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ABSTRACT. Here we consider two notions of mappings of bounded variation (BV) from
a metric measure space into a metric space; one based on relaxations of Newton-Sobolev
functions, and the other based on a notion of AM-upper gradients. We show that when
the target metric space is a Banach space, these two notions coincide with comparable
energies, but for more general target metric spaces, the two notions can give different
function-classes. We then consider the fine properties of BV mappings (based on the
AM-upper gradient property), and show that when the target space is a proper metric
space, then for a BV mapping into the target space, co-dimension 1-almost every point
in the jump set of a BV mapping into the proper space has at least two, and at most ko,
number of jump values associated with it, and that the preimage of balls around these
jump values have lower density at least v at that point. Here ko and v depend solely on
the structural constants associated with the metric measure space, and jump points are
points at which the map is not approximately continuous.
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1. INTRODUCTION

The theory of functions of bounded variation were first developed in order to study existence and
regularity properties of minimal surfaces, and a nice overview can be obtained from the book [5];
much of the original work on regularity theory can be found in the collection [10], and the discussion
in [16] gives a nice discussion on fine properties of BV functions in Euclidean spaces. Since then
the theory has found applications in other areas as well, including image processing [4, 8], plasma
physics [29, 19], and quasiconformal mappings [18, 32|, and the references contained in these papers
provide further valuable information. In image processing or in plasma-blistering in media that are
not uniform and might even exhibit non-smoothness, a theory of functions of bounded variation
in metric spaces is useful. Recent research on mappings of finite distortion and quasisymmetric
mappings indicate a need to understand metric space-valued mappings of bounded variation on
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metric measure spaces, see for instance [2, 34, 24, 41, 9, 7] for a sampling of the currently extant
literature on this topic. In this paper we seek to study mappings of bounded variation in non-smooth
metric measure spaces of controlled geometry, that is, spaces where the measure is doubling and
supports a 1-Poincaré inequality (see Section 3).

Unlike Sobolev functions, functions of bounded variation exhibit less regularity; classic examples
include the Cantor staircase function on the Euclidean unit interval and characteristic functions
of smooth Euclidean sets. However, a Euclidean set whose characteristic function is of bounded
variation can have non-smooth boundary. As with characteristic functions of such sets, more general
functions of bounded variation in Euclidean domains exhibit discontinuous behavior along certain
subsets, called jump sets. The situation gets more complicated when the function of bounded
variation is not real-valued but a map from a Euclidean domain into a metric space, as in [2]. Yet
another layer of complication comes from considering functions of bounded variation from a metric
measure space into a metric space. The goal of the present paper is to explore regularity properties
of such maps. In this case, the lack of smoothness implies that we have no notion of inward normal
direction in the sense analogous to [17] or [42, (1.2)], and hence the classical definition of jump
points as in [17, 42] (see also [5, Definition 3.67]) is not suitable here.

To do so, the first question to address is what is a reasonable notion of mappings of bounded
variation from a metric measure space into a metric space. First proposed by Miranda Jr. in [40],
the notion of real-valued functions of bounded variation on metric measure spaces equipped with a
doubling measure supporting a 1-Poincaré inequality has been extensively studied, and the papers [3,
6, 13, 14, 25, 26, 27, 28, 33, 36, 37] contain a small sample of the outcomes from such a study. The
papers [40, 3, 6, 14, 36] consider the definition of functions of bounded variation in the metric
setting via relaxation of Sobolev functions, while the papers [25, 26, 27, 28] consider functions of
bounded variation as those whose local behavior is controlled by a sequence of non-negative Borel
functions that serve as a substitute for upper gradients [39]. In [13] it was shown that these two
approaches yield the same class of real-valued functions of bounded variation.

In the present paper we consider two definitions of mappings of bounded variation from a metric
measure space into a metric space or, in particular, a Banach space, by adopting the two approaches
described above. We show that when the domain metric measure space is complete, doubling, and
supports a 1-Poincaré inequality and the target metric space is a Banach space, both notions yield
the same class of maps. However, when the target metric space is not a Banach space, the two
approaches do not in general yield the same function class, with the notion of relaxation of Sobolev
functions yielding a strictly smaller subclass of maps. Thus, in the setting of general metric space
targets, it is more appropriate to study mappings of bounded variation based on the sequence of
upper gradients as first proposed by Martio in [39]. Other alternate notions of metric-valued BV
mappings defined via relaxation with simple maps and test plan-based BV mappings were studied in
[7], where they were shown to be equivalent to definitions given by test plans and post-composition
with Lipschitz functions. However, the fine properties of those mappings are not considered in [7].

Having made the choice of the definition of mappings of bounded variation, in the second part of
the paper we explore the fine properties of mappings of bounded variation, from a complete doubling
metric measure space supporting a 1-Poincaré inequality, into a proper metric space. We determine
Hausdorff co-dimensional measure properties of sets of jump discontinuity points of such mappings.
While the study of fine properties of real-valued BV functions on Euclidean domains is now well-
established (see for instance [42, 17, 5]), the corresponding study of metric space-valued mappings
on Euclidean domains has a much shorter history. Moreover, real-valued BV functions in Euclidean
domains can exhibit more than two jump values at a jump point, as demonstrated by the function f
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on the complex plane given by f = 2xya+xr—xr with A = {(z,y) € R? : > 0,y > 0,2%+y> < 1},
E={(zr,y) eR? : 2 >0,y <0,22+¢y> <1},and F = {(2,y) € R? : 2 < 0,y < 0,22 + ¢y < 1}
having four jump values at the point (0,0). However, at H" l-a.e. point in R we see only two
jump values. In such a Euclidean setting, similar results hold true once we know that there are
jump values for metric space-valued BV maps. The proof of Theorem 1.3 below gives a more
complete and alternate verification of the corresponding result stated in [2] for metric space-valued
BV mappings from Euclidean domains, as the existence of jump values as claimed in [1, 2], lacks
some details. One key part of the verification requires the directions v, in [2, Theorem 2.3] to be
independent of the functions ¢, for which [2] points to the unproven statement in [2, Remark 1.5].
Note also that the results of this paper also covers mappings from subsets of R™ even when the
subset is not open, provided it carries a doubling measure supporting a suitable Poincaré inequality.
A few words of caution are appropriate here. The definition of jump set as considered here follows
the convention of [16, Definition 5.9]. In [5] the term approzimate discontinuity set is used instead
(with the notation S, used for the set corresponding to the BV function u in [5, 6]), in order to
distinguish the points where one can obtain two jump values, see [5, Definition 3.67]. As we do not
have access to the notion of inner normal vectors for level surfaces of BV functions, we follow the
simpler categorization of [16] instead.

