On Fefferman—Stein type inequality on Shilov boundaries
and applications

Ji Li

Abstract: In this paper, we establish the Fefferman—Stein type inequality for area integral and
non-tangential maximal function on the Shilov boundary studied by Nagel and Stein [30]. The
technique here is inspired by Fefferman—Stein [14] and Merryfield [22] but we bypass the use of
Fourier or group structure as these were not available on the polynomial domains of finite type.
Direct applications include the maximal function characterisation of product Hardy space and the
weak type endpoint estimate for product Calderén—Zygmund operators (such as the Cauchy—Szegé
projection) on the Shilov boundary.

1 Introduction

In this paper, we establish the Fefferman—Stein type good-\ inequality for area integral and
non-tangential maximal function on a typical product space: the Shilov boundary of tensor
product domains studied by Nagel and Stein [30].

Let u(z,t) be a harmonic function in R™ x (0, 00). The non-tangential maximal function
u*(z) = supj,_y < |u(y, )| and area integral S(u)(x)* = f‘x_qu |Vu(y,t) |2t "dydt are two
fundamental tools in the theory of singular integrals and the related function spaces. Fefferman
and Stein [14] first showed that [[u*[|1prn) = [|S(u)]|Lr@ny, 0 < p < 1, when u(z,t) — 0 as
t — oo (for 1 < p < oo this was known in [35]). The key objects in their proof are the following
inequality ([14, (7.2)])

A
Hx € R": S(u)(z) > A} S {z e R" tu™(z) > A} + )\12/0 si{zr € R" : u*(z) > s}lds (1.1)

and the other inequality of the same type but with v* and S(u) interchanged (here the implicit
constant is independent of A\). When u is given by the Poisson integral of f, a different proof
of the LP norm, 0 < p < 1, of u* and S(u) was given via atomic decomposition. Later,
Gundy and Stein [16] established this result in the bi-disc for characterising the product Hardy
space HP, 0 < p < 1, via using holomorphic function and martingales. The key step mirrors
(1.1), applied to the area integral and non-tangential maximal function in the bi-disc. It is
natural to explore whether this is also true on the product spaces R™ x R™, noting that in the
higher dimensional space, the analyticity is not available. Unlike the one-parameter setting,
the equivalence ||u* || Lprnxrm) = [|S ()| Lp@n xrm) (for 0 < p < 1) does not follow from atomic
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decomposition directly. It is still not clear whether one can construct the atomic decomposition
of f directly from the assumption ||u* || Lprn xrm) < 00 (u is given by the double Poisson integral
of f).

To overcome this, Merryfield [22] provided a new proof of (1.1), which bypassed the use of
surface approximation ([14]) or analyticity ([16]), and hence the inequality [|S(u)|re@nxrm) S
[w*|| L (rn xrm) holds (the reverse can be done by atomic decomposition directly). However,
one key ingredient in [22] is the Cauchy—Riemann equation for constructing a test function
(for Littlewood—Paley estimate) from the given test function (for maximal function). Thus,
although we have studied the Hardy spaces via area function and atomic decomposition in the
general product spaces of homogeneous type (see for example [19, 6, 20]), the maximal function
characterisation was only known in a few cases via establishing an analogy of (1.1): (1) the
Muckenhoupt—Stein Bessel operator setting ([13]), where we exploited the Cauchy—Riemann
type equation associated with the Bessel operators; (2) the multi-parameter flag setting of
Nagel-Ricci-Stein [23]. In [17] we extended [22] to the flag Euclidean setting, (3) the product
stratified Lie groups [10] and the flag setting of Heisenberg group [5], where we used the group
structure and explicit pointwise upper and lower bound of Poisson kernel.

Besides the bi-disc and product Lie groups, one fundamental model domain is the Shilov
boundary M=M 1 X My studied by Nagel and Stein [30] which links to the 9-Neumann problem
on decoupled boundaries (to ease the burden of notational complexity we consider the tensor
product of two domains). Here each M; is an unbounded polynomial domain of finite type m;
defined as follows.

Let M (for simplicity we first drop the subscript j) be given as

M = {(z,w) € C*: Im(w) =P(2)}, (1.2)

where P(z) is a real, subharmonic, non-harmonic polynomial of degree m. We note that ([30])
M can be identified with C x R = {(2,t) : z € C,t € R}. The basic (0,1) Levi vector field
is then Z = % — i%—?%, where i = —1, and we write Z = X; + iXs. The real vector fields
{X1, X2} and their commutators of orders up to m span the tangent space at each point.
Associated with the domain M is the natural Carnot—Carathéodory metric d(x,y) on M (for
every X,y € M) and the measure u of the nonisotropic ball B(x,r) = {y € M : d(x,y) < r},
which made (M, d, i) as a space of homogeneous type in the sense of Coifman and Weiss [9].
Also denote V;.(x) = u(B(x,r)). Details are given in Section 2.

The typical example that we have in mind (regarding further development and applications
29, 24, 25]) is P(2) = 5 |2|** for z € C and k to be positive integers. When k = 1, M is the
boundary of the Siegel domain in C? and it is CR-diffeomorphic to the first Heisenberg group,
from which it inherits the group structure. However, when k& > 2, M does not have a group
structure. Thus, we are more interested in the cases k > 2. The O-problem, sub-Laplacian,
Kohn-Laplacian and the related geometry, singular integrals have been intensively studied,
see for example [7, 3, 12, 27, 30, 26, 34]. Very recent progresses on such model domains M
(k > 2) include the explicit pointwise upper and lower bound for the Cauchy—Szeg6 kernel and
its applications to boundedness and compactness of commutators ([2]), and the construction
that for each k > 2, M can be lifted to a Lie group G ([1]), which provided an explicit and
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optimal lifting Lie algebra comparing to the result of Rothschild and Stein [33].

