Regularity theory for parabolic operators in the half-space
with boundary degeneracy

G. Metafune * L. Negro | C. Spina *

Abstract

We study elliptic and parabolic problems governed by the singular elliptic operators

a]4a
L= yalTI‘ (QD?CU) -+ 2y 12 2 q- Vsz + '7ya2Dyy + Cya271DyM

under Neumann er-eblique-derivative boundary condition, in the half-space Ri’“ ={(z,y) :
zeRY,y > 0}. We prove elliptic and parabolic LP-estimates and solvability for the associ-
ated problems. In the language of semigroup theory, we prove that £ generates an analytic
semigroup, characterize its domain as a weighted Sobolev space and show that it has maximal
regularity.

Mathematics subject classification (2020): 35K67, 35B45, 47D07, 35J70, 35J75.
Keywords: degenerate elliptic operators, boundary degeneracy, vector-valued harmonic anal-
ysis, maximal regularity.

1 Introduction

In this paper we study solvability and regularity of elliptic and parabolic problems associated to
the degenerate operators

ajto
L=y Tr (QDiu) + 2y~ 2 ? q-VaDy +vy*2Dyy + cya'—’*lDyM (1)

and D; — £ in the half-space RY ™ = {(z,y) : # € RY,y > 0} or in (0,00) x Rf“ and under
Neumann er-eblique-derivative boundary condition at y = 0.

Q|d
Here c € R 4 e i if ¢ > and ( is a constant real elliptic
q |
matrix. The real numbers a7, as satisfy as < 2 and as — a; < 2 but are not assumed to be

nonnegative.
We write By to denote the 1-dimensional Bessel operator Dy, + ©D,. With this notation the
special case where

L= yalAz + yasz

*Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Universita del Salento, C.P.193, 73100, Lecce, Italy.
-mail: giorgio.metafune@unisalento.it

tDipartimento di Matematica e Fisica “Ennio De Giorgi”, Universita del Salento, C.P.193, 73100, Lecce, Italy.
email: luigi.negro@unisalento.it

iDipartimento di Matematica e Fisica“Ennio De Giorgi”, Universita del Salento, C.P.193, 73100, Lecce, Italy.
e-mail: chiara.spina@unisalento.it



has been already studied in [17]. The main novelty here consists in the presence of the mixed

derivatives 2y ez q - ViD, in the operator £ which is a crucial step for treating degenerate
operators in domains, through a localization procedure.

Our main result is the following, see Theorems 6.1, 6.3 and Appendix B for the definition of
the weighted Sobolev spaces involved.

Theorem Let ag,as € R such that ag < 2, as — ay < 2 and

1
Ol;<m+ <E+1—a2.
Y
Then the operator
L=y Tr (QD?E )+2y ez q-VaDy +yy*2Dyy + cy™? 1DyM

72. . 2P

endowed with domain W/N (a1, a0, m) ,
e=-0; generates a bounded analytic sengroup mn Lp whzch has ma:mmal regularzty

Let us explain the meaning of the restrictions as < 2, as — a; < 2 considering first the case where
a1 = ap = @, so that the unique requirement is o < 2.

It turns out that when « > 2 the problem is easily treated in the strip RY x [0, 1] in the case of
the Lebesgue measure, see [9], and all problems are due to the strong diffusion at infinity. The case
a > 2 in the strip RY x [1, 00| requires therefore new investigation even though the 1-dimensional
case is easily treated by the change of variables of Appendix B.

When a1 # as, the further restriction as — a3 < 2 comes from the change of variables of
Appendix B, see Section 6.

Let us briefly describe the previous literature on these operators. In [14, 16] we considered
the simplest case of A, 4+ B, making extensive use of the commutative structure of the operator.
The non-commutative case of y**A, + y*2B,, have been later faced in [17]. Another source of
non-commutativity comes from the presence of mixed derivatives. In [18], we treated the operator

Tr (QD3u) +2q-VyDy+b-V, + B,

under Neumann boundary conditions. For related results with different methods and with VMO
coefficients, we refer the reader also to [5, 3, 4, 6] for the case ay = as = 0 ( i.e. without the
powers y*', y*2 ) and to [7, 8] for the case oy = s € (0,2) with Dirichlet boundary conditions.

This paper is devoted to a final step in this direction, by adding (different) powers of y in
front of the main terms of the operator. This is, by no means, an immediate generalization of the
previous results or methods and many extra difficulties appear. Here we consider only constant
matrices () and constant g, y, c. However a straightforward localization procedure allows to extend
our results to the general case where @, q,, ¢ are bounded and uniformly continuous and allows
to treat operators in smooth domains, whose degeneracy in the top order coefficients behaves like
a power of the distance from the boundary. We shall treat these topics in a forthcoming paper.
We refer also to [19] for the case of Dirichlet or oblique derivative boundary conditions.

As for the simpler operator y*“'A, + y“2B,, the case a; = ao implies all other cases by the
change of variables described in Appendix B. However this modifies the underlying measure and
the procedure works if one is able to deal with the complete scale of L, spaces, where LI =
rr (Rf“; y™mdxdy).



The operators £, Dy — L, with a1 = as = «, are studied through estimates like

Y= Aztllpm + 1y VaDyu

lp.m + 1y Byullp,m < CllLullp,m, (2)

and

||Dtu||p,m + ||£U||p7m < C|(Dy — L)u| pymy (3)

where the LP norms are taken over Rf *1 and on (0, 00) x Rf *1 respectively. This kind of estimates
are quite natural in this context but not easy to prove. Of course they imply ||y* Dy o, tlp,m <
C||Lul|p,m, by the Calderén-Zygmund inequalities in the z-variables.

Let us explain how to obtain (2). Assuming that y*(Azu+2a-VyDyu+ Byu) = f and taking
the Fourier transform with respect to z (with covariable £) we obtain —[¢[24(&,y) + 2ia - €D, +
Byu(€,y) =y~ “f(&,y). Denoting by F the Fourier transform with respect to « we get

YO AL = —F (y*I€P(€)? - 2iaDy — By) lyT) F
Y*VeDyLTh = —F 1 (y*€D, (¢ — 2ia€D, — B,)"'y™*) F

and the boundedness of y*A, L1, y*V,D, L~ are equivalent to that of the multipliers £ € RN —
y € (1) — 2ia- §Dy — By)ilyia and £ € RY — yagDy(|£|2 —2ia-§Dy — By)ilyia in L7,.

The structure of these multipliers show the difficulties connected to the presence of the mixed
operators. The parameter £ not only appears as a spectral parameter but also in the operator
Lyg.¢ := By + 2ia - {D,,. For this reason, we need a careful study of the 1- dimensional operator
Log.¢ and variants like y*(Lag.¢ — |€|?), with estimates which depend explicitly on &.

Both the elliptic and parabolic estimates above share the name “maximal regularity” even
though this term is often restricted to the parabolic case. We refer to [12] and the new books [10],
[11] for the functional analytic approach to maximal regularity and to [2] for applications of these
methods to uniformly parabolic operators.

The paper is organized as follows. In Section 2 we recall some results concerning a one-
dimensional Bessel operator y*B, perturbed by a potential. In Section 3 we define and study a
1d auxiliary operator through a quadratic form. In Section 4 we investigate the boundedness of
some multipliers related to the degenerate operator. In Section 5, which is the core of the paper,
we prove generation results, maximal regularity and domain characterization for the operator L,
under Neumann boundary conditions. Finally, in Section 6, we extend our results to more general
operators.

In the Appendices we briefly recall the harmonic analysis background needed in the paper, as
square function estimates, R-boundedness, a vector valued multiplier theorem and the changes of
variables needed to reduce our operators to the simpler case where a; = as.

Notation. For N > 0, Rf“ = {(x,y) : # € RN,y > 0}. For m € R we consider the measure
y"drdy in RY*! and we write L?, (RY ) for LP(RY; y™dxdy) and often only L, when RY ™!
is understood. C* = {\ € C : Re X > 0} and, for |§] < m, we denote by Xy the open sector
{ANeC:XN#0, |Arg(\)| < 0}. We denote by a™ and o~ the positive and negative part of a real
number, that is o™ = max{«, 0}, = = — min{«, 0}.

We use B for the one-dimensional Bessel operator Dy, + §Dy and Ly for B + ibD,. Here
¢,b € R and both operators are defined on the half-line (0, c0).



2 The 1-dimensional operator y*B — uy®, p >0

In this section we summarize the main results proved in [13] for the one dimensional operator
y*B — py® = y© (Dyy + §Dy) —py®, p>0,in LP . To characterize the domain for u > 0, we
note that the domain of the potential V(y) = y® in L?, is

{uell : y*uell}=LFnN Lﬁb_‘_ap.

We recall that the Sobolev spaces Wﬁ/’p (o, m) are defined in Appendix B and the pedix A indicates
a Neumann boundary condition at y = 0.

Theorem 2.1 Leta<2,ceR and 1 <p < .

(i) If0< mTH < c+1—a, then the operator y*B endowed with domain Wﬁ[’p(a,m) generates
a bounded analytic semigroup of angle w/2 on LP, which is positive for z > 0.

