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A generalisation of Kani-Rosen decomposition theorem
for Jacobian varieties

SEBASTIÁN REYES-CAROCCA AND RUBÍ E. RODRÍGUEZ

Abstract. In this short paper we generalise a theorem due to Kani and Rosen on
decomposition of Jacobian varieties of Riemann surfaces with group action. This
generalisation extends the set of Jacobians for which it is possible to obtain an
isogeny decomposition where all the factors are Jacobians.
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1. Introduction and statement of the results

Let C be a compact Riemann surface of genus gC � 2 and JC its Jacobian variety.
Given a group H of automorphisms of C , we denote by |H | its order and by CH
the underlying Riemann surface structure of the quotient C/H .

Kani and Rosen in [16] studied relations among idempotents in the algebra of
rational endomorphisms of an arbitrary Abelian variety. By means of these rela-
tions, in the case of the Jacobian variety of a Riemann surface C with group action,
they succeeded in proving a decomposition theorem for JC in which each factor is
isogenous to the Jacobian of a quotient of C .

Applications of Kani-Rosen theorem can be found, for example, in [3, 5, 9, 11,
13, 15, 19]. For the sake of explicitness, we exhibit here this result:

Theorem C (Kani and Rosen). Let H1, . . . , Ht be groups of automorphisms of a
Riemann surface C . If:

(1) Hi Hj = Hj Hi for all i 6= j;
(2) The genus of CHi Hj is zero for all i 6= j;
(3) gC = 6t

i=1gCHi ;
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then
JC ⇠ JCH1 ⇥ · · · ⇥ JCHt .

The aim of this article is to provide a generalisation of the aforementioned theorem.
More precisely, we prove the following result:

Theorem 1.1. Let {H1, . . . , Ht } be an admissible collection of groups of automor-
phisms of a Riemann surface C. Then

JC ⇠ JCH1 ⇥ · · · ⇥ JCHt ⇥ P

for some Abelian subvariety P of JC .
Furthermore, if {H1, . . . , Ht } is admissible and gC = 6t

i=1gCHi , then

JC ⇠ JCH1 ⇥ · · · ⇥ JCHt .

A precise definition of what we call admissible collection of groups of automor-
phisms will be provided in Subsection 2.3.

Theorem 1.1 enlarges the collection of Jacobians JC for which it is possible
to obtain an isogeny decomposition in terms of Jacobians of quotients of C. In fact,
at the end of this article, we provide examples of admissible collections which do
not satisfy each one of the hypothesis of Theorem C.

We anticipate the fact that the hypothesis of Theorem 1.1 can be rephrased in
a purely algebraic way; see Proposition 3.1.

Let H be a group of automorphisms of C. We denote by ⇡H : C ! CH the
associated regular covering map, and by

⇡⇤
H : JCH ! JC

the induced homomorphism between the respective Jacobian varieties. As the set
⇡⇤
H (JCH ) is an Abelian subvariety of JC which is isogenous to JCH , there exists
an Abelian subvariety P(C ! CH ) of JC such that

JC ⇠ JCH ⇥ P(C ! CH ). (1.1)

The factor P(C ! CH ) is known as the Prym variety associated to the covering
map induced by H .

As we shall see later, the collection {H1} is admissible for each group of auto-
morphisms H1 of C. Hence, the trivial case t = 1 corresponds to the decomposition
(1.1) with H = H1.

The case t = 2 is slightly more challenging. In fact, it is not a difficult task
to produce (or find in the literature; see for example the Klein group case in [21])
examples of C and pairs of groups of automorphisms H1 and H2 of C such that
the dimension of JCH1 ⇥ JCH2 exceeds the genus of C . Nevertheless, roughly
speaking, part of such an excess can be geometrically identified. More precisely:
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Proposition 1.2. Let H1 and H2 be groups of automorphisms of a Riemann surface
C. Then

JC ⇥ JChH1,H2i ⇠ JCH1 ⇥ JCH2 ⇥ P

for some Abelian subvariety P of JC .
In particular, if the genus of ChH1,H2i is zero and gC = gCH1 + gCH2 , then

JC ⇠ JCH1 ⇥ JCH2 .

Note that, in the previous proposition, the collection {H1, H2} is not asked to be
admissible. The key point in the proof of this result is the classically known formula
to compute the dimension of the sum of two vector subspaces. The same argument
cannot be generalized for t � 3 since, as a matter of fact, there does not exist such
a formula for more than two summands.

