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ABSTRACT. We give the classification of solutions for some Liouville type
systems, which appear as limiting equations during the study of the bub-
bling phenomena of positive solutions for coupled nonlinear Schrödinger
systems.

1. INTRODUCTION

The classification of solutions is a central problem in elliptic partial dif-
ferential equations. In the seminal paper [5], Chen and Li used the moving
planes method to classify all solutions of the Liouville equation

(1.1) −∆u = eu in R2,
∫

R2
eudx < ∞.

They showed that all solutions of (1.1) are given by

u(x) = log
8λ2

(1 + λ2|x − x0|2)2 , where λ > 0, x0 ∈ R2.

Among many important applications, this classification result plays a key
role in the bubbling analysis of positive solutions for the Lane-Emden equa-
tion

(1.2) −∆u = up, u > 0, in Ω, u = 0 on ∂Ω,

as p → +∞, where Ω is a bounded domain in R2. More precisely, after
a suitable scaling near a concerntration point, the Liouville equation (1.1)
appears as a limiting equation of (1.2) as p → +∞; see [1, 8, 9, 14, 15].

Later, the classifications of solutions for the Liouville system

(1.3)

−∆ui =
n
∑

i=1
aijeuj , in R2,∫

R2 eui dx < ∞, i = 1, · · · , n,

were studied by Chanillo and Kiessling [4], Chipot, Shafrir and Wolansky
[6], and Lin and Zhang [12]. Chanillo and Kiessling [4] first proved that
under some conditions on the matrix A = (aij)n×n, all solutions of (1.3) are
radially symmetric with respect to some points. Their result was improved
by Chipot, Shafrir and Wolansky [6], who proved the following symmetry
result for more general A.
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Theorem A. [6] Let A = (aij)n×n be

invertible, symmetric, non-negative and irreducible,(1.4)

and (u1, . . . , un) be a solution of (1.3). Then there exists p ∈ R2 such that all
u1, . . . , un are radially symmetric and decreasing about p.

Here the matrix A = (aij)n×n is called non-negative if aij ≥ 0 for all (i, j),
irreducible if there is no partition of {1, · · · , n} = I1 ∪ I2 with I1 ∩ I2 = ∅
such that aij ≡ 0, ∀i ∈ I1, j ∈ I2.

Comparing to the Liouville equation (1.1), the Liouville system (1.3) is
more complicated and whether the explicit expressions of all solutions can
be written down under the condition (1.4) still remains open. Lin and
Zhang [12] studied a weaker problem that whether the solutions of (1.3)
are unique up to translations and scalings, and proved the following re-
sult.

Theorem B. [12] Let A satisfy (1.4), (u1, . . . , un) and (v1, . . . , vn) be two radial
solutions of (1.3) such that

∫
R2 eui dx =

∫
R2 evi dx for all i. Then there exists δ > 0

such that

ui(x) = vi(δx) + 2 log δ, ∀i.(1.5)

In this paper, motivated by the above results, we study the classification
of solutions for the following Liouville type system

(1.6)


−∆u1 = µ1eu1 + β0etu1+(1−t)u2 in R2,
−∆u2 = µ2eu2 + β0etu1+(1−t)u2 in R2,∫

R2 eu1 dx < ∞ ,
∫

R2 eu2 dx < ∞,

where µ1, µ2, β0 ∈ (0,+∞) and t ∈ (0, 1) are all constants. Like (1.1)-
(1.2), this system with t = 1

2 appears as one of the limiting equations
when we study the bubbling phenomena of the following coupled non-
linear Schrödinger system

(1.7)