(i) If p > 0 and o~ < mT'H < ¢+ 1 — « then the operator y*B — py® endowed with domain

Wff’p(a,m) N LY, ., generates a bounded analytic semigroup in LE, which is positive for
z>0.

In both cases the set
D = {u e CX([0,00)), Dyu(y) =0 for y < ¢ and some § > 0} (4)
is a core and the semigroups have maximal regularity.

PROOF. See [13, Theorem 4.2] for (i), [13, Theorem 8.5] for (ii). The density of D is proved in
proved in [13, Propositions 4.3, Theorem 8.5] and maximal regularity in [13, Theorem 7.2]. U

The following kernel estimates for the Bessel operator B (corresponding to o = p = 0) will be
used extensively.

Proposition 2.2 Let ¢ > —1. The semigroup (eZB)Ze(ch consists of integral operators. Its heat
kernel pp, written with respect the measure p°dp, satisfies for every e > 0, z € ¥z _. and some
Cey ke >0,

¢ 2
4 = y—p
(el < Culel 57 (Lp A1) e (L0

2|2 Kelz|
¢ _ 2
|DypB(Zay7P>| SCEZ|_1p_C( yl /\1) ( pl /\1) exp <_|y P‘ ) .
|z|2 |z|2 kel
PROOF. See [14, Propositions 2.8 and 2.9]. o

. . o . 2
3 The 1-dimensional operator y*(B + 2ia - €D, — |£]°)
In this section we prove generation properties in L? and heat kernel bounds for the operator
y*(B +2ia-EDy — [€*) = y*Laae —y° 6>, lal <la<2,

where, according to our notation, Ly = B + ibD,,.



Having in mind the study of the operator y*Azu + y*2a - Vo,Dyu + y*Byu (see Section 5),
from now on we assume the condition |a| < 1 which corresponds to the ellipticity of the top order
coefficients and also o < 2 as explained in the Introduction.

We start by the L? theory. We use the Sobolev spaces of Section 8 and also H} := {u € L?:
Vu € L?} equipped with the inner product

(u, 0) g1 = (U, 0) 2 + (V, V) 2.

and consider the form in L?__ with D(a) = H: N L2, C L?_, and

(Dyu) vy dy + / € Puvy© dy,

a(u,v) : = / DyuD, vy dy — 2ia-§

Ry
= / y*DyuD, vy dy — 2ia - f/ y*Dyuvy " dy + / €2y uw v dy.
Ry Ry Ry

The more pedantic second line above writes the form with respect to the reference measure y°~*dy,
rather than y°dy.
We define L in L2__, as the operator associated to the form a, that is

D(L) = {u € D(a) : 3f € L2__, such that a(u,v) = /OO foy“~“dy for every v € D(a)},
0
Lu=—f.
If u, v are smooth functions with compact support, it is easy to see integrating by parts that
—a(u,v) = (y*(Bu + 2ia - EDyu — [€[*u), V)2,

so that L is a realization of y*(B + 2ia - £D,, — |¢]?).

In the next lemmas we use two isometries which transform the operator into a simpler form.

l o«
The first one is Tu(y) = (1 — %) u(y'=?2) (this is the map T_s of Appendix B) and allows
to remove the power y in front of the Bessel operator B thus getting an equivalent operator
(B+1)"? L defined by

L=B+ib(B+1)y’D, — (B+ 12>, B=

Here

- c . 2c—«
B:Dyy"‘;Dyv c= 9o

b=2a-¢

and, by the assumption a < 2, one has f+1 > 0 and moreover ¢+1 > 0 if and only if c4+1—a > 0.
This is contained in Proposition 8.7 at level of operators but we state it below in the language
of forms, omitting the elementary computations.

Lemma 3.1 Letc+1—a > 0. Setting ¢ = 226:0‘3‘ > —1, let us consider the isometry

[N

T=12 1%, Tuly) = (1 - 9) u(yt~ ).

c—a? 2



—a’

Then, with b = 2a-§, B = 5%, one has T (Hal ngHB) =H!NL?> _, and

a(u,v) = (B+ 1) 2a(T 'u, T~ ), u,v € HNL?2

where D(a) = Hi N LZ, 54

y? (Dyu)vy® dy + €7 (B + 1)2/ y*Puvy© dy.

a(u,v) = D,u D,vy dy — ib(B + 1)/ i
+

Ry Ry

We introduce now the quadratic form
Qu(€) =& —la-&,  (L—laP)lE[* < Qu() <[>,  €eRY. (5)

A second isometry S removes the term ib(3 + 1)y? D, from the operator L introducing a complex
potential. This leads to the operator (5 + 1)_2 Ap 5 defined by

Ajp=B- i@yﬁ” — (B+1)°Qa(©)y* (6)

where ¢ = &= b =b(f+1) = 2a-£(B +1).

2—a?

Lemma 3.2 With the notation above let us consider the isometry

1

SiIZ L2 (Su)(y) =e T u(y) = e g y).

If D(a) = H} N LZ, 4, then one has S(D(a)) = D(a) and

a(u,v) = az(S~'u, S~ 1), u, v € D(a).

. b o N
a;(u,v) = . DyuDyvy"dy — i A Dy (wv) y**P dy + (B + 1)2@1(6)/]R wvy“2P dy.
+ n .

The above lemmas say that the operator y*Lo,.e — y®|¢|* and the associated form a are equiv-
alent, by mean of the isometry 7' o S, to (8 + 1)724; 5 and (8 + 1)~2a; and motivates the next
section.

Remark 3.3 Let us explain briefly the restrictions on the parameters ¢, a, 5 which appear in this
section. The operator B = Dy, + €D, is considered here only for ¢ > —1, so that the measure y°dy
is finite in a neighborhood of 0, to impose Neumann boundary conditions. The case ¢ < —1 can
be also considered under Dirichlet boundary conditions, see [14]. Note also that the set D defined
in (4) is contained in the domain of the form associated with B, if and only if ¢ > —1. All other
restrictions on the parameters come from this choice. For example, the condition ¢+ 1—« > 0 in
Lemma 3.1 is equivalent to ¢ + 1 > 0.

3.1 The auxiliary operator A, 3 = B — i@yﬁ_l — (B+1)2Qu(&)y*”.

As explained in the above remark, we always assume that

la] <1, ¢+1>0, F+1>0.



Setting b =2a-£(B+ 1), Qa(§) = |€|*> — |a - £|2, we consider the form a; defined on
D(ay) =HYNL2,,5C L2

c

by
~ b b ,
ap(u,v) = <Dyu: DyU>L§ - 15 <u7DyU>L§+/j - 15 { yU,U>Lz+ﬁ + (B+1)"Qa(§) (u, U>Lg+2ﬂ
b
= | DyuDwydy—is [ Dy, (uv)y’ dy+ (8+1)°Qa() / uvy“ T dy (7)

and its associated operator A, 5 in L2. Since for smooth functions with compact support away
from the origin

e+ h) ./ U@yc+671 dy = / U(Dy (yCJrﬁﬁ) - yHBDyﬂ)) dy = _/ Dy(U@)yc+B dy,
0 0 o

the operator A g is defined on smooth functions by

Ay =B -2yt (120,007, A0= B (34 1Qu(e”.

We collect in the following proposition the main properties satisfied by ay.
Proposition 3.4 The form a, is accretive and closed in L?. Moreover
(i) the adjoint form @ : (u,v) v+ ay(v,u) satisfies & = d_p;
(ii) its real part is the positive form

ap(u,v) + a5 (u,v)

Reap(u,v) := 5

= <Dyu, Dyv>LE + (ﬂ + 1)2Qa(f) <’LL, U>L2 ]

c+28

(iii) for any uw € H: N L§+2ﬂ

b - a
1 rReap(u,u) = o

(B+1)Qa(§)2 V1= laf?

PROOF. Properties (i) and (ii) are immediate consequences of the definition. Since Re ap(u,u) =
||Dyu||%g +(B+1)2Qq (g)||u||%z+25 >0, ap is accretive and, furthermore, the norm induced by the

[Im ap (u, u)| < Reap(u, u).

form a, coincides with the one of H! N LEH,@ and then ay is closed.
To prove (iii), we use Young’s inequality and the elementary identity D, (|u|?) = 2Re (uD,u)
for w € H}. Then

b

[Im ap(u, uw)| = ‘2/ D, (|u|2) yCHa dy‘ = ‘b/ Re (uDyu) yc+5 dy‘
0 0

L >: d
) (B 1)Qa(9)?

IN

1 (1D ullzz

(IDyullzz (8 + 1R ullzz,,, )

L 2’ 2 2

< STt (Pl + GOk,

= LIRe ap(u,u) = |a - §|1 Re ap(u,u) < LRG iy (u, ).
2(8+1)Qa(8)2 Qa(6)? N

By standard theory on sesquilinear forms we have the following results.



|a]

Proposition 3.5 The operator Ay s generates an analytic semigroup of angle 5 — arctan

in L? which satisfies

_‘a‘2

le*2 fllza < Ilflle2s  VzE€X,_

Moreover

(i) The semigroup (etAb»ﬁ)t>0 is L™ -contractive and it is dominated by ‘B, that is
etAvs f| < eB|fl, t>0, felL?

i) (etAe.s is a semigroup of integral operators and its heat kernel py g, taken with respect to
>0 group gral op Db, D
the measure p°dp, satisfies for some constant C independent of b, B

c 2
[Br,s(t.y, p)| < Ct2p¢ (t’i A 1) exp <|yﬁtp|> ,  forae y,p>0.
2

(iii) Ap g =A_pp. and for any s > 0 the operator satisfies the scaling property

b 2
LioAygol, =5 (B - i%yﬁ‘l - %Qa(é)yw)  La(y) = u(sy).