The following are the two main results of this note. The first result focuses on comparing the
two notions of mappings of bounded variation. The space BV (X : V) is defined using the Miranda
Jr. [40] approach of relaxation of Sobolev function class, while the space BV (X : V) is obtained
by using sequences of non-negative Borel functions that act as upper gradients as in [39].

Theorem 1.1. Let (X,d, ) be a complete doubling metric measure space supporting a 1-Poincaré
inequality, and let V' be a Banach space. Suppose also that for p-a.e. x € X we have that
liminf, ,o+ w(B(z,7))/r = 0. Then BV(X : V) = BVay(X : V), with comparable BV energy

Seminorms.

Theorem 1.1 will be proved in Section 4. Before doing so, in Section 3 we adapt the notion
of Semmes pencil of curves and Poincaré inequality to the setting of Banach space-valued BV
functions.

In the next main theorem, we determine the fine properties of a metric space-valued BV 4p/-map,
when the metric space target is proper (that is, closed and bounded subsets of Y are compact).

In what follows, we consider maps u € BVap (X : V) with (Y, dy) a metric space.

Definition 1.2. A point € X is said to be a point of approximate continuity of u if there is a
point y, € Y such that for each € > 0 we have

(Bl ) \u (B(ya.2)))
lim sup (B, 1)

We say that x is a jump point of u, that is, x € J(u), if it is not a point of approximate continuity
of u. If z is a jump point of u, we say that a point y € Y is a jump value of u at x if for all € > 0,

we have .
B Nu= (B
s 2BT) 00 (B(3.))
r—0+ M(B(xa 7‘))
Theorem 1.3. Let (X,d, ) be a complete doubling metric measure space supporting a 1-Poincaré
inequality, and let (Y, dy) be a proper metric space. Then for each uw € BVap (X :Y) we have that

J (u) is o-finite with respect to the codimension 1 Hausdorff measure H~' on X and there exists a
set N C J(u) with H™*(N) = 0 such that the following hold:

=0.

> 0.
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(a) A point xg € X belongs to J(u) if and only if there exist sets Eq, By C X such that
lim sup #B(zo,m) 0 By)

r—0 p(B(xo,T)
and there exist balls By, By C Y with dist(By, By) > rad(B1) such that u(E;) C B; for

>0 for i=1,2,

i=1,2.
(b) For each xg € J(u)\ N there are at least two, and at most ko, number of jump values, that
18, points yi,y2, -+ , Yk € Y such that for each e >0 and i =1,2,--- |k we have
B Nu(B(y;
i LB 00 (B2)
i W(Bwr))
and

B ¥ umY By
s 2B VUL 0! (B0, 9)))
r—0+ M(B(xa T))
In the above, both ko and v are constants that depend solely on the doubling and Poincaré constants
of the space X, and in particular are independent of Y, u and €.

=0.

Theorem 1.3 will be proved in Section 5. The set [J(u) is called the jump set of u, and is defined
in the initial discussion of Section 5 as the complement of the set of points of approximate continuity
of u, and so (a) is immediate from the construction. The o-finiteness of the jump set is proved as
Corollary 5.10. Subsequently, (b) is proved via Proposition 5.12, completing the proof. We point
out here that, with our definition of the jump set J(u), we cannot be guaranteed that the set N
referred to in the above theorem will be empty. Indeed the argument function f(z) = Arg(z) in the
complex unit disk has the complex number 0 as part of its jump set, but at 0 the function f takes
on infinitely many jump values. From the expository monograph [5] we know that for a real-valued
BV function on Euclidean domains, such points form a very small set; the above theorem extends
this to metric space-valued mappings in metric measure spaces.

2. BACKGROUND NOTIONS

In this note, (X, d, 1) will denote a metric measure space, where (X, d) is a complete metric space
and p a Borel measure, and V is a general Banach space. The ball centered at € X with radius
r > 0 will be denoted B(z,r) = {y € X : d(x,y) < r}. A ball in X may have more than one center
and more than one radius. Hence, by a ball, we understand that it comes with a pre-selected center
and radius. The radius of a ball B will be denoted by rad(B). The closed ball centered at x with
radius 7 > 0 is the set B(x,7) := {z € X : d(v,z) < r}, and is in general potentially larger than
the topological closure of the open ball B(x,r). Moreover, given two sets F, F' C X, the distance
between them is denoted dist(E, F') := inf{d(z,y) : x € E,y € F}.

We will assume throughout that the measure u is doubling, that is, there is some constant Cy > 1
such that whenever x € X and r > 0, we have

0 < u(B(z,2r)) < Cqu(B(z,r)) < oo.

Given such a measure y, and a set A C X, the co-dimension 1 Hausdorff measure of A is given by

-1 . . p(Bi)
= : i i) < .
H™(A) == lim inf {1 rad(B,) AcC ieLJIBz, rad(B;) < 6}

Next, we introduce the definitions of two notions of mappings of bounded variation. The first one,
BV (X : V), was widely studied in [40], while the other one, BV (X : V'), was first introduced
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in [39] and was proven to be equal to BV(X : V) in [13], when V = R and the measure on X
is doubling and supports a 1-Poincaré inequality. As a natural question, we will study here the
equality of both spaces when V is a general Banach space.