−∆u1 = µ1up−1

1 + β0u
p
2 −1
1 u

p
2
2 in Ω,

−∆u2 = µ2up−1
2 + β0u

p
2
1 u

p
2 −1
2 in Ω,

u1, u2 > 0 in Ω, u1 = u2 = 0 on ∂Ω,

as p → +∞, where Ω ⊂ R2 is a bounded domain. Therefore, it is very im-
portant for us to classify all solutions of (1.6). This is the first step for us to
study the bubbling phenomena of (1.7) in future works. This Schrödinger
system has received great interest in the past two decades, and many inter-
esting results have been proved; see e.g. [2, 7, 13] and references therein.
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Note that by letting β = β0/(µt
1µ1−t

2 ) and vk = uk + log µk in (1.6), we
only need to study the following equivalent system

(1.8)


−∆v1 = ev1 + βetv1+(1−t)v2 in R2,
−∆v2 = ev2 + βetv1+(1−t)v2 in R2,∫

R2 ev1 dx < ∞ ,
∫

R2 ev2 dx < ∞.

Remark that, by letting v3 = tv1 + (1 − t)v2, we can rewrite (1.8) in the
form of the Liouville system (1.3):

(1.9)


−∆v1 = ev1 + βev3 in R2,
−∆v2 = ev2 + βev3 in R2,
−∆v3 = tev1 + (1 − t)ev2 + βev3 in R2,∫

R2 evk dx < ∞ for k = 1, 2, 3.

However, the corresponding matrix1 0 β
0 1 β
t 1 − t β


is always degenerate, i.e. does not satisfy (1.4), so Theorems A and B can
not apply. To the best of our knowledge, the classification of solutions for
the system (1.9) is open. Our main result is

Theorem 1.1. Let (v1, v2) with v1, v2 ∈ L1
loc(R

2) be a solution of the system
(1.8) (in the sense of distributions). Then there exist λ ∈ (0,+∞) and x0 ∈ R2

such that

v1(x) = v2(x) = log
8λ2

(1 + λ2|x − x0|2)2 − ln(1 + β).(1.10)

Our proof of Theorem 1.1 consists of two steps. The first step is to prove
the radial symmetry of the solution via a Rellich-Pohozaev identity and
the isoperimetric inequality; see Sections 2-3. This idea is borrowed from
Chanillo-Kiessling [4]. The second step is to prove v1 = v2 via a new and
interesting geometric inequality for radial functions which was introduced
recently by Gui-Li [10]; see Section 4.

Remark 1.2. We are also interested in the classification of solutions to the
following Liouville type system that seems more naturally in the point of
symmetry 

−∆u1 = µ1eu1 + β0etu1+(1−t)u2 in R2,
−∆u2 = µ2eu2 + β0etu2+(1−t)u1 in R2,∫

R2 eu1 dx < ∞ ,
∫

R2 eu2 dx < ∞.

Unfornaturely, it seems that the approach of this paper does not work for
this system, because we can not obtain a useful Rellich-Pohozaev identity
for this system. We will try to study this system elsewhere.
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In the rest of this paper, we freely use the notation C to denote various
constants. Denote Br(x) := {y ∈ R2 : |x − y| < r} and Br = Br(0). Besides,
for any function f (x) that is radially symmetric with respect to 0, we also
write f (|x|) = f (x).

2. A RELLICH-POHOZAEV IDENTITY FOR ENTIRE SOLUTIONS

In this section, we follow Chanillo-Kiessling’s idea [4] to establish a Rellich-
Pohozaev identity for entire solutions of (1.8). Let (v1, v2) with v1, v2 ∈
L1

loc(R
2) be a solution of (1.8) and define

α1 :=
∫

R2
ev1 dx, α2 :=

∫
R2

ev2 dx and γ :=
∫

R2
etv1+(1−t)v2 dx.(2.1)

The main result of this section is to prove the following Rellich-Pohozaev
identity.

Proposition 2.1. t(α1 + βγ)2 + (1 − t)(α2 + βγ)2 = 8π(tα1 + (1 − t)α2 +
βγ).

Before proving Proposition 2.1, we need to study the asymptotic behav-
ior of the solution (v1, v2) near infinity. First, we recall a result from Brezis
and Merle [3].