PROOF. The generation properties follows using Proposition 3.4 and [20, Teorems 1.52, 1.53].
To prove (i) we observe, preliminarily, that the operator B is associated with the form b(u,v) =
(Dyu, Dyv) 2z and its generated semigroup e!P is sub-Markovian since b satisfies the hypotheses
of [20, Corollary 2.17]. The domination property for e/4¢.# then follows from [20, Theorem 2.21].
In particular e’ inherits the L>-contractivity of e*Z. (ii) is a consequence of [1, Proposition
1.9] since ef4v.# is dominated by the positive integral operator ¢!® whose kernel satisfies the stated
estimate, see [14, Proposition 2.8] where, however, the kernel is written with respect to the Lebesgue
measure. (iii) follows from (i) of Proposition 3.4 and by elementary computations. O

As in [18, Section 5], we can extend the above heat kernel estimates to complex times.

lal

. < T _ p ‘
Theorem 3.6 For every 0 < v < § — arctan Tl the heat kernel py g, taken with respect to

the measure p°dp, satisfies for some constant C,, independent of b, 3

¢ 2
. 1o f P y—p
|pb7ﬁ(27y,p)‘§0y|2| 2p ¢ 1 A1 €xp _‘ | )
|Z‘2 I€|Z|

for a.e. y,p>0,Vz e X,.

3.2 Generation properties and domain characterization
Generation properties and kernel estimates for the original operator
Y Laag — y°€]* = y*(B +1i2a- €D, — [¢]*)

can be deduced by the analogous properties of the auxiliary operator A s of Section 3.1. Indeed
from Lemmas 3.1, 3.2 we have

a(u,v) = (B+1)?az (ST u, ST 1), u,v € D(a).



This implies that

Y Loog ~ 4 € = (T 0 8)|(6+1) A5 (T 0 5) 7 ®)
where 8 = 3%, b =2a-£(B+1), & = ¥=2 and
g = Bty (517 Que

Note that, by construction and by Proposition 8.7 we have
B=D,,+<D,  y°B= T[(B + 1)*23] 1. (9)
Y

Theorem 3.7 Let ¢+ 1 — a > 0. Then the operator y*Log.e — y*|£|* generates a contractive

™ |a|

analytic semigroup of angle 5 — arctan e in L?__, Moreover
—|a

(i) The semigroup (etya(LZ‘Lf—‘f‘2)) is dominated by "B, that is

t>0
e BB f < P gl b0, fell,
(i1) (etya(Lz“'s_lglz)) 18 a semigroup of integral operators and its heat kernel p, taken with
t>0

respect to the measure p°™%dp, satisfies for some constant C,,

ctg o Lo
_1 _a 5 _ >
Pa(z,y,p)] < Culz[72 p2 ( P A 1) exp (—'yp|> 7

1
|Z| 2—«a

|al

Vi-lal?’

PROOF. The proof is simply a translation of the results for flg 3 of Proposition 3.5 and of Theorem
3.6 by using the identity (8). For example, (i) follows since, by construction, we have for any g,
|TSg| = T|g| and therefore using (i) of Proposition 3.5 and (8), (9) we get for t >0, f € L2_,

fora.e. y,p>0,Vz€X,, 0<v <5 —arctan

|6ty“(L2a-g*\§\2)f| - |TSet(ﬁ+1)_2A5ﬁ Sflelf‘ — T|et(ﬁ+1)_2A5,6571T*1f|
< Tet(ﬂ+1)’2B|S—1T—1f| — Tet([3+1)’QBT—1|f| — ety°‘B|f|.
]
Now we prove that the semigroup (W (L2a-e—61*) extrapolates to the spaces L?,.

Proposition 3.8 If 1 < p < oo and 0 < mTH <c+1-—a, then (ez(ya(LZ’a'E*'gF))) s an analytic

semigroup of angle § — arctan A p LE .

\/1—|al?

Proor. All pgoperties for p = 2, m = ¢ — « are contained in Theorem 3.7. The boundedness
of 2" (L2a¢=I€1)) in LP then follows from [14, Proposition 12.2]. The semigroup law is inherited



from the one of L?__, via a density argument and we have only to prove the strong continuity at

0. Let f,g € C°(Ry). Thenasz — 0,z € X

la )

V1-]a|?

™ _
5 —arctan

/Oo(ez(ym(L2ﬂr-E*\§\2))f) gy"dy = /Oo(ez(y”(lz%-sf\ﬁ\{z))f) gym*c+aycfady
0 0

o0 o0
—>/ fgym’”ayc"‘dy:/ foy™dy,
0 0

by the strong continuity of e* (W (Lz2ae=[6%) ip L?_,. Let us observe now that, using Theorem

3.7 and [14, Proposition 12.2], the family {ez(ya(]‘“ﬁ_'fz)),z ex, Ja] } is uniformly

—arctan

2 Vi—la|2
bounded on B(LE,). By density, the previous limit holds for every f € L?,, g € L. The semigroup
is then weakly continuous, hence strongly continuous. ]

Following the same lines of [13, Theorem 7.2], we get the following R-boundedness result (see
Appendix A for the relevant definitions).

Corollary 3.9 Let1 < p < oo such that 0 < mTH < c+1—a. Then the following properties hold.
lal

Vi-la?

{€Zya(Lza-5*\E\2) L fe RN \ {0}, z € Zu} ,

For every 0 < v < m — arctan the families of operators

o ~1
(A= Lawe — €)'+ €€RV\{0}, Ae T,
are R-bounded in L?,.

PRrROOF. The proof follows almost identically to that of [13, Theorem 7.2] since from (ii) of Theorem

lal

3.7 one has (using the notation of [13, Theorem 7.2]) for every < v < § — arctan Tl and for

some positive constant C
VP p | < OS], f € Lh, €S

The R-boundedness on ¢ € RY \ {0} follows since the right hand side does not depend on ¢&. [

In our investigations of degenerate N-d problems, we need, in the case @ = 0, to add a potential
having non-negative real part to the operator of the latter proposition; this force to deal only with
the semigroup on the real axis.

Let V € Li . (RT,y°dy) be a potential having non-negative real part and let Lyq.¢ —V be the

loc
operator in L? associated with the form

ay (u,v) = /R (DyuDyT — 2ia - EDyut + Vuw) y© dy
+

defined on the domain

F:=H!NL* Ry, Vy‘dy).

10



Proposition 3.10 Let V € L} (R* y°dy) be a potential having non-negative real part. Then for

loc

any 1 < p < oo such that 0 < ™ < c 41, Log.¢ — |€]2 =V generates a Cy-semigroup on LP,. The
generated semigroup consists of integral operators and the following estimate holds

[et(Baee P2V | < etlanenlel)| ] < 2] feLy, tz0.
Moreover the families of operators
{et(Lza-HﬁI?*V) tt>0, E€RVN\{0}, |a| <1, V €L}, (RT,y°), ReV > 0},
{)\ (A= Loae + €2 +V) ' A>0, E€RV\ {0}, |a| <1, V € LL, (R*,4°), ReV > 0} (10)
are R-bounded in LY . In particular
{|§|2 (€ = Loge +V) 't €€ RY\{0}, [a| <1, V € L, (RY,5%), ReV > o}
1s R-bounded in LP,.

PRrROOF. The generation results can be proved as in Proposition 3.5. If a is the form associated
with Log.e — [£]?, then Log.e — [£]* — V is associated to ay := a(u,v) + (Vu,v)r2 and, by the
standard theory on sesquilinear forms, Lag.¢ —V generates a Cy-semigroup on L?. The domination
properties follow from [20, Theorem 2.21] again. The extrapolation on L2, follows as in Proposition
3.8. The R-boundedness of the semigroup follows by domination from the R-boundedness of
et(Laae—1%) using Corollary 3.9 with « = 0. The R-boundedness of the resolvent family follows
from Proposition 7.3 by writing the resolvent as the Laplace transform of the semigroup. The last
claim follows by simply specializing (10) taking A = |¢|2. ]

We now prove that the domain of y*Lose + |£]2y® is Wif’p(a, m)N LY ., under slightly more

restrictive hypotheses than those of Proposition 3.8. Indeed, in what follows, we assume, besides
c+1— a > 0 also the condition ¢+ 1 > 0.

Lemma 3.11 Assume that c+1>0 andc+1—a > 0. If A € C* and £ € RV \ {0}, then

_ A\t
(A= y® Laue + ¢2°) " f = <€I2 e+ y) (j) Ve (0, 00)).

