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Abstract: In this paper, we establish the Fefferman–Stein type inequality for area integral and

non-tangential maximal function on the Shilov boundary studied by Nagel and Stein [30]. The

technique here is inspired by Fefferman–Stein [14] and Merryfield [22] but we bypass the use of

Fourier or group structure as these were not available on the polynomial domains of finite type.

Direct applications include the maximal function characterisation of product Hardy space and the

weak type endpoint estimate for product Calderón–Zygmund operators (such as the Cauchy–Szegő

projection) on the Shilov boundary.

1 Introduction

In this paper, we establish the Fefferman–Stein type good-λ inequality for area integral and

non-tangential maximal function on a typical product space: the Shilov boundary of tensor

product domains studied by Nagel and Stein [30].

Let u(x, t) be a harmonic function in Rn × (0,∞). The non-tangential maximal function

u∗(x) = sup|x−y|<t |u(y, t)| and area integral S(u)(x)2 =
∫
|x−y|<t |∇u(y, t)|

2t1−ndydt are two

fundamental tools in the theory of singular integrals and the related function spaces. Fefferman

and Stein [14] first showed that ∥u∗∥Lp(Rn) ≈ ∥S(u)∥Lp(Rn), 0 < p ≤ 1, when u(x, t) → 0 as

t→ ∞ (for 1 < p <∞ this was known in [35]). The key objects in their proof are the following

inequality ([14, (7.2)])

|{x ∈ Rn : S(u)(x) > λ}| ≲ |{x ∈ Rn : u∗(x) > λ}|+ 1

λ2

∫ λ

0
s|{x ∈ Rn : u∗(x) > s}|ds (1.1)

and the other inequality of the same type but with u∗ and S(u) interchanged (here the implicit

constant is independent of λ). When u is given by the Poisson integral of f , a different proof

of the Lp norm, 0 < p ≤ 1, of u∗ and S(u) was given via atomic decomposition. Later,

Gundy and Stein [16] established this result in the bi-disc for characterising the product Hardy

space Hp, 0 < p ≤ 1, via using holomorphic function and martingales. The key step mirrors

(1.1), applied to the area integral and non-tangential maximal function in the bi-disc. It is

natural to explore whether this is also true on the product spaces Rn ×Rm, noting that in the

higher dimensional space, the analyticity is not available. Unlike the one-parameter setting,

the equivalence ∥u∗∥Lp(Rn×Rm) ≈ ∥S(u)∥Lp(Rn×Rm) (for 0 < p ≤ 1) does not follow from atomic
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decomposition directly. It is still not clear whether one can construct the atomic decomposition

of f directly from the assumption ∥u∗∥Lp(Rn×Rm) <∞ (u is given by the double Poisson integral

of f).

To overcome this, Merryfield [22] provided a new proof of (1.1), which bypassed the use of

surface approximation ([14]) or analyticity ([16]), and hence the inequality ∥S(u)∥Lp(Rn×Rm) ≲

∥u∗∥Lp(Rn×Rm) holds (the reverse can be done by atomic decomposition directly). However,

one key ingredient in [22] is the Cauchy–Riemann equation for constructing a test function

(for Littlewood–Paley estimate) from the given test function (for maximal function). Thus,

although we have studied the Hardy spaces via area function and atomic decomposition in the

general product spaces of homogeneous type (see for example [19, 6, 20]), the maximal function

characterisation was only known in a few cases via establishing an analogy of (1.1): (1) the

Muckenhoupt–Stein Bessel operator setting ([13]), where we exploited the Cauchy–Riemann

type equation associated with the Bessel operators; (2) the multi-parameter flag setting of

Nagel–Ricci–Stein [23]. In [17] we extended [22] to the flag Euclidean setting, (3) the product

stratified Lie groups [10] and the flag setting of Heisenberg group [5], where we used the group

structure and explicit pointwise upper and lower bound of Poisson kernel.

Besides the bi-disc and product Lie groups, one fundamental model domain is the Shilov

boundary M̃ =M1×M2 studied by Nagel and Stein [30] which links to the ∂̄-Neumann problem

on decoupled boundaries (to ease the burden of notational complexity we consider the tensor

product of two domains). Here each Mj is an unbounded polynomial domain of finite type mj

defined as follows.

Let M (for simplicity we first drop the subscript j) be given as

M :=
{
(z, w) ∈ C2 : Im(w) = P(z)

}
, (1.2)

where P(z) is a real, subharmonic, non-harmonic polynomial of degree m. We note that ([30])

M can be identified with C × R = {(z, t) : z ∈ C, t ∈ R}. The basic (0,1) Levi vector field

is then Z̄ = ∂
∂z̄ − i∂P∂z̄

∂
∂t , where i

2 = −1, and we write Z̄ = X1 + iX2. The real vector fields

{X1, X2} and their commutators of orders up to m span the tangent space at each point.

Associated with the domain M is the natural Carnot–Carathéodory metric d(x,y) on M (for

every x,y ∈ M) and the measure µ of the nonisotropic ball B(x, r) = {y ∈ M : d(x,y) < r},
which made (M,d, µ) as a space of homogeneous type in the sense of Coifman and Weiss [9].

Also denote Vr(x) = µ(B(x, r)). Details are given in Section 2.

The typical example that we have in mind (regarding further development and applications

[29, 24, 25]) is P(z) = 1
2k |z|

2k for z ∈ C and k to be positive integers. When k = 1, M is the

boundary of the Siegel domain in C2 and it is CR-diffeomorphic to the first Heisenberg group,

from which it inherits the group structure. However, when k ≥ 2, M does not have a group

structure. Thus, we are more interested in the cases k ≥ 2. The ∂̄-problem, sub-Laplacian,

Kohn-Laplacian and the related geometry, singular integrals have been intensively studied,

see for example [7, 3, 12, 27, 30, 26, 34]. Very recent progresses on such model domains M

(k ≥ 2) include the explicit pointwise upper and lower bound for the Cauchy–Szegő kernel and

its applications to boundedness and compactness of commutators ([2]), and the construction

that for each k ≥ 2, M can be lifted to a Lie group G ([1]), which provided an explicit and



On Fefferman–Stein type inequality 3

optimal lifting Lie algebra comparing to the result of Rothschild and Stein [33].

We now state our result in detail. Let M̃ =M1×M2, where eachMj is the example domain

as above with Pj(z) =
1

2kj
|z|2kj , j = 1, 2. Let dj be the Carnot–Carathéodory metric onMj and

µj be the corresponding measure. For the sake of simplicity, throughout the paper we denote

dµj(xj) = dxj and |A| represents the measure of the set A. Let Lj be the sub-Laplacian of

Mj and P
[j]
tj

be the Poisson semigroup e−tj
√

Lj , j = 1, 2. Consider the non-tangential maximal

function

N β
P (f)(x1,x2) := sup

(y1,y2)∈M̃,t1>0,t2>0,
d1(x1,y1)<βt1,
d2(x2,y2)<βt2

|P [1]
t1
P

[2]
t2

(f)(y1,y2)|

with the constant β > 0. Consider also the Littlewood–Paley area function. Let

∇t1,M1 := (∂t1 , X1,1, X1,2), ∇t2,M2 := (∂t2 , X2,1, X2,2).

