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Central limit theorem for probability measures defined by
sum-of-digits function in base 2

JORDAN EMME AND PASCAL HUBERT

Abstract. In this paper we prove a central limit theorem for some probability
measures defined as asymptotic densities of integer sets defined via sum-of-digit-
function. To any non-negative integer a we can associate a measure on Z called
µa such that, for any d, µa(d) is the asymptotic density of the set of non-negative
integers n such that s2(n+a)�s2(n) = d where s2(n) is the number of digits “1”
in the binary expansion of n. We express this probability measure as a product
of matrices whose coefficients are operators of l1(Z). Then we take a sequence
of integers (aX (n))n2N defined via a balanced Bernoulli sequence X . We prove
that, for almost every sequence, and after renormalization by the typical variance,
we have a central limit theorem by computing all the moments and proving that
they converge towards the moments of the normal lawN (0, 1).

Mathematics Subject Classification (2010): 37A45 (primary); 11P99, 60F05
(secondary).

1. Introduction

1.1. Background

In this paper we study some properties of sets defined via sum-of-digit function
in base 2. Namely, for a given integer a, we study the asymptotic density of set
of integers such that the difference of 1 in their binary expansion before and after
addition with a is a given integer. More precisely, we define

8n 2 N, s2(n) =
mX

k=0
nk,

where

n =
mX

k=0
nk2k,
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and

8a 2 N, 8d 2 Z, µa(d) = lim
N!+1

1
N
#{n < N | s2(n + a) � s2(n) = d}.

This can be linked with the correlation functions that are studied, for instance, in [1]
or with the properties of the sum-of-digit functions which have been extensively
studied, for instance [5] in, or, more recently, in [8]. We can also quote [10] for
the links between Thue-Morse sequence and the sum-of-digits function in base 2.
The type of questions answered in this article also share some similarity with [13]
and [12].

More precisely, we are interested in normality properties of such sets, and in
this paper we give a central limit theorem for a random a. This kind of properties
have raised a considerable interest in number theory. We can quote [4, 6, 11] for
some of these normality properties for q-additive functions.

In [9], we were interested in those densities of sets and more precisely in their
asymptotic properties as a goes to infinity. The methods for computing those den-
sities were essentially combinatorial. In this paper, we are closer to dynamical
systems, as we study a random product of matrices.

1.2. Results

Definition 1.1. Let n 2 N. There exists a unique smallest m 2 N and a unique
sequence {n0, . . . , nm} 2 {0, 1}m such that

n =
mX

k=0
nk · 2k .

Set n
2

= nm . . . n0. The word (n
2
) is an element of the free monoid {0, 1}⇤.

Definition 1.2. Define the sum-of-digits function in base 2 s2, as:

s2 : N ! N

n 7!
mX

k=0
nk,

where n
2

= nm . . . n0.
We are interested in the following equation with parameters a 2 N, d 2 Z and
unknown n 2 N:

s2(n + a) � s2(n) = d.

More precisely, we wish to understand the asymptotic densities of the following
sets:

Ea,d := {n 2 N | s2(n + a) � s2(n) = d} .
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In [9], we prove the following:

Proposition 1.3. For any a 2 N, d 2 Z, there exists a finite set of words Pa,d :=
{w1, . . . , wk} ⇢ {0, 1}⇤ such that:

Ea,d =
[

i2{1,...,k}
[wi ],

where [w] is the set of integers n such that n
2
ends with w.

Remark 1.4. Remark that Pa,d is finite and, possibly, empty (whenever d > s2(a)
actually).

From Proposition 1.3, it is clear that the densities of the sets Ea,d exist. This was
known since [1]. In this way we define the main object of our study:

Definition 1.5. Let us define, for any a 2 N, the probability measure µa by:

8d 2 Z, µa(d) := lim
N!+1

# {n  N | s2(n + a) � s2(n) = d}

N
.

Remark 1.6. Remark that in order to get a probability measure, we cannot ex-
change the roles of d and a. Indeed, one can check that for any d, the sequence
(µa(d))a2N is not even in l1(N).

We are interested in asymptotic properties of the measures µa as a goes to infinity
in a certain sense. Namely, we define the following quantity:

Definition 1.7. Let a 2 N. Define the quantity:

l(a) := #
�
occurences of “01” in a

2

 
.

We recall two theorems from [9]:

Theorem 1.8. There exists a constant C > 0 such that, for any a 2 N:

kµak2  C · l(a)�1/4.

Theorem 1.9. For any a 2 N, the probability measure µa has mean 0 and its
variance is bounded by:

l(a) � 1  Var(µa)  4l(a) + 2.

This last theorem raises the question of whether the ratio Var(µa)
l(a) converges as l(a)

goes to infinity. We do this in the generic case for the balanced Bernoulli measure.
More precisely, we have the following central limit theorem:
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Theorem 1.10. Let X = (Xn)n2N 2 {0, 1}N be a generic sequence for the bal-
anced Bernoulli measure. Define the sequence (aX (n))n2N in the following way:

aX (n) =
nX

k=0
Xk · 2k .

For any n 2 N, let eµaX (n) 2 l1
✓q

2
nZ
◆
defined by

8d 2

r
2
n

Z, eµaX (n) = µaX (n)

✓r
n
2
d
◆

.

