CLASSIFICATION OF SOLUTIONS TO SOME LIOUVILLE TYPE
SYSTEMS

ZHIJIE CHEN AND HANQING ZHAO

ABSTRACT. We give the classification of solutions for some Liouville type
systems, which appear as limiting equations during the study of the bub-
bling phenomena of positive solutions for coupled nonlinear Schrédinger
systems.

1. INTRODUCTION

The classification of solutions is a central problem in elliptic partial dif-
ferential equations. In the seminal paper [5], Chen and Li used the moving
planes method to classify all solutions of the Liouville equation

(1.1) —Au=¢" inR? /2 e'dx < oo.
R

They showed that all solutions of (1.1) are given by
812
(1+ A2|x — x0]?)?’

Among many important applications, this classification result plays a key
role in the bubbling analysis of positive solutions for the Lane-Emden equa-
tion

(1.2) —Au=u’, u>0 inQ, u=0o0noa,

u(x) =log where A > 0, xp € R>.

as p — +oo, where () is a bounded domain in R?. More precisely, after

a suitable scaling near a concerntration point, the Liouville equation (1.1)

appears as a limiting equation of (1.2) as p — +oo; see [1, 8, 9, 14, 15].
Later, the classifications of solutions for the Liouville system

n
—Au; = Y a;et, inR?,
(13) P= 5
[re€tidx < oo, i=1,---,n,

were studied by Chanillo and Kiessling [4], Chipot, Shafrir and Wolansky
[6], and Lin and Zhang [12]. Chanillo and Kiessling [4] first proved that
under some conditions on the matrix A = (ai]-)nxn, all solutions of (1.3) are
radially symmetric with respect to some points. Their result was improved
by Chipot, Shafrir and Wolansky [6], who proved the following symmetry
result for more general A.
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Theorem A. [6] Let A = (a;j)nxn be

(1.4) invertible, symmetric, non-negative and irreducible,

and (uy,...,uy) be a solution of (1.3). Then there exists p € R? such that all
ui, ..., uy are radially symmetric and decreasing about p.

Here the matrix A = (a;;)uxy is called non-negative if a;; > 0 for all (3, ),
irreducible if there is no partition of {1,--- ,n} = UL with[ N =@
such thata;; =0,Vi€ I1,j € .

Comparing to the Liouville equation (1.1), the Liouville system (1.3) is
more complicated and whether the explicit expressions of all solutions can
be written down under the condition (1.4) still remains open. Lin and
Zhang [12] studied a weaker problem that whether the solutions of (1.3)
are unique up to translations and scalings, and proved the following re-
sult.

Theorem B. [12] Let A satisfy (1.4), (u1,...,uy,) and (v, ...,v,) be two radial
solutions of (1.3) such that [, e"idx = [, e“idx for all i. Then there exists § > 0
such that

(1.5) ui(x) = v;(dx) +2logéd, Vi.

In this paper, motivated by the above results, we study the classification
of solutions for the following Liouville type system

—Auq = }116”1 + ﬁoetu1+(l_t)uz in ]Rz,
(16) —Aup = ]/126”2 + ﬁoet111+(1—t)112 in ]Rz,
Jrze"1dx < oo, [pae"2dx < oo,

where pi, p2, B0 € (0,4o0) and t € (0,1) are all constants. Like (1.1)-
(1.2), this system with t = 1 appears as one of the limiting equations
when we study the bubbling phenomena of the following coupled non-
linear Schrodinger system

<

-1 g1 £ .
—Aulzyluf + Boui u; inQ,

P oP_
1.7) —Aug = poul "+ Bouiui 1 inQ,
uy,up; >0inQ), 1y = up, = 0onaQ),

[ay

as p — +oo, where Q) C R? is a bounded domain. Therefore, it is very im-
portant for us to classify all solutions of (1.6). This is the first step for us to
study the bubbling phenomena of (1.7) in future works. This Schrédinger
system has received great interest in the past two decades, and many inter-
esting results have been proved; see e.g. [2, 7, 13] and references therein.
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Note that by letting B = Bo/(uiuy ') and vx = ug + log py in (1.6), we
only need to study the following equivalent system
—Avy = e’ + petrt(1-De2in R?,
(1.8) —Avy = e 4 Betr (1= in R?,
Jre€dx < oo, [p,e?2dx < co.
Remark that, by letting v3 = tv; + (1 — t)vy, we can rewrite (1.8) in the
form of the Liouville system (1.3):
—Av; = €1 + Be%  in R?,
—Avy = €” + e in R?,
—Avy = te” + (1 — t)e®? + e  in R?,
[ge2€%dx < oo for k=1,2,3.

