.6)

For J1, applying Hölder’s inequality and Young’s inequality, we observe that

J1 ≤
(ˆ

Λ3

ˆ
B4

ˆ
B4

|f(x, t)− f(y, t)|2 dx dy dt
|x− y|n

) 1
2
(ˆ

Λ̃3

ˆ
B4

ˆ
B4

|ϕ(x, t)− ϕ(y, t)|2 dx dy dt

|x− y|n+2s

) 1
2

≤ c

τ
−
ˆ
Q4

|Dτd0f |2dµτ,t +
1

4L2

ˆ
Λ̃3

ˆ
B4

ˆ
B4

|ϕ(x, t)− ϕ(y, t)|2 dx dy dt

|x− y|n+2s
,

where c = c(n, s, L). On a similar account, we deduce that

J2 ≤
ˆ

Λ̃3

ˆ
B3

ˆ
Rn\B4

(
|f(x, t)− (f)B4

(t)|+ |f(y, t)− (f)B4
(t)|
)
|ϕ(x, t)| dx dy dt

|x− y|n+s

≤ c
(ˆ

Λ4

ˆ
B4

|f(x, t)− (f)B4
(t)|2dx dt

) 1
2
(ˆ

Λ̃3

ˆ
B3

ϕ(x, t)2dx dt

) 1
2

+ c

(ˆ
Λ̃3

ˆ
B3

|ϕ|2 dz
) 1

2

ˆ
Λ3

(ˆ
Rn\B4

|f(y, t)− (f)B4
(t)|

|y|n+s
dy

)2

dt

 1
2

.

Noticing the fact that ϕ(·, t) = 0 in Rn \B3, using the Sobolev-Poincaré inequality, we get

J2 ≤
1

8L2

ˆ
Λ̃3

ˆ
B4

ˆ
B4

|ϕ(x, t)− ϕ(y, t)|2 dx dy dt

|x− y|n+2s
+
c

τ
−
ˆ
Q4

|Dτd0f |2dµτ,t + cTail2,s

(
f − (f)B4(t)

4τ
;Q4

)2

,

where c = c(n, s, L). Now for J3, using Hölder’s inequality, Lemma 2.1 and Young’s inequality, we get

J3 ≤ c
(ˆ

Q3

|g(x, t)|γdx dt
) 2
γ

+
1

4L2

ˆ
Λ̃3

ˆ
B3

ˆ
B3

|ϕ(x, t)− ϕ(y, t)|2

|x− y|n+2s
dx dy dt+

1

4L2
sup
t∈Λ3

ˆ
B3

|ϕ(x, t)|2dx.

Therefore, using the estimates of J1, J2 and J3 in (4.6), taking supremum over T̃ ∈ (−32s, 32s] and
recalling the definition of G from (3.4) along with (3.5), we obtain

sup
t∈Λ3

−
ˆ
B3

(u− w)2(x, t) dx+
1

τ
−
ˆ
Q3

|Dτds(u− w)|2 dµτ,t

≤
(

1

τ
−
ˆ
Q4

(
4s−τ |G|

)γ
dµτ,t

) 2
γ

+
c

τ
−
ˆ
Q4

|Dτd0f |2dµτ,t + cTail2,s

(f − (f)B4(t)

4τ
;Q4

)2

≤ c δ2, (4.7)
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where we have also used (2.2) and (4.3).
Step 2: Uniform self-improving inequality for w. We first observe from Lemma 4.1 that(

1

τ
−
ˆ
Q2

|Dτdsw|2(1+ε0) dµτ,t

) 1
2(1+ε0)

≤ c
(

1

τ
−
ˆ
Q3

|Dτdsw|2 dµτ,t
) 1

2

+ cTail∞,2s

(
w − (w)B3(t)

3s+τ
;Q3

)

+ c

(
sup
t∈Λ3

−
ˆ
B3

|w − (w)B3(t)|2

32(s+τ)
dx

) 1
2

,

where ε0 = ε0(n, s, L) ∈ (0, 1) and c = c(n, s, L). Furthermore, by using (4.7), we have(
1

τ
−
ˆ
Q3

|Dτdsw|2 dµτ,t
) 1

2

≤
(

1

τ
−
ˆ
Q3

|Dτds(u− w)|2 dµτ,t
) 1

2

+

(
1

τ
−
ˆ
Q3

|Dτdsu|2 dµτ,t
) 1

2

≤ c.

Using (3.6) with a slight modification, (4.7) and (4.2), we next have(
sup
t∈Λ3

−
ˆ
B3

|w − (w)B3
(t)|2

32(s+τ)
dx

) 1
2

≤ c
(

sup
t∈Λ3

−
ˆ
B3

|u− (u)B3
(t)|2

32(s+τ)
dx

) 1
2

+ c

(
sup
t∈Λ3

−
ˆ
B3

|u− w|2

32(s+τ)
dx

) 1
2

≤ c.

For the tail term, a simple computation together with (4.7) and (4.2) yields

Tail∞,2s

(
w − (w)B3

(t)

3s+τ
;Q3

)
≤ sup
t∈Λ3

−
ˆ
B3

|w − u|2

32(τ+s)
dx+ Tail∞,2s

(
u− (u)B3

(t)

3s+τ
;Q3

)
≤ c.

Consequently, (
1

τ
−
ˆ
Q2

|Dτdsw|2(1+ε0) dµτ,t

) 1
2(1+ε0)

≤ c. (4.8)

Step 3: Second comparison estimates. For w as in Step 1, we consider the following problem:{
vt + LΦ

A2(t)v = 0 in Q2,

v = w in (Rn \B2)× Λ2 ∪B2 × {−22s}. (4.9)

Similar to Step 1, we have the existence of a unique solution v ∈ L2
(
Λ2;W s,2(B3)

)
∩ C

(
Λ2;L2(B2)

)
∩

L∞
(
Λ2;L1

2s(Rn)
)

to the problem (4.9). Taking ϕ̃ := v − w as a test function (upon approximation) to

ϕ̃t + LΦ
A2(t)v − L

Φ
A2(t)w = LΦ

Aw − LΦ
A2(t)w in Q2

and then using (1.3) and Hölder’s inequality, we obtain

1

τ

ˆ
Q2

|Dτdsϕ̃|2 dµτ,t + sup
t∈Λ2

ˆ
B2

|ϕ̃(x, t)|2dx

≤ c
ˆ

Λ2

ˆ
B2

ˆ
B2

|A(x, t)− (A)2(t)| |w(x, t)− w(y, t)||ϕ̃(x, t)− ϕ̃(y, t)|
|x− y|n+2s

dx dy dt

≤ c
(

1

τ

ˆ
Q2

|Dτdsϕ̃|2 dµτ,t
) 1

2
(

1

τ

ˆ
Q2

|Dτdsw|2(1+ε0) dµτ,t

) 1
2(1+ε0)

×
(ˆ

Λ2

ˆ
B2

ˆ
B2

|A− (A)2(t)|2
1+ε0
ε0 dx dy dt

) ε0
2(1+ε0)

.

Finally, up on using the vanishing condition on A and (4.8), the above expression yields

1

τ

ˆ
Q2

|Dτds(v − w)|2 dµτ,t ≤ c δ
ε0

2(1+ε0) , (4.10)

for some c = c(n, s, L). Coupling (4.7) with (4.10) and using triangle inequality, we get the first part of
(4.4) by taking δ sufficiently small depending on n, s, L and ε.
Step 4: Uniform bound on |Dτdsv|. From Lemma 4.2 along with (4.1), we observe that

‖Dτdsv‖L∞(Q1) = sup
(x,y,t)∈Q1

|v(x, t)− v(y, t)|
|x− y|s+τ ≤ c

(
1

τ
−
ˆ
Q2

|Dτdsv|2 dµτ,t
) 1

2

+ cTail∞,2s (v − (v)B2(t);Q2) ,

where c = c(n, s, L, τ). Proceeding as in Step 2 and [13, Lemma 3.3], it can be shown that the right-hand
side quantity of the above expression is bounded by a uniform constant c = c(n, s, L, τ). This completes
the proof of the lemma. �

We finish this section by giving a non-scaled version of the above lemma and this directly follows from
Lemma 4.3 along with a scaling argument (see Lemma 1.2).
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Lemma 4.4. Let Q20ρi(zi) b ΩT . For any ε > 0, there is a constant δ = δ(n, s, L, ε) such that for any
weak solution u to (1.1) satisfying

1

τ
−
ˆ
Q20ρi

(zi)

|Dτdsu|2 dµτ,t + Tail∞,2s

(
u− (u)B20ρi(xi)

(t)

(20ρi)s+τ
; Q20ρi(zi)

)2

≤ 1

and(
1

τ
−
ˆ
Q20ρi

(zi)

(
(20ρi)

s−τ |G|
)γ

dµτ,t

) 2
γ

+
1

τ
−
ˆ
Q20ρi

(zi)

|Dτd0f |2 dµτ,t + Tail2,s

(
f − (f)B20ρi

(xi)(t)

(20ρi)τ
; Q20ρi(zi)

)2

+

(
−
ˆ
Q10ρi

(zi)

|A− (A)10ρi,xi(t)| dx dy dt

)2

≤ δ2,

then there exists a solution v to

vt + LΦ
A10ρi,xi

(t)v = 0 in Q10ρi(zi)

such that
1

τ
−
ˆ
Q5ρi

(zi)

|Dτds(u− v)|2 dµτ,t ≤ ε2 and ‖Dτdsv‖L∞(Q5ρi
(zi)) ≤ c, (4.11)

where c = c(n, s, L, τ).

5. Coverings of upper level sets

In this section, we construct parabolic cylinders covering the upper level set of dsu, where

u ∈ L2
(
Λ2 ; W s,2(B2)

)
∩ C

(
Λ2;L2(B2)

)
∩ L∞

(
Λ2 ; L1

2s(Rn)
)

is a weak solution to the localized problem:

ut + LΦ
Au = (−∆)

s
2 f + g in Q2. (5.1)

In addition, we assume that f ∈ Lq
(
Λ2;L1

s (Rn)
)

and
ˆ
Q2

|Dτdsu|p + |Dτd0f |q + |G|γ dµτ,t <∞,

where p ∈ [2, q],

τ ∈
(

0, s− 2s

q

)
(5.2)

and the constant γ is defined in (3.2). Let us denote

q̃ =
1

2

(
q +

2s

s− τ

)
(5.3)

to see that

s > τ +
2s

q̃
(5.4)

and

q̃ < q, (5.5)

which follow from the choice of τ given in (5.2). We point out that (5.4) and (5.5) are needed to handle
the tail induced by the right-hand side f and to employ Fubini’s theorem, respectively (see (5.27) and
(6.10)). We now present the main proposition of this section.

Proposition 5.1. Let 1 ≤ r1 < r2 ≤ 2, δ > 0 and u be a weak solution to (5.1). Then, there are two
families of countable disjoint cylinders {Qρi(zi)}i≥0 and

{
Qr̃j (x1,j , x2,j , t0,j)

}
j≥0

such that

Uλ := {(x, y, t) ∈ Qr1 : |Dτdsu(x, y, t)| ≥ λ} ⊂

⋃
i≥0

Q
5

2
s ρi

(zi)

⋃⋃
j≥0

Q
5

1
s r̃j

(x1,j , x2,j , t0,j)


(5.6)
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whenever λ ≥ λ0, where

λ0 :=
cτ

1
q
− 1
γ

(r2 − r1)
5n
s

((
1

τ
−
ˆ
Q2

|Dτdsu|p dµτ,t
) 1
p

+ Tail∞,2s

(
u− (u)B2(t)

2s+τ
;Q2

)
+

(
sup
t∈Λ2

−
ˆ
B2

|u− (u)Q2 |2

22s+2τ
dx

) 1
2

)

+
cτ

1
q
− 1
γ

(r2 − r1)
5n
s

1

δ

((
1

τ
−
ˆ
Q2

|Dτd0f |q dµτ,t
) 1
q

+ Tailq,s

(
f − (f)B2(t)

2τ
;Q2

)
+

(
1

τ
−
ˆ
Q2

(2s−τ |G|)γ dµτ,t
) 1
γ

)
(5.7)

for some constant c = c(n, s, L, q, τ). In particular, there exist constants au = au(n, s, L, q, τ) ∈ (0, 1],
af = af (n, s, L, q, τ) ∈ (0, 1] and ag = ag(n, s, L, q, τ) ∈ (0, 1] such that∑

i≥0

µτ,t (Qρi(zi)) +
∑
j≥0

µτ,t
(
Qr̃j (x1,j , x2,j , t0,j)

)
≤ c

λp

ˆ
Qr2∩{|Dτdsu|>auλ}

|Dτdsu|p dµτ,t +
c

(δλ)q̃

ˆ
Qr2∩{|Dτd0f |>af δλ}

|Dτd0f |q̃ dµτ,t

+
c

(δλ)bτ

ˆ
Qr2∩{|G|γ>(agδλ)bτG−1

0 }
|G|γG0 dµτ,t,

(5.8)

where we denote

bτ =
2n+ 4s

n+ 2s+ 2τ
and G0 =

(ˆ
Q2

|g|γ dz
) bτ−γ

γ

. (5.9)

In addition, we get that−ˆ
Q

5
1
s r̃j

(x1,j ,x2,j ,t0,j)

|Dτdsu|p# dµτ,t


1
p#

≤ codλ for any j (5.10)

and for some constant cod = cod(n, s, p), where the constant p# is defined in (2.1),

Remark 5. As we pointed out earlier, (5.2) is only employed to control the tail term of f . Thus if f = 0,
we can remove the condition (5.2).