Then
eµaX (n)

weak
�!
n!+1

'

where
'(t) =

1
p
2⇡

e
�1
2 t

2
.

Remark 1.11. An equivalent formulation, with the same notation is:

8x 2R, lim
n!+1

lim
N!+1

1
N
#

8
<

:
m  N |

s2(m + aX (n)) � s2(m)
q

n
2

 x

9
=

;
= 8(x)

where 8 is the repartition function of the normal lawN (0, 1).
Finally we wish to state Cusick’s conjecture.

Define the following quantity:

8a 2 N, ca := lim
N!+1

1
N
#{n  N | s2(n + a) � s2(n)}.

The conjecture consists of two parts:

8a 2 N, ca �
1
2

and
lim inf
a!+1

ca =
1
2
.

This question arose as Cusick was working on a similar combinatorial conjecture
in [3]. For recent advances on this, one can look at [15] and [7]. In particular, the
main theorem of this paper has for immediate corollary that 12 is an accumulation
point for the sequence (ca)a2N.

Moreover, the proof of our theorem answers a question left open in [7] since
it states that the difference s2(n + a) � s(n) is “usually normally distributed with
mean zero and variance |a|2

2 ” where |a|2 denotes the length of a in base 2.
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1.3. Outline of the paper

The goal of this paper is to demonstrate Theorem 1.10 by a moments method.
Namely, given a sequence of probability measures, we prove the weak convergence
towards the normal law N (0, 1) by proving that all the moments of this sequence
converge towards the moments of the normal law.

This article is organised as follows:
Section 2 deals with the measures µa , that we already studied in [9]. We recall

some of their properties (and most importantly a recurrence relation between them)
and write them as a finite product of matrices whose coefficients are operators on
l1(Z). This is a convenient form for our study since it allows to compute the Fourier
transforms of these measures explicitly.

Section 3 is devoted to the proof of Theorem 1.10. It is divided in the following
way.

In Subsection 3.1, we explicit this Fourier transform and give its Taylor expan-
sion around 0 at order 2. This is what we need in order to compute the variance of
µa . We also mention that the characteristic function can be written as a product of
matrices, which is the form that will be studied throughout the article.

Subsection 3.2 is devoted to the computation of the variance of µa . First we do
this in the general case and give an explicit formula depending only on the binary
decomposition of a. We remark that this expression depends on some correlations
of sequences in {0, 1}N.

Then, in Subsection 3.3, we want to compute the “generic” behaviour of µa
(meaning for a a whose binary expansion is given by a balanced Bernoulli se-
quence). For this, we use a result in [2] to estimate the correlation terms. It ap-
pears that in the generic case, the variance is approximately |a|2

2 (where |a|2 is the
length of a

2
. So we know that in order to get a central limit theorem, we have to

renormalize µa by the squareroot of its variance namely
q

|a|2
2 .

In Subsection 3.5, since we have to compute all the moments, we need to know
all the coefficients in the Taylor expansion of the characteristic function but it seems
difficult to give their expression in the general case. Hence we wish to understand
how “big” the different terms are in order to know which one will be killed by
the renormalization and which one will contribute. To that end, we classify the
terms in the Taylor expansion and we bound them using some algebraic properties
of the matrices involved in this computation. This in turn gives bounds on the
moments.

Finally, in Subsection 3.6, we show that the moments converge towards the
moments of the normal law. Thanks to the study of the contributions from the
previous section, we are limited to actually computing the terms that have a chance
to contribute. Some elementary linear algebra and the study of the correlations
appearing in Section 3.2 are the essential tools for this.

We would like to underline the fact that the way we compute the moments
limits gives a bound on the speed of convergence of the moments. However, this
speed is dependant on the order of the moment and thus gives no clue as to the
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speed of convergence of the measures towards the normal law. This could be further
studied along with a local limit theorem.

ACKNOWLEDGEMENTS. We wish to thank Christian Mauduit and Joël Rivat for
their interest in this problem and for sharing their knowledge in the historical and
scientific background of this question. Of course we have to thank Alexander Bufe-
tov for his precious help regarding the moments method, especially for giving the
reference needed. We also would like to thank Thomas Stoll for mentionning Cu-
sick’s conjecture. We thank Julien Cassaigne for his useful remarks on the variance
properties. Finally, we thank Lukas Spiegelhofer for making us aware of the works
in [7].

2. Measures µa on Z

Let us start by remarking the following:
Remark 2.1. Let a 2 N and d 2 Z.

P2a,d =
�
w0 | w 2 Pa,d

 
[
�
w1 | w 2 Pa,d

 

and
P2a+1,d =

�
w0 | w 2 Pa,d�1

 
[
�
w1 | w 2 Pa+1,d+1

 
.

For more details about this remark we refer the reader to [9].
From this we deduce the following:

Proposition 2.2. For any a 2 N:
µ2a = µa

and
µ2a+1(d) =

1
2
µa(d � 1) +

1
2
µa+1(d + 1).

Remark 2.3. Notice that a probability measure on Z is, in particular, an element
of l1(Z). In all that follows, for simplicity of writing, we will always identify a
measure on Z with its associated sequence in l1(Z). In particular, we see µa both
as a measure and as an element of l1(Z). Let us define the shift S on l1(Z).