Lemma 2.2. [3, Theorem 2] Suppose u ∈ L1
loc(R

2) satisfies

−∆u = V(x)eu in R2(2.2)

with V ∈ Lp(R2) and eu ∈ Lp′(R2) for some 1 < p ≤ ∞ and 1
p +

1
p′ = 1. Then

u+ ∈ L∞(R2). Here u+ := max{u, 0}.

Lemma 2.3. We have v+1 , v+2 ∈ L∞(R2) and v1, v2 ∈ C∞(R2).

Proof. Define V(x) := te(1−t)v1(x) + tβe(1−t)v2(x), then

∥V∥
L

1
1−t (R2)

≤ t∥ev1∥1−t
L1(R2)

+ tβ∥ev2∥1−t
L1(R2)

< ∞,(2.3)

namely V ∈ L
1

1−t (R2). By −∆(tv1) = Vetv1 , etv1 ∈ L
1
t (R2) and Lemma 2.2,

it follows that v+1 ∈ L∞(R2). Similarly, v+2 ∈ L∞(R2). Thus −∆v1,−∆v2 ∈
L∞(R2), so the standard elliptic regularity theory implies v1, v2 ∈ C1,α

loc , and
then v1, v2 ∈ C∞(R2) by a standard bootstrap argument. □

Lemma 2.4. For k = 1, 2, we have

vk(x) = − 1
2π

∫
R2

log
(
|x − y|
|y|+ 1

)(
evk(y) + βetv1(y)+(1−t)v2(y)

)
dy + Ck,(2.4)

where Ck is a constant. Moreover,

(2.5)
vk(x)
log |x| → − 1

2π
(αk + βγ) uniformly as |x| → ∞.

Proof. The proof is the same as that of [5, Lemma 1.2] with trivial modifica-
tions, and we omit it here. □
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Note that the system (1.8) is conformally invariant, from which we have
the following estimates.

Lemma 2.5. αk + βγ ≥ 8π for k = 1, 2.

Proof. We use the Kelvin transformation to define

ṽk(x) := vk

(
x

|x|2

)
− 4 log |x| = vk(y) + 4 log |y|, y =

x
|x|2 .(2.6)

By direct computations, we have

−∆xṽk(x) = |x|−4 (−∆yvk(y)
)
= eṽk(x) + βetṽ1(x)+(1−t)ṽ2(x) in R2 \ {0},

and ∫
R2

eṽk(x)dx =
∫

R2\{0}
|y|4evk(y) dy

|y|4 =
∫

R2
evk(y)dy = αk < ∞.

Clearly ṽ1, ṽ2 ∈ C∞(R2\{0}), and Lemma 2.4 gives

lim
|x|→0

ṽk(x)
log |x| = lim

|y|→∞
−vk(y) + 4 log |y|

log |y| =
1

2π
(αk + βγ)− 4,(2.7)

which implies ṽk ∈ L1(Br(0)) and so ṽk ∈ L1
loc(R

2). Therefore, (ṽ1, ṽ2) is
also a solution of the same system (1.8), so Lemma 2.3 yields ṽ+k ∈ L∞(R2)
for k = 1, 2.

If αk + βγ < 8π for some k, then it follows from (2.7) that

lim
|x|→0

ṽk(x) ≥ 1
2

(
1

2π
(αk + βγ)− 4

)
lim
|x|→0

log |x| = +∞,(2.8)

a contradiction with ṽ+k ∈ L∞(R2). This proves αk + βγ ≥ 8π. □

A direct consquence of (2.5) and αk + βγ ≥ 8π is

Corollary 2.6. There is r > 2 such that evk(x) ≤ |x|−7/2 for any |x| ≥ r and
k = 1, 2.

