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Abstract

We study elliptic and parabolic problems governed by the singular elliptic operators

L = yα1Tr
(
QD2

xu
)
+ 2y

α1+α2
2 q · ∇xDy + γyα2Dyy + cyα2−1Dy�����XXXXXyα2−1v · ∇

under Neumann or oblique derivative boundary condition, in the half-space RN+1
+ = {(x, y) :

x ∈ RN , y > 0}. We prove elliptic and parabolic Lp-estimates and solvability for the associ-
ated problems. In the language of semigroup theory, we prove that L generates an analytic
semigroup, characterize its domain as a weighted Sobolev space and show that it has maximal
regularity.

Mathematics subject classification (2020): 35K67, 35B45, 47D07, 35J70, 35J75.
Keywords: degenerate elliptic operators, boundary degeneracy, vector-valued harmonic anal-
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1 Introduction

In this paper we study solvability and regularity of elliptic and parabolic problems associated to
the degenerate operators

L = yα1Tr
(
QD2

xu
)
+ 2y

α1+α2
2 q · ∇xDy + γyα2Dyy + cyα2−1Dy������XXXXXXyα2−1v · ∇ (1)

and Dt − L in the half-space RN+1
+ = {(x, y) : x ∈ RN , y > 0} or in (0,∞) × RN+1

+ and under
Neumann or oblique derivative boundary condition at y = 0.

Here c ∈ R v = (b, c) ∈ RN+1 with b = 0 if c = 0, and

(
Q qt

q γ

)
is a constant real elliptic

matrix. The real numbers α1, α2 satisfy α2 < 2 and α2 − α1 < 2 but are not assumed to be
nonnegative.

We write By to denote the 1-dimensional Bessel operator Dyy +
c
yDy. With this notation the

special case where
L = yα1∆x + yα2By
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e-mail: chiara.spina@unisalento.it

1



has been already studied in [17]. The main novelty here consists in the presence of the mixed

derivatives 2y
α1+α2

2 q · ∇xDy in the operator L which is a crucial step for treating degenerate
operators in domains, through a localization procedure.

Our main result is the following, see Theorems 6.1, 6.3 and Appendix B for the definition of
the weighted Sobolev spaces involved.

Theorem Let α1, α2 ∈ R such that α2 < 2, α2 − α1 < 2 and

α−
1 <

m+ 1

p
<

c

γ
+ 1− α2.

Then the operator

L = yα1Tr
(
QD2

xu
)
+ 2y

α1+α2
2 q · ∇xDy + γyα2Dyy + cyα2−1Dy������XXXXXXyα2−1v · ∇

endowed with domain W 2,p
N (α1, α2,m) W 2,p

v (α1, α2,m) when c ̸= 0 and W 2,p
N (α1, α2,m) when

c = 0, generates a bounded analytic semigroup in Lp
m which has maximal regularity.

Let us explain the meaning of the restrictions α2 < 2, α2 −α1 < 2 considering first the case where
α1 = α2 = α, so that the unique requirement is α < 2.

It turns out that when α ≥ 2 the problem is easily treated in the strip RN × [0, 1] in the case of
the Lebesgue measure, see [9], and all problems are due to the strong diffusion at infinity. The case
α ≥ 2 in the strip RN × [1,∞[ requires therefore new investigation even though the 1-dimensional
case is easily treated by the change of variables of Appendix B.

When α1 ̸= α2, the further restriction α2 − α1 < 2 comes from the change of variables of
Appendix B, see Section 6.

Let us briefly describe the previous literature on these operators. In [14, 16] we considered
the simplest case of ∆x + By making extensive use of the commutative structure of the operator.
The non-commutative case of yα1∆x + yα2By have been later faced in [17]. Another source of
non-commutativity comes from the presence of mixed derivatives. In [18], we treated the operator

Tr
(
QD2

xu
)
+ 2q · ∇xDy + b · ∇x +By

under Neumann boundary conditions. For related results with different methods and with VMO
coefficients, we refer the reader also to [5, 3, 4, 6] for the case α1 = α2 = 0 ( i.e. without the
powers yα1 , yα2 ) and to [7, 8] for the case α1 = α2 ∈ (0, 2) with Dirichlet boundary conditions.

This paper is devoted to a final step in this direction, by adding (different) powers of y in
front of the main terms of the operator. This is, by no means, an immediate generalization of the
previous results or methods and many extra difficulties appear. Here we consider only constant
matrices Q and constant q, γ, c. However a straightforward localization procedure allows to extend
our results to the general case where Q, q, γ, c are bounded and uniformly continuous and allows
to treat operators in smooth domains, whose degeneracy in the top order coefficients behaves like
a power of the distance from the boundary. We shall treat these topics in a forthcoming paper.
We refer also to [19] for the case of Dirichlet or oblique derivative boundary conditions.

As for the simpler operator yα1∆x + yα2By, the case α1 = α2 implies all other cases by the
change of variables described in Appendix B. However this modifies the underlying measure and
the procedure works if one is able to deal with the complete scale of Lp

m spaces, where Lp
m =

Lp(RN+1
+ ; ymdxdy).
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The operators L, Dt − L, with α1 = α2 = α, are studied through estimates like

∥yα∆xu∥p,m + ∥yα∇xDyu∥p,m + ∥yαByu∥p,m ≤ C∥Lu∥p,m, (2)

and
∥Dtu∥p,m + ∥Lu∥p,m ≤ C∥(Dt − L)u∥p,m, (3)

where the Lp norms are taken over RN+1
+ and on (0,∞)×RN+1

+ respectively. This kind of estimates
are quite natural in this context but not easy to prove. Of course they imply ∥yαDxixj

u∥p,m ≤
C∥Lu∥p,m, by the Calderón-Zygmund inequalities in the x-variables.

Let us explain how to obtain (2). Assuming that yα(∆xu+2a · ∇xDyu+Byu) = f and taking
the Fourier transform with respect to x (with covariable ξ) we obtain −|ξ|2û(ξ, y) + 2ia · ξDy +

Byû(ξ, y) = y−αf̂(ξ, y). Denoting by F the Fourier transform with respect to x we get

yα∆xL−1 = −F−1
(
yα|ξ|2(|ξ|2 − 2iaξDy −By)

−1y−α
)
F

yα∇xDyL−1 = −F−1
(
yαξDy(|ξ|2 − 2iaξDy −By)

−1y−α
)
F

and the boundedness of yα∆xL−1, yα∇xDyL−1 are equivalent to that of the multipliers ξ ∈ RN →
yα|ξ|2(|ξ|2 − 2ia · ξDy −By)

−1y−α and ξ ∈ RN → yαξDy(|ξ|2 − 2ia · ξDy −By)
−1y−α in Lp

m.
The structure of these multipliers show the difficulties connected to the presence of the mixed

operators. The parameter ξ not only appears as a spectral parameter but also in the operator
L2a·ξ := By + 2ia · ξDy. For this reason, we need a careful study of the 1- dimensional operator
L2a·ξ and variants like yα(L2a·ξ − |ξ|2), with estimates which depend explicitly on ξ.

Both the elliptic and parabolic estimates above share the name “maximal regularity” even
though this term is often restricted to the parabolic case. We refer to [12] and the new books [10],
[11] for the functional analytic approach to maximal regularity and to [2] for applications of these
methods to uniformly parabolic operators.

The paper is organized as follows. In Section 2 we recall some results concerning a one-
dimensional Bessel operator yαBy perturbed by a potential. In Section 3 we define and study a
1d auxiliary operator through a quadratic form. In Section 4 we investigate the boundedness of
some multipliers related to the degenerate operator. In Section 5, which is the core of the paper,
we prove generation results, maximal regularity and domain characterization for the operator L,
under Neumann boundary conditions. Finally, in Section 6, we extend our results to more general
operators.

In the Appendices we briefly recall the harmonic analysis background needed in the paper, as
square function estimates, R-boundedness, a vector valued multiplier theorem and the changes of
variables needed to reduce our operators to the simpler case where α1 = α2.

Notation. For N ≥ 0, RN+1
+ = {(x, y) : x ∈ RN , y > 0}. For m ∈ R we consider the measure

ymdxdy in RN+1
+ and we write Lp

m(RN+1
+ ) for Lp(RN+1

+ ; ymdxdy) and often only Lp
m when RN+1

+

is understood. C+ = {λ ∈ C : Re λ > 0} and, for |θ| ≤ π, we denote by Σθ the open sector
{λ ∈ C : λ ̸= 0, |Arg(λ)| < θ}. We denote by α+ and α− the positive and negative part of a real
number, that is α+ = max{α, 0}, α− = −min{α, 0}.

We use B for the one-dimensional Bessel operator Dyy + c
yDy and Lb for B + ibDy. Here

c, b ∈ R and both operators are defined on the half-line (0,∞).
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2 The 1-dimensional operator yαB − µyα, µ ≥ 0

In this section we summarize the main results proved in [13] for the one dimensional operator

yαB − µyα = yα
(
Dyy +

c
yDy

)
− µyα, µ ≥ 0, in Lp

m. To characterize the domain for µ > 0, we

note that the domain of the potential V (y) = yα in Lp
m is

{u ∈ Lp
m : yαu ∈ Lp

m} = Lp
m ∩ Lp

m+αp.

We recall that the Sobolev spaces W 2,p
N (α,m) are defined in Appendix B and the pedix N indicates

a Neumann boundary condition at y = 0.

Theorem 2.1 Let α < 2, c ∈ R and 1 < p < ∞.

(i) If 0 < m+1
p < c+ 1− α, then the operator yαB endowed with domain W 2,p

N (α,m) generates

a bounded analytic semigroup of angle π/2 on Lp
m which is positive for z > 0.

(ii) If µ > 0 and α− < m+1
p < c + 1 − α then the operator yαB − µyα endowed with domain

W 2,p
N (α,m) ∩ Lp

m+αp generates a bounded analytic semigroup in Lp
m which is positive for

z > 0.

In both cases the set

D = {u ∈ C∞
c ([0,∞)), Dyu(y) = 0 for y ≤ δ and some δ > 0} (4)

is a core and the semigroups have maximal regularity.

Proof. See [13, Theorem 4.2] for (i), [13, Theorem 8.5] for (ii). The density of D is proved in
proved in [13, Propositions 4.3, Theorem 8.5] and maximal regularity in [13, Theorem 7.2].

The following kernel estimates for the Bessel operator B (corresponding to α = µ = 0) will be
used extensively.

Proposition 2.2 Let c > −1. The semigroup (ezB)z∈C+ consists of integral operators. Its heat
kernel pB, written with respect the measure ρcdρ, satisfies for every ε > 0, z ∈ Σπ

2 −ε and some
Cε, κε > 0,

|pB(z, y, ρ)| ≤ Cε|z|−
1
2 ρ−c

(
ρ

|z| 12
∧ 1

)c

exp

(
−|y − ρ|2

κε|z|

)
,

|DypB(z, y, ρ)| ≤ Cε|z|−1ρ−c

(
y

|z| 12
∧ 1

)(
ρ

|z| 12
∧ 1

)c

exp

(
−|y − ρ|2

κε|z|

)
.

Proof. See [14, Propositions 2.8 and 2.9].