Then for any fixed β ∈ (0,∞), the Littlewood–Paley area function Sβ
P (f)(x1,x2) is defined as

Sβ
P (f)(x1,x2) :=

(∫∫
Γβ(x1,x2)

|t1∇t1,M1P
[1]
t1

t2∇t2,M2P
[2]
t2

(f)(y1,y2)|2
dy1dy2dt1dt2

t1Vt1(x1)t2Vt2(x2)

)1/2

,

where Γβ(x1,x2) = Γβ
1 (x1) ⊗ Γβ

2 (x2) and Γβ
j (xj) = {(yj , tj) ∈ Mj × R+ : dj(xj ,yj) < βtj},

j = 1, 2. For simplicity, we denote S1
P (f)(x1,x2) by SP (f)(x1,x2).

The main result of this paper is the following.

Theorem 1.1. There exist C > 0 and β > 1 such that for all f ∈ C∞
0 (M̃) and for all λ > 0,

|{(x1,x2) ∈ M̃ : SP (f)(x1,x2) > λ}| (1.3)

≤ C
∣∣{(x1,x2) ∈ M̃ : N β

P (f)(x1,x2) > λ
}∣∣+ C

λ2

∫ λ

0
s|{(x1,x2) ∈ M̃ : N β

P (f)(x1,x2) > s}|ds.

The main step here is to establish a modified version of good-λ inequality, that is, to

prove that |{(x1,x2) ∈ Aβ(λ) : SP (f)(x1,x2) > λ}| is bounded by the right-hand side of

(3.4), where Aβ(λ) is a suitable subset of Eβ(λ) :=
{
(x1,x2) ∈ M̃ : N β

P (f)(x1,x2) ≤ λ
}
. The

key idea that is different from [22] is to inherit the property of the double Poisson integral

u = P
[1]
t1
P

[2]
t2

(χEβ(λ)) via a smooth function which captures the range of u. Thus, we bypass the

restriction on a smooth function which is even, and has compact support. We only rely on the

pointwise upper bound of the Poisson kernel as well as the conservation property. The proof

will be given in Section 3 after some necessary preliminaries in Section 2.

We further note that the above result also holds for M̃ =M1×· · ·×Mn for general n > 2.

It suffices to repeat the proof by induction.

As applications, we point out that: (1) Theorem 1.1 passes the endpoint weak type

estimate (L logL(M̃) to weak L1(M̃)) from the strong maximal functionMs to the Littlewood–

Paley area function Sβ
P . Thus, through the approach of R. Fefferman [15] (local version) and

the recent study [11] (global version), we obtain the L logL(M̃) to weak L1(M̃) for product

Calderón–Zygmund operators on M̃ ; (2) Theorem 1.1 also gives rise to the characterisation

of product Hardy space on M̃ , which was established via Littlewood–Paley area function and

characterised equivalently by atomic decomposition [19, 20]. Details are in Section 4.
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2 Notation and preliminaries

In this section, we recall the basic geometry of the Shilov boundary M̃ = M1 ×M2 [30] with

each Mj given in (1.2), where P(z) = 1
2k |z|

2k, k ≥ 2. It is clear that the degree m of P(z) is

given by m = 2k.

2.1 Basic geometry of Carnot–Carathéodory space M

We first recall the control metric on M given in [30] (see also [31, 27, 28, 34]). Note that

we write the complex (0,1) vector field Z = X1 + iX2, where {X1, X2} are real vector fields

on M . Define the metric d on M as follows. If x,y ∈ M and δ > 0, let AC(x,y, δ) denote

the set of absolutely continuous mapping γ : [0, 1] → M such that γ(0) = x and γ(1) = y,

and such that for almost all t ∈ [0, 1] we have γ′(t) = α1(t)X1(γ(t)) + α2(t)X2(γ(t)) with

|α1(t)|2 + |α2(t)|2 < δ2. Then we define

d(x,y) = inf{δ > 0 : AC(x,y, δ) ̸= ∅}.

The corresponding nonisotropic ball is defined as B(x, δ) = {y ∈ M : d(x,y) < δ}, and
let Vδ(x) denotes its volume. From [30] we know that there is a positive constant Cd such that

for every x ∈M , λ ≥ 1 and δ > 0,

Vλδ(x) ≤ Cdλ
mVδ(x). (2.1)

We also set V (x,y) = Vd(x,y)(x). From the doubling property we observe that V (x,y) ≈
V (y,x) where the implicit constants are independent of x and y.

2.2 Sub-Laplacian on M

Consider the sub-Laplacian L on M in self-adjoint form, given by L =
∑2

j=1X
∗
jXj . Here

(X∗
j φ,ψ) = (φ,Xjψ), where (φ,ψ) =

∫
M φ(x)ψ̄(x)dx, and φ,ψ ∈ C∞

0 (M), the space of C∞

functions onM with compact support. In general, we haveX∗
j = −Xj+aj , where aj ∈ C∞(M).

In our particular setting, we see that aj = 0. That is

L = −
2∑

j=1

X2
j .

The solution of the following initial value problem for the heat equation,

∂u

∂s
(x, s) + Lxu(x, s) = 0

with u(x, 0) = f(x), is given by u(x, s) = Hs(f)(x), where Hs is the operator given via the

spectral theorem by Hs = e−sL, and an appropriate self-adjoint extension of the non-negative

operator L initially defined on C∞
0 (M). For f ∈ L2(M),

Hs(f)(x) =

∫
M
H(s,x,y)f(y)dy.

Moreover, H(s,x,y) has some nice properties (see Proposition 2.3.1 in [30] and Theorem 2.3.1

in [27]). We restate them as follows:
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(1) H(s,x,y) ∈ C∞([0,∞)×M ×M\{s = 0 and x = y}
)
.

(2) For every integer N ≥ 0,

|∂js∂LX∂KY H(s,x,y)| ≲ 1

(d(x,y) +
√
s)2j+K+L

1

V (x,y) + V√s(x) + V√s(y)

( √
s

d(x,y) +
√
s

)N

,

(3) For each integer L ≥ 0 there exist an integer NL and a constant CL so that if φ ∈
C∞
0 (B(x0, δ)), then for all s ∈ (0,∞),

|∂LXHs[φ](x0)| ≤ CLδ
−L sup

x

∑
|J |≤NL

δ|J ||∂JXφ(x)|.

(4) For all (s,x,y) ∈ (0,∞)×M ×M , H(s,x,y) = H(s,y,x), H(s,x,y) ≥ 0.

(5) For all (s,x) ∈ (0,∞)×M ,
∫
M H(s,x,y)dy = 1.

(6) For 1 ≤ p ≤ ∞, ∥Hs[f ]∥Lp(M) ≤ ∥f∥Lp(M).

(7) For every φ ∈ C∞
0 (M) and 1 ≤ p <∞, lim

s→0
∥Hs[φ]− φ∥Lp(M) = 0.

2.3 Poisson kernel estimate on M

From (2) in Section 2.2, we see that there is a positive constant CH such that for all s > 0,

x,y ∈M ,

|H(s,x,y)| ≤ CH
1

V√s(x,y) + V√s(x) + V√s(y)

( √
s

d(x,y) +
√
s

)N

.