S : l1(Z) ! l1(Z)
(xn)n2Z 7! (xn+1)n2Z .

Then, the identities of Proposition 2.2 can be written:

µ2a = µa

and
µ2a+1 =

1
2
S�1(µa) +

1
2
S(µa+1).
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Example 2.4. It is easy to see that µ0 = �0. Then, either by standard computation
or by using Proposition 2.2, one obtains:

µ1 =
1
4
X

n2Z
n1

�n · 2n.

Proposition 2.5. For any a 2 N,

µa =
�
I d 0

�
Aa0 · · · Aan�1 Aan

✓
µ0
µ1

◆
,

where a
2

= an . . . a0, and

A0 =

0

@
I d 0
1
2
S�1 1

2
S

1

A , A1 =

0

@
1
2
S�1 1

2
S

0 I d

1

A .

Proof. It suffices to remark that, for any a 2 N,

A0
✓

µa
µa+1

◆
=

✓
µ2a

µ2a+1

◆

and
A1
✓

µa
µa+1

◆
=

✓
µ2a+1
µ2a+2

◆

with Proposition 2.2.

Notice that this proposition is a clearer version of [9, Theorem 1.2.1].

3. Central limit theorem

3.1. Characteristic function

Let a 2 N with a
2

= an . . . a0. The characteristic function of µa , denoted bycµa , is
defined in the standard way:

8✓ 2 [0, 2⇡), cµa(✓) =
X

d2Z
eid✓µa(d).

By Proposition 2.2, the characteristic functioncµa : [0, 2⇡) ! C is given by:

cµa(✓) =
�
1 0
�
Âa0 · · · Âan�1 Âan

✓
cµ0(✓)
cµ1(✓)

◆
,
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where

Â0(✓) :=

0

@
1 0
1
2
ei✓

1
2
e�i✓

1

A , Â1(✓) :=

0

@
1
2
ei✓

1
2
e�i✓

0 1

1

A .

Indeed, from the recurrence relations in Proposition 2.2, one has

dµ2a(✓) = cµa(✓)

and

\µ2a+1(✓) =
1
2
ei✓cµa(✓) +

1
2
e�i✓ [µa+1(✓).

These recurrence relations on the characteristic function justify the fact, that we
write it as a product of matrices.

A quick computation yields

cµ0(✓) = 1, cµ1(✓) =
ei✓

2� e�i✓
,

and so,

cµa(✓) =
�
1 0
�
Âa0 · · · Âan�1 Âan

0

@
1
ei✓

2� e�i✓

1

A .

Now let us define the matrices playing a role in the Taylor expansion ofcµa near 0:

I0 =

✓
1 0
1
2
1
2

◆
, ↵0 =

1
2

✓
0 0
1 �1

◆
, �0 =

1
2

✓
0 0
1 1

◆
,

I1 =

✓1
2
1
2

0 1

◆
, ↵1 =

1
2

✓
1 �1
0 0

◆
, �1 =

1
2

✓
1 1
0 0

◆
.

Indeed, we have:

Â j (✓) = I j + i✓↵ j �
1
2
✓2� j + O

�
✓3
�
,

with j 2 {0, 1}.
Notice that the Taylor expansion near 0 of ✓ 7! e�i✓

2�ei✓ is:

ei✓

2� e�i✓
= 1� ✓2 + O

�
✓3
�
.
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3.2. Computation of the variance

Define the variance of µa:

Var(µa) =
X

d2Z
µa(d)d2.

Theorem 3.1. For any a 2 Nwith a
2

= an . . . a0, set, for any j 2 {0, . . . , n}, b j =

(�1)a j+1. The variance of µa is given by the following:

Var(µa) =
n + 3
2

�
1
2n+1

�
1
2

nX

i=1

n�iX

k=0

bk+i bk
2i

+
nX

k=0

bk + bn�k
2k+1

.

Proof. Notice that the variance is given by:

Var(µa)=
�
1 0
��

�a0+ Ia0�a1+ . . . + Ia0 · · · Ian�1�an
�
✓
1
1

◆
+
�
1 0
�
Ia0 · · · Ian

✓
0
2

◆
,

since ↵ j
� 1
1
�

= 0 and I j
� 1
1
�

=
� 1
1
�
, and since the variance is given by the quadratic

coefficient in the Taylor expansion of the characteristic function.
We now apply a change of basis to simultanously trigonalize the matrices I0

and I1.
Let us note that

P :=

✓
1 1

�1 1

◆
, P�1 =

1
2

✓
1 �1
1 1

◆
,

and compute

8 j 2{0, 1}, eI j := P I j P�1=

0

B
B
@
1

(�1) j+1

2

0
1
2

1

C
C
A, e� j := P� j P�1=

0

B
B
@

1
2

0

�
(�1) j+1

2
0

1

C
C
A,

and
P
✓
1
1

◆
=

✓
2
0

◆
, P

✓
0
2

◆
=

✓
2
2

◆
,

�
1 0
�
P�1 =

✓
1
2

�
1
2

◆
.