3 The 1-dimensional operator yα(B + 2ia · ξDy − |ξ|2)
In this section we prove generation properties in Lp

m and heat kernel bounds for the operator

yα(B + 2ia · ξDy − |ξ|2) = yαL2a·ξ − yα|ξ|2, |a| < 1, α < 2,

where, according to our notation, Lb = B + ibDy.
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Having in mind the study of the operator yα∆xu + yα2a · ∇xDyu + yαByu (see Section 5),
from now on we assume the condition |a| < 1 which corresponds to the ellipticity of the top order
coefficients and also α < 2 as explained in the Introduction.

We start by the L2 theory. We use the Sobolev spaces of Section 8 and also H1
c := {u ∈ L2

c :
∇u ∈ L2

c} equipped with the inner product

⟨u, v⟩H1
c
:= ⟨u, v⟩L2

c
+ ⟨∇u,∇v⟩L2

c
.

and consider the form in L2
c−α with D(a) = H1

c ∩ L2
c−α ⊂ L2

c−α and

a(u, v) : =

∫
R+

DyuDyv y
c dy − 2ia · ξ

∫
R+

(Dyu) v y
c dy +

∫
R+

|ξ|2uvyc dy,

=

∫
R+

yαDyuDyv y
c−α dy − 2ia · ξ

∫
R+

yαDyu v y
c−α dy +

∫
R+

|ξ|2yαuv yc−α dy.

The more pedantic second line above writes the form with respect to the reference measure yc−αdy,
rather than ycdy.

We define L in L2
c−α as the operator associated to the form a, that is

D(L) = {u ∈ D(a) : ∃f ∈ L2
c−α such that a(u, v) =

∫ ∞

0

fvyc−α dy for every v ∈ D(a)},

Lu = −f.

If u, v are smooth functions with compact support, it is easy to see integrating by parts that

−a(u, v) = ⟨yα(Bu+ 2ia · ξDyu− |ξ|2u), v⟩L2
c−α

,

so that L is a realization of yα(B + 2ia · ξDy − |ξ|2).

In the next lemmas we use two isometries which transform the operator into a simpler form.

The first one is Tu(y) =
(
1− α

2

) 1
2 u(y1−

α
2 ) (this is the map T−α

2
of Appendix B) and allows

to remove the power yα in front of the Bessel operator B thus getting an equivalent operator
(β + 1)

−2
L̃ defined by

L̃ = B̃ + ib(β + 1)yβDy − (β + 1)2|ξ|2y2β , β =
α

2− α

Here

B̃ = Dyy +
c̃

y
Dy, c̃ =

2c− α

2− α
, b = 2a · ξ

and, by the assumption α < 2, one has β+1 > 0 and moreover c̃+1 > 0 if and only if c+1−α > 0.
This is contained in Proposition 8.7 at level of operators but we state it below in the language

of forms, omitting the elementary computations.

Lemma 3.1 Let c+ 1− α > 0. Setting c̃ = 2c−α
2−α > −1, let us consider the isometry

T =: L2
c̃ → L2

c−α, Tu(y) =
(
1− α

2

) 1
2

u(y1−
α
2 ).
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Then, with b = 2a · ξ, β = α
2−α , one has T

(
H1

c̃ ∩ L2
c̃+2β

)
= H1

c ∩ L2
c−α and

a(u, v) = (β + 1)
−2

ã(T−1u, T−1v), u, v ∈ H1
c ∩ L2

c−α

where D(ã) = H1
c̃ ∩ L2

c̃+2β

ã(u, v) =

∫
R+

DyuDyv y
c̃ dy − ib(β + 1)

∫
R+

yβ(Dyu) v y
c̃ dy + |ξ|2(β + 1)2

∫
R+

y2βuvyc̃ dy.

We introduce now the quadratic form

Qa(ξ) = |ξ|2 − |a · ξ|2, (1− |a|2)|ξ|2 ≤ Qa(ξ) ≤ |ξ|2, ξ ∈ RN . (5)

A second isometry S removes the term ib(β + 1)yβDy from the operator L̃ introducing a complex

potential. This leads to the operator (β + 1)
−2

Ãb̃,β defined by

Ãb̃,β = B̃ − i
b̃(c̃+ β)

2
yβ−1 − (β + 1)2Qa(ξ)y

2β (6)

where c̃ = c−α
2−α , b̃ = b(β + 1) = 2a · ξ(β + 1).

Lemma 3.2 With the notation above let us consider the isometry

S : L2
c̃ → L2

c̃ , (Su)(y) = e−i b̃
2(β+1)

yβ+1

u(y) = e−ia·ξy
2

2−α
u(y).

If D(ã) = H1
c̃ ∩ L2

c̃+2β, then one has S(D(ã)) = D(ã) and

ã(u, v) = ãb̃(S
−1u, S−1v), u, v ∈ D(ã).

ãb̃(u, v) =

∫
R+

DyuDyvy
c̃ dy − i

b̃

2

∫
R+

Dy (uv) y
c̃+β dy + (β + 1)2Qa(ξ)

∫
R+

uvyc̃+2β dy.

The above lemmas say that the operator yαL2a·ξ − yα|ξ|2 and the associated form a are equiv-

alent, by mean of the isometry T ◦ S, to (β + 1)−2Ãb̃,β and (β + 1)−2ãb̃ and motivates the next
section.

Remark 3.3 Let us explain briefly the restrictions on the parameters c, α, β which appear in this
section. The operator B = Dyy+

c
yDy is considered here only for c > −1, so that the measure ycdy

is finite in a neighborhood of 0, to impose Neumann boundary conditions. The case c ≤ −1 can
be also considered under Dirichlet boundary conditions, see [14]. Note also that the set D defined
in (4) is contained in the domain of the form associated with B, if and only if c > −1. All other
restrictions on the parameters come from this choice. For example, the condition c+ 1− α > 0 in
Lemma 3.1 is equivalent to c̃+ 1 > 0.

3.1 The auxiliary operator Ab,β = B − i b(c+β)
2

yβ−1 − (β + 1)2Qa(ξ)y
2β.

As explained in the above remark, we always assume that

|a| < 1, c+ 1 > 0, β + 1 > 0.
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Setting b = 2a · ξ(β + 1), Qa(ξ) = |ξ|2 − |a · ξ|2, we consider the form ãb defined on

D(ãb) = H1
c ∩ L2

c+2β ⊂ L2
c

by

ãb(u, v) = ⟨Dyu,Dyv⟩L2
c
− i

b

2
⟨u,Dyv⟩L2

c+β
− i

b

2
⟨Dyu, v⟩L2

c+β
+ (β + 1)2Qa(ξ) ⟨u, v⟩L2

c+2β

=

∫
R+

DyuDyvy
c dy − i

b

2

∫
R+

Dy (uv) y
c+β dy + (β + 1)2Qa(ξ)

∫
R+

uvyc+2β dy (7)

and its associated operator Ab,β in L2
c . Since for smooth functions with compact support away

from the origin

(c+ β)

∫ ∞

0

uvyc+β−1 dy =

∫ ∞

0

u
(
Dy(y

c+βv)− yc+βDyv)
)
dy = −

∫ ∞

0

Dy(uv)y
c+β dy,

the operator Ab,β is defined on smooth functions by

Ab,β := B − i
b(c+ β)

2
yβ−1 − (β + 1)2Qa(ξ)y

2β , A0 = B − (β + 1)2Qa(ξ)y
2β .

We collect in the following proposition the main properties satisfied by ãb.

Proposition 3.4 The form ãb is accretive and closed in L2
c. Moreover

(i) the adjoint form ã∗b : (u, v) 7→ ãb(v, u) satisfies ã∗b = ã−b;

(ii) its real part is the positive form

Re ãb(u, v) :=
ãb(u, v) + ã∗b(u, v)

2
= ⟨Dyu,Dyv⟩L2

c
+ (β + 1)2Qa(ξ) ⟨u, v⟩L2

c+2β
;

(iii) for any u ∈ H1
c ∩ L2

c+2β

|Im ãb(u, u)| ≤
|b|

(β + 1)Qa(ξ)
1
2

Re ãb(u, u) =
|a|√

1− |a|2
Re ãb(u, u).

Proof. Properties (i) and (ii) are immediate consequences of the definition. Since Re ãb(u, u) =
∥Dyu∥2L2

c
+ (β + 1)2Qa(ξ)∥u∥2L2

c+2β
≥ 0, ãb is accretive and, furthermore, the norm induced by the

form ãb coincides with the one of H1
c ∩ L2

c+2β and then ãb is closed.

To prove (iii), we use Young’s inequality and the elementary identity Dy(|u|2) = 2Re (uDyu)
for u ∈ H1

c . Then

|Im ãb(u, u)| =
∣∣∣∣− b

2

∫ ∞

0

Dy

(
|u|2
)
yc+β dy

∣∣∣∣ = ∣∣∣∣−b

∫ ∞

0

Re (uDyu) y
c+β dy

∣∣∣∣
≤ |b|

(
∥Dyu∥L2

c
∥u∥L2

c+2β

)
=

|b|
(β + 1)Qa(ξ)

1
2

(
∥Dyu∥L2

c
(β + 1)Qa(ξ)

1
2 ∥u∥L2

c+2β

)
≤ |b|

2(β + 1)Qa(ξ)
1
2

(
∥Dyu∥2L2

c
+ (β + 1)2Qa(ξ)∥u∥2L2

c+2β

)
=

|b|
2(β + 1)Qa(ξ)

1
2

Re ãb(u, u) =
|a · ξ|
Qa(ξ)

1
2

Re ãb(u, u) ≤
|a|√

1− |a|2
Re ãb(u, u).

By standard theory on sesquilinear forms we have the following results.
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Proposition 3.5 The operator Ab,β generates an analytic semigroup of angle π
2 − arctan |a|√

1−|a|2

in L2
c which satisfies

∥ezAb,βf∥L2
c
≤ ∥f∥L2

c
, ∀z ∈ Σπ

2 −arctan
|a|√

1−|a|2
.

Moreover

(i) The semigroup
(
etAb,β

)
t≥0

is L∞-contractive and it is dominated by etB, that is

|etAb,βf | ≤ etB |f |, t > 0, f ∈ L2
c .

(ii)
(
etAb,β

)
t≥0

is a semigroup of integral operators and its heat kernel p̃b,β, taken with respect to

the measure ρcdρ, satisfies for some constant C independent of b, β

|p̃b,β(t, y, ρ)| ≤ Ct−
1
2 ρ−c

(
ρ

t
1
2

∧ 1

)c

exp

(
−|y − ρ|2

κt

)
, for a.e. y, ρ > 0.

(iii) A∗
b,β = A−b,β. and for any s > 0 the operator satisfies the scaling property

I 1
s
◦Ab,β ◦ Is = s2

(
B − i

b(c+ β)

2s1+β
yβ−1 − (β + 1)2

s2β+2
Qa(ξ)y

2β

)
, Isu(y) := u(sy).

Proof. The generation properties follows using Proposition 3.4 and [20, Teorems 1.52, 1.53].
To prove (i) we observe, preliminarily, that the operator B is associated with the form b(u, v) =
⟨Dyu,Dyv⟩L2

c
and its generated semigroup etB is sub-Markovian since b satisfies the hypotheses

of [20, Corollary 2.17]. The domination property for etAb,β then follows from [20, Theorem 2.21].
In particular etAb,β inherits the L∞-contractivity of etB . (ii) is a consequence of [1, Proposition
1.9] since etAb,β is dominated by the positive integral operator etB whose kernel satisfies the stated
estimate, see [14, Proposition 2.8] where, however, the kernel is written with respect to the Lebesgue
measure. (iii) follows from (i) of Proposition 3.4 and by elementary computations.