As a direct consequence of Theorem 1.1 we obtain:

Corollary 1.3. Let {H1, . . . , Ht } be an admissible collection of groups of automor-
phism of a Riemann surface C .

Then, for each fixed k 2 {1, . . . , t}, the product

JCH1 ⇥ · · · ⇥ JCHk�1 ⇥ JCHk+1 ⇥ · · · ⇥ JCHt

is isogenous to an Abelian subvariety of P(C ! CHk ).
Furthermore, if {H1, . . . , Ht } is admissible and gC = 6t

i=1gCHi , then

JCH1 ⇥ · · · ⇥ JCHk�1 ⇥ JCHk+1 ⇥ · · · ⇥ JCHt ⇠ P(C ! CHk ) .

The previous result can be employed to obtain, in a very straightforward way, Jaco-
bians which are isogenous to Prym varieties (by considering t = 2).

As a further consequence of Theorem 1.1, we prove the following corollary
regarding the existence of Riemann surfaces with prescribed data on their Jacobian
varieties.

Corollary 1.4. Let t � 2 and g1, . . . , gt � 1 be integers. Given t hyperelliptic Rie-
mann surfaces C1, . . . ,Ct of genus g1, . . . , gt respectively, there exists a Riemann
surface C of genus

g = 1� 2t + 2t�1
�
t + 6t

i=1gi
�

such that
JC ⇠ JC1 ⇥ · · · ⇥ JCt ⇥ P ,

for a suitable Abelian subvariety P of JC of dimension

1+ 2t�1t � 2t +
�
2t�1 � 1

�
6t
i=1gi .
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In [7] Ekedahl and Serre introduced the problem of determining all genera for which
there is a Riemann surface whose Jacobian can be decomposed, up to isogeny, as
a product of elliptic curves (for recent progress on this topic we refer to [20]).
Since their paper, there has been much interest in this sort of Riemann surfaces,
particularly in their applications to number theory.

More restrictive approaches to this problem were developed by Paulhus in [19]
and Hidalgo in [11]. More precisely, Paulhus dealt with the following problem:
given an integer g, she asked for the largest integer t = t (g) such that Et is isoge-
nous to an Abelian subvariety of JC, for some Riemann surface C of genus g and
for some elliptic curve E . She answered this question for small genera. Meanwhile,
a similar problem was considered by Hidalgo: given an integer t, he asked for the
existence of a Riemann surface C of minimum genus g = g(t), such that its Jaco-
bian is isogenous to the product of at least t elliptic curves and other Jacobians. By
means of very explicit constructions, he determined bounds for g in terms of t.

Let E1, . . . , Et be t � 2 elliptic curves. We remark that, as a direct application
of the previous corollary, we can ensure the existence of a Riemann surface of genus
gt = 1+2t (t�1) so that its Jacobian is sogenous to the product E1⇥ · · ·⇥ Et ⇥ P
for a suitable Abelian subvariety P of it. Furthermore, using our theorem we are in
position to guarantee the existence of a Riemann surface of smaller genus than gt
and satisfying the same property, as shown in the next corollary:

Corollary 1.5. Let t � 2 be an integer and let E1, . . . , Et be elliptic curves. Then
there exists a compact Riemann surface C of genus

g =

(
1� 2t/2 + (3t)2(t/2)�2 if t is even
1� 2(t+1)/2 + (3t + 1)2(t�3)/2 if t is odd

so that
JC ⇠ E1 ⇥ · · · ⇥ Et ⇥ P

for a suitable Abelian subvariety P of JC of dimension g � t .
In particular, if the elliptic curves are pairwise isogenous, then

JC ⇠ Et1 ⇥ P.

The next theoremwas also proved in [16]; we give an alternative proof, substantially
simpler than the original one.
Theorem B (Kani and Rosen). Let G be a finite group of automorphisms of a Rie-
mann surface C such that G = H1 [ . . . [ Ht where the subgroups Hi of G satisfy
Hi \ Hj = {1} for i 6= j . Then

JCt�1 ⇥ JC |G|
G ⇠ JC |H1|

H1 ⇥ · · · ⇥ JC |Ht |
Ht .