Proof. We first define the functional

ΘD (z0, r) =

(
−
ˆ
Qr(z0)

|Dτdsu|p dµτ,t

) 1
p

+ τ
1
γ

(
sup

t∈Λr(t0)

−
ˆ
Br(x0)

|u− (u)Qr(z0)|2

r2s+2τ
dx

) 1
2

+
1

δ

(
−
ˆ
Qr(z0)

|Dτd0f |q̃ dµτ,t

) 1
q̃

+
1

δ

(
−
ˆ
Qr(z0)

(rs−τ |G|)γ dµτ,t

) 1
γ

(5.11)

for any z0 ∈ Qr1 and r > 0 with Qr(z0) ⊂ Q2. The rest of the proof is divided into 8 steps.
Step 1. Coverings for the diagonal part. Let us take

λ0 =
Mκ−1τ

1
q

(r2 − r1)
5n
s

((
1

τ
−
ˆ
Q2

|Dτdsu|p dµτ,t
) 1
p

+ Tail∞,2s

(
u− (u)B2(t)

2s+τ
;Q2

)
+

(
sup
t∈Λ2

−
ˆ
B2

|u− (u)Q2 |2

22s+2τ
dx

) 1
2

)

+
Mκ−1τ

1
q

(r2 − r1)
5n
s

1

δ

((
1

τ
−
ˆ
Q2

|Dτd0f |q dµτ,t
) 1
q

+ Tailq,s

(
f − (f)B2(t)

2τ
;Q2

)
+

(
1

τ
−
ˆ
Q2

(2s−τ |G|)γ dµτ,t
) 1
γ

)
,

(5.12)

where M ≥ 1 and κ ∈ (0, 1] are free parameters which we will determine later (see (5.18) and (5.35)).
More precisely, the parameter M will be used to handle the diagonal part and the parameter κ will be
used to handle the non-diagonal part. We next take a positive integer j0 ≥ 5 such that

16(c0 + c̃+ 2cq)
2

1− 2−s+τ+ 2s
q̃

≤ 2j0(s−τ−
2s
q̃ ), (5.13)

where c0 is the constant determined in Lemma 3.3, and c̃ and cq are the constants determined in (2.6).
Using (5.3), we observe that the number j0 depends only on n, s, L, q and τ . We then note for any
z0 ∈ Qr1 ,

Q
5

2
s×2j0+3R1,2

(z0) ⊂ Qr2 ,
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where we denote
R1,2 = 2−j0−3 × 5−

2
s × (s(r2 − r1))

1
s . (5.14)

Let us now define for λ ≥ λ0,

Dκλ =

{
z0 ∈ Qr1 : sup

0<ρ≤R1,2

ΘD (z0, ρ) > κλ

}
.

Since τ < 1, we observe that for any z0 ∈ Qr1 and r ∈
[
R1,2, 5

2
s × 2j0+3R1,2

]
,(

−
ˆ
Qr(z0)

|Dτdsu|p dµτ,t

) 1
p

+
1

δ

(
−
ˆ
Qr(z0)

|Dτd0f |q̃ dµτ,t

) 1
q̃

+
1

δ

(
−
ˆ
Qr(z0)

(rs−τ |G|)γ dµτ,t

) 1
γ

≤ κλ

4

holds by assuming

M ≥ 210n(j0+4+5s−1)s−
5n
s . (5.15)

In addition, using Lemma 3.3 and the fact that τ < 1 with γ < 2, we have

τ
1
γ

(
sup

t∈Λr(t0)

−
ˆ
Br(x0)

|u− (u)Qr(z0)|2

r2s+2τ
dx

) 1
2

≤ c0

(
−
ˆ
Q2r(z0)

|Dτdsu|2 dµτ,t

) 1
2

+ c0

(
−
ˆ
Q2r(z0)

|Dτd0f |2 dµτ,t

) 1
2

+ c0

(
−
ˆ
Q2r(z0)

(
(2r)s−τ |G|

)γ
dµτ,t

) 1
γ

+ c0τ
1
2 Tail2,2s

(
u− (u)B2r(x0)(t)

(2r)s+τ
;Q2r(z0)

)
︸ ︷︷ ︸

T1

+ c0τ
1
2 Tail2,s

(
f − (f)B2r(x0)(t)

(2r)τ
;Q2r(z0)

)
︸ ︷︷ ︸

T2

,

(5.16)

where the constant c0 is determined in Lemma 3.3. By Hölder’s inequality and (2.6), we further estimate
T1 and T2 as

T1 + T2 ≤ c0τ
1
2 Tailp,2s

( |u− (u)B2r(x0)(t)|
(2r)s+τ

;Q2r(z0)

)
+ c0τ

1
2 Tailq̃,s

( |f − (f)B2r(x0)(t)|
(2r)τ

;Q2r(z0)

)
≤ c0cp

(
2

R1,2

)s+τ+ 2s
p
(
−
ˆ
Q2

|Dτdsu|p
) 1
p

+ c0cq

(
2

R1,2

)τ+ 2s
q
(
−
ˆ
Q2

|Dτd0f |q
) 1
q

+ c0c̃

(
2

R1,2

)5n

Tailp,2s

(
u− (u)B2

(t)

2s+τ
;Q4

)
+ c0c̃

(
2

R1,2

)5n

Tailq,s

(
f − (f)B2

(t)

2τ
;Q2

)
,

(5.17)
where the constants cp, cq and c̃ are determined in Lemma 2.3. Using Remark 4 and Hölder’s inequality
to the third term on the right-hand side of (5.17), we deduce from (5.16) that

τ
1
γ

(
sup

t∈Λr(t0)

−
ˆ
Br(x0)

|u− (u)Qr(z0)|2

r2s+2τ
dx

) 1
2

≤ κλ

4

holds by taking

M = (c0cq + c0c̃)2
10n(j0+4+5s−1)s−

5n
s (5.18)

which clearly satisfies (5.15). As a result, we observe that for any z0 ∈ Qr1 and r ∈
[
R1,2, 5

2
s × 2j0+3R1,2

]
,

ΘD(z0, r) ≤ κλ. (5.19)

Therefore, for each z ∈ Dκλ, there is an exit radius ρz ≤ R1,2 such that

ΘD (z, ρz) ≥ κλ and ΘD (z, ρ) ≤ κλ if ρz ≤ ρ ≤ 5
2
s × 2j0+3R1,2. (5.20)

We first observe that if Qρ(z1)∩Qr(z2) 6= ∅ with ρ
2 ≤ r ≤ 2ρ, then we have Qr(z2) ⊂ Q

5
1
s ρ

(z1). Thus we

apply Vitali’s covering lemma to the collection {Q2j0ρz (z)}z∈Dκλ , in order to find a family of mutually
disjoint countable cylinders{

Q2j0ρzi
(zi)
}
i≥0

such that Dκλ ⊂
⋃

z0∈Dκλ

Qρz0 (z0) ⊂
∞⋃
i=0

Q
5

1
s×2j0ρzi

(zi). (5.21)

In addition, by the proof of Vitali’s covering lemma, we get that for any z ∈ Dκλ, there is i such that

2j0ρzi
2
≤ 2j0ρz ≤ 2j0+1ρzi and Q2j0ρz (z) ⊂ Q5

1
s×ρi

(zi), (5.22)
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where we denote

ρi = 2j0ρzi for each i. (5.23)

From (5.20), we have

κλ ≤

(
−
ˆ
Qρzi (zi)

|Dτdsu|p dµτ,t

) 1
p

+ τ
1
γ

(
sup

t∈Λρzi
(ti)

−
ˆ
Bρzi

(xi)

|u− (u)Qρzi (zi)|2

ρ2s+2τ
zi

dx

) 1
2

+
1

δ

(
−
ˆ
Qρzi (zi)

|Dτd0f |q̃ dµτ,t

) 1
q̃

+
1

δ

(
−
ˆ
Qρzi (zi)

(
(ρzi)

s−τ |G|
)γ

dµτ,t

) 1
γ

.

(5.24)

We first note from (2.6) with β = s, s̃ = s and k = j0 that

τ
1
γ Tailp,2s

(
u− (u)B2ρ(xi)(t)

(2ρ)s+τ
;Q2ρ(zi)

)
≤ cp

j0∑
j=2

2
i
(
−s+τ+ 2s

p

)(
−
ˆ
Q

2jρ
(zi)

|Dτdsu|p dµτ,t

) 1
p

+ c̃τ
1
γ

l∑
j=j0+1

2j(−s+τ)

(
sup

t∈Λ
2jρ

(ti)

−
ˆ
B

2jρ
(xi)

|u− (u)B
2jρ

(xi)(t)|
2

(2jρ)2s+2τ
dx

) 1
2

+ c̃τ
1
γ 2−2sl

(
2

ρ

)s+τ (
sup
t∈Λ2

−
ˆ
B2

|u− (u)B2(t)|2

22s+2τ
dx

) 1
2

+
c̃

(2− r1)n+2s

(
2

ρ

)−s+τ
Tail∞,2s

(
u− (u)B2(t)

2s̃+τ
;Q2

)
,

(5.25)

where ρ = ρzi and l is the positive integer such that 2j0+1R1,2 ≤ 2lρzi < 2j0+2R1,2. We point out that
for the last tail term in (5.25), we have taken supremum in the time variable for the expression in (2.7).
Similarly, we observe

τ
1
γ Tailq̃,s

(
f − (f)B2ρ(xi)(t)

(2ρ)τ
;Q2ρ(zi)

)

≤ cq̃
j0∑
j=2

2
i
(
−s+τ+ 2s

q̃

)(
−
ˆ
Q

2jρ
(zi)

|Dτd0f |q̃ dµτ,t

) 1
q̃

+ cq̃

l∑
j=j0+1

2
i
(
−s+τ+ 2s

q̃

)(
−
ˆ
Q

2jρ
(zi)

|Dτd0f |q̃ dµτ,t

) 1
q̃

+ cq̃2
−sl
(

2

ρ

)τ+ 2s
q̃
(
−
ˆ
Q2

|Dτd0f |q dµτ,t
) 1
q

+
c̃

(2− r1)n+2s

(
2

ρ

)−s+τ+ 2s
q

Tailq,s

(
f − (f)B2(t)

2τ
;Q2

)
,

(5.26)

where we have used Hölder’s inequality for the third and fourth terms in the right-hand side of (5.26).
We combine (5.16) with r = ρzi , (5.25) and (5.26) together with (5.4), (5.23) and Remark 4 to get

τ
1
γ sup
t∈Λρzi

(ti)

(
−
ˆ
Bρzi

(xi)

|u− (u)Qρzi (zi)|
2

ρ2s+2τ
zi

dx

) 1
2

≤ c

(
−
ˆ
Qρi (zi)

|Dτdsu|p dµτ,t

) 1
p

+ c

(
−
ˆ
Qρi (zi)

|Dτd0f |q̃ dµτ,t

) 1
q̃

+ c

(
−
ˆ
Qρi (zi)

(
(ρi)

s−τ |G|
)γ

dµτ,t

) 1
γ

+ c0c̃

[
l∑

j=j0+1

2i(−s+τ)ΘD

(
zj , 2

jρzi

)
+ τ

1
γ

(
2

2j0R1,2

)s+τ (
sup
t∈Λ2

−
ˆ
B2

|u− (u)B2(t)|2

22s+2τ
dx

) 1
2

]

+ c0cq

[
l∑

j=j0+1

2
i
(
−s+τ+ 2s

q̃

)
ΘD

(
zj , 2

jρzi

)
+

(
2

2j0R1,2

)τ+ 2s
q̃
(
−
ˆ
Q2

|Dτd0f |q dµτ,t
) 1
q

]

+
c0c̃

(r2 − r1)5n

(
Tail∞,2s

(
u− (u)B2(t)

2s+τ
;Q2

)
+ Tailq,s

(
f − (f)B2(t)

2τ
;Q2

))
,

(5.27)

where c = c(n, s, L, q, τ). We here highlight that (5.4) is necessary to handle the sixth term in the

right-hand side of (5.27), as
∞∑

j=j0+1

2i(−s+τ+ 2s
q̃ ) < 2

j0(−s+τ+2s
q̃ )

1−2
−s+τ+2s

q̃
. We further estimate the right-hand side



18 BYUN, KIM AND KUMAR

of (5.27) using (5.4), (5.13), (5.14), (5.18) and (5.20) as

τ
1
γ sup
t∈Λρzi

(ti)

(
−
ˆ
Bρzi

(xi)

|u− (u)Qρzi (zi)|
2

ρ2s+2τ
zi

dx

) 1
2

≤ c

(
−
ˆ
Qρi (zi)

|Dτdsu|p dµτ,t

) 1
p

+ c

(
−
ˆ
Qρi (zi)

|Dτd0f |q̃ dµτ,t

) 1
q̃

+ c

(
−
ˆ
Qρi (zi)

(
(ρi)

s−τ |G|
)γ

dµτ,t

) 1
γ

+
κλ

4
.

Plugging the above estimate into (5.24) along with (5.23), we find that

κλ ≤ c

(
−
ˆ
Qρi (zi)

|Dτdsu|p dµτ,t

) 1
p

+
c

δ

(
−
ˆ
Qρi (zi)

|Dτd0f |q̃ dµτ,t

) 1
q̃

+
c

δ

(
−
ˆ
Qρi (zi)

(
(ρi)

s−τ |G|
)γ

dµτ,t

) 1
γ

for some constant c = c(n, s, L, q, τ). Therefore we deduce that one of the following must hold:

κλ

3
≤ c

(
−
ˆ
Qρi (zi)

|Dτdsu|p dµτ,t

) 1
p

,
κλ

3
≤ c

δ

(
−
ˆ
Qρi (zi)

|Dτd0f |q̃ dµτ,t

) 1
q̃

,

κλ

3
≤ c

δ

(
−
ˆ
Qρi (zi)

(
(ρi)

s−τ |G|
)γ

dµτ,t

) 1
γ

.

(5.28)

If the first inequality or the second inequality in (5.28) holds, then we get

µτ,t (Qρi(zi)) ≤
c

(κλ)p

ˆ
Qρi (zi)

|Dτdsu|p dµτ,t or µτ,t (Qρi(zi)) ≤
c

(κδλ)q̃

ˆ
Qρi (zi)

|Dτd0f |q̃ dµτ,t.

(5.29)
On the other hand, if the third inequality in (5.28) holds, we observe that

µτ,t (Qρi(zi)) ≤
c

(κδλ)γ

ˆ
Qρi (zi)

(
(ρi)

s−τ |G|
)γ

dµτ,t =
c

(κδλ)γ

ˆ
Qρi (zi)

(
(ρi)

s−τ |G|
)γ
G0G

−1
0 dµτ,t.

We note from (5.9) that

ρ
γ(s−τ)
i G−1

0 ≤ ργ(s−τ)
i

(ˆ
Qρi (zi)

|g|γ
) γ−bτ

γ

≤ cργ(s−τ)
i

(
−
ˆ
Qρi (zi)

ρn+2s
i |G|γ dµτ,t

) γ−bτ
γ

≤ c

(
−
ˆ
Qρi (zi)

(
(ρi)

s−τ |G|
)γ

dµτ,t

) γ−bτ
γ

.

Using the above two estimates along with the third inequality in (5.28), we have

µτ,t (Qρi(zi)) ≤
c

(δκλ)bτ

ˆ
Qρi (zi)

|G|γG0 dµτ,t. (5.30)

We combine (5.29) and (5.30) to see that

µτ,t (Qρi(zi)) ≤
c

(κλ)p

ˆ
Qρi (zi)

|Dτdsu|p dµτ,t +
c

(κδλ)q̃

ˆ
Qρi (zi)

|Dτd0f |q̃ dµτ,t +
c

(δκλ)bτ

ˆ
Qρi (zi)

|G|γG0 dµτ,t.