Let Pt(x,y) be the kernel of the Poisson semigroup e−t
√
L. The estimates for Pt(x,y)

follow from the subordination formula

e−t
√
L =

1

2
√
π

∫ ∞

0

te
−t2

4s

√
s

e−sLds

s
,

the doubling property of the measure and the estimate of |H(s,x,y)| as above. We have that

for each x ∈M and t > 0 ∫
M
Pt(x,y)dy = 1, (2.2)

and that there exists CP > 0 such that for each x,y ∈M and t > 0,

|Pt(x,y)| ≤ CP
1

V (x,y) + Vt(x) + Vt(y)
· t

t+ d(x,y)
. (2.3)

Here CP depends on CH and the upper dimension m as in (2.1). From this size estimate we

see that for every f ∈ L2(M),

|Pt(f)(x)| ≤ CP (Cd2
m + 1)M(f)(x), (2.4)

where Cd andm are the constants from (2.1) andM is the Hardy–Littlewood maximal operator

such that

M(f)(x) = sup
B∋x

1

|B|

∫
B
|f(y)|dy,

where B runs over all metric balls in M .
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2.4 Basic geometry of Shilov boundary M̃ = M1 ×M2

Consider M̃ = M1 ×M2 such that Mj =
{
(zj , wj) ∈ C2 : Im(wj) = Pj(zj)

}
with the vector

fields Xj,1 and Xj,2, j = 1, 2. We denote x⃗ = (x1,x2) ∈M1 ×M2.

The nonisotropic distance dj on Mj can be regarded as a function on Mj which depends

only on the variables (zj , tj), where tj = Re(wj). In addition, there is a nonisotropic metric

d∑ on M̃ induced by all real vector fields {X1,1, X1,2, X2,1, X2,2}. If x⃗, y⃗ ∈ M̃ and δ > 0, let

AC(x⃗, y⃗, δ) denote the set of absolutely continuous mappings γ : [0, 1] → M̃ such that γ(0) = x⃗

and γ(1) = y⃗, and such that for almost every t ∈ [0, 1] we have γ′(t) =
∑2

j=1(αj,1(t)Xj,1(γ(t))+

αj,2(t)Xj,2(γ(t))) with
∑2

j=1(|αj,1(t)|2 + |αj,2(t)|2) < δ2. Then

d∑(x⃗, y⃗) = inf{δ > 0 | AC(x⃗, y⃗, δ) ̸= ∅}.

Similar to (2.4), we also have that for every f ∈ L2(M̃),

|P [1]
t1
P

[2]
t2

(f)(x1,x2)| ≤ C0MS(f)(x1,x2), (2.5)

where C0 depends on the constant in (2.4), P
[j]
tj

denotes the Poisson semigroup on Mj , and

MS is the strong maximal function on M̃ such that

MS(f)(x1,x2) = sup
B1×B2∋(x1,x2)

1

|B1 ×B2|

∫
B1×B2

|f(y1,y2)|dy1dy2,

where Bj runs over all metric balls in Mj for j = 1, 2.

3 Proof of Theorem 1.1: Fefferman–Stein type inequality on M̃

For j = 1, 2, let Mj be the model domain as defined in Section 2, with the vector fields Xj,1

and Xj,2 and the sub-Laplacian Lj .

We aim to prove that there exist constants C > 0 and β > 1 such that for f ∈ C∞
0 (M̃)

and for all α > 0,

|{(x1,x2) ∈ M̃ : SP (f)(x1,x2) > α}| (3.1)

≤ C
∣∣{(x1,x2) ∈ M̃ : N β

P (f)(x1,x2) > α
}∣∣+ C

α2

∫∫
Eβ(α)

N β
P (f)(x1,x2)

2dx1dx2,

where

Eβ(α) =
{
(x1,x2) ∈ M̃ : N β

P (f)(x1,x2) ≤ α
}
.

We denote

Eβ(α)
c = M̃\Eβ(α) =

{
(x1,x2) ∈ M̃ : N β

P (f)(x1,x2) > α
}
.

For j = 1, 2, we note that for any f ∈ L2(Mj), uj(xj , tj) := e−tj
√

Lj (f)(xj), (xj , tj) ∈
Mj × R+, is harmonic, in the sense that

∆tj ,Mjuj(xj , tj) = Ljuj(xj , tj)− ∂2tjuj(xj , tj) = 0,
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where ∆tj ,Mj := Lj − ∂2tj and we use the fact that ∂2tjuj(xj , tj) = ∂2tje
−tj

√
Lj (f)(xj) =

Ljuj(xj , tj). Consequently, for j = 1, 2, for the gradient ∇tj ,Mj = (∂tj ,∇Mj ) = (∂tj , Xj,1, Xj,2),

the following formula holds: for every (xj , tj) ∈Mj × R+,

2|∇tj ,Mjuj(xj , tj)|2 = 2|∇tj ,Mjuj(xj , tj)|2 − 2uj(xj , tj)∆tj ,Mjuj(xj , tj) (3.2)

= −∆tj ,Mj

(
u2j (xj , tj)

)
.

Next, for all α > 0 and f ∈ L1(M̃) satisfying N β
P (f) ∈ L1(M̃), define

Aβ(α) :=

{
(x1,x2) ∈ M̃ : MS(χEβ(α)c)(x1,x2) ≤

1

10C0

}
,

where C0 is the constant in (2.5).

From the definition, it is direct to see that

Eβ(α)
c ⊂ Aβ(α)

c = M̃\Aβ(α)

and hence Aβ(α) ⊂ Eβ(α).

Next, from the L2-boundedness of the strong maximal function MS , we see that

|Aβ(α)
c| ≤ C

∥∥MS(χEβ(α)c)
∥∥2
L2(M̃)

≤ C|Eβ(α)
c|, (3.3)

where the constant C is independent of α and β. Then we split

|{(x1,x2) ∈ M̃ : SP (f)(x1,x2) > α}| (3.4)

≤ |{(x1,x2) ∈ Aβ(α)
c : SP (f)(x1,x2) > α}|+ |{(x1,x2) ∈ Aβ(α) : SP (f)(x1,x2) > α}|

≤ C
∣∣Eβ(α)

c
∣∣+ 1

α2

∫∫
Aβ(α)

SP (f)(x1,x2)
2dx1dx2,

where the last inequality follows from (3.3) and from Chebyshev’s inequality. Now it suffices

to estimate the second term in the right-hand side of last inequality above.

Let

g(x1,x2) := χEβ(α)(x1,x2) and Wβ :=
⋃

(x1,x2)∈Aβ(α)

Γ(x1,x2).

We first note that for (y1,y2) ∈ M̃ and t1, t2 > 0,

P
[1]
t1
P

[2]
t2

(g)(y1,y2) = P
[1]
t1
P

[2]
t2

(
1− χEβ(α)c

)
(y1,y2)

= 1− P
[1]
t1
P

[2]
t2

(
χEβ(α)c

)
(y1,y2),

where we use the fact that P
[1]
t1
P

[2]
t2

(1) = 1. Next, note that for (y1,y2, t1, t2) ∈ Wβ, there is

(x1,x2) ∈ Aβ(α) such that (y1,y2, t1, t2) ∈ Γ(x1,x2), and hence

P
[1]
t1
P

[2]
t2

(
χEβ(α)c

)
(y1,y2) ≤ C0MS(χEβ(α)c)(x1,x2) <

1

10
,

where the first inequality follows from (2.5) and the last inequality follows from the fact that

(x1,x2) ∈ Aβ(α).
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Then we see that for every (y1,y2, t1, t2) ∈Wβ, we obtain that

P
[1]
t1
P

[2]
t2

(g)(y1,y2) >
9

10
.

Next, we claim that if β is chosen sufficient large, then there is a constant C1 ∈ (0, 9
10),

such that for any (y1,y2, t1, t2) ∈
(
W̃β

)c
:=
(
M̃ × [0,∞)× [0,∞)

)∖
W̃β,

P
[1]
t1
P

[2]
t2

(g)(y1,y2) ≤ C1, (3.5)

where

W̃β :=
⋃

(x1,x2)∈Eβ(α)

Γβ(x1,x2).