(1.9)

However, the corresponding matrix

1 0 B
0 1 B
t 1—t B

is always degenerate, i.e. does not satisfy (1.4), so Theorems A and B can
not apply. To the best of our knowledge, the classification of solutions for
the system (1.9) is open. Our main result is

Theorem 1.1. Let (v1,v,) with v1,v, € LI (R?) be a solution of the system

(1.8) (in the sense of distributions). Then there exist A € (0,+o00) and xo € R?
such that

8A?
14 A2|x — x0|?)

Our proof of Theorem 1.1 consists of two steps. The first step is to prove
the radial symmetry of the solution via a Rellich-Pohozaev identity and
the isoperimetric inequality; see Sections 2-3. This idea is borrowed from
Chanillo-Kiessling [4]. The second step is to prove v; = v, via a new and
interesting geometric inequality for radial functions which was introduced
recently by Gui-Li [10]; see Section 4.

(1.10) v1(x) = v2(x) = log ( 5 —In(1+B).

Remark 1.2. We are also interested in the classification of solutions to the
following Liouville type system that seems more naturally in the point of
symmetry

—Auqy = ‘uleul + ﬁoetuﬁr(lft)uz in ]RZ,

—Auy = pre + ﬁoet“2+(l_t)”1 in R?,

[ree"idx < oo, [pae"2dx < co.
Unfornaturely, it seems that the approach of this paper does not work for

this system, because we can not obtain a useful Rellich-Pohozaev identity
for this system. We will try to study this system elsewhere.



4 ZHIJIE CHEN AND HANQING ZHAO

In the rest of this paper, we freely use the notation C to denote various
constants. Denote B, (x) := {y € R?: |x —y| < r} and B, = B,(0). Besides,
for any function f(x) that is radially symmetric with respect to 0, we also

write f(|x]) = f(x).
2. A RELLICH-POHOZAEV IDENTITY FOR ENTIRE SOLUTIONS

In this section, we follow Chanillo-Kiessling’s idea [4] to establish a Rellich-
Pohozaev identity for entire solutions of (1.8). Let (v1,vp) with v1,v2 €
L} (IR?) be a solution of (1.8) and define

loc
(2.1) o ::/ eldx, way :=/ e2dx and 'y::/ etvrt(I=Dvz gy
R2 R2 R2

The main result of this section is to prove the following Rellich-Pohozaev
identity.

Proposition 2.1. t(a; + B7)? + (1 — t)(az + By)? = 8m(tay + (1 — t)ap +
BY)-

Before proving Proposition 2.1, we need to study the asymptotic behav-
ior of the solution (v, v7) near infinity. First, we recall a result from Brezis
and Merle [3].

Lemma 2.2. [3, Theorem 2] Suppose u € L} (IR?) satisfies

(2.2) —Au=V(x)e" in R?

with V € LP(R?) and ¢* € LV (R?) for some 1 < p < co and % + % = 1. Then
ut € L*(R?). Here u™ := max{u,0}.

Lemma 2.3. We have v ,v5 € L*®(IR?) and v, v, € C®(R?).

Proof. Define V(x) := te(1=171(¥) 4 Be(1=0%2()  then

23 VIt gy < e ey B ey < o

namely V € L (R?). By —A(tv) = Vel ef¥1 € Lt (R?) and Lemma 2.2,
it follows that v]” € L®(R?). Similarly, v5 € L*(IR?). Thus —Av;, —Av; €
L= (R?), so the standard elliptic regularity theory implies v, v, € C};*, and
then v1, v, € C*(IR?) by a standard bootstrap argument. O

Lemma 2.4. For k = 1,2, we have

_ 1 X = Y1\ (o) o gotern)+(1-Hea(v)
(24) v (x) = 27t/112210g<\y\+1> (ek + Be'™ 2 )dy—i—Ck,

where Cy, is a constant. Moreover,

v (x) 1 .
(2.5) Tog [x] = =5 (ax + By) uniformlyas |x| — oo.

