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Rectifiability of planes and Alberti representations

GUY C. DAVID AND BRUCE KLEINER

Abstract. We study metric measure spaces that have quantitative topological
control, as well as a weak form of differentiable structure. In particular, let X be
a pointwise doubling metric measure space. Let U be a Borel subset on which
the blowups of X are topological planes. We show that U can admit at most 2
independent Alberti representations. Furthermore, ifU admits 2 Alberti represen-
tations, then the restriction of the measure to U is 2-rectifiable. This is a partial
answer to the case n = 2 of a question of the second author and Schioppa.

Mathematics Subject Classification (2010): 30L99 (primary); 53C23, 28A75
(secondary).

1. Introduction

In the last two decades, there has been tremendous progress in developing notions of
differentiability in the context of metric measure spaces. One strand of this work,
beginning with Cheeger [12], focuses on PI spaces – metric measure spaces that
are doubling and support a Poincaré inequality in the sense of [25] – and, more
generally, Lipschitz differentiability spaces – those equipped with a differentiable
structure in the form of a certain measurable (co)tangent bundle. Other strands
focus on differentiability via the presence of independent 1-rectifiable structures, as
in the work of Bate-Alberti-Csörnyei-Preiss [1,2,4], or the existence of independent
derivations mimicking the functional analytic properties of partial derivatives, as in
the work of Weaver [45].

By now, the different definitions of Cheeger, Weaver, and Bate-Alberti-Csör-
nyei-Preiss have been shown to be closely related [4, 38, 39], and a variety of ap-
plications of differentiability have been given, e.g., in geometric group theory, in
embedding theory, and in Sobolev and geometric function theory.
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Nonetheless, some issues are still not well understood, in particular the relation
between analytical structure and quantitative topology. A particularly intriguing
question along this line is, loosely speaking: What kind of differentiable structure
can live on a topological manifold? To make this precise using a condition from
quantitative topology, we impose one of the following on our metric space X :

(a) X is linearly contractible, i.e., for some � > 0, each ball B(x, r) is contractible
in the ball B(x, �r);

(b) X is a self-similar topological n-manifold, or more generally, all blowups
(pointed Gromov-Hausdorff limits of rescalings) of X are topological n-mani-
folds.

Both of these are widely used strengthenings of the qualitative hypothesis that X is
a manifold; condition (a) was heavily used by Semmes [41].

One may then ask (see [32] for discussion of this and other related questions):

Question 1.1. Let (X,d,µ) be a PI space and assume X is a topological n-manifold
satisfying (a) or (b) above. What can be said about the dimension of the differen-
tiable structure, the Hausdorff dimension, or the structure of blowups of (X, d, µ)?

Note that the only known examples of PI spaces as above are sub-Riemannian mani-
folds or variations on them; in particular, in all known examples, blowups at generic
points are bilipschitz homeomorphic to Carnot groups.

A special case of our main result gives some restrictions in the 2-dimensional
case:

Theorem 1.2. Suppose (X, d, µ) is a PI space, and all blowups of X are homeo-
morphic to R2. Then the tangent bundle has dimension at most 2, and if U ⇢ X is
a Borel set on which the tangent bundle has dimension 2, then µ|U is 2-rectifiable.

We point out that apart from the above theorem, Question 1.1 is wide open. In the
n = 2 case, we do not know if the PI space X could have a 1-dimensional tangent
bundle, while in the n � 3 case we know of no nontrivial restriction on either the
Hausdorff dimension or the dimension of the differentiable structure. For instance,
when n = 3, it is not known if X could be Ahlfors 100-regular, or if it could have a
tangent bundle of dimension 100 or dimension 1.

We now state our main theorem. Before doing so, we remark that it generalizes
the special case stated above in a few ways. For one, we do not require that X is a
PI space, or even the weaker condition that X is a Lipschitz differentiability space,
but just that the measure µ on X supports at least two independent Alberti represen-
tations. (Alberti representations are certain decompositions of µ as superpositions
of measures supported on one-dimensional curve fragments, which we define pre-
cisely below. They were introduced in metric measure spaces by Bate [4], building
on work of Alberti [1] and Alberti-Csörnyei-Preiss [2].) For another, we do not
require that X itself is a topological plane, but only that its blowups are.
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Theorem 1.3. Let (X, d, µ) be a pointwise doubling metric measure space. Let
U ⇢ X be a Borel subset such that, for µ-a.e. x 2 U , each blowup of X at x is
homeomorphic to R2.

Ifµ|U has n �-independent Alberti representations for some Lipschitz � : X !
Rn , then n  2, and equality holds only if µ|U is 2-rectifiable.

Recall that a measure µ on a metric space X is called m-rectifiable if there are
countably many compact sets Ei ⇢ Rm and Lipschitz mappings gi : Ei ! X such
that µ(X \ [gi (Ei )) = 0. All the remaining terminology used in Theorem 1.3 will
be defined in Section 2.

In Theorem 1.3, one may replace the assumption that there exist n �-indepen-
dent Alberti representations with the assumption that there exist n linearly indepen-
dent Weaver derivations. (See [45] or [24, Section 13], for an explanation ofWeaver
derivations.) Up to decomposing U , these assumptions are equivalent by the work
of Schioppa, in particular by Theorem 3.24 and [39, Corollary 3.93].

By the work of Bate [4], Theorem 1.3 also applies if the assumption that there
exist n �-independent Alberti representations is replaced by the assumption that X
is a Lipschitz differentiability space and U is an n-dimensional chart in X . (See [4]
and [12] for more about Lipschitz differentiability spaces.)
Remark 1.4. On its own, m-rectifiability of a measure µ, as defined above, does
not imply that µ is absolutely continuous with respect to m-dimensional Hausdorff
measure (see [22]). Nonetheless, it follows from [2] and [4, Corollary 6.10] that
under the assumption of equality in Theorem 1.3, the measure µmust be absolutely
continuous with respect to two-dimensional Hausdorff measure. (That a similar im-
plication works also in higher dimensions follows from the recent work [20,21] or,
alternatively, from an announced result of Csörnyei-Jones.) Note that in Theorem
1.3 we do not assume that two-dimensional Hausdorff measure is � -finite on X , or
indeed anything about the Hausdorff dimension of X .
One specific application of Theorem 1.3 is when the space X itself is a linearly
locally contractible (LLC) topological surface. This fits neatly into the theme, de-
scribed above, about the interaction between analysis and (quantitative) topology.
(See Definitions 2.2 and 2.3 for the meanings of “porous” and “LLC”.)

Corollary 1.5. Let X be a metrically doubling, LLC, topological surface. Let µ be
a pointwise doubling measure on X such that all porous sets in X have µ-measure
zero, and let U be a Borel subset of X .

Ifµ|U has n �-independent Alberti representations for some Lipschitz � : X !
Rn , then n  2, and equality holds only if µ|U is 2-rectifiable.

Rectifiability and related prior work

One can view Theorem 1.3 as providing a sufficient condition for a measure µ on
a metric space X to be rectifiable. For measures defined on subsets of Euclidean
space, there is a huge literature of such results, most famously the work of Preiss
[35] which applies under density assumptions on µ. There is also a program to
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understand the more quantitative notion of uniform rectifiability for measures on
Euclidean space, which often entails assumptions of quantitative topology [15,17].

In the case of abstract metric measure spaces, there are fewer known sufficient
conditions for rectifiability. Closer to our present setting, Bate and Li [5] also make
a connection between the existence of Alberti representations in a metric measure
space and the rectifiability of that space. They assume nothing about the topology
of X but rather impose density assumptions on the measure µ. More specifically,
of [5, Theorem 1.2] shows the following: Suppose (X, d, µ) is a metric measure
space such that µ has positive and finite upper and lower n-dimensional densities
almost everywhere. Then µ is n-rectifiable if and only if it admits a measurable
decomposition into sets Ui such that each µ|Ui supports n independent Alberti rep-
resentations.

Theorem 1.3 above says that, under certain quantitative topological assump-
tions on a space (X, d, µ) supporting two independent Alberti representations, one
can conclude 2-rectifiability of the measure µ without any a priori density assump-
tions and, in particular, without any assumption on the Hausdorff dimension of the
space.

With strong assumptions on both the measure µ and the quantitative topology
of X , much more can be said. For example, in [41], Semmes shows that an Ahlfors
n-regular, linearly locally contractible n-manifold must be a PI space, and in [19],
it is shown that such manifolds are locally uniformly n-rectifiable.

Specializing further to the the 2-dimensional case, in [9] it is shown that one
can even achieve global parametrizations: an Ahlfors 2-regular, linearly locally con-
tractible 2-sphere X is quasisymmetrically equivalent to the standard 2-sphere. This
result implies both that X is a PI space and that 2-dimensional Hausdorff measure
on X is 2-rectifiable. Related parametrization results for other topological surfaces
appear in [46, 47].

Remarks on the proof of Theorem 1.3

Let us briefly discuss the proof that equality n = 2 in Theorem 1.3 implies 2-
rectifiability, which is the more difficult part of the theorem. The proof consists of
three main ingredients.

In the first ingredient, we use the fact that generic blowups of � are certain
“model mappings”, namely, Lipschitz quotient mappings from doubling, linearly
contractible planes to R2 (Proposition 3.2). (For the definitions of these terms, see
Sections 2 and 3.)

Thus, up to decomposing U , we may assume there is a scale r0 > 0 such
that at almost every point in U , � is uniformly close to these model mappings, in
the Gromov-Hausdorff sense, at scales below r0 (Lemma 7.1). By decomposing
further, we may also assume that the model mappings have uniform constants and
that µ is essentially a doubling measure on U , in particular, that porous subsets of
U have measure zero.

For the second ingredient, we study the geometry of the model mappings. The
study of Lipschitz quotient mappings of the plane initiated in [8, 28] already shows
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that the model mappings are discrete and open, i.e., are branched coverings (Propo-
sitions 3.4 and 3.5). More quantitatively, we prove by a compactness argument that
each model mapping is bilipschitz on a sub-ball of quantitative size in every ball of
its domain (Proposition 6.2).