A suitable choice of the constants ãu = ãu(n, s, L, q, τ) ∈
(
0, 1

8

]
, ãf = ãf (n, s, L, q, τ) ∈ (0, 1] and

ãg = ãg(n, s, L, q, τ) ∈ (0, 1] yields

µτ,t (Qρi(zi)) ≤
c

(κλ)p

ˆ
Qρi (zi)∩{|D

τdsu|>ãuκλ}
|Dτdsu|p dµτ,t +

c

(κδλ)q̃

ˆ
Qρi (zi)∩{|D

τd0f |>ãfκδλ}
|Dτd0f |q̃ dµτ,t

+
c

(κδλ)bτ

ˆ
Qρi (zi)∩{|G|

γ>(ãgκδλ)bτG−1
0 }
|G|γG0 dµτ,t.

(5.31)

Remark 6. We here remark on the second term appearing on the right-hand side of (5.11). We first note
that this term is used to handle parabolic tail terms. Since u ∈ C

(
−22s, 22s;L2(B2)

)
, there may exist

some points z0 ∈ Qr1 such that ΘD(z0, ρz0) ≥ κλ and(
−
ˆ
Qρz0 (z0)

|Dτdsu|p dµτ,t

) 1
p

≤ κλ

2
with τ

1
γ

(
sup

t∈Λρz0
(t0)

−
ˆ
Bρz0

(x0)

|u− (u)Qρz0 (z0)|2

ρ2s+2τ
z0

dx

) 1
2

≥ κλ

2
,
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where ρz0 is the exit-radius of the point z0. However, from energy estimates and rigorous tail estimates,
we still have a sufficiently good bound on the measure of such cylinders as in (5.31), which is an essential
ingredient to obtain Lq-regularity of Dτdsu.

Step 2. Coverings for off-diagonal parts. We first note that for any (x, y, t) ∈ Qr1 and r ∈(
0, 5

2
s × 2j0+3R1,2

]
, we have

Qr(x, y, t) ⊂ Qr2 ,
where the parameter R1,2 is defined in (5.14). Let us define

Ep,τ (u ; Qr(z0)) =

(
−
ˆ
Qr(z0)

|Dτdsu|p dµτ,t

) 1
p

+ τ
1
γ

(
sup

t∈Λr(t0)

−
ˆ
Br(x0)

|u− (u)Qr(z0)|2

r2s+2τ
dx

) 1
2

+
1

δ

(
−
ˆ
Qr(z0)

|Dτd0f |q̃ dµτ,t

) 1
q̃

,

(5.32)

for any Qr(z0) b Q2. Then we first note that for any ρ < r ,

sup
t∈Λρ

(
−
ˆ
Bρ

|u− (u)Qρ |2

ρ2s+2τ
dx

) 1
2

≤ 2

(
r

ρ

)n
2 +s+τ

sup
t∈Λr

(
−
ˆ
Br

|u− (u)Qr |2

r2s+2τ
dx

) 1
2

.

We now intend to employ exit-time arguments, to this end, we first introduce a set function which is
defined by

A (Br) =


(

r
dist(B1

r ,B
2
r)

)s+τ
if dist

(
B1
r , B

2
r

)
≥ r,

1 if dist
(
B1
r , B

2
r

)
< r,

(5.33)

where Br = B1
r ×B2

r . We next define a functional

ΘOD (u;Qr(x1, x2, t0)) =

(
−
ˆ
Qr(x1,x2,t0)

|Dτdsu|p dµτ,t

) 1
p

+ A (Br(x1, x2))

2∑
d=1

Ep,τ (u ; Qr(xd, t0)) . (5.34)

We then observe from (2.4) and (5.19) that for any r ∈
[
5−

2
sR1,2, 5

2
s × 2j0+3R1,2

]
,

ΘOD (u;Qr(x1, x2, t0)) ≤ λ

holds by taking

κ =
τ

1
γ

24nj05
20n
s (Cn + 1)

, (5.35)

where the constants Cn and j0 are determined in (2.4) and (5.13), respectively. Let us define

ODλ =

(x1, x2, t0) ∈ Qr1 : sup
0<ρ≤5−

2
sR1,2

ΘOD (u;Qρ(x1, x2, t0)) ≥ λ

 .

For each (x1, x2, t0) ∈ ODλ, there is an exit-time radius r ≤ 5−
2
sR1,2 such that

ΘOD (u;Qρ(x1, x2, t0)) ≤ λ if ρ ≥ r and ΘOD (u;Qr(x1, x2, t0)) ≥ λ. (5.36)

Using Vitali’s covering lemma, we find a collection Ã =
{
Q2j0rj (x1,j , x2,j , t0,j)

}
j≥0

whose elements are

mutually disjoint and satisfy

ODλ ⊂
⋃
j≥0

Q
5

1
s 2j0rj

(x1,j , x2,j , t0,j),

where we denote by rj the exit-time radius of the point (x1,j , x2,j , t0,j). Therefore, we have

{(x, y, t) ∈ Qr1 : |Dτdsu(x, y, t)| ≥ λ} ⊂
⋃
j≥0

Q
5

1
s r̃j

(x1,j , x2,j , t0,j), (5.37)

where we denote

r̃j ≡ 2j0rj . (5.38)
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Remark 7. We give some remarks on the functional defined in (5.34). We first note that the second
term in the right-hand side of (5.34) is needed to obtain a bound on the Lp# -norm of Dτdsu (see (5.48),

below). We now explain how to obtain a good upper bound on the measure of Qr̃j (x1,j , x2,j , t0,j) ∈ Ã
which is an essential ingredient to get Lq-regularity of Dτdsu. Indeed, by (2.5), (5.13) and (5.38), we
observe

µτ,t
(
Qr̃j (x1,j , x2,j , t0,j)

)
≤ cµτ,t

(
Qrj (x1,j , x2,j , t0,j)

)
for some constant c = c(n, s,Λ, q, τ), which implies that it suffices to investigate a good upper bound on
the measure of Qrj (x1,j , x2,j , t0,j). Suppose that the selected cylinder Qr̃j (x1,j , x2,j , t0,j) is close to the
diagonal. In the next step, we will see that such a cylinder is indeed contained in a diagonal cylinder
which we did choose in step 1. Therefore, the measure of Qr̃j (x1,j , x2,j , t0,j) has a good upper bound as
in (5.31).

On the other hand, if the selected cylinder Qr̃j (x1,j , x2,j , t0,j) ∈ Ã is not close to the diagonal, then
from (5.36), we observe that there holds

3λ

4
≤

(
1

µτ,t
(
Qrj (x1,j , x2,j , t0,j)

) ˆ
Qrj (x1,j ,x2,j ,t0,j)∩{|Dτdsu|> λ

16}
|Dτdsu|p dµτ,t

) 1
p

+ A
(
Brj (x1,j , x2,j)

)s+τ [ 2∑
d=1

Ep,τ
(
u ; Qrj (xd,j , t0,j)

)]
.

(5.39)

Our approach to obtaining a good upper bound on the measure of such cylinders depends on the size of
Ep,τ

(
u ; Qrj (xd,j , t0,j)

)
. Indeed, if Ep,τ

(
u ; Qrj (xd,j , t0,j)

)
< λ

16 , then the second term on the right-hand
side of (5.39) can be absorbed to the left-hand side. Thus we have a good upper bound on the measure

of Qr̃j (x1,j , x2,j , t0,j) ∈ Ã (see (5.61) in step 6 below). We next suppose Ep,τ
(
u ; Qrj (xd,j , t0,j)

)
≥ λ

16 .
Then we first note that if

λ < a+ b+ c =⇒
(
λ
3

)p
< ap,

(
λ
3

)q̃
< bq̃ or

(
λ
3

)γ
< cγ , (5.40)

where a, b and c are nonnegative constants. Applying this simple observation to (5.39), we get (5.64).
Thus it remains to obtain a suitable upper bound on the second term in the right-hand side of (5.64). To
this end, we find a suitable diagonal cylinder which was chosen in step 1 and containsQ

5
1
s r̃j

(xd,j , t0,j), and

then we use some combinatorial arguments by taking advantage of the factor A
(
Brj (x1,j , x2,j)

)
(see step

7 for more details). As a result, we obtain a good upper bound on the measure of Qr̃j (x1,j , x2,j , t0,j) ∈ Ã.

Step 3. First elimination of off-diagonal cylinders. We now prove that if Qr̃j (x1,j , x2,j , t0,j) ∈ Ã
satisfies

dist
(
B

5
1
s r̃j

(x1,j), B
5

1
s r̃j

(x2,j)
)
< 5

1
s r̃j , (5.41)

then

Q
5

1
s r̃j

(x1,j , x2,j , t0,j) ⊂
⋃
i

Q
5

1
s ρi

(zi) . (5.42)

By (5.36), one of the followings must hold:(
−
ˆ
Qrj (x1,j ,x2,j ,t0,j)

|Dτdsu|p dµτ,t

) 1
p

>
λ

3
, Ep,τ

(
u ; Qrj (x1,i, t0,i)

)
>
λ

3
, Ep,τ

(
u ; Qrj (x2,i, t0,i)

)
>
λ

3
.

(5.43)

Suppose that the first inequality in (5.43) holds. We now observe

B
5

1
s r̃j

(x1,j , x2,j) ⊂ B
5

2
s r̃j

(x1,j).

Therefore, using (2.4), (5.12) and (5.35), we obtain−ˆ
Q

5
2
s r̃j

(x1,j ,t0,j)

|Dτdsu|p dµτ,t


1
p

≥

µτ,t
(
Qrj (x1,j , x2,j , t0,j)

)
µτ,t

(
Q

5
2
s r̃j

(x1,j , t0,j)

) −ˆ
Qrj (x1,j ,x2,j ,t0,j)

|Dτdsu|p dµτ,t


1
p

≥ κλ,

which implies that ΘD

(
(x1,j , t0,j), 5

2
s r̃j

)
> κλ. By the fact that 5

2
s r̃j ≤ R1,2 and (5.20), (5.21) yields

Q
5

2
s r̃j

(x1,j , t0,j) ⊂
⋃
i

Q
5

1
s ρi

(zi) .
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We next assume that the second inequality in (5.43) is true. By (5.35), we have ΘD

(
(x1,j , t0,j), 5

2
s r̃j

)
>

κλ. Since Q
5

1
s r̃j

(x1,j , x2,j , t0,j) ⊂ Q
5

2
s r̃j

(x1,j , t0,j) which follows by (5.41), we have

Q
5

1
s r̃j

(x1,j , x2,j , t0,j) ⊂ Q
5

2
s r̃j

(x1,j , t0,j) ⊂
⋃
i≥0

Q
5

1
s ρi

(zi) .

Similarly, we get (5.42) if the third inequality in (5.43) holds. Thus, we now focus on the following

subfamily of Ã:

A =

{
Qrj (x1,j , x2,j , t0,j)

∣∣∣∣∣ Qr̃j (x1,j , x2,j , t0,j) ∈ Ã and
Q

5
1
s r̃j

(x1,j , x2,j , t0,j) 6⊂
⋃
i≥0

Q
5

2
s ρi

(zi) for each i

}
(5.44)

Indeed, we take cylinders Q
5

2
s ρi

(zi) instead of the cylinder Q
5

1
s ρi

(zi), in order to eliminate other types

of nearly diagonal cylinders (see (5.52) below).
Step 4. Off-diagonal estimates. We now obtain a bound on Lp# -norm of Dτdsu and a reverse
Hölder’s inequality on cylinders which are far from the diagonal.

Lemma 5.2. Let Q = Qr(x1, x2, t0) ⊂ Q2 be such that

dist(Br(x1), Br(x2)) ≥ r. (5.45)

Then there is a constant c = c(n, s, p, τ) such that(
−
ˆ
Q
|Dτdsu|p# dµτ,t

) 1
p#

≤ cΘOD (u;Q) .

Proof. We observe from (5.45) that

dist (Br(x1), Br(x2)) ≤ |x− y| ≤ 5 dist (Br(x1), Br(x2)) (5.46)

whenever x ∈ Br(x1) and y ∈ Br(x2). The above inequality and Jensen’s inequality yield that

r2n

c(n) dist (Br(x1), Br(x2))
n−2τ ≤ µτ (Br(x1, x2)) ≤ c(n)r2n

dist (Br(x1), Br(x2))
n−2τ (5.47)

and

−
ˆ
Qr(x1,x2,t0)

|Dτdsu|p# dµτ,t

≤ c

dist (Br(x1), Br(x2))p#(s+τ)
−
ˆ
Qr(x1,t0)

−
ˆ
Br(x1)

|u(x, t)− u(y, t)|p# dz dt

≤ crp#(s+τ)

dist (Br(x1), Br(x2))p#(s+τ)

2∑
d=1

1

rp#(s+τ)
−
ˆ
Qr(xd,t0)

|u(x, t)− (u)Br(xd)(t)|p# dz︸ ︷︷ ︸
=Id

+
crp#(s+τ)

dist (Br(x1), Br(x2))p#(s+τ)
−
ˆ

Λr(t0)

|(u)Br(x1)(t)− (u)Br(x2)(t)|p#

rp#(s+τ)
dt︸ ︷︷ ︸

=J

for some constant c = c(n, s, p). We now further estimate I1, I2 and J as below.
Estimates of I1 and I2. Using (5.45) and Lemma 2.1, we estimate Id as

Id ≤ c

(
1

τ
−
ˆ
Qr(xd,t0)

|Dτdsu|p dµτ,t

)(
sup

t∈Λr(t0)

−
ˆ
Br(xd)

∣∣u− (u)Qr(xd,t0)

∣∣2
r2s+2τ

dx

) sp
n

,

where we have used the fact that

sup
t∈Λr(t0)

−
ˆ
Br(xd)

∣∣u− (u)Br(xd)(t)
∣∣2

r2s+2τ
dx ≤ sup

t∈Λr(t0)

−
ˆ
Br(xd)

∣∣u− (u)Qr(xd,t0)

∣∣2
r2s+2τ

dx.

Applying Young’s inequality to the above inequality, we see that there is a constant c = c(τ) such that

rp#(s+τ)

dist (Br(x1), Br(x2))
p#(s+τ)

2∑
d=1

Id ≤
crp#(s+τ)

dist (Br(x1), Br(x2))
p#(s+τ)

[
2∑
d=1

Ep,τ (u ; Qr(xd, t0))

]p#



22 BYUN, KIM AND KUMAR

Estimate of J . We first note that

J ≤ c
2∑
d=1

sup
t∈Λr(t0)

(
−
ˆ
Br(xd)

|u− (u)Qr(xd,t0)|2

r2s+2τ
dx

) p#
2

+
|(u)Qr(x1,t0) − (u)Qr(x2,t0)|p#

rp#(s+τ)
,

where we denote the last term by Ĵ . In light of Jensen’s inequality, (5.46) and (5.47), we estimate Ĵ as

Ĵ ≤

(
−
ˆ
Qr(x1,t0)

−
ˆ
Br(x2)

|u(x, t)− u(y, t)|p dy dz

) p#
p

≤ cdist (Br(x1), Br(x2))p#(s+τ)

rp#(s+τ)

(
−
ˆ
Q
|Dτdsu|p dµτ,t

) p#
p

.