This paper is organized as follows. In Section 2 we shall briefly review the prelimi-
naries: representations of groups and the group algebra decomposition theorem for
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Jacobians varieties (on which the proofs are based). Section 3 is devoted to proving
the results. In the last section we exhibit an explicit example in order to illustrate
how our results can be applied.

ACKNOWLEDGEMENTS. The authors are grateful to their colleague Angel Carocca
for his helpful suggestions throughout the preparation of this manuscript.

2. Preliminaries

2.1. Representations of groups

Let G be a finite group and let ⇢ : G ! GL(V ) be a complex representation of
G. By abuse of notation, we shall also write V to refer to the representation ⇢. The
degree dV of V is the dimension of V as a complex vector space, and the character
of V is the map obtained by associating to each g 2 G the trace of the matrix
⇢(g). Two representations V1 and V2 are equivalent if and only if their characters
agree; we write V1 ⇠= V2. The character field KV of V is the field obtained by
extending the rational numbers by the character values. The Schur index sV of V is
the smallest positive integer such that there exists a field extension of KV of degree
sV over which V can be defined.

It is known that for each rational irreducible representation W of G there is a
complex irreducible representation V of G such that

W ⌦Q C ⇠= (��V � )�
sV
· · · �(��V � ) = sV

�
��V �

�
, (2.1)

where the sum ��V � is taken over the Galois group associated to Q  KV . The
representation V is said to be associated to W . If V 0 is another complex irreducible
representation associated to W then V and V 0 are said to be Galois associated.

Let H be a subgroup of G. We denote by V H the vector subspace of V consist-
ing of those elements which are fixed under H. By Frobenius reciprocity theorem,
its dimension – denoted by dHV – agrees with h⇢H , V iG , where ⇢H stands for the
representation of G induced by the trivial one of H, and the brackets for the usual
inner product of characters.

We refer to [24] for further basic facts related to representations of groups.

2.2. Complex tori and Abelian varieties

A g-dimensional complex torus X = V/3 is the quotient between a g-dimensional
complex vector space V by a maximal rank discrete subgroup 3. Each complex
torus is an Abelian group and a g-dimensional compact connected complex analytic
manifold. Homomorphisms between complex tori are holomorphic maps which are
homomorphisms of groups; we shall denote by End(X) the ring of endomorphisms
of X. An isogeny between two complex tori is a surjective homomorphism with
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finite kernel; isogenous tori are denoted by X1 ⇠ X2. The isogenies of a complex
torus X into itself are the invertible elements of the ring of rational endomorphisms
of X

EndQ(X) := End(X) ⌦Z Q .

An Abelian variety is by definition a complex torus which is also a complex projec-
tive algebraic variety. The Jacobian variety JC of a Riemann surface C of genus g
is an Abelian variety of dimension g.

We refer to [1] for basic material on this topic.

2.3. Group algebra decomposition

We consider a finite groupG and its rational irreducible representationsW1,. . . ,Wr .
It is classically known that if G acts on C then this action induces a Q-algebra
homomorphism

8 : Q[G] ! EndQ(JC).

For each ↵ 2 Q[G] we define the Abelian subvariety

A↵ := Im(↵) = 8(l↵)(JC) ⇢ JC

where l is some positive integer chosen in such a way that l↵ 2 Z[G].
The decomposition of 1 = e1 + · · · + er 2 Q[G], where each el is a uniquely

determined central idempotent (computed from Wl ), yields an isogeny

JC ⇠ Ae1 ⇥ · · · ⇥ Aer
which is G-equivariant. See [17].

Additionally, there are idempotents fl1, . . . , flnl such that el = fl1+· · ·+ flnl
where nl = dVl/sVl and Vl is a complex irreducible representation of G associ-
ated to Wl . These idempotents provide nl subvarieties of JC which are isogenous
between them; let Bl be one of them, for every l. Thus

JC ⇠G Bn11 ⇥ · · · ⇥ Bnrr , (2.2)

called the group algebra decomposition of JC with respect to G. See [4].
If the representations are labelled in such a way that W1(= V1) denotes the

trivial one (as we will do in this paper) then n1 = 1 and B1 ⇠ JCG .
Notation. Throughout this paper we shall reserve the notation ⇠G to refer to the
group algebra decomposition (2.2) of JC with respect to G. Observe that each
product Bnii admits a G-action (by an appropriate multiple of Wi ), but, in general,
each Bi does not.
Let H be a subgroup of G. It was also proved in [4] that the group algebra decom-
position of JC with respect to G induces a isogeny decomposition

JCH ⇠ Bn
H
1
1 ⇥ · · · ⇥ Bn

H
r

r (2.3)

of JCH , where nHl = dHVl /sVl .
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Note that, in general, the isogeny (2.3) is not a group algebra decomposition
because the quotient CH does not necessarily have group action. We also mention
that the dimension of each factor in (2.2) is explicitly computable in terms of the
monodromy of the action of G on C. See [23].