The final ingredient in the proof is the following stability property of the model
mappings: if two model mappings are sufficiently close in the Gromov-Hausdorff
sense and one is bilipschitz on a ball of radius R, then the other is bilipschitz on a
ball of radius cR, for some controlled constant c > 0 (Lemma 5.4). This means
that if � is close to a bilipschitz model mapping at some point and scale, then this
property persists under further magnification at this point (Lemma 7.2).

Combining these three ingredients shows that the set of points in U at which
�|U is not locally bilipschitz is in fact porous (or rather, � -porous) in U , and hence
has measure zero.

Structure of the paper

The outline of the paper is as follows. Section 2 contains notation and preliminary
definitions. Section 3 contains the definition and properties of Lipschitz quotient
mappings. Section 4 contains some preliminary definitions related to Gromov-
Hausdorff convergence of metric spaces, and Sections 5 and 6 contain some fur-
ther quantitative topological facts about Lipschitz quotient mappings on planes. In
Section 7 we prove Theorem 1.3 and Corollary 1.5, and in Section 8 we provide
some relevant examples where the results fail under relaxed assumptions. In Ap-
pendix A we show that a space whose blowups are all planes actually satisfies a
more quantitative condition on its blowups. This used in the proof of Theorem 1.3,
but its proof is a modification of fairly standard ideas in the literature and so is
relegated until the end.

2. Notation and preliminaries

Throughout this paper, we consider only complete, separable metric spaces and
locally finite Borel regular measures.

2.1. Metric space notions

We write
B(x, r) = BX (x, r) = {y 2 X : d(y, x) < r}

for the open ball in a metric space X , and we write

B(x, r) = BX (x, r) = {y 2 X : d(y, x)  r},

which need not be the closure of B(x, r). We also consider closed annuli, which
we write as

A(x, r, R) = {y 2 X : r  d(y, x)  R}.



728 GUY C. DAVID AND BRUCE KLEINER

A metric space is called proper if B(x, r) is compact in X for each x 2 X and
r > 0.

Given a metric space (X, d) and � > 0, we will write �X for the metric space
(X, �d).
Definition 2.1. Ametric space X is called metrically doubling if there is a constant
D � 0 such that each ball in X can be covered by at most D balls of half the radius.
If we wish to emphasize the constant D, we will call X metrically D-doubling.
If X is complete and metrically doubling, then it is proper.
Definition 2.2. Let X be a metric space and S ⇢ X a subset. We say that S is
porous if, for all x 2 S, there is a constant ⌘ > 0 and a sequence xn ! x in X such
that

B(xn, ⌘d(xn, x)) \ S = ;.

We now introduce some terms from quantitative topology, including the term lin-
early locally contractible used in Corollary 1.5.
Definition 2.3. Let X be a metric space.

• We call X linearly locally contractible (LLC) if there is a radius r0 > 0 and
a constant A � 1 such that each metric ball B(x, r) ⇢ X with r < r0 is
contractible inside B(x, Ar). If one can take r0 = 1, we call the space linearly
contractible (LC), or A-LC if we wish to emphasize the constant;

• We call X annularly linearly connected if there is a constant � � 1 such that,
for all p 2 X and r 2 (0, diam (X)], any two points x, y 2 A(p, r, 2r) can
be joined by a continuum in A(p, r/�, 2�r). We abbreviate this condition as
ALC, or �-ALC to emphasize the constant.

We will make use of the following relationship between the above two notions,
which is a minor modification of facts found in the literature.

Lemma 2.4. If a complete, metrically doubling space X is annularly linearly con-
nected with constant � and homeomorphic to R2, then X is linearly contractible,
with constant A = A(�) depending only on �.

Proof. [30, Lemma 5.2] shows that X must satisfy two conditions known as
“LLC1” and “LLC2”, with constants depending only on �. The argument in [9,
Lemma 2.5] then shows that X must be linearly contractible with constant depend-
ing only on �. (Note that, since X is homeomorphic to R2, there is no need to
restrict to a bounded subset as in the proof of that lemma.)

We will use the notion of simultaneous pointed Gromov-Hausdorff conver-
gence of spaces and functions. Namely, we will consider triples (X, p,�), where
X is a metric space, p 2 X is a base point, and � : X ! Rk is a Lipschitz func-
tion. This type of convergence is explained in detail in a number of places. See, for
example, [16, Chapter 8], as well as [13, 18, 29].

If (Xn, pn) is a sequence of metrically D-doubling spaces, then it has a sub-
sequence which converges in the pointed Gromov-Hausdorff sense to a metrically
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D-doubling space. If furthermore fn : Xn ! Rk are all L-Lipschitz functions,
for some fixed L , then {(Xn, pn, fn)} has a subsequence converging to a triple
(X, p, f ) for which f is L-Lipschitz.

Definition 2.5. Let X be a metric space, p 2 X a point, and {�k} is a sequence of
positive real numbers tending to zero. If the sequence

n⇣
��1
k X, p

⌘o

converges in the pointed Gromov-Hausdorff sense to a space (X̂, p̂), then (X̂, p̂) is
called a blowup of X at p.

Let � : X ! R2 be a Lipschitz function. If the sequence
n⇣
��1
k X, p, ��1

k (� � �(p))
⌘o

converges to a triple (X̂, p̂, �̂), then (X̂, p̂, �̂) is called a blowup of (X, p,�). In
this case (X̂, p̂) will be a blowup of (X, p).

By our previous remarks, a metrically doubling space admits blowups at each of
its points, as does a metrically doubling space together with a Lipschitz function.
For the definition of blowups at almost every point of a pointwise doubling metric
measure space, as used in Theorem 1.3, see Remark 2.11.

2.2. Metric measure space notions

Recall our standing assumption that our metric measure spaces are complete, sepa-
rable, and Borel regular.

If (X, d, µ) is a metric measure space and U ⇢ X is a measurable subset, then
we write µ|U for the measure defined by

µ|U (E) = µ(E \U).

The definition of “metrically doubling” for metric spaces has already appeared; now
we introduce the related concept for metric measure spaces.

Definition 2.6. A metric measure space (X, d, µ) is called doubling if there is a
constant C � 0 such that

µ(B(x, 2r))  Cµ(B(x, r)

for all x 2 X and r > 0.

If a metric measure space is doubling, then the underlying metric space is metrically
doubling (see [23]). Of course, a metrically doubling space may carry a specific
measure µ which is not doubling.
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Definition 2.7. A metric measure space (X, d, µ) is called pointwise doubling at
x 2 X if

lim sup
r&0

µ(B(x, 2r))
µ(B(x, r))

< 1.

We call (X, d, µ) pointwise doubling if it is pointwise doubling at µ-a.e. x 2 X .
Definition 2.8. We say that (X, d, µ) is (C, R)-uniformly pointwise doubling at
x 2 X if

µ(B(x, r))  Cµ(B(x, r/2)) for all r < R. (2.1)

If, for some C � 1 and R > 0, the space (X, d, µ) is (C, R)-uniformly pointwise
doubling at µ-a.e. x 2 X , we call (X, d, µ) uniformly pointwise doubling.

A subset A ⇢ X is called (C, R)-uniformly pointwise doubling if µ is (C, R)-
uniformly pointwise doubling at x for all x 2 A. (Note that we ask that (2.1) holds
for balls in X centered at points of A, not that (A, d, µ) is uniformly pointwise
doubling at all x 2 A.)
We note that the Lebesgue density theorem applies to pointwise doubling measures;
see [26, Section 3.4]. From this it follows immediately that if (X, d, µ) is pointwise
doubling and U ⇢ X is Borel, then (U, d, µ|U ) is pointwise doubling.
Remark 2.9. If µ is a doubling measure on X , then every porous set in X has µ-
measure zero. However, it is not true that every porous set in a pointwise doubling
metric measure space (X, d, µ) must have measure zero. (For example, take R2
equipped with the measure µ which is the restriction ofH1 to a single line.) How-
ever, the following fact is immediate from the Lebesgue density theorem: If A ⇢ X
is a uniformly pointwise doubling subset, and S ⇢ A is porous as a subset of the
metric space (A, d), then S has measure zero.
The following facts about pointwise doubling spaces combine of [6, Lemmas 2.2
and 2.3] (see also [7] and [4]).

Lemma 2.10. Let (X, d, µ) be a complete, pointwise doubling metric measure
space. Then there exists a countable collection {Ai } of closed subsets of X , along
with constants Ci > 1 and Ri > 0, with the following properties:

(i) µ(X \ [i Ai ) = 0;
(ii) Each Ai is metrically doubling;
(iii) Each Ai is (Ci , Ri )-uniformly pointwise doubling.

Remark 2.11. If (X, d, µ) is pointwise doubling (but not necessarily metrically
doubling), then for µ-a.e. x 2 X , we can define the blowups of X at x as follows:
decompose X into closed sets Ai as in Lemma 2.10 and, define the blowups of X at
x 2 Ai to be the blowups of Ai at x , which are well-defined as Ai is metrically dou-
bling. For µ-a.e. x 2 X , this choice is independent of the choice of decomposition
of X (see [6, Section 9]).

When we speak of the blowups of a pointwise doubling metric measure space
(X, d, µ), as in Theorem 1.3, this is what we mean. Observe that the blowups of a
pointwise doubling space are metrically doubling metric spaces.
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Note that if (X, d, µ) is metrically doubling and pointwise doubling, the blow-
ups of X in this sense may not coincide with the blowups of X in the metric sense.
For example, if X is R2 equipped with the measure µ which is the restriction ofH1

to a single line, then (X, d, µ) is both metrically and pointwise doubling. However
the blowups of X , in the sense of this remark, are lines almost everywhere.

If µ has the additional property that it assigns measure zero to porous subsets
of X , then the two notions of blowup agree µ-almost everywhere. (See [13, Remark
7.2].)

2.3. Alberti representations

We will not really need any properties of Alberti representations other than Propo-
sition 3.2 below. However, for background we give the relevant definitions. For
more on Alberti representations, we refer the reader to [4, 5, 13, 39].