We finally combine all the estimates I1, I2 and J to get the desired result (5.48). �

Remark 8. Let Qrj (x1,j , x2,j , t0,j) ∈ A. By (5.41) and (5.44), we deduce Q
5

1
s r̃j

(x1,j , x2,j , t0,j) satisfies

(5.45). In light of (5.36) and Lemma 5.2, there is a constant cod = cod(n, s, p, τ) such that−ˆ
Q

5
1
s r̃j

(x1,j ,x2,j ,t0,j)

|Dτdsu|p# dµτ,t


1
p#

≤ codλ. (5.48)

Step 5. Decomposition of the family A. We now decompose the family A into subfamilies ADλ =
2⋂
d=1

ADd
λ and NDλ =

2⋃
d=1

NDd
λ for

ADd
λ =

{
Q = B1 ×B2 × I ∈ A : Ep,τ

(
u ; Bd × I

)
≤ λ

16

}
(5.49)

and

NDd
λ =

{
Q = B1 ×B2 × I ∈ A : Ep,τ

(
u ; Bd × I

)
>

λ

16

}
.

Recalling (5.35), (5.32) and (5.20), we observe that for any Qrj (x1,j , x2,j , t0,j) ∈ NDd
λ, there is an exit-

radius ρ(xd,j ,t0,j) ≥ rj such that (5.20) holds with z0 = (xd,j , t0,j). Thus, there is a cylinder Qρi(zi)
which is selected in (5.21) such that

Q2j0rj (xd,j , t0,j) = Qr̃j (xd,j , t0,j) ⊂ Q2j0ρ(xd,t0)
(xd,j , t0,j) ⊂ Q

5
1
s ρi

(zi) and
ρi
2
≤ 2j0ρ(xd,t0) ≤ 2ρi.

(5.50)
We have used (5.22) to obtain the second observation in (5.50). Therefore, the set

Adi,j,l :=

{
Qrj (x1,j , x2,j , t0,j) ∈ NDd

λ :
Qr̃j (xd,j , t0,j) ⊂ Q5

1
s ρi

(zi), where i is the smallest integer

satisfying (5.50) with ρi ≤ 2lrj < 2ρi

}
(5.51)

is either a singleton or an empty set for any l ≥ 0. Then we will verify

ρi < dist(Brj (x1,j), Brj (x2,j)). (5.52)

Suppose not, then we have

|xd′,j − xi| ≤ |xd′,j − xd,j |+ |xd,j − xi| ≤ 5ρi + 5
1
s ρi < 2× 5

1
s ρi,

where d′ ∈ {1, 2} \ {d}. Consequently, we have

Qrj (x1,j , x2,j , t0,j) ⊂ Q
5

2
s ρi

(zi),

which contradicts the definition of A defined in (5.44), and the claim follows.
We next define for any k ≥ 0,

Adi,j,l,k =
{
Qrj (x1,j , x2,j , t0,j) ∈ Adi,j,l : 2kρi ≤ dist(Brj (x1,j), Brj (x2,j)) < 2k+1ρi

}
(5.53)

to see that

NDd
λ =

⋃
i

⋃
j

⋃
l≥0,k≥0

Adi,j,l,k. (5.54)
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We next observe that, for every Qrj (x1,j , x2,j , t0,j) ∈ NDd
λ, there holds

A
(
Brj (x1,j , x2,j)

)s+τ
Ep(u;Qrj (xd,j , t0,j)) ≤ cA

(
Brj (x1,j , x2,j)

)(
−
ˆ
Qr̃j (xd,j ,t0,j)

|Dτdsu|p dµτ,t

) 1
p

+
cA
(
Brj (x1,j , x2,j)

)
δ

(
−
ˆ
Qr̃j (xd,j ,t0,j)

|Dτd0f |q̃ dµτ,t

) 1
q̃

+
cA
(
Brj (x1,j , x2,j)

)
δ

(
−
ˆ
Qr̃j (xd,j ,t0,j)

(r̃s−τj |G|)γ dµτ,t

) 1
γ

+
λ

100

(5.55)

for some constant c = c(n, s, L, q, τ), where the constant r̃j is determined in (5.38). Indeed, by following
the same lines as in the proof of (5.27), and using (5.13), (5.36) along with the fact that

A
(
Brj (x1,j , x2,j)

)
≤ A

(
Bcrj (x1,j , x2,j)

)
for any c ≥ 1, we get

A
(
Brj (x1,j , x2,j)

)
τ

1
γ

(
sup

t∈Λr(t0)

−
ˆ
Br(x0)

|u− (u)Qr(z0)|2

r2s+2τ
dx

) 1
2

≤ cA
(
Brj (x1,j , x2,j)

)−ˆ
Q

2j0rj
(xd,j ,t0,j)

|Dτdsu|p dµτ,t

 1
p

+
cA
(
Brj (x1,j , x2,j)

)
δ


−ˆ
Q

2j0rj
(xd,j ,t0,j)

|Dτd0f |q̃ dµτ,t

 1
q̃

+

(
−
ˆ
Q2rj

(xd,j ,t0,j)

(rs−τj |G|)γ dµτ,t

) 1
γ

+
λ

100

for some constant c = c(n, s, L, q, τ). Thus, using (5.32), (5.13) and (5.38), we get the desired estimate.
We end this step with the following lemma which is an essential ingredient for the next step.

Lemma 5.3. Let us fix i, l, k ≥ 0 and d ∈ {1, 2}. Then there is a constant c = c(n, s, L, q, τ) such that∑
Qrj (x1,j ,x2,j ,t0,j)∈

⋃
j̃≥0

Ad
i,j̃,l,k

ˆ
Qr̃j (xd,j ,t0,j)

|Dτdsu|p dµτ,t ≤ c2n(l+k)

ˆ
Q

5
1
s ρi

(zi)

|Dτdsu|p dµτ,t, (5.56)

∑
Qrj (x1,j ,x2,j ,t0,j)∈

⋃
j̃≥0

Ad
i,j̃,l,k

ˆ
Qr̃j (xd,j ,t0,j)

|Dτd0f |q̃ dµτ,t ≤ c2n(l+k)

ˆ
Q

5
1
s ρi

(zi)

|Dτd0f |q̃ dµτ,t (5.57)

and ∑
Qrj (x1,j ,x2,j ,t0,j)∈

⋃
j̃≥0

Ad
i,j̃,l,k

ˆ
Qr̃j (xd,j ,t0,j)

(r̃s−τj |G|)γ dµτ,t ≤ c2n(l+k)

ˆ
Q

5
1
s ρi

(zi)

(ρs−τi |G|)γ dµτ,t. (5.58)

Proof. We will prove only for d = 1 and we first claim that if⋂
j∈J

Qrj (x1,j ,x2,j ,t0,j)∈
⋃
j̃≥0

A1
i,j̃,l,k

Qr̃j (x1,j , t0,j) 6= ∅ (5.59)

holds for some index set J , then |J | ≤ c2n(l+k) for some constant c depending only on n, s, L, q
and τ , where |J | denotes the number of elements in the set J . To do this, suppose that (x1, t0) ∈⋂
j∈J Qr̃j (x1,j , t0,j). Then, by the definition of the set A1

i,j,l,k given in (5.53), we get

dist(x1, Br̃j (x2,j)) < 2k+1ρi + 2r̃j < c2kρi (5.60)

for some constant c = c(n, s, L, q, τ), where we have used the fact that rj ≤ 21−lρi by (5.51), (5.38) and
(5.13). Since

{
Qr̃j (x1,j , x2,j , t0,j)

}
j∈J is a collection of mutually disjoint sets, we note from (5.59) that{

Br̃j (x2,j)
}
j∈J also consists of mutually disjoint sets. This along with (5.60) implies

|J | ≤
∣∣Bc2kρi∣∣∣∣Br̃j ∣∣ ≤ c2n(k+l)
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for some constant c = c(n, s, L, q, τ), where we have used (5.38), (5.13) and the relation between rj and
ρi given in (5.51). This proves (5.59). We are now ready to prove (5.56) using an inductive argument.
We first note that the number of elements in

⋃
j

A1
i,j,l,k is finite, as each cylinder in

⋃
j

A1
i,j,l,k is of the

form Q = Qr, where 2−lρi < r ≤ 2−l+1ρi, is mutually disjoint and is contained in Qr2 . Let us denote
ji as the number of elements in

⋃
j

A1
i,j,l,k. For a clear notation, we assume A1

i,j,l,k 6= ∅ if j ≤ ji and

A1
i,j,l,k = ∅ if j ≥ ji + 1. By (5.50), we note Qr̃j (x1,j , t0,j) ⊂ Q

5
1
s ρi

(zi). We first define

D1 =
{
Q

5
1
s ρi

(zi) ∩Qr̃j (x1,j , t0,1), Q
5

1
s ρi

(zi) \ Qr̃j (x1,1, t0,1)
}
.

Suppose Dk is determined, for some k ≥ 1, then we define

Dk+1 =
⋃
F∈Dk

{
F ∩Qr̃k+1

(x1,k+1, t0,k+1), F \ Qr̃k+1
(x1,k+1, t0,k+1)

}
.

In this way, we obtain a collection Dji such that for any choice of two elements F and F ′ in Dji , either
F = F ′ or F ∩ F ′ = ∅. Thus, we can write

Q
5

1
s ρi

(zi) =
⋃

Fm∈Dji

Fm,

where Fm’s are mutually disjoint, and for any m and j ∈ [1, ji], either

Fm ⊂ Qr̃j (x1,j , t0,j) or Fm ∩Qr̃j (x1,j , t0,j) = ∅.
Moreover, there are mutually disjoint elements Fm ∈ Dji such that

Qr̃j (x1,j , t0,j) =
⋃

Fm⊂Qr̃j (x1,j ,t0,j)

Fm.

We note that for each Fm, the number of elements in J := {j ∈ [1, ji] : Fm ⊂ Qr̃j (x1,j , t0,j)} is at most

c2n(k+l), due to (5.59). As a result, by using the fact that r̃j ≤ 2ρi (thanks to (5.50)), we have∑
Qrj (x1,j ,x2,j ,t0,j)∈

⋃̃
j

A1
i,j̃,l,k

ˆ
Qr̃j (x1,j ,t0,j)

|Dτdsu|p dµτ,t =

ji∑
j=1

∑
m

Fm⊂Qr̃j (x1,j ,t0,j)

ˆ
Fm
|Dτdsu|p dµτ,t

=
∑
m

ji∑
j=1

Fm⊂Qr̃j (x1,j ,t0,j)

ˆ
Fm
|Dτdsu|p dµτ,t

≤ c2n(l+k)
∑
m

ˆ
Fm
|Dτdsu|p dµτ,t

≤ c2n(l+k)

ˆ
Q

5
1
s ρi

(zi)

|Dτdsu|p dµτ,t

for some constant c = c(n, s, L, q, τ), which implies the desired result (5.56). By following the same
lines as in the proof of (5.56) we can prove (5.57) and (5.58) by replacing (Dτdsu, p) with (Dτd0f, q̃)
and ((r̃s−τj |G|)γ , 1), respectively. �

Step 6. Measure estimate of Q ∈ ADλ. We claim that for every Q ∈ ADλ, there holds

µτ,t(Q) ≤ 2q

λp

ˆ
Q∩{|Dτdsu|> λ

16}
|Dτdsu|p dµτ,t. (5.61)

Indeed, on account of (5.36), we have

λp ≤ 2p
(
−
ˆ
Q
|Dτdsu|p dµτ,t

)
+ 2p (A(K))

p

[
2∑
d=1

Ep,τ
(
u ; Bd × I

)]p
. (5.62)

Using (5.62), (5.49) and the fact that(
−
ˆ
Q
|Dτdsu|p dµτ,t

)
≤ λp

8p
+

1

µτ,t(Q)

ˆ
Q∩{|Dτdsu|>λ

4 }
|Dτdsu|p dµτ,t,

we deduce that
λp

2p
≤ 1

µτ,t(Q)

ˆ
Q∩{|Dτdsu|> λ

16}
|Dτdsu|p dµτ,t.
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This proves the claim of (5.61) as p ≤ q.
Step 7. Measure estimate of Q ∈ NDλ. Our next aim is to estimate µτ,t(Q) for Q ∈ NDλ.
With the aid of (5.61), (5.54) and Lemma 5.3, we prove the following result.

Lemma 5.4. There exists a constant c = c(n, s, L, q, τ) such that∑
Q∈NDλ

µτ,t(Q) ≤ c

λp

ˆ
Qr2∩{|Dτdsu|>

λ
16}
|Dτdsu|p dµτ,t + c

∑
i

µτ,t (Qρi(zi)) . (5.63)

Proof. Let Q ≡ Qr(x1, x2, t0) ∈ NDλ. For convenience in notation, we set

Edu (Q) = A (Br(x1, x2))
p(s+τ)

(
−
ˆ
Q

2j0r
(xd,t0)

|Dτdsu|p dµτ,t

)
,

Edf (Q) =
A (Br(x1, x2))

q̃(s+τ)

δq̃

(
−
ˆ

2j0Qr(xd,t0)

|Dτd0f |q̃ dµτ,t

)
and

Edg (Q) =
A (Br(x1, x2))

γ(s+τ)

δγ

(
−
ˆ
Q

2j0r
(xd,t0)

((2j0r)s−τ |G|)γ dµτ,t

)
,

where the set function A(·) is defined in (5.33). We then note from (5.39), (5.49), (5.38) and (5.55) that
there is a constant c = c(n, s, L, q, τ) such that

λ

4
≤

(
1

µτ,t(Q)

ˆ
Q∩{|Dτdsu|> λ

16}
|Dτdsu|p dµτ,t

) 1
p

+ c

2∑
d=1

[(
Edu(Q)

) 1
p +

(
Edf (Q)

) 1
q̃ +

(
Edg(Q)

) 1
γ

]
,

if Q ∈ ND1
λ ∩ND2

λ and

λ

4
≤

(
1

µτ,t(Q)

ˆ
Q∩{|Dτdsu|> λ

16}
|Dτdsu|p dµτ,t

) 1
p

+ c
[(
Edu(Q)

) 1
p +

(
Edf (Q)

) 1
q̃ +

(
Edg(Q)

) 1
γ

]
,

if Q ∈ NDd
λ ∩ADd′

λ , where we denote d′ ∈ {1, 2} \ {d}. Using (5.40) and then multiplying µτ,t (Q) along
with a few simple calculations, we obtain

µτ,t (Q) ≤ c

λp

ˆ
Q∩{|Dτdsu|> λ

16}
|Dτdsu|p dµτ,t

+ µτ,t(Q)

[
c

λp

2∑
d=1

Edu (Q) +
c

λq̃

2∑
d=1

Edf (Q) +
c

λγ

2∑
d=1

Edg (Q)

] (5.64)

if Q ∈ ND1
λ ∩ND2

λ and

µτ,t (Q) ≤ c

λp

ˆ
Q∩{|Dτdsu|> λ

16}
|Dτdsu|p dµτ,t

+ µτ,t(Q)
[ c
λp

Edu (Q) +
c

λq̃
Edf (Q) +

c

λγ
Edg (Q)

] (5.65)

if Q ∈ NDd
λ ∩ADd′

λ . We next observe from (5.13), (2.3), (2.4) and (5.47) that

µτ,t(Q)

µτ,t (Q2j0r(xd, t0))
≤ c µτ,t(Q)

µτ,t (Qr(xd, t0))
≤ cτ

(
r

dist(Br(x1), Br(x2))

)n−2τ

(5.66)

for some constant c = c(n, s, L, q, τ). On account of (5.51), (5.53), (5.54), (5.66) and (5.56), we find that

∑
Q∈NDd

λ

µτ,t(Q)Edu(Q) ≤ c
∑
i,j,k,l

∑
Q∈Ad

i,j,l,k

(
r

dist(Br(x1), Br(x2))

)n−2τ+ps+pτ (ˆ
2j0PdQ

|Dτdsu|p dµτ,t
)

≤ c
∑
i,l,k≥0

(
2−(l+k)

)psˆ
Q

5
1
s ρi

(zi)

|Dτdsu|p dµτ,t


≤ c

∑
i≥0

ˆ
Q

5
1
s ρi

(zi)

|Dτdsu|p dµτ,t

 ,

(5.67)
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where we denote P dQ = Qr(xd, t0) for a given cylinder Q = Qr(x1, x2, t0). For the last inequality, we
have used the fact that ∑

i,j≥0

(
2−(i+j)

)a
≤ 2a

aln2
(a > 0).