Now, once the basic preliminaries have been introduced, we are in position to
bring in the precise definition of admissible collection of automorphisms.
Definition 2.1. Let C be a compact Riemann surface and let G, H1, . . . , Ht be sub-
groups of automorphisms of C such that G contains Hi for each 1  i  t . Con-
sider the group algebra decomposition (2.2) with respect to G.

The collection {H1, . . . , Ht } will be called G-admissible if

dH1Vl + · · · + dHtVl  dVl

for every complex irreducible representation Vl of G such that Bl 6= 0. The collec-
tion will be called admissible if it is G-admissible for some group G.
We emphasize the fact that our definition of admissibility is based on the dimensions
of the vector subspaces fixed under the corresponding subgroups; consequently, it
is based on the induced isogenies (2.3) with H = Hi . As the reader will note in the
next section, these isogenies will play a key role in our proofs; indeed, this is the
new ingredient that was not available when the Kani-Rosen decomposition theorem
was originally proved.

3. Proofs

3.1. Proof of Theorem 1.1

Let us assume that the collection {H1, . . . , Ht } is G-admissible, and consider the
group algebra decomposition of JC with respect to G given by

JC ⇠G Bn11 ⇥ · · · ⇥ Bnrr (3.1)

and
JCHi ⇠ Bn1

Hi
1 ⇥ · · · ⇥ Bnr

Hi
r (3.2)

the corresponding induced isogeny decomposition of JCHi .
Suppose that the factor Bl is associated to the rational irreducible representa-

tionWl , and that this is, in turn, associated to the complex irreducible representation
Vl of G.

If t = 1, the decomposition (1.1) with H = H1 proves the result. Thus, from
now on we assume t > 1.
Claim. The genus of SG is zero.
Assume that the genus of SG is positive or, equivalently, that the factor B1 has
positive dimension. Note that

dH1V1 + · · · + dHtV1 = t
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and therefore, as the collection {H1, . . . , Ht } is G-admissible, we must have

t = dH1V1 + · · · + dHtV1  dV1 = 1 ;

a contradiction. This proves the claim.
It follows that the factor B1 equals zero. Without loss of generality, we may

assume that Bl 6= 0 for each l > 1. Now, as the collection {H1, . . . , Ht } is supposed
to be G-admissible, we have that

dH1Vl + · · · + dHtVl + �l = dVl

for some �l � 0, for each l 6= 1. The last equality can be also written as

nH1l + · · · + nHtl + �̃l = nl ,

where �̃l = �l/sVl for each l 6= 1. We remark that all �̃l are integers.
In this way, we obtain that

Bn
H1
l

l ⇥ · · · ⇥ Bn
Ht
l

l ⇥ B �̃l
l = Bnll

for all l 6= 1.
Thereby

rY

l=1
B �̃l
l ⇥

rY

l=1

✓
Bn

H1
l

l ⇥ · · · ⇥ Bn
Ht
l

l

◆
=

rY

l=1
Bnll

or, equivalently, if we reorder the products, we see that

rY

l=1
B �̃l
l ⇥

tY

i=1

rY

l=1
Bn

Hi
l

l =
rY

l=1
Bnll .

Now, by considering the isogenies (3.1) and (3.2), it follows that

P ⇥ JCH1 ⇥ · · · ⇥ JCHt ⇠ JC , (3.3)

where P := 5r
l=1B

�̃l
l . This proves the first result.