If X is a metric space, let 0(X) denote the set of all bilipschitz functions

� : K ! X

where K is a non-empty compact subset of R. We write Dom � for the domain K
of � and Im � for the image of � in X .

If � 2 0(X), then the graph of � is the compact set

{(t, x) 2 R ⇥ X : t 2 K , � (t) = x}.

We endow 0(X) with the metric d which sets d(� , � 0) equal to the Hausdorff dis-
tance in R ⇥ X between the graphs of � and � 0.

Definition 2.12. Let (X, d, µ) be a metric measure space, P a Borel probability
measure on 0(X), and, for each � 2 0(X), let ⌫� a Borel measure on X that is
absolutely continuous with respect toH1|Im � .

For a measurable set A ⇢ X , we say that A = (P, {⌫� }) is an Alberti repre-
sentation of µ|A if, for each Borel set Y ⇢ A,

• The map � 7! ⌫� (Y ) is Borel measurable;
• We have

µ(Y ) =
Z

0(X)
⌫� (Y )dP(� ).

To specify the directions of Alberti representations, we define a cone in Rn as
folows: given w 2 Sn�1 and ✓ 2 (0, 1), let

C(w, ✓) =
�
v 2 Rn : v · w � (1� ✓)kvk

 
.

A collection C1, . . . ,Cm of cones in Rn is independent if any choice of non-zero
vectors v1 2 C1, . . . , vm 2 Cm form a linearly independent set.
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Suppose (X, d, µ) is a metric measure space with Alberti representation
(P, {⌫� }). Let � : X ! Rn be Lipschitz and let C ⇢ Rn be a cone. We say
that the Alberti representation (P, {⌫� }) is in the �-direction of the cone C if

(� � � )0(t) 2 C \ {0}

for P-a.e. � 2 0(X) and a.e. t 2 Dom � .
Finally, if � : X ! Rn is Lipschitz, we say that a collection A1, . . . ,Am of

Alberti representations is �-independent if there are independent cones C1, . . . ,Cm
in Rn such that eachAi is in the �-direction of Ci .

3. Lipschitz quotient mappings

Lipschitz quotient mappings were first introduced in [8] in the context of Banach
spaces.
Definition 3.1. Let X and Y be metric spaces. A mapping F : X ! Y is called a
Lipschitz quotient (LQ) mapping if there is a constant L � 1 such that

B(F(x), r/L) ✓ F(B(x, r)) ✓ B(F(x), Lr) (3.1)

for all x 2 X and all r > 0.
If we wish to emphasize the constant L , we will call such a map an L-LQ map.

The second inclusion in (3.1) simply says that an L-LQ mapping is L-Lipschitz.
The way Lipschitz quotient mappings enter the proof of Theorem 1.3 is via the

following result. It was proven (in slightly different language) in [39, 40, Theorem
5.56], (see equation (5.96) in that paper) and (for doubling measures) in [18, Corol-
lary 5.1]. A significantly stronger version of this result in the setting of Lipschitz
differentiability spaces can be found in [13, Theorem 1.11]. All three of these re-
sults yield the following proposition with only minor changes.

Proposition 3.2. Let (X, d, µ) be a metric measure space with µ pointwise dou-
bling. Suppose that, for some Lipschitz function � : X ! Rn , µ has n �-
independent Alberti representations. Then for almost every x 2 X , there is a
constant L � 1 such that for every blowup (X̂, x̂, �̂) of (X, x,�), the mapping
�̂ is a Lipschitz quotient map of X̂ onto Rn with constant L .

The constant L depends on x but not on the sequence of scales defining the
blowup.

In the remainder of this section, we collect some basic properties of Lipschitz quo-
tient mappings that will be used below.

The following path lifting lemma is one of the main tools used in [8, Lemma
4.4] and [28, Lemma 2.2]. We repeat it here in our context, along with its brief
proof.
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Lemma 3.3. Let X be a proper metric space. Let F : X ! Y be L-LQ, and
let � : [0, T ] ! Y be a 1-Lipschitz curve with � (0) = F(x). Then there is a
L-Lipschitz curve �̃ : [0, T ] ! X such that �̃ (0) = x and F � �̃ = � .

Proof. Fix m 2 N. We define

�̃m :

✓
1
m

Z \ [0, T ]

◆
! X

as follows.
Set �̃m(0) = x . By induction, assume that �̃m(k/m) has been defined and

F(�̃ (k/m)) = � (k/m).
We know that

F(B(�̃m(k/m), L/m)) ◆ B(� (k/m), 1/m) 3 � ((k + 1)/m).

Here the first inclusion follows from the fact that F is a L-LQ mapping and that X
is proper, while the second inclusion follows from the fact that � is 1-Lipschitz.

We therefore define �̃m(k/m) to be any point of B(�̃m(k/m), L/m) that maps
onto � ((k + 1)/m) under F .

It follows that �̃m is L-Lipschitz for each m 2 N. By a standard Arzelà-Ascoli
type argument, a sub-sequence of {�̃m} converges as m ! 1 to a curve �̃ as
desired.

The following result is from [8, Proposition 4.3], or alternatively from the iden-
tical [28, Proposition 2.1]. These results are not stated in this form, but rather are
stated only for mappings from R2 to R2. However the proof works exactly the
same way in the more general setting below, using Lemma 3.3. Recall that a dis-
crete mapping f is one for which each point preimage f �1(p) is discrete.

Proposition 3.4 ([8, Proposition 4.3], [28, Proposition 2.1]). For each L �1 and
D � 1, there is a constant N = N (L , D) with the following property:

Let X be a proper, metrically D-doubling topological plane, and let f : X !
R2 be a L-LQ mapping. Then f is discrete, and furthermore

# f �1(p)  N

for all p 2 R2.
Proof. A reading of the (identical) proofs of [8, Proposition 4.3] and [28, Proposi-
tion 2.1] shows that the only requirement on the domain of the mapping is that it is
a doubling topological plane.

With this remark in mind, what those proofs directly show is the following
statement: if X is a proper, metrically D-doubling topological plane and f : X !
R2 is an L-LQ mapping, then #( f �1(p) \ B(x, 1)) is uniformly bounded (for all
p 2 R2 and x 2 f �1(p) 2 X) by a constant depending only on L and D. To
achieve the conclusion of Proposition 3.4, one needs only to rescale and apply this
result, for each � > 0, to the L-LQ mappings x 7! � f (x), considered as mappings
on the metrically D-doubling topological plane �X .
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We remark that, to our knowledge, it is unknown whether a result like Propo-
sition 3.4 holds for Lipschitz quotient mappings from Rn to Rn , for n � 3.

Proposition 3.4 will tell us that our blowup mappings are discrete open map-
pings between topological planes. The following result of Černavskii-Väisälä is
then relevant.

Proposition 3.5 ([44, Theorem 5.4]). Let f : M ! N be a continuous, discrete,
and open mapping between topological n-manifolds. Then f is a local homeomor-
phism outside of a closed branch set B f such that

dimB f  n � 2 and dim f (B f )  n � 2,

where dim denotes the topological dimension.

Remark 3.6. In the statement of Proposition 3.5, since f is discrete and open and
the branch set B f is closed, the inequality dim f (B f )  n � 2 follows from [14,
Lemma 2.1].

As Proposition 3.5 will allow us to find locations where our blowup mappings
are injective LQ mappings, we now analyze those locations further. Recall that a
metric space is called geodesic if every two points can be joined by a curve whose
length is equal to the distance between the points.

Lemma 3.7. Let X be a proper metric space and let Y be a geodesic metric space.
Let F : X ! Y be L-LQ, and suppose that F is injective on B(x, r) for some
x 2 X, r > 0.

Then F is L-bilipschitz on B(x, r/(1+ 2L2)).

Proof. As an L-LQ mapping, F is automatically L-Lipschitz. Consider distinct
points p, q 2 B(x, r/(1+ 2L2)). Let T = d(F(p), F(q))  Lr

1+2L2 .
Let � : [0, T ] ! Y parametrize by arc length a geodesic from F(p) to F(q).

Then by Lemma 3.3 there is a L-Lipschitz curve �̃ : [0, T ] ! X such that �̃ (0) =
p and F � �̃ = � .

Since �̃ is L-Lipschitz, we have that

diam (�̃ )  LT 
L2r

1+ 2L2

and so we get

d(�̃ (T ), x) 
r

1+ 2L2
+

L2r
1+ 2L2

< r.

Therefore �̃ (T ) 2 B(x, r) and F(�̃ (T )) = � (T ) = F(q). Since F is injective on
B(x, r), it follows that

�̃ (T ) = q

and so
d(p, q) = d(�̃ (0), �̃ (T ))  LT  Ld(F(p), F(q)).
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4. Convergence and closeness

We introduced the notions of Gromov-Hausdorff convergence and blowups in Sec-
tion 2. Closely related to this type of convergence are the following notions of
closeness between spaces.

Definition 4.1. Let M and N be metric spaces and fix ⌘ > 0. We call a (not
necessarily continuous) mapping f : M ! N an ⌘-isometry if

|dN ( f (x), f (y)) � dM(x, y)|  ⌘ for all x, y 2 M.

In other contexts, such mappings are also sometimes called (1, ⌘)-quasi-isometric
embeddings or (1, ⌘)-Hausdorff approximations.

Definition 4.2. Let (M, p) and (N , q) be pointed metric spaces and let t > 0,
✏ 2 (0, 1/10). We will say that (M, p) and (N , q) are ✏-close at scale t if there
exist ✏t-isometries

f : B(p, t/✏) ! N and g : B(q, t/✏) ! M (4.1)

such that d( f (p), q)  ✏t , d(g(q), p)  ✏t , and furthermore

d( f (g(y)), y)  ✏t and d(g( f (x)), x)  ✏t (4.2)

for all y 2 B(q, t/2✏) and x 2 B(p, t/2✏).
If � : M ! Rk and  : N ! Rk are Lipschitz, we will say that the triples

(M, p,�) and (N , q, ) are ✏-close at scale t if the above holds and in addition

|� � g �  |  ✏t, | � f � �|  ✏t

everywhere on B(q, t/✏) and B(p, t/✏), respectively.