ProoOF. Under the assumptions y®Lage — |€2y® and Loge — Ay~ generate a semigroup on L2,
and L2, respectively, see Theorem 3.7 and Proposition 3.10. Since Re A > 0, both resolvents are

c?

well defined but act in different spaces.
Let a, ay,-o be the forms associated to y®Loge — |€|?y® in L2_, and Loge — Ay~ in L2

Ry
a)\y_a ('U,, U) = / (DyuDyﬁ + 2ia - ny’LL@ + Ay*au@) yc dy
Ry
They are defined on the common domain

F={uell ,NL:DyuclLl}

11



-1
Given f € C2°((0,00)) let u := (|§\2 — Log.e + y%) (y%) In order to prove that the equality

u=(A—y*Loge + |§|2y°“)_1 f holds, we have to show that v € F and that for every v € F, u
satisfies the weak equality

/ foyt % dy = / ATy dy + g, j¢|2ye (U, V) (11)
0 0

= /0 (A\y~“uv + DyuD,v + 2ia - EDyuv + |€|*un)y* dy. (12)

[e3%

By construction u is in the domain of Log.e — Ay~ which is contained in F and satisfies

%) f . oo .
/ —vy“dy = € Pupy® dy + ag,xy—o (u,v)
o Y 0
= / (|€]*uT + DyuD, s + 2ia - € Dyut + Ay~ “uv)y* dy,
0
which is the same as (11). O

Remark 3.12 In the next result we relate the resolvent of y*Lo,.c —y® with that of Log.c — y%,
in the sense specified below. We shall assume both the conditions 0 < % <c+1—aand

—a < mT'H <c+1l—a (thatisa™ < ’”T'H < ¢+ 1—q). The first guarantees that y*Logs.c — y* is

P

a generator in L? and the second that La,.c — y% is a generator in Lj, .

Corollary 3.13 Assume that o~ < mTH <c+l—a. IfXeC*t and & € RN\ {0}, then

(i) for every f € LP,
—1
o7 «Q -1 )\ f
A=y Loae + EPPy") f= (|€2 — Lagg + ya) <ya) € Lyyiop N LT

i) the operator y® (A — y“Lag.c + [€]%y® ' is bounded in L? ;
¢ m

—1
(iii) the operator -5 <|§|2 — Log.e + y%) is bounded in LF

y m+ap*

PROOF. Equality (i) is proved in Lemma 3.11 for any f € CS°((0,00)). Since (A — y*Log.e + |§|2y“)_1

-1
is bounded form L2, into itself and (|€|2 — Log.e + y%) (ﬁ) is bounded from L%, to L}, , .., by

density, (i) holds for every f € LP,. Parts (ii), (iii) are consequence of (i). U
To characterize the domain of y*(Lag.e — |£]?) we need the following lemmas.

Lemma 3.14 Letm € R, p > 1. Then

WP (a,m)N LY

m—+ap = W_/%fp(oam + ap) N Lg@

PRrROOF. We observe preliminarily that from [15, Lemma 3.5] (which holds for m € R and not only
for m < 2), there exist C' > 0,0 > 0 such that for every u € W2*(R,.) one has

loc

N . 1
= DyullLe, (1,00 < C (E|y Dyyullzz, 1,000 + Zllul Li’n((l,oo))) :

12



a—1

This and the elementary inequality y2 < y®~!, y < 1 grant that the term y2 Dyu can be discarded
from the definition of the Sobolev space showing that

2, 2, _
Wi (a,m) = {u EWLP(RL) : u, y*Dyyu, y* 'Dyu € Lfn}.
In view of the latter equality, the required identity becomes trivial. ]

Lemma 3.15 Let 1 < p < 00, a~ < mTH < c+1—a. Then there exists C' > 0 such that for

every u € W (a,m) N LYy ops

ly* Dyullzs, < Clly® Bull2, lly*ull?, -
It follows that for every e >0, £ € RV,
ity Dy, < =l Bulug, + < ey ul .
PROOF. We apply [18, Lemma 5.15] with m + ap in place of m thus obtaining

1Dyl

1 1
2 2 2,p
o SCIBull, ullf, . weWEP0,m+ap)
The first inequality then follows since by Lemma 3.14
2, 2,
Wi (a,m)N Ly o, = WP (0,m +ap) N LE,.

The second one follows by Young inequality. ]

Lemma 3.16 Let 1 < p < 00, a~ < mT'H < c+1—a. Then there exists C' > 0, independent of
€ €RY, |a| <1, such that for every u € Wﬁ/’p(a,m) ML, 40 € € RV A\ {0}, ReX >0,

ey uller, < CllA =y Laag + €1y )ull s, -

PROOF. Let u € W (e, m) N L}, op and set f = (A — y“Loge + |£]*y*)u. Then, by Corollary
3.13 (i),

IEPyullzs, = IIEPY (A = 4 Lo + Py " g, = Hwy (55 - Lame i) L
L7,
By Proposition 3.10
2 0 (A NS 2 (A 2\ S
€%y { — — Laa-c +[¢] - = ||€1° { = — La2a¢ + ¢ -
Y U Y Yol e
m m-4ap
/
SCHQ =C| fllLe,
y Lfn#»ap
for some C' independent of . ]

13



Theorem 3.17 Let 1 < p < 00, a~ < "”T'H <c+1l—aand &€ RN\ {0}. Then the generator

of (7" (L2a-c=IE1")) s the operator Y (Lag.c — |€]?) with domain WP (e, m) N Lyt op- The set D
defined in (4) is a core.

PrROOF. We fix 0 # ¢ and first prove that the equation u — y*Log.eu + |¢|*y*u = f, f € LP,, is
uniquely solvable in W (o, m) N Ly yop Letu e WP (a,m) N L}, op- By Theorem 2.1 (i) in
the first inequality and then by Lemma 3.15 and Lemma 3.16, there exists a positive constant C

such that for every ¢ > 0,0 <t <1
el w2 (qmy + 11y ullLp, < Cllu —y*Bull + [ly*ul s,

< C(llu =y Latacu + €7y ull g, + |2ta- &lly* Dyull s, + 11+ [€]*)y*ull z,)

m

1
<0 (= v Lawwcu+ Iy ulg, + el Bullg + 210+ 6Pl

IN

o . 1 B .
c(nuy Lavact+ 1€y ull g, + Nl am + (1 + €72 ERY unm)

1 _
< 0 (= Lot + 16yl + bl + 20+ €D~ 1 Lo+ Iyl )

Note that for the last inequality we used the fact that the estimate in Lemma 3.16 is uniform in
and a. By choosing € = % we deduce for some C depending on ¢ but independent of ¢
lllvpzr (my + 9% ullie, < Cllu = y* Lota.gu + [€y ul| s, -
N ( ’ )

Since, for t = 0, the operator I —y®B + |€|?y® is invertible in W (o, m) N Ly tap
2.1(ii), the same holds for I — y®Lag.¢ + |£[*y®, by the method of continuity.
Let (Ly,p, Dim,p) be the generator of (et L2ac=I€"¥™)) in [P and consider the set

by Theorem

D = {u € C*([0,00)) : u constant in a neighborhood of 0}

which is dense in Wi}p(a, m) ﬂLﬁHap, by Theorem 8.4. By using the definition of y*Lag.¢ — |¢]?y®
through the form a as in the beginning of Section 3, it is easy to see that D C D._, 2 and that
Y*Log.e —|€|*y* = Le—qa,2 on D. Since D is dense in Wﬁ/’Q (o, e—a)NL2, ,, y*Lag.c — [£[*y* is closed
on V[/’/%f’z(cv7 c—a)NL% , and L., is closed on D._q 2, it follows that Wﬁf(oz, c—a)NLZ ,C
D._4.2 and then Wff’g(a, c—a)n LE_M = Dec—02, Y Loae — |£]?y* = Lc—q 2, since both operators
are invertible on their own domains and one is an extension of the other. This completes the proof
in the special case p=2,m =c— a.

Take now u € D and let f = Au — (y*Log.¢e — |€|?y*)u € L2, N LZ_, for large A\. Let v € D,
solve Ao — Ly, ,v = f. Since the semigroups are consistent, v coincides with the LZ__ solution
which, by the previous step, is u. This gives D C D, ,, and that y*Lag.e — |£|?y® = Ly, on D
and, as before, one concludes the proof for p < co.

We remark that Proposition 3.8 assures that y®(Los.e — |£|?) generates a semigroup on LP,

under the milder assumption 0 < mTJrl < ¢+ 1 — «. However, the hypothesis (m+1)/p+a >0
must be added when o < 0 to have D C L, ,,,.

As consequence we deduce the domain of the operator y“Loq.¢ in the special case a = 0.

14



Corollary 3.18 Let 1 < p < o0, 0 < '"’TH <c+1 and b e R. Then the domain of the operator
Ly is Wf/’p(O,m). The set D defined in (4) is a core.

PROOF. By the arbitrariness of £, a we can write b = 2a - £. The required claim then follows from
Theorem 3.17 since the domains of Lyg.¢ coincides with the one of Lo,.¢ — |€|? which for a = 0 is
is WP (0,m) N LB, = WP (0,m). O

Using Corollary 3.13 (i) with m replaced by m—ap, we can characterize the domain of La,.¢ — y%
In what follows we write D,, ,(A) to denote the domain of an operator A on L?,.