We now state our result in detail. Let M = M7 x M, where each Mj is the example domain
as above with P;(z) = ﬁj|z\2kﬂ', j =1,2. Let d; be the Carnot-Carathéodory metric on M; and
p; be the corresponding measure. For the sake of simplicity, throughout the paper we denote
dpj(x;) = dx; and |A| represents the measure of the set A. Let £; be the sub-Laplacian of
M; and Pt[j I be the Poisson semigroup e % \/FJ', j =1,2. Consider the non-tangential maximal

function

1
N (x1,%2) = sup PR () (y1, y2)]
(y1,y2)EM t1>0,t2>0,
di(x1,y1)<pt1,
da(x2,y2)<St2

with the constant 8 > 0. Consider also the Littlewood—Paley area function. Let
Viom = (0, X1, X12), Vi = (0, X21, X22).

Then for any fixed § € (0,00), the Littlewood—Paley area function Sg( f)(x1,x2) is defined as

1/2
dy1dyadtidts
)

S2 : // 11V n P 49V 4y a1, PP y2)l?
P(f X1,X3) ( -, Xl,m)] 1V P oV, s Ny, y2) 61V, (x1)t2 Vi, (%2

where T%(x1,x2) = I} (x1) ® I (x2) and T/ (x;) = {(y;,1;) € M; x Ry : dj(x;,y;) < Bt;},
j = 1,2. For simplicity, we denote Sh(f)(x1,x2) by Sp(f)(x1,X2).
The main result of this paper is the following.

Theorem 1.1. There exist C > 0 and 8 > 1 such that for all f € C’(‘)’o(M) and for all X > 0,
{(x1,%2) € M : Sp(f)(x1,%2) > A}| (1.3)
— c —
< C‘{(XI,XQ) eM :Ng(f)(XI,XQ) > )\}| + )\2/ sl{(x1,x2) € M:Ng(f)(x1,x2) > s}|ds.
0

The main step here is to establish a modified version of good-A inequality, that is, to
prove that |{(x1,x2) € Ag(A) : Sp(f)(x1,%x2) > A}| is bounded by the right-hand side of
(3.4), where Ag()) is a suitable subset of Eg()) := {(x1,x2) € M : Ng(f)(xl,xQ) < A}. The
key idea that is different from [22] is to inherit the property of the double Poisson integral
U= Pt[ll } Pt[j ] (x Ep( A)) via a smooth function which captures the range of u. Thus, we bypass the
restriction on a smooth function which is even, and has compact support. We only rely on the
pointwise upper bound of the Poisson kernel as well as the conservation property. The proof
will be given in Section 3 after some necessary preliminaries in Section 2.

We further note that the above result also holds for M = M x - - - x M, for general n > 2.
It suffices to repeat the proof by induction.

As applications, we point out that: (1) Theorem 1.1 passes the endpoint weak type
estimate (L log L(]TJ/) to weak Ll(M)) from the strong maximal function M to the Littlewood—
Paley area function Sﬁ Thus, through the approach of R. Fefferman [15] (local version) and
the recent study [11] (global version), we obtain the L log L(M) to weak LY(M M) for product
Calderén—Zygmund operators on M ; (2) Theorem 1.1 also gives rise to the characterisation
of product Hardy space on M , which was established via Littlewood—Paley area function and

characterised equivalently by atomic decomposition [19, 20]. Details are in Section 4.
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2 Notation and preliminaries

In this section, we recall the basic geometry of the Shilov boundary M = M; x M, [30] with
each M; given in (1.2), where P(z) = 5-|2|?*, k > 2. It is clear that the degree m of P(2) is
given by m = 2k.

2.1 Basic geometry of Carnot—Carathéodory space M

We first recall the control metric on M given in [30] (see also [31, 27, 28, 34]). Note that
we write the complex (0,1) vector field Z = X + iXs, where {X7, X2} are real vector fields
on M. Define the metric d on M as follows. If x,y € M and § > 0, let AC(x,y,0) denote
the set of absolutely continuous mapping v : [0,1] — M such that v(0) = x and (1) =y,
and such that for almost all ¢ € [0,1] we have 7/(t) = a1(t)X1(v(t)) + aa(t) X2(y(t)) with
|1 (£)]2 + |2 (t)]? < 6%. Then we define

d(x,y) =inf{d >0: AC(x,y,d) # 0}.

The corresponding nonisotropic ball is defined as B(x,0) = {y € M : d(x,y) < 0}, and
let V5(x) denotes its volume. From [30] we know that there is a positive constant Cy such that
for every x € M, A >1and § > 0,

Vs (x) < CagA\"Vs(x). (2.1)

We also set V(x,y) = Vj(xy)(%). From the doubling property we observe that V(x,y) =~
V(y,x) where the implicit constants are independent of x and y.

2.2 Sub-Laplacian on M

Consider the sub-Laplacian £ on M in self-adjoint form, given by £ = Z?:l X7 X;j. Here
(Xip,0) = (¢, Xj), where (p,9) = [, (x)9(x)dx, and ¢, € C5°(M), the space of C*
functions on M with compact support. In general, we have X7 = —X;+a;, where a; € C>®(M).

In our particular setting, we see that a; = 0. That is

2
L=-> X:.
j=1

The solution of the following initial value problem for the heat equation,

O x,5) + Ll 5) = 0

with u(x,0) = f(x), is given by u(x,s) = Hs(f)(x), where H; is the operator given via the

spectral theorem by Hy = e~*£, and an appropriate self-adjoint extension of the non-negative

operator £ initially defined on C§°(M). For f € L*(M),

HL(f)(x) = /M H(s, %, y)(y)dy.