Lemma 2.7. For k = 1, 2 we have

lim
|x|→∞

⟨x,∇vk(x)⟩ = − 1
2π

(αk + βγ) ,(2.9)

lim
|x|→∞

|x| |∇vk(x)| = 1
2π

(αk + βγ) ,(2.10)

uniformly in x.

Proof. Step 1: We prove

(2.11) lim sup
|x|→∞

|x| |∇vk(x)| ≤ 1
2π

(αk + βγ) uniformly in x.

By (2.4) we have

∇vk(x) = − 1
2π

∫
R2

x − y
|x − y|2

(
evk(y) + βetv1(y)+(1−t)v2(y)

)
dy.(2.12)
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It follows from etv1+(1−t)v2 ≤ tev1 + (1 − t)ev2 that

|x| |∇vk(x)|

≤ 1
2π

(αk + βγ) +
1

2π

∫
R2

(
|x|

|x − y| − 1
)(

evk(y) + βetv1(y)+(1−t)v2(y)
)

dy

≤ 1
2π

(αk + βγ) + C
∫

R2

|y|
|x − y|

(
ev1(y) + ev2(y)

)
dy.

Therefore, in order to obtain (2.11), it is sufficient to show that for k = 1, 2,

lim
|x|→∞

∫
R2

|y|
|x − y| e

vk(y)dy = 0 uniformly in x.(2.13)

Fix r > 2 in Corollary 2.6 such that

(2.14) evk(x) ≤ |x|−7/2, for any |x| ≥ r.

For any |x| ≥ r2, we split the integral domain R2 into three parts

(2.15) Ω1 = {y : |y| ≤ |x|/2}, Ω2 = {y : |x|/2 < |y| ≤ 2|x|},

Ω3 = {y : |y| > 2|x|}.
For y ∈ Ω1, we have |x − y| ≥ |x| − |y| ≥ |x|/2, so it follows from (2.14)
that ∫

Ω1

|y|
|x − y| e

vk(y)dy(2.16)

≤ 2
|x|

(∫
{|y|≤r}

|y|evk(y)dy +
∫
{r≤|y|≤ |x|

2 }
|y|−5/2dy

)
≤ C

|x| ,

where C depends on r but note that r > 2 is fixed.
For y ∈ Ω2, by (2.14) we have∫

Ω2

|y|
|x − y| e

vk(y)dy ≤ C
|x|5/2

∫
{ |x|

2 <|y|≤2|x|}

1
|x − y|dy(2.17)

≤ C
|x|3/2

∫
{ 1

2<|µ|≤2}

1
|µ − θ|dµ ≤ C

|x|3/2 ,

where θ = x
|x| and µ = y

|x| .
For y ∈ Ω3, we have |x − y| ≥ |y| − |x| ≥ |y|/2, so∫

Ω3

|y|
|x − y| e

vk(y)dy ≤ 2
∫
{|y|>2|x|}

evk(y)dy.(2.18)

By (2.16)-(2.18) we have∫
R2

|y|
|x − y| e

vk(y)dy ≤ C
|x| + 2

∫
{|y|>2|x|}

evk(y)dy, ∀|x| ≥ r2.

Letting |x| → +∞ and using evk ∈ L1(R2), we see that (2.13) holds, from
which (2.11) follows.

Step 2: We prove (2.9).
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By (2.12) we have

⟨x,∇vk(x)⟩ = − 1
2π

∫
R2

⟨x, x − y⟩
|x − y|2

(
evk(y) + βetv1(y)+(1−t)v2(y)

)
dy

= − 1
2π

(αk + βγ)− 1
2π

∫
R2

⟨y, x − y⟩
|x − y|2

(
evk(y) + βetv1(y)+(1−t)v2(y)

)
dy.