With this change of basis, the variance becomes

Var(µa) =

✓
1
2

�
1
2

◆
�e�a0 + eIa0e�a1 + . . . + eIa0 · · ·eIan�1e�an

�
✓
2
0

◆

+

✓
1
2

�
1
2

◆
eIa0 · · ·eIan

✓
2
2

◆
.
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Notice now that for any k 2 {0, . . . , n},

eIa0 · · ·eIak =

0

B
B
@

1
kP

i=0

bi
2k+1�i

0
1
2k+1

1

C
C
A

so, for any k 2 {0, . . . , n � 1},

eIa0 · · ·eIake�ak+1 =

0

B
B
@

1
2

�
bk+1
2

kP

i=0

bi
2k+1�i

0

�
bk+1
2k+2

0

1

C
C
A .

Hence we get

Var(µa) =

✓
1
2

�
1
2

◆

0

B
B
B
@

0

B
@

1
2

0

�
b0
2
0

1

C
A+

n�1X

k=0

0

B
B
B
@

1
2

�
bk+1
2

kX

i=0

bi
2k+1�i

0

�
bk+1
2k+2

0

1

C
C
C
A

1

C
C
C
A

✓
2
0

◆

+

✓
1
2

�
1
2

◆
0

B
B
@

1
nX

i=0

bi
2n+1�i

0
1
2n+1

1

C
C
A

✓
2
2

◆
.

So

Var(µa) =

✓
1
2

�
1
2

◆

0

B
B
B
@

✓
1

�b0

◆
+

n�1X

k=0

0

B
B
B
@

1� bk+1
kX

i=0

bi
2k+1�i

�
bk+1
2k+2

1

C
C
C
A

1

C
C
C
A

+ 1+
nX

i=0

bi
2n+1�i

�
1
2n+1

,

which yields

Var(µa)=
n + 3
2

�
1
2n+1

+
b0
2

�
1
2

X

0ikn�1

bk+1bi
2k+1�i

+
n�1X

k=0

bk+1
2k+2

+
nX

i=0

bi
2n+1�i

,

and so

Var(µa) =
n + 3
2

�
1
2n+1

�
1
2

X

0ikn�1

bk+1bi
2k+1�i

+
nX

k=0

bk
2k+1

+
nX

i=0

bi
2n+1�i

,
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which can be written

Var(µa) =
n + 3
2

�
1
2n+1

�
1
2

X

0ikn�1

bk+1bi
2k+1�i

+
nX

k=0

bk + bn�k
2k+1

,

or even

Var(µa) =
n + 3
2

�
1
2n+1

�
1
2

nX

i=1

n�iX

k=0

bk+i bk
2i

+
nX

k=0

bk + bn�k
2k+1

.

3.3. Generic case of the variance

In all that follows, we use the following notation:

• X denotes a sequence in {0, 1}N (and we endow the set {0, 1}N with the balanced
Bernoulli probability measure;

• For any sequence X , define aX (n) =
nX

k=0
Xk · 2k ;

• As in Theorem 3.1, for any X 2 {0, 1}N, define the sequence
�
b j
�
j2N by b j =

(�1)X j+1.

We wish to prove the following:

Proposition 3.2. For almost every X 2 {0, 1}N

Var(µaX (n)) ⇠
n!1

n
2
.

In order to prove this proposition, we first need a technical lemma:

Lemma 3.3. Let X 2 {0, 1}N and define the quantity:

C2,n = max
M,D

�
�
�
�
�

MX

k=1
bk+d1bk+d2

�
�
�
�
�
,

where the maximum is taken on all D = (d1, d2) and M such that M + d2  n.
For almost every X 2 {0, 1}N and for every " there exists n",X such that:

8n � n",X ,
�
�C2,n

�
� < n

1
2+".

Proof. In [2], the following quantity is studied:

Cm
�
(bi )i2{0,...,n}

�
:= max

M,D

�
�
�
�
�

MX

k=1
bk+d1 ⇥ . . . ⇥ bk+dm

�
�
�
�
�
,

where the maximum is taken on all D = (d1, . . . , dm) and M such that M+dm  n.
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So we have
C2,n = C2

�
(bi )i2{0,...,n}

�
.

From (2.32) and (2.33) in [2], we know that, for any l � 1

E
⇣
C2
�
(bi )i2{0,...,n}

�2l⌘
 5n4+l(4l)l .

Let " > 0; then

E
 

C2l2,n
n( 12+")2l

!


5n4+l(4l)l

n( 12+")2l

and
5n4+l(4l)l

n( 12+")2l
=
5(4l)l

n2"l�4
.

Now, if l is big enough, then 2"l � 4 > 2, and thus the series

+1X

n=1
E
 

C2l2,n
n( 12+")2l

!

converges.

By Borel-Cantelli lemma,
C2l2,n

n( 12+")2l
a.s.
�!
n!+1

0 and thus C2,n

n( 12+")

a.s.
�!
n!+1

0. Hence:

a.e. X, 9n",X , 8n � n",X ,
C2,n
n( 12+")

< 1

and thus �
�C2,n

�
� < n

1
2+"

for n big enough.

Now let us prove Proposition 3.2.