As in [18, Section 5], we can extend the above heat kernel estimates to complex times.

Theorem 3.6 For every 0 ≤ ν < π
2 − arctan |a|√

1−|a|2
the heat kernel p̃b,β, taken with respect to

the measure ρcdρ, satisfies for some constant Cν independent of b, β

|p̃b,β(z, y, ρ)| ≤ Cν |z|−
1
2 ρ−c

(
ρ

|z| 12
∧ 1

)c

exp

(
−|y − ρ|2

κ|z|

)
,

for a.e. y, ρ > 0, ∀z ∈ Σν .

3.2 Generation properties and domain characterization

Generation properties and kernel estimates for the original operator

yαL2a·ξ − yα|ξ|2 = yα(B + i2a · ξDy − |ξ|2)

can be deduced by the analogous properties of the auxiliary operator Ab,β of Section 3.1. Indeed
from Lemmas 3.1, 3.2 we have

a(u, v) = (β + 1)−2 ãb̃(S
−1T−1u, S−1T−1v), u, v ∈ D(a).
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This implies that

yαL2a·ξ − yα|ξ|2 = (T ◦ S)
[
(β + 1)−2Ãb̃,β

]
(T ◦ S)−1, (8)

where β = α
2−α , b̃ = 2a · ξ(β + 1), c̃ = 2c−α

2−α and

Ãb̃,β = B̃ − i
b̃(c̃+ β)

2
yβ−1 − (β + 1)2Qa(ξ)y

2β .

Note that, by construction and by Proposition 8.7 we have

B̃ = Dyy +
c̃

y
Dy, yαB = T

[
(β + 1)−2B̃

]
T−1. (9)

Theorem 3.7 Let c + 1 − α > 0. Then the operator yαL2a·ξ − yα|ξ|2 generates a contractive

analytic semigroup of angle π
2 − arctan |a|√

1−|a|2
in L2

c−α Moreover

(i) The semigroup
(
ety

α(L2a·ξ−|ξ|2)
)
t≥0

is dominated by ety
αB, that is

|ety
α(L2a·ξ−|ξ|2)f | ≤ ety

αB |f |, t > 0, f ∈ L2
c−α.

(ii)
(
ety

α(L2a·ξ−|ξ|2)
)
t≥0

is a semigroup of integral operators and its heat kernel pα, taken with

respect to the measure ρc−αdρ, satisfies for some constant Cν

|pα(z, y, ρ)| ≤ Cν |z|−
1
2 ρ−

α
2

(
ρ

|z|
1

2−α

∧ 1

)c+α
2

exp

(
−|y1−α

2 − ρ1−
α
2 |2

κ|z|

)
,

for a.e. y, ρ > 0, ∀z ∈ Σν , 0 ≤ ν < π
2 − arctan |a|√

1−|a|2
.

Proof. The proof is simply a translation of the results for Ãb̃,β of Proposition 3.5 and of Theorem
3.6 by using the identity (8). For example, (i) follows since, by construction, we have for any g,
|TSg| = T |g| and therefore using (i) of Proposition 3.5 and (8), (9) we get for t > 0, f ∈ L2

c−α

|ety
α(L2a·ξ−|ξ|2)f | = |TSet(β+1)−2Ãb̃,βS−1T−1f | = T |et(β+1)−2Ãb̃,βS−1T−1f |

≤ Tet(β+1)−2B̃ |S−1T−1f | = Tet(β+1)−2B̃T−1|f | = ety
αB |f |.

Now we prove that the semigroup ez(y
α(L2a·ξ−|ξ|2)) extrapolates to the spaces Lp

m.

Proposition 3.8 If 1 < p < ∞ and 0 < m+1
p < c + 1 − α, then (ez(y

α(L2a·ξ−|ξ|2))) is an analytic

semigroup of angle π
2 − arctan |a|√

1−|a|2
in Lp

m.

Proof. All properties for p = 2, m = c − α are contained in Theorem 3.7. The boundedness
of ez(y

α(L2a·ξ−|ξ|2)) in Lp
m then follows from [14, Proposition 12.2]. The semigroup law is inherited

9



from the one of L2
c−α via a density argument and we have only to prove the strong continuity at

0. Let f, g ∈ C∞
c (R+). Then as z → 0, z ∈ Σπ

2 −arctan
|a|√

1−|a|2
,

∫ ∞

0

(ez(y
α(L2a·ξ−|ξ|2))f) g ymdy =

∫ ∞

0

(ez(y
α(L2a·ξ−|ξ|2))f) g ym−c+αyc−αdy

→
∫ ∞

0

fgym−c+αyc−αdy =

∫ ∞

0

fgymdy,

by the strong continuity of ez(y
α(L2a·ξ−|ξ|2)) in L2

c−α. Let us observe now that, using Theorem

3.7 and [14, Proposition 12.2], the family

{
ez(y

α(L2a·ξ−|ξ|2)), z ∈ Σπ
2 −arctan

|a|√
1−|a|2

}
is uniformly

bounded on B(Lp
m). By density, the previous limit holds for every f ∈ Lp

m, g ∈ Lp′

m. The semigroup
is then weakly continuous, hence strongly continuous.

Following the same lines of [13, Theorem 7.2], we get the following R-boundedness result (see
Appendix A for the relevant definitions).

Corollary 3.9 Let 1 < p < ∞ such that 0 < m+1
p < c+1−α. Then the following properties hold.

For every 0 ≤ ν < π − arctan |a|√
1−|a|2

the families of operators

{
ezy

α(L2a·ξ−|ξ|2) : ξ ∈ RN \ {0}, z ∈ Σν

}
,{

λ
(
λ− yα(L2a·ξ − |ξ|2)

)−1
: ξ ∈ RN \ {0}, λ ∈ Σν

}
are R-bounded in Lp

m.

Proof. The proof follows almost identically to that of [13, Theorem 7.2] since from (ii) of Theorem

3.7 one has (using the notation of [13, Theorem 7.2]) for every ≤ ν < π
2 − arctan |a|√

1−|a|2
and for

some positive constant C∣∣∣ezyα(L2a·ξ−|ξ|2)f
∣∣∣ ≤ CS−c

α (|z|)|f |, f ∈ Lp
m, z ∈ Σν .

The R-boundedness on ξ ∈ RN \ {0} follows since the right hand side does not depend on ξ.

In our investigations of degenerate N -d problems, we need, in the case α = 0, to add a potential
having non-negative real part to the operator of the latter proposition; this force to deal only with
the semigroup on the real axis.

Let V ∈ L1
loc (R+, yc dy) be a potential having non-negative real part and let L2a·ξ − V be the

operator in L2
c associated with the form

aV (u, v) =

∫
R+

(DyuDyv − 2ia · ξDyuv + V uv) yc dy

defined on the domain

F := H1
c ∩ L2 (R+, V ycdy) .
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Proposition 3.10 Let V ∈ L1
loc (R+, yc dy) be a potential having non-negative real part. Then for

any 1 < p < ∞ such that 0 < m+1
p < c+1, L2a·ξ − |ξ|2−V generates a C0-semigroup on Lp

m. The
generated semigroup consists of integral operators and the following estimate holds∣∣∣et(L2a·ξ−|ξ|2−V )f

∣∣∣ ≤ et(L2a·ξ−|ξ|2)|f | ≤ etB |f |, f ∈ Lp
m, t ≥ 0.

Moreover the families of operators{
et(L2a·ξ−|ξ|2−V ) : t ≥ 0, ξ ∈ RN \ {0}, |a| < 1, V ∈ L1

loc

(
R+, yc

)
, ReV ≥ 0

}
,{

λ
(
λ− L2a·ξ + |ξ|2 + V

)−1
: λ > 0, ξ ∈ RN \ {0}, |a| < 1, V ∈ L1

loc

(
R+, yc

)
, ReV ≥ 0

}
(10)

are R-bounded in Lp
m. In particular{

|ξ|2
(
|ξ|2 − L2a·ξ + V

)−1
: ξ ∈ RN \ {0}, |a| < 1, V ∈ L1

loc

(
R+, yc

)
, ReV ≥ 0

}
is R-bounded in Lp

m.

Proof. The generation results can be proved as in Proposition 3.5. If a is the form associated
with L2a·ξ − |ξ|2, then L2a·ξ − |ξ|2 − V is associated to aV := a(u, v) + ⟨V u, v⟩L2

c
and, by the

standard theory on sesquilinear forms, L2a·ξ−V generates a C0-semigroup on L2
c . The domination

properties follow from [20, Theorem 2.21] again. The extrapolation on Lp
m follows as in Proposition

3.8. The R-boundedness of the semigroup follows by domination from the R-boundedness of
et(L2a·ξ−|ξ|2) using Corollary 3.9 with α = 0. The R-boundedness of the resolvent family follows
from Proposition 7.3 by writing the resolvent as the Laplace transform of the semigroup. The last
claim follows by simply specializing (10) taking λ = |ξ|2.

We now prove that the domain of yαL2aξ + |ξ|2yα is W 2,p
N (α,m)∩Lp

m+αp, under slightly more
restrictive hypotheses than those of Proposition 3.8. Indeed, in what follows, we assume, besides
c+ 1− α > 0 also the condition c+ 1 > 0.

Lemma 3.11 Assume that c+ 1 > 0 and c+ 1− α > 0. If λ ∈ C+ and ξ ∈ RN \ {0}, then

(
λ− yαL2aξ + |ξ|2yα

)−1
f =

(
|ξ|2 − L2a·ξ +

λ

yα

)−1(
f

yα

)
, ∀f ∈ C∞

c ((0,∞)).

Proof. Under the assumptions yαL2aξ − |ξ|2yα and L2aξ − λy−α generate a semigroup on L2
c−α

and L2
c , respectively, see Theorem 3.7 and Proposition 3.10. Since Re λ > 0, both resolvents are

well defined but act in different spaces.
Let a , aλy−α be the forms associated to yαL2aξ − |ξ|2yα in L2

c−α and L2aξ − λy−α in L2
c

a(u, v) =

∫
R+

(
DyuDyv + 2ia · ξDyuv + |ξ|2uv

)
yc dy,

aλy−α(u, v) =

∫
R+

(
DyuDyv + 2ia · ξDyuv + λy−αuv

)
yc dy.

They are defined on the common domain

F :=
{
u ∈ L2

c−α ∩ L2
c : Dyu ∈ L2

c

}
11



Given f ∈ C∞
c ((0,∞)) let u :=

(
|ξ|2 − L2a·ξ +

λ
yα

)−1 (
f
yα

)
. In order to prove that the equality

u =
(
λ− yαL2a·ξ + |ξ|2yα

)−1
f holds, we have to show that u ∈ F and that for every v ∈ F , u

satisfies the weak equality∫ ∞

0

fvyc−α dy =

∫ ∞

0

λuvyc−α dy + aα,|ξ|2yα(u, v) (11)

=

∫ ∞

0

(λy−αuv +DyuDyv + 2ia · ξDyuv + |ξ|2uv)yc dy. (12)

By construction u is in the domain of L2a·ξ − λy−α which is contained in F and satisfies∫ ∞

0

f

yα
vyc dy =

∫ ∞

0

|ξ|2uvyc dy + aα,λy−α(u, v)

=

∫ ∞

0

(|ξ|2uv +DyuDyv + 2ia · ξDyuv + λy−αuv)yc dy,

which is the same as (11).