The second one is now straightforward. Indeed, if we suppose {H1, . . . , Ht } to
be G-admissible and gC to be equal to 6t

i=1gCHi , then by comparing dimensions
in both sides of (3.3), the factor P must clearly be zero. Thereby

JC ⇠ JCH1 ⇥ · · · ⇥ JCHt

in this case, and the proof is complete.
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3.2. Restatement of the hypothesis of Theorem 1.1

Let H1(C, Z) denote the integral first homology group of C . It is classically known
that the action of G on C induces a representation of degree 2g

⇢rac : G ! GL(H1(C, Z) ⌦Z Q)

of G, known as the rational representation of G. By abuse of notation, we shall also
write ⇢rac to refer to its complexification ⇢rac ⌦ C.

The next result exhibits algebraic restatements of the hypothesis of our main
theorem:

Proposition 3.1. Let C be a compact Riemann surface and let G, H1, . . . , Ht be
subgroups of automorphisms of C such that G contains Hi for each 1  i  t .
Consider the group algebra decomposition (2.2) with respect to G.

The following statements are equivalent:

(1) The collection {H1, . . . , Ht } is G-admissible and gC = 6t
i=1gCHi ;

(2) 6t
i=1d

Hi
Vl = dVl for every l such that Bl 6= 0;

(3) There are non-negative integers al such that

�t
i=1⇢Hi

⇠=
X

h⇢rac,Wl iG 6=0
nlWl �

X

h⇢rac,Wl iG=0
alWl .

Proof. The equivalence between statements (1) and (2) follows directly from the
proof of Theorem 1.1.

We proceed to verify the one between statements (2) and (3). It is a known fact
that

⇢Hi
⇠= �r

l=1n
Hi
l Wl

for each 1  i  t (see, for example [4, Lemma 4.3]). Thus,

�t
i=1⇢Hi

⇠= �r
l=1

⇣
nH1l + · · · + nHtl

⌘
Wl .

Now, as
dim Bl = 0 if and only if h⇢rac,WliG = 0,

we see that if statement (2) is assumed, then

�t
i=1⇢Hi

⇠=
X

h⇢rac,Wl iG 6=0
nlWl �

X

h⇢rac,Wl iG=0

⇣
nH1l + · · · + nHtl

⌘
Wl

proving statement (3) with al = nH1l + · · · + nHtl . The converse is direct.
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As a particular case, we consider the situation when the dimension of Bl equals
zero if and only if l = 1. Then, the proposition above ensures that in this case the
collection {H1, . . . , Ht } is G-admissible and gC = 6t

i=1gCHi if and only if

�t
i=1⇢Hi

⇠=
X

l 6=1
nlWl � a1W1 ⇠= ⇢reg � (a1 � 1)W1 (3.4)

for some a1 � 1, where ⇢reg stands for the regular representation of G.
The value of a1 can easily be determined by comparing in (3.4) either the

character at the identity or the multiplicity of the trivial representation; namely

a1 = 1+ |G| ·

 

�1+
tX

i=1

1
|Hi |

!

= t.

Hence, at the end, the hypothesis of Theorem 1.1 are equivalent to

�t
i=1⇢Hi

⇠= ⇢reg � (t � 1)W1
in this case.

3.3. Proof of Proposition 1.2

Let H1 and H2 be two subgroups of automorphisms ofC . Clearly, there is an integer
�l � 0 such that

dim
⇣
V H1
l + V H2

l

⌘
+ �l = dim Vl

for each l. By considering the dimension formula for the sum of two vector sub-
spaces, we can assert that

dim V H1
l + dim V H2

l � dim
⇣
V H1
l \ V H2

l

⌘
+ �l = dim Vl .

Now, as
V H1
l \ V H2

l = V hH1,H2i
l ,

the following equality is obtained:

nH1l + nH2l + �̃l = nl + nhH1,H2i
l ,

where �̃l = �l/sVl is a non negative integer.
The remaining part of the proof follows analogously as done in the proof of

Theorem 1.1.

3.4. Proof of Corollary 1.3

The isogeny decomposition (1.1) of JC associated to the regular covering map
⇡Hk : C ! CHk together with Theorem 1.1 ensure that

JCH1 ⇥ · · · ⇥ JCHk�1 ⇥ JCHk+1 ⇥ · · · ⇥ JCHt ⇥ P ⇠ P(C ! CHk ) ,

for some Abelian subvariety P of JC , and the proof is done.
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3.5. Proof of Corollary 1.4

We start by recalling the well-known fact that for each 1  i  t there exists a
two-fold regular covering map over the Riemann sphere

fi : Ci ! P1

ramified over 2gi + 2 values. Furthermore, if Bi ⇢ P1 denotes the set of branch
values of fi , then we choose, without loss of generality, the fi such that the inter-
section Bi \ Bj is empty for i 6= j . We denote by Hi ⇠= Z2 the deck group of fi ;
that is, Ci/Hi ⇠= P1.