Proof of Proposition 3.2. Note that, with Theorem 3.1, for any n,

Var(µa) =
n + 3
2

�
1
2n+1

�
1
2

nX

i=1

n�iX

k=0

bk+i bk
2i

+
nX

k=0

bk � bn�k
2k+1

,

where the bi are random variables which can take value in {�1, 1} with probability
1
2 . The only thing to prove in order to get the result is that:

lim
n!1

1
n

 
nX

i=1

n�iX

k=0

bk+i bk
2i

!

= 0,
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since it is obvious that

lim
n!1

1
n

 
3
2

�
1
2n+1

+
nX

k=0

bk � bn�k
2k+1

!

= 0.

Let us estimate
Pn

i=1
Pn�i

k=0
bk+i bk
2i .

By using Lemma 3.3 and for any " > 0 and for any n big enough, we get
�
�
�
�
�

nX

i=1

n�iX

k=0

bk+i bk
2i

�
�
�
�
�


nX

i=1

�
�C2,n

�
�

2i


nX

i=1

n
1
2+"

2i

 n
1
2+",

which ends the proof.

3.4. Another proof for the typical variance

Notice that we could also do things differently in order to compute the typical vari-
ance without Lemma 3.3. Another way to write the variance, for any integer a, is
the following:

Var(µa) =
n + 3
2

�
1
2n+1

�
1
2

nX

i=1

n�iX

k=0

bk+i bk
2i

+
nX

k=0

bk + bn�k
2k+1

=
n + 3
2

�
1
2n+1

�
1
2

 
nX

i=1

n�iX

k=0

1
2i

� 2
nX

i=1

�i (a)
2i

!

+
nX

k=0

bk + bn�k
2k+1

,

where

�i (a) = #
�
occurrences of 0w1 in a

2
| |w| = i � 1

 

+ #
�
occurrences of 1w0 in a

2
| |w| = i � 1

 
.

Hence

Var(µa)=
n + 3
2

�
1
2n+1

�
1
2

 
nX

i=1

n � i + 1
2i

� 2
nX

i=1

�i (a)
2i

!

+
nX

k=0

bk + bn�k
2k+1

=
n + 3
2

�
1
2n+1

�
1
2

 

(n + 1)
✓
1�

1
2n

◆
+

nX

i=1

�i
2i

� 2
nX

i=1

�i (a)
2i

!

+
nX

k=0

bk + bn�k
2k+1

=1+
n
2n+1

+
1
2

nX

i=1

i
2i

+
nX

i=1

�i (a)
2i

+
nX

k=0

bk + bn�k
2k+1

.
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Now, notice that for any (bn)n2N 2 {�1, 1}N,

lim
n!+1

1
n

 

1+
n
2n+1

+
1
2

nX

i=1

i
2i

+
nX

k=0

bk + bn�k
2k+1

!

= 0,

and that, having (Xn)n2N a sequence of independant variables indentically dis-
tributed with the balanced Bernoulli measure P, the law of large number yields:

8i 2 N\{0}, 9 Ui ⇢ {0, 1}N such that

(P(Ui ) = 1

8X 2 Ui , lim
n!+1

�i (aX (n))
n

=
1
2
.

Define
U =

\

i2N\{0}
Ui .

Now let us prove that for every X 2 U ,

lim
n!+1

1
n

nX

i=1

�i (aX (n))
2i

=
1
2
.

It is easy to see that this limit exists (for any i  n, �i (aX (n))  n) so let us denote
it by l. Let us write the following equality for any n 2 N and any N < n:

1
n

nX

i=1

�i (aX (n))
2i

=
1
n

NX

i=1

�i (aX (n))
2i

+
1
n

nX

i=N+1

�i (aX (n))
2i

.

So, for any n 2 N and any N < n, we have:

1
n

NX

i=1

�i (aX (n))
2i


1
n

nX

i=1

�i (aX (n))
2i


1
n

NX

i=1

�i (aX (n))
2i

+
1
n

nX

i=N+1

�i (aX (n))
2i

1
n

NX

i=1

�i (aX (n))
2i


1
n

nX

i=1

�i (aX (n))
2i


1
n

NX

i=1

�i (aX (n))
2i

+
nX

i=N+1

1
2i

1
n

NX

i=1

�i (aX (n))
2i


1
n

nX

i=1

�i (aX (n))
2i


1
n

NX

i=1

�i (aX (n))
2i

+
1
2N

.

Taking the limit as n ! +1 yields:

1
2

NX

i=1

1
2i

 l 
1
2

NX

i=1

1
2i

+
1
2N

.

Since this is true for all N , we have that:

8X 2 U , lim
n!+1

Var(µaX (n))

n
=
1
2
.
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Remark 3.4. One can also notice, even if it is not the goal of our paper, that by
doing exactly the same proof for a non balanced Bernoulli measure (p, 1� p), one
can prove that there exists a set eU ⇢ {0, 1}N of full measure such that:

8X 2 eU , lim
n!+1

Var(µaX (n))

n
= 2p(1� p).

3.5. Upper bounds of the moments of µaX (n)

We now want to have bound on the moments of order l 2 N. Let us first remark
that the only matrices appearing in the Taylor expansion of Âi (✓) are Ii , ↵i and �i .
Indeed:

Âi (✓)=
+1X

j=0
✓ j Ti, j ,

where

Ti,0 = Ii , Ti,2 j =
(�1) j

(2 j)!
�i , Ti,2 j+1 =

(�1) j i
(2 j + 1)!