Therefore, using (5.20), we obtain∑
Q∈NDdλ

µτ,t(Q)Edu(Q) ≤ cλp
∑
i

µτ,t (Qρi(zi)) . (5.68)

As in (5.67) along with (5.57), (5.58) and (5.20), we have∑
Q∈NDdλ

µτ,t(Q)Edf (Q) ≤ c
∑
i,l,k≥0

(
2−(l+k)

)q̃s
δ−q̃
ˆ
Q

5
1
s ρi

(xd,t0)

|Dτd0f |q̃ dµτ,t

≤ cλq̃
∑
i

µτ,t (Qρi(zi))

and ∑
Q∈NDdλ

µτ,t(Q)Edf (Q) ≤ c
∑
i,l,k≥0

(
2−(l+k)

)γs
δ−γ
ˆ
Q

5
1
s ρi

(xd,t0)

(
(ρi)

s−τ |G|
)γ

dµτ,t

≤ cλγ
∑
i

µτ,t (Qρi(zi))

for some constant c = c(n, s, L, q, τ). Combining the above two inequalities, we get∑
Q∈NDdλ

µτ,t(Q)

[
1

λq̃
Edf (Q) +

1

λγ
Edg(Q)

]
≤ c

∑
i

µτ,t (Qρi(zi)) , (5.69)

where we denote Q = B1 ×B2 ×Λ. Plugging (5.68) and (5.69) into (5.64) and (5.65), we obtain (5.63),
which completes the proof of the lemma. �

Step 8. Completion of the proof. Considering (5.18) and (5.35), the constant M
κ depends only on

n, s, L, q and τ . Therefore, if λ ≥ λ0 which is determined in (5.12), then we find two families of countable
disjoint cylinders

{Qρi(zi)}i and
{
Qr̃j (x1,j , x2,j , t0,j

}
Qrj (x1,j ,x2,j ,t0,j)∈A

so that

{(x, y, t) ∈ Qr1 : |Dτdsu(x, y, t)| ≥ λ} ⊂
⋃
i

Q
5

2
s ρi

(zi) ∪
⋃
j

Qrj (x1,j ,x2,j ,t0,j)∈A

Q
5

1
s r̃j

(x1,j , x2,j , t0,j),

which follows from the steps 2-3 along with (5.22), (5.37) and (5.44). In addition, using (5.48), (5.61),
(5.63) and (5.31) along with the choice of the constants au = ãuκ, af = ãfκ and ag = ãgκ given in
(5.31), we get (5.10) and (5.8). This completes the proof. �

Before ending this section, we give some estimates which are useful in the context of the comparison
Lemma 4.4.

Remark 9. Let Qρi(zi) be the cylinder chosen in Lemma 5.1. Then we want to show that

1

τ
−
ˆ
Q

4×5
2
s ρi

(zi)

|Dτdsu|2 dµτ,t + Tail∞,2s

u− (u)B
4×5

2
s ρi

(xi)(t)

(4× 5
2
s ρi)s+τ

; Q
4×5

2
s ρi

(zi)

2

≤ (cλ)2 (5.70)

and 1

τ
−
ˆ
Q

4×5
2
s ρi

(zi)

(
(4× 5

2
s ρi)

s−τ |G|
)γ

dµτ,t


2
γ

+
1

τ
−
ˆ
Q

4×5
2
s ρi

(zi)

|Dτd0f |2 dµτ,t

+ Tail2,s

f − (f)B
4×5

2
s ρi

(xi)(t)

(4× 5
2
s ρi)τ

; Q
4×5

2
s ρi

(zi)

2

≤ (cλδ)2

(5.71)



Calderón-Zygmund theory of nonlocal parabolic equations with discontinuous coefficients 27

for some constant c = c(n, s, L, q, τ). We first note from (5.14), (5.20) and (5.23) that there is a natural
number l such that

5
2
s × 2j0+2R1,2 < 2l × ρ ≤ 5

2
s × 2j0+3R1,2,

where we denote ρ = 4× 5
2
s ρi for a clear notation. After a few modifications of the proof for (2.6) with

p =∞, we deduce that

Tail∞,2s

(
u− (u)Bρ(xi)(t)

ρs+τ
;Qρ(zi)

)
≤ c

[
l∑

j=1

2j(−s+τ) sup
t∈Λ

2jρ
(ti)

−
ˆ
B

2jρ
(xi)

|u− (u)B
2jρ

(xi)(t)|
(2jρ)s+τ

dx+
2−2sl+s+τ

ρs+τ
sup
t∈Λ2

−
ˆ
B2

|u− (u)B2(t)|
2s+τ

dx

]

+
c

(2− r1)n+2s

(
2

ρ

)−s+τ
Tail∞,2s

(
u− (u)B2(t)

2s+τ
;Q2

)
,

where c = c(n, s). Then using (5.7), (5.20) and the fact that

2−2sl

(
2

ρ

)s+τ
≤ c

R
5n
s

1,2

and

∞∑
i=1

2i(−s+τ) ≤ c(n, s, τ),

we estimate the above term as

Tail∞,2s

(
u− (u)Bρ(xi)(t)

ρs+τ
;Qρ(zi)

)
≤ cλ, (5.72)

where c = c(n, s, L, q, τ). In addition, Hölder’s inequality and (5.20) imply(
1

τ
−
ˆ
Qρ(zi)

|Dτdsu|2 dµτ,t

) 1
2

≤ c

(
−
ˆ
Qρ(zi)

|Dτdsu|p dµτ,t

) 1
p

≤ cλ. (5.73)

We combine the above two estimates to obtain (5.70). Similarly, with the aid of (1.7) and (2.6) along
with (5.4), we get that

Tail2,s

(
f − (f)Bρ(xi)(t)

(ρ)τ
; Qρ(zi)

)
≤ Tailq̃,s

(
f − (f)Bρ(xi)(t)

(ρ)τ
; Qρ(zi)

)

≤ cq
l∑

j=1

2
i
(
−s+τ+ 2s

q̃

)(
1

τ
−
ˆ
Q

2jρ
(zi)

|Dτd0f |q̃ dµτ,t

) 1
q̃

+ cq2
−sl
(

2

ρ

)τ+s(
1

τ
−
ˆ
Q2

|Dτd0f |q dµτ,t
) 1
q

+
c̃

(2− r1)n+2s

(
2

ρ

)−s+τ+ 2s
q̃

Tailq,s

(
f − (f)B2(t)

2τ
;Q2

)
.

Hence, as in (5.72) and (5.73), there is a constant c = c(n, s, L, q, τ) such that(
1

τ
−
ˆ
Qρ(zi)

|Dτd0f |2 dµτ,t

) 1
2

+ Tail2,s

(
f − (f)Bρ(xi)(t)

(ρ)τ
; Qρ(zi)

)
≤ cδλ.

Additionally, (5.20) and (5.35) yield that1

τ
−
ˆ
Q

4×5
2
s ρi

(zi)

(
(4× 5

2
s ρiρi)

s−τ |G|
)γ

dµτ,t

 2
γ

≤ cδλ.

We combine the above two inequality to show that (5.71) holds.

6. Lq-estimate of dsu

In this section, we prove our main theorem. Since we have established comparison estimates and
constructed coverings of upper level sets, we are able to obtain Lq-estimate of dsu with the estimate
(1.9) via a bootstrap argument as in [13, Theorem 1.2]. Let us define

ph = 2
(

1 +
s

n

)h
, for h = 0, 1, 2, . . . . (6.1)

Then there is a positive integer hq such that

phq−1 < q ≤ phq . (6.2)
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We now prove the following lemma which is an essential ingredient to use a boot strap argument.

Lemma 6.1. Let h ∈ {0, 1, . . . , hq − 1}. Suppose that u is a weak solution to (5.1) with

f ∈ Lq
(
Λ2;L1

s(Rn)
)

and

ˆ
Q2

|Dτdsu|ph + |Dτd0f |q + |G|
qγ
bτ dµτ,t <∞.

Then there is a sufficiently small δ = δ(n, s, L, q, τ) ∈ (0, 1] independent of h such that if A is (δ, 2)-
vanishing in Q2, then we have that(

−
ˆ
Q1

|Dτdsu|p̃ dµτ,t
) 1
p̃

≤ c

((
−
ˆ
Q2

|Dτdsu|ph dµτ,t
) 1
ph

+ Tail∞,2s

(
u− (u)B2(t)

2s+τ
; Q2

))

+ c

(
sup
t∈Λ2

−
ˆ
B2

|u− (u)Q2 |2

22s+2τ
dx

) 1
2

+ c

(
−
ˆ
Q2

(
2s−τ |G|

) p̃γ
bτ dµτ,t

) bτ
p̃γ

+ c

((
−
ˆ
Q2

|Dτd0f |q dµτ,t
) 1
q

+ Tailq,s

(
f − (f)B2(t)

2τ
; Q2

))
(6.3)

for some constant c = c(n, s, L, q, τ), where the constant bτ is defined in (5.9) and

p̃ =

{
ph+1 if h < hq − 1,

q if h = hq − 1.
(6.4)

Proof. Let us first fix 1 ≤ r1 < r2 ≤ 2 and ε > 0. Then we select λ0 as given in Lemma 5.1 with p = ph
and select δ = δ(n, s, L, ε) determined in Lemma 4.4. For any N ≥ λ0, we define a function φ : [1, 2]→ R
by

φN (r) =

(
−
ˆ
Qr
|Dτdsu|p̃N dµτ,t

) 1
p̃

, (6.5)

where |Dτdsu|N = min {|Dτdsu|, N}. We now claim that for N ≥ λ0, the following holds

φN (r1) ≤ φN (r2)

2
+ cλ0 + c

(
−
ˆ
Q2

(
2s−τ |G|

) p̃γ
bτ dµτ,t

) bτ
p̃γ

(6.6)

for some constant c = c(n, s, L, q, τ). Using Fubini’s theorem, we observe thatˆ
Qr1
|Dτdsu|p̃N dµτ,t =

ˆ ∞
0

p̃λp̃−1µτ,t ({(x, y, t) ∈ Qr1 : |Dτdsu|N (x, y, t) > λ}) dλ

=

ˆ Mλ0

0

p̃λp̃−1µτ,t ({(x, y, t) ∈ Qr1 : |Dτdsu|N (x, y, t) > λ}) dλ

+

ˆ N

Mλ0

p̃λp̃−1µτ,t ({(x, y, t) ∈ Qr1 : |Dτdsu|N (x, y, t) > λ}) dλ =: I1 + I2,

where M > 1 is a constant which will be determined later and N >Mλ0. We now estimate I1 and I2.
Estimate of I1. A simple calculation yields that

I1 ≤ µτ,t (Qr1) (Mλ0)p̃.

Estimate of I2. By a change of variable and (5.6) of Lemma 5.1 with p = ph, we get that

I2 =

ˆ NM−1

λ0

p̃M(Mλ)p̃−1µτ,t ({(x, y, t) ∈ Qr1 : |Dτdsu|N (x, y, t) >Mλ}) dλ

≤
∑
i≥0

ˆ NM−1

λ0

p̃M(Mλ)p̃−1µτ,t
({

(x, y, t) ∈ Q
5
2
s ρi

(zi) : |Dτdsu|N (x, y, t) >Mλ
})

dλ

+
∑
j≥0

ˆ NM−1

λ0

p̃M(Mλ)p̃−1µτ,t

({
(x, y, t) ∈ Q

5
1
s rj

(x1,j , x2,j , t0,j) : |Dτdsu|N (x, y, t) >Mλ

})
dλ

=: I2,1 + I2,2,

where we have used the fact that

{(x, y, t) ∈ Qr1 : |Dτdsu|N (x, y, t) >Mλ} ⊂ {(x, y, t) ∈ Qr1 : |Dτdsu|(x, y, t) > λ} .