Remark 4.3. If (Xn, pn,�n) is a sequence of triples converging in the pointed
Gromov-Hausdorff sense to (X, p,�), then for all R, ✏ > 0, there exists N 2 N
such that (Xn, pn,�n) is ✏-close to (X, p,�) at scale R, for all n � N . See, for
example, [16, Lemmas 8.11 and 8.19] or [11, Definition 8.1.1].

We collect some other simple observations about closeness below.

Lemma 4.4. Let (M, p,�) and (N , q, ) be ✏-close at scale t , with mappings f
and g as in Definition 4.2. Fix � 2 (0, 1/2].

(a) If B(x, �t) ✓ B(p, t), then (M, x,�) and (N , f (x), ) are ✏
� -close at scale

�t;
(b) If in addition (N , q, ) and (N 0, q 0, 0) are �-close at scale t , then (M, p,�)

and (N 0, q 0, 0) are 2(✏ + �)-close at scale t .
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Proof. For (a), we simply use the same mappings f and g that are provided by
the fact that (M, p,�) and (N , q, ) are ✏-close at scale t . We now consider
these as mappings between (M, x,�) and (N , f (x), ). The only aspect of Def-
inition 4.2 that is not immediately obvious is the fact that f and g are defined on
B(x, (�t)/(✏/�)) and B( f (x), (�t)/(✏/�)), respectively. This follows from the tri-
angle inequality and the assumptions that ✏  1/10, �  1/2.

For (b), one may compose the relevant ✏-isometries, and check that the result-
ing maps satisfy Definition 4.2 using the triangle inequality and the assumptions
that ✏, �  1/10.

It is convenient for topological arguments to have a continuous version of
closeness.
Definition 4.5. Let M and N be metric spaces and fix ⌘ > 0. We say that con-
tinuous maps f, g : M ! N between metric spaces are ⌘-homotopic if they are
homotopic by a homotopy H : M ⇥ [0, 1] ! N such that

dN ( f (x), H(x, t))  ⌘

for all x 2 M and t 2 [0, 1].
Definition 4.6. Let (M, p) and (N , q) be pointed metric spaces and let t > 0,
✏ 2 (0, 1/2). We will say that (M, p) and (N , q) are continuously ✏-close at scale
t if there exist continuous ✏t-isometries

f : B(p, t/✏) ! N and g : B(q, t/✏) ! M

such that
d( f (p), q)  ✏t and d(g(q), p)  ✏t,

and
g � f |B(p,t/✏)

is ✏t-homotopic to the inclusion B(p, t/✏) ! M , and similarly for f � g.
If � : M ! Rk and  : N ! Rk are Lipschitz, we will say that the triples

(M, p,�) and (N , q, ) are continuously ✏-close at scale t if the above holds and
in addition

|� � g �  |  ✏t, | � f � �|  ✏t

where defined.
The following result is useful for connecting closeness and continuous closeness.

Lemma 4.7. Fix A, L � 1. Then there is a constant 3 = 3(A, L) � 1 with the
following property.

Let (M, p,�) and (N , q, ) be triples such that (M, p) and (N , q) are pointed
A-LC topological planes, and �, are L-Lipschitz. If ✏ 2 (0, (103)�1) and t > 0,
and if (M, p,�) and (N , q, ) are ✏-close at scale t , then they are continuously
3✏-close at scale t .
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Proof. This follows from the general “induction on skeleta” arguments of [34] or
[41, Section 5]. Here we give a direct proof based on these methods, while making
no attempt to optimize constants. The idea is simply to triangulate M and N and
use the linear contractibility to continuously extend the coarse mappings f and g
from Definition 4.2 successively from the vertices of the triangulation to the edges
and then to the faces. To verify the homotopy inverse portion of Definition 4.6, one
does a similar process on M ⇥ [0, 1] and N ⇥ [0, 1].

Let f : B(p, t/✏) ! N and g : B(q, t/✏) ! M be the mappings as in
Definition 4.2.

Fix a triangulation T of M such that each triangle T 2 T has diameter at most
✏t . Let T✏ be the collection of triangles in T that intersect B(p, t/2✏).

Let f0 be the restriction of f to the 0-skeleton of T✏ . Note that if x and y are
adjacent points in the 0-skeleton of T✏ , then d( f (x), f (y))  3✏t .

The A-LC property of N allows us to extend f0 to a continuous map f1 from
the 1-skeleton of T✏ into N with the property that

diam ( f1(@T ))  9A✏t for each T 2 T✏ .

A second application of the A-LC property of N allows us to extend f1 to a contin-
uous map f2 from

[T2T✏T � B(p, t/2✏),

into N , with the property that

diam ( f2(T ))  18A2✏t for each T 2 T✏ . (4.3)

It follows from (4.3) that the continuous map f2 satisfies

d( f (x), f2(x))  20A2✏t for all x 2 B(p, t/2✏). (4.4)

By the same method, we can find a continuous map g2 : B(q, t/2✏) ! M such that

d(g(y), g2(y))  20A2✏t for all y 2 B(q, t/2✏). (4.5)

Then it follows from (4.4), (4.5), and the fact that � and  are L-Lipschitz, that

|� � g2 �  |  21A2L✏t and | � f2 � �|  21A2L✏t

where defined.
We now argue that

h = g2 � f2|B(p,t/2✏)

is C✏t-homotopic to the inclusion B(p, t/2✏) ! M , for some C depending only
on A. Of course, the same argument will show that h̃ = f2 � g2|B(q,t/2✏) is C✏t-
homotopic to the inclusion B(q, t/✏) ! N .
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Observe that a simple triangle inequality calculation using (4.4) and (4.5) and
the properties of f and g shows that

d(h(x), x)  42A2✏t for all x 2 B(p, t/2✏).

Recall the previously defined triangulation T in M and the collection T✏ inside
it. These yield triangulations of M ⇥ {0} and M ⇥ {1}. We can then obtain a
triangulation S of M ⇥ [0, 1] with no additional vertices by simply triangulating
each product T ⇥ [0, 1] for triangles T 2 T . Note that, under this construction, if
S is a simplex of S that intersects B(p, t/2✏) ⇥ [0, 1], then

S \ (M ⇥ {0, 1}) ✓

 
[

T2T✏
T

!

⇥ {0, 1}.

Let S✏ be the collection of simplices in S that intersect B(p, t/2✏) ⇥ [0, 1].
We define a map H1 from the 1-skeleton S1✏ of S✏ to M as follows: on edges of

S✏ in M ⇥ {0}, H1 agrees with the identity. On edges of S✏ in M ⇥ {1}, H1 agrees
with h. On each remaining edge, we extend H1 continuously from its values at the
endpoints, using the A-LC property of M . Then for each edge e of S1✏ between
points x ⇥ a and y ⇥ b in S0✏ (x, y 2 M , a, b 2 {0, 1}), we have

diam (H1(e))  2Ad(H1(x), H1(y))  84A3✏t.

We have now defined H1 on the 1-skeleton of S✏ . We now extend to a map H2 on
the 2-skeleton of S✏ . For each face of S✏ in M ⇥ {0}, define H2 by the identity and
for each face of S✏ in M ⇥ {1}, define H2 by h; note that this continuously extends
H1. On each remaining face of S✏ , we define H2 as an extension of H1 using the
A-LC property of M . Since the image of each edge of S✏ under H1 has diameter at
most 84A3✏t , the image of each face of S✏ under H2 has diameter at most 336A4✏t .

Finally, we extend H2 to a map H on the union of simplices of S✏ , again using
the A-LC property of M . The image of each simplex under H has diameter at most
1344A5✏t .

Since the union of simplices of S✏ contains all of B(p, t/2✏)⇥ [0, 1], a restric-
tion of H is a homotopy between h and the inclusion of B(p, t/2✏) into M .

In addition, since diam (H(S))  1344A5✏t for each simplex S of S✏ , it fol-
lows that

d(H(x, t), x)  1344A5✏t

for all (x, t) 2 B(p, t/2✏) ⇥ [0, 1].
This proves that h = g2 � f2|B(p,t/2✏) is 1344A5✏t-homotopic to the inclusion

map of B(p, t/2✏) into M . The same argument proves the analogous statement for
f2 � g2|B(q,t/2✏)

Therefore, choosing 3 � max(1344A5, 21A2L) completes the proof of the
lemma.
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5. Topological lemmas

We first make the following simple observation about A-LC spaces.

Lemma 5.1. Let X be a proper A-LC space. Fix x 2 X and r > 0. Then there is a
connected open set U and a connected compact set K such that

B(x, r) ✓ U ✓ B(x, 2Ar) (5.1)

and
B(x, r) ✓ K ✓ B(x, 2Ar). (5.2)

Proof. The existence of U satisfying (5.1) is shown in [19, Lemma 2.11].
To find a continuum K as in (5.2), consider the homotopy H which contracts

B(x, 2r) in B(x, 2Ar) and set

K = H(B(x, r) ⇥ [0, 1]).

Now let X and Y be homeomorphic to Rn and let f : X ! Y be a proper
continuous mapping. Here proper means that f �1(K ) is compact in X whenever
K is compact in Y . Then f extends naturally to a continuous mapping between the
one-point compactifications of X and Y , which are homeomorphic to Sn .

For a domain D ⇢ X , and a point y 2 Y \ f (@D), we can therefore use
µ(y, D, f ) to denote the local degree of f , as defined in [36, page 16]. That is, if f
is a continuous map from a domain D ⇢ X ⇢ Sn into Y ⇢ Sn and y /2 f (@D), then
µ(y, D, f ) is defined by considering the following sequence of induced mappings
on singular homology of pairs:

Hn(Sn) Hn(Sn, Sn\(D∩f−1(y))) Hn(D,D\f−1(y)) Hn(Sn, Sn\{y}) Hn(Sn).j∗
e∗

f∗

k∗

Here j , e, and k are inclusions. The homomorphism e⇤ is an isomorphism by
excision, and k⇤ is an isomorphism because Sn \ {y} is homologically trivial. There
is an integer µ such that the homomorphism k�1

⇤ f⇤e�1⇤ j⇤ sends each ↵ 2 Hn(Sn)
to a multiple µ↵ 2 Hn(Sn). This integer µ is the local degree µ(y, D, f ).