Since (2.13) implies∣∣∣∣∫
R2

⟨y, x − y⟩
|x − y|2

(
evk(y) + βetv1(y)+(1−t)v2(y)

)
dy
∣∣∣∣

≤C
∫

R2

|y|
|x − y|

(
ev1(y) + ev2(y)

)
dy → 0 uniformly in x as |x| → ∞,

we obtain (2.9).
Step 3: From (2.11) and (2.9), we have

1
2π

(αk + βγ) = lim
|x|→∞

|⟨x,∇vk(x)⟩|

≤ lim inf
|x|→∞

|x| |∇vk(x)| ≤ lim sup
|x|→∞

|x| |∇vk(x)| ≤ 1
2π

(αk + βγ) ,

so (2.10) holds. This completes the proof. □

Lemma 2.8 (Pohozaev identity). For any solution (v1, v2) of (1.8), we have

−2
∫

BR

(
tev1 + (1 − t)ev2 + βetv1+(1−t)v2

)
dx

+R
∫

∂BR

(
tev1 + (1 − t)ev2 + βetv1+(1−t)v2

)
dSx

= R
∫

∂BR

t

(
|∇v1|2

2
−
∣∣∣∣∂v1

∂⃗n

∣∣∣∣2
)
+ (1 − t)

(
|∇v2|2

2
−
∣∣∣∣∂v2

∂⃗n

∣∣∣∣2
)

dSx,(2.19)

where BR is the open ball of radius R centered at 0 and n⃗(x) denotes the outward
normal vector of ∂BR.

Proof. By direct computations, we have

⟨x,∇vk(x)⟩∆vk(x) = div
(
⟨x,∇vk(x)⟩∇vk(x)− |∇vk(x)|2

2
x
)

,

⟨x,∇vk(x)⟩evk(x) = div
(

evk(x)x
)
− 2evk(x),

t⟨x,∇v1(x)⟩etv1(x)+(1−t)v2(x) + (1 − t)⟨x,∇v2(x)⟩etv1(x)+(1−t)v2(x)

=div
(

etv1(x)+(1−t)v2(x)x
)
− 2etv1(x)+(1−t)v2(x).

Then multiplying −∆v1 = ev1 + βetv1(x)+(1−t)v2(x) with t⟨x,∇v1(x)⟩, mul-
tiplying −∆v2 = ev2 + βetv1(x)+(1−t)v2(x) with (1 − t)⟨x,∇v2(x)⟩, and inte-
grating over BR, we easily obtain the desired identity. □
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Proof of Proposition 2.1. Note that

lim
R→∞

∫
BR

(
tev1 + (1 − t)ev2 + βetv1+(1−t)v2

)
dx = tα1 + (1 − t)α2 + βγ.

(2.20)

By Corollary 2.6, we have that for R > r,

R
∫

∂BR

(
tev1 + (1 − t)ev2 + βetv1+(1−t)v2

)
dSx

≤CR
∫

∂BR

(ev1 + ev2) dSx ≤ CR
∫

∂BR

|x|−7/2dSx ≤ CR−3/2,

so

lim
R→∞

R
∫

∂BR

(
tev1 + (1 − t)ev2 + βetv1+(1−t)v2

)
dSx = 0.(2.21)

Finally, (2.9)-(2.10) give

lim
R→∞

R
∫

∂BR

(
|∇vk|2

2
−
∣∣∣∣∂vk

∂⃗n

∣∣∣∣2
)

dSx(2.22)

= lim
R→∞

1
2R

∫
∂BR

(|x| |∇vk|)2 − 2 |⟨x,∇vk⟩|2 dSx = − (αk + βγ)2

4π
.

Thus, inserting (2.20)-(2.22) into (2.19), we get

(2.23) t(α1 + βγ)2 + (1 − t)(α2 + βγ)2 = 8π(tα1 + (1 − t)α2 + βγ).

The proof is complete. □

Corollary 2.9. αk + βγ = 8π for k = 1, 2. In particular, α1 = α2.

Proof. This follows from (2.23) and αk + βγ ≥ 8π that was proved in Lemma
2.5. □

3. SYMMETRY VIA THE ISOPERIMETRIC INEQUALITY

The main result of this section is to prove the radial symmetry of the
solution (v1, v2) via the isoperimetric inequality.