Corollary 3.19 Letl <p< oo, at < mT'H <c+1, £ € RV\{0} and A € CT. Then the generator
of (eZ(Lz‘“&_y%)) is the operator Log.c — = with domain WP (0,m) N L

7o m—ap- 1N particular the set
D defined in (4) is a core.

PrROOF. We use (i) of Corollary 3.13 and Theorem 3.17 with m replaced by m := m — ap (note
that the condition at < mTH <c+land a” < mTH < ¢+ 1 — «a are equivalent) to obtain

—1
Dy (Lane = 25 ) = (168 = Bawc+ 25 ) (20 = (0= ¥ B+ I69°) ™ (B )
= Dinapp (y*Laae — [§[y*) = WP (a,m — ap) N LE,.
Lemma 3.14 then implies
Doy (Lga.6 - ;) =Wy 0,m)NLY_,,.
O

Remark 3.20 Let 1 < p < oo such that o~ < mT'H <c+l—a, &€ RY\ {0} and X\ € C*.
Theorem 3.17, Corollary 3.19 and Lemma 3.14 show that the operators

A

yaL2a~§ - |€|2yo¢ mn L?‘m LQa{ - yia m L%Jrap

endowed with the common domain
Wﬁ,’p(a, m)N Ly, 4 op = ﬁ,’p(O, m+ ap) N L2,
generate a semigroup on LY and Lfn+ap, respectively. Their resolvents satisfy
1 M/ f
Oy Lan + i) 7 = (168 - Tawe+ ) (L), e
proving the equivalence between the two elliptic equations
feY 2, o A 2 f
A — y*Log.eu+ [E*y*u = f, EU*LQQ.§U+|§| u:y—a.
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4 Multipliers

In this section we investigate the boundedness of some multipliers related to the degenerate operator

N
c—y“(AmmZaiDiwDyw;Dy), aeRY, o<1, a<?2 (13)

i=1

Assuming that
y* (Azu+2a-V,Dyu+ Byu) = f

and taking the Fourier transform (denoted by F or ) with respect to = (with covariable &) we
obtain

—y* €17 A€, y) +yi2a- Dy, y) + ¥ Bya(E,y) = (& y).
We consider the operator Log.c = B + 2ia - £D,, of Section 3. The latter computation shows that
formally

— _ a a -1
A=L) P =F P (A= y*Loge + ¥} F.

In order to prove that £ generates an analytic semigroup and to prove regularity for the associated
parabolic problem, we investigate the boundedness of the operator-valued multiplier

£€RY = Ra(€) = (A~ ¢ Loae +3°l€[*)

To characterize the domain of £ we also consider the multipliers |{|*y* Ry, {y*D, Ry which are
associated with the operators y*A, (A — £)71, y*Dy, (A — £)71, respectively. In the next results
we prove that the above multipliers satisfy the hypotheses of Theorem 7.5.

We also need the operator-valued multiplier Ry (¢) defined by
- ANt
g € RN — R)\(f) = (|£2 - L2a-§ + ya> € B (Lz;z+o¢p) .

Note that the role of £ and A is interchanged between Ry (&) and R, (€): A is a spectral parameter
in the first and plays a role of a complex potential in the second, where instead is £ the spectral
parameter. Nevertheless, we keep the same notation.

By Corollary 3.13 we have

YERA(E) f = 1 Ra(6) (;) D RA(E)f = 4Dy RA(€) (;) L ferm. ()

Proposition 4.1 Let 1 < p < 00, a < 2 be such that a~ < mTH < c+1—a. Then the families
{ARA(), €y RA(), Ey™DyRA(€) € B(LE,) : A€ Cy, € € RV \ {0}}
are R-bounded.

PrOOF. The R-boundedness of ARy () follows by Corollary 3.9.
The R-boundedness of |[£[2y* R (€) in B(LE,) follows by using formula (14). We write

€y RA(©) = v* (1€ R (©)) (y)
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and use the R-boundedness of |£|2R)(€) in B(L},+ o) proved in Proposition 3.10 with V (y) = Ay~“.
Let us finally prove the R-boundedness of {y® Dy, Ry (&) in B(L?,). By formula (14) again we
have

&y Dy RA(E) =5 (6D, R (©)) (y) :
Let us write
. AN\
Ry(§) = <|§|2 — Log.e + ya>
1 A\ 7!
~ (6 - Zane) " (1P — Lane) (167 - Lauc + 5
(1= )
= (11> = Loag) (ya> ARA(S))

(note that (\§|2 — Lo, 5) <\§|2 Log.e + " ) is well defined since D (Lgag %) C D (Lag.¢),
by Corollary 3.19). The previous relations and (14) give

9) ()

©) (.

— &y°Dy (| — Loae) ( )(1 AR ( )(ya)

A
— £y°D, (JE[? — Lowe) " (y) (I - ARA(©)).

= (|¢]* = Laas)

Ey*DyRA(€) = €y Dy (I€]* — Laae) ( ~ AR

The R-boundedness of the family Ey*DyRy(§) in B(L?,) then follows by composing the R-
boundedness of £D,, (|¢]* — Lga.g) in B(L},, ,,) proved in [18, Corollary 6.4] and the R-boundedness
of the family ARy (§) in B(L2,) proved in the first step. ]

To apply the Mikhlin multiplier theorem, we need a formula for the derivatives of the above
functions with respect to €. In the following lemma S,, denotes the set of permutations of n
elements.

Lemma 4.2 Let 1 <p < oo, a <2 be such that o™ < mT'H < c+1—a, and let us consider, for
any fized A € C,, the map

£ €RY = Ra(€) = (A =y Laag +y°1€*) " € B(LE,).

Then Ry, y*Rx, y*DyRy € C* (RN \{0}; B(LL,)) and for any family of different indezes

17



J1sd2s -y dn €{1,..., N} one has

n

De;, -+ De, Ra(§) = Z Rx(§) H (QiajamyaDyRA(f) - 2§ja(k)yaR>\(f))

oS, k=1

n

Dg, - Dg;, y*Ra(§) = Z y“Rx(€) H (Qiajﬂ(k)yaDyR,\(f) - ijﬂmyaR,\(f)) (15)
ocES,, k=1

De,, -+ De,, y*DyRa(€) = Y- 4" DyBA(E) T] (2its0, 4" Dy RA(€) = 2650, 4" BA(S) ).
0cES, k=1

PROOF. Let us fix A € C;.. Let us prove the first equality in (15) for n = 1 that is, for j =1,...,n

;;(RA(&)) = BA(6)(2ia,9° Dy BA(E) = 26,5  Ra(9)), € € R\ {0}, (16)

Indeed let us write for |h| <1

«@ « -1 « « -1
Ra(€ + hej) — Ra(&) = (A +y¥[€+ he;|? = y*Log.ehey))  — (A+y* €17 — y*Laae)

= Ry (&) { (A +9%1€1? =y Laoge) (A + y*|€ + he;[? — yaLQQ-(E%*he_j))il - I}

a e a -1
= Rk(g) Yy (L2a-(§+he]-) - L2a‘£ + |€‘2 - |§ + h€j|2) (A +y |£ + hej|2 ) L2a-(§+heJ))

= RA(&) y* (2ia;hDy — 26;h — h?) Ry(€ + he;)

= 2ia;h Rx(&) y* Dy R (€ + hej) — (2&;h + h?) Ry (€) y* Ra(€ + he;). (17)

Using the R-boundedness of AR\ () [£]2y*RA(€), Ey*DyR(€) of Proposition 4.1 (which implies
uniform boundedness), the last equation implies in particular that

Rx(§+ he;j) — RA(E), Y* R (€ + hej) = y*RA(£),
Yy Dy R\ (€ + hej) = y*DyR(§) in the norm of B(LP)) ash — 0. (18)
For example from (17) one has for some positive constant C'

1Bl = (5(22))
Al

[RA(E + hej) = Ra(E)llgpry < C

{63

ly* B =512,

) 2
h h
+ (|§| + ) |§ h€j|2

YDy R (€ ;
X(|h| B (Ollrse,

—0 h — 0.
€ + he; ) *

The other limits in (18) follow similarly after applying to both sides of (17) y® and y®D,, respec-
tively.
To end the proof we apply equality (17) again to get

R\(§+ hej) — Ra()
h

= Rx(§)y” (2ia; Dy — 2§;) RA(§) — h RA(§) y* RA(€ + he;) (19)
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which tends to Ry (§)y® (2ia; Dy — 2€;) Rx(§) in the norm of B (L?,) as h — 0 since , by (18), the
last term tends to 0. This proves (16).
The proof of the other equalities in (15) for n = 1 that is, for j =1,...,n,

0

9, (W RA(§)) = y* Ra(§) (2ia;y“ Dy RA(§) — 2&4 Ra(€)) £ e R™\ {0},

5E W DRAE) = 1" D, Bs(6) (Giayy” DA ~ 260" Bal6) . €ER"\{0)

follow similarly by applying, respectively, the operators yO‘I d, y*D, to both sides of (19) and
taking the limit for h — 0. For example for the derivative ag (y*DyRA(&)) we write, as in (17),
YDy Ry (£ + hej) — y*DyRy(§)
h

=y* Dy Rx\(§)y® (2ia; D, — 2§;) Rx(€)

—hy* Dy Rx(§) y* RA(§ + he;)

which by (18) again tends to y*Dy R (§)y® (2ia; Dy — 2€;) R\(§) in the norm of B (L?,) as h — 0.
Finally, (15) for n > 1 follows by induction. For example if n = 2 and [ # j one has

0?2 9 o )
seaE ((©) = g [13(©) (2iay Dy (©) — 2617 1 (©) )]
= 2 (R(©) (210" D, Ba(6) ~ 2650 R (©)

NG (2;g (1" Dy (€) — 26, (yaRx(f))>
= RBA(©) (2iay” D, Ba(€) = 26" BA(S) ) (2iajy” Dy BA(E) — 26,37 BAS))

+ R(€) (2ia;y” Dy Ra(€) — 269" Ba(8) ) (2iany” D, Ba(€) — 265 Ra(9))-
O]

Now we can finally prove that the multiplier ARy (€) associated with the operators A(A — £)~*
satisfies the hypothesis of Theorem 7.5. This is crucial for proving that £ generates an analytic
semigroup in LP .