Proof. The proof is the same as that of [5, Lemma 1.2] with trivial modifica-
tions, and we omit it here. [l
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Note that the system (1.8) is conformally invariant, from which we have
the following estimates.

Lemma 2.5. aj + By > 8 fork =1,2.

Proof. We use the Kelvin transformation to define

~ X X
@6) 5= o () ~4loglx| = uuly) +loglyl, ¥ =
By direct computations, we have

A (x) = |x|7* (= Byor(y)) = %) 4 Bt ITADRE) in R2\ {0},

and
/ eﬁk(x)dx — / ’]/’4 o (y dy — / evk(y)dy = ) < 00,
R2 R2\ {0} |y|4 R?

Clearly 91,7, € C*(R?\{0}), and Lemma 2.4 gives

w) g ol(y) F4logly| 1
@7) \xl\rgo log |x| |y|lgt>o log |y| 21 (@ +F7)

which implies 9 € L'(B,(0)) and so 0y € L}, (R?). Therefore, (01,0) is
also a solution of the same system (1.8), so Lemma 2.3 yields 7, € L*(R?)
fork=1,2.

If oy + By < 87t for some k, then it follows from (2.7) that

(2.8) lim oy (x) > = L (21 (ax + By) — ) lim log|x| = +oo,

|x|—0 -2 |x|—0
a contradiction with 7 € L*(IR?). This proves ay + 7y > 8. O
A direct consquence of (2.5) and aj + [3’)/ > 8rmis

Corollary 2.6. There is r > 2 such that ¢**) < |x|~7/2 for any |x| > r and
k=1,2.

Lemma 2.7. For k = 1,2 we have

9 lim (Vo)) =~ (a4 1),
@.10) lim[x] [V04(0)| = 5= (+ ),

uniformly in x.

Proof. Step 1: We prove

(2.11) limsup |x| |Vog(x)| < L (ax + By) uniformly in x.
Jx|—e0 2
By (2.4) we have

_ 1 XY (o) o potor)+(1-1os(y)
(2.12) Vor(x) = = /]R2 = yP (e + Be )dy.
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It follows from ef1+(1=0%2 < #e? 4 (1 — t)e that

|x] [ Vor(x)]
1 1 | x| _
< - el -1 ok (y) to1 (y)+(1—t)v2(y)
_Zﬂ(“k+‘87)+27t/][{2<|x—y| )(e + Be )dy
1 vl
< L (en(y) 4 p220) ) gy
_Zﬂ(ak—i_'B,Y)—i_C/]RZ ’x_y‘ (6 te )dy
Therefore, in order to obtain (2.11), it is sufficient to show that for k = 1,2,
(2.13) lim / i e*Wdy =0 uniformly in x.
|| o0 JR2 X — ¥
Fix r > 2 in Corollary 2.6 such that
(2.14) ) < |x|77/2, forany |x| > 7.

For any |x| > 72, we split the integral domain R? into three parts
@15) Oy ={y:lyl <|xl/2}, Qu={y:|xl/2 <yl <2lx]},
Qs ={y: |yl > 2[x[}.
For y € Oy, we have |x —y| > |x| — |y| > |x|/2, so it follows from (2.14)
that

(2.16) / Wl ot gy
M ’x - ]/’
C

2
|x| < {ly|<r} vl Y (r<lyl< sy | Y ]

where C depends on r but note that > 2 is fixed.
For y € (), by (2.14) we have

| ) C 1
(2.17) / e Wy < / d
o [x =Yl I= 2 Jpgcysapy o=yl ™Y
C 1 C
gi/ dy < ,
X2 Sz T =01 " = 272
where 0 = % and u = .
|x]| |x
For y € O3, we have |x —y| > |y| — |x| > |y|/2, so

(2.18) / WL gy < o / ) gy,
o5 X — Y {ly/>2x]}

By (2.16)-(2.18) we have

/ i e”’f(y)dy < < —|—2/ e Wdy, Vx| > 12
R |x —y| [ yl>2pd)
Letting |x| — +o0 and using ¢% € L!(IR?), we see that (2.13) holds, from
which (2.11) follows.