Proposition 3.1. v1 and v2 are radially symmetric and decreasing with respect to
the same point.

Similarly as [4], we will prove this result via the isoperimetric inequal-
ity. By Lemma 2.3, we let v∗1 ,v∗2 and (tv1 + (1 − t)v2)∗ denote the equi-
measurable, radially symmetric non-increasing rearrangement of v1,v2 and
tv1 + (1 − t)v2 respectively, centered at 0. We also define

Λk
c = {x : vk(x) ≥ c}, Λk

c
∗
= {x : v∗k (x) ≥ c}, for k = 1, 2,

Ξc = {x : (tv1 + (1 − t)v2)(x) ≥ c},

Ξ∗
c = {x : (tv1 + (1 − t)v2)

∗(x) ≥ c},
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with the radius Rk
c of the ball Λk

c
∗ and the radius R̃c of the ball Ξ∗

c . Since
α1, α2 < ∞, both Λ1

c and Λ2
c are of finite measures. Furthermore, it follows

from Sard’s theorem that ∂Λk
c ∈ C2 for almost all c, which implies that

the unit outward normal vectors n⃗(x) to ∂Λk
c exist for almost all ∂Λk

c . In
particular, |∇vk(x)| = −⟨⃗n(x),∇vk(x)⟩ > 0 on ∂Λk

c for almost all ∂Λk
c .

First we recall some well-known results. The first lemma follows from
the co-area formula and the isoperimetric inequality. See e.g. [16, Faber-
Krahn Theorem].

Lemma 3.2. For almost every c, we have∫
∂Λk

c
∗ |∇v∗k |dSx ≤

∫
∂Λk

c

|∇vk|dSx,(3.1) ∫
∂Ξ∗

c

|∇(tv1 + (1 − t)v2)
∗|dSx ≤

∫
∂Ξc

|∇(tv1 + (1 − t)v2)|dSx.(3.2)

Moreover, if the equality in (3.1) (resp. (3.2)) holds for almost every c, then vk
(resp. tv1 + (1 − t)v2) is radially symmetric with respect to some point.

The next lemma is a natural corollary of the simple rearrangement in-
equality [11, Theorem 3.4].

Lemma 3.3. For almost every c, we have∫
Λk

c

evk dx =
∫

Λk
c
∗ ev∗k dx,

∫
Ξc

etv1+(1−t)v2 dx =
∫

Ξ∗
c

e(tv1+(1−t)v2)
∗
dx

∫
Ξc

evk dx ≤
∫

Ξ∗
c

ev∗k dx,
∫

Λk
c

etv1+(1−t)v2 dx ≤
∫

Λk
c
∗ e(tv1+(1−t)v2)

∗
dx.

Now we give the proof of Proposition 3.1.

Proof of Proposition 3.1. By Lemmas 3.2-3.3 and the divergence theorem, we
have that for almost every c,

−2πRk
c(v

∗
k )

′(Rk
c) =−

∫
∂Λk

c
∗ ∂rv∗k dSx =

∫
∂Λk

c
∗ |∇v∗k |dSx ≤

∫
∂Λk

c

|∇vk|dSx

=−
∫

∂Λk
c

⟨⃗n(x),∇vk⟩dSx = −
∫

Λk
c

∆vkdx(3.3)

=
∫

Λk
c

(
evk + βetv1+(1−t)v2

)
dx

≤
∫

Λk
c
∗ ev∗k dx + β

∫
Λk

c
∗ e(tv1+(1−t)v2)

∗
dx.