Let

C = {(z1, . . . , zt ) 2 C1 ⇥ · · · ⇥ Ct : f1(z1) = · · · = ft (zt )}

be the fiber product of the coverings f1, . . . , ft . Clearly, C is endowed with canon-
ical projections

⇡i : C ! Ci (z1, . . . , zt ) 7! zi .

We recall that C has the structure of a compact Riemann surface (or, equivalently,
a connected irreducible smooth complex projective algebraic curve; see [8,12,14]),
and that the direct product

H = H1 ⇥ · · · ⇥ Ht ⇠= Zt
2

acts canonically on C . It is not difficult to see that the correspondence

f : C ! P1 , z = (z1, . . . , zt ) 7! f (z) := f1(z1) = · · · = ft (zt )

is a branched regular covering map of degree 2t admitting H as deck group. Note
that, as the coverings fi have been chosen with disjoint ramification, the set of
branch values B of f agrees with B1 [ . . . [ Bt .

The projection ⇡i : C ! Ci is a regular covering map of degree 2t�1 admitting

Ki ⇠= H/Hi ⇠=
tY

k=1,k 6=i
Hk

as deck group; then Ci ⇠= C/Ki .
Claim. The collection {K1, . . . , Kt } is H -admissible.
The complex irreducible representations of H ⇠= hK1, . . . , Kt i are of the form

V := V1 ⌦ · · · ⌦ Vt ,

where Vj is a complex irreducible representation of Hj . Note that

V Ki ⇠= V H1
1 ⌦ · · · ⌦ V Hi�1

i�1 ⌦ Vi ⌦ V Hi+1
i+1 ⌦ · · · ⌦ V Ht

t .
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We remark the following obvious observation: if Vj is the non-trivial representation
of Hj ⇠= Z2 then

V Hj
j = 0.

Thus, it follows that:

(1) If the representation Vj is non-trivial for some j 6= i , then

dKiV = 0 ;

(2) If the representations Vj are trivial for all j 6= i , then

dKiV = dVi = 1 .

Thereby

dK1V + · · · + dKtV  1 = dV

and the proof of the claim is done.
It now follows from Theorem 1.1 that

JC ⇠ JC1 ⇥ · · · ⇥ JCt ⇥ P

for an Abelian subvariety P of JC. Clearly, the dimension of P is gC � 6t
i=1gi .

It only remains to compute the genus of C . This task can be accomplished
by applying the Riemann-Hurwitz formula (see, for example [18, page 80]) to the
involved coverings. More precisely, this formula applied to fi says that

Ri = gi + 1 (3.5)

where Ri is the branch number of fi . We recall that Ri = 6(1� 1/ml) where the
sum is taken over a maximal collection of non-equivalent branch points {pi1, . . . ,p

i
s}

of fi and with ml denoting the order of the Hi -stabilizer subgroup of pl . Similarly,
the Riemann-Hurwitz formula applied to f says that

2gC � 2 = 2t (�2) + 2t R. (3.6)

Again, as the ramification of the coverings fi have been chosen to be disjoint, the
branch number R of f agrees with R1 + · · · + Rt . Finally, the desired expression
for gC is obtained after replacing (3.5) in (3.6).

The proof is done.
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3.6. Proof of Corollary 1.5

It is a known fact that, given two elliptic curves E1 and E2, there exists a compact
Riemann surface C of genus two such that JC is isogenous to the product E1 ⇥ E2
(see, for example [6, 10, 22]; see also [11, Theorem 1] for an explicit construction).