The following basic properties of the local degree can be found in [36, Propo-
sition 4.4].

(a) The function y ! µ(y, D, f ) is constant on each connected component of
Y \ f (@D);

(b) If f : D ! f (D) is a homeomorphism, then µ(y, D, f ) = ±1 for each
y 2 f (D);

(c) If y 2 Y \ f (@D) and f �1(y) ⇢ D1[ · · ·[Dp, where Di are disjoint domains
in D such that y 2 Y \ @Di for each i , then

µ(y, D, f ) =
pX

i=1
µ(y, Di , f );
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(d) If f and g are homotopic by a homotopy Ht , t 2 [0, 1], and if y /2 Ht (@D) for
all t 2 [0, 1], then µ(y, f, D) = µ(y, g, D).

For Lipschitz quotient maps, having local degree ±1 is enough to guarantee local
injectivity in the following sense.

Lemma 5.2. Let Z be metrically doubling and homeomorphic to R2, and let f :
Z ! R2 be an LQ mapping. Let D be a domain in Z . Let y be a point in Rn \
f (@D) such that |µ(y, D, f )| = 1.

Let U be the connected component of Rn \ f (@D) containing y, and let D0 be
a connected component of f �1(U) in D. Assume that f �1(y) \ D ⇢ D0.

Then f is injective on D0.

Proof. As f : Z ! R2 is an LQ mapping, it is continuous, open, and discrete
(by Proposition 3.4). Furthermore, the Lipschitz quotient property and fact that
# f �1(p) is finite for each p (by Proposition 3.4) implies that f is a proper mapping.

As noted in [27, Remark 3.2], or in [36, page 18], Proposition 3.5 implies that
f : Z ! Rn is either sense-preserving or sense-reversing. This is because the
branch set B f , having topological dimension at most n � 2, cannot separate D.
Without loss of generality, we may assume that f is sense-preserving, i.e., that

µ(p, V, f ) > 0

for every pre-compact domain V ✓ X and every point p 2 f (V ) \ f (@V ).
Suppose that a point z 2 U has pre-images x1, . . . , xk in D0. For each i =

1, 2, . . . , k, place small disjoint domains Di in D0 such that xi 2 Di and @Di
avoids the finite set f �1(z).

Then

1 = µ(y, D, f ) = µ(y, D0, f ) = µ(z, D0, f ) =
kX

i=1
µ(z, Di , f ).

Here the first equation is by assumption, the second and fourth are from property
(c) of local degree, and the third follows from property (a), since y and z are in the
same connected component of Rn \ f (@D0).

Since µ(z, Di , f ) > 0 for each i , we must have that k = 1. This shows that
f |D0 is injective.

Lemma 5.3. Let X and Y be A-LC and homeomorphic to Rn . Let t > 0 and
0 < ✏ < 1/100A2.

Suppose that (X, pX ) and (Y, pY ) are continuously ✏-close at scale t , with
mappings f, g as in Definition 4.6. Let DX and DY be domains in X and Y , re-
spectively, and fix t 0 > ✏t .

Suppose also that KX ⇢ DX and KY ⇢ DY are compact connected sets such
that

B(pX , 10At 0) ⇢ KX ⇢ B(pX , 5t) ⇢ DX ⇢ B(pX , 10At) (5.3)
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and

B(pY , t 0) ⇢ KY ⇢ B(pY , 2At 0) ⇢ B(pY , 11At) ⇢ DY ⇢ B(pX , 22A2t). (5.4)

Then the induced mapping

f⇤ : Hn(DX , DX \ KX ) ! Hn(DY , DY \ KY )

is surjective.

Proof. The mapping g � f |DX is ✏t-homotopic to the inclusion of DX into X . We
consider X as embedded in its one-point compactifiaction Sn . Hence, the mapping

(g|DY )⇤�( f |DX )⇤ : Hn(DX , DX \KX ) ! Hn(DY , DY \KY ) ! Hn(Sn, Sn\{pX })

is the same map as the one induced by inclusion. That map is an isomorphism, by
excision and duality ([43, 4.6.5 and 6.2.17]).

Since all the groups are isomorphic to Z, the first map must be surjective.

Lemma 5.4. Fix A, L � 1. Let X and Y be A-LC topological planes, and let �X :
X ! R2, �Y : Y ! R2 be L-LQ mappings. Let t > 0 and 0 < ✏ < 1/100A3L3.

Suppose that (X, pX ,�X ) and (Y, pY ,�Y ) are continuously ✏-close at scale t .
In addition, suppose that �Y is L-bilipschitz on B(pY , 22A2t).

Then �X is L-bilipschitz on B
⇣
pX , t

2AL2(1+2L2)

⌘
.

Proof. Let y = �X (pX ) and let DY be a domain that contains B(pY , 11At) and
is contained in B(pY , 22A2t) ⇢ B(pY , t/✏). This exists by Lemma 5.1 and our
choice of ✏.

Since �Y is L-LQ and ✏ < 1/100AL , we see that

�Y (DY ) ◆ B(�Y (pY ), 10t/L) � B(�Y (pY ), 10L✏t) 3 y.

Let z = ��1
Y (y) \ DY , which is a single point because �Y is bilipschitz on DY .

Let DX be a domain containing B(pX , 5t) and contained in B(pX , 10At) ⇢
B(pX , t/✏).

Let t 0 = 5L2✏t . The following facts follow easily from our assumptions and
the triangle inequality:

z 2 B
�
pY , t 0

�
and f �1(z) ⇢ B

�
pX , t 0

�
.

Hence (using Lemma 5.1) we can find compact connected sets KX and KY such
that

f �1(z) ⇢ B
�
pX , 10At 0

�
⇢ KX ⇢ DX

and
B
�
pY , t 0

�
⇢ KY ⇢ B

�
pY , 2At 0

�
⇢ DY .

Observe that z 2 KY , so y 2 �Y (KY ).
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Now consider the commutative diagram below.

H2 (S2 )

H2 (S2 , S2 \ KX) H2 (DX , DX\KX) H2 (DY , DY \ KY) H2 (S2 , S2 \ φY (KY ))

H2 (S2 , S2 \ f−1 (z)) H2 (DX , DX\f−1 (z)) H2 (DY , DY \ {z}) H2 (S2 , S2 \ {y})

H2 (S2 ).

j∗

(i1)∗

e∗

f∗

(i2)∗

(φY )∗

(i3)∗ (i4)∗

e∗

f∗ (φY )∗

k∗

In this diagram, the homomorphisms are all induced by inclusion, except those
labeled f⇤ and f ⇤, which are induced by f , and those labeled (�Y )⇤ and (�Y )⇤,
which are induced by �Y . The homomorphisms e⇤, e⇤, and k⇤ are isomorphisms, as
in the definition of local degree. The homomorphisms j⇤ and (i4)⇤ are surjective,
by duality [43, 6.2.17].

Following this diagram from top left to bottom right along the third row gives
the local degree µ(�Y � f, y, DX ). Following from top left to bottom right along
the second row shows that the overall map is surjective. (We use Lemma 5.3 for f ⇤
in the second row.) Hence

|µ(y, DX ,�Y � f )| = 1.

Now, we know that supDX
|�Y � f � �X |  ✏t . It follows that

dist(y,�X (@DX )) �
1
L
t > 10✏t. (5.5)

Indeed, if q 2 @DX , then d(q, pX ) � 5t , so d( f (q), f (pX )) � 5t � ✏t , and so

d(y,�X (q)) = d(�X (pX ),�X (q)) � d(�Y ( f (pY )),�Y ( f (q)))

� 2✏t � L�1(5� ✏)t � 2✏t �
1
L
t,

which proves (5.5).
Hence, the homotopy invariance of local degree implies that

|µ(y, DX ,�X )| = 1.

We now aim to apply Lemma 5.2. Let U be the connected component of R2 \
�X (@DX ) containing y, and let D0

X be the connected component of DX \ ��1
X (U)

containing pX . Equation (5.5) implies that U contains B(y, 1L t). Hence, since �X
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is L-Lipschitz, DX \ ��1
X (U) contains B(pX , t/L2). It then follows from Lemma

5.1 that the connected component D0
X contains B(pX , t/2AL2).

Another simple argument shows that

��1
X (y) \ DX ⇢ B

�
pX , 10L2✏t

�
⇢ B

�
pX , t/2AL2

�
⇢ D0

X .

An application of Lemma 5.2 shows that �X is injective on D0
X , hence on

B(pX , t/2AL2). Applying Lemma 3.7 shows that �X is therefore L-bilipschitz
on B(pX , t/2AL2(1+ 2L2)).

6. Compactness results

We will make use of the following completeness property of A-LC topological
planes and L-LQ mappings

Lemma 6.1. Fix constants L , D, A � 1. Let
��
Xn, pn, fn : X ! R2

� 
!
�
X, p, f : X ! R2

� 

be a sequence converging in the pointed Gromov-Hausdorff sense. Suppose that
each Xn is an A-LC, metrically D-doubling, topological plane, and that each fn
is L-LQ. Then X is a metrically D-doubling topological plane and f is an L-LQ
mapping.

Furthermore, X is A0-LC for some A0 depending only on A and D, and if each
Xn is �-ALC for some fixed � � 1, then X is �-ALC.

Proof. The following parts of the lemma are standard and simple to prove from the
definitions: X is D-doubling, f is L-LQ, and if Xn are all �-ALC then X is �-ALC.

The fact that X is A0-LC for some A0 depending only on A and D appears
in [19, Lemma 2.12].

It remains only to show that X is a topological plane. This follows from,
e.g., [19, Proposition 2.19] (note that Ahlfors regularity is not really required in
that result, only metric doubling). Indeed, that result shows that X is a linearly
contractible (hence simply connected) homology 2-manifold. We then note that all
homology 2-manifolds are topological 2-manifolds [10, Theorem V.16.32], and that
the plane is the only simply connected non-compact 2-manifold.