Since the approach in [40] is based on approximation via Newtonian mappings, we recall here
the definition of upper gradients and the Newton-Sobolev space. An upper gradient of a mapping
f: X — V is a non-negative Borel function g : X — [0, oo] such that for each nonconstant compact
rectifiable curve v : [a,b] — X (with a,b € R and a < b), we have

(2.1) 1)) — Flv(a))] < / gds.

Y

The function g is called a 1-weak upper gradient of f if (2.1) holds for 1-almost every curve (see
Section 2.2 below for the concept of 1-modulus). It turns out that if f has a 1-weak upper gradient
in the class L!(X), then there is a unique 1-weak upper gradient of f with the smallest L!-norm;
moreover, every l-weak upper gradient of f that belongs to L!(X) is y-a.e. bounded below by this
unique weak upper gradient; we denote by g, the minimal 1-weak upper gradient of u. Note that
modifying a map f, that has an upper gradient belonging to L'(X), on a set of measure zero can
result in a function with no upper gradient in L'(X). Thus the above notion is at the level of maps,
not equivalence classes of maps. However, we say that two maps f1, fo are equivalent if f; = f5
p-a.e. in X and in addition, for each € > 0 there is an upper gradient g. of f; — fo such that
fX ge di < €. The Newton Sobolev space N'1(X : V) is the collection of all equivalence classes of
mappings f : X — V with f € L(X : V) and each map in the equivalence class having an upper
gradient in L'(X). We refer the interested reader to [23] for more details on N%(X : V) and upper
gradients.

2.1. Vector-valued mappings of bounded variation via relaxation of Newton-Sobolev
mappings. Let u € L'(X : V) with L}(X : V) in the sense of Bochner integrals, and define

[|Dul|(X) := inf {li_minf/ Gu; gt (ug)ien € NPYX 2 V), uy L, u} .
11— 00 X

Definition 2.2. Let (X,d,u) be a metric measure space and V a Banach space. Following
Miranda [40], we define BV (X : V) to be the class of mappings u € L'(X : V) such that
[[Dul|(X) < co. We denote BV (X) := BV(X : R).

It was shown in [40] that the map U — ||Dul|(U) for open sets U C X can be extended via
a Carathéodory construction to a Radon outer measure on X, which is also denoted by || Dul|; in
particular, for Borel sets A C X we set

|Dul|(A) := inf{||Du||(U) : U is open in X and A C U}.

If F C X is a measurable set, we say that E is of finite perimeter if xg € BV (X) and we denote
the perimeter measure by P(FE,-) := |[Dxgl|(-). For functions in the class BV (X) the following
co-area formula is known.

Lemma 2.3. (coarea formula, [40, Proposition 4.2]) Let E C X be a Borel set and u € BV (X).
Then

| Dul|(E) = / Y P({u> 1), Bt

— 00
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Thanks to the work of Ambrosio [3], we know the structure of sets of finite perimeter. To describe
these results we first describe the measure-theoretic and reduced boundaries of subsets of X. For
E C X we say that a point € X belongs to the measure-theoretic boundary 9, F of E if

w(B(z,r) N E) p(B(z,r) \ E)

2.4 lim sup >0 and limsup > 0.

24 P (B ) P u(B(.m)

For a real number 5 > 0 we say that z € X belongs to the reduced boundary ¥3F of E if
. u(B(z,r)NE) (B, )\ E)

2.5 1 f—or o > d 1 f—rn—— = > 3.

(25) By 2 A I By 27

Lemma 2.6. Suppose that X is complete and that p is doubling and supports a 1-Poincaré in-
equality. Then there is a positive real number v < 1/2, depending only on the doubling constant
and constants associated with the Poincaré inequality, such that for each set E of finite perimeter,

H 1 O.E\S,E)=0 and P(E,X)~H '(Z,E).

We also point out that in fact, the property of a measurable set being of finite perimeter is
characterized by the property that H~!(X,E) is finite; this result was first proved by Lahti [33],
and is new even in the Euclidean setting, refining Federer’s characterization of Euclidean sets of
finite perimeter.

2.2. 1-modulus and AM-modulus. Recall the definition of 1-modulus of a family of nonconstant,
compact and rectifiable curves I':

Mod; (T') := inf/ pdpu
PJx

where the infimum is taken over all non negative Borel functions p : X — [0, 4] s.t. fv pds > 1
for each v € T'. It turns out that there is another notion of modulus that is better suited to the
study of BV functions. This notion, called AM-modulus, was first proposed by Martio in [39].
Following [39] we define the AM-modulus to be
AM(T) := inf lim inf/ pidps,
(pi)ien =00 Jx

where the infimum is taken over all sequences of AM-admissible functions, that is, sequences (p;);
of non negative Borel functions such that for each v € T we have

liminf [ p;ds > 1.
1—00 ~

We say that a property holds for 1-almost every curve (respectively AM-almost every curve) on X
if it holds outside a family of curves of zero 1-modulus (resp. AM-modulus).
For a curve family I we always have AM(T") < Mod;(T).

Lemma 2.7. Let ' be a family of curves in X. Then
(a) Mody(T) = 0 if and only if there is a non-negative Borel function p € L*(X) such that for
each v € T we have fﬁ/pds = 0.
(b) AM(T') = 0 if and only if there is a sequence (p;)ien of non-negative Borel functions with
sup; fX pi dp < 0o such that for each v € T' we have
1iminf/pi ds = o0.
¥

1—00
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Proof. A proof of (a) can be found in [23, Lemma 5.2.8]. To prove (b) we argue as follows. Sup-
pose first that AM(I') = 0. Then for each positive integer k£ we can find a sequence (p.;)ien
of non-negative Borel functions on X with liminf;_, fv pr,ids > 1 for each v € T', such that
sup; [ pr,i dp < 27%. For each positive integer i we set p; = >~ | pi,;. By the monotone conver-
gence theorem we know that for each v € T,