Define

M1(r) :=
∫

Br(0)
ev∗1 dx, M2(r) :=

∫
Br(0)

ev∗2 dx,

M3(r) :=
∫

Br(0)
e(tv1+(1−t)v2)

∗
dx.
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By direct computations, we have that for almost every r > 0,

M′
k(r) =2πrev∗1(r), M′′

k (r) = 2π(1 + r(v∗k )
′(r))ev∗1(r), k = 1, 2,

M′
3(r) =2πre(tv1+(1−t)v2)

∗(r),

M′′
3 (r) =2π(1 + r((tv1 + (1 − t)v2)

∗)′(r))e(tv1+(1−t)v2)
∗(r),

and so

r(v∗k )
′(r) =

rM′′
k (r)

M′
k(r)

− 1, k = 1, 2,(3.4)

r((tv1 + (1 − t)v2)
∗)′(r) =

rM′′
3 (r)

M′
3(r)

− 1.

Since (3.3) says that for almost every r > 0,

−2πr(v∗k )
′(r) ≤ Mk(r) + βM3(r), k = 1, 2,

it follows from (3.4) that for almost every r > 0,

2π(rM′
k(r))

′ = 2πrM′′
k (r) + 2πM′

k(r)(3.5)

≥ 4πM′
k(r)− (Mk(r) + βM3(r))M′

k(r), k = 1, 2.

Note from
∫

R2 ev∗k =
∫

R2 evk = αk < +∞ that there exists rn → +∞ such
that

lim
n→∞

rn M′
k(rn) = lim

n→∞
2πr2

nev∗k (rn) = 0.

Then by integrating (3.5) from 0 to rn and letting n → ∞, we obtain

0 ≥ 4παk −
α2

k
2

− β
∫ ∞

0
M3(r)M′

k(r)dr, k = 1, 2.(3.6)

Since

−∆(tv1 + (1 − t)v2) = tev1 + (1 − t)ev2 + βetv1+(1−t)v2 ,

a similar argument as (3.3)-(3.6) gives

−2πR̃c((tv1 + (1 − t)v2)
∗)′(R̃c) =

∫
∂Ξ∗

c

|∇(tv1 + (1 − t)v2)
∗|dSx

≤
∫

∂Ξc

|∇(tv1 + (1 − t)v2)|dSx

≤
∫

Ξ∗
c

tev∗1 + (1 − t)ev∗2 + βe(tv1+(1−t)v2)
∗
dx,

2π(rM′
3(r))

′ ≥ 4πM′
3(r)− (tM1(r) + (1 − t)M2(r) + βM3(r))M′

3(r),

and so

0 ≥ 4πγ − β

2
γ2 −

∫ ∞

0
M′

3(r)(tM1(r) + (1 − t)M2(r))dr.(3.7)

By (3.6) and (3.7), we easily obtain

t(α1 + βγ)2 + (1 − t)(α2 + βγ)2 ≥ 8π (tα1 + (1 − t)α2 + βγ) .(3.8)
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Since Proposition 2.1 proves that (3.8) is actually an identity, we see from
the above arguments that the inequalities of (3.3) are also identities for al-
most every c, so it follows from Lemma 3.2 that vk is radially symmetric
with respect to some point xk ∈ R2 for k = 1, 2. Then

−e−tv1 ∆v1 − e(1−t)v1 = βe(1−t)v2

implies x1 = x2. Up to a translation we may assume x1 = x2 = 0. Then

rv′k(r) = −
∫ r

0
s(evk(s) + βetv1(s)+(1−t)v2(s))ds < 0

for any r > 0, so vk is radially symmetric and decreasing. The proof is
complete. □

4. UNIQUENESS VIA GEOMETRIC INEQUALITIES

In this section, we complete the proof of Theorem 1.1 by applying the
following interesting geometric inequality from Gui-Li [10].