Step 2: We prove (2.9).




By (2.12) we have

1 (X x=Y) [ o o1 (y) +(1- )02 (y)
(x, Vog(x)) = E/]RZ pra—y (e + Be )dy

__ 1 X WX =Y (o) 4 gt )+ (- Doa(y)
— zﬂ(akJrﬁ?) e /]R2 —yP <e + Be )dy.

Since (2.13) implies

<y/x - y> vk (y) to1 (y)+(1—1t)v2(y)
/IRZIX—yIZ <e + Be )dy

gC/ i (evl(y) + eUZ(y)) dy — 0 uniformly in x as |x| — oo,
R |x — Y|
we obtain (2.9).

Step 3: From (2.11) and (2.9), we have

L (a+ B) = lim |(x, Vor(x))|

27 |x|—00
1
<liminf x| |Vor(x)| < limsup [x| [Vog(x)| < o— (ax + ),
‘X‘—)OO |X|*>OO 27-(
so (2.10) holds. This completes the proof. O

Lemma 2.8 (Pohozaev identity). For any solution (v1,vy) of (1.8), we have

-2 (t‘ev1 + (1 —t)e™ + ﬁet”1+(1_t)z’2) dx
Br

U1 _ Vo t01+(1—t)’02
+R/aBR (te +(1—t)e™ + Be )dsx
|V01|2 B

2 2 2
@19 =R [ t< : >+(1—t) <|V;’2| - )de,

where By is the open ball of radius R centered at 0 and i (x) denotes the outward
normal vector of dBg.

90
o

9o
o

Proof. By direct computations, we have

SLILINY

(x, Vor(x))Avg(x) = div ((x, Vo (x))Vog(x) 5

(x, Vor(x))e ) = div (evku)x) _ penlx),

tHx, Vo, (x)>etv1 (x)+(1=t)oa(x) 4 (1—1)(x, VUZ(x)>etvl(x)+(1—t)vz(x)
=div (etvl(x)+(1—t)U2(X)x> _ 2ptr1(0)+(1=H)va(x)
Then multiplying —Av; = % + Bet? () +(1-D%2(0) with t(x, Voy(x)), mul-

tiplying —Av, = €% + Beto1 () +(1-H%2(%) with (1 — t)(x, Vua(x)), and inte-
grating over Bg, we easily obtain the desired identity. 0
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Proof of Proposition 2.1. Note that
(2.20)

lim (15@”1 +(1—t)e2+ ﬁe“’ﬁ(l’t)”?) dx = tag + (1 — H)ag + By.

R—ec0 /By

By Corollary 2.6, we have that for R > 7,

01 _ (03 t01+(1—t)222
R - (te + (1 —t)e”™ + Be )de

<CR [ (e’ +e2)dSy <CR | |x|77/2dS, < CR™3/2,

0Br 0Bg
SO
2.21) lim R (tevl +(1- e + ﬁefvﬁ(l*f)vz) ds, = 0.
R—o0 9Br

Finally, (2.9)-(2.10) give

avk

|Vor® |9
on

(222)  lim R <
3By 2

R—o0

2

a1 2 20 (e +pr)?
= lim — /aBR(|x\|wk|) 2|(x, Voy) [ ds, = — 22T,

Thus, inserting (2.20)-(2.22) into (2.19), we get

(223)  tar+By)* + (1 —t)(az + By)* = 87(tay + (1 — t)ag + ).
The proof is complete. O
Corollary 2.9. ay + By = 87 for k = 1,2. In particular, a1 = «».

Proof. This follows from (2.23) and aj 4- By > 87t that was proved in Lemma
2.5. O

3. SYMMETRY VIA THE ISOPERIMETRIC INEQUALITY

The main result of this section is to prove the radial symmetry of the
solution (v1,v;) via the isoperimetric inequality.

Proposition 3.1. v and v, are radially symmetric and decreasing with respect to
the same point.