Moreover, H(s,x,y) has some nice properties (see Proposition 2.3.1 in [30] and Theorem 2.3.1
in [27]). We restate them as follows:
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(1) H(s,x,y) € C=([0,00) x M x M\{s =0 and x = y}).

(2) For every integer N > 0,

RO XIS () + VTR Viy) Vs 1 V) (s 7ve)

(3) For each integer L > 0 there exist an integer Ny and a constant C, so that if ¢ €
C°(B(x0,0)), then for all s € (0, 00),

|0% H,[g] (x0)| < CLo~Fsup Y dM|o%e(x)].
* <N

(4) For all (s,x,y) € (0,00) x M x M, H(s,x,y) = H(s,y,x), H(s,x,y) > 0.
(5) For all (s,x) € (0,00) x M, [,, H(s,x,y)dy = 1.

(6) For 1 < p < oo, [Hs[fllleary < I fllze(ar)-

(7)

7) For every ¢ € Cg°(M) and 1 < p < oo, hH(l] | Hs[] — ol zoary = 0.
s5—>

2.3 Poisson kernel estimate on M

From (2) in Section 2.2, we see that there is a positive constant C'y such that for all s > 0,

X,y € M,
1 Vs N
[H(sx,y)| < C V(X y) + V(%) +Vsly) (d(XaY) + \/5) .

Let P,(x,y) be the kernel of the Poisson semigroup e="VL, The estimates for P(x,y)

follow from the subordination formula

;t2
e—t\/z —_ 1 > teas e—sﬁﬁ
2ﬁ 0 \/g S ’
the doubling property of the measure and the estimate of |H(s,x,y)| as above. We have that
for each x € M and ¢t > 0
| Py =1, (2.2)
M
and that there exists C'p > 0 such that for each x,y € M and ¢t > 0,
1 t
[P (x,y)| < Cp (2.3)

Vx,y) + Vi(x) + Vily) t+d(x,y)’
Here Cp depends on Cy and the upper dimension m as in (2.1). From this size estimate we
see that for every f € L?(M),

[P (f)(x)| < Cp(Ca2™ + 1)M(f) (%), (2.4)

where Cy and m are the constants from (2.1) and M is the Hardy-Littlewood maximal operator
such that

M(f)(x) = sup ;, /B F¥)ldy,

B>z
where B runs over all metric balls in M.
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2.4 Basic geometry of Shilov boundary M= My x M,

Consider M = M; x M, such that M; = {(z;,w;) € C*: Im(w;) = P;(z;)} with the vector
fields X1 and X, j = 1,2. We denote X = (x1,X2) € M x Mo.

The nonisotropic distance d; on M; can be regarded as a function on M; which depends
only on the variables (z;,t;), where t; = Re(w;). In addition, there is a nonisotropic metric
ds~ on M induced by all real vector fields {X; 1, X192, Xo1, X0} If X, ¥ € M and § > 0, let
AC(X,y,d) denote the set of absolutely continuous mappings ~ : [0, 1] — M such that v(0) = X
and (1) = ¥, and such that for almost every ¢ € [0, 1] we have 7/(t) = Z?zl(aj,l(t)Xj,l(y(t))+
02 () X;2(5(0)) with X2 (Jaga (O + laga(8)]?) < 62 Then

ds(%, ) = inf{5 > 0 | AC(%,¥,5) # 0}.

Similar to (2.4), we also have that for every f € L?(M),
PP (f) (1, x2)| < CoMis(F) (31, x2), (2.5)

where Cy depends on the constant in (2.4), Pt[j] denotes the Poisson semigroup on M;, and

Mg is the strong maximal function on M such that

Ms(f)xi,x2) = sup !

T |f(y1,y2)|dy1dy2
BixB23(x1,%x2) ‘Bl X BQ| B1XxX B> ’ ’

where B; runs over all metric balls in M; for j =1, 2.

3 Proof of Theorem 1.1: Fefferman—Stein type inequality on M

For j = 1,2, let M; be the model domain as defined in Section 2, with the vector fields X
and X9 and the sub-Laplacian £;.

We aim to prove that there exist constants C' > 0 and § > 1 such that for f € C§° (M )
and for all o > 0,

[{(x1,%2) € M : Sp(f)(x1,%2) > al}| (3.1)
< Cl{(x1,%2) € M : Nﬁ(f)(th) > at|+ ;/E ( )Ng(f)(X17X2)2dX1dX2,
B (7
where
Es(a) = {(Xl,XQ) e M: Ng(f)(xl,XQ) < a}.
We denote

Eg(0)¢ = M\Eg(a) = {(x1,x2) € M : NS(f)(x1,%2) > al.

For j = 1,2, we note that for any f € L?(M;), u;(x;,t;) == e_tj@(f)(xj), (x5,t5) €
M; x R4, is harmonic, in the sense that

2
Ay myui(xj,t5) = Liui(x),t5) — 0 uj(x;,t5) =0,
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where A, v = L5 — ij and we use the fact that atgjuj(xj,tj) = %e_tj@(f)(xj) =
Ljuj(x;5,t;). Consequently, for j = 1,2, for the gradient Vi, rr, = (9y;, Viu;) = (0, X1, Xj2),
the following formula holds: for every (x;,t;) € M; x R4,

2V, (x5, 65) P = 2\Ve, gy ui (x5, 5) 12 = 2u5(x5, 1) Ay, ary (x5, £5) (3.2)
= =Dy, (U5(x5,t5)) -

Next, for all > 0 and f € L'(M) satisfying N'5(f) € L' (M), define

. 1
Aga) = {(xl,m) € M s Ms(xpye00) (51 %2) < 5 }

where Cj is the constant in (2.5).
From the definition, it is direct to see that

Bp(a)° C Ag(a)® = M\As(a)

and hence Ag(a) C Eg(a).
Next, from the L?-boundedness of the strong maximal function Mg, we see that