/pids:z‘/p;m-ds,
v k=17

o0
limvinf/ pids > Zlim.inf/pk,i ds = 00,
K3 1
Y k=1 0l
and at the same time, for each positive integer 7 we have

o0 o0
/Pz‘dMZZ/ pk,iduéz2_k=1.
X k=1"% k=1

The desired conclusion follows.
Now suppose that T' is such that there is a sequence (p;);en of non-negative Borel functions
on X such that sup; [y pidp =: o < oo and for each v € T' we have liminf;_,o fv pids = 0.

and so

Then for each £ > 0 the sequence (e£p;)ien is a sequence of AM-admissible functions for I', with
limsup; [ ep; dp = ea. Thus AM(T') < ea for each € > 0. Thus we have that AM(T") = 0. O

From the above lemma, it follows that if " is a family of curves with AM(I') = 0, then for
each ¢ > 0 there is a sequence (p;); such that sup, fX pidp < € and for each v € T' we have
lim inf; oo fﬁ/ pi ds = oo.

2.3. The notion of BV4p/(X : V). Now we turn our attention to the definition of BV (X : V).
The notion of BV4p (X : R) was first proposed by Honzlové-Exnerovd, Maly, and Martio in a series
of papers [26, 27, 28] using the notion of AM-modulus, see also [25]. This notion was adopted by
Lahti in [34] to study metric space-valued BV mappings. In this section we focus on this notion of
BV maps.

Definition 2.8. Let (X,d, ) be a metric measure space and V' a Banach space. Let (p;)ien be
a sequence of non-negative Borel functions on X. We say that this sequence is an AM-bounding
sequence for a function u : X — V if for AM-a.e. curve 7 : [a,b] — X there is a null set N, C [a, b]
(that is, H'(N,) = 0) such that for every 7,t € [a,b] \ N, with 7 < ¢, we have

(2.9) Jut+(7)) = u®)] < limint | s
Yir,t]

71— 00

We say that a mapping u € L'(X : V) is in the class BVap (X : V) if there is an AM-bounding
sequence (p;)ien for u such that

liminf/ pidp < 00.
b'e

i—00
We set
IDanru]|(X) := inf liminf/ pi du,
X

(pi)i ©—00

where the infimum is taken over all AM-bounding sequences (p;);en of w.
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As in the case of the object ||Dul|, the above ||Dapru| can be extended to be a Radon measure
on X via a Carathéodory construction, see for example [39] and Section 6.1.

Note that in considering an AM-bounding sequence for u, we discount a family T' of curves in X
such that AM(T") = 0. If the AM-bounding sequence (p;);en is such that the exceptional family T
is empty, then we say that (p;);en is a strong bounding sequence for wu.

Lemma 2.10. Let u € BV (X;V) and v : X — V. Suppose that there is a set N C X with
w(N) = 0 such that for each x € X \ N we have u(xz) = v(z). Then a sequence (p;)ien is an AM-
bounding sequence for u if and only if it is an AM-bounding sequence for v; hence v € BVapr (X; V)
with [[Dayul|(X) = [[Dayvl[(X) and [ Day (u—v)[|(X) =0.

Proof. Since N is a null-set, by enlarging it if need be (recall that p is a Borel measure), we can also
assume that it is a Borel set as well. It follows that with F]J(, the collection of all nonconstant compact
rectifiable curves v : [a,b] — X for which H!(y~*(N)) > 0, we have AM(I'},) < Mod;(T'}) = 0.
Thus, for each AM-bounding sequence (p;);en of the original function u and for each v & Ty U I‘E,
we can replace IV, with N, U 4~1(N) to see that this is an AM-bounding sequence for v as well.
Here Ty is the exceptional family associated with the bounding sequence; so AM(T'y) = 0.

Since u — v = 0 p-a.e. in X, the final claims follows from noting that AM(I'};) = 0 and so the
sequence (g;)ien, with each g; the zero function, is an AM-bounding sequence for u — v. O

Lemma 2.11. Suppose that (p;)ien is an AM-bounding sequence for a map u from X to V such
that sup; fX pidp < 0o. Then for each € > 0 we can find a strong bounding sequence (g;)ien of u
such that for each i € N we have [y |g; — pi| dp < e.

Proof. Let u € BVap (X : V) and (p;)ien. Then there exists I' with AM(T") = 0 such that for each
non constant compact rectifiable curve v ¢ I, the relation (2.9) holds for s,¢ € dom(y)\y~*(N,)
where H'(N,) = 0. Since AM(T') = 0, by Lemma 2.7 there exists a sequence of non-negative Borel
functions (g;); such that

71— 00 11— 00

liminf [ g;dp <oo and lim inf/ gids =00 Vyel.
X 8!

Now let 'y be the family of all nonconstant compact rectifiable curves v in X for which we have
liminf;_, fﬂ{ gids = 00. Then AM(Ty) = 0 and each subcurve of a curve that is not in I'y is also

not in I'g. For each € > 0, since I' C Ty, we have that for each v ¢ Ty,

(2.12) lu(y(7)) — u(~())|| < lim inf/ pids < lim inf/ pi +egids
70 Iy 70 iy
for every 7,1t ¢ v~ 1(N,).
If v € Ty is such that every subcurve of 7 also belongs to I'g, then for each 7,t € [a,b] with

7 < t we have liminf;_, iy 9 ds = 00, and so the choice of N, = () works. If it is not the case

that every subcurve of v also belongs to I'g, then let Co() be the collection of all non-degenerate
(that is, containing more than one point) intervals I C [a, b] for which, whenever J is a compact
subinterval of I we must have 7|y & I'y, and whenever J is a compact subinterval of [a, b] containing
I in its interior, we must have v|; € T'g. By the maximality of the intervals in the collection Cy(7),
two intervals in this collection are either disjoint or are equal as intervals. Moreover, these intervals
have non-empty interior. It follows that as Q is dense in R, the collection Cy(7y) is countable.
With v : [a,b] — X, consider all ag,by € [a,b] N Q with ag < by for which 7|4, 4,] & To, that
| 9i ds < o0; hence there is a corresponding null set Nlag, bg] C [ag, bo] with

is, liminf; Aiag b0
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H*(NTag, bo]) = 0, so that for each 7,t € [ag,bo] \ N[ao, bo] we have (2.12) holding true. Let C(v)
be the collection of all such [ag, bg] C [a, b], and set