Theorem 4.3 Let 1 <p < oo, a < 2 be such that a~ < mT'H < c+1—a«. Then the family

{7 DIORA©) : € RV \ {0}, Be (0.1}, 0 €Ty}
is R-bounded in LP,.

PROOF. Let 8 = (B1,...,8n) € {0,1}", |B| = n. Let us suppose, without any loss of generality,
Bi =1, for i <mn and B; =0, for i > n. Then using (15) we get
EPDIARN(E) = &1+ 6n (Dg, -+ De,) ARA(€)

n

= ST AR H (205608 Dy BA(6) — 26257 RA(€) )

ceS, j=1

19



The R-boundedness of ffBDg (ARX)(§) then follows by composition and domination from the
R-boundedness of AR (£), €2y Rx(€), Ey“Ra(€) using Proposition 4.1 and Corollary 7.2. ]

The next two theorems show that the multipliers |£|?y® Ry, £y® Dy R, associated respectively
with the operators y*A, (A — L)1, y*D,, (A — L)1, satisfy the hypotheses of Theorem 7.5. This
is essential for characterizing the domain of L.

Theorem 4.4 Let 1 <p < oo, a< 2 be such that a~ < mT“ < c+1—«. Then the family

(€ D2y Ra(©) : € € RN\ {0}, B e {0, 1}V, A e Ty}
1s R-bounded in LP,.

PROOF. Let us prove preliminarily that the family
{ €D Ra(©)) : € e RV \ {0}, Be {0,V A e Ty}

is R-bounded in LP,. Let 8 = (B1,...,8n) € {0,1}¥, |8] = n. Let us suppose, without any loss of
generality, 8; = 1, for i <n and §; = 0, for i > n. Then using (15) one has

€127 DYy R (€) = |€]2€1 -+ & (De, -+~ De,) y“Ra(€)

= " 1Py Ra(©) TT (20001 €o05y5° DyRAE) = 262,5 B (6))
j=1

gES,

and the required R-boundedness of |¢|2¢8 Df y* Ry () then follows as at the end of Theorem 4.3.

To prove the required claim let us observe that for any 8 € {0,1}", |3| = n there exist
B9 € {0,1} satisfying

L=Bw k#j  pl=0, [Fl=n-1
and such that

D€y RA€) = S 26Dy Ra(€) + €2 DLy” Ra(€).

J:Bi=1
Then
EDL(EPy"Ra(€)) = Y 26367 Dy Ry(€) + €2€° DIy Ra(€).
JiBi=1
and the proof now follows by domination using the previous step. ]

Theorem 4.5 Let 1 <p < oo, a < 2 be such that a~ < mTH < c+1—«a. Then the family

{0 ("D, Rr(€) - € € RV \ {0}, B e {01}V, A€ Cy

is R-bounded in LP, .
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PROOF. As in the proof of the previous theorem we prove preliminarily that the family
{€€D2y "D, Ra(©) : € e RV \ {0}, Be 0,1}V, neCy )

is R-bounded in L?,. Indeed let 8 = (B1,...,8n) € {0,1}¥, |8| = n. Let us suppose, without any
loss of generality, 8; = 1, for i < n and §; = 0, for ¢ > n. Then using (15) one has

£ DY DyRA(§) = £&1 -+ & (Dg, -+ De,) y* Dy Ra(8)
=Y ty*DyRAO ] <2iaa(j)§a(j)yaDyR>\(§) - 2§§(j)yaRA(§))
cEeS, j=1

and the required R-boundedness of ¢ &7 D? y*Dy Ry (&) then follows as at the end of Theorem 4.3.

To prove the required claim let us fix 3 € {0,1}", || = n and let us observe that for any
j=1,...N one has

D (&5 Dy Ry)(€) = &DF (y° Dy RA(€)) + 8, D (y* Dy RA(€)) -
where 7 € {0,1}" satisfies
L=PB k#j  pl=0, |F]=n-1

The proof then follows by the previous step. ]

5 The operator £ =y*“(A; +2a-V,D,+ By), |a|<1l,a<?2

In this section we prove generation results, maximal regularity and domain characterization for
the operator £ defined in (13) in L?,. More general operators will be treated in the next section,
based on this model case. We start with the L? theory.

As explained at the beginning of Section 4, we have formally for A € C

AMA=L) = F P AR F, Ral€) = (A — v Laae +y1€?)
and consequently
YA A= L) = —F 1 (IEPY RAE)) F, iVeDy(A— L)t = F1 (&y"DyRA(€)) F.

All properties of £ follow from the boundedness of the above multipliers, through Theorem 7.5.

5.1 The operator £ in L?

We assume that ¢+ 1 — a > 0 so that the measure y“~“ dx dy is locally finite near y = 0 and use
the Sobolev space H}, . :={u e L, :y*Vu e L2_,} equipped with the inner product

<’LL, U>H = <U’U>Lgia + <y%vua y%Vv>L2

1
a,c

We consider the form in L2_,

a(u,v) := /N (Vu, Vo) ydr dy + 2/N Dyua-V,vy°dedy, D(a)= H;c
RYH R+
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and its adjoint a*(u,v) = a(v,u)

a*(u,v) = a(v,u) == AN+1<VU, Vo) ydx dy + 2/RN+1 a-VyuD,vydedy.
+ +

Proposition 5.1 The forms a, a* are continuous, accretive and sectorial.
PrOOF. We consider only the form a, the adjoint form can be handled similarly. If u € H, Oléyc
Rea(u,u) > | Vaullzz + [ Dyulz: - 2lal|Vaullzl| Dyull 2 = (1 = [a) ([ VoullZ2 + [|Dyull72).

By the ellipticity assumption |a| < 1, the accretivity follows. Moreover

[Ima(u, u)| < 2|a|[[Voull 2 [ Dyull 2 < |al([Voullis + [ DyullZs) < (1j|m|)R€ au, ).
This proves the sectoriality and then the continuity of the form. ]
We define the operators £ and L* associated respectively to the forms a and a* by
D(L)={u€ H) :3f € L?_, such that a(u,v) = /]RN
Lu=—Ff; + (20)

» foy© dz for every v € H,, .},

D(L*)={ue H:_ :3f € L?__ such that a*(u,v) = / foy° dz for every v € H} },
) Rf+1 ’
Liu=—f. (21)

If u, v are smooth function with compact support in the closure of ]Rf +1 (so that they do not need
to vanish on the boundary), it is easy to see integrating by parts that

—a(u,v) = (y*(Agu+2a - VyDyu + Byu),7) 2

c—a

if lin}) y°Dyu(z,y) = 0. This means that £ is the operator y*(A; +2a- VD, + By) with Neumann
y—r
boundary conditions at y = 0. On the other hand

—a*(u,v) = <ya (Awu +2a-VyDyu+2(c—a) @ Zlu + Byu) ,v>
L2

c—a

if lin}) y° (Dyu(z,y) + 2a - Vyu(z,y)) = 0 and therefore £* is the operator
Yy—

y* (Am +2a-VyDy + QCa Vo + By)
Y

with the above oblique condition at y = 0.

Proposition 5.2 £ and £* generate contractive analytic semigroups e*~, e?*”, z € ¥

lal »
1—Tal

™ _
5 —arctan

in L2_,,. Moreover the semigroups (e'“)i>o, (e'“")i>0 are positive and L¥_  -contractive for 1 <

p < 00.
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PROOF. We argue only for £. The generation result immediately follows from Proposition 5.1 and
20, Theorem 1.52]. The positivity follows by [20, Theorem 2.6] after observing that, if u € H} .,
u real, then v € H], , and

a(ut,u™) = /]RNH (Vut, Vu™) ydr dy + 2 /RN+1 Dyuta-Vyu~ ydrdy = 0.
+ +

Finally, the L>-contractivity follows by [20, Corollary 2.17] after observing that if 0 < u € H}

a,cr

then 1 Au, (u—1)* € H} . and, since V(1 Au) = x{u<13Vu and V(u— 1) = x{,513 Vu, one has
a(lAu, (u—1)")=0.