In fact, for every (y1,y2, t1, t2) ∈
(
W̃β

)c
, we see that for any (z1, z2) ∈ Eβ(α), we have either

d1(y1, z1) ≥ βt1, or d2(y2, z2) ≥ βt2, or both. Hence, we have

0 ≤ P
[1]
t1
P

[2]
t2

(g)(y1,y2) =

∫∫
M̃
χEβ(α)(z1, z2)P

[1]
t1

(y1, z1)P
[2]
t2

(y2, z2)dz1dz2

≤
∫
d1(y1,z1)≥βt1

P
[1]
t1

(y1, z1)dz1

∫
M2

P
[2]
t2

(y2, z2)dz2

+

∫
M1

P
[1]
t1

(y1, z1)dz1

∫
d2(y2,z2)≥βt2

P
[2]
t2

(y2, z2)dz2

≤
∫
d1(y1,z1)≥βt1

P
[1]
t1

(y1, z1)dz1 +

∫
d2(y2,z2)≥βt2

P
[2]
t2

(y2, z2)dz2,

where the last inequality follows from the conservation property (2.2). To continue, by decom-

posing {zj ∈ Mj : dj(yj , zj) ≥ βtj}, j = 1, 2, into annuli and using the size estimate (2.3), we

have

0 ≤ P
[1]
t1
P

[2]
t2

(g)(y1,y2) ≤
C

β
→ 0, (as β → ∞),

where the constant C depends on the constant Cd and m in (2.1) and on CP in (2.3). Thus,

there is some β > 1 such that our claim (3.5) holds.

This also shows that if P
[1]
t1
P

[2]
t2

(g)(y1,y2) > C1, then (y1,y2, t1, t2) ∈ W̃β.

To continue, we now choose a smooth cut-off function φ(t) ∈ C∞(R) such that φ(t) = 1

when t ≥ 9
10 and φ(t) = 0, when t ≤ C1.

Besides, for simplicity, we denote vy2,t2(y1) := ∇t2,M2P
[2]
t2

(f)(y1,y2). Then,∫∫
Aβ(α)

SP (f)(x1,x2)
2dx1dx2

=

∫∫
Aβ(α)

∫∫
Γ(x1,x2)

|t1∇t1,M1P
[1]
t1

t2∇t2,M2P
[2]
t2

(f)(y1,y2)|2
dy1dy2dt1dt2

t1Vt1(x1)t2Vt2(x2)
dx1dx2

=

∫∫
Aβ(α)

∫∫
Γ(x1,x2)

∣∣∣t1∇t1,M1P
[1]
t1
t2vy2,t2(y1)

∣∣∣2 dy1dy2dt1dt2
t1Vt1(x1)t2Vt2(x2)

dx1dx2

≤
∫∫∫∫

Wβ

∣∣∣∇t1,M1P
[1]
t1
vy2,t2(y1)

∣∣∣2 t1t2dt1dt2dy1dy2



On Fefferman–Stein type inequality 9

≤
∫∫∫∫

M̃×R+×R+

∣∣∣∇t1,M1P
[1]
t1
vy2,t2(y1)

∣∣∣2
×
∣∣∣φ(P [1]

t1
P

[2]
t2

(g)(y1,y2)
)∣∣∣2 t1t2dt1dt2dy1dy2. (3.6)

To continue, we note that P
[1]
t1
vy2,t2(y1) as a function of (y1, t1) is harmonic in M1 × R+.

Moreover, P
[1]
t1
P

[2]
t2

(g)(y1,y2) as a function of (y1, t1) is also harmonic in M1 × R+. Hence, by

using (3.2) the following equality holds:∣∣∣∇t1,M1P
[1]
t1
vy2,t2(y1)

∣∣∣2 ∣∣∣φ(P [1]
t1
P

[2]
t2

(g)(y1,y2)
)∣∣∣2 (3.7)

= −1

2
∆t1,M1

((
P

[1]
t1
vy2,t2(y1)

)2
· φ
(
P

[1]
t1
P

[2]
t2

(g)(y1,y2)
)2)

− 4P
[1]
t1
vy2,t2(y1)∇t1,M1P

[1]
t1
vy2,t2(y1)

× φ
(
P

[1]
t1
P

[2]
t2

(g)(y1,y2)
)
φ′
(
P

[1]
t1
P

[2]
t2

(g)(y1,y2)
)
∇t1,M1P

[1]
t1
P

[2]
t2

(g)(y1,y2)

− |P [1]
t1
vy2,t2(y1)|2φ′

(
P

[1]
t1
P

[2]
t2

(g)(y1,y2)
)2 ∣∣∣∇t1,M1P

[1]
t1
P

[2]
t2

(g)(y1,y2)
∣∣∣2

− |P [1]
t1
vy2,t2(y1)|2φ

(
P

[1]
t1
P

[2]
t2

(g)(y1,y2)
)
φ′′
(
P

[1]
t1
P

[2]
t2

(g)(y1,y2)
) ∣∣∣∇t1,M1P

[1]
t1
P

[2]
t2

(g)(y1,y2)
∣∣∣2

=: f1(y1,y2, t1, t2) + f2(y1,y2, t1, t2) + f3(y1,y2, t1, t2) + f4(y1,y2, t1, t2).

We note that by Young’s inequality,

|f2(y1,y2, t1, t2)| ≤
1

10

∣∣∣∇t1,M1P
[1]
t1
vy2,t2(y1)

∣∣∣2 ∣∣∣φ(P [1]
t1
P

[2]
t2

(g)(y1,y2)
)∣∣∣2

+ 40|P [1]
t1
vy2,t2(y1)|2

∣∣∣φ′
(
P

[1]
t1
P

[2]
t2

(g)(y1,y2)
)∣∣∣2 |∇t1,M1P

[1]
t1
P

[2]
t2

(g)(y1,y2)|2

=: f21(y1,y2, t1, t2) + f22(y1,y2, t1, t2).

We can see that the integral∫∫∫∫
M̃×R+×R+

f21(y1,y2, t1, t2)t1t2dt1dt2dy1dy2.

can be absorbed by the right-hand side of (3.6), while f22(y1,y2, t1, t2) is quite similar to

f3(y1,y2, t1, t2) and f4(y1,y2, t1, t2). Hence, we further have

f22(y1,y2, t1, t2) + f3(y1,y2, t1, t2) + f4(y1,y2, t1, t2) (3.8)

≤ 40|P [1]
t1
vy2,t2(y1)|2

∣∣∣Φ′
(
P

[1]
t1
P

[2]
t2

(g)(y1,y2)
)∣∣∣2 ∣∣∣∇t1,M1P

[1]
t1
P

[2]
t2

(g)(y1,y2)
∣∣∣2

=: f2(y1,y2, t1, t2),

where we choose Φ(t) such that

Φ′(t) = ((φ′(t))4 + (φ(t)φ′′(t))2)1/4, and Φ(C1) = 0.
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Note that Φ′(t) ≥ 0 and Φ′(t) = 0 for t ≤ C1 or t > 9
10 . In addition, via assuming Φ(C1) = 0,

we see that Φ exhibits behavior similar to ϕ.

To continue, note that the right-hand side of (3.6) is bounded by

10

9

∣∣∣∣∫∫∫∫
M̃×R+×R+

f1(y1,y2, t1, t2)t1t2dt1dt2dy1dy2

∣∣∣∣
+

10

9

∣∣∣∣∫∫∫∫
M̃×R+×R+

f2(y1,y2, t1, t2)t1t2dt1dt2dy1dy2

∣∣∣∣
=: I1 + I2.