Remark 3.12 In the next result we relate the resolvent of yαL2a·ξ − yα with that of L2a·ξ − 1
yα ,

in the sense specified below. We shall assume both the conditions 0 < m+1
p < c + 1 − α and

−α < m+1
p < c+ 1− α (that is α− < m+1

p < c+ 1− α). The first guarantees that yαL2a·ξ − yα is

a generator in Lp
m and the second that L2a·ξ − 1

yα is a generator in Lp
m+αp.

Corollary 3.13 Assume that α− < m+1
p < c+ 1− α. If λ ∈ C+ and ξ ∈ RN \ {0}, then

(i) for every f ∈ Lp
m(

λ− yαL2a·ξ + |ξ|2yα
)−1

f =

(
|ξ|2 − L2a·ξ +

λ

yα

)−1(
f

yα

)
∈ Lp

m+αp ∩ Lp
m;

(ii) the operator yα
(
λ− yαL2a·ξ + |ξ|2yα

)−1
is bounded in Lp

m;

(iii) the operator 1
yα

(
|ξ|2 − L2a·ξ +

λ
yα

)−1

is bounded in Lp
m+αp.

Proof. Equality (i) is proved in Lemma 3.11 for any f ∈ C∞
c ((0,∞)). Since

(
λ− yαL2a·ξ + |ξ|2yα

)−1

is bounded form Lp
m into itself and

(
|ξ|2 − L2a·ξ +

λ
yα

)−1 (
·
yα

)
is bounded from Lp

m to Lp
m+αp, by

density, (i) holds for every f ∈ Lp
m. Parts (ii), (iii) are consequence of (i).

To characterize the domain of yα(L2a·ξ − |ξ|2) we need the following lemmas.

Lemma 3.14 Let m ∈ R, p > 1. Then

W 2,p
N (α,m) ∩ Lp

m+αp = W 2,p
N (0,m+ αp) ∩ Lp

m.

Proof. We observe preliminarily that from [15, Lemma 3.5] (which holds for m ∈ R and not only
for m < 2), there exist C > 0, ε0 > 0 such that for every u ∈ W 2,p

loc (R+) one has

∥y α
2 Dyu∥Lp

m((1,∞)) ≤ C

(
ε∥yαDyyu∥Lp

m((1,∞)) +
1

ε
∥u∥Lp

m((1,∞))

)
.
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This and the elementary inequality y
α
2 ≤ yα−1, y ≤ 1 grant that the term y

α
2 Dyu can be discarded

from the definition of the Sobolev space showing that

W 2,p
N (α,m) =

{
u ∈ W 2,p

loc (R+) : u, yαDyyu, yα−1Dyu ∈ Lp
m

}
.

In view of the latter equality, the required identity becomes trivial.

Lemma 3.15 Let 1 < p < ∞, α− < m+1
p < c + 1 − α. Then there exists C > 0 such that for

every u ∈ W 2,p
N (α,m) ∩ Lp

m+αp,

∥yαDyu∥Lp
m
≤ C∥yαBu∥

1
2

Lp
m
∥yαu∥

1
2

Lp
m
.

It follows that for every ε > 0, ξ ∈ RN ,

∥|ξ|yαDyu∥Lp
m
≤ ε∥yαBu∥Lp

m
+

C

ε
∥|ξ|2yαu∥Lp

m
.

Proof. We apply [18, Lemma 5.15] with m+ αp in place of m thus obtaining

∥Dyu∥Lp
m+αp

≤ C∥Bu∥
1
2

Lp
m+αp

∥u∥
1
2

Lp
m+αp

, u ∈ W 2,p
N (0,m+ αp).

The first inequality then follows since by Lemma 3.14

W 2,p
N (α,m) ∩ Lp

m+αp = W 2,p
N (0,m+ αp) ∩ Lp

m.

The second one follows by Young inequality.

Lemma 3.16 Let 1 < p < ∞, α− < m+1
p < c + 1 − α. Then there exists C > 0, independent of

ξ ∈ RN , |a| < 1, such that for every u ∈ W 2,p
N (α,m) ∩ Lp

m+αp, ξ ∈ RN \ {0}, Reλ > 0,

∥|ξ|2yαu∥Lp
m
≤ C∥(λ− yαL2a·ξ + |ξ|2yα)u∥Lp

m
.

Proof. Let u ∈ W 2,p
N (α,m) ∩ Lp

m+αp and set f = (λ − yαL2a·ξ + |ξ|2yα)u. Then, by Corollary
3.13 (i),

∥|ξ|2yαu∥Lp
m
= ∥|ξ|2yα(λ− yαL2a·ξ + |ξ|2yα)−1f∥Lp

m
=

∥∥∥∥∥|ξ|2yα
(

λ

yα
− L2a·ξ + |ξ|2

)−1
f

yα

∥∥∥∥∥
Lp

m

.

By Proposition 3.10∥∥∥∥∥|ξ|2yα
(

λ

yα
− L2a·ξ + |ξ|2

)−1
f

yα

∥∥∥∥∥
Lp

m

=

∥∥∥∥∥|ξ|2
(

λ

yα
− L2a·ξ + |ξ|2

)−1
f

yα

∥∥∥∥∥
Lp

m+αp

≤ C

∥∥∥∥ f

yα

∥∥∥∥
Lp

m+αp

= C∥f∥Lp
m

for some C independent of ξ.
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Theorem 3.17 Let 1 < p < ∞, α− < m+1
p < c + 1 − α and ξ ∈ RN \ {0}. Then the generator

of (ez(y
α(L2a·ξ−|ξ|2))) is the operator yα(L2a·ξ − |ξ|2) with domain W 2,p

N (α,m)∩Lp
m+αp. The set D

defined in (4) is a core.

Proof. We fix 0 ̸= ξ and first prove that the equation u − yαL2a·ξu + |ξ|2yαu = f , f ∈ Lp
m, is

uniquely solvable in W 2,p
N (α,m) ∩ Lp

m+αp. Let u ∈ W 2,p
N (α,m) ∩ Lp

m+αp. By Theorem 2.1 (i) in
the first inequality and then by Lemma 3.15 and Lemma 3.16, there exists a positive constant C
such that for every ε > 0, 0 ≤ t ≤ 1

∥u∥W 2,p
N (α,m) + ∥|yαu∥Lp

m
≤ C∥u− yαBu∥+ ∥yαu∥Lp

m

≤ C
(
∥u− yαL2ta·ξu+ |ξ|2yαu∥Lp

m
+ |2ta · ξ|∥yαDyu∥Lp

m
+ ∥(1 + |ξ|2)yαu∥Lp

m

)
≤ C

(
∥u− yαL2ta·ξu+ |ξ|2yαu∥Lp

m
+ ε∥yαBu∥Lp

m
+

1

ε
∥(1 + |ξ|2)yαu∥Lp

m

)

≤ C

(
∥u− yαL2ta·ξu+ |ξ|2yαu∥Lp

m
+ ε∥u∥W 2,p

N (α,m) +
1

ε
(1 + |ξ|−2)∥|ξ|2yαu∥Lp

m

)

≤ C

(
∥u− yαL2ta·ξu+ |ξ|2yαu∥Lp

m
+ ε∥u∥W 2,p

N (α,m) +
1

ε
(1 + |ξ|−2)∥u− yαL2ta·ξu+ |ξ|2yαu∥Lp

m

)
.

Note that for the last inequality we used the fact that the estimate in Lemma 3.16 is uniform in ξ
and a. By choosing ε = 1

2C we deduce for some C depending on ξ but independent of t

∥u∥W 2,p
N (α,m) + ∥yαu∥Lp

m
≤ C∥u− yαL2ta·ξu+ |ξ|2yαu∥Lp

m
.

Since, for t = 0, the operator I− yαB+ |ξ|2yα is invertible in W 2,p
N (α,m)∩Lp

m+αp by Theorem
2.1(ii), the same holds for I − yαL2a·ξ + |ξ|2yα, by the method of continuity.

Let (Lm,p, Dm,p) be the generator of (et(y
αL2a·ξ−|ξ|2yα)) in Lp

m and consider the set

D = {u ∈ C∞
c ([0,∞)) : u constant in a neighborhood of 0}

which is dense in W 2,p
N (α,m)∩Lp

m+αp, by Theorem 8.4. By using the definition of yαL2a·ξ−|ξ|2yα
through the form a as in the beginning of Section 3, it is easy to see that D ⊂ Dc−α,2 and that

yαL2a·ξ−|ξ|2yα = Lc−α,2 on D. Since D is dense in W 2,2
N (α, c−α)∩L2

c+α, y
αL2a·ξ−|ξ|2yα is closed

on W 2,2
N (α, c− α) ∩ L2

c+α and Lc−α,2 is closed on Dc−α,2, it follows that W
2,2
N (α, c− α) ∩ L2

c+α ⊂
Dc−α,2 and then W 2,2

N (α, c−α)∩L2
c+α = Dc−α,2, y

αL2a·ξ − |ξ|2yα = Lc−α,2, since both operators
are invertible on their own domains and one is an extension of the other. This completes the proof
in the special case p = 2,m = c− α.

Take now u ∈ D and let f = λu− (yαL2a·ξ − |ξ|2yα)u ∈ Lp
m ∩ L2

c−α for large λ. Let v ∈ Dm,p

solve λv − Lm,pv = f . Since the semigroups are consistent, v coincides with the L2
c−α solution

which, by the previous step, is u. This gives D ⊂ Dm,p and that yαL2a·ξ − |ξ|2yα = Lm,p on D
and, as before, one concludes the proof for p < ∞.

We remark that Proposition 3.8 assures that yα(L2a·ξ − |ξ|2) generates a semigroup on Lp
m

under the milder assumption 0 < m+1
p < c + 1 − α. However, the hypothesis (m + 1)/p + α > 0

must be added when α < 0 to have D ⊂ Lp
m+αp.

As consequence we deduce the domain of the operator yαL2a·ξ in the special case α = 0.
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Corollary 3.18 Let 1 < p < ∞, 0 < m+1
p < c + 1 and b ∈ R. Then the domain of the operator

Lb is W 2,p
N (0,m). The set D defined in (4) is a core.

Proof. By the arbitrariness of ξ, a we can write b = 2a · ξ. The required claim then follows from
Theorem 3.17 since the domains of L2a·ξ coincides with the one of L2a·ξ − |ξ|2 which for α = 0 is

is W 2,p
N (0,m) ∩ Lp

m = W 2,p
N (0,m).

Using Corollary 3.13 (i) withm replaced bym−αp, we can characterize the domain of L2a·ξ− λ
yα .

In what follows we write Dm,p(A) to denote the domain of an operator A on Lp
m.

Corollary 3.19 Let 1 < p < ∞, α+ < m+1
p < c+1, ξ ∈ RN \{0} and λ ∈ C+. Then the generator

of (ez(L2a·ξ− λ
yα )) is the operator L2a·ξ − λ

yα with domain W 2,p
N (0,m)∩Lp

m−αp. In particular the set

D defined in (4) is a core.

Proof. We use (i) of Corollary 3.13 and Theorem 3.17 with m replaced by m̃ := m − αp (note
that the condition α+ < m+1

p < c+ 1 and α− < m̃+1
p < c+ 1− α are equivalent) to obtain

Dm,p

(
L2a·ξ −

λ

yα

)
=

(
|ξ|2 − L2a·ξ +

λ

yα

)−1

(Lp
m) =

(
λ− yαL2a·ξ + |ξ|2yα

)−1
(Lp

m−αp)

= Dm−αp,p

(
yαL2a·ξ − |ξ|2yα

)
= W 2,p

N (α,m− αp) ∩ Lp
m.