[45(0)°] < C[Ms(p(@)|[air < ClEa(a)] (3:3)

where the constant C' is independent of @ and 8. Then we split

[{(x1,%2) € M : Sp(f)(x1,%2) > a}] (3.4)
< H(x1,x2) € Ag(a)®: Sp(f)(x1,%x2) > a}| + [{(x1,x2) € Ag(a) = Sp(f)(x1,x2) > a}|

1
< C‘Eﬁ(a)c‘ + — // Sp<f)(X1,X2)2dX1dX2,
a Ap(a)

where the last inequality follows from (3.3) and from Chebyshev’s inequality. Now it suffices
to estimate the second term in the right-hand side of last inequality above.
Let

g(x1,%x2) := XEﬁ(a)(Xl,XQ) and Wp:= U I(x1,x3).
(x1,x2)€A45(a)

We first note that for (y1,y2) € M and t1,t9 >0,

Pt[ll}Pt[QQ] (9)(y1,y2) = Pt[ll}Pt[QQ](l - XEﬁ(a)C)(yhyz)
=1- Pt[ll]Pt[f] (xEﬁ(a)c)(Yb y2),

where we use the fact that Pt[ll}Pt[f](l) = 1. Next, note that for (y1,y2,t1,t2) € W3, there is
(x1,%x2) € Ag(a) such that (y1,y2,t1,t2) € I'(x1,%2), and hence

Pt[ll]Pt[f] (XEs(a)e) (1, ¥2) < CoMs(XE,(a)e) (X1, %2) < 10’
where the first inequality follows from (2.5) and the last inequality follows from the fact that
(x1,%x2) € Ag(a).
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Then we see that for every (y1,y2,t1,t2) € Wg, we obtain that

PP ) (v1,32) > 1.

Next, we claim that if 8 is chosen sufficient large, then there is a constant C; € (0, 190)
such that for any (y1,y2,t1,t2) € (Wg)c = (M x [0, 00) % [0,00))\/WB,

PP (9)(y1,y2) < €1, (3.5)

where
ng = U Fﬁ(xl,XQ).
(x1,%x2)€Eg ()

In fact, for every (y1,ye,t1,t2) € (W[g)c, we see that for any (z1,22) € Eg(a), we have either
dy(y1,2z1) > Bt1, or da(y2,2z2) > [Sto, or both. Hence, we have

0< P[”P[Q] )(¥1,¥2) // XEs(a Z1,Z2)P[ ]<YI;Zl)Pt[gz](Y%ZQ)dzleQ

/ Pt[l](}ﬁ, z1)dz / Pt[f] (y2,22)dzo
d1(y1,21)>pt1 Mo

+/ Pt[ll](Yth)le/ Pt[?(Y2,Z2)dZ2
My d2(y2,22)>Bt2

1 2
S / Pt[l](}’th)le +/ Pt[Q](Y%ZZ)dZ%
di(y1,21)>pPt1 da(y2,22)>pBt2
where the last inequality follows from the conservation property (2.2). To continue, by decom-
posing {z; € M; : d;(y;j,z;) > Bt;}, j = 1,2, into annuli and using the size estimate (2.3), we
have

Q

0 < PP (g)(y1,y2) < 770 (as B — 00),

where the constant C' depends on the constant Cy and m in (2.1) and on Cp in (2.3). Thus,
there is some > 1 such that our claim (3.5) holds.

This also shows that if Pt[ll]PtE] (9)(y1,y2) > C1, then (y1,y2,t1,t2) € Wg.

To continue, we now choose a smooth cut-off function ¢(t) € C*°(R) such that ¢(t) =1
when t > 1% and ¢(t) =0, when t < (4.

Besides, for simplicity, we denote vy, 4,(y1) := Vy,, Mth[QQ]( f)(y1,y2). Then,

// SP(f)(Xl,XQ)QdX1dX2
Ag(a)

[1] 2] o dyidyadtidts
= tV PtV P, , dxydx
//Aﬁ(a) //F(xl,x2)| 1Vaan By Vs By () (1,52) t1 Vi, (x1)t2 Vi, (x2) 1652

_ // // 2 dyidyadtidis
Ag(a) I(x1,%x2)

dx1dxs

1
tlvt17M1 Pt[l ]t2U}’27t2 (Y1)

t1 Vi, (x1)t2 Vi, (%2)

2
< //// ’vtLMlF)t[ll]Uyg,tQ(YI)‘ titadtidtady dy2
Wp
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M

1] 2
v751,M1 Pt1 Vys,ta (Y1)‘

2
X ‘@ (E[E]PE] (9)(y1, Y2)> ) titadtydtady 1 dys. (3.6)

To continue, we note that Pt[ll]vy%t2 (y1) as a function of (yi,%1) is harmonic in M; x Ry.
Moreover, Pt[ll] PE] (9)(y1,y2) as a function of (y1,%1) is also harmonic in M; x R;. Hence, by
using (3.2) the following equality holds:

2 2
Vit Py )| o (PEPE (9) (31, v2))| (3.7)
_ 1 [ 2 1] pf2] ?
= —58um (Ptl Uy2,t2(y1)> -w(Ptl By (g)(yl,ya))

- 4Pt[11]vywi2 (YI)vtl,Ml Pt[ll]vyz,tz (y1)
1 2 1 2 1 2
< o (PP 9)v1v2) )¢ (PR PE (9)(31,32) ) Vi Py P (9) (71, v2)
2
1Py o) P! (PR P (0) (1, v2)) [T P 9) 31,30

2
1P vys 00) P (P PE ()1, v2) ) (PP 9) (1,92) ) | Vi P PE () (v, 32)

=: fi(y1,y2, t1,t2) + fa(y1,¥2, t1, t2) + f3(y1,y2, t1, t2) + fa(y1, y2,t1, t2).