N, = U Nlag, by] U U {inf J,sup J}.
[ao,bo]€C(7) JeCo ()

Note that as ag,by € Q, the collection C(v) is a countable collection. Hence H!(N,) = 0 by the
subadditivity of H' on [a,b]. Now let 7,¢ € [a,b] \ N, with 7 < ¢. If [r,{] C [ao,bo] for some
[ag, bo] € C(7), then (2.12) holds. If there is no [ag, bo] € C(v) for which [7,t] C [ag, bo], then we

must have that liminf;_, o Airy 9 ds = 0o, and so we now have
T,t

11—

lu(y(7)) — u(y(t)]| < liminf / (pi + 2gs) ds = o
Y[r,t]

Therefore (p; + £g;); satisfies (2.9) for every non constant compact rectifiable curve. Moreover,
since ¢ is arbitrary, one can approach the energy ||Dapsul|(X) just by taking the infimum over the
upper bounds of u that verify (2.9) for every non constant compact rectifiable curve. |

Lemma 2.13. Suppose that (p;); is an AM-bounding sequence for u and that n is a non-negative
L-Lipschitz function with support in a bounded set U; moreover, suppose that n is constant on an
open set V.€ U. Then (np; + L |u| xon\v)s is an AM-bounding sequence for nu.

Proof. For each i € N we set g; := np; + L |u| xp\v-

Let T' be the exceptional family for the AM-bounding sequence (p;); with respect to u; so
AM(T') = 0, and for each nonconstant compact rectifiable curve = : [a,b] — X with v € T, we have
a null set N, C [a,b] with H'(N,) = 0 such that whenever ¢,7 € [a,b] \ N, with ¢ < 7, we have

[y () = u(s(7)| < timint [ s
Yt T

1—> 00

Fix such 7,t € [a,b]. Consider a partition ¢ = tg < t; < --- < t}, = 7 of the interval [t, 7] so that
tl, cee 7tk,1 g N»y. Then

k
[u(y()n(v(t)) — u(y(T))n(v(1))] < Z lu(y(ti—1))n(y(ti-1)) — uly(t;)n(v(t))]
k
< Z lu(y(tj—1))n(v(ti-1)) — uly(t;))n(v(tj-1))|
k
+ Z lu(y()n(y(tj-1)) — uly(t;))n(v ()]

< hggggfz / Aty )i + lu(r(t5))[Lipn] ds.

lie;— 1t1

The above must be true for all such partitions of the interval [¢,7]. Since w o+ and Lipn o~ are
Borel functions on [a, b], it follows that

[u(y(@#)n(y(#)) — uly(m))n(y(1))] < 1iminf/ gi ds. O

1—> 00
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Lemma 2.14. Let uw € BV(X : V). Then the upper gradients of an approximating sequence form
an AM-bounding sequence for u. In particular w € BVp (X : V) with | D aprul|(X) < || Dul|(X).

Proof. 1If u € BV (X : V), then there exists a sequence (u;);eny € N!(X : V) with upper gradients
g; such that

limsup/ gidp < oo,
71— 00 X
and such that u; — u in L*(X : V). In particular, (passing to a subsequence if necessary) u; — u
pointwise almost everywhere in X. Then there exists a null set N such that lim; o u;(z) = u(z)
for every x € X \ N. By enlarging N if necessary, we may also assume that N is a Borel set
(recall that p is Borel regular). Hence, by considering the non-negative Borel measurable function
p = ooxy on X, we know that if '}, is the collection of all compact nonconstant rectifiable curves
v in X with H(y~1(N)) > 0, then AM(I'};) < Mod;(I'};) = 0.

Let v : [a,b] — X be a nonconstant compact rectifiable curve such that v ¢ FJJ(,. We set
N, :=y~Y(N). Then for 7,t € [a,b] \ N, with 7 < ¢, we have that

Tim i (y(t)) = ui((7)) = w(y(t)) — u(y(7)).

71— 00
Moreover, since g; is an upper gradient of u;, it follows that
i (®) ~ NI < [ g
Yi[r,t]

Combining the above two, we see that for 7,¢ € [a,b] \ N, with 7 < t, we have

Jutr() = ula(r))]| < lmint [ gods
0 Iy
Thus we have shown that (g;):en is an AM-bounding sequence for u. Now fix € > 0 and choose
(ui)ien and (g;)ien such that

li_minf/ gidp < || Du||(X) + €.
1—> 00 X

Since the previous argument holds for any choice of (u;);en and (g;)ien, we have that (g;);en is an
AM-bounding sequence for u, and hence,

|Davu|(X) < lim inf / gidyu < |[Dull(X) + &,
K3 (o] X
and then taking ¢ — 0 completes the proof. O

Remark 2.15. Notice that condition (2.9) holds outside a null set N,, which depends on the
choice of v, but as seen in the previous proof, whenever u € BV (X : V), we can choose a null
set N C X to be independent of the curve, such that IV, = 4~ Y(N). In the following sections we
will prove that BV (X : V) = BVapn (X : V). However the construction of the approximation by
Newtonian mappings of a BV 4)/-mapping will yield a sequence of upper gradients different to the
original AM-bounding sequence for u, and so in general we cannot assume that every AM-bounding
sequence of u comes with a universal null set N C X as above.
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2.4. Metric space-valued functions of bounded variation. In the prior two sections we con-
sidered mappings from the metric space X into a Banach space V; in this section we consider the
case of mappings into a metric space (Y, dy). We will assume here that Y is complete and separable.
Given Q C X and yp € Y, we mean by f € L*(Q2:Y,yo) that

/ dy (f(-),yo)dp < oc.
Q

We say that f € L} (X :Y) if for each yo € Y (or, equivalently, for some yo € Y) we have that

loc

the real-valued function z — dy (f(z), yo) belongs to L}, .(X).