Theorem 4.1. [10, Theorem 1.10] Let w1 be a radially symmetric function such
that

∆w1 + ew1 ≤ 0 in R2.(4.1)

Let w2 be another radially symmetric function defined in R2. If for some disk Br
we have

∆w2 + ew2 ≤ ∆w1 + ew1 , w2 < w1 in Br and w2 = w1 on ∂Br,(4.2)

then ∫
Br

ew1 + ew2 dy ≥
∫

R2
ew1 dy.(4.3)

Furthermore, if the equality in (4.3) holds, then

∆w2 + ew2 = ∆w1 + ew1 = 0 in Br.(4.4)

Proof of Theorem 1.1. By Proposition 3.1 and up to a translation, we can as-
sume that v1 and v2 are radially symmetric and decreasing with respect to
0. Thus, we can consider the following ODE problem

(rv′1(r))
′ + rev1 + βretv1+(1−t)v2 = 0,

(rv′2(r))
′ + rev2 + βretv1+(1−t)v2 = 0,∫ +∞

0 rev1 dr < ∞,
∫ +∞

0 rev2 dr < ∞,
(4.5)

Step 1: We prove v1 ≡ v2.
Assume by contradiction that v1 ̸≡ v2. Then v1(0) ̸= v2(0) (otherwise

by v′1(0) = v′2(0) = 0 and the uniqueness for ODEs, we obtain v1 ≡ v2).
Without loss of generality, we may assume v1(0) > v2(0). If v1 > v2 in R2,
we have α1 =

∫
R2 ev1 dx > α2 =

∫
R2 ev2 dx, which contradicts with α1 = α2
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in Proposition 2.9. Thus, there exists R0 > 0 such that v1 > v2 in BR0 and
v1 = v2 on ∂BR0 . Since

∆v1 + ev1 = ∆v2 + ev2 = −βetv1+(1−t)v2 < 0 in R2,

we can apply Theorem 4.1 to obtain∫
BR0

ev1 dx +
∫

BR0

ev2 dx >
∫

R2
ev1 dx = α1 = α2.(4.6)

On the other hand, similarly as Lemma 2.5, we use the Kelvin transfor-
mation to define

ṽk(r) := vk(
1
r
)− 4 log(r), k = 1, 2.

Then (ṽ1, ṽ2) satisfies
(rṽ′1(r))

′ + reṽ1 + βretṽ1+(1−t)ṽ2 = 0,
(rṽ′2(r))

′ + reṽ2 + βretṽ1+(1−t)ṽ2 = 0,∫ +∞
0 reṽ1 dr < ∞,

∫ +∞
0 reṽ2 dr < ∞.

Again we have ṽ1(0) ̸= ṽ2(0), so there exists R1 ∈ (0, 1/R0] such that
ṽ1 > ṽ2 in BR1 (or ṽ1 < ṽ2 in BR1) and ṽ1 = ṽ2 on ∂BR1 . Since we also have

∆ṽ1 + eṽ1 = ∆ṽ2 + eṽ2 = −βetṽ1+(1−t)ṽ2 < 0 in R2,

we can apply Theorem 4.1 to obtain∫
BR1

eṽ1 dx +
∫

BR1

eṽ2 dx >
∫

R2
eṽ1 dx

(
or
∫

R2
eṽ2 dx

)
,

or equivalently,

∫
R2\B 1

R1

ev1 dx +
∫

R2\B 1
R1

ev2 dx >
∫

R2
ev1 dx

(
or
∫

R2
ev2 dx

)
= α1 = α2.

(4.7)

Since R0 ≤ 1
R1

, we conclude from (4.6) and (4.7) that

α1 + α2 =
∫

R2
ev1 dx +

∫
R2

ev2 dx > α1 + α2,

a contradiction. This proves v1 ≡ v2.
Step 2: We prove (1.10).
Since v1 ≡ v2, we have

(4.8)

{
−∆v1 = (1 + β)ev1 in R2,∫

R2 ev1 dx < ∞.

Then by Chen-Li’s classification result [5, Theorem 1], there exist λ ∈ (0,+∞)
and x0 ∈ R2 such that (1.10) holds. This completes the proof. □
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