Lemma 3.14 then implies

Dm,p

(
L2a·ξ −

λ

yα

)
= W 2,p

N (0,m) ∩ Lp
m−αp.

Remark 3.20 Let 1 < p < ∞ such that α− < m+1
p < c + 1 − α, ξ ∈ RN \ {0} and λ ∈ C+.

Theorem 3.17, Corollary 3.19 and Lemma 3.14 show that the operators

yαL2a·ξ − |ξ|2yα in Lp
m, L2a·ξ −

λ

yα
in Lp

m+αp

endowed with the common domain

W 2,p
N (α,m) ∩ Lp

m+αp = W 2,p
N (0,m+ αp) ∩ Lp

m

generate a semigroup on Lp
m and Lp

m+αp, respectively. Their resolvents satisfy

(
λ− yαL2a·ξ + |ξ|2yα

)−1
f =

(
|ξ|2 − L2a·ξ +

λ

yα

)−1(
f

yα

)
, f ∈ Lp

m

proving the equivalence between the two elliptic equations

λu− yαL2a·ξu+ |ξ|2yαu = f,
λ

yα
u− L2a·ξu+ |ξ|2u =

f

yα
.
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4 Multipliers

In this section we investigate the boundedness of some multipliers related to the degenerate operator

L = yα

(
∆x + 2

N∑
i=1

aiDiy +Dyy +
c

y
Dy

)
, a ∈ RN , |a| < 1, α < 2 (13)

Assuming that
yα (∆xu+ 2a · ∇xDyu+Byu) = f

and taking the Fourier transform (denoted by F or ·̂) with respect to x (with covariable ξ) we
obtain

−yα|ξ|2 û(ξ, y) + yαi2a · ξDyû(ξ, y) + yαByû(ξ, y) = f̂(ξ, y).

We consider the operator L2a·ξ = B + 2ia · ξDy of Section 3. The latter computation shows that
formally

(λ− L)−1 = F−1
(
λ− yαL2a·ξ + yα|ξ|2

)−1 F .

In order to prove that L generates an analytic semigroup and to prove regularity for the associated
parabolic problem, we investigate the boundedness of the operator-valued multiplier

ξ ∈ RN → Rλ(ξ) =
(
λ− yαL2a·ξ + yα|ξ|2

)−1
.

To characterize the domain of L we also consider the multipliers |ξ|2yαRλ, ξy
αDyRλ which are

associated with the operators yα∆x(λ − L)−1, yαDxy(λ − L)−1, respectively. In the next results
we prove that the above multipliers satisfy the hypotheses of Theorem 7.5.

We also need the operator-valued multiplier R̃λ(ξ) defined by

ξ ∈ RN → R̃λ(ξ) =

(
|ξ|2 − L2a·ξ +

λ

yα

)−1

∈ B
(
Lp
m+αp

)
.

Note that the role of ξ and λ is interchanged between Rλ(ξ) and R̃λ(ξ): λ is a spectral parameter
in the first and plays a role of a complex potential in the second, where instead is ξ the spectral
parameter. Nevertheless, we keep the same notation.

By Corollary 3.13 we have

yαRλ(ξ)f = yαR̃λ(ξ)

(
f

yα

)
, yαDyRλ(ξ)f = yαDyR̃λ(ξ)

(
f

yα

)
, f ∈ Lp

m. (14)

Proposition 4.1 Let 1 < p < ∞, α < 2 be such that α− < m+1
p < c+ 1− α. Then the families{

λRλ(ξ), |ξ|2yαRλ(ξ), ξy
αDyRλ(ξ) ∈ B(Lp

m) : λ ∈ C+, ξ ∈ RN \ {0}
}

are R-bounded.

Proof. The R-boundedness of λRλ(ξ) follows by Corollary 3.9.
The R-boundedness of |ξ|2yαRλ(ξ) in B(Lp

m) follows by using formula (14). We write

|ξ|2yαRλ(ξ) = yα
(
|ξ|2R̃λ(ξ)

)( ·
yα

)
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and use theR-boundedness of |ξ|2R̃λ(ξ) in B(Lp
m+αp) proved in Proposition 3.10 with V (y) = λy−α.

Let us finally prove the R-boundedness of ξyαDyRλ(ξ) in B(Lp
m). By formula (14) again we

have

ξyαDyRλ(ξ) = yα
(
ξDyR̃λ(ξ)

)( ·
yα

)
.

Let us write

R̃λ(ξ) =

(
|ξ|2 − L2a·ξ +

λ

yα

)−1

=
(
|ξ|2 − L2a·ξ

)−1 (|ξ|2 − L2a·ξ
)(

|ξ|2 − L2a·ξ +
λ

yα

)−1

=
(
|ξ|2 − L2a·ξ

)−1
(
Id− λ

yα
R̃λ(ξ)

)
=
(
|ξ|2 − L2a·ξ

)−1
(

·
yα

)(
yα − λR̃λ(ξ)

)
(note that

(
|ξ|2 − L2a·ξ

) (
|ξ|2 − L2a·ξ +

λ
yα

)−1

is well defined since D
(
L2a·ξ − λ

yα

)
⊆ D (L2a·ξ),

by Corollary 3.19). The previous relations and (14) give

ξyαDyRλ(ξ) = ξyαDy

(
|ξ|2 − L2a·ξ

)−1
(

·
yα

)(
yα − λR̃λ(ξ)

)( ·
yα

)

= ξyαDy

(
|ξ|2 − L2a·ξ

)−1
(

·
yα

)(
I − λR̃λ(ξ)

(
·
yα

))

= ξyαDy

(
|ξ|2 − L2a·ξ

)−1
(

·
yα

)
(I − λRλ(ξ)) .

The R-boundedness of the family ξyαDyRλ(ξ) in B(Lp
m) then follows by composing the R-

boundedness of ξDy

(
|ξ|2 − L2a·ξ

)−1
in B(Lp

m+αp) proved in [18, Corollary 6.4] and theR-boundedness
of the family λRλ(ξ) in B(Lp

m) proved in the first step.

To apply the Mikhlin multiplier theorem, we need a formula for the derivatives of the above
functions with respect to ξ. In the following lemma Sn denotes the set of permutations of n
elements.

Lemma 4.2 Let 1 < p < ∞ , α < 2 be such that α− < m+1
p < c+ 1− α, and let us consider, for

any fixed λ ∈ C+, the map

ξ ∈ RN → Rλ(ξ) = (λ− yαL2a·ξ + yα|ξ|2)−1 ∈ B(Lp
m).

Then Rλ, yαRλ, yαDyRλ ∈ C∞ (RN \ {0};B(Lp
m)
)
and for any family of different indexes
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j1, j2, . . . , jn ∈ {1, . . . , N} one has

Dξj1
· · ·Dξjn

Rλ(ξ) =
∑
σ∈Sn

Rλ(ξ)

n∏
k=1

(
2iajσ(k)

yαDyRλ(ξ)− 2ξjσ(k)
yαRλ(ξ)

)

Dξj1
· · ·Dξjn

yαRλ(ξ) =
∑
σ∈Sn

yαRλ(ξ)

n∏
k=1

(
2iajσ(k)

yαDyRλ(ξ)− 2ξjσ(k)
yαRλ(ξ)

)
(15)

Dξj1
· · ·Dξjn

yαDyRλ(ξ) =
∑
σ∈Sn

yαDyRλ(ξ)

n∏
k=1

(
2iajσ(k)

yαDyRλ(ξ)− 2ξjσ(k)
yαRλ(ξ)

)
.

Proof. Let us fix λ ∈ C+. Let us prove the first equality in (15) for n = 1 that is, for j = 1, . . . , n

∂

∂ξj
(Rλ(ξ)) = Rλ(ξ)

(
2iajy

αDyRλ(ξ)− 2ξjy
αRλ(ξ)

)
, ξ ∈ Rn \ {0}. (16)

Indeed let us write for |h| ≤ 1

Rλ(ξ + hej)−Rλ(ξ) =
(
λ+ yα|ξ + hej |2 − yαL2a·(ξ+hej)

)−1 −
(
λ+ yα|ξ|2 − yαL2a·ξ

)−1

= Rλ(ξ)
[ (

λ+ yα|ξ|2 − yαL2a·ξ
) (

λ+ yα|ξ + hej |2 − yαL2a·(ξ+hej)

)−1 − I
]

= Rλ(ξ) y
α
(
L2a·(ξ+hej) − L2a·ξ + |ξ|2 − |ξ + hej |2

) (
λ+ yα|ξ + hej |2 − yαL2a·(ξ+hej)

)−1

= Rλ(ξ) y
α
(
2iajhDy − 2ξjh− h2

)
Rλ(ξ + hej)

= 2iajhRλ(ξ) y
αDyRλ(ξ + hej)− (2ξjh+ h2)Rλ(ξ) y

αRλ(ξ + hej). (17)

Using the R-boundedness of λRλ(ξ) |ξ|2yαRλ(ξ), ξy
αDyRλ(ξ) of Proposition 4.1 (which implies

uniform boundedness), the last equation implies in particular that

Rλ(ξ + hej) → Rλ(ξ), yαRλ(ξ + hej) → yαRλ(ξ),

yαDyRλ(ξ + hej) → yαDyRλ(ξ) in the norm of B (Lp
m) as h → 0. (18)

For example from (17) one has for some positive constant C

∥Rλ(ξ + hej)−Rλ(ξ)∥B(Lp
m) ≤ C

∥Rλ(ξ)∥R(B(Lp
m))

|λ|

×

(
|h|

∥yαDyRλ(ξ)∥R(B(Lp
m))

|ξ + hej |
+ (|ξ|h+ h2)

∥yαRλ(ξ)∥R(B(Lp
m))

|ξ + hej |2

)
→ 0 as h → 0.

The other limits in (18) follow similarly after applying to both sides of (17) yα and yαDy, respec-
tively.

To end the proof we apply equality (17) again to get

Rλ(ξ + hej)−Rλ(ξ)

h
= Rλ(ξ)y

α (2iajDy − 2ξj)Rλ(ξ)− hRλ(ξ) y
αRλ(ξ + hej) (19)
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which tends to Rλ(ξ)y
α (2iajDy − 2ξj)Rλ(ξ) in the norm of B (Lp

m) as h → 0 since , by (18), the
last term tends to 0. This proves (16).