↵i .

Remark 3.5. Notice that the following relations hold:

I0
✓
1
1

◆
= I1

✓
1
1

◆
=

✓
1
1

◆
, ↵0

✓
1
1

◆
= ↵1

✓
1
1

◆
=

✓
0
0

◆

and
↵0 I0 = ↵0 I1 =

1
2
↵0, ↵1 I0 = ↵1 I1 =

1
2
↵1.

Let us insist on the fact that these relations are crucial for our proof.
Now let us introduce the following norm on 2⇥ 2 matrices:

kMk = max
i2{1,2}

�
|Mi,1| + |Mi,2|

�
,

which is induced by k · k1 on R2.
Notice that this defines a submultiplicative norm. Moreover,

kI0k = kI1k = k↵0k = k↵1k = k�0k = k�1k = 1.

Our goal is to compute all the moments of the probability measure µaX (n) in the
generic case as n goes to infinity. To that end, we arrange the terms appearing in
the computation into different “types”. A type is a couple (↵ p,�q) where p, q are
non negative integers. They indicate the number of matrices of ↵ and � appearing
in the term. For instance, a term:

M = Ia0 · · · Iai0�1↵ai0 Iai0+1 · · · Iai1�1↵ai1 Iai1+1 · · · Iai2�1�ai2 Iai2+1 · · · Ian
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is of type (↵2,�1).The order of appearance of the ↵ and � does not have any influ-
ence on the type, so that

Ia0 · · · Iai0�1↵ai0 Iai0+1 · · · Iai1�1�ai1 Iai1+1 · · · Iai2�1↵ai2 Iai2+1 · · · Ian

is also of type (↵2,�1).
Let us denote by F (n)

(↵ p,�q ) the set of all terms of type (↵ p,�q) in the expansion
of bµaX (n).

This notation is introduced to ease the writing of the previous formulas as well
as for handling terms with the same behaviour together. For instance, the formula
for the variance becomes:

Var
�
µaX (n)

�
=
�
1 0
� X

M2F (n)
(↵2,�0)

M
✓
1
1

◆
+
�
1 0
� X

M2F (n)
(↵0,�1)

M
✓
1
1

◆
+
�
1 0
�
Ia0 · · · Ian

✓
0
2

◆
.

Now notice that for any 2⇥ 2 matrix M
�
�
�
�
�
1 0
�
M
✓
1
1

◆��
�
�  kMk,

so, in order to find an upper bound on terms of a given type, it suffices to understand
X

M2F (n)
(↵ p ,�q )

kMk.

Definition 3.6. We say that a type (↵ p,�q) contributes with weight at most k if
X

M2F (n)
(↵ p ,�q )

kMk = O
�
nk
�
.

Lemma 3.7. For any pair of nonnegative integers (p, q), the type (↵ p,�q) con-
tributes with weight at most q.

Proof. We prove this lemma by induction on p.
First notice that #F (n)

(↵0,�q )
=
�n+1
q
�
. Notice also that for any M 2 F (n)

(↵0,�q )
,

kMk  1, since k · k is submultiplicative. This implies that the type
�
↵0,�q

�

contributes with weight q.
Now let us assume that the type (↵ p,�q) contributes with weight q for a

given p and let us prove that the type
�
↵ p+1,�q

�
has same weight. Now let us

partition F (n)
(↵ p+1,�q )

. Fix k  q and let us estimate terms that can be written
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M↵ai0 Iai0+1 · · · Iai1�1�ai1 Iai1+1 · · · Iai2�1�ai2 · · · Iaik�1�aik where M 2 F (i0�1)
(↵ p,�q�k)

.
The sum of the norms of these terms is equal to:

X

p+q�ki0<...<ikn

X

M2F (i0�1)
(↵ p ,�q�k )

�
�
�M↵ai0 Iai0+1 · · · Iai1�1�ai1 · · ·�aik

�
�
�


X

p+q�ki0<...<ikn

X

M2F (i0�1)
(↵ p ,�q�k )

�
�
�M↵ai0 Iai0+1 · · · Iai1�1

�
�
�

 nk�1
X

p+q�ki0<i1n

X

M2F (i0�1)
(↵ p ,�q�k )

�
�
�M↵ai0 Iai0+1 · · · Iai1�1

�
�
�

 nk�1
X

p+q�ki0<i1n

�
�
�↵ai0 Iai0+1 · · · Iai1�1

�
�
�

X

M2F (i0�1)
(↵ p ,�q�k )

kMk


by induction

nk�1
X

p+q�ki0i1n

�
�
�↵ai0 Iai0+1 · · · Iai1�1

�
�
�Ciq�k

0

 Cnq�1
X

p+q�ki0<i1n

�
�
�↵ai0 Iai0+1 · · · Iai1�1

�
�
� ,

and, thanks to Remark 3.5,

 Cnq�1
X

p+q�ki0<i1n

�
�
�↵ai0 Iai0+1 · · · Iai1�1

�
�
�

 Cnq�1
X

p+q�ki0<i1n

1
2i1�i0�1

 2Cnq .