We note that by Young’s inequality,

oty < = |v, 4 P plpl ’
| f2(y1,¥2, 1, t2)] t1,M1 47, Vya,ta (y1) ‘P t1 < to (9)(y1,¥2)

— 10
4012y, 0 1) o (PP 0) (31, v2) )| 190000 PP 0) 31, 322
=: fo1(y1,¥2,t1,t2) + foa(y1,¥2,t1,t2).

We can see that the integral

////~ fo1(y1,¥y2, t1, to)titadtidtady 1 dyo.
MXR+><]R+

can be absorbed by the right-hand side of (3.6), while fo2(y1,¥y2,%1,%2) is quite similar to
f3(y1,¥2,t1,t2) and fi(y1,y2,t1,t2). Hence, we further have
fa2(y1,y2: t1,t2) + f3(y1,y2, ti, t2) + fa(y1,y2, t1, t2) (3.8)

2 2
< 40P vy a0 @ (P PE (9) (31, v2) )| [ W PR PE () (v, v2)

=: fa(y1,¥y2,t1, t2),

where we choose ®(t) such that

(1) = (PO + ()" ()Y, and  ®(C1) =0.
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Note that ®(t) > 0 and ®/(t) =0 for t < Cy or t > 5. In addition, via assuming ®(C) = 0,
we see that ® exhibits behavior similar to ¢.
To continue, note that the right-hand side of (3.6) is bounded by

10
3 ’////"/ fl(yl’y27t17t2)tlt2dt1dt2dy1dy2
MxRy xRy

10
i 9 ‘////~ f2(y1, 2. t1, t2)titadt1dtody 1 dy
MXR+XR+
=:I; + 1.

For the term I, integration by parts yields that

'// fi(y1,y2,t1, t2)tidtidy
M1 XR+

1
"2 V/ L1 (P yana(v0)? - (P P2 (9) (31, 92)? ) trdiadys
Ml XR+

] (A o PL PR 0) 1. v0)?) trdtidy
M1 XR+

1
=3 / 8V (Plvyeis(v0)? - (P PE (9) (91, 92))%) dty
Ry d1(0,y1)=00
t1=00
- / n, (Pt[ll]vy27t2(y1)2"P(Pt[ll]Pt[QQ}(g)(ylay2))2) t  dy
t1=0

My
o (B0 o PR (@) 1.32)P)
M1 XR+

<TIi1 + Lo + Lis.

For 111, note that

8V (P ey 31)? - 0P PR (9) (1,72))?)
= 2P0y, 1, (v 1)1V an P vy, 1, (1) - o(PH PR () (y1, y2))?
+ Py, 1, (y1)% - 20(PL PP (9) (1, 72)) 1 Van o (PR P (9) (31, 72)).

The size condition of the Poisson kernel in (2.3) yields that

=0.

6V (P oy 1) o (PP (9) (71, 92))%) oo
d1(0,y1)=00

Thus, 111 =0.
For 15, we have
O (Pl oyaes 000 0P P () (31, 72))? ) 1
= 2P0y, 1, (y1) 1100 PMvy, (1) - o (PP (9) (1, y2))?
+ P,f[l”vyz,t2 (y1)?- 2¢(Pt[1”Pt[22} (9)(y1. y2)>90/<Pt[11]Pt[22} (9)(y1,y2)) tlatht[f]Pt[f] (9)(y1,y2).
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For t; — oo, from the decay of Poisson kernel in (2.3) and the functional calculus we see that
the kernel of tlﬁtht[ll] also satisfies a similar size condition as in (2.3). Thus, we have that

Ouy (Plvyaaa(v1)? - (PP (9)(v1,¥2))2) 11 — 0. (3.9)

On the other hand, when t; — 0T, we see that the term tlatht[luva,Q (y1) — 0, since tlathE]
has integration zero. Thus, (3.9) also holds when ¢; — 0. This gives that Iy5 = 0.
For 1;3, we have

s = ‘ /M (1P vyera )2 - (P PE (9) (31, v2))?)
1

< /M [oyass (1) Pl (B2 (9) (y1. y2)) Py,
1

where the last inequality follows from the fact that \Pt[lu Vys 12 (¥1)]? - cp(Pt[lu Pt[f } (9)(y1,¥2))? =0

J

as t; — oo and that Pt[l1 — identity as t; — 0.

Therefore,

)
Wg ([ )PP (0)1,v) Pradiadyadyy (310)
MXR+
)
[ VPR Pl )1, o) Pradeadys dyi.
M1 MQXR+

Using the same argument as in (3.7), we have

Ve P2 v e (P2 o)y (3.11)
= _%AtQ,Mz <Pt[22](f)(yl,y2)2 : @(Pt[f] (9)(yl,y2))2>

—4PB(F)(y1,y2)Visr P2 (F) (71, y2)

% o(PE9)31,32)) @ (PE9) 31,52) ) Vie PR 0) (v, 2)

2 2
~ 1PNyl (PE9)31,v2)) " |[Veann PR 9) (31, 72)]

PRy Po (PG v2) )¢ (PR 0 0 v2)) [ Ve PE )31, 32)|

=: hi(y1,y2,t2) + ha(y1,y2, t2) + ha(y1,y2, t2) + ha(y1,y2, t2).

Then, the term ho can be handled by using the same estimate as we did for fo, that is, we
dominate ho by

Ve PR32 e (P20 v) [

+ 40 ‘Pt[f}(f)(yh )@)‘2 ¢’ (Pt[f] (9)(y1, YQ)> ‘2 ‘VtQ,szt[? (9)(y1,¥y2)

=: ho1(y1,¥2,t2) + hoa(y1, y2, t2).