We now use some compactness arguments to show that Lipschitz quotient map-
pings are quantitatively bilipschitz on balls of definite size.

Proposition 6.2. For each L , D, A � 1, there is a constant s0 = s0(L , D, A) with
the following property:

Let X be a metrically D-doubling, A-LC, topological plane, and let f : X !
R2 be a L-LQ mapping. Then in each ball B(p, r) in X , there is a ball B(q, s0r) ✓
B(p, r) such that f is L-bilipschitz on B(q, s0r).

The proof requires the following preliminary lemma.
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Lemma 6.3. Let {(Xn, pn, fn : Xn ! R2)} be a sequence with each Xn metri-
cally D-doubling, A-LC, and homeomorphic to R2 and each fn L-LQ. Suppose
that this sequence converges in the pointed Gromov-Hausdorff sense to a triple
(X, p, f : X ! R2). Then there exists s0 > 0 such that for all n sufficiently large,
fn is L-bilipschitz on a ball of radius s0 in Bn(pn, 1).

Proof. First of all, we observe by Lemma 6.1 that the space X is an A0-LC, metri-
cally D doubling, topological plane, (with A0 = A0(A, D) � A) and that the limit
function f is L-LQ. Hence, f is discrete by Proposition 3.4. By Proposition 3.5,
f is a homeomorphism on some sub-ball in B(x, 1), and so by Lemma 3.7, f is
L-bilipschitz on some ball B(p0, s) ⇢ BX (p, 1).

We now claim that, for some s0 > 0 and all n sufficiently large, the mapping
fn is bilipschitz on a ball B(p0

n, s0) ⇢ Bn(pn, 1). This will yield a contradiction.
Fix �=(2000A0L)�4s. If n is sufficiently large, then (Xn,pn, fn) and (X,p, f )

are �-close at scale 1. Hence, by Lemma 4.4, there are points p0
n 2 Xn such that the

triples (Xn, p0
n, fn) and (X, p0, f ) are 20A

0�
s -close at scale t = s/20A0.

Fix n large as above. Then (Xn, p0
n, fn) and (X, p0, f ) are ✏-close at scale t

(where ✏ = 20A0�
s <1/100A0L4), and f is L-bilipschitz on B(p0, s)◆ B(p0,20A0t).

Thus, by Lemma 5.4, fn is L-bilipschitz on B(p0
n, t/2A0L2(1 + 2L2)) =

B(p0
n, s0). This completes the proof.

Proof of Proposition 6.2. We argue by contradiction. If the Proposition fails, then
for some constants D, A, L , there is a sequence

{(Xn, pn, fn)}

of metrically D-doubling, A-LC, L-LQ topological planes and radii rn > 0 such
that fn fails to be L-bilipschitz on each ball B(p0

n, rn/n) ⇢ B(pn, rn).
Consider the sequence

n�
r�1
n Xn, pn, gn

�o
, (6.1)

where gn(x) = r�1
n fn(x).

The spaces r�1
n Xn are still metrically D-doubling, A-LC topological planes,

and the mappings gn : r�1
n Xn ! R2 are L-LQ. Furthermore, the map gn fails to be

L-bilipschitz on each ball B(p0
n, 1/n) ⇢ B(pn, 1) ⇢ 1

rn Xn .
Consider a convergent subsequence of the sequence in (6.1). By Lemma 6.3,

we see that there is a constant s0 > 0 such that, for arbitrarily large values of n 2 N,
gn is L-bilipschitz on a ball of radius s0 in B(pn, 1). This is a contradiction.

7. Proof of Theorem 1.3 and Corollary 1.5

Proof of Theorem 1.3. Fix a metric measure space (X, d, µ), a Borel set U ⇢ X ,
and a Lipschitz function � : X ! Rn as in the assumptions of Theorem 1.3. When
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proving Theorem 1.3, we may assume without loss of generality that U is closed,
metrically doubling, and uniformly pointwise doubling. This assumption is justified
by Lemma 2.10. By the definition of blowups for pointwise doubling spaces (see
Remark 2.11), this means that, for a.e. x 2 U , blowups of X at x are the same as
blowups of U at x .

We first prove that n  2, the first half of Theorem 1.3. By Proposition 3.2,
there is a point x 2 U and a blowup (X̂, x̂, �̂) of (X, x,�) which is a metrically
doubling topological plane and such that �̂ is a Lipschitz quotient map onto Rn .
Suppose n > 2. If ⇡ : Rn ! R2 is the projection onto the first two coordinates,
then ⇡ � �̂ is a Lipschitz quotient mapping from X̂ onto R2. By Propositions 3.4
and 3.5, ⇡ � �̂ is a homeomorphism on some ball B(x̂, t) ⇢ X̂ . It is therefore
impossible for �̂(B(x̂, t)) to contain a ball in Rn , which contradicts the fact that �̂
is a Lipschitz quotient map onto Rn . Therefore, n  2.

We now assume n = 2 and proceed to show that in this case µ|U is 2-
rectifiable. This will complete the proof of Theorem 1.3.

By assumption, at µ-a.e. point x 2 U , each blowup of X is a topological
plane. By Proposition A.1 in the appendix, it follows that for µ-a.e. x 2 U , there is
a constant �(x) such that each blowup of X at x is �(x)-ALC.

Thus, after our reductions, we have that, for µ-a.e. x 2 U , each blowup
(X̂, x̂, �̂) of (X, x,�) at x has the following properties:

(i) X̂ is a metrically D-doubling, �(x)-ALC topological plane;
(ii) �̂ : X̂ ! R2 is a Lipschitz quotient map.

Fix constants L , � � 1. Let A = A(�) as provided by Lemma 2.4. Let ✏ =
✏(L , D, A) = ( s0

1000AL3(1+2L2) )
5, where s0 = s0(L , D, A) is as in Proposition 6.2

and 3 = 3(A, L) is as in Lemma 4.7. Fix r0 > 0 and define Y = YL ,�,r0 ⇢ U by

Y =
�
x 2U : for all r 2 (0, r0), there is a

�-ALC, D-doubling, L-LQ plane (W, w, ) such that
�
r�1U, x, r�1(���(x))

�
and (W,w, ) are ✏-close at scale 1

 
.

(7.1)

For each fixed L , � � 1 and r0 > 0, it follows from Lemma 6.1 that the above set
Y is closed in U , hence in X .

We can write U , up to an exceptional subset of measure zero, as a countable
union of sets Y as above, by varying L , � 2 N and r0 2 {1, 1/2, 1/3, . . . }. This fol-
lows from the rephrasing of Gromov-Hausdorff convergence in terms of closeness
given in Remark 4.3.

To prove Theorem 1.3, it suffices therefore to show that µ|Y is 2-rectifiable.
We first make the following simple rescaling observation.

Lemma 7.1. For each x 2 Y and 0 < r < r0, there is an A-LC, L-LQ plane
(X̂, x̂, �̂) such that (U, x,�) and (X̂, x̂, �̂) are ✏-close at scale r .
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Proof. Given x 2 Y and r < r0, let (W, w, ) be as provided by the definition of
Y . Note thatW is �-ALC and hence A-LC by our choice of A = A(�) from Lemma
2.4. The rescaled and translated triple

�
X̂, x̂, �̂

�
:= (rW, w, r + �(x))

is then the desired one.

Lemma 7.2. Let q 2 Y be a point and let r 2 (0, r0). Let (X̂, q̂, �̂) be an A-LC,
L-LQ topological plane such that (U, q,�) and (X̂, q̂, �̂) are 10s0 ✏-close at scale r .

Suppose further that �̂ is L-bilipschitz on B(q̂, r).
Then � is 2L-bilipschitz on B(q, r/20) \ Y .

Proof. Let s1 = 1
100A2L2(1+2L2) and let ✏

0 = 100s�10 AL2(1+ 2L2)✏ 2 (0, 1/10).
We will first prove the following claim.

Claim 7.3. For any x 2 B(q, r/20) \ Y and k � 0, there is an A-LC, L-LQ plane
(X̃, x̃, �̃) such that (U, x,�) is ✏0-close to (X̃, x̃, �̃) at scale sk1r/10 and such that
�̃ is L-bilipschitz on B(x̃, sk1r/5).

Proof of Claim 7.3. The proof is by induction on k � 0.
If k = 0, we set (X̃, x̃, �̃) to be the triple (X̂, x̂, �̂), where x̂ 2 B(q̂, r/10) ⇢ X̂

is chosen so that (U, x,�) and (X̂, x̂, �̂) are 100s0 ✏ close at scale r/10 (here we use
Lemma 4.4). Since �̂ is L-bilipschitz on B(x̂, r/5) ⇢ B(q̂, r), and since 100s0 ✏ < ✏0,
we have proven the claim if k = 0.

Now suppose k > 0. Let (X̃, x̃, �̃) be an A-LC, L-LQ triple such that (U, x,�)

and (X̃, x̃, �̃) are ✏-close at scale 4AL2(1 + 2L2)sk1r/10 (such a triple is provided
by Lemma 7.1 and the fact that x 2 Y ).

By induction, we also have an A-LC, L-LQ plane (Z̃ , z̃,  ̃) such that (U, x,�)

is ✏0-close to (Z̃ , z̃,  ̃) at scale sk�11 r/10 and such that  ̃ is L-bilipschitz on
B(z̃, sk�11 r/5).

Applying Lemma 4.4, this means that (U, x,�) is ✏0

4AL2(1+2L2)s1
-close to

(Z̃ , z̃,  ̃) at the new scale 4AL2(1+ 2L2)sk1r/10.
By another use of Lemma 4.4, we also have that (X̃, x̃, �̃) and (Z̃ , z̃,  ̃) are

2(✏ + ✏0

4AL2(1+2L2)s1
)-close at scale 8AL2(1+ 2L2)sk1r/10.

By Lemma 4.7, they are therefore continuously 23(✏ + ✏0

8AL2(1+2L2)s1
)-close

at scale
t = 4AL2

�
1+ 2L2

�
sk1r/10.