Since this computation is valid for any value of k, this yields:
X

M2F (n)
(↵ p+1,�q )

kMk  2qCnq ,

which proves the lemma.

3.6. Computing all the moments

Let us write the expansion of bµa:

bµa(✓) =
NX

k=0

i kmk(a)
k!

✓k + o(✓n),
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where
mk(a) =

X

d2Z
µa(d)dk

is the moment of order k of the probability measure µa (indeed, recall that µa is
centered).

Now let us renormalize µaX (n). From Proposition 3.2, we know that we have

to look at eµaX (n) 2 l1
✓q

2
nZ
◆
defined by:

8d 2

r
2
n

Z, eµaX (n)(d) = µaX (n)

✓r
n
2
d
◆

.

Now notice that the characteristic function of eµaX (n) in ✓ is actually:

bµaX (n)

 r
2
n
✓

!

=
NX

k=0

�
i
p
2
�kmk(aX (n))

n
k
2 k!

✓k + o
�
✓N
�
.

Hence, for any n 2 N, the moments of order k of the probality measure eµaX (n),
denoted by emk(aX (n)), are:

emk(aX (n)) =

p
2kmk(aX (n))

n
k
2

and thus, we wish to understand, if it exists, for any integer k,

lim
n!+1

p
2kmk(aX (n))

n
k
2

.

Lemma 3.8. For almost every sequence X 2 {0, 1}N and for any k 2 N we have:

lim
n!+1

em2k(aX (n)) =
(2k)!
2kk!

and
lim

n!+1
em2k+1(aX (n)) = 0,

which are the moments of the normal lawN (0, 1).

Proof. Remark that in this proof, we only consider terms of the following type:

�
1 0
� X

M2F (n)
(↵ p ,�q )

M
✓
1
1

◆
,
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since taking a term of degree greater than 0 in the Taylor expansion of ei✓
2�e�i✓ will

not contribute because it involves terms of smaller types on �.
Let us remark right away that for a moment of order 2k + 1, the type of terms

which could contribute the most is
�
↵1,�k

�
. Thanks to Lemma 3.7, this type has

weight at most k. Moreover, there is always a finite number of types contributing to
a moment. Hence m2k+1(aX (n)) = O(nk), and thus:

lim
n!+1

p
22k+1m2k+1(aX (n))

n
2k+1
2

= 0,

or, equivalently,
lim

n!+1
em2k+1(aX (n)) = 0.

Next, we consider the even moments.
For a moment m2k , from Lemma 3.7, the only type potentially contributing to

the limit is
�
↵0,�k

�
. More precisely, in order to get that

lim
n!+1

em2k(aX (n)) =
(2k)!
2kk!

,

one must show the following identity on limits (and prove that they exist):

lim
n!+1

�
i
p
2
�2km2k(aX (n))
nk(2k)!

= lim
n!+1

✓
2
n

◆k ✓�1
2

◆k �
1 0
� X

M2F (n)
(↵0,�k )

M
✓
1
1

◆
,

since the Taylor expansion of Â j near 0 is

Â j (✓) = I j + i✓↵ j �
1
2
✓2� j + O

�
✓3
�
.

This equality is equivalent to:

lim
n!+1

2km2k(aX (n))
nk

= lim
n!+1

(2k)!
nk

�
1 0
� X

M2F (n)
(↵0,�k )

M
✓
1
1

◆
.

In short, we must show that:

�
1 0
� X

M2F (n)
(↵0,�k )

M
✓
1
1

◆
=

nk

2kk!
+ o(nk),

so that

lim
n!+1

2km2k(aX (n))
nk

=
(2k)!
2kk!

,

which is the moment of order 2k of the normal lawN (0, 1).
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Let Dk(n) = {(d1, . . . , dk) | 0  d1 < . . . < dk  n}. For d 2 Dk(n), denote
5d = eIa0 · · ·eIad1�1

e�ad1 · · ·eIadk�1
e�adk (this is just a matrix M 2 F (n)

(↵0,�k)
after the

change of basis described in the proof of Theorem 3.1). Let us prove by induction
on k that

5d =

 1
2k

+ Ad 0
Bd 0

!

,

with Ad and Bd satisfying

lim
n!+1

1
nk

X

d2Dk(n)
|Ad | = 0

and
lim

n!+1

1
nk

X

d2Dk(n)
|Bd | = 0.

The case of k = 1 is treated in Lemma 3.3. Let us assume this is true up to an
integer k.

Let d2Dk+1(n). For clarity in the formulas, let us write d=(d1, . . . ,dk�1, j, l)
and d 0 = (d1, . . . , dk�1, j) 2 Dk(n). Then we have

5d = 5d 0eIa j+1 · · ·eIal�1e�al .

Now compute:

eIa j+1 · · ·eIal�1e�al =

0

B
B
B
@

1
2

� bl
l�1X

i= j+1

bi
2l�i

0

�
bl
2l� j 0

1

C
C
C
A

,

and by the induction hypothesis,

5d 0 =

 1
2k

+ Ad 0 0
Bd 0 0

!

.