The proof of the other equalities in (15) for n = 1 that is, for j = 1, . . . , n ,

∂

∂ξj
(yαRλ(ξ)) = yαRλ(ξ) (2iajy

αDyRλ(ξ)− 2ξjy
αRλ(ξ)) , ξ ∈ Rn \ {0},

∂

∂ξj
(yαDyRλ(ξ)) = yαDyRλ(ξ) (2iajy

αDyRλ(ξ)− 2ξjy
αRλ(ξ)) , ξ ∈ Rn \ {0}

follow similarly by applying, respectively, the operators yαId, yαDy to both sides of (19) and
taking the limit for h → 0. For example for the derivative ∂

∂ξj
(yαDyRλ(ξ)) we write, as in (17),

yαDyRλ(ξ + hej)− yαDyRλ(ξ)

h
=yαDyRλ(ξ)y

α (2iajDy − 2ξj)Rλ(ξ)

− h yαDyRλ(ξ) y
αRλ(ξ + hej)

which by (18) again tends to yαDyRλ(ξ)y
α (2iajDy − 2ξj)Rλ(ξ) in the norm of B (Lp

m) as h → 0.
Finally, (15) for n > 1 follows by induction. For example if n = 2 and l ̸= j one has

∂2

∂ξl∂ξj
(Rλ(ξ)) =

∂

∂ξl

[
Rλ(ξ)

(
2iajy

αDyRλ(ξ)− 2ξjy
αRλ(ξ)

)]

=
∂

∂ξl
(Rλ(ξ))

(
2iajy

αDyRλ(ξ)− 2ξjy
αRλ(ξ)

)
+Rλ(ξ)

(
2iaj

∂

∂ξl
(yαDyRλ(ξ))− 2ξj

∂

∂ξl
(yαRλ(ξ))

)

= Rλ(ξ)
(
2ialy

αDyRλ(ξ)− 2ξly
αRλ(ξ)

)(
2iajy

αDyRλ(ξ)− 2ξjy
αRλ(ξ)

)
+Rλ(ξ)

(
2iajy

αDyRλ(ξ)− 2ξjy
αRλ(ξ)

)(
2ialy

αDyRλ(ξ)− 2ξly
αRλ(ξ)

)
.

Now we can finally prove that the multiplier λRλ(ξ) associated with the operators λ(λ−L)−1

satisfies the hypothesis of Theorem 7.5. This is crucial for proving that L generates an analytic
semigroup in Lp

m.

Theorem 4.3 Let 1 < p < ∞ , α < 2 be such that α− < m+1
p < c+ 1− α. Then the family{

ξβDβ
ξ (λRλ(ξ)) : ξ ∈ RN \ {0}, β ∈ {0, 1}N , λ ∈ C+

}
is R-bounded in Lp

m.

Proof. Let β = (β1, . . . , βN ) ∈ {0, 1}N , |β| = n. Let us suppose, without any loss of generality,
βi = 1, for i ≤ n and βi = 0, for i > n. Then using (15) we get

ξβDβ
ξ λRλ(ξ) = ξ1 · · · ξn (Dξ1 · · ·Dξn)λRλ(ξ)

=
∑
σ∈Sn

λRλ(ξ)

n∏
j=1

(
2iaσ(j)ξσ(j)y

αDyRλ(ξ)− 2ξ2σ(j)y
αRλ(ξ)

)
.
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The R-boundedness of ξβDβ
ξ (λRλ)(ξ) then follows by composition and domination from the

R-boundedness of λRλ(ξ), |ξ|2yαRλ(ξ), ξy
αRλ(ξ) using Proposition 4.1 and Corollary 7.2.

The next two theorems show that the multipliers |ξ|2yαRλ, ξy
αDyRλ, associated respectively

with the operators yα∆x(λ−L)−1, yαDxy(λ−L)−1, satisfy the hypotheses of Theorem 7.5. This
is essential for characterizing the domain of L.

Theorem 4.4 Let 1 < p < ∞ , α < 2 be such that α− < m+1
p < c+ 1− α. Then the family{

ξβDβ
ξ (|ξ|

2yαRλ(ξ)) : ξ ∈ RN \ {0}, β ∈ {0, 1}N , λ ∈ C+

}
is R-bounded in Lp

m.

Proof. Let us prove preliminarily that the family{
|ξ|2ξβDβ

ξ (y
αRλ(ξ)) : ξ ∈ RN \ {0}, β ∈ {0, 1}N , λ ∈ C+

}
is R-bounded in Lp

m. Let β = (β1, . . . , βN ) ∈ {0, 1}N , |β| = n. Let us suppose, without any loss of
generality, βi = 1, for i ≤ n and βi = 0, for i > n. Then using (15) one has

|ξ|2ξβDβ
ξ y

αRλ(ξ) = |ξ|2ξ1 · · · ξn (Dξ1 · · ·Dξn) y
αRλ(ξ)

=
∑
σ∈Sn

|ξ|2yαRλ(ξ)

n∏
j=1

(
2iaσ(j)ξσ(j)y

αDyRλ(ξ)− 2ξ2σ(j)y
αRλ(ξ)

)
and the required R-boundedness of |ξ|2ξβDβ

ξ y
αRλ(ξ) then follows as at the end of Theorem 4.3.

To prove the required claim let us observe that for any β ∈ {0, 1}N , |β| = n there exist
βj ∈ {0, 1}N satisfying

βj
k = βk, k ̸= j, βj

j = 0, |βj | = n− 1

and such that

Dβ
ξ (|ξ|

2yαRλ(ξ)) =
∑

j:βj=1

2ξjD
βj

ξ yαRλ(ξ) + |ξ|2Dβ
ξ y

αRλ(ξ).

Then

ξβDβ
ξ (|ξ|

2yαRλ(ξ)) =
∑

j:βj=1

2ξ2j ξ
βj

Dβj

ξ yαRλ(ξ) + |ξ|2ξβDβ
ξ y

αRλ(ξ).

and the proof now follows by domination using the previous step.

Theorem 4.5 Let 1 < p < ∞ , α < 2 be such that α− < m+1
p < c+ 1− α. Then the family{

ξβDβ
ξ (ξyαDyRλ(ξ)) : ξ ∈ RN \ {0}, β ∈ {0, 1}N , λ ∈ C+

}
is R-bounded in Lp

m.
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Proof. As in the proof of the previous theorem we prove preliminarily that the family{
ξ ξβDβ

ξ (y
αDyRλ(ξ)) : ξ ∈ RN \ {0}, β ∈ {0, 1}N , λ ∈ C+

}
is R-bounded in Lp

m. Indeed let β = (β1, . . . , βN ) ∈ {0, 1}N , |β| = n. Let us suppose, without any
loss of generality, βi = 1, for i ≤ n and βi = 0, for i > n. Then using (15) one has

ξ ξβDβ
ξ y

αDyRλ(ξ) = ξ ξ1 · · · ξn (Dξ1 · · ·Dξn) y
αDyRλ(ξ)

=
∑
σ∈Sn

ξ yαDyRλ(ξ)

n∏
j=1

(
2iaσ(j)ξσ(j)y

αDyRλ(ξ)− 2ξ2σ(j)y
αRλ(ξ)

)
and the required R-boundedness of ξ ξβDβ

ξ y
αDyRλ(ξ) then follows as at the end of Theorem 4.3.

To prove the required claim let us fix β ∈ {0, 1}N , |β| = n and let us observe that for any
j = 1, . . . N one has

Dβ
ξ (ξjy

αDyRλ)(ξ) = ξjD
β
ξ (yαDyRλ(ξ)) + βjD

βj

ξ (yαDyRλ(ξ)) .

where βj ∈ {0, 1}N satisfies

βj
k = βk, k ̸= j, βj

j = 0, |βj | = n− 1.

The proof then follows by the previous step.

5 The operator L = yα(∆x + 2a · ∇xDy +By), |a| < 1, α < 2

In this section we prove generation results, maximal regularity and domain characterization for
the operator L defined in (13) in Lp

m. More general operators will be treated in the next section,
based on this model case. We start with the L2 theory.

As explained at the beginning of Section 4, we have formally for λ ∈ C+

λ(λ− L)−1 = F−1 (λRλ(ξ))F , Rλ(ξ) =
(
λ− yαL2a·ξ + yα|ξ|2

)−1

and consequently

yα∆x(λ− L)−1 = −F−1
(
|ξ|2yαRλ(ξ)

)
F , i∇xDy(λ− L)−1 = F−1 (ξyαDyRλ(ξ))F .

All properties of L follow from the boundedness of the above multipliers, through Theorem 7.5.

5.1 The operator L in L2
c−α

We assume that c+ 1− α > 0 so that the measure yc−α dx dy is locally finite near y = 0 and use
the Sobolev space H1

α,c := {u ∈ L2
c−α : y

α
2 ∇u ∈ L2

c−α} equipped with the inner product

⟨u, v⟩H1
α,c

:= ⟨u, v⟩L2
c−α

+
〈
y

α
2 ∇u, y

α
2 ∇v

〉
L2

c−α

.

We consider the form in L2
c−α

a(u, v) :=

∫
RN+1

+

⟨∇u,∇v⟩ ycdx dy + 2

∫
RN+1

+

Dyu a · ∇xv y
cdx dy, D(a) = H1

α,c
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and its adjoint a∗(u, v) = a(v, u)

a∗(u, v) = a(v, u) :=

∫
RN+1

+

⟨∇u,∇v⟩ ycdx dy + 2

∫
RN+1

+

a · ∇xuDyv y
cdx dy.

Proposition 5.1 The forms a, a∗ are continuous, accretive and sectorial.

Proof. We consider only the form a, the adjoint form can be handled similarly. If u ∈ H1
α,c

Re a(u, u) ≥ ∥∇xu∥2L2
c
+ ∥Dyu∥2L2

c
− 2|a|∥∇xu∥L2

c
∥Dyu∥L2

c
≥ (1− |a|)(∥∇xu∥2L2

c
+ ∥Dyu∥2L2

c
).

By the ellipticity assumption |a| < 1, the accretivity follows. Moreover

|Im a(u, u)| ≤ 2|a|∥∇xu∥L2
c
∥Dyu∥L2

c
≤ |a|(∥∇xu∥2L2

c
+ ∥Dyu∥2L2

c
) ≤ |a|

(1− |a|)
Re a(u, u).

This proves the sectoriality and then the continuity of the form.

We define the operators L and L∗ associated respectively to the forms a and a∗ by

D(L) = {u ∈ H1
α,c : ∃f ∈ L2

c−α such that a(u, v) =

∫
RN+1

+

fvyc dz for every v ∈ H1
α,c},

Lu = −f ; (20)

D(L∗) = {u ∈ H1
α,c : ∃f ∈ L2

c−α such that a∗(u, v) =

∫
RN+1

+

fvyc dz for every v ∈ H1
α,c},

L∗u = −f. (21)

If u, v are smooth function with compact support in the closure of RN+1
+ (so that they do not need

to vanish on the boundary), it is easy to see integrating by parts that

−a(u, v) = ⟨yα(∆xu+ 2a · ∇xDyu+Byu), v⟩L2
c−α

if lim
y→0

ycDyu(x, y) = 0. This means that L is the operator yα(∆x+2a ·∇xDy+By) with Neumann

boundary conditions at y = 0. On the other hand

−a∗(u, v) =

〈
yα
(
∆xu+ 2a · ∇xDyu+ 2(c− α)

a · ∇xu

y
+Byu

)
, v

〉
L2

c−α

if lim
y→0

yc (Dyu(x, y) + 2a · ∇xu(x, y)) = 0 and therefore L∗ is the operator

yα
(
∆x + 2a · ∇xDy + 2c

a · ∇xu

y
+By

)
with the above oblique condition at y = 0.

Proposition 5.2 L and L∗ generate contractive analytic semigroups ezL, ezL
∗
, z ∈ Σπ

2 −arctan
|a|

1−|a|
,

in L2
c−α. Moreover the semigroups (etL)t≥0, (e

tL∗
)t≥0 are positive and Lp

c−α-contractive for 1 ≤
p ≤ ∞.
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Proof. We argue only for L. The generation result immediately follows from Proposition 5.1 and
[20, Theorem 1.52]. The positivity follows by [20, Theorem 2.6] after observing that, if u ∈ H1

α,c,
u real, then u+ ∈ H1

α,c and

a(u+, u−) :=

∫
RN+1

+

⟨∇u+,∇u−⟩ ycdx dy + 2

∫
RN+1

+

Dyu
+a · ∇xu

− ycdx dy = 0.