Observe that t < sk�11 r/10 by our choice of s1.
By our choice of ✏ and ✏0, we have

23
✓
✏ +

✏0

8AL2(1+ 2L2)s1

◆
< 1/100A3L3.
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So, to recap, (X̃, x̃, �̃) and (Z̃ , z̃,  ̃) are continuously �-close at scale t (for � <
1

100A3L3 ). Furthermore  ̃ is L-bilipschitz on B(z̃, sk�11 r/5) � B(z̃, 22A2t) in Z̃ .
Therefore, Lemma 5.4 implies that �̃ is L-bilipschitz on

B
✓
x̃,

t
2AL2(1+ 2L2)

◆
= B

⇣
x̃, sk1r/5

⌘
.

Now, the fact that (U, x,�) and (X̃, x̃, �̃) are ✏-close at scale 4AL2(1+2L2)sk1r/10
implies that they are 4AL2(1 + 2L2)✏-close at scale sk1r/10. Since 4AL

2(1 +
2L2)✏ < ✏0, this completes the proof of Claim 7.3.

With Claim 7.3 proven, Lemma 7.2 now follows: let x, y be any points of
Y \ B(q, r/20). Choose k � 0 such that

sk+11 r/10  d(x, y) < sk1r/10.

By Claim 7.3, (U, x,�) is ✏0-close to a triple (X̃, x̃, �̃) at scale sk1r/10, for which �̃
is L-bilipschitz on B(x̃, sk1r/5).

It follows that

|�(x) � �(y)| � L�1�d(x, y) � 2✏0sk1r/10
�
� 2✏0sk1r/10

�
�
L�1 � 2L�1✏0(s1)�1 � 2✏0(s1)�1

�
d(x, y)

� (2L)�1d(x, y).

We now make one further decomposition of Y . Since U is (C, R)-uniformly
pointwise doubling, for some C�1 and R>0, there is a constant C 0 =C 0(C, A(�),
L) � 1 such that if q 2 U , r < R and

B(q, s0r) ✓ B(p, r),

then
µ(B(p, r))  C 0µ(B(q, s0r/10)), (7.2)

where s0 = s0(L , D, A) is the constant from Proposition 6.2 which was already
fixed.

For r1 2 (0, r0), let

Wr1 =

⇢
p 2 Y :

µ(Y \ B(p, r))
µ(B(p, r))

� 1� (2C 0)�1 for all r 2 (0, r1)
�

. (7.3)

By the Lebesgue density theorem, µ-a.e. point of Y is in Wr1 for some choice of
r1 2 (0, r0) \ {1, 1/2, 1/3, . . . }.

Fix r1 2 (0, r0) and let W = Wr1 ⇢ Y . We will show that � is bilipschitz on a
W -neighborhood of each point of W .
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Lemma 7.4. There is a constant s2 > 0 (depending only on D, A(�), and L) with
the following property:

Let p be a point of W and fix r < r1/2. Then there is a point q 2 Y and a ball
B(q, s2r) ⇢ B(p, r) such that �|B(q,s2r)\Y is 2L-bilipschitz.

Proof. By Lemma 7.1, there is an A-LC, L-LQ topological plane (X̂, p̂, �̂) such
that (U, p,�) and (X̂, p̂, �̂) are ✏-close at scale r .

By Proposition 6.2, there is a ball B(q̂, s0r/2) ✓ B( p̂, r/2) on which �̂ is
L-bilipschitz.

It follows from Lemma 4.4 that, for some q0 2 U , B(q0, s0r/2) ⇢ B(p, r) and
in addition

�
X̂, q̂, �̂

�
and (U, q0,�) are

2
s0
✏-close at scale s0r/2.

Since r < r1 and p 2 W , there must be a point q 2 Y \ B(q0, s0r/10). It follows
from Lemma 4.4 that there is a point q̂0 2 B(q̂, s0r/5) such that

�
X̂, q̂0, �̂

�
and (U, q,�) are

10
s0
✏-close at scale s0r/10.

We know that �̂ is L-bilipschitz on B(q̂, s0r/2) ◆ B(q̂0, s0r/10).
Therefore, by Lemma 7.2, � is 2L-bilipschitz on B(q, s0r/200) \ Y . This

completes the proof.

The proof of Theorem 1.3 is now completed as follows. For each of the count-
ably many choices of L , � 2 N and r0 2 {1, 1/2, 1/3, . . . }, we obtain a closed set
Y = YL ,�,r0 ⇢ U as in (7.1). For each further choice of r1 2 {1, 1/2, 1/3, . . . },
we obtain a set W = WL ,�,r0,r1 ✓ Y . The union of these sets W over all countably
many choices of parameters covers µ-almost all of U .

Consider the following relatively open subset W 0 ⇢ W :

W 0 = {p 2 W ⇢ Y : � is bilipschitz on B(p, t) \ Y for some t > 0}.

By Lemma 7.4, the set W \ W 0 is porous in Y , hence porous in U . Because U is
uniformly pointwise doubling, it follows that the set W \ W 0 has µ-measure zero.
(See Remark 2.9.) Then

W 0 ✓
[

j2N

�
p 2 W 0 : �|B(p,1/j)\Y is bilipschitz

 

✓
[

j2N

[

i2N

⇣
B(p ji , 1/j) \ Y

⌘
,

where {p ji }
1
i=1 is any countable dense subset of the set

�
p 2 W 0 : �|B(p,1/j)\Y is bilipschitz

 
.
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This shows that W 0 is covered by countably many Borel sets B(p ji , 1/j) \ Y on
which � is bilipschitz. Since µ(W \ W 0) = 0, it follows that µ|W is 2-rectifiable.
Writing U , up to measure zero, as a countable union of sets W as above, we have
shown that µ|U is 2-rectifiable. This completes the proof of Theorem 1.3.

Proof of Corollary 1.5. We can now establish Corollary 1.5 as follows. Since X is
metrically doubling, µ is pointwise doubling, and µ assigns measure zero to porous
sets in X , we see that the blowups of U and the blowups of X coincide at almost
every point of U . (See Remark 2.11.) As in the proof of Lemma 6.1, every blowup
of X is a topological plane. Hence, by Theorem 1.3, n  2.

If n = 2, then µ|U is 2-rectifiable, again by Theorem 1.3.

Remark 7.5. It is straightforward to see that the same broad outline, much simpli-
fied, can be used to show the 1-dimensional analog of Theorem 1.3: Let (X, d, µ)
be a pointwise doubling space and U ⇢ X be a Borel subset such that, for µ-a.e.
x 2 U , each blowup of X at x is homeomorphic to R. If µ|U has n �-independent
Alberti representations for � : X ! Rn Lipschitz, then n  1, with equality only
if µ|U is 1-rectifiable.

Indeed, in this case, the blowups of the mapping � at generic points are globally
bilipschitz (moreover, affine), and the analog of Lemma 7.1 essentially yields 1-
rectifiability.

8. Examples

We first note a simple example which shows that rectifiability does not follow from
simply assuming that (X, d, µ) is a doubling, LLC, topological surface, even if it
supports a single Alberti representation.
Example 8.1. Let Y be the “snowflaked” metric space (R, | · |1/2), and let X =
R ⇥ Y , equipped with the metric

d
�
(t, y),

�
t 0, y0�� =

�
�t � t 0

�
�+

�
�y � y0

�
�1/2.

Then (X, d,H3) is a doubling metric measure space which is also an LLC topologi-
cal surface. Furthermore, the restriction of µ to every compact subset of X supports
one Alberti representation, simply given by Fubini’s theorem in the R factor.

On the other hand, no Lipschitz map from a compact set in R2 can have an
image of positiveH3-measure in any metric space, and soH3|U is not 2-rectifiable
for anyU⇢ X of positive measure. Moreover, the space X is purely 2-unrectifiable,
in the sense thatH2( f (E))=0 for every compact E⇢R2 and Lipschitz f :E! X .
For a related and more interesting example, see the appendix by Schul and Wenger
in [42].

The next two examples show that, in the absence of a quantitative topological
assumption, such as LLC or having blowups that are topological planes, either part
of Theorem 1.3 or Corollary 1.5 may fail, even if (X, d, µ) is a pointwise doubling
topological surface supporting multiple Alberti representations.
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Example 8.2. Let C be a Jordan curve in the plane (homeomorphic to the cir-
cle) of positive two-dimensional Lebesgue measure. In fact, by a construction
of Sierpiński-Knopp (see [37, Section 8.3]), we can ensure that the restriction of
Lebesgue measure L2 to C is Ahlfors 2-regular, i.e., satisfies

M�1r2  L2(C \ B(x, r))  Mr2

for some M � 1, all x 2 X , and all r 2 (0, 1).
Let X = C ⇥ R in R3, which is a topological surface. Equip X with the

restriction of the distance | · | from R3 and with the restriction of 3-dimensional
Lebesgue measure, which is doubling on X . Then, as a positive measure set in
R3, X is a Lipschitz differentiability space of dimension 3, in the sense of [4]. In
particular, there are Borel sets Ui ⇢ X and Lipschitz maps �i : X ! R3 such that
µ(X \ Ui ) = 0 and µ|Ui supports three �i -independent Alberti representations for
each i (see [4, Theorem 6.6]).

Thus, the upper bound n  2 on the number of independent Alberti represen-
tations in Theorem 1.3 may fail in the absence of the assumption on blowups, and
the upper bound in Corollary 1.5 may fail in the absence of the LLC assumption.
Example 8.3. Consider the same topological surface X inR3 as in the previous ex-
ample, but now considerR3 equipped with the Heisenberg group metric dH. Endow
X with the restriction of dH and the restriction of 3-dimensional Lebesgue measure,
which is the same (up to constant factors) asH4 in the Heisenberg group. The space
(X, dH,H4) is pointwise doubling by the Lebesgue density theorem in the Heisen-
berg group, and porous subsets of X , being also porous subsets of the Heisenberg
group, haveH4-measure zero.

As a positive measure set in the Heisenberg group, (X, dH,H4) is also a Lip-
schitz differentiability space with X itself a chart of dimension 2. Thus, as in the
previous example, it admits a Borel decomposition intoUi such that each µ|Ui sup-
ports two �i -independent Alberti representations, for some Lipschitz �i : X ! R2.