Thus

5d =

0

B
B
B
B
@

1
2k+1

�
1
2k
bl

l�1X

i= j+1

bi
2l�i

+
Ad 0

2
� Ad 0bl

l�1X

i= j+1

bi
2l�i

0

1
2
Bd 0 � Bd 0bl

l�1X

i= j+1

bi
2l�i

0

1

C
C
C
C
A

and we have to prove the following.
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Claim.

1
nk+1

X

d2Dk+1(n)

�
�
�
�
�
�
1
2k
bl

l�1X

i= j+1

bi
2l�i

+
Ad 0

2
� Ad 0bl

l�1X

i= j+1

bi
2l�i

�
�
�
�
�

�!
n!1

0.

Proof of the claim.

• First, we have:

X

d2Dk+1(n)

�
�
�
�
�
1
2k
bl

l�1X

i= j+1

bi
2l�i

�
�
�
�
�
=

n�kX

j=k

X

0d1<...<dk�1< j

nX

l= j+1

�
�
�
�
�
1
2k
bl

l�1X

i= j+1

bi
2l�i

�
�
�
�
�

 nk�1
n�kX

j=k

nX

l= j+1

�
�
�
�
�
1
2k
bl

l�1X

i= j+1

bi
2l�i

�
�
�
�
�
,

and also that
nX

l= j+1

�
�
�
�
�
bl

l�1X

i= j+1

bi
2l�i

�
�
�
�
�
 C2,n

so, for n big enough, according to Lemma 3.3:

nk�1
n�kX

j=k

nX

l= j+1

�
�
�
�
�
1
2k
bl

l�1X

i= j+1

bi
2l�i

�
�
�
�
�


nk�1

2k
n�kX

j=k
n
1
2+"


nk+

1
2+"

2k
;

• We have also that

X

d2Dk+1(n)

�
�
�
�
Ad 0

2

�
�
�
� =

X

d 02Dk(n)

nX

l=k

�
�
�
�
Ad 0

2

�
�
�
�  n

X

d 02Dk(n)

�
�
�
�
Ad 0

2

�
�
�
�

and, by induction,

lim
n!+1

1
nk

X

d 02Dk(n)

�
�
�
�
Ad 0

2

�
�
�
� = 0;
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hence

lim
n!+1

1
nk+1

X

d2Dk+1(n)

�
�
�
�
Ad 0

2

�
�
�
� = 0;

• Finally we have

X

d2Dk+1(n)

�
�
�
�
�
Ad 0bl

l�1X

i= j+1

bi
2l�i

�
�
�
�
�
=

n�kX

j=k

X

0d1<...<dk�1< j

nX

l= j+1

�
�
�
�
�
Ad 0bl

l�1X

i= j+1

bi
2l�i

�
�
�
�
�


n�kX

j=k

X

0d1<...<dk�1< j
|Ad 0 |

nX

l= j+1

�
�
�
�
�
bl

l�1X

i= j+1

bi
2l�i

�
�
�
�
�

and, as in the study of the first term, using Lemma 3.3, for n big enough

n�kX

j=k

X

0d1<...<dk�1< j
|Ad 0 |

nX

l= j+1

�
�
�
�
�
bl

l�1X

i= j+1

bi
2l�i

�
�
�
�
�


n�kX

j=k

X

0d1<...<dk�1< j
|Ad 0 | n

1
2+"

 n
1
2+"

X

d 02Dk(n)
|Ad 0 |

 nk+
1
2+"

by induction hypothesis.

In the end,

lim
n!+1

1
nk+1

X

d2Dk+1(n)

�
�
�
�
�
1
2k
bl

l�1X

i= j+1

bi
2l�i

+
Ad 0

2
� Ad 0bl

l�1X

i= j+1

bi
2l�i

�
�
�
�
�
= 0.

And the same goes for proving that:

1
nk+1

X

d2Dk+1(n)

�
�
�
�
�
1
2
Bd 0 � Bd 0bl

l�1X

i= j+1

bi
2l�i

�
�
�
�
�

�!
n!1

0.
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Hence, we get

�
1 0
� X

M2F (n)
(↵0,�k )

M
✓
1
1

◆
=

✓
1
2

�
1
2

◆ X

d2Dk(n)
5d

✓
2
0

◆

=
X

d2Dk(n)

1
2k

+ Ad �
X

d2Dk(n)
Bd

=
X

d2Dk(n)

1
2k

+
X

d2Dk(n)
Ad �

X

d2Dk(n)
Bd

=

✓
n
k

◆
1
2k

+
X

d2Dk(n)
Ad �

X

d2Dk(n)
Bd

=
n!

k!(n � k)!2k
+

X

d2Dk(n)
Ad �

X

d2Dk(n)
Bd .

Since
lim

n!+1

1
nk

X

d2Dk(n)
|Ad | = 0

and
lim

n!+1

1
nk

X

d2Dk(n)
|Bd | = 0,

we have that
�
1 0
� X

M2F (n)
(↵0,�k )

M
✓
1
1

◆
=

n!+1

nk

2kk!
+ o

�
nk
�
,

which yields

lim
n!+1

2km2k(aX (n))
nk

=
(2k)!
2kk!

.

Hence the moments of the probability measure eµaX (n) converge towards the
moments of the normal law N (0, 1), which prove the [14, Central Limit Theorem
1.10].
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