By assuming

M > cccd, (6.7)
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where the constants cc = cc(n, s, L, τ) and cd = cd(n, s, L, q, τ) are given in Lemma 4.4 with ρi replaced

by 5
2
s ρi and Remark 9, respectively, we now estimate I2,1 as

I2,1 ≤
∑
i

ˆ NM−1

λ0

p̃M(Mλ)p̃−1µτ,t

({
(x, y, t) ∈ Q

5
2
s ρi

(zi) : |Dτds(u− v)|N (x, y, t) >Mλ
})

dλ

≤
∑
i

ˆ NM−1

λ0

p̃M(Mλ)p̃−3

ˆ
Q

5
2
s ρi

(zi)

|Dτds(u− v)|2 dµτ,t dλ

≤ c
∑
i

ˆ NM−1

λ0

Mp̃−2λp̃−1ε2µτ,t (Qρi(zi)) dλ

(6.8)
for some constant c = c(n, s, L, q, τ). In the above estimates, we have used weak 1-1 estimates, (4.11)
and (2.3). On the other hand, using weak 1-1 estimates, (5.10), (2.1) and (6.1), we have that

I2,2 ≤ p̃λp̃
∑
j

ˆ NM−1

λ0

M(Mλ)−(ph)#+p̃−1

ˆ
Q

5
1
s rj

(x1,j ,x2,j ,t0,j)

|Dτdsu|(ph)# dµτ,t dλ

≤ p̃(cod,h)(ph)#λp̃−1

M 2s
n

∑
j

ˆ NM−1

λ0

µτ,t
(
Qrj (x1,j , x2,j , t0,j)

)
dλ,

where the constant cod,h = cod,h(n, s, ph, τ) is determined in (5.10). Note that the constant c = p̃ ×
max

h=0,1,...,hq−1
(cod,h)

q# depends only on n, s, L, q and τ and is bigger than the constant p̃(cod,h)(ph)# , as

hq depends only on n, s, q and τ (see (6.2)). Hence, we have that

I2,2 ≤
cλp̃−1

M 2s
n

∑
j

ˆ NM−1

λ0

µτ,t
(
Qrj (x1,j , x2,j , t0,j)

)
dλ (6.9)

for some constant c = c(n, s, L, q, τ). Combine (5.8) with p = ph, (6.8) and (6.9) to see that

I2 ≤ c
ˆ NM−1

λ0

λp̃−1

(
Mp̃−3ε2 +

1

M 2s
n

)
c

λph

ˆ
Qr2∩{|D

τdsu|>auλ}
|Dτdsu|ph dµτ,t dλ

+ c

ˆ NM−1

λ0

λp̃−1

(
Mp̃−3ε2 +

1

M 2s
n

)
c

(δλ)q̃

ˆ
Qr2∩{|D

τd0f |>af δλ}
|Dτd0f |q̃ dµτ,t dλ

+ c

ˆ NM−1

λ0

λp̃−1

(
Mp̃−3ε2 +

1

M 2s
n

)
c

(δλ)bτ

ˆ
Qr2∩{|G|

γ>(agδλ)bτG−1
0 }
|G|γG0 dµτ,t dλ =: J1 + J2 + J3

where the constants au, af and ag are determined in (5.8), and the constants G0 and q̃ are defined in
(5.9) and (5.3), respectively. Using Fubini’s theorem and takingM =M(n, s, L, q, τ) > 1 which satisfies
(6.7) and then choosing ε = ε(n, s, L, q, τ) ∈ (0, 1), we have that

J1 ≤
1

105nq

ˆ
Qr2
|Dτdsu|p̃N dµτ,t.

On the other hand, if p̃ ≤ q̃, then we estimate

J2 ≤
c

λq−p̃0

ˆ NM−1

λ0

λq−1

(
Mp̃−3ε2 +

1

M 2s
n

)
c

(δλ)q̃

ˆ
Qr2∩{|D

τd0f |>aλ}
|Dτd0f |q̃ dµτ,t dλ

≤ c

λq−p̃0

ˆ
Qr2

|Dτd0f |q dµτ,t

≤ c

(ˆ
Qr2

|Dτd0f |q dµτ,t

) p̃
q

,

(6.10)

where we have used 1 ≤
(
λ
λ0

)q−p̃
, Fubini’s theorem (thanks to the relation q̃ < q, from (5.5)) and the

fact that λp̃−q0 ≤ c
(´
Qr2
|Dτd0f |q dµτ,t

) p̃−q
q

. If p̃ > q̃, Fubini’s theorem and Hölder’s inequality yield
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that

J2 ≤ c
ˆ
Qr2
|Dτd0f |p̃ dµτ,t ≤ c

(ˆ
Qr2
|Dτd0f |q dµτ,t

) p̃
q

.

Similarly, we get that

J3 ≤ c
ˆ
Qr2

(|G|γG0)
p̃
bτ ≤ c

(
−
ˆ
Q2

(
2s−τ |G|

) p̃γ
bτ dµτ,t

) bτ
γ

.

Consequently, combining all the estimates I1 and I2 and recalling (2.2) and (6.5), we obtain the desired
result (6.6). We recall the definitions of λ0 given in (5.7) and G0 given in (5.9). Then using Lemma 2.4
and passing to the limit N → 0, we get (6.3). �

With the aid of Lemma 6.1, we now prove our main theorem.
Proof of Theorem 1.1. Let us fix Qr(z0) b ΩT with r ∈ (0, R]. We now take

τ =
σq

q − 2
< min

{
s− 2s

q
, 1− s

}
. (6.11)

Let us choose δ = δ(n, s, L, q, σ) determined in Lemma 6.1. We claim that(
−
ˆ
Q r

2
(z0)

|Dτdsu|p̃ dµτ,t

) 1
p̃

≤ cR(u, f, g, p0, p̃, Qr(z0)) (6.12)

for some constant c = c(data), where p̃ is given in (6.4) with h = 0 and we denote

R(u, f, g, p0, p̃, Qr(z0)) =

(
−
ˆ
Qr(z0)

|Dτdsu|p0 dµτ,t

) 1
p0

+ Tail∞,2s

(
u− (u)Br(x0)(t)

rs+τ
; Qr(z0)

)

+

(
sup

t∈Λr(t0)

−
ˆ
Br(x0)

|u− (u)Qr(z0)|2

r2s+2τ
dx

) 1
2

+

(
−
ˆ
Qr(z0)

(
r
s−τ
p̃ |G|

) p̃γ
bτ

dµτ,t

) bτ
p̃γ

+

(
−
ˆ
Qr(z0)

|Dτd0f |q dµτ,t

) 1
q

+ Tailq,s

(
f − (f)Br(x0)(t)

rτ
; Qr(z0)

)
.

To this end, we define for any x, y ∈ Rn, t ∈ Λ2 and ξ ∈ R,

ũ(x, t) =
u
(
rsx+ x1, r

2s
s t+ t1

)
rs+τs

, f̃(x, t) =
f
(
rsx+ x1, r

2s
s t+ t1

)
rτs

,

g̃(x, t) = rs−τs g
(
rsx+ x1, r

2s
s t+ t1

)
, Ã(x, y, t) = A

(
rsx+ x1, rsy + x1, r

2s
s t+ t1

)
, Φ̃(ξ) =

Φ(rτs ξ)

rτs

where z1 ∈ Q r
2
(z0) and rs =

(
s(
√

2−1)
4

) 2
s

r, in order to see that ũ is a weak solution to (5.1) with f = f̃

g = g̃, A = Ã and Φ = Φ̃. Moreover, we observe that

Qrs(z1) ⊂ Q r√
2
(z0). (6.13)

We now apply Lemma 6.1 with u = ũ, f = f̃ , g = g̃ and h = 0, and use change of the variables to get
that (

−
ˆ
Q rs

2
(z1)

|Dτdsu|p̃ dµτ,t

) 1
p̃

≤ cR(u, f, g, p0, p̃, Qrs(z1)) (6.14)

for some constant c = c(data). After a few algebraic calculations along with Lemma 2.3, (2.2) and (6.13),
the expression in (6.14) is estimated as(

−
ˆ
Q rs

2
(z1)

|Dτdsu|p̃ dµτ,t

) 1
p̃

≤ cR
(
u, f, g, p0, p̃, Q r√

2
(z0))

)
(6.15)

On the other hand, for any Q rs
8
√
n
≡ B rs

8
√
n

(x1, x2) × Λ rs
8
√
n

(t2) with (x1, t2), (x2, t2) ∈ Q r
2
(z0) satisfying

(5.45), we use Lemma 5.2 to obtain that−ˆ
Q rs

8
√
n

|Dτdsu|p̃ dµτ,t

 1
p̃

≤ c

−ˆ
Q rs

8
√
n

|Dτdsu|p0 dµτ,t

 1
p0

+ c

[
2∑
d=1

Ep,τ
(
u ; Q rs

8
√
n

(xd, t2)
)]



Calderón-Zygmund theory of nonlocal parabolic equations with discontinuous coefficients 31

for some constant c = c(data). As in (6.15) along with Lemma 2.3, (2.4) and (6.13), we deduce that

−ˆ
Q rs

8
√
n

|Dτdsu|p̃ dµτ,t

 1
p̃

≤ c

−ˆ
Q r√

2
(z0)

|Dτdsu|p0 dµτ,t

 1
p0

+ c

 sup
t∈Λ r√

2
(t0)

−
ˆ
B r√

2
(x0)

∣∣u− (u)Q r√
2

(z0)

∣∣2
( r√

2
)2s+2τ

dx


1
2

.

(6.16)

SinceQ r
2
(z0) is a compact set, there are finite mutually disjoint open setsQrs(z1,i) andQrs(x1,j , x2,j , t2,j)

for some points z1,i, (x1,j , t2,j), (x2,j , t2,j) ∈ Q r
2
(z0) such that

Q r
2
(z0) ⊂

(⋃
i

Qrs(z1,i)

)⋃⋃
j

Qrs(x1,j , x2,j , t2,j)

 ⊂ Q r√
2
(z0),

and Qrs(x1,j , x2,j , t2,j) satisfies (5.45). Combine (6.12) and (6.16) to see that

(
−
ˆ
Q r

2
(z0)

|Dτdsu|p̃ dµτ,t

) 1
p̃

≤ cR
(
u, f, g, p0, p̃, Q r√

2
(z0))

)
. (6.17)

Consequently, after a few simple calculations with Lemma 2.3, we estimate the right-hand side of (6.17)
to get that (6.12) holds. In addition, using the standard covering argument along with (6.16) and (6.17),

we prove that Dτdsu ∈ Lp̃loc ( dµτ,t; Ω× Ω× (0, T )). If h = 0, then by recalling (2.2), (3.5), (5.9), (6.2),
(6.4) and (6.11), we obtain dsu ∈ Lqloc ( dµτ,t; Ω× Ω× (0, T )) and the desired estimate (1.9). Let us
assume that h > 0. We have shown that Dτdsu ∈ Lp1loc ( dµτ,t; Ω× Ω× (0, T )) and (6.16) and (6.17) with
p̃ = p1. Thus, by following the same line as in the proof for (6.16) and (6.17) with p0 replaced by p1, we
have that (

−
ˆ
Qrs

|Dτdsu|p̃1 dµτ,t

) 1
p̃1

≤ c

−ˆ
Q r√

2
(z0)

|Dτdsu|p1 dµτ,t

 1
p1

+ c

 sup
t∈Λ r√

2
(t0)

−
ˆ
B r√

2
(x0)

∣∣u− (u)Q r√
2

(z0)

∣∣2
( r√

2
)2s+2τ

dx


1
2

,

(6.18)

for any Q rs
8
√
n

= B rs
8
√
n

(x1, x2)× Λ rs
8
√
n

(t2) with (x1, t2), (x2, t2) ∈ Q r
2
(z0) satisfying (5.45) and

−ˆ
Q r

2
(z0)

|Dτdsu|p̃1 dµτ,t

 1
p̃1

≤ cR
(
u, f, g, p1, p̃1, Q r√

2
(z0))

)
, (6.19)

where p̃1 is the constant defined in (6.4) with h = 1. As a result, plugging (6.17) to the first term in

R
(
u, f, g, p1, p̃1, Q r√

2
(z0))

)
and then after a few simple calculations with Lemma 2.3, we obtain (6.12)

with p0 = p1 and p̃ = p̃1. In addition, using the standard covering argument along with (6.18) and

(6.19), we prove that Dτdsu ∈ Lp̃1loc ( dµτ,t; Ω× ΩT ). By iterating this procedure lq − 1 times, we obtain
Dτdsu ∈ Lqloc ( dµτ,t; Ω× ΩT ) with the estimate (6.12) with p̃ = q. By recalling (2.2), (3.5), (5.9), (6.2),
(6.4) and (6.11), we conclude that dsu ∈ Lqloc ( dµτ,t; Ω× ΩT ) with the desired estimate (1.9). �

We finish this section by proving Theorem 1.2.
Proof of Theorem 1.2. We note that in the proof of Lemma 6.1 and Theorem 1.1, we only use the
condition (5.2) to apply Fubini’s Theorem on the term Dτd0f (see (6.10)). Taking into account Remark
5, if f = 0, then the constant τ can be chosen in (0,min{s, 1− s}). Consequently, we allow for choosing

σ ∈
(

0,
(

1− 2
q

)
min{s, 1− s}

)
considering (6.11) and we are able to prove the Theorem 1.2 by following

the same lines as in the proof of Theorem 1.1 with f = 0. �
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Appendix A. self-improving property of nonlocal parabolic equations

In this appendix, we prove a self-improving property of a weak solution u to (1.1) with f = g = 0.
Throughout this section, we take

τ0 = min

{
s

2
,

1− s
2

}
. (A.1)

Before proving Lemma 4.1, we are going to prove a reverse Hölder’s inequality on diagonal parts and
obtain another covering lemma.

With the aid of the gluing lemma, we first obtain the following inequality.

Lemma A.1. Let u be a weak solution to (1.1) and let Qρ(z0) b ΩT . Then for any ς ∈ (0, 1], we have

−
ˆ
Qρ(z0)

|u− (u)Qρ(z0)|2

ρ2s+2τ
dz

≤ ς sup
t∈Λρ(t0)

−
ˆ
Bρ(x0)

|u− (u)Bρ(x0)(t)|2

ρ2s+2τ0
dx+

c

ςβ

(
1

τ0
−
ˆ
Qρ(z0)

|Dτ0dsu|γ dµτ0,t

) 2
γ

+ c
1

τ0
−
ˆ
Qρ(z0)

|Dτ0d0f |2 dµτ0,t + cTail1,2s

(
u− (u)Bρ(x0)(t)

ρs+τ0
;Qρ(z0)

)2

+ cTail1,s

(
f − (f)Bρ(x0)(t)

ρτ0
;Qρ(z0)

)2

+ c

(
1

τ0
−
ˆ
Q2ρ(z0)

(
(2ρ)s−τ |G|

)γ
dµτ0,t

) 2
γ

(A.2)

for some constants c = c(n, s, L) and β = β(n, s), where the constant γ is defined in (3.2).

Proof. We may assume that z0 = 0. Note that

−
ˆ
Qρ

|u− (u)Qρ |2 dz ≤ c−
ˆ
Qρ

|u− (u)Bρ(t)|2 dz + c−
ˆ
Qρ

|(u)Bρ(t)− (u)Qρ |2 dz =: I1 + I2.