Finally, the L∞-contractivity follows by [20, Corollary 2.17] after observing that if 0 ≤ u ∈ H1
α,c,

then 1 ∧ u, (u− 1)+ ∈ H1
α,c and, since ∇(1 ∧ u) = χ{u<1}∇u and ∇(u− 1)+ = χ{u>1}∇u, one has

a(1 ∧ u, (u− 1)+) = 0.

The Stein interpolation theorem then shows that the above semigroups are analytic in Lp
c−α

for 1 < p < ∞, see [20, Proposition 3.12] and a result by Lamberton yields maximal regularity in
the same range, see [12, Theorem 5.6]. Since our results are more general, we do not state these
consequences here.

Our aim is to characterize the domain of L in L2
c−α. As in [18, Section 7.1] and [17, Section

6.1], we can prove the following result.

Theorem 5.3 If c+ 1 > |α| then

D(L) = W 2,2
N (α, α, c− α).

In particular the set C∞
c (RN )⊗D, see (24), is a core for L in L2

c−α(R
N+1
+ ).

Proof. The proof follows as in [18, Proposition 7.3, Theorem 7.4] using the boundedness of the
multipliers |ξ|2yαR1(ξ), ξyαDyR1(ξ) in L2(RN ;L2

c−α(R+)) = L2
c−α, proved in Proposition 4.1.

Note that the condition c+ 1 > |α| is that of the quoted proposition with p = 2 and m = c− α.

5.2 The operator L in Lp
m

In this section we prove domain characterization and maximal regularity for L in Lp
m. For clarity

reasons we often write Lm,p to emphasize the underlying space on which the operator acts.
We shall use extensively the set (finite sums below)

C∞
c (RN )⊗D =

{
u(x, y) =

∑
i

ui(x)vi(y), ui ∈ C∞
c (RN ), vi ∈ D

}
,

where D is defined in (4). We refer to Appendix 8 for further details and note that L is well defined
on C∞

c (RN )⊗D ⊂ Lp
m when (m+ 1)/p > α−.

The next results can be proved as in [18, Lemma 7.5, Lemma 7.6, Theorem 7.7, Corollary 7.8].

Lemma 5.4 Let α− < m+1
p < c+ 1− α. Then for any λ ∈ C+ the operators

(λ− Lc−α,2)
−1, yα∆x(λ− Lc−α,2)

−1, yα∇xDy(λ− Lc−α,2)
−1, yαBn

y (λ− Lc−α,2)
−1

initially defined on Lp
m∩L2

c−α by Theorem 5.3, extend to bounded operators on Lp
m which we denote

respectively by R(λ), yα∆xR(λ), yα∇xDyR(λ), yαBn
yR(λ). Moreover the family {λR(λ) : λ ∈ C+}

is R-bounded on Lp
m.
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Proposition 5.5 If α− < m+1
p < c+1−α, an extension Lm,p of the operator L, initially defined on

C∞
c (RN )⊗D, generates a bounded analytic semigroup in Lp

m(RN+1
+ ) which has maximal regularity

and it is consistent with the semigroup generated by Lc−α,2 in L2
c−α(R

N+1
+ ).

Finally we characterize the domain of Lm,p.

Theorem 5.6 If α− < m+1
p < c+ 1− α, then

D(Lm,p) = W 2,p
N (α, α,m)

and in particular C∞
c (RN )⊗D is a core for Lm,p.

Corollary 5.7 Under the hypotheses of Theorem 5.6 we have for every u ∈ W 2,p
N (α, α,m)

∥yαDxixju∥Lp
m
+ ∥yαDyyu∥Lp

m
+ ∥yαDxiyu∥Lp

m
+ ∥yα−1Dyu∥Lp

m
≤ C∥Lu∥Lp

m
.

6 Consequences for more general operators

The isometry introduced in Section 8 allows to deduce generation and domain properties in Lp
m

for more general operators of the form

L = yα1∆x + 2y
α1+α2

2 a · ∇xDy + yα2

(
Dyy +

c

y
Dy

)
,

with α1α2 ∈ R, α2 < 2, α2 − α1 < 2.

Theorem 6.1 Let α2 < 2, α2 − α1 < 2 and

α−
1 <

m+ 1

p
< c+ 1− α2.

Then L with domain W 2,p
N (α1, α2,m) generates a bounded analytic semigroup in Lp

m which has
maximal regularity.

Proof. We use the isometry

Tα1−α2
2

: Lp
m̃ → Lp

m, m̃ =
2m− α1 + α2

α1 − α2 + 2

which, according to Proposition 8.7, transforms L into

T−1
α1−α2

2

LTα1−α2
2

= yα∆x + yα2

(
α1 − α2 + 2

2

)
a · ∇xDy +

(
α1 − α2 + 2

2

)2

yαB̃y

where

α =
2α1

α1 − α2 + 2
, B̃y = Dyy +

c̃

y
Dy, c̃ =

2c+ α1 − α2

α1 − α2 + 2
.

Observe the assumptions on the parameters translates into α < 2 and α− < m̃+1
p < c̃+1−α. The

generation properties and maximal regularity for L in Lp
m are then immediate consequence of the

same properties for the operator studied before. Concerning the domain, we have

D(L) = Tα1−α2
2

(
W 2,p

N (α, α, m̃)
)

which, by Proposition 8.5, coincides with W 2,p
N (α1, α2,m).

24



Results for more general operators and boundary conditions follow by linear change of variables,
as we explain below. We consider the operator in RN+1

+

L = yα1Tr
(
QD2

xu
)
+ 2y

α1+α2
2 q · ∇xDy + yα2

(
γDyy +

c

y
Dy

)

= yα1

N∑
i,j=1

qijDxixj
+ 2y

α1+α2
2

N∑
i=1

qiDxiy + yα2

(
γDyy +

c

y
Dy

)
.

Here Q is the N × N matrix (qij), q = (q1, . . . , qN ) and we assume that the quadratic form
Q(ξ, ξ) + γη2 + 2q · ξ η is positive definite. Through a linear change of variables in the x variables

the term
∑N

i,j=1 qijDxixj
is transformed into γ∆x and all the results of Section 5 hold, replacing

c with c
γ in the statements (the condition |a| < 1 of Section 5 is satisfied since the change of

variables preserves the ellipticity). The case of variable coefficients can also be handled by freezing
the coefficients and will be done in the future to deal with degenerate problems in bounded domains.

***** All the text in blue has to be deleted******

*****************STARTOFDELETEDTEXT***********************************************************************
A further change of variables allows to deal with the operator

L = yα1Tr
(
QD2

xu
)
+ 2y

α1+α2
2 q · ∇xDy + yα2γDyy + yα2−1v · ∇

Here v = (b, c) ∈ RN+1, with c ̸= 0, and we impose an oblique derivative boundary condition
yα2−1v · ∇u(x, 0) = 0 in the integral form

yα2−1v · ∇u = yα2−1 (b · ∇xu+ cDyu) ∈ Lp
m.

We define therefore

W 2,p
v (α1, α2,m)

def
= {u ∈ W 2,p(α1, α2,m) : yα2−1v · ∇u ∈ Lp

m}.

We transform L into a similar operator with b = 0 and Neumann boundary condition by mean of
the following isometry of Lp

m

T u(x, y) := u

(
x− b

c
y, y

)
, (x, y) ∈ RN+1

+ . (22)

Lemma 6.2 Let 1 < p < ∞, v = (b, c) ∈ RN+1, c ̸= 0. Then for u ∈ W 2,1
loc

(
RN+1

+

)
(i)

T−1
(
yα1Tr

(
QD2

xu
)
+ 2y

α1+α2
2 q · ∇xDy + yα2γDyy + yα2−1v · ∇

)
T u

= yα1Tr
(
Q̃D2

xu
)
+ 2y

α1+α2
2 q̃ · ∇xDy + yα2

(
γDyy +

c

y
Dy

)
where

Q̃ = Q− 2

c
b⊗ q+

γ

c2
b⊗ b, q̃ = q − γ

c
b

and the matrix

(
Q̃ q̃t

q̃ γ

)
is elliptic.
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(ii) T
(
W 2,p

N (α1, α2,m)
)
= W 2,p

v (α1, α2,m).

Proof. The proof follows by a straightforward computation.

*****************ENDOFDELETEDTEXT***********************************************************************

We can therefore deduce results also for the last operator whose proofs follow directly from the
above lemma Theorem 6.1.

Theorem 6.3 Let v = (b, c) ∈ RN+1 with b = 0 if c = 0, c ∈ R and

(
Q qt

q γ

)
an elliptic matrix

and let α1, α2 ∈ R such that α2 < 2, α2 − α1 < 2 and

α−
1 <

m+ 1

p
<

c

γ
+ 1− α2.

Then the operator

L = yα1Tr
(
QD2

xu
)
+ 2y

α1+α2
2 q · ∇xDy + γyα2Dyy + cyα2−1Dy������XXXXXXyα2−1v · ∇

endowed with domain W 2,p
N (α1, α2,m) W 2,p

v (α1, α2,m) when c ̸= 0 and W 2,p
N (α1, α2,m) when

c = 0, generates a bounded analytic semigroup in Lp
m which has maximal regularity.

We refer the reader to [19] for a further generalization of L involving Dirichlet or oblique
derivative boundary conditions.

7 Appendix A: Vector-valued harmonic analysis

We review some results on vector-valued multiplier theorems referring the reader to [2], [21] or [12]
for all proofs.

Let S be a subset of B(X), the space of all bounded linear operators on a Banach space X. S
is R-bounded if there is a constant C such that

∥
∑
i

εiSixi∥Lp(Ω;X) ≤ C∥
∑
i

εixi∥Lp(Ω;X)

for every finite sum as above, where (xi) ⊂ X, (Si) ⊂ S and εi : Ω → {−1, 1} are independent
and symmetric random variables on a probability space Ω. In particular S is a bounded subset of
B(X). The smallest constant C for which the above definition holds is the R-bound of S, denoted
by R(S). It is well-known that this definition does not depend on 1 ≤ p < ∞ (however, the
constant R(S) does) and that R-boundedness is equivalent to boundedness when X is an Hilbert
space. When X is an Lp(Σ) space (with respect to any σ-finite measure defined on a σ-algebra Σ),
testing R-boundedness is equivalent to proving square functions estimates, see [12, Remark 2.9].

Proposition 7.1 Let S ⊂ B(Lp(Σ)), 1 < p < ∞. Then S is R-bounded if and only if there is a
constant C > 0 such that for every finite family (fi) ∈ Lp(Σ), (Si) ∈ S∥∥∥∥∥∥

(∑
i

|Sifi|2
) 1

2

∥∥∥∥∥∥
Lp(Σ)

≤ C

∥∥∥∥∥∥
(∑

i

|fi|2
) 1

2

∥∥∥∥∥∥
Lp(Σ)

.
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The best constant C for which the above square functions estimates hold satisfies κ−1C ≤ R(S) ≤
κC for a suitable κ > 0 (depending only on p). Using the proposition above, R-boundedness
follows from domination by a positive R-bounded family.

Corollary 7.2 Let S, T ⊂ B(Lp(Σ)), 1 < p < ∞ and assume that T is an R bounded family of
positive operators and that for every S ∈ S there exists T ∈ T such that |Sf | ≤ T |f | pointwise, for
every f ∈ Lp(Σ). Then S is R-bounded.