For the term I1, integration by parts yields that∣∣∣∣∫∫
M1×R+

f1(y1,y2, t1, t2)t1dt1dy1

∣∣∣∣
=

1

2

∣∣∣∣∫∫
M1×R+

L1

(
P

[1]
t1
vy2,t2(y1)

2 · φ(P [1]
t1
P

[2]
t2

(g)(y1,y2))
2
)
t1dt1dy1

−
∫∫

M1×R+

∂2t1

(
P

[1]
t1
vy2,t2(y1)

2 · φ(P [1]
t1
P

[2]
t2

(g)(y1,y2))
2
)
t1dt1dy1

∣∣∣∣
=

1

2

∣∣∣∣∣
∫
R+

t1∇M1

(
P

[1]
t1
vy2,t2(y1)

2 · φ(P [1]
t1
P

[2]
t2

(g)(y1,y2))
2
) ∣∣∣∣

d1(0,y1)=∞
dt1

−
∫
M1

∂t1

(
P

[1]
t1
vy2,t2(y1)

2 · φ(P [1]
t1
P

[2]
t2

(g)(y1,y2))
2
)
t1

∣∣∣∣t1=∞

t1=0

dy1

+

∫∫
M1×R+

∂t1

(
P

[1]
t1
vy2,t2(y1)

2 · φ(P [1]
t1
P

[2]
t2

(g)(y1,y2))
2
)
dt1dy1

∣∣∣∣
≤ I11 + I12 + I13.

For I11, note that

t1∇M1

(
P

[1]
t1
vy2,t2(y1)

2 · φ(P [1]
t1
P

[2]
t2

(g)(y1,y2))
2
)

= 2P
[1]
t1
vy2,t2(y1)t1∇M1P

[1]
t1
vy2,t2(y1) · φ(P [1]

t1
P

[2]
t2

(g)(y1,y2))
2

+ P
[1]
t1
vy2,t2(y1)

2 · 2φ(P [1]
t1
P

[2]
t2

(g)(y1,y2))t1∇M1φ(P
[1]
t1
P

[2]
t2

(g)(y1,y2)).

The size condition of the Poisson kernel in (2.3) yields that

t1∇M1

(
P

[1]
t1
vy2,t2(y1)

2 · φ(P [1]
t1
P

[2]
t2

(g)(y1,y2))
2
) ∣∣∣∣

d1(0,y1)=∞
= 0.

Thus, I11 = 0.

For I12, we have

∂t1

(
P

[1]
t1
vy2,t2(y1)

2 · φ(P [1]
t1
P

[2]
t2

(g)(y1,y2))
2
)
t1

= 2P
[1]
t1
vy2,t2(y1)t1∂t1P

[1]
t1
vy2,t2(y1) · φ(P [1]

t1
P

[2]
t2

(g)(y1,y2))
2

+ P
[1]
t1
vy2,t2(y1)

2 · 2φ(P [1]
t1
P

[2]
t2

(g)(y1,y2))φ
′(P

[1]
t1
P

[2]
t2

(g)(y1,y2)) t1∂t1P
[1]
t1
P

[2]
t2

(g)(y1,y2).
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For t1 → ∞, from the decay of Poisson kernel in (2.3) and the functional calculus we see that

the kernel of t1∂t1P
[1]
t1

also satisfies a similar size condition as in (2.3). Thus, we have that

∂t1

(
P

[1]
t1
vy2,t2(y1)

2 · φ(P [1]
t1
P

[2]
t2

(g)(y1,y2))
2
)
t1 → 0. (3.9)

On the other hand, when t1 → 0+, we see that the term t1∂t1P
[1]
t1
vy2,t2(y1) → 0, since t1∂t1P

[1]
t1

has integration zero. Thus, (3.9) also holds when t1 → 0+. This gives that I12 = 0.

For I13, we have

I13 =

∣∣∣∣∣
∫
M1

(
|P [1]

t1
vy2,t2(y1)|2 · φ(P [1]

t1
P

[2]
t2

(g)(y1,y2))
2
) ∣∣∣∣t1=∞

t1=0

dy1

∣∣∣∣∣
≤
∫
M1

|vy2,t2(y1)|2|φ(P [2]
t2

(g)(y1,y2))|2dy1,

where the last inequality follows from the fact that |P [1]
t1
vy2,t2(y1)|2 ·φ(P [1]

t1
P

[2]
t2

(g)(y1,y2))
2 → 0

as t1 → ∞ and that P
[1]
t1

→ identity as t1 → 0+.

Therefore,

I1 ≤
5

9

∫∫∫
M̃×R+

|vy2,t2(y1)|2|φ(P [2]
t2

(g)(y1,y2))|2t2dt2dy2dy1 (3.10)

=
5

9

∫
M1

∫∫
M2×R+

|∇t2,M2P
[2]
t2

(f)(y1,y2)|2|φ(P [2]
t2

(g)(y1,y2))|2t2dt2dy2 dy1.

Using the same argument as in (3.7), we have∣∣∣∇t2,M2P
[2]
t2

(f)(y1,y2)
∣∣∣2 ∣∣∣φ(P [2]

t2
(g)(y1,y2)

)∣∣∣2 (3.11)

= −1

2
∆t2,M2

(
P

[2]
t2

(f)(y1,y2)
2 · φ

(
P

[2]
t2

(g)(y1,y2)
)2)

− 4P
[2]
t2

(f)(y1,y2)∇t2,M2P
[2]
t2

(f)(y1,y2)

× φ
(
P

[2]
t2

(g)(y1,y2)
)
φ′
(
P

[2]
t2

(g)(y1,y2)
)
∇t2,M2P

[2]
t2

(g)(y1,y2)

− |P [2]
t2

(f)(y1,y2)|2φ′
(
P

[2]
t2

(g)(y1,y2)
)2 ∣∣∣∇t2,M2P

[2]
t2

(g)(y1,y2)
∣∣∣2

− |P [2]
t2

(f)(y1,y2)|2φ
(
P

[2]
t2

(g)(y1,y2)
)
φ′′
(
P

[2]
t2

(g)(y1,y2)
) ∣∣∣∇t2,M2P

[2]
t2

(g)(y1,y2)
∣∣∣2

=: h1(y1,y2, t2) + h2(y1,y2, t2) + h3(y1,y2, t2) + h4(y1,y2, t2).

Then, the term h2 can be handled by using the same estimate as we did for f2, that is, we

dominate h2 by

1

10

∣∣∣∇t2,M2P
[2]
t2

(f)(y1,y2)
∣∣∣2 ∣∣∣φ(P [2]

t2
(g)(y1,y2)

)∣∣∣2
+ 40

∣∣∣P [2]
t2

(f)(y1,y2)
∣∣∣2 ∣∣∣φ′

(
P

[2]
t2

(g)(y1,y2)
)∣∣∣2 ∣∣∣∇t2,M2P

[2]
t2

(g)(y1,y2)
∣∣∣2

=: h21(y1,y2, t2) + h22(y1,y2, t2).
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Again, we see that
5

9

∫
M1

∫∫
M2×R+

h21(y1,y2, t2)t2dt2dy2 dy1

can be absorbed by the right-hand side of (3.10), and we further have

h22(y1,y2, t2) + h3(y1,y2, t2) + h4(y1,y2, t2) (3.12)

≤ 40|P [2]
t2

(f)(y1,y2)|2
∣∣∣Ψ(P [2]

t2
(g)(y1,y2)

)∣∣∣2 ∣∣∣∇t2,M2P
[2]
t2

(g)(y1,y2)
∣∣∣2

=: h2(y1,y2, t2),

where we choose

Ψ(t) = ((φ′(t))4 + (φ(t)φ′′(t))2)1/4.