2
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Again, we see that

5
/ // ha1(y1,y2, t2)tadtadys dyq
9 M1 MQXR+

can be absorbed by the right-hand side of (3.10), and we further have

hoo(y1,y2,t2) + ha(y1,¥2,t2) + ha(y1, y2, t2) (3.12)
(2] 9 (2] 2 2] 2
< 0P (N y2) P |2 (PR 01, y2)) | [Vaan P () (v1.y2)

=: ha(y1,y2,t2),
where we choose
U(t) = ((¢' ()" + (p(t)e" (1)),

Then we further have

L < C’/ // hi(y1,y2, t2)todtadys dy:
M1 MQXR+

+C/ // b2(y1,y2, t2)tedtadys dyi
Ml MQXR+

=Ly + 1

with an positive absolute constant C. By repeating a similar integration by parts as in the
estimates for I;, we have

I < C//Mf(}’bY2)2‘P(g(}’17}’2))2d}’1d}’2-

It follows from the definition of the non-tangential maximal function N g (f) that f(y1,y2) <

Ng(f)(yl, y2). Besides, from the definition of the functions g and ¢, we see that for (yi,y2)
with ¢(g(y1,¥y2)) # 0, we have that g(y1,y2) > C1, which shows that (y1,y2) € Eg(«). Hence,
Ng(f)(}’h}’Q) < a. ThUS7

I < C/ ( )Ng(f)(YI7Y2)2dY1dYQ~
Eg(a

For IlA;, again, from the definitions of the functions g and ¥ (which inherit the sup-
port condition from ), we see that for (yi,y2,t2) with \D(Pt[f]g(yl,yg)) # 0, we have that
Pt[f]g(yl,yg) > C1. From (3.5) we see that (y1,y2,0,t2) € Wg. Hence, there exists zo such
that (y1,22) € Eg(a) and that [PE(f)(y1,y2)| < No(f)(y1,22) < a. Thus,

I, <C p 2|y (p? * 19, P2 ! todtadys d
12 < _ 1P (f)(y1,y2)l e (9)(Y1,Y2) o.M Py (9) (Y1, ¥2)| tadtadys dy:
XNy

<l

2 dt
= Ca® ///N ‘tQVtQ,MQPt[?(Q)(YhYQ)‘ TQdW dy1
MXR+ 2

2
Vtz,M2Pt[22] (9)(3’1,3’2)‘ todtadys dyy
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2 dt
= Ca? ///N ‘thZ,Mth[f}(l —9)(y1,y2)| —dys dy,
MxR4 to

where the last equality follows from the fact that the kernel of t5Vy, MQPIE ! has integration
zero. Therefore, by using the Littlewood—Paley estimate, we obtain that

Ly < Ca®|1 = g2, i = Ca? [Es(a)°].
This finishes the estimate of the term I;. We now turn to Is. By noting that

th,MﬁI)(Pt[f]Pt[f} (g)(yl,m)) =9 (Pt[f}ﬂ[f] (g)(YIa}’2)>vt1 Mlpt[l]P[ {9 1. y2),

=5 e,

X ‘Vt1,M1(I)(Pt[1HPt[22] (g)(yl,yg))‘ tltgdtldthyldyQ.

we have

vtz, 2Pt[22]Pt[11](f)(y17Y2)‘ (313)

Observe that
Veonts PEPE () (31, 52) PV a0, @(PL P2 (9) (v1,32)) 2
= s (BB ()1, v22 V0 an @B B ) (1, 92) )
- 4Pt[11}Pt[22](f)(Y1;YQ)vt2 M, P, [I]P[ }(f)(Y1,Y2)
X vt17M1(I)(Pt[11]Pt[22} (9)(y1, YQ)>vt2,M2vt1,M1(I)(P}[E]Ptf] (9)(y1,¥2))
— 1PIPP (y1,y2) PV 0 Vi an @ (PP PP (9) (y1, ) 2
— IBPE () (31 32)
x Vi an ®(PIPE (0) (1. 72) Vs vt Veo it Vir i 8P P (9) (31, y2)
=: 81(¥1,yor t1, t2) + F2(¥1, ¥2, t1, t2) + F3(¥1, Y2, L1, t2) + Sa(y1, y2, t1, t2).

Thus, the right-hand side of (3.13) is bounded by a1 + Ilog + Ilog + 1oy, where

Iy :=C ‘////N S (y1,y2, t1, to)titedtidtady 1 dya|, 7 =1,2,3,4.
MXR+XR+

To estimate the term Ilq, we first let ®1(¢) be a smooth function on R such that
1
O (t) = (®'()* + (B(1)D" (1))

Before we move on, note that again, from the definition of the functions g and ®; (which
inherits the support condition from ®), we see that for (y1,y2,t1) with @) (P, [ ] 9(y1,y2)) #0,
we have that Pt[ll]g(yl,yg) > (4. From (3.5) we see that (yi,y2,%1,0) € Wg. Hence, there
exists z; such that (z1,y2) € Eg(«) and that |Pt[11](f)(y1,y2)| < Ng(f)(zl,yg) < a.
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Next, by repeating a similar integration by parts, we have

IIx < C//Nf(}’hY2)2‘I’(Q(Y1,Y2))2d}’1d}’2

M

v [[[ PO Ve (P )51 52) Prudtdydy

MXR+
< C/ NE(F)(y1, y2) dy1dys

Eg(a)

+ Ca? ///N |Vt1,M1(Pt[1H (9)(y1,¥2))|*t1dt1dy 1 dy-

MXR+

= C/ NZ(f)(y1.y2) dy1dys
Eg(a)

dt1dy.d
+ o ///~ (114,00, Pl (1= g) (31, y2) P22
MXR+ tl

<c [ Minyivids + CalL- gl i
Eg(a)

= [[ NPy vy + ColEs(o)],
B (e
where in the second inequality we used the chain rule

Ve ®1(PH(9)(y1.y2) = (P (9) (1, ¥2)) Veran (PR (9) (v1, ¥2))

and the inequality |9 (Pt[ll] (9)(y1,y2))| < C as well as the support condition on ®].
For the term Ils9, we apply Young’s inequality to see that

s < //// \Viy P tl]Pt[g £y, y2)
10 MXR+><R+
X |V, Ml(p(Pt[l]Pt[g](g)(yh y2))|*t1tadtidtadydys

*C////Mxﬂw+ PPN () (31, y2)?