However, no Lipschitz map from a compact set in R2 can have an image of
positive H4-measure in any metric space, and so H4|U cannot be 2-rectifiable for
any U ⇢ X of positive measure. (In fact, as in Example 8.1, more is true here:
(X, dH) is purely 2-unrectifiable, as a consequence of the pure 2-unrectifiability of
the Heisenberg group [3, Theorem 7.2].)

Thus, the conclusion of 2-rectifiability in the case of equality may fail in The-
orem 1.3 in the absence of the assumption on blowups, and in Corollary 1.5 in the
absence of the LLC assumption.

Appendix A. Blowups and annular linear connectivity

Recall the notion of annular linear connectivity (ALC) from Definition 2.3. The
goal of this appendix is to prove the following proposition, which allows a self-
strengthening of the hypotheses in Theorem 1.3.

We will use the notion of a cut point y in a connected space Y : a point such
that Y \ {y} is disconnected.
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Proposition A.1. Let (X, d, µ) be complete and metrically doubling with µ point-
wise doubling. Let U ⇢ X be a Borel subset such that, for µ-a.e. x 2 U , each
blowup of X at x is connected and has no cut points.

Then for µ-a.e. x 2 U , there is a constant � = �(x) such that each blowup of
X at x is �-ALC.

In particular, Proposition A.1 applies when the blowups of X at almost every point
of U are homeomorphic to R2.

The following preliminary definition will be useful.
Definition A.2. We call a metric space X linearly connected if there is a constant
L � 1 such that, for all x, y 2 X , there is a compact, connected set containing x
and y of diameter at most Ld(x, y).

Lemma A.3. Let C be a collection of complete, metrically D-doubling metric
spaces with the following property: For each sequence {rk} of positive real num-
bers and each sequence {(Xk, pk)} such that Xk 2 C, pk 2 Xk , and {r�1

k Xk, pk}
converges in the pointed Gromov-Hausdorff sense, the limit is connected and has
no cut points.

Then there is a constant � such that all elements of C are �-ALC.

Note that the hypotheses of Lemma A.3 include the assumption that each element
of C is itself is connected with no cut points.

We now explain how to prove Proposition A.1 given Lemma A.3.

Proof of Proposition A.1. We may assume, by Lemma 2.10 and Remark 2.11, that
U is complete, metrically D-doubling, and (C, R)-uniformly doubling, for con-
stants D � 1, C � 1, R > 0. Then, for a.e. x 2 U , the blowups of X at x are the
blowups of U at x .

For each x 2 U , let Bx denote the collection of all pointed metric spaces
(Z , p) that arise as blowups of U at x . The collection Bx is closed under pointed
Gromov-Hausdorff convergence.

It follows from [33, Theorem 1.1] that, for a.e. x 2 U , if (Z , p) 2 Bx and
q 2 Z , then (Z , q) 2 Bx . Note that, although that theorem is stated for dou-
bling measures, the proof relies only on the estimates provided by the fact that U is
(C, R)-uniformly doubling. This was also noted in [6, Section 9].

Let Cx be the collection of (unpointed) metric spaces Z that arise as blowups
of U at x . It follows from the previous paragraph (and the fact that rescalings of
blowups are blowups) that, for a.e. x 2 U , (r�1Z , p) is in Bx for all Z 2 Cx ,
p 2 Z , and r > 0.

Hence, any pointed Gromov-Hausdorff limit of rescaled pointed elements of
Cx as in Lemma A.3 is an element of Bx . By our assumption on U , such a limit
must be connected with no cut points.

Thus, for a.e. x 2 U , the collection Cx satisfies the hypotheses of Lemma
A.3. It follows that there is a constant � = �(x) such that each element of Cx (in
particular, each blowup of U at x) is �-ALC. This completes the proof of Proposi-
tion A.1.
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It remains to prove Lemma A.3. To do so, we will use the following Lemma,
which is a minor modification of [31, Proposition 5.4].

Lemma A.4. Let C be a collection of metric spaces satisfying the hypotheses of
Proposition A.3. Then there is a constant L � 1 such that each element of C is
linearly connected with constant L .

Proof. This is proven in [31, Proposition 5.4], in the case where C has a single ele-
ment X (in which case the Gromov-Hausdorff limits of pointed rescalings of X are
called “weak tangents” of X). However, an identical proof works under our assump-
tion that all elements of C are metrically D-doubling, since the same compactness
argument can be run. Note that the boundedness assumption in [31] is not needed
here, because we allow arbitrary scalings in the hypotheses of Proposition A.3.

Lemma A.5. Let X be an L-linearly connected metric space that has the following
property, for some µ � 1:

For all p 2 X and r 2 (0, diam (X)], and for all x, y 2 A(p, r, 2r), there is a
finite set

P = {x0, x1, . . . , xn} ⇢ A(p, r/µ, 2µr)

such that
x0 = x and xn = y, (A.1)

and
d(xi , xi+1) 

1
2L
dist(P, p) for each i 2 {0, . . . , n � 1}. (A.2)

Then X is �-ALC, where � depends only on µ.

Proof. Consider any p 2 X , r 2 (0, diam (X)], and x, y 2 A(p, r, 2r). Let P =
{x0, . . . , xn} ⇢ A(p, r/µ, 2µr) satisfy (A.1) and (A.2).

For each i 2 {0, . . . , n � 1} we use the linear connectedness of X to join xi to
xi+1 by a continuum of diameter at most

Ld(xi , xi+1) 
1
2
dist(P, p).

The union of these continua forms a continuum joining x to y inside

A(p, r/2µ, 3µr),

which proves the lemma with � = 2µ.

Proof of Lemma A.3. Let C be a collection of metric spaces satisfying the hypothe-
ses of Lemma A.3. By Lemma A.4, we immediately have a constant L � 1 such
that each X 2 C is linearly connected with constant L . Note that this immediately
implies that any pointed Gromov-Hausdorff limit of rescaled, pointed elements of
C is also linearly connected.
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Therefore, to show that all X 2 C are uniformly ALC, we need only verify
the existence of a constant µ � 1 such that each X 2 C satisfies the hypotheses of
Lemma A.5 with constant µ.

Suppose that there is no such constant µ. Then for all k 2 N, there is a space
Xk 2 C, a point pk 2 Xk , a radius rk > 0, and points xk, yk 2 A(pk, rk, 2rk), such
that there is no finite set

P = {z0 = xk, z1, . . . , zm�1, zm = yk},

contained in A(pk, 1k rk, 2krk) and satisfying

d(zi , zi+1) 
1
2L
dist(P, pk) for all i 2 {0,m � 1}. (A.3)

Consider the uniformly doubling sequence of pointed metric spaces {(Yk, pk) :=
(r�1
k X, pk)}. Let (Y1, p1) be a pointed Gromov-Hausdorff limit of a subsequence

of this sequence, which for convenience we continue to label with the index k.
For all ✏ > 0, there exists K 2 N such that, for all k � K , there are ✏-

isometries

fk : BYk

✓
pk,

1
✏

◆
! Y1 and gk : BY1

✓
p1,

1
✏

◆
! Yk (A.4)

such that
dY1( fk(gk(x)), x)  ✏ for all x 2 BY1(p1, 1/2✏) (A.5)

and
dY1( fk(pk), p1)  ✏ and dYk (gk(p1), pk)  ✏. (A.6)

For all k sufficiently large, the points fk(xk) and fk(yk) all lie in BY1(p1, 3). By
passing to a further subsequence if necessary, we may therefore also assume that
fk(xk) and fk(yk) converge to points x1 and y1, respectively, in B(p1, 3) 2 Y1.

The space Y1 is a pointed Gromov-Hausdorff limit of pointed rescalings of
elements of C. Hence, by assumption, it is connected with no cut points. Further-
more, as remarked at the beginning of this proof, it is linearly connected. A simple
connectedness argument then yields a compact connected set C1 ⇢ Y1 \ {p1}
containing both x1 and y1. (Indeed, the set of y 2 Y1 \{p1} that can be joined to
x1 by such a continuum is open in Y1 \ {p1}, as is its complement, by the linear
connectedness of Y1.)

For some choice of 0 < r < 1 < R < 1, C1 must lie in A(p1, r, R). Let

✏ = min(r/100L , 1/100R).

There is a finite set P1 = {x01, x11, . . . , xn1} ✓ C1 such that x01 = x1, xn1 =
y1, and

d
�
xi1, xi+11

�
 ✏ for each i 2 {0, . . . , n � 1}.
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Choose k > 2✏�1 sufficiently large so that there are ✏-isometries fk and gk as in
(A.4), (A.5), and (A.6). We can also assume that k is large enough so that

dY1( fk(xk), x1)  ✏ and dY1( fk(yk), y1)  ✏.

Let Qk ⇢ Yk denote the set

Qk =
n
z0 = xk, z1 = gk

�
x01
�
, z2 = gk

�
x11
�
, . . . , zn = gk(xn1), zn+1 = yk

o
.

Because gk is an ✏-isometry into Yk = r�1
k Xk , and because of equation (A.5), we

see that
dXk (zi , zi+1)  3✏rk for each i 2 {0, . . . , n}.

Furthermore,
distXk (Qk, pk) � rrk � 2✏rk �

1
2
rrk

and
Qk ⇢ BXk (pk, (R + 2✏)rk) ⇢ BXk (pk, 2Rrk).

Thus, Qk = {z0 = xk, z1, . . . , zn+1 = yk} is contained in

AXk

✓
pk,

1
2
rrk, 2Rrk

◆
⇢ AXk

✓
pk,

1
k
rk, 2krk

◆
,

where this last inclusion follows from our assumption that

k � 2✏�1 � max{100/r, 100R}.

In addition,

dXk (zi , zi+1)  3✏rk 
1
2L
1
2
rrk 

1
2L
distXk (Qk, pk) for each i 2 {0, . . . , n}.

Hence, Qk is contained in A(pk, rk/k, 2krk) and satisfies (A.3). This is a contra-
diction.
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