Similarly as [4], we will prove this result via the isoperimetric inequal-
ity. By Lemma 2.3, we let v},v5 and (tv; + (1 — f)vp)* denote the equi-
measurable, radially symmetric non-increasing rearrangement of v1,v, and
tv1 + (1 — t)v; respectively, centered at 0. We also define

A= {xi(x) >}, A = {x: vi(x) >c}, fork=1,2,
Ze = {x: (tv1 + (1 =)o) (x) = ¢},
¢ = {x: (for + (1= t)v2)"(x) > c},

[11 [x
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with the radius R¥ of the ball A" and the radius R, of the ball Z*. Since
w1, 0y < oo, both A} and Ag are of finite measures. Furthermore, it follows
from Sard’s theorem that dAX € C? for almost all ¢, which implies that
the unit outward normal vectors 7i(x) to dAF exist for almost all 9AK. In
particular, | Vo (x)| = —(ii(x), Vog(x)) > 0 on AL for almost all dAL.

First we recall some well-known results. The first lemma follows from
the co-area formula and the isoperimetric inequality. See e.g. [16, Faber-
Krahn Theorem].

Lemma 3.2. For almost every c, we have

3.1) /a "

c

62 [ V(o + (1= t02)'ldSc < [ [V(tor + (1= 1)oa)[d5s.

VoildS, < / V0| dSs,
DAk

=
fair

Moreover, if the equality in (3.1) (resp. (3.2)) holds for almost every c, then vy
(resp. tvr + (1 — t)vy) is radially symmetric with respect to some point.

The next lemma is a natural corollary of the simple rearrangement in-
equality [11, Theorem 3.4].

Lemma 3.3. For almost every c, we have

/kevkdx = /k ev;dXI / etvl+(17t)vzdx :/ e(t01+(1*t)02)*dx
Ak AF e

=k
c

/Evkdx</ eV dx, /etvl+(1*f)”2dx</ ot +(1=002)" g

AK*

= =
e flaniy

Now we give the proof of Proposition 3.1.

Proof of Proposition 3.1. By Lemmas 3.2-3.3 and the divergence theorem, we
have that for almost every c,

~2mRie) (R =~ [ doidse= [ [Vojlas. < [ Voylas.

(3.3) . /a (i), VoS, = - /A Aoy
— (evk +ﬁetvl+(1—t)vz) dx
At
</ elidx + B [ eltort(=ho) gy
T JAR AK*
Define

M (r) ::/B(O) edx, My(r) ::/B(O) e%2dx,

/ o1+ (1=0)02)" 4
B, (0)

3
—~
~
~—
I
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By direct computations, we have that for almost every r > 0,
Mi(r) =27rei0), MY (r) = 27e(1 + (o) (M), k=12,
Mé(r) :27‘[1/3(t771+(1*t)v2)*(”),
M (r) =27t(1 4 r((tor + (1 — £)op)*) (r) )elFr+ (1= (),

and so
rMy (r)

(3.4) r(vf) (r) = M (1) -1, k=1,2,
r((tor + (1= H)02)*) (r) = 71\]\215(5’)) ~1

Since (3.3) says that for almost every r > 0,
—27tr(vf)'(r) < Mi(r) + BM5(r), k=1,2,
it follows from (3.4) that for almost every r > 0,
(3.5)  2n(rM(r)) = 2mrMy (r) + 2t M (7)
> 4y (r) — (Mi(r) + BMa(r))ML(r), k=1,2.

Note from [, e% = Jrz €% = ap < oo that there exists r, — 400 such
that

lim 7, M (r,) = ILm 27r2e% () = 0.
n—oo

n—oo
Then by integrating (3.5) from 0 to r,, and letting n — oo, we obtain
2 ©
(3.6) 0> 4o — 2 — p / Ms(r)ML(r)dr, k=1,2.
0

Since
—A(to; + (1= H)vg) = te¥ + (1 — £)e® + et (1-0o2

a similar argument as (3.3)-(3.6) gives

~2Re((tor + (1= )02)" Y (Re) = [ |V (o1 + (1= )oa)°|d5

g/ IV (k01 + (1 — £)02)|dSs

=
e

g/ te%l 4 (1 — t)ev2 + Beltrt(1=022)" gy

27(rMs(r))" = 4eMs(r) — (EMi (r) + (1 = £) Ma(r) + PMs(r)) Ms(r),
and so
(B7)  0>4my— gfyz — /00o ML(r) (¢My (r) + (1 — £)Ma(r))dr.
By (3.6) and (3.7), we easily obtain
(3.8)  tlar+ )+ (1= t)(az + py)? > 87 (tar + (1 = )z + Py) -
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Since Proposition 2.1 proves that (3.8) is actually an identity, we see from
the above arguments that the inequalities of (3.3) are also identities for al-
most every ¢, so it follows from Lemma 3.2 that vy is radially symmetric
with respect to some point x; € R? for k = 1,2. Then