O

The Stein interpolation theorem then shows that the above semigroups are analytic in LY_,
for 1 < p < o0, see [20, Proposition 3.12] and a result by Lamberton yields maximal regularity in
the same range, see [12, Theorem 5.6]. Since our results are more general, we do not state these
consequences here.

Our aim is to characterize the domain of £ in L2 . As in [18, Section 7.1] and [17, Section
6.1], we can prove the following result.

Theorem 5.3 Ifc+1 > |«a| then
D(L) = Wf/’Q(a, a,c— ).
In particular the set C°(RN) ® D, see (24), is a core for £ in L2_ (RY ).

PROOF. The proof follows as in [18, Proposition 7.3, Theorem 7.4] using the boundedness of the
multipliers |€|?y*Rq(€), y*DyRi(€) in L2(RN;L2_ (R})) = L?_,, proved in Proposition 4.1.

Note that the condition ¢+ 1 > |« is that of the quoted proposition with p =2 and m = ¢ — a.[]

5.2 The operator £ in L?,

In this section we prove domain characterization and maximal regularity for £ in L? . For clarity
reasons we often write £, , to emphasize the underlying space on which the operator acts.
We shall use extensively the set (finite sums below)

CEO(RN) D= {u(m,y) = Zuz(x)vz(y), u; € C::X’(RN), v; € D} ,

where D is defined in (4). We refer to Appendix 8 for further details and note that £ is well defined
on CX(RN)®@D C LE, when (m+1)/p > a™.
The next results can be proved as in [18, Lemma 7.5, Lemma 7.6, Theorem 7.7, Corollary 7.8].
m—+1
P

(>\ - Ec—(x,2)717 yaAr()\ - ﬁc—a,2)717 yaszy(A - Lc—a,2)7la yaBZ(/\ - ‘Cc—a,Z)il

Lemma 5.4 Let o™ < < c+1—a. Then for any A € CT the operators

initially defined on LP,NL2__, by Theorem 5.3, extend to bounded operators on LP, which we denote
respectively by R(N), y*AsR(N), y*VDyR(N), y* By R(X). Moreover the family {AR()) : A € C*}
is R-bounded on LP,.
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m+1

P
Cx(RN)®@D, generates a bounded analytic semigroup in LP, (Rf“) which has mazimal regularity
and it is consistent with the semigroup generated by L._q 2 in Lf_a(RjY“).

Proposition 5.5 Ifa™ < < c+1—aq, an extension L,, ,, of the operator L, initially defined on

Finally we characterize the domain of L, ,.

Theorem 5.6 If a~ < mTH <c+1—a, then
D(Lmp) = WP (o, a,m)
and in particular C°(RN) @ D is a core for Ly, .

Corollary 5.7 Under the hypotheses of Theorem 5.6 we have for every u € Wﬁfp(a, a,m)

19 Daayulln, + y* Dyyull e, + 1y* Dayull s, + ‘|ya71DyuHL’,’n < C|[Lullps, .

6 Consequences for more general operators

The isometry introduced in Section 8 allows to deduce generation and domain properties in L?,
for more general operators of the form

ajtag
2

L=y Ay +2y a-VaDy +y*? (Dyy + ;Dy) ,

with ajas € R, ag < 2, ag — ay < 2.

Theorem 6.1 Let as < 2, ag — a1 < 2 and

1
Oéf< <C+1—052.

Then L with domain Wf/’p (a1, a2, m) generates a bounded analytic semigroup in L, which has
maximal regqularity.

Proor. We use the isometry
g =
Tal;()<2 s L — LP m =

which, according to Proposition 8.7, transforms £ into

B a1 — oo +2 a1 — oo +2 2 -
T, LTuycy = YAy +y°2 <1 22 ) a-VaD, + <1 2 ) y“B,
2

where 5 ~
! ~ ¢ _
- By :Dyy"’;Dy’ ¢=

o= —"
Ot1—012+27

Observe the assumptions on the parameters translates into a < 2 and a~ < % < c¢+1—a. The
generation properties and maximal regularity for £ in L? are then immediate consequence of the
same properties for the operator studied before. Concerning the domain, we have

D(L) = Ter-cs (Wﬁ;” (o, a,m))

which, by Proposition 8.5, coincides with Wf/p (a1, i, m). O
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Results for more general operators and-boundary-conditions follow by linear change of variables,
as we explain below. We consider the operator in Rf +1

ajtag

L=y"Tr (QD2u)+2y = q-VyD,+y™ (’yDyy + ;Dy>

N N

a]4a C

= yal Z qUDa:za:J + 2y 12 : ZqZDILy + ya2 ('YDyy + Dy) N
i,j=1 i=1 Y
5] 3

Here @ is the N x N matrix (¢i;), ¢ = (q1,...,qn) and we assume that the quadratic form
Q(&,€) +n? + 2q - £ is positive definite. Through a linear change of variables in the z variables
the term Zf\’[j:l qij Dy, is transformed into yA, and all the results of Section 5 hold, replacing
¢ with 2 in the statements (the condition |a] < 1 of Section 5 is satisfied since the change of
variables preserves the ellipticity). The case of variable coefficients can also be handled by freezing
the coefficients and will be done in the future to deal with degenerate problems in bounded domains.

*kxk% All the text in blue has to be deleted******

*****************Eyliﬁx}{tr ()I? [)IEIJED??IDI) j?}a Xr]?**************************************************

A further change of variables allows to deal with the operator

ajtag

,C:yalTr (QDiu) + 2y 2 q'VwDy+y°‘27Dyy+ya2*1v-V

Here v = (b,c¢) € RV with ¢ # 0, and we impose an oblique derivative boundary condition
y*2~ 1y . Vu(x,0) = 0 in the integral form

y*?> ' Vu=y*2"! (b- Vyu+ cDyu) € LE,.
We define therefore
W2P(ay, o, m) = {u € W?P(ay,a0,m) : y*?> tv-Vu € LP}.

We transform £ into a similar operator with b = 0 and Neumann boundary condition by mean of
the following isometry of L?

b
Tu(z,y) =u (r - nyy) . (z,y) e RYTL (22)

Lemma 6.2 Let 1 < p < oo, v=(b,c) € RN+ ¢ £0. Then foru € VVlQOcl (Rf“)
(i)

ajtag

71! (y‘“ Tr (QDiu) +2y~ 2 q-VoDy+y*“2yDy, + y*2 1y V) Tu

apton

=y Tr (QD?,U) +2y" 2 G-ViDy+y™ (fyDyy + ZDy>

where

- 2
Q:Q—Eb®q+g—2b®b, Gg=q— b

~t
1 is elliptic.
Y

O

and the matrix ( _
q
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(i) T (Wﬁf’p(al,ag,m» = W2P (0, g, m).

PROOF. The proof follows by a straightforward computation. OJ

We can therefore deduce results also for the last operator whose proofs follow directly from +he
abevelemma Theorem 6.1.
t

Q|q
Theorem 6.3 Let c € R and ( an elliptic matriz
q |7

and let a1, an € R such that as < 2, ag — ay < 2 and

_ m—+1 c
Oll< <—+1—a2.
Y

Then the operator

L=y Tr (QD2u) + 2y~ = q- VoDy +7y*2 Dy + cy™> ' D, =51

-2
endowed with domain Wv (a1, ag,m) W2 A —when—e e

e=-40; generates a bounded analytic semigroup in LP, which has mammal reqularity.

We refer the reader to [19] for a further generalization of £ involving Dirichlet or oblique
derivative boundary conditions.

7 Appendix A: Vector-valued harmonic analysis

We review some results on vector-valued multiplier theorems referring the reader to [2], [21] or [12]
for all proofs.

Let S be a subset of B(X), the space of all bounded linear operators on a Banach space X. S
is R-bounded if there is a constant C' such that

1Y " eiSizillrix) < CID_ eiill Loaix)

for every finite sum as above, where (z;) C X,(S;) C S and ¢; : Q@ — {—1,1} are independent
and symmetric random variables on a probability space €. In particular S is a bounded subset of
B(X). The smallest constant C' for which the above definition holds is the R-bound of S, denoted
by R(S). It is well-known that this definition does not depend on 1 < p < oo (however, the
constant R(S) does) and that R-boundedness is equivalent to boundedness when X is an Hilbert
space. When X is an LP(X) space (with respect to any o-finite measure defined on a o-algebra ¥),
testing R-boundedness is equivalent to proving square functions estimates, see [12, Remark 2.9].

Proposition 7.1 Let S C B(LP(X)), 1 <p < co. Then S is R-bounded if and only if there is a
constant C' > 0 such that for every finite family (f;) € LP(X),(S;) € S

()

()

Lr(%) Lr(%)
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The best constant C for which the above square functions estimates hold satisfies K 1C < R(S) <
kC for a suitable k > 0 (depending only on p). Using the proposition above, R-boundedness
follows from domination by a positive R-bounded family.

Corollary 7.2 Let S,T C B(LP(Y)), 1 < p < oo and assume that T is an R bounded family of
positive operators and that for every S € S there exists T € T such that |Sf| < T|f| pointwise, for
every f € LP(X). Then S is R-bounded.