We begin with the intrinsic definitions, analogous to the definitions of BV (X : V') and BV (X :
V') given above.

Lemma 2.16. Let u: X — Y be a measurable function. Then the following are equivalent:

(a) There is a family g of curves in X with AM(To) = 0 and a sequence (p;)ien of non-negative
Borel measurable functions on X such that for each nonconstant compact rectifiable curve
vt [a,b] = X with v & T there is a set N., C [a,b] with H™'(N,) = 0 such that for each
7,t € [a,b] \ N, with T <t we have

dy (u(y(r)), u(7(t))) < lim inf / s
YT, t]

71— 00
with
sup/ pi dp < 0o.
% X

(b) For every Banach space V' and isometric embedding ® : Y — V we have that ® ou €

BVan(X;V).
(c) There is a Banach space V and an isometric embedding ® : Y — V such that ®ou €

BV (X;V).

In any (and hence all) of the cases above, we have that

IDaAp® o ul|(X) = inf liminf/ pi du
X

(pi)ien i—o0

where the infimum is over all sequences (p;)ien satisfying (a) above.

Proof. If V is a Banach space and ® is an isometric embedding of Y into V, then for each z,2z € X
we have that dy (u(x),u(z)) = || P(u(x)) — ®(u(z))], and so we know that (a) implies (b) and that
(b) implies (c). Indeed, every complete separable metric space can be isometrically embedded in
the Banach space ¢*° by the Kuratowski embedding theorem (see, e.g., [23, page 100]).

Thus it only remains to show that (c) implies (a). To this end, suppose that V' is a Banach space,
® an isometric embedding of Y into V, and that ® o u € BVp(X; V). Then there is a sequence
(pi)ien that is an AM-bounding sequence for ® o u, and a family Ty with AM(Ty) = 0 such that
whenever 7 : [a,b] — X with v & I there is a set N, C [a,b] with H™(NN,) = 0 such that for each
T,t € [a,b] \ Ny with 7 < ¢t we have

@ u(y(r)) = o uly(0)] < limint [ pids,
'Y|[r,t]

17— 00
with
sup/ pi dp < o0o.
i JX

K3
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As @ is an isometric embedding of Y into V, it follows that dy (u(y(7)), u(y(t))) = | o u(y(7)) —
® o u(y(t))|l. The condition (a) follows.

The above argument shows that the sequence (p;);en satisfies (a) if and only if it is an AM-
bounding sequence for ® o u. The final claim of the above lemma now follows. ]

Definition 2.17. We say that a map u: X — Y is in BVay(X;Y) ifu € L}(X : Y) and there is
a sequence (p;);en satisfying the hypothesis of Lemma 2.16 (a).

Lemma 2.18. Let ® : Y — V be an isometric embedding of the metric space Y into a Banach
space V. Suppose that

(a) ue BVapu(X;V), and

(b) there is a set N C X with u(N) = 0 such that for each x € X\ N we have that u(xz) € ®(Y).
Then uwo ®~ 1 € BVapy(X;Y). Here ®1 stands in for the inverse map of the bijective map
DY = O(Y).

Proof. Since any modification of u on a set of y-measure zero results in the same equivalence class
of u in BV (X;V) (see Lemma 2.10), we can modify u on N by setting u(x) to be some fixed
point in ®(Y) if z € N. The conclusion now follows from the previous lemma. d

Unlike BVap (X;Y), the situation for BV (X;Y) is more complicated.

Definition 2.19. We say that amap u : X — Y isin BV(X;Y) if there is a sequence (uy)xen from
NYH(X;Y) such that up — u in L' (X;Y) and supgey [y gu, dpp < 0o. Here gy, is the minimal
1-weak upper gradient of uy in the sense of [23, page 161].

We will see that BVap (X;V) = BV(X;V) whenever V is a Banach space (see Theorem 1.1),
and as in the proof of Lemma 2.14, we can see that BV (X;Y) C BVapn(X;Y). However, BV(X;Y)
is in general a strictly smaller subset of BV (X;Y). This supports the choice of BV (X;Y) as
the space of mappings of bounded variation in [34, 35].

Example 2.20. Consider X = [~1,1] and Y = {0,1}. Let u := x[o,1) and p; := ix[-1/:,0). Then
for each z,y € [-1,1], if z,y < 0 or z,y > 0 then |u(z) — u(y)| = 0 so it is immediate that (p;);
satisfies the upper bound inequality. If z < 0 and y > 0 then

Yy
timinf [ ix-1jndCt = 1 =Ju(z) - uly)]
11— 00 T

Thus the sequence (p;)ien is an AM-bounding sequence for u (and indeed, it is a strong bounding
sequence for u. Therefore we know that w € BVap (X : Y). However Newtonian mappings are
absolutely continuous on [—1, 1], and so, since Y = {0,1}, they must be constant; hence it is not
possible to approximate (in L' norm) u by Newtonian mappings, proving that v ¢ BV (X : Y).

While the above example shows how topological obstructions can prevent approximations by
NU1_maps, the next example provides a more analytical obstruction.

Example 2.21. Let X = [-1,1] and Y = ({0} x [0,1]) U ([0,1] x {1}) U ({1} x [0,1]) be both
equipped with the Euclidean metric, and X be also equipped with the Lebesgue measure £'. Let
u € BVp (X 1Y) be given by u(z) = (0,0) when —1 < 2z < 0 and u(z) = (1,0) when 0 < 2 < 1. If
(ug)x is a sequence of functions from N11(X :Y) such that u, — w in L'(X), then for sufficiently
large k we know that are points xy,yx € X with |z, + 1| < 15 and |yp — 1| < 75 such that
lu(zy) — (0,0)] < 15 and |u(yx) — (1,0)] < &. On the other hand, by the absolute continuity on

[—1,1] of functions in N*'(X :Y), we have that [y gy, dC* = length(ug) > 14+2x &% = In
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inferring the above, we used the fact that uy is also a path in Y. On the other hand, || D pul|(X) =
1, and so it is not possible to have |[Daprul|(X) = inf () cnr(xiy) Iminfro [y Gu, act.