Then we further have

I1 ≤ C

∫
M1

∫∫
M2×R+

h1(y1,y2, t2)t2dt2dy2 dy1

+ C

∫
M1

∫∫
M2×R+

h2(y1,y2, t2)t2dt2dy2 dy1

=: Ĩ11 + Ĩ12

with an positive absolute constant C. By repeating a similar integration by parts as in the

estimates for I1, we have

Ĩ11 ≤ C

∫∫
M̃
f(y1,y2)

2φ(g(y1,y2))
2dy1dy2.

It follows from the definition of the non-tangential maximal functionN β
P (f) that f(y1,y2) ≤

N β
P (f)(y1,y2). Besides, from the definition of the functions g and φ, we see that for (y1,y2)

with φ(g(y1,y2)) ̸= 0, we have that g(y1,y2) > C1, which shows that (y1,y2) ∈ Eβ(α). Hence,

N β
P (f)(y1,y2) ≤ α. Thus,

Ĩ11 ≤ C

∫∫
Eβ(α)

N β
P (f)(y1,y2)

2dy1dy2.

For Ĩ12, again, from the definitions of the functions g and Ψ (which inherit the sup-

port condition from φ), we see that for (y1,y2, t2) with Ψ(P
[2]
t2
g(y1,y2)) ̸= 0, we have that

P
[2]
t2
g(y1,y2) > C1. From (3.5) we see that (y1,y2, 0, t2) ∈ W̃β. Hence, there exists z2 such

that (y1, z2) ∈ Eβ(α) and that |P [2]
t2

(f)(y1,y2)| ≤ N β
P (f)(y1, z2) ≤ α. Thus,

Ĩ12 ≤ C

∫∫∫
M̃×R+

|P [2]
t2

(f)(y1,y2)|2
∣∣∣Ψ(P [2]

t2
(g)(y1,y2)

)∣∣∣2 ∣∣∣∇t2,M2P
[2]
t2

(g)(y1,y2)
∣∣∣2 t2dt2dy2 dy1

≤ Cα2

∫∫∫
M̃×R+

∣∣∣∇t2,M2P
[2]
t2

(g)(y1,y2)
∣∣∣2 t2dt2dy2 dy1

= Cα2

∫∫∫
M̃×R+

∣∣∣t2∇t2,M2P
[2]
t2

(g)(y1,y2)
∣∣∣2 dt2

t2
dy2 dy1
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= Cα2

∫∫∫
M̃×R+

∣∣∣t2∇t2,M2P
[2]
t2

(1− g)(y1,y2)
∣∣∣2 dt2

t2
dy2 dy1,

where the last equality follows from the fact that the kernel of t2∇t2,M2P
[2]
t2

has integration

zero. Therefore, by using the Littlewood–Paley estimate, we obtain that

Ĩ12 ≤ Cα2∥1− g∥2
L2(M̃)

= Cα2 |Eβ(α)
c| .

This finishes the estimate of the term I1. We now turn to I2. By noting that

∇t1,M1Φ
(
P

[1]
t1
P

[2]
t2

(g)(y1,y2)
)
= Φ′

(
P

[1]
t1
P

[2]
t2

(g)(y1,y2)
)
∇t1,M1P

[1]
t1
P

[2]
t2

(g)(y1,y2),

we have

I2 =
400

9

∫∫∫∫
M̃×R+×R+

∣∣∣∇t2,M2P
[2]
t2
P

[1]
t1

(f)(y1,y2)
∣∣∣2 (3.13)

×
∣∣∣∇t1,M1Φ

(
P

[1]
t1
P

[2]
t2

(g)(y1,y2)
)∣∣∣2 t1t2dt1dt2dy1dy2.

Observe that

|∇t2,M2P
[1]
t1
P

[2]
t2

(f)(y1,y2)|2|∇t1,M1Φ(P
[1]
t1
P

[2]
t2

(g)(y1,y2))|2

= −1

2
∆t2,M2

(
P

[1]
t1
P

[2]
t2

(f)(y1,y2)
2|∇t1,M1Φ(P

[1]
t1
P

[2]
t2

(g)(y1,y2))|2
)

− 4P
[1]
t1
P

[2]
t2

(f)(y1,y2)∇t2,M2P
[1]
t1
P

[2]
t2

(f)(y1,y2)

×∇t1,M1Φ(P
[1]
t1
P

[2]
t2

(g)(y1,y2))∇t2,M2∇t1,M1Φ(P
[1]
t1
P

[2]
t2

(g)(y1,y2))

− |P [1]
t1
P

[2]
t2
f(y1,y2)|2|∇t2,M2∇t1,M1Φ(P

[1]
t1
P

[2]
t2

(g)(y1,y2))|2

− |P [1]
t1
P

[2]
t2

(f)(y1,y2)|2

×∇t1,M1Φ(P
[1]
t1
P

[2]
t2

(g)(y1,y2))∇t2,M2∇t2,M2∇t1,M1Φ(P
[1]
t1
P

[2]
t2

(g)(y1,y2))

=: F1(y1, y2, t1, t2) + F2(y1,y2, t1, t2) + F3(y1,y2, t1, t2) + F4(y1,y2, t1, t2).

Thus, the right-hand side of (3.13) is bounded by II21 + II22 + II23 + II24, where

II2j := C

∣∣∣∣∫∫∫∫
M̃×R+×R+

Fj(y1,y2, t1, t2)t1t2dt1dt2dy1dy2

∣∣∣∣ , j = 1, 2, 3, 4.

To estimate the term II21, we first let Φ1(t) be a smooth function on R such that

Φ′
1(t) = (Φ′(t)4 + (Φ(t)Φ′′(t))2)

1
4 .

Before we move on, note that again, from the definition of the functions g and Φ′
1 (which

inherits the support condition from Φ), we see that for (y1,y2, t1) with Φ′
1(P

[1]
t1
g(y1,y2)) ̸= 0,

we have that P
[1]
t1
g(y1,y2) > C1. From (3.5) we see that (y1,y2, t1, 0) ∈ W̃β. Hence, there

exists z1 such that (z1,y2) ∈ Eβ(α) and that |P [1]
t1

(f)(y1,y2)| ≤ N β
P (f)(z1,y2) ≤ α.



14 Ji Li

Next, by repeating a similar integration by parts, we have

II21 ≤ C

∫∫
M̃
f(y1,y2)

2Φ(g(y1,y2))
2dy1dy2

+ C

∫∫∫
M̃×R+

P
[1]
t1

(f)(y1,y2)
2|∇t1,M1Φ1(P

[1]
t1

(g)(y1,y2))|2t1dt1dy1dy2

≤ C

∫∫
Eβ(α)

N β
P (f)(y1,y2)

2dy1dy2

+ Cα2

∫∫∫
M̃×R+

|∇t1,M1(P
[1]
t1

(g)(y1,y2))|2t1dt1dy1dy2

= C

∫∫
Eβ(α)

N β
P (f)(y1,y2)

2dy1dy2

+ Cα2

∫∫∫
M̃×R+

|(t1∇t1,M1P
[1]
t1

(1− g)(y1,y2))|2
dt1dy1dy2

t1

≤ C

∫∫
Eβ(α)

N β
P (f)(y1,y2)

2dy1dy2 + Cα2∥1− g∥2
L2(M̃)

= C

∫∫
Eβ(α)

N β
P (f)(y1,y2)

2dy1dy2 + Cα2|Eβ(α)
c|,

where in the second inequality we used the chain rule

∇t1,M1Φ1(P
[1]
t1

(g)(y1,y2)) = Φ′
1(P

[1]
t1

(g)(y1,y2))∇t1,M1(P
[1]
t1

(g)(y1,y2))

and the inequality |Φ′
1(P

[1]
t1

(g)(y1,y2))| ≤ C as well as the support condition on Φ′
1.