We also need the following result about the integral mean of a R-bounded family of operator
which we state in the version we use.

Proposition 7.3 [12, Corollary 2.14] Let X be a Banach space and let F C B(X) be an R-
bounded family of operator. For every strongly measurable N : ¥ — B(X) on a o-finite measure
space (X, p) with values in F and every h € L* (X, u) we define the operator T ¥ € B(X) by

Tnrr = /E h(w)N (w)zdp(w), z e X.

Then the family
C={TnF : |hllzx <1,N as above}
is R bounded and R(C) < 2R(F).

Let (A, D(A)) be a sectorial operator in a Banach space X; this means that p(—A) D X,_4 for
some ¢ < 7 and that A(A + A)~! is bounded in ¥,_,. The infimum of all such ¢ is called the
spectral angle of A and denoted by ¢4. Note that —A generates an analytic semigroup if and
only if ¢4 < 7/2. The definition of R-sectorial operator is similar, substituting boundedness of
A(A + A)~! with R-boundedness in ¥,_4. As above one denotes by ¢% the infimum of all ¢ for
which this happens; since R-boundedness implies boundedness, we have ¢4 < ¢%.

The R-boundedness of the resolvent characterizes the regularity of the associated inhomoge-
neous parabolic problem, as we explain now.

An analytic semigroup (e_tA)tzo on a Banach space X with generator — A has maximal reqular-
ity of type L9 (1 < ¢ < o00) if for each f € L9([0,T]; X) the function t — u(t) = fot e~ (=9)4) f(s) ds
belongs to W14([0,T]; X) N L4([0,T]; D(A)). This means that the mild solution of the evolution
equation

' (t) + Au(t) = f(t), t>0, u(0) =0,

is in fact a strong solution and has the best regularity one can expect. It is known that this
property does not depend on 1 < ¢ < co and T > 0. A characterization of maximal regularity is
available in UMD Banach spaces, through the R-boundedness of the resolvent in a suitable sector
w~+ 3y, with w € R and ¢ > /2 or, equivalently, of the scaled semigroup e~ (ATt in a sector
around the positive axis. In the case of LP spaces it can be restated in the following form, see [12,
Theorem 1.11]

Theorem 7.4 Let (e7'4);5¢ be a bounded analytic semigroup in LP(X), 1 < p < oo, with generator
—A. Then T(-) has mazimal regularity of type L9 if and only if the set {\(A+A)"", X € Xy /a14} is
R- bounded for some ¢ > 0. In an equivalent way, if and only if there are constants 0 < ¢ < 7/2,
C > 0 such that for every finite sequence (\;) C Xz /244, (fi) C LP

H (Z |Ai(Ai + A)lfz‘|2> <C (Z |fi|2>

Lr(%) Lr(%)
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or, equivalently, there are constants 0 < ¢' < w/2, C' > 0 such that for every finite sequence

(Zz) C qu/, (fz) c Lp
)

Finally we state a version of the operator-valued Mikhlin multiplier theorem in the N-dimensional
case, see e.g. [11, Corollary 8.3.22].

Theorem 7.5 Let 1 <p < oo, M € CN (RN \ {0}; B(LP(X)) be such that the set
[€°DEM(E) : € € RY\ {0}, a € {0,1}V)

is R-bounded. Then the operator Thy = F~LMF is bounded in LP(RN,LP(X)), where F denotes
the Fourier transform.

Nl

< <Z|fi|2>

Lr(%) Lr(%)

8 Appendix B: Weighted spaces and similarity transforma-
tions

Let p > 1, m, a1, a3 € R such that

_ m+1
Qo < 2, as —ay < 2, a; < .
p

In order to describe the domain of the operator

a1 tag

YU Ay 2y a - Ve Dy 4y (Dyﬁ;Dy)’

we collect in this section the main results concerning anisotropic weighted Sobolev spaces, referring
to [15] for further details and all the relative proofs. We define the Sobolev space

loc

2, N+1 5
W2P(ay, ag,m) = {u e WPRYMY) 1w, y*' Dyywyu, y2 Dy,u,

g+

2D, Vou € LI;n}

y** Dyyu, y%Dyua Y
which is a Banach space equipped with the norm

n n
o1
”uHWlP(ahaz,m) :HUHL% + Z ”yalemJ-u”Lfn + Z ||y 2 Dwiu”Lfn
ij=1 i=1

2ite2 DVl .

@2

+ ly** Dyyullre, + ly Dyullrz, + lly

Next we add a Neumann boundary condition for y = 0 in the form yaTlDyu € LP and set
Wff’p(al,ag,m) ={ue W2’p(a1,a2,m) : yO‘?_lDyu erLry

with the norm
||u||Wi,’P(a1,a2,m) = HUHWQvP(al,az,m) =+ ”yaZilDyu”Lfn'
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Remark 8.1 With obvious changes we consider also the analogous Sobolev spaces WP (o, m) and
W/%/’p(a,m) on Ry. For example we have

loc

Wﬁ/’p(a,m) = {u e W2P(Ry) : u, y*Dyyu, y2 Dyu, y* ' Dyu € Lfn}.

All the results of this section will be valid also in Ry changing (when it appears) the condition
o] < mTH to 0 < mTH

The next result clarifies in which sense the condition y*2~'D,u € LP, is a Neumann boundary
condition.

Proposition 8.2 [15, Proposition 4.3] The following assertions hold.
(i) If mTH > 1— ag, then Wﬁ/’p(al,ag,m) =W?2P(ay,az,m).

(ii) If"‘T‘H <1—ay, then

Wff’p(al, ag,m) = {u € W?P(ay, az,m) : lin(l) Dyu(z,y) =0 for a.e. x € RN}
y—r

In both cases (i) and (ii), the norm of Wff’p(al,ag,m) is equivalent to that of W2P(ay, ag, m).
The next results show the density of smooth functions in Wf/’p (a1, a0, m). Let
C:={ueCX R" x[0,00)), Dyu(z,y) =0 for y < § and some § >0}, (23)
its one dimensional version
D = {ue C(0,0)), Dyu(y) =0 for y < ¢ and some § > 0} (24)

and finally (finite sums below)
CXRM)@D = {u(x,y) = z:ui(x)vi(y)7 u; € CX(RN), v; € D} cC.

Theorem 8.3 [15, Theorem 4.9] C°(RY) ® D is dense in Wff’p(al, ag,m).

Note that the condition (m +1)/p > a7, or m+1> 0 and (m + 1)/p + a1 > 0, is necessary
for the inclusion C°(RV) ® D C Wf/’p(al, ag,m).

In the 1-dimensional case we need also the following density result proved in [13, Theorem 8.5].
Theorem 8.4 Leta <2, u >0, c € R. Then for any 1 < p < oo such that o~ < mTH <c+1l—a,
the set D is dense in Wi (a,m) N Ly vap-

We consider now, for 8 € R, f # —1, the transformation

1
Tyu(z,y) = [B+1|pu(z,y”), (z,y) e RYF (25)
Observe that
T:'=T 5 .
B B+1
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Proposition 8.5 Let 1 <p < oo, BE€R, B# —1 and m € R. The following properties hold.

i) Ts maps isometrically LY. onto LP, where m = m=2
B m m

B+1 -
(ii) W3 (or,00,m) = Ty (WRP(Gr, G2, ) ), = g2y, dp = 25220,
In particular choosing 8 = “15%2 and setting & = % one has
W3 (1, a2,m) = Tey—oy (Wﬁ;ﬁ(@,@,m)) . a= ﬁ i = %
PROOF. See [15, Lemma 2.1, Proposition 2.2] with k = 0 and T = T 3. ([

Remark 8.6 It is essential to deal with Wﬁ[’p(al, ag,m): in general the map Ty does not transform
W2P(ay, g, m) into WP(aq, az, m).
We consider now the operators

aytag

L=y A, +2y 7 (a,VeDy)+y*B,, a€cR", |af<1

in the space L2, = L2, (RY*"). Here B is the Bessel operator
c
B:Dnyr;Dy, c>—1

on the half line Ry =)0, co[ (often we write B, to indicate that it acts with respect to the y variable).
The condition |a| < 1 is equivalent to the ellipticity of the top order coefficients We investigate
when these operators can be transformed one into the other by means of the transformation (25).

Proposition 8.7 Let Ty be the isometry defined in (25). Then for every u € Wfocl (RJ_XH) one
has

aqtag

T (5 8+ 7 (09,0, 4475,

g o1tagt28 o Q2428 ~
= (s 80+ 26+ 0y T (0,V.0,) + (5412 F B, )u
where
c . c+p
B=D D = 26
yy T g Y ¢ B+1 (26)
In particular choosing 8 = “15%2 and setting & = % one has

ajta

Tﬁ_1 (yo‘lAgE +2y 2 ? (a,VyDy) + yo‘sz)TBu

= y* (Ax +2(841) (a,VaDy) + (B + 1)2By)u
PROOF. The proof follows using [17, Proposition 3.1, Proposition 3.2] with k£ = 0 and the equalities

y*Tau="Tp(y?*1u), Dy, (Tsu) =Ts(Dyu), DyyTpu=Tg ((5 + 1)1/%19%“) :
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