We also need the following result about the integral mean of a R-bounded family of operator
which we state in the version we use.

Proposition 7.3 [12, Corollary 2.14] Let X be a Banach space and let F ⊂ B(X) be an R-
bounded family of operator. For every strongly measurable N : Σ → B(X) on a σ-finite measure
space (Σ, µ) with values in F and every h ∈ L1 (Σ, µ) we define the operator TN,F ∈ B(X) by

TN,Fx =

∫
Σ

h(ω)N(ω)xdµ(ω), x ∈ X.

Then the family

C = {TN,F : ∥h∥L1 ≤ 1, N as above}

is R bounded and R(C) ≤ 2R(F).

Let (A,D(A)) be a sectorial operator in a Banach space X; this means that ρ(−A) ⊃ Σπ−ϕ for
some ϕ < π and that λ(λ + A)−1 is bounded in Σπ−ϕ. The infimum of all such ϕ is called the
spectral angle of A and denoted by ϕA. Note that −A generates an analytic semigroup if and
only if ϕA < π/2. The definition of R-sectorial operator is similar, substituting boundedness of
λ(λ + A)−1 with R-boundedness in Σπ−ϕ. As above one denotes by ϕR

A the infimum of all ϕ for
which this happens; since R-boundedness implies boundedness, we have ϕA ≤ ϕR

A.

The R-boundedness of the resolvent characterizes the regularity of the associated inhomoge-
neous parabolic problem, as we explain now.

An analytic semigroup (e−tA)t≥0 on a Banach space X with generator −A has maximal regular-

ity of type Lq (1 < q < ∞) if for each f ∈ Lq([0, T ];X) the function t 7→ u(t) =
∫ t

0
e−(t−s)A)f(s) ds

belongs to W 1,q([0, T ];X) ∩ Lq([0, T ];D(A)). This means that the mild solution of the evolution
equation

u′(t) +Au(t) = f(t), t > 0, u(0) = 0,

is in fact a strong solution and has the best regularity one can expect. It is known that this
property does not depend on 1 < q < ∞ and T > 0. A characterization of maximal regularity is
available in UMD Banach spaces, through the R-boundedness of the resolvent in a suitable sector
ω + Σϕ, with ω ∈ R and ϕ > π/2 or, equivalently, of the scaled semigroup e−(A+ω′)t in a sector
around the positive axis. In the case of Lp spaces it can be restated in the following form, see [12,
Theorem 1.11]

Theorem 7.4 Let (e−tA)t≥0 be a bounded analytic semigroup in Lp(Σ), 1 < p < ∞, with generator
−A. Then T (·) has maximal regularity of type Lq if and only if the set {λ(λ+A)−1, λ ∈ Σπ/2+ϕ} is
R- bounded for some ϕ > 0. In an equivalent way, if and only if there are constants 0 < ϕ < π/2,
C > 0 such that for every finite sequence (λi) ⊂ Σπ/2+ϕ, (fi) ⊂ Lp∥∥∥∥∥∥

(∑
i

|λi(λi +A)−1fi|2
) 1

2

∥∥∥∥∥∥
Lp(Σ)

≤ C

∥∥∥∥∥∥
(∑

i

|fi|2
) 1

2

∥∥∥∥∥∥
Lp(Σ)
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or, equivalently, there are constants 0 < ϕ′ < π/2, C ′ > 0 such that for every finite sequence
(zi) ⊂ Σϕ′ , (fi) ⊂ Lp ∥∥∥∥∥∥

(∑
i

|e−ziAfi|2
) 1

2

∥∥∥∥∥∥
Lp(Σ)

≤ C ′

∥∥∥∥∥∥
(∑

i

|fi|2
) 1

2

∥∥∥∥∥∥
Lp(Σ)

.

Finally we state a version of the operator-valued Mikhlin multiplier theorem in the N-dimensional
case, see e.g. [11, Corollary 8.3.22].

Theorem 7.5 Let 1 < p < ∞, M ∈ CN (RN \ {0};B(Lp(Σ)) be such that the set{
ξαDα

ξ M(ξ) : ξ ∈ RN \ {0}, α ∈ {0, 1}N
}

is R-bounded. Then the operator TM = F−1MF is bounded in Lp(RN , Lp(Σ)), where F denotes
the Fourier transform.

8 Appendix B: Weighted spaces and similarity transforma-
tions

Let p > 1, m,α1, α2 ∈ R such that

α2 < 2, α2 − α1 < 2, α−
1 <

m+ 1

p
.

In order to describe the domain of the operator

yα1∆x + 2y
α1+α2

2 a · ∇xDy + yα2

(
Dyy +

c

y
Dy

)
,

we collect in this section the main results concerning anisotropic weighted Sobolev spaces, referring
to [15] for further details and all the relative proofs. We define the Sobolev space

W 2,p(α1, α2,m) =
{
u ∈ W 2,p

loc (R
N+1
+ ) : u, yα1Dxixj

u, y
α1
2 Dxi

u,

yα2Dyyu, y
α2
2 Dyu, y

α1+α2
2 Dy∇xu ∈ Lp

m

}
which is a Banach space equipped with the norm

∥u∥W 2,p(α1,α2,m) =∥u∥Lp
m
+

n∑
i,j=1

∥yα1Dxixj
u∥Lp

m
+

n∑
i=1

∥y
α1
2 Dxi

u∥Lp
m

+ ∥yα2Dyyu∥Lp
m
+ ∥y

α2
2 Dyu∥Lp

m
+ ∥y

α1+α2
2 Dy∇xu∥Lp

m
.

Next we add a Neumann boundary condition for y = 0 in the form yα2−1Dyu ∈ Lp
m and set

W 2,p
N (α1, α2,m) = {u ∈ W 2,p(α1, α2,m) : yα2−1Dyu ∈ Lp

m}

with the norm
∥u∥W 2,p

N (α1,α2,m) = ∥u∥W 2,p(α1,α2,m) + ∥yα2−1Dyu∥Lp
m
.
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Remark 8.1 With obvious changes we consider also the analogous Sobolev spaces W 2,p(α,m) and
W 2,p

N (α,m) on R+. For example we have

W 2,p
N (α,m) =

{
u ∈ W 2,p

loc (R+) : u, yαDyyu, y
α
2 Dyu, yα−1Dyu ∈ Lp

m

}
.

All the results of this section will be valid also in R+ changing (when it appears) the condition
α−
1 < m+1

p to 0 < m+1
p .

The next result clarifies in which sense the condition yα2−1Dyu ∈ Lp
m is a Neumann boundary

condition.

Proposition 8.2 [15, Proposition 4.3] The following assertions hold.

(i) If m+1
p > 1− α2, then W 2,p

N (α1, α2,m) = W 2,p(α1, α2,m).

(ii) If m+1
p < 1− α2, then

W 2,p
N (α1, α2,m) = {u ∈ W 2,p(α1, α2,m) : lim

y→0
Dyu(x, y) = 0 for a.e. x ∈ RN}.

In both cases (i) and (ii), the norm of W 2,p
N (α1, α2,m) is equivalent to that of W 2,p(α1, α2,m).

The next results show the density of smooth functions in W 2,p
N (α1, α2,m). Let

C :=
{
u ∈ C∞

c

(
RN × [0,∞)

)
, Dyu(x, y) = 0 for y ≤ δ and some δ > 0

}
, (23)

its one dimensional version

D = {u ∈ C∞
c ([0,∞)), Dyu(y) = 0 for y ≤ δ and some δ > 0} (24)

and finally (finite sums below)

C∞
c (RN )⊗D =

{
u(x, y) =

∑
i

ui(x)vi(y), ui ∈ C∞
c (RN ), vi ∈ D

}
⊂ C.

Theorem 8.3 [15, Theorem 4.9] C∞
c (RN )⊗D is dense in W 2,p

N (α1, α2,m).

Note that the condition (m + 1)/p > α−
1 , or m + 1 > 0 and (m + 1)/p + α1 > 0, is necessary

for the inclusion C∞
c (RN )⊗D ⊂ W 2,p

N (α1, α2,m).

In the 1-dimensional case we need also the following density result proved in [13, Theorem 8.5].

Theorem 8.4 Let α < 2, µ > 0, c ∈ R. Then for any 1 < p < ∞ such that α− < m+1
p < c+1−α,

the set D is dense in W 2,p
N (α,m) ∩ Lp

m+αp.

We consider now, for β ∈ R, β ̸= −1, the transformation

Tβ u(x, y) := |β + 1|
1
pu(x, yβ+1), (x, y) ∈ RN+1

+ . (25)

Observe that
T−1
β = T− β

β+1
.
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Proposition 8.5 Let 1 ≤ p ≤ ∞, β ∈ R, β ̸= −1 and m ∈ R. The following properties hold.

(i) Tβ maps isometrically Lp
m̃ onto Lp

m where m̃ = m−β
β+1 .

(ii) W 2,p
N (α1, α2,m) = Tβ

(
W 2,p

N (α̃1, α̃2, m̃)
)
, α̃1 = α1

β+1 , α̃2 = α2+2β
β+1 .

In particular choosing β = α1−α2

2 and setting α̃ = 2α1

α1−α2+2 one has

W 2,p
N (α1, α2,m) = Tα1−α2

2

(
W 2,p

N (α̃, α̃, m̃)
)
, α̃ =

2α1

α1 − α2 + 2
, m̃ =

2m− α1 + α2

α1 − α2 + 2
.

Proof. See [15, Lemma 2.1, Proposition 2.2] with k = 0 and Tβ = T0,β .

Remark 8.6 It is essential to deal with W 2,p
N (α1, α2,m): in general the map Tβ does not transform

W 2,p(α̃1, α̃2, m̃) into W 2,p(α1, α2,m).

We consider now the operators

L = yα1∆x + 2y
α1+α2

2 (a,∇xDy) + yα2By, a ∈ RN , |a| < 1

in the space Lp
m = Lp

m(RN+1
+ ). Here B is the Bessel operator

B = Dyy +
c

y
Dy, c > −1

on the half line R+ =]0,∞[ (often we write By to indicate that it acts with respect to the y variable).
The condition |a| < 1 is equivalent to the ellipticity of the top order coefficients We investigate
when these operators can be transformed one into the other by means of the transformation (25).

Proposition 8.7 Let Tβ be the isometry defined in (25). Then for every u ∈ W 2,1
loc

(
RN+1

+

)
one

has

T−1
β

(
yα1∆x + 2y

α1+α2
2 (a,∇xDy) + yα2By

)
Tβ u

=
(
y

α1
β+1∆x + 2(β + 1)y

α1+α2+2β

2(β+1) (a,∇xDy) + (β + 1)2y
α2+2β
β+1 B̃y

)
u

where

B̃ = Dyy +
c̃

y
Dy, c̃ =

c+ β

β + 1
. (26)

In particular choosing β = α1−α2

2 and setting α̃ = 2α1

α1−α2+2 one has

T−1
β

(
yα1∆x + 2y

α1+α2
2 (a,∇xDy) + yα2By

)
Tβ u

= yα̃
(
∆x + 2(β + 1) (a,∇xDy) + (β + 1)2B̃y

)
u

Proof. The proof follows using [17, Proposition 3.1, Proposition 3.2] with k = 0 and the equalities

yαTβ u = Tβ (y
α

β+1u), Dxi(Tβ u) = Tβ (Dxiu) , DxyTβ u = Tβ

(
(β + 1)y

β
β+1Dxyu

)
.
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