_e*tlevl _ e(l*f)vl — ﬁe(lft)vz

implies x; = x,. Up to a translation we may assume x; = x, = 0. Then
rol(r) = — / Cs(e%) 1 g+ 1045 <
0

for any r > 0, so vy is radially symmetric and decreasing. The proof is
complete.

4. UNIQUENESS VIA GEOMETRIC INEQUALITIES

In this section, we complete the proof of Theorem 1.1 by applying the
following interesting geometric inequality from Gui-Li [10].

Theorem 4.1. [10, Theorem 1.10] Let wy be a radially symmetric function such
that

(4.1) Awi +e“1 <0 in R>

Let wy be another radially symmetric function defined in R?. If for some disk B,
we have

4.2) Awy+e"? < Awy +e, wo < wy in B, and wy, = wy; on 0B,

then

(4.3) / et +e“2dy > /IRZ e“dy.
Furthermore, if the equality in (4.3) holds, then

(4.4) Awy +e“2 = Awy +e“* =0 in B,.

Proof of Theorem 1.1. By Proposition 3.1 and up to a translation, we can as-
sume that v; and v, are radially symmetric and decreasing with respect to
0. Thus, we can consider the following ODE problem

(rv’l (},))/ 4 re¥t + ‘BrgtvlﬂL(l*t)Uz =0,
(4.5) (roh(r)) + re®z + 5retvl+(1—t)vz —0,

—+o00 —+o0
o rettdr < oo, [["7 re?2dr < oo,

Step 1: We prove v1 = 0;.

Assume by contradiction that v1 #Z v;. Then v1(0) # v2(0) (otherwise
by v1(0) = v5(0) = 0 and the uniqueness for ODEs, we obtain v; = ).
Without loss of generality, we may assume v1(0) > v5(0). If v; > v; in R?,
we have a1 = [, e%dx > ay = [, e”2dx, which contradicts with &y = a
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in Proposition 2.9. Thus, there exists Ry > 0 such that v; > v, in Bg, and
v1 = v on dBg,. Since

Avy + €% = Avy 4 e = —pem (1702 < 0 in R?,

we can apply Theorem 4.1 to obtain
(4.6) / elldx + | e%dx > / eldx = a1 = ay.
Bg, Bg, R?

On the other hand, similarly as Lemma 2.5, we use the Kelvin transfor-
mation to define

~ 1
Ur(r) := Uk(;) —4log(r), k=1,2.
Then (771, 7,) satisfies
(17 (r)) + re® + Bretr+(1-0%2 =,
(rTh(r)) + re® 4 Bre!ir+(1-H%2 = q,
0+°° re’ldr < oo, f0+°° re®2dr < oo.

Again we have 71(0) # 72(0), so there exists Ry € (0,1/Rp] such that
U1 > U7 in Bg, (or v1 < 77 in Bg,) and 71 = 02 on dBg,. Since we also have

ATy + €% = ATy 462 = —BePT(1-0%2 < 0 in R?,

we can apply Theorem 4.1 to obtain

/ ldx + eﬁzdx>/ edx <or/ e52dx>,
Bg, Bg, R2 R2

or equivalently,
4.7)
/ e“dx + edx >/ e“ldx (or / e”zdx> =1 = ap.
R2\B ; R2\B ;. IR2 R2
Ry R

1

Since Ry < R%' we conclude from (4.6) and (4.7) that

a4 ap = / e”ldx-l—/ e2dx > w1 + ay,
R2 IR2

a contradiction. This proves v; = v,.
Step 2: We prove (1.10).
Since v; = v, we have

48) —Avy = (1+B)e” inRR?,
' Jge €1dx < co.

Then by Chen-Li’s classification result [5, Theorem 1], there exist A € (0, +o0)
and xp € R? such that (1.10) holds. This completes the proof. 0
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