Assume t to be even; say t = 2s for some s � 1. Let C j be a Riemann surface
such that

JC j ⇠ E j ⇥ E j+s

for each 1 j  s.Now, we apply Corollary 1.4 to the Riemann surfacesC1,. . . ,Cs
to guarantee the existence of a Riemann surface C such that

JC ⇠ 5s
j=1 JC j ⇥ P ⇠ 5t

i=1Ei ⇥ P

for a suitable Abelian subvariety P of JC .
Assume t to be odd; say t = 2s + 1 for some s � 1. Let C j be a Riemann

surface such that
JC j ⇠ E j ⇥ E j+s

for each 1 js.Now, we apply Corollary 1.4 to the Riemann surfaces C1,. . . ,Cs ,
Et to guarantee the existence of a Riemann surface C such that

JC ⇠ 5s
j=1 JC j ⇥ Et ⇥ P ⇠ 5t

i=1Ei ⇥ P

for a suitable Abelian subvariety P of JC .
The computation of the genera is straightforward, and the proof is done.

3.7. Proof of Theorem B

Lemma 3.2. Let G be a finite group such that G = H1 [ . . . [ Ht where the
subgroups Hi of G satisfy Hi \ Hj = {1} for i 6= j. Then

�t
i=1|Hi |⇢Hi ⇠= (t � 1)⇢reg � |G|W1.

Proof. Following [24, page 30], the character of the representation |Hi |⇢Hi at g in
G is (

|G| for g = 1
#Cg,i for g 6= 1

where Cg,i = {s 2 G : s�1gs 2 Hi }. Now, as G is partitioned into its subgroups
Hi , we see that for each g 6= 1 the sets Cg,i and Cg, j are disjoint for i 6= j . It
follows that the character of �t

i=1|Hi |⇢Hi is
(
t |G| for g = 1
|G| for g 6= 1

and, as the character of the regular representation is |G| if g = 1 and zero otherwise,
the result follows directly by comparison of characters.
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Proof of Theorem B. Let us assume

JC ⇠G JCG ⇥ Bn22 ⇥ · · · ⇥ Bnrr (3.7)

to be the group algebra decomposition of JC with respect to G, and

JCHi ⇠ JCG ⇥ Bn2
Hi

2 ⇥ · · · ⇥ Bnr
Hi

r ,

the induced isogeny decomposition of JCHi where n
Hi
l = dHiVl /sVl . Thus

JC |H1|
H1 ⇥ · · · ⇥ JC |Ht |

Ht ⇠ JC
Pt

i=1 |Hi |
G ⇥ B

Pt
i=1 n

Hi
2 |Hi |

2 ⇥ · · · ⇥ B
Pt

i=1 n
Hi
r |Hi |

r .

The fact that |G| + t � 1 =
Pt

i=1 |Hi | implies that

JC |H1|
H1 ⇥ · · · ⇥ JC |Ht |

Ht ⇠ JC |G|
G ⇥

✓
JCt�1

G ⇥ B
Pt

i=1 n
Hi
2 |Hi |

2 ⇥ · · · ⇥ B
Pt

i=1 n
Hi
r |Hi |

r

◆

and therefore we only need to prove that

JCt�1 ⇠ JCt�1
G ⇥ B

Pt
i=1 n

Hi
2 |Hi |

2 ⇥ · · · ⇥ B
Pt

i=1 n
Hi
r |Hi |

r .

Again, after considering (3.7), it is enough to prove that

B(t�1)n2
2 ⇥ · · · ⇥ B(t�1)nr

r = B
Pt

i=1 n
Hi
2 |Hi |

2 ⇥ · · · ⇥ B
Pt

i=1 n
Hi
r |Hi |

r .

This equality is obtained if
tX

i=1

h
nHil |Hi | � (t � 1)nl

i
=

1
sVl

"
tX

i=1
dHiVl |Hi | � (t � 1)dVl

#

equals zero, for every 2  l  r .
Finally, by Frobenius reciprocity theorem, the previous expression can be

rewritten as
1
sVl

h�t
i=1|Hi |⇢Hi � (t � 1)⇢reg, VliG

and the result follows from Lemma 3.2. The proof of Theorem B is done.

4. Example

Let q be an odd prime number. We consider a three-dimensional family F of
compact Riemann surfaces C of genus gC = 4q�1 admitting the action of a group
of automorphisms G isomorphic to the dihedral group

D2q =
D
r, s : r2q = s2 = (sr)2 = 1

E
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of order 4q, in such a way that:

(1) The quotient CG has genus zero;
(2) The associated 4q-fold covering map C ! CG ramifies over six values; two

values having 2q preimages (each with stabilizer a conjugate of the subgroup
generated by s), two values having 2q preimages (each with stabilizer a con-
jugate of the subgroup generated by sr), and two values having 2 preimages
(each with stabilizer the subgroup generated by r).