X ‘th,M2vt1,M1(p(Pt[ll]Pt[f] (9)(y1,y2))|Ptitadtidtady 1 dys
=: IIooq + II299.

Since Il991 can be absorded by Is, it suffices to estimate the term Ils99. By the chain rule,

1] [2
th,M2vt1,M1q)(Pt[1}Pt[2} (9)(y1,¥2))
1] 5[2 1] 5[2 1] 52
= " (PPN (9)(y1,¥2)) Visrs Py P (9)(y1,¥2) Viran, PYPE (9) (31, v2)
1] [2 1] [2
+ @ (PP (9) (1, ¥2)) Vit Vi vt Py P (9) (71, 72).
Then Ilsgo can be further bounded by Ilsg21 and Ils99o with the above two integrands respec-
tively.
Denote M7 and My be the Hardy—Littlewood maximal functions on M7 and Mo, respec-

tively. Then by the support property of ®”,

Tly0y — / / / /M PRy P (RS ) .y
X +>< +
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% Vit PP 9) (91, y2) PV 00 PR PE (9) (31, yo) Ptitodty dtady dy -

< Ca? / / / /M o V1225, L P2 (9) (31, y2)
X +>< +

X |Vt1,M1Pt[1HE[22] (9)(y1,y2)Pt1tadtidtady 1 dys
2
< [[f] |
MXR+ XR+

M (\tﬁtz,Mth[f] (9)}) (y1,y2)

2 dtydtadydys

X ‘Mz (’tlvtl,Mlpt[ll] (9)0 (Y1’y2)’ t1t2

Applying Hélder’s inequality, we further have

Iy < Ca? (//M </R
A

(I
(L

qian
A

2 2
= Ca?|Eg(a)°],

2 2 dty 2
Ml (‘tht%MQPtg (g)D (YIayZ) g dyldyg

i 2 dty \? 12
Mo <’t1vt1,M1Pt1 (9)|> (y1,¥2) T dy1dys

2 g 2 1/2
t2vt2,M2Pt[3](9)(Y17Y2)‘ t;) d}’1d}’2>

[1] thl 2 1/2
t1V, o By, (9)(v1,y2) I dy1dys

th 9 1/2
t2Via a P (1= g) (y1,y2) t;) dyldy2)

[1] 2dt;\” i
t1Vi, o B (1 —9)(3’1,3'2)‘ I dy1dys

where the second inequality we used the vector-valued inequality for the Hardy—Littlewood
maximal functions and the last inequality we applied the Littlewood—Paley theory. Next it fol-
lows from the support condition on @’ that for (y1,ys2, t1, t2) satisfying <I>’(Pt[11]Pt[22} (9)(y1,¥y2)) #
0, we have | P PPN(f)(y1,y2)] < .

As a consequence, we have

Moo — / / / /M RN ey (B EE 9y

X |vt27M2vt17M1 Pt[ll]Pt[g} (9)(y1, Y2)|2t1t2dt1dt2d}’1d}’2

dt1dtadyd
<ca [[[[ nVu s P b @) )
M xRy xR t1to

dt1dtody1d
= Ca? ////N |t1vt1,M1Rt[j]t2vt27M2Pt[22](1 -9,y )‘2 LCRIVITY2
M xRy xR t1to
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2 2
< Ca1=gll7, 5
= Ca?|Eg(a)°],

where in the second inequality we applied the Littlewood—Paley theory again.
Similar to the estimate of IIs99, we obtain that

s < Ca? {(y1,y2) € M : Nﬁ(f)(yl,yz) > atl.

Finally, we turn to estimate IIs4. By the chain rule,

th,Ml(I’(PmP[ ]( )1, ¥2)) Vg My Vig 1, Viy vy @ (Pt[ll}Pt[Q]( )(y1,¥2))
= (@@")(PL'PE (9)(y1,¥2) Ve 0, PP (9) (1, 32) IV a, P PE (9) (1, 72) 2
+ Q(q),(b/,)(Pt[lu Pt[221( )(¥1,¥2)) Ve my Pt[ll] Pg] (9)(y1,¥2) Vs Pt[ll]Pt[f] (9)(y1,y2)
X Vi, a0, Vi 1, PYPE (9) (1, v2).

Thus, IIs4 can be dominated by IIs4; +11245 with respect to the above two terms in the integrand
respectively. Using the same argument, we get that

11241 S Ca2 |E5(04)C] .

Next, it follows from the support property of ® ®” and Holder’s inequality that

Ty < Ca? / / / /M 1 PP @)1yl Vi P P @) 1 ve)
X +>< +

x |V MIVt%Mth[l]P[ N(9) (1, yo)|trtadti dtady  dys

SCOR(////M Ry xR |Vt1,M1Pt[11 Pt[f](g)(yl’”)‘2
XNy XNy

X |Vt2,M2Pt[11]Pt[22] (9)(y1, Y2)|2t1t2dt1dt2dY1dyQ>

+ Ca? <//// Vi, Mlvt2,M2P[11]Pt[22] (9)(}’1,Y2)\2t1t2dt1dt2d}’1d}’2)
MXR+XR+
< Ca? |Es()

where the last inequality follows from the estimates of the terms Ils901 and Ilo990, that is, via
taking the vector-valued Hardy-Littlewood maximal function estimate and then the Littlewood—
Paley estimates.