The above example does not preclude an L'-approximation of the AM-BYV function by a sequence
of Newton-Sobolev functions. The next example gives a metric obstruction to the existence of even
such an approximation.

Example 2.22. Let X = [-1,1] and Y = ({0} x [-1,1]) U {(=,sin(1/x)) : 0 < = < 1} be both
equipped with the Euclidean metrics, and X also be equipped with the 1-dimensional Lebesgue
measure. Let u : X — Y be given by u(xz) = (0,0) if —1 <z < 0, and u(z) = (1,sin(1)) when

0 < 2 < 1. Then |[Dapul[(X) = 1/1 +sin*(1), but due to the absolute continuity of functions

in NM'(X :Y) and the lack of paths in Y connecting u(—1) to u(1), there can be no sequence of
functions in N11(X :Y) that gives an L!-approximation of w.

By the ACL (absolute continuity on lines) property of functions in N11(X : Y), the above
examples have higher dimensional analogs, but we will not go into details here.

Remark 2.23. While BV (X : Y) need not equal BV4p/(X :Y) in general, we do have a relation-
ship between the two notions. Thanks to the Kuratowski embedding theorem ([23, page 100]), we
can isometrically embed any separable metric space (Y, dy ) into the Banach space ¢£>°. Thanks to
Theorem 1.1 and Lemma 2.18, we know that with V' any Banach space and ® : Y — V an isometric
embedding, whenever Y is complete, we have BV (X : Y) is the same as the class

{u EBV(X:V): p{zeX :ulx)¢g@)}) = O}.

3. POINCARE INEQUALITIES AND SEMMES PENCIL.

We say that the metric measure space (X,d, u) supports a 1-Poincaré inequality if there are
constants C' > 0, A > 1 such that for each u,g € L} (X), with g an upper gradient of u, we have

loc

# lu= uslld < Crad(B)f g
B AB

for each ball B C X. The metric measure space X supports an AM—Poincaré inequality if there
are C' > 0, A > 1 so that for each u € BVap (X : V) and any AM-upper bound (p;); of u we have

][ lu —uplldp < Crad(B)lim inf][ pidp
B 11— 00 \B

for each ball B C X. As with the 1-Poincaré inequality, the AM-Poincaré inequality implies the
following version, which involves the AM-BV energy:

Lemma 3.1. If X supports an AM-Poincaré inequality, then for u € BVap (X : V), we have that

||DAMUH()\B)
— du < Crad(B)—————~
7[ ||u u3|| w < Cra ( ) ()\B)

for each ball B C X.
Proof. Let € > 0 and let {pg }x be an AM-upper bound for u in AB such that

liminf/ prdp < ||Dapul|(AB) + €.
k—o0 B



14 CAAMANO, KLINE, SHANMUGALINGAM

Let 0 < § < 1/2, and let n be a 1/§-Lipschitz function such that n =1 on A(1 — §)B and n = 0 on
X\ AB, with 0 <7 <1on X. We then have that {np, + 6_1‘U|X/\B\)\(1—6)B}k is an AM-upper
bound for nu in X, see for example Lemma 2.13 above. Thus, by the AM—Poincaré inequality and
by the doubling property of u, we have that

][ ][ IIU(y)*U(fE)IIdu(y)du(w)§2][ lu = ugs sl
(1-5)BJ(1-6)B (1-6)B

. . u
< C(1 = ¢)rad(B)liminf <77pk + lul X,\B\A(1_5)3> dp
k— o0 M1-8)B )

SC’rad(B)liminf][ prdp

k—oo JyB

[Danul(AB) + 5)
1(AB)

< Crad(B) (
Now letting § — 0 and taking € — 0, we have that
[Dasul|(AB)

u—ug|ldu < Crad(B
£ = uslde < Cra() F2ALS

Here up is the Bochner integral average of u over the ball B. (|

The goal of this section is to see that if X supports a 1-Poincaré inequality, then it supports
an AM-Poincaré inequality. For that we will use the fact that spaces supporting a 1-Poincaré
inequality have a Semmes Pencil of curves (see [13, Theorem 3.10]).

Definition 3.2. We say that the metric measure space (X, d, 1) supports a Semmes pencil of curves
if there exists C' > 0 so that for each x,y € X there exists a family I'; , of nonconstant compact
rectifiable curves equipped with a probability measure o, such that each v € I'; ,, connects z to
y, () < Cd(z,y), and for each Borel set A C X the map v — ¢(yN A) is 0, ,-measurable with

/ {yNA)doyy(y) <C / Ry (2)du(z),
Fz,y

ANCB,,,
where CB, , := B(z,Cd(z,y)) U B(y, Cd(x,y)) and

d(z, z) d(y, z)
w(B(z,d(z,z))  w(Bly,d(y,z))
Theorem 3.3. Suppose that p is doubling, X has a Semmes pencil of curves, and that for p-

a.e. x € X we have liminf,_,o+ p(B(x,r))/r =0. Then X supports an AM-Poincaré inequality for
every Banach space V.

R, y(2) =

The proof follows along the lines of [13, Proposition 3.9], but as we are now dealing with a
vector-valued map, we provide the complete proof here, especially since there seems to be a gap
in the details of the proof in [13] which we fixed here. In doing so, we saw that we needed the

wB@) — 0 for almost every z € X. This condition fails for

additional condition that liminf, g+ .
example when X = R, but in spaces that are not one-dimensional in nature this is automatically
satisfied via the upper mass bound estimates for the doubling measure p on the connected space X,
when the upper mass bound exponent can be taken to be larger than 1. When X = R? is equipped
with the measure du(x) = |z|~'dL?, the point 2 = 0 fails the condition liminf,_, o+ M =0

but this condition holds at all other z € R2.