The existence of the familyF is guaranteed by Riemann’s existence theorem (see,
for example, [2, Proposition 2.1]).

Consider the subgroups

H1 = hsi, H2 = hsri and H3 = hri

of G.We remark that Theorem C cannot be applied in this case, since the hypothesis
(1) is not satisfied (H1 and H2 do not permute).
Claim. The collection {H1, H2, H3} is G-admissible.
To prove the claim it is enough to consider a maximal collection of non-Galois as-
sociated (and non-trivial) complex irreducible representations of G. Namely, three
representations of degree one

V2 : r 7! 1, s 7! �1, V3 : r 7! �1, s 7! 1, V4 : r 7! �1, s 7! �1

and two of degree two

V5 : r 7!

✓
!2q 0
0 !2q

◆
s 7!

✓
0 1
1 0

◆

V6 : r 7!

✓
!q 0
0 !q

◆
s 7!

✓
0 1
1 0

◆

where !t := exp(2⇡ i/t).
The claim follows after considering the following table, which summarizes the

vector subspaces of V2, . . . , V6 fixed under each of the subgroups H1, H2, H3.

V2 V3 V4 V5 V6
H1 {0} h1i {0} h(1, 1)i h(1, 1)i
H2 {0} {0} h1i h(1,!2q)i h(1,!q)i
H3 h1i {0} {0} {0} {0}

Hence, by Theorem 1.1, the claim above implies that

JC ⇠ JCH1 ⇥ JCH2 ⇥ JCH3 ⇥ P

for a suitable Abelian subvariety P of JC .
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Furthermore, it is not difficult to compute that

gCH1 = 2q � 1, gCH2 = 2q � 1 and gCH3 = 1,

showing that their sum agrees with gC . Thereby P = 0 and the decomposition

JC ⇠ JCH1 ⇥ JCH2 ⇥ JCH3 (4.1)

is obtained.
We also mention some facts related to this example:

(1) By Proposition 3.1, we have that �3
i=1⇢Hi

⇠= ⇢reg � 2W1;
(2) By Corollary 1.3, the Prym varieties associated to the subgroups H1 and H2

–whose dimension is 2q– contain an elliptic curve, for all q;
(3) The group algebra decomposition of JC with respect to G is

JC ⇠G B1 ⇥ B2 ⇥ B3 ⇥ B4 ⇥ B25 ⇥ B26 , (4.2)

by [23, Theorem 5.12], the dimensions of the factors are

dim(Bl) =

8
><

>:

0 if l = 1
1 if l = 2, 3, 4
q � 1 if l = 5, 6

and the decompositions (4.1) and (4.2) are related by the isogenies

JCH1 ⇠ B3 ⇥ B5 ⇥ B6 , JCH2 ⇠ B4 ⇥ B5 ⇥ B6 , JCH3 ⇠ B2 .

(4) The collection {H1, H3} satisfies hypotheses (1) and (2) of Theorem C, but it
does not satisfy hypothesis (3). Indeed,

gCH1 + gCH3 = 2q 6= 4q � 1 = gC .

Thus, Theorem C cannot be applied. In contrast, it is straightforward to see
that {H1, H3} is, in fact, a G-admissible collection. Then Theorem 1.1 asserts
that

JC ⇠ JCH1 ⇥ JCH3 ⇥ Q

for some Abelian subvariety Q of JC of dimension 2q � 1;
(5) The subgroup H1 and H4 = hrqi permute, but the genus of CH1H4 is positive.

Then hypothesis (2) in Theorem C is not satisfied, and this result cannot be
applied. On the other hand, the vector subspaces of V2, . . . , V6 fixed under H1
and H4 are

V2 V3 V4 V5 V6
H1 {0} h1i {0} h(1, 1)i h(1, 1)i
H4 h1i {0} {0} {0} h(1, 1)i
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showing that the collection {H1, H4} is G-admissible. Hence, by Theorem 1.1,
we have that

JC ⇠ JCH1 ⇥ JCH4 ⇥ E

where E is an elliptic curve;
(6) Note that the collection {H1, H4} is G-admissible but it is not hH1, H4i-admis-

sible.
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