For the term II22, we apply Young’s inequality to see that

II22 ≤
1

10

∫∫∫∫
M̃×R+×R+

|∇t2,M2P
[1]
t1
P

[2]
t2

(f)(y1,y2)|2

× |∇t1,M1Φ(P
[1]
t1
P

[2]
t2

(g)(y1,y2))|2t1t2dt1dt2dy1dy2

+ C

∫∫∫∫
M̃×R+×R+

|P [1]
t1
P

[2]
t2

(f)(y1,y2)|2

× |∇t2,M2∇t1,M1Φ(P
[1]
t1
P

[2]
t2

(g)(y1,y2))|2t1t2dt1dt2dy1dy2

=: II221 + II222.

Since II221 can be absorded by I2, it suffices to estimate the term II222. By the chain rule,

∇t2,M2∇t1,M1Φ(P
[1]
t1
P

[2]
t2

(g)(y1,y2))

= Φ′′(P
[1]
t1
P

[2]
t2

(g)(y1,y2))∇t2,M2P
[1]
t1
P

[2]
t2

(g)(y1,y2)∇t1,M1P
[1]
t1
P

[2]
t2

(g)(y1,y2)

+ Φ′(P
[1]
t1
P

[2]
t2

(g)(y1,y2))∇t2,M2∇t1,M1P
[1]
t1
P

[2]
t2

(g)(y1,y2).

Then II222 can be further bounded by II2221 and II2222 with the above two integrands respec-

tively.

Denote M1 and M2 be the Hardy–Littlewood maximal functions on M1 and M2, respec-

tively. Then by the support property of Φ′′,

II2221 =

∫∫∫∫
M̃×R+×R+

|P [1]
t1
P

[2]
t2

(f)(y1,y2)|2|Φ′′(P
[1]
t1
P

[2]
t2

(g)(y1,y2))|2
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× |∇t2,M2P
[1]
t1
P

[2]
t2

(g)(y1,y2)|2|∇t1,M1P
[1]
t1
P

[2]
t2

(g)(y1,y2)|2t1t2dt1dt2dy1dy2

≤ Cα2

∫∫∫∫
M̃×R+×R+

|∇t2,M2P
[1]
t1
P

[2]
t2

(g)(y1,y2)|2

× |∇t1,M1P
[1]
t1
P

[2]
t2

(g)(y1,y2)|2t1t2dt1dt2dy1dy2

≤ Cα2

∫∫∫∫
M̃×R+×R+

∣∣∣M1

(∣∣t2∇t2,M2P
[2]
t2

(g)
∣∣) (y1,y2)

∣∣∣2
×
∣∣∣M2

(∣∣t1∇t1,M1P
[1]
t1

(g)
∣∣) (y1,y2)

∣∣∣2 dt1dt2dy1dy2

t1t2
.

Applying Hölder’s inequality, we further have

II2221 ≤ Cα2

(∫∫
M̃

(∫
R+

∣∣∣M1

(∣∣t2∇t2,M2P
[2]
t2

(g)
∣∣) (y1,y2)

∣∣∣2 dt2
t2

)2

dy1dy2

)1/2

×

(∫∫
M̃

(∫
R+

∣∣∣M2

(∣∣t1∇t1,M1P
[1]
t1

(g)
∣∣) (y1,y2)

∣∣∣2 dt1
t1

)2

dy1dy2

)1/2

≤ Cα2

(∫∫
M̃

(∫
R+

∣∣∣t2∇t2,M2P
[2]
t2

(g)(y1,y2)
∣∣∣2 dt2

t2

)2

dy1dy2

)1/2

×

(∫∫
M̃

(∫
R+

∣∣∣t1∇t1,M1P
[1]
t1

(g)(y1,y2)
∣∣∣2 dt1

t1

)2

dy1dy2

)1/2

= Cα2

(∫∫
M̃

(∫
R+

∣∣∣t2∇t2,M2P
[2]
t2

(1− g)(y1,y2)
∣∣∣2 dt2

t2

)2

dy1dy2

)1/2

×

(∫∫
M̃

(∫
R+

∣∣∣t1∇t1,M1P
[1]
t1

(1− g)(y1,y2)
∣∣∣2 dt1

t1

)2

dy1dy2

)1/2

≤ Cα2∥1− g∥2
L2(M̃)

= Cα2 |Eβ(α)
c| ,

where the second inequality we used the vector-valued inequality for the Hardy–Littlewood

maximal functions and the last inequality we applied the Littlewood–Paley theory. Next it fol-

lows from the support condition on Φ′ that for (y1,y2, t1, t2) satisfying Φ
′(P

[1]
t1
P

[2]
t2

(g)(y1,y2)) ̸=
0, we have |P [1]

t1
P

[2]
t2

(f)(y1,y2)| ≤ α.

As a consequence, we have

II2222 =

∫∫∫∫
M̃×R+×R+

|P [1]
t1
P

[2]
t2

(f)(y1,y2)|2|Φ′(P
[1]
t1
P

[2]
t2

(g)(y1,y2))|2

× |∇t2,M2∇t1,M1P
[1]
t1
P

[2]
t2

(g)(y1,y2)|2t1t2dt1dt2dy1dy2

≤ Cα2

∫∫∫∫
M̃×R+×R+

|t1∇t1,M1P
[1]
t1
t2∇t2,M2P

[2]
t2

(g)(y1,y2)|2
dt1dt2dy1dy2

t1t2

= Cα2

∫∫∫∫
M̃×R+×R+

|t1∇t1,M1P
[1]
t1
t2∇t2,M2P

[2]
t2

(1− g)(y1,y2)|2
dt1dt2dy1dy2

t1t2
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≤ Cα2∥1− g∥2
L2(M̃)

= Cα2 |Eβ(α)
c| ,

where in the second inequality we applied the Littlewood–Paley theory again.

Similar to the estimate of II222, we obtain that

II23 ≤ Cα2
∣∣∣{(y1,y2) ∈ M̃ : N β

P (f)(y1,y2) > α}
∣∣∣ .

Finally, we turn to estimate II24. By the chain rule,

∇t1,M1Φ(P
[1]
t1
P

[2]
t2

(g)(y1,y2))∇t2,M2∇t2,M2∇t1,M1Φ(P
[1]
t1
P

[2]
t2

(g)(y1,y2))

= (Φ′Φ′′′)(P
[1]
t1
P

[2]
t2

(g)(y1,y2))|∇t1,M1P
[1]
t1
P

[2]
t2

(g)(y1,y2)|2|∇t2,M2P
[1]
t1
P

[2]
t2

(g)(y1,y2)|2

+ 2(Φ′Φ′′)(P
[1]
t1
P

[2]
t2

(g)(y1,y2))∇t1,M1P
[1]
t1
P

[2]
t2

(g)(y1,y2)∇t2,M2P
[1]
t1
P

[2]
t2

(g)(y1,y2)

×∇t1,M1∇t2,M2P
[1]
t1
P

[2]
t2

(g)(y1,y2).

Thus, II24 can be dominated by II241+II242 with respect to the above two terms in the integrand

respectively. Using the same argument, we get that

II241 ≤ Cα2 |Eβ(α)
c| .