Combining these estimates together, we conclude that

//A ) Sp(f)(x1,%2)*dx1dxs < C/ Ng(f)(Y17}’2)2dY1dY2 +Ca?|Bg(a)°].
8

Eg(a)

Hence, combining (3.4) and the above estimate, we see that

{(y1.y2) € M2 Sp(f)(31.y2) > ol

<Cl{aye) € 8 MDY > al|+ 5 [ NpIvaPdydye
o Eg(a)

The proof of Theorem 1.1 is complete.
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4 Applications

We address two direct applications of Theorem 1.1.

4.1 Weak endpoint estimate for Cauchy—Szeg6 projection on M

We recall that in the well-known result of Diaz [12] (see also recent result [2]), the explicit
pointwise size estimate and regularity estimate of the Cauchy—Szegé kernel on M is given as
follows.

Theorem A. For x andy in M with x # 'y, the Cauchy—Szegd projection S associated with
the kernel S(x,y) is a Calderén—Zygmund operator, i.e.,

1 .
V(x,y)’

there is € > 0 such that for x # x' and for d(x,x’) < ed(x,y) with some small positive constant

1S(x,y)| ~

¢,

1S(x,y) = S(x,y)| < Clv(i,y) (fi((i);/))> ;

fory #y' and for d(y,y’) < cd(x,y) with some small positive constant c,

1S(x,y) — S(x,¥")] < ClV(:i, - <d(y,y/)>

with some constant C1 > 0.

Consider M = M x Ms. The Cauchy—Szeg6 projection S =S50S, isa product Calderén—
Zygmund operator on L2(]\7 ), where S; is the Cauchy-Szegé projection on M; for j = 1,2.
The general framework of product Calderén—Zygmund operator on space of homogeneous type
was studied in [18].

Following the framework in [11], we see that Theorem 1.1 gives rise to the weak endpoint
estimate of Sp(f)(x1,%x2). To be more explicit, following [8] we first see that there is C' > 0

such that for all A > 0,

’{(X17X2) €EM: M(f)(XhXQ) > )‘}’ < CH/\_lf”LlogL(M)v (4'1)

where

1 sy = | [ 1£Ge1 0} Tomte + 1 (s x2) i e

See also [11, Section 3] for the proof of (4.1) for strong maximal function on product Lie groups,
where the arguments can be modified to our setting M = M; x Ma.
Then Theorem 1.1 yields that |{(x1,x2) € M : Sp(f)(x1,%x2) > A} < C”)‘—lfHLlogL(M)’

and hence we have the atomic decomposition of Llog L(M), which further gives

[{(e1.x2) € M = 8(£)(x1.%2) > A} < CIN Loy iy (42)

We also note that this weak type endpoint estimate (4.2) also holds for the general product
Calderén—Zygmund operator on M (we refer to the full definition of the product non-isotropic
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smooth operators on M as introduced by Nagel and Stein [30], as well as the Journé type

product Calderén—Zygmund operators [21, 18]).
(2

Thus, (4.2) is also true for the Marcinkiewicz multiplier m( 00,”) acting on the Shilov
boundary M, where Dl(,] ) is the Kohn Laplacian on M; for j = 1 2. (Note that in [4] we

proved that under suitable assumptions on the multiplier function m, m(D,() ), [11(72)) is a product
Calderén—Zygmund operator of Journé type).

4.2 Maximal function characterisation for product Hardy space on M

For the sake of simplicity, we take Hardy space H I(M ) as an application. The same argu-
ment holds for H? (]Tj ) for p < 1 with a more complicated but very standard definition via
distributions (see for example the test function space and distributions as in [19]).

We now define

H§, (M) ={f € L"(M) : Sp(f) € L'(M)}. (4.3)

Following the Plancherel-Polya inequality in [19], we see that H élwp (M) is equivalent to the
Hardy space H!(M) in [19] given via discrete square function (or discrete area functions) using
the discrete reproducing formula via approximation to identity. Thus, H ép (]\7 ) has atomic
decomposition, which we refer to [20].

Next, we define
o (M) = {f € LY(M) : Np(f) € L} (M)} (4.4)
Then we have the following equivalence characterisation.
Proposition 4.1. Hép(ﬁ) coincides with H%wx(]’\\/[/) and they have equivalent norms.

Proof. Suppose f € H ép(ﬁ )N L2(]\7 ), then following [20] f has an atomic decomposition
f=2>_;ja; where each a; is a product atom and >, |A;j| ~ HfHH1 (@t Thus, it suffices to

show that A7 (a5)] 11 a7,

standard argument, which follows from the size and cancellation of a;, the size and regularity

< C for every atom a;, where C' is an absolute constant. This is a

estimates of the Poisson kernels Pt[ll] and Pt[f], and Journé’s covering lemfr\ria [32]. T}E{s, we
have Hf||H71n an < CHfHH;P(J\A/f)' Then via the density of HéP(M) N L?(M) in HéP(M), we
(M),
Then reverse direction || f|] 3, (A1) < C|fl L (VD) follows from Theorem 1.1 and hence
Hiax (M) © H3, (M),

The proof is complete. O

see that Hg, (M) H .
Proposition 4.1 provides the maximal function characterisation of H I(M ).

Acknowledgement: Ji Li would like to thank Prof. Michael Cowling and Dr. Liangchuan
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