In light of Lemma 2.1 with h, p and s, replaced by u, γ and s̃ := s + τ0

(
1− 2

γ

)
, respectively, we first

estimate I1 as

I1 ≤ c

(
−
ˆ
Qρ

|u− (u)Bρ(t)|γ̃ dz

) 2
γ̃

≤ c

(
ργ(s+τ0)

τ0
−
ˆ
Qρ
|Dτ0dsu|γ dµτ0,t

) 2
γ̃

×

(
sup
t∈Λρ

−
ˆ
Bρ

|u− (u)Bρ(t)|2 dx

) 2s̃γ
nγ̃

,

where c = c(n, s) and γ̃ := γ
(
1 + 2s̃

n

)
. We next apply Young’s inequality along with the fact that

γ
γ̃ + 2s̃γ

nγ̃ = 1, in order to get

I1 ≤ ϑ

(
ργ(s+τ0)

τ0
−
ˆ
Qρ
|Dτ0dsu|γ dµτ0,t

) 2
γ

+
c

ϑβ
sup
t∈Λρ

−
ˆ
Bρ

|u− (u)Bρ(t)|2 dx

for any ϑ ∈ (0, 1] and for some constant β = β(n, s). We now estimate I2 as

I2 ≤ c−
¨

Λρ×Λρ

|(u)Bρ(t)− (u)Bρ(t
′)|2 dt dt′

≤ c−
¨

Λρ×Λρ

∣∣∣(u)Bρ(t)− (u)ψBρ(t)
∣∣∣2 dt dt′ + c−

¨
Λρ×Λρ

∣∣∣(u)ψBρ(t)− (u)ψBρ(t
′)
∣∣∣2 dt dt′

+ c−
¨

Λρ×Λρ

∣∣∣(u)ψBρ(t
′)− (u)Bρ(t

′)
∣∣∣2 dt dt′

≤ c−
ˆ

Λρ

∣∣∣(u)Bρ(t)− (u)ψBρ(t)
∣∣∣2 dt+ c sup

t1,t2∈Λρ

∣∣∣(u)ψBρ(t1)− (u)ψBρ(t2)
∣∣∣2 =: I2,1 + I2,2,

where ψ is the given function in Lemma 3.2 and

(u)ψBρ(t) ≡
1

‖ψ‖L1

ˆ
Bρ

u(x, t)ψ(x) dx.

Using the fact that ‖ψ‖L1 ≈n |Bρ| and Hölder’s inequality, we have

I2,1 ≤ c−
ˆ

Λρ

∣∣∣∣∣ 1

‖ψ‖L1

ˆ
Bρ

(
u− (u)Bρ(t)

)
dx

∣∣∣∣∣
2

dt ≤ cI1
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for some constant c = c(n, s). Using Lemma 3.2, we get that

I
1
2
2,2 ≤ cρ2s−1−

ˆ
Qρ

ˆ
Bρ

|u(x, t)− u(y, t)|
|x− y|n+2s−1

dy dz + cρ2s−
ˆ
Qρ

ˆ
Rn\Bρ

|u(x, t)− u(y, t)|
|y|n+2s

dy dz

+ cρ2s−1−
ˆ
Qρ

ˆ
Bρ

|f(x, t)− f(y, t)|
|x− y|n+s−1

dy dz + cρ2s−
ˆ
Qρ

ˆ
Rn\Bρ

|f(x, t)− f(y, t)|
|y|n+s

dy dz

+ c−
ˆ
Qρ

ρ2s|g|γ dz =:
5∑
i=1

I2,2,i

for some constant c = c(n, s, L). We now estimate I2,2,1 and I2,2,2.
Estimate of I2,2,1. Using Hölder’s inequality and (2.2), we have

I2,2,1 ≤ cρ2s−1

(
−
ˆ
Qρ

ˆ
Bρ

|Dτ0dsu|γ

|x− y|n−2τ
dx dy dt

) 1
γ

−ˆ
Qρ

ˆ
Bρ

dx dy dt

|x− y|n+γ′
(
s−1+τ0

(
2
γ
−1
))
 1
γ′

≤ cρs+τ0

1− (s+ τ0)

(
1

τ0
−
ˆ
Qρ
|Dτ0dsu|γ dµτ0,t

) 1
γ

Estimate of I2,2,2. A simple algebraic computation yields that

I2,2,2 ≤ cρ2s−
ˆ
Qρ

ˆ
Rn\Bρ

|u(x, t)− (u)Bρ(t)|
|y|n+2s

dy dz + cρ2s−
ˆ
Qρ

ˆ
Rn\Bρ

|(u)Bρ(t)− u(y, t)|
|y|n+2s

dy dz

≤ cI
1
2
1 + cTail1,s

(
u− (u)Bρ(x0)(t);Qρ(z0)

)
.

Similarly, we estimate I2,2,3 and I2,2,4 as

I2,2,3 + I2,2,4 ≤ c
ρs+τ0

1− s

(
1

τ0
−
ˆ
Qρ(z0)

|Dτ0d0f |2 dµτ0,t

) 1
2

+ cρs Tail1, s2
(
f − (f)Bρ(x0)(t);Qρ(z0)

)
.

Using Hölder’s inequality, (2.2) and (3.5), we estimate I2,2,5 as

I2,2,5 ≤ c

(
1

τ0
−
ˆ
Q2ρ(z0)

(
(2ρ)s−τ0 |G|

)γ
dµτ0,t

) 2
γ

.

Take ϑ = ς
c for some constant c = c(n, s, L) and combine all the above estimates to get (A.2). �

Remark 10. By estimating I1 in the proof of Lemma A.1 as

I1 ≤
c

τ0
−
ˆ
Qρ(z0)

|Dτ0dsu|2 dµτ0,t,

we find that for any τ0 ∈ (0,min{s, 1− s}), there holds

−
ˆ
Qρ(z0)

|u− (u)Qρ(z0)|2

ρ2s+2τ0
dz ≤ c

τ0
−
ˆ
Qρ(z0)

|Dτ0dsu|2 dµτ0,t + cTail1,2s

(
u− (u)Bρ(x0)(t)

ρs+τ0
;Qρ(z0)

)2

+ c
1

τ0
−
ˆ
Qρ(z0)

|Dτ0d0f |2 dµτ0,t + cTail1,s

(
f − (f)Bρ(x0)(t)

ρτ0
;Qρ(z0)

)2

+ c

(
1

τ0
−
ˆ
Q2ρ(z0)

(
(2ρ)s−τ0 |G|

)γ
dµτ0,t

) 2
γ

(A.3)

for some constant c = c(n, s, L).

In light of Lemma A.1, we now prove the following reverse Hölder’s inequality.

Lemma A.2. Let u be a weak solution to (1.1) with f = g = 0 and let Q2ρ(z0) b ΩT . Then we have

E2,τ0 (u ; Qρ(z0))2 ≤ c0

(
1

τ0
−
ˆ
Q2ρ(z0)

|Dτ0dsu|γ dµτ0,t

) 2
γ

+ c0 Tailγ,2s

( |u− (u)B2ρ(x0)(t)|
(2ρ)s+τ0

;Q2ρ(z0)

)2

,

where c0 = c0(n, s, L) and E2,τ0(·) is defined in (5.32).
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Proof. From (2.2) and (3.1) with k = (u)Qr(z0), f = 0 and g = 0, we deduce that

E2,τ0(u ; Qρ) ≤
crn+2

(r − ρ)n+2
−
¨
Qr(z0)

|u− (u)Qr(z0)|2

r2s+2τ0
dz +

cr2n+4s

(r − ρ)2n+4s
Tailγ,2s

(
u− (u)Br(x0)(t)

rs+τ0
;Qr(z0)

)2

,

where c = c(n, s, L). Using the estimate (A.2) with ρ = r, f = 0 and g = 0 into the first term in the
right-hand side of the above inequality and Hölder’s inequality, we get

E2,τ0(u ; Qρ) ≤
1

4
E2,τ0(u ; Qr) +

crn+2

(r − ρ)n+2

(
1

τ0
−
ˆ
Q2ρ(z0)

|Dτ0dsu|γ dµτ0,t

) 2
γ

+ c

(
r

r − ρ

)2(n+2s)

Tailγ,2s

(
u− (u)B2ρ(x0)(t)

(2ρ)s+τ0
;Q2ρ(z0)

)2

.

by taking ς ∈ (0, 1) sufficiently small depending only on n, s and L. Additionally, for the tail term, we
have used Lemma 2.3. Finally, employing Lemma 2.4, we obtain the desired estimate (3.6). �

We next prove the following covering lemma.

Lemma A.3. Let 1 ≤ r1 < r2 ≤ 2 and u be a weak solution to (5.1) with f = g = 0. Then, there are
two families of countable disjoint cylinders {Qρi(zi)}i≥0 and

{
Qr̃j (x1,j , x2,j , t0,j)

}
j≥0

, such that

Uλ = {(x, y, t) ∈ Qr1 : |Dτ0dsu(x, y, t)| ≥ λ} ⊂

(⋃
i

Q
5

2
s ρi

(zi)

)⋃⋃
j

Q
5

1
s r̃j

(x1,j , x2,j , t0,j)

 (A.4)

whenever λ ≥ λ0, where

λ0 :=
c

(r2 − r1)
5n
s

[(
1

τ0
−
ˆ
Q2

|Dτ0dsu|2 dµτ0,t
) 1

2

+

(
sup
t∈Λ2

−
ˆ
B2

|u− (u)Q2 |2

22s+2τ0
dx

) 1
2

]

+
c

(r2 − r1)
5n
s

Tail∞,2s

(
u− (u)B2(t)

2s+τ0
;Q2

) (A.5)

for some constant c = c(n, s, L). In particular, we have∑
i≥0

µτ0,t (Qρi(zi)) ≤
c

λγ

ˆ
Qr2∩{|Dτ0dsu|>buλ}

|Dτ0dsu|γ dµτ0,t, (A.6)

∑
j≥0

µτ0,t
(
Qrj (x1,j , x2,j , t0,j)

)
≤ c

λ2

ˆ
Qr2∩{|Dτ0dsu|>

λ
16}
|Dτ0dsu|2 dµτ0,t + +

∑
i≥0

µτ0,t (Qρi(zi)) (A.7)

for some constant bu = bu(n, s, L) ∈ (0, 1], where the constant γ is defined in (3.2), and we also have−ˆ
Q

5
1
s r̃j

(x1,j ,x2,j ,t0,j)

|Dτ0dsu|2# dµτ


1

2#

≤ cλ for any j, (A.8)

where the constant 2# is given in (2.1) with p = 2.

Proof. We first define a functional

ΘD (z0, r) =

(
−
ˆ
Qr(z0)

|Dτ0dsu|2 dµτ0,t

) 1
2

+

(
τ0 sup
t∈Λr(t0)

−
ˆ
Br(x0)

|u− (u)Qr(z0)|2

r2s+2τ0
dx

) 1
2

for any z0 ∈ Qr1 and r > 0 with Qr(z0) ⊂ Q2. Let us take

λ0 =
Mτ

1
2

0 κ
−1

(r2 − r1)
5n
s

((
1

τ0
−
ˆ
Q2

|Dτ0dsu|2 dµτ0,t
) 1

2

+ Tail∞,2s

(
u− (u)B2(t)

2s+τ0
;Q2

))

+
Mτ

1
2

0 κ
−1

(r2 − r1)
5n
s

(
sup
t∈Λ2

−
ˆ
B2

|u− (u)Q2 |2

22s+2τ0
dx

) 1
2

,

where M ≥ 1 and κ ∈ (0, 1] are free parameters which will be determined later. We next take a positive
integer j0 = j0(n, s,Λ) such that

16(c0 + c̃+ 2c2)2

1− 2−s+τ0
≤ 2j0(s−τ0), (A.9)
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where c0 is the constant determined in Lemma A.2, and c̃ and c2 are the constants determined in (2.6).
We then note that for any z0 ∈ Qr1 ,

Q
5

2
s×2j0+2R1,2

(z0) ⊂ Qr2 ,

where R1,2 is defined in (5.14). Let us now define for λ ≥ λ0,

Dκλ =

{
z0 ∈ Qr1 : sup

0<ρ≤R1,2

ΘD (z0, ρ) > κλ

}
.

We now take the constant M as in (5.18) with q = 2. For any z0 ∈ Qr1 and r ∈
[
R1,2, 5

2
s × 2j0+3R1,2

]
,

we first note that

ΘD(z0, r) ≤ κλ,
by following the same line as in the proof for (5.19) with p = 2. Therefore, there is an exit radius ρz for
each z ∈ Dκλ such that

ΘD (z, ρz) ≥ κλ and ΘD (z, ρ) ≤ κλ if ρz ≤ ρ ≤ 5
2
s × 2j0+3R1,2. (A.10)

We now apply Vitali’s covering lemma to find a family of mutually disjoint countable cylinders{
Q2j0ρzi

(zi)
}
i≥0

such that Dκλ ⊂
∞⋃
i=0

Q
5

1
s×2j0ρzi

(zi). (A.11)

We now denote

ρi = 2j0ρzi for each i. (A.12)

From (A.10), we have

κλ

τ
1
2

0

≤

(
1

τ0
−
ˆ
Qρzi (zi)

|Dτ0dsu|2 dµτ0,t

) 1
2

+

(
sup

t∈Λρzi
(ti)

−
ˆ
Bρzi

(xi)

|u− (u)Qρzi (zi)|2

ρ2s+2τ0
zi

dx

) 1
2

. (A.13)

On account of Lemma A.2, Lemma 2.6 and (A.12), we estimate the right-hand side of (A.13) as

κλ

τ
1
2

0

≤ c

(
1

τ0
−
ˆ
Qρi (zi)

|Dτ0dsu|γ dµτ0,t

) 1
γ

+ c0c̃
1

1
τ0

1
2

l∑
j=j0+1

2i(−s+τ0)ΘD

(
zj , 2

jρzi

)

+ c0c̃

(
2

2j0R1,2

)s+τ0 (
sup
t∈Λ2

−
ˆ
B2

|u− (u)B2(t)|2

22s+2τ0
dx

) 1
2

+
c0c̃

(r2 − r1)5n
Tailγ,2s

(
u− (u)B2(t)

2s+τ0
;Q2

)

where c = c(n, s, L) and l is the positive integer such that 2j0+1R1,2 ≤ 2lρzi < 2j0+2R1,2. For the detailed
calculations of the above inequality, we refer to (5.25) and (5.27) with f = 0 and g = 0. As a result,
using (A.9) and (A.10), we find that

κλ

τ0
1
2

≤ c

(
1

τ0
−
ˆ
Qρi (zi)

|Dτ0dsu|γ dµτ0,t

) 1
γ

for some constant c = c(n, s, L). A suitable choice of the constant b̃u = b̃u(n, s, L) ∈
(
0, 1

8

]
yields

µτ0,t (Qρi(zi)) ≤
c

(κλ)γ

ˆ
Qρi (zi)∩{|D

τ0dsu|>b̃uκλ}
|Dτ0dsu|γ dµτ0,t, (A.14)

as the constant τ0 depends only on s (see (A.1)). With (A.10) and (A.11), we follow the same lines as
in the proof of step 2 through step 8 given in Lemma 5.1 with p = 2, f = 0 and g = 0. As a result,

by taking κ as in (5.35) with τ
1
γ replaced by τ

1
2

0 , we find that there is a collection of countable disjoint
cylinders {Q}Q∈A such that

{(x, y, t) ∈ Qr1 : |Dτ0dsu(x, y, t)| ≥ λ} ⊂

⋃
i≥0

Q
5

2
s ρi

(zi)

⋃⋃
j≥0

Q
5

1
s r̃j

(x1,j , x2,j , t0,j)

 ,

∑
j

µτ0,t
(
Qrj (x1,j , x2,j , t0,j)

)
≤ c

λ2

ˆ
Qr2∩{|Dτ0dsu|> λ

16}
|Dτ0dsu|2 dµτ0,t + c

∑
i

µτ0,t (Qρi(zi))
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and −ˆ
Q

5
1
s r̃j

(x1,j ,x2,j ,t0,j)

|Dτ0dsu|2# dµτ


1

2#

≤ cλ for any j,

where c = c(n, s, L) (see (5.63)and (5.48) for the second and the third inequalities, respectively). Let

bu = b̃uκ. Then the above three observations and (A.14) yield the desired results as the constant τ0
depends only on s. This completes the proof. �

We are now in the position to prove the following self-improving property for a weak solution to the
corresponding homogeneous problem of (1.1).