Next, it follows from the support property of Φ′Φ′′ and Hölder’s inequality that

I242 ≤ Cα2

∫∫∫∫
M̃×R+×R+

|∇t1,M1P
[1]
t1
P

[2]
t2

(g)(y1,y2)| |∇t2,M2P
[1]
t1
P

[2]
t2

(g)(y1,y2)|

× |∇t1,M1∇t2,M2P
[1]
t1
P

[2]
t2

(g)(y1,y2)|t1t2dt1dt2dy1dy2

≤ Cα2

(∫∫∫∫
M̃×R+×R+

|∇t1,M1P
[1]
t1
P

[2]
t2

(g)(y1,y2)|2

× |∇t2,M2P
[1]
t1
P

[2]
t2

(g)(y1,y2)|2t1t2dt1dt2dy1dy2

)
+ Cα2

(∫∫∫∫
M̃×R+×R+

|∇t1,M1∇t2,M2P
[1]
t1
P

[2]
t2

(g)(y1,y2)|2t1t2dt1dt2dy1dy2

)
≤ Cα2 |Eβ(α)

c| ,

where the last inequality follows from the estimates of the terms II2221 and II2222, that is, via

taking the vector-valued Hardy–Littlewood maximal function estimate and then the Littlewood–

Paley estimates.

Combining these estimates together, we conclude that∫∫
Aβ(α)

SP (f)(x1,x2)
2dx1dx2 ≤ C

∫∫
Eβ(α)

N β
P (f)(y1,y2)

2dy1dy2 + Cα2 |Eβ(α)
c| .

Hence, combining (3.4) and the above estimate, we see that∣∣∣{(y1,y2) ∈ M̃ : SP (f)(y1,y2) > α}
∣∣∣

≤ C
∣∣∣{(y1,y2) ∈ M̃ : N β

P (f)(y1,y2) > α}
∣∣∣+ C

α2

∫∫
Eβ(α)

N β
P (f)(y1,y2)

2dy1dy2.

The proof of Theorem 1.1 is complete.
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4 Applications

We address two direct applications of Theorem 1.1.

4.1 Weak endpoint estimate for Cauchy–Szegő projection on M̃

We recall that in the well-known result of Diaz [12] (see also recent result [2]), the explicit

pointwise size estimate and regularity estimate of the Cauchy–Szegő kernel on M is given as

follows.

Theorem A. For x and y in M with x ̸= y, the Cauchy–Szegő projection S associated with

the kernel S(x,y) is a Calderón–Zygmund operator, i.e.,

|S(x,y)| ≈ 1

V (x,y)
;

there is ϵ > 0 such that for x ̸= x′ and for d(x,x′) ≤ cd(x,y) with some small positive constant

c,

|S(x,y)− S(x′,y)| ≤ C1
1

V (x,y)

(
d(x,x′)

d(x,y)

)ϵ

;

for y ̸= y′ and for d(y,y′) ≤ cd(x,y) with some small positive constant c,

|S(x,y)− S(x,y′)| ≤ C1
1

V (x,y)

(
d(y,y′)

d(x,y)

)ϵ

with some constant C1 > 0.

Consider M̃ =M1×M2. The Cauchy–Szegő projection S̃ = S1◦S2 is a product Calderón–

Zygmund operator on L2(M̃), where Sj is the Cauchy–Szegő projection on Mj for j = 1, 2.

The general framework of product Calderón–Zygmund operator on space of homogeneous type

was studied in [18].

Following the framework in [11], we see that Theorem 1.1 gives rise to the weak endpoint

estimate of SP (f)(x1,x2). To be more explicit, following [8] we first see that there is C > 0

such that for all λ > 0,

|{(x1,x2) ∈ M̃ : M(f)(x1,x2) > λ}| ≤ C∥λ−1f∥
L logL(M̃)

, (4.1)

where

∥f∥
L logL(M̃)

=

∫∫
M̃

|f(x1,x2)| log(e+ |f(x1,x2)|)dx1dx2.

See also [11, Section 3] for the proof of (4.1) for strong maximal function on product Lie groups,

where the arguments can be modified to our setting M̃ =M1 ×M2.

Then Theorem 1.1 yields that |{(x1,x2) ∈ M̃ : SP (f)(x1,x2) > λ}| ≤ C∥λ−1f∥
L logL(M̃)

,

and hence we have the atomic decomposition of L logL(M̃), which further gives

|{(x1,x2) ∈ M̃ : S̃(f)(x1,x2) > λ}| ≤ C∥λ−1f∥
L logL(M̃)

. (4.2)

We also note that this weak type endpoint estimate (4.2) also holds for the general product

Calderón–Zygmund operator on M̃ (we refer to the full definition of the product non-isotropic



18 Ji Li

smooth operators on M̃ as introduced by Nagel and Stein [30], as well as the Journé type

product Calderón–Zygmund operators [21, 18]).

Thus, (4.2) is also true for the Marcinkiewicz multiplier m(□(1)
b ,□(2)

b ) acting on the Shilov

boundary M̃ , where □(j)
b is the Kohn Laplacian on Mj for j = 1, 2. (Note that in [4] we

proved that under suitable assumptions on the multiplier functionm, m(□(1)
b ,□(2)

b ) is a product

Calderón–Zygmund operator of Journé type).

4.2 Maximal function characterisation for product Hardy space on M̃

For the sake of simplicity, we take Hardy space H1(M̃) as an application. The same argu-

ment holds for Hp(M̃) for p < 1 with a more complicated but very standard definition via

distributions (see for example the test function space and distributions as in [19]).

We now define

H1
SP

(M̃) = {f ∈ L1(M̃) : SP (f) ∈ L1(M̃)}. (4.3)

Following the Plancherel–Polya inequality in [19], we see that H1
SP

(M̃) is equivalent to the

Hardy space H1(M̃) in [19] given via discrete square function (or discrete area functions) using

the discrete reproducing formula via approximation to identity. Thus, H1
SP

(M̃) has atomic

decomposition, which we refer to [20].

Next, we define

H1
max(M̃) = {f ∈ L1(M̃) : N β

P (f) ∈ L1(M̃)}. (4.4)

Then we have the following equivalence characterisation.

Proposition 4.1. H1
SP

(M̃) coincides with H1
max(M̃) and they have equivalent norms.

Proof. Suppose f ∈ H1
SP

(M̃) ∩ L2(M̃), then following [20] f has an atomic decomposition

f =
∑

j λjaj where each aj is a product atom and
∑

j |λj | ≈ ∥f∥
H1

SP
(M̃)

. Thus, it suffices to

show that ∥N β
P (aj)∥L1(M̃)

≤ C for every atom aj , where C is an absolute constant. This is a

standard argument, which follows from the size and cancellation of aj , the size and regularity

estimates of the Poisson kernels P
[1]
t1

and P
[2]
t2

, and Journé’s covering lemma [32]. Thus, we

have ∥f∥
H1

max(M̃)
≤ C∥f∥

H1
SP

(M̃)
. Then via the density of H1

SP
(M̃) ∩ L2(M̃) in H1

SP
(M̃), we

see that H1
SP

(M̃) ⊂ H1
max(M̃).

Then reverse direction ∥f∥
H1

SP
(M̃)

≤ C∥f∥
H1

max(M̃)
follows from Theorem 1.1 and hence

H1
max(M̃) ⊂ H1

SP
(M̃).

The proof is complete.

Proposition 4.1 provides the maximal function characterisation of H1(M̃).
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