Theorem A.1. Let u be a weak solution to (1.1) with f = 0 and g = 0. Then there are constants
ε = ε(n, s, L) ∈ (0, 1) and c = c(n, s, L) such that(

1

τ0
−
ˆ
Qr(z0)

|Dτ0dsũ|2+ε dµτ0,t

) 1
2+ε

≤ c

(
1

τ0
−
ˆ
Q2r(z0)

|Dτ0dsu|2dµτ0,t

) 1
2

+ c sup
t∈Λ2r

(
−
ˆ
B2r

|u− (u)Q2r(z0)|2

(2r)2s+2τ

) 1
2

+ cTail∞,2s

(
u− (u)B2r(x0)(t)

(2r)s+τ
;Q2r(z0)

)
(A.15)

whenever Q2r(z0) b ΩT .

Proof. Let us fix Qr(z0) b ΩT . We now define for any x, y ∈ Rn, t ∈ Λ2 and ξ ∈ R,

ũ(x, t) =
u
(
rx+ x0, r

2st+ t0
)

rs+τ
, Ã(x, y, t) = A

(
rx+ x0, ry + x0, r

2st+ t0
)

and Φ̃(ξ) =
Φ̃ (rτξ)

rτ

to see that ũ is a weak solution to (5.1) with f = g = 0, A = Ã and Φ = Φ̃. Let us take ε ∈
(

0,
2#−2

2

)
which will be determined later. For each N > 0, we now define φN : [1, 2]→ R by

φN (ρ) =

(
−
ˆ
Qρ

|Dτ0dsũ|2+ε
N dµτ0,t

) 1
2+ε

.

For λ0 as defined in (A.5) with u = ũ, we claim that if N > λ0, then there is a constant c = c(n, s, L)
such that for any 1 ≤ r1 < r2 ≤ 2,

φN (r1) ≤ 1

2
φN (r2) + cλ0. (A.16)

By Fubini’s theorem, we observe that
ˆ
Qr1
|Dτ0dsũ|2+ε

N dµτ0,t = ε

ˆ Mλ0

0

λε−1ν ({Qr1 : |Dτ0dsũ|N > λ}) dλ

+ ε

ˆ N

Mλ0

λε−1ν ({Qr1 : |Dτ0dsũ|N > λ}) dλ =: I + J,

where d ν = |Dτ0dsũ|2 dµτ0,t and N >Mλ0 with M > 1 to be determined later. We first estimate I as

I ≤ cMελε0

ˆ
Q2

|Dτ0dsũ|2dµτ0,t ≤ cMελ2+ε
0 µτ0,t (Q2) ,

where c = c(n, s, L). We next estimate J as

J = ε

ˆ NM−1

λ0

Mελε−1ν ({(x, y, t) ∈ Qr1 : |Dτ0dsũ|N >Mλ}) dλ

≤
∑
i≥0

ε

ˆ NM−1

λ0

Mελε−1ν
(
Q

5
2
s ρi

(zi)
)
dλ

+
∑
j≥0

ε

ˆ NM−1

λ0

Mελε−1ν

({
Q

5
1
s r̃j

(x1,j , x2,j , t0,j) : |Dτ0dsũ|N >Mλ

})
dλ =: J1 + J2,

where we have used the change of variables and (A.4). In light of the definition of the measure ν, (A.10),
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(2.3) and (A.6), we estimate J1 as

J1 ≤
∑
i

ε

ˆ NM−1

λ0

Mελε−1

ˆ
Q

5
2
s ρi

(zi)

|Dτ0dsũ|2dµτ0,t dλ

≤ c
∑
i

ε

ˆ NM−1

λ0

Mελε−1λ2µτ0,t (Qρi (zi)) dλ

≤ cεMε

λγ−(1+ε)

ˆ NM−1

λ0

ˆ
Qr2∩{|Dτ0dsũ|≥buλ}

|Dτ0dsũ|γdµτ0,t dλ,

where c = c(n, s, L) and the constant bu is determined in Lemma A.3. Using Fubini’s theorem, we get

J1 ≤ cεMε

ˆ
Qr2
|Dτ0dsũ|2+ε

NM−1dµτ0,t,

where c = c(n, s, L), as 1
2−γ > 0 depends only on n and s. To estimate J2, we first note from the weak

1-1 estimate and (A.8) that
ˆ NM−1

λ0

Mελε−1ν ({Q : |Dτ0dsũ|N >Mλ}) dλ ≤ c
ˆ NM−1

λ0

Mελε−1

ˆ
Q

|Dτdsũ|
2#−2

N

(Mλ)2#−2 |D
τ0dsu|2dµτ0,t dλ

≤ c
ˆ NM−1

λ0

Mε+2−2#λε+1µτ0,t (Q) dλ,

where we denote Q = Q
5

1
s r̃j

(x1,j , x2,j , t0,j). We first note

1

λγ

ˆ NM−1

λ0

ˆ
Qr2∩{|D

τ0dsũ|≥buλ}
|Dτ0dsũ|γdµτ0,t dλ ≤

λ2−γ
0

λ2

ˆ NM−1

λ0

ˆ
Qr2∩{|D

τ0dsũ|≥buλ}
|Dτ0dsũ|γdµτ0,t dλ

≤ c

λ2

ˆ NM−1

λ0

ˆ
Qr2∩{|D

τ0dsũ|≥buλ}
|Dτ0dsũ|2dµτ0,t dλ

for some constant c = c(n, s, L) as γ < 2 and the constant bu depends only on n, s and L. Considering
the above two inequalities, (A.7) and the estimate J1, we estimate J2 as

J2 ≤ cε
ˆ NM−1

λ0

Mε+2−2#λε−1

ˆ
Qr2∩{|D

τ0dsũ|≥buλ}
|Dτ0dsũ|2dµτ0,t dλ

≤ cMε+2−2#

ˆ
Qr2

|Dτ0dsũ|2+ε
NM−1dµτ0,t

≤ 1

210n

ˆ
Qr2

|Dτ0dsũ|2+ε
NM−1dµτ0,t

by takingM =M(n, s, L) > 1 sufficiently large so that cM
2−2#

2 ≤ 1
210n (thanks toMε+2−2# ≤M

2−2#
2

as M≥ 1 and ε <
2#−2

2 ). We next select ε = ε(n, s, L) < 1 such that

J1 ≤
1

210n

ˆ
Qr2
|Dτ0dsũ|2+ε

NM−1dµτ0,t.

Combining all the estimates of I and J , we observe thatˆ
Qr1
|Dτ0dsu|2+ε

NM−1dµτ0,t ≤
ˆ
Qr1
|Dτ0dsu|2+ε

N dµτ0,t ≤
1

29n

ˆ
Qr2
|Dτ0dsu|2+ε

NM−1dµτ0,t + cλ2+ε
0 µτ0,t (Q2)

holds if N > Mλ0. After a few algebraic computations along with (2.2), we have (A.16). Applying
Lemma 2.4 to (A.16), we obtain(

1

τ0
−
ˆ
Q1

|Dτ0dsũ|2+ε
N dµτ0,t

) 1
2+ε

≤ c
(

1

τ0
−
ˆ
Q2

|Dτ0dsũ|2dµτ0,t
) 1

2

+ cTail∞,2s

(
ũ− (ũ)B2

(t)

2s+τ
;Q2

)
+ c sup

t∈Λ2

(
−
ˆ
B2

|ũ− (ũ)Q2
|2

22s+2τ

) 1
2

for some constant c = c(n, s, L). By passing to the limit N → ∞ and using the change of variables, we
get the desired estimate (A.15). �
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Appendix B. Existence and uniqueness

In this section, we present the existence result for the corresponding boundary value problem of
(1.1) and the standard energy estimate. Before stating the result, we first note from [47, Proposi-
tion 1.2 in Chapter 3] with V = W s,2(Ω) and H = L2(Ω) that if h ∈ L2(0, T ;W s,2(Ω)) and ht ∈(
L2(0, T ;W s,2(Ω)

)∗
, then h ∈ C([0, T ];L2(Ω)) with the estimate

sup
t∈[0,T ]

‖h(·, t)‖L2(Ω) ≤ c‖h‖L2(0,T ;W s,2(Ω)) + c‖ht‖(L2(0,T ;W s,2(Ω))∗ (B.1)

for some constant c = c(n, s).

Lemma B.1. Let Ω′ be an open and bounded set such that Ω b Ω′. Suppose that

f ∈ L2
(
0, T ;L1

s(Rn)
)

with d0f ∈ L2

(
Ω′ × Ω′ × (0, T ) ;

dx dy dt

|x− y|n

)
,

g ∈ L
2(n+2s)
n+4s (ΩT ),

h ∈ L2(0, T ;W s,2(Ω′)) ∩ L∞(0, T ;L1
2s(Rn)) and ht ∈

(
L2(0, T ;W s,2(Ω′))

)∗
.

(B.2)

Then there is a unique weak solution u ∈ L2(0, T ;W s,2(Ω)) ∩ L∞
(
0, T ;L1

2s(Rn)
)
∩ C([0, T ];L2(Ω)) to

ut + LΦ
Au = (−∆)

s
2 f + g in Ω× (0, T ),

u = h in Rn \ Ω× [0, T ],

u(·, 0) = h(·, 0) in Ω

(B.3)

with the estimate

sup
t∈(0,T )

ˆ
Ω

|u(x, t)|2 dx+

ˆ T

0

ˆ
Ω

ˆ
Ω

|dsu|2
dx dy dt

|x− y|n

≤ c
ˆ T

0

ˆ
Ω′

ˆ
Ω′
|d0f |2

dx dy dt

|x− y|n
+ cTail2,s(f − (f)Ω′(t); Ω′T )2 + c

(ˆ T

0

ˆ
Ω

|g|
2(n+2s)
n+4s dz

)n+4s
n+2s

+ c

ˆ T

0

ˆ
Ω′

ˆ
Ω′
|dsh|2

dx dy

|x− y|n
+ cTail2,2s(h− (h)Ω′(t); Ω′T )2 + c‖ht‖2(L2(0,T ;W s,2(Ω′))∗

(B.4)

for some constant c = c(n, s, L, T,Ω,Ω′).

Proof. From [13, Lemma 2.7], we observe that

Tf(·,t) : φ 7→
ˆ
Rn

ˆ
Rn

(f(x, t)− f(y, t))(φ(x)− φ(y))
dx dy

|x− y|n+s
, φ ∈ Xs,2

0 (Ω,Ω′)

is an element of the dual space of Xs,2
0 (Ω,Ω′). This implies that

(−∆)
s
2 f ∈

(
L2(0, T ;W s,2(Ω′)

)∗
.

Therefore, combining [10, Thoerem A.3] and [11, Lemma A.1], we find a unique weak solution u to (B.3).

We are now in the position to prove (B.4). Since u − h ∈ L2
(

0, T ;Xs,2
0 (Ω,Ω′)

)
, using the standard

approximation argument, we have

sup
t∈(0,T )

ˆ
Ω

|(u− h)(x, t)|2 dx+

ˆ T

0

ˆ
Rn

ˆ
Rn
|ds(u− h)|2 dx dy dt

|x− y|n

≤ c

∣∣∣∣∣
ˆ T

0

〈ht, u− h〉Xs,20 (Ω,Ω′),(Xs,20 (Ω,Ω′))
∗ dt

∣∣∣∣∣+ c

ˆ T

0

ˆ
Ω

|g(u− h)| dz

+ c

ˆ T

0

ˆ
Rn

ˆ
Rn
|d0f ||ds(u− h)| dx dy dt

|x− y|n
+ c

ˆ T

0

ˆ
Rn

ˆ
Rn
|dsh||ds(u− h)| dx dy dt

|x− y|n
=: I1 + I2 + I3 + I4.

(B.5)
From (B.2) and Young’s inequality, we first estimate I1 as

I1 ≤ c‖ht‖2(L2(0,T ;W s,2(Ω′))∗ +
1

8

ˆ T

0

ˆ
Ω′

ˆ
Ω′
|ds(u− h)|2 dx dy dt

|x− y|n
.
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We next estimate I2 with the help of (B.2) as below

I2 ≤ c

(ˆ T

0

ˆ
Ω

|g|
2(n+2s)
n+4s dz

)n+4s
n+2s

+
1

8
sup

t∈(0,T )

ˆ
Ω

|(u− h)(x, t)|2 dx+
1

8

ˆ T

0

ˆ
Ω′

ˆ
Ω′
|ds(u− h)|2 dx dy dt

|x− y|n
,

where we have used Lemma 2.1 and Young’s inequality. For the estimate of I3 + I4 , we follow the same
line as in the estimate of J1 + J2 in [13, Lemma 2.7] to see that

I3 + I4 ≤
1

8

ˆ T

0

ˆ
Ω′

ˆ
Ω′
|ds(u− h)|2 dx dy dt|x− y|n + c

ˆ T

0

ˆ
Ω′

ˆ
Ω′
|d0f |2

dx dy dt

|x− y|n + cTail2,s(f − (f)Ω′(t); Ω′T )2

+ c

ˆ T

0

ˆ
Ω′

ˆ
Ω′
|dsh|2

dx dy

|x− y|n + cTail2,2s(h− (h)Ω′(t); Ω′T )2

for some constant c = c(n, s, L,Ω,Ω′, T ). We now plug the estimates of I1, I2 and I3 into (B.5) to see
that

sup
t∈(0,T )

ˆ
Ω

|(u− h)(x, t)|2 dx+

ˆ T

0

ˆ
Ω

ˆ
Ω

|ds(u− h)|2 dx dy dt|x− y|n

≤ c
ˆ T

0

ˆ
Ω′

ˆ
Ω′
|d0f |2

dx dy dt

|x− y|n + cTail2,s(f − (f)Ω′(t); Ω′T )2 + c

(ˆ T

0

ˆ
Ω

|g|
2(n+2s)
n+4s dz

)n+4s
n+2s

+ c

ˆ T

0

ˆ
Ω′

ˆ
Ω′
|dsh|2

dx dy

|x− y|n + cTail2,2s(h− (h)Ω′(t); Ω′T )2 + c‖ht‖2(L2(0,T ;Ws,2(Ω′))∗ .

After a few simple calculations along with (B.1), we obtain the desired estimate (B.4). �
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40 (2023), no. 1, 61–132.
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(2019), no. 6, 1709–1745.
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