)
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Proof. Fix a Banach space V and let u € BVap (X : V). Let B be a ball in X and (px)72, be a
strong bounding sequence for u in 4C' B with C' the constant associated with the Semmes pencil of
curves, that is, condition (2.9) holds for all curves in 4C'B. By the Lebesgue differentiation theorem
for vector-valued functions (see for instance [23, page 77]), we know that p(N) = 0, where N is the
set of points « € X for which either liminf, o+ p(B(x,r))/r > 0 or

lim sup][ lu(z) — u(2)||du(z) > 0.
r—0t JB(z,r)
Let x,y € X \ N be two distinct points, and for each € > 0 consider the sets
Ee(z) :={z € X :|lu(x) —u(z)]| > e}, Ec(y) :={z€ X :|uly) —u(z)] >}
Now, since = and y are Lebesgue points of u, we know that

B@NOEE) e p(Blyr) 0 EL(y)
hmsup == By 0 ad lmsue = e

Let {r;}; be a decreasing sequence of radii so that r; < id(m,y), riv1 < in—, M < 277
u(By:ri)) « 9—i
T -

=0.

, and in addition
pBlr) M) _ o p(Blr) 0 E()
WBar)) ™ T Bl

For each i let R;(x) := B(x,r;)\B(z,r;/2) and denote by I';(x) the collection of all curves v € ', ,
such that

<270

H (v (Ri(2)\Ee(2))) = 0
and define I';(y) analogously, replacing = by y. Now use the fact that p is doubling and I', ,, is a
Semmes family of curves to obtain

G < [RGB @)y ()
< o T
S (i iy * wBay) 4O
S (imemm * e i) 4O
< o 2Cad@y) gy

w(B(z,d(z,y)/2))
We note that the above estimate also fills in the gap found in the proof for the real-valued case

in [13, page 243]. Set Cy, = Cyq + %%. Then from the above argument we see that

ACad(z,y)  p(B(x, 1))
(B(z,d(z,y)/2)) i

02y (Ti(z)) 20427 + ; <2C,, 27"
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Then for each positive integer n we have

o0
Oy (U Fl(ac)> < Cuy ol
Define
(oo}
= ﬂ U Li(x)
neNi=n

It follows that o, ,(I'(x)) = 0. When v € I'; ,\I'(z), there exists a positive integer ny such that
v ¢ T;(x) for every ¢ > ng. It suffices to have v ¢ T';(x) for some i > ng to get that there exists
& € Y\(E-(z) UN,) for any H'-null set N, in 7. Now consider the same argument replacing z by
y in order to construct I'(y). Note that o, ,(I'(z) UT(y)) = 0.

Recall that condition (2.9) holds for every nonconstant, compact, rectifiable curve because (p;);
is a strong AM-bounding sequence. Therefore, for every curve v € I'; ,\(I'(z) UT'(y)) there exists
an H'-null set N, such that

Jutr(7)) = ()] < limint [ pvds

Y

whenever 7,¢ € dom(y)\v"}(N,). Since v ¢ I'(x) UT(y), there exist & € v\(E:(z) U N,) and
7 € Y\(E:(y) U N,) such that

(3.4) (@) — u(w)ll < (@) - u(@)]| +2¢ < limnf / prds + 2.

(Notice that we can actually get not only such & and g but two sequences of points x; ¢ E.(x)UN,
and y; ¢ E-(y) U N, converging to « and y respectively, but we do not need that here). By the
Semmes family inequality, we have

[ [masdosr<c [ p@R @)
Loy Jy CByg,y
for each z,y € X \ N, k € N. Therefore, by o, ,(I'(z) UT(y)) = 0 and by (3.4), we see that

[u(z) —u(y)| =/ lu(z) — u(y)lldosy(v) < C 1iminf/CB Pr(2) Ra y (2)dp(2) + 2¢.

k—o0
z,y

Recall that u(NN) = 0. Now, for each ball B C X,

F = uslan < f  Jut@) — uwldun)dutz)

= C]Z]{g 1ikn—l>gf /CBT B pr(2) Ry y (2)dp(2)dp(y)du(z) + 2

< hkrggf///wpk (2)du(z)du(y)dp(x) + 2¢
C
(3.5) G tmint [ o) [ /B Ray (2)du(y)du(w)dp(2) + 2,

where we have used Tonelli’s theorem in the last equality.
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Now, to obtain an estimate for the inner two integrals above, we fix z € 4CB. Let R := rad(B).
By the doubling property of u, we have with B; = B(z,5C 27R) for i = 0,1, -,

e o __d@z)
. . B ey o dte) = u(B) [ )
__dwz)
<uB) [ )

27'R
< w(B) ;;/Bi\Bm 1(B(z,5C 27 R)) W)

dp(z)

oo

o0
<u(B) Y 2R
=0

S u(B) R,

where we have implicitly used the fact that u({w}) = 0 for each w € X. The comparison constants
above depend solely on the doubling constant of p and the constant C'. A similar estimate also
gives

d(y, z)
/B /B W(Bly dly, ) W) W) S wB) R
Now from (3.5) we see that

£ - sl s S it [ g dute) + 2=
Taking € — 0, we have that
][ lu — up|ldp < Crad(B) lim inf prdp.
B k—oco JacB
Now, let {pr}32; be an AM-upper bound for u. That is, (2.9) holds for AM-a.e. curve. Then by
Lemma 2.11, we know that there exists a sequence of non-negative Borel functions {g;}%2, with

lim supy,_, o fX gr dpt < oo such that for all € > 0, {px, + gx}72, is a strong bounding sequence for
u, that is, (2.9) holds for all curves. Applying the above result, we obtain

][ [l — up|ldu < Crad(B) liminf]l (pr +€gr)dp
B 4CB

k—o0

< Crad(B) (Hm inf prdp + € lim sup][ gkdu)
4CB

k—oo JioB k—00
€
< Crad(B liminf][ dy+ ——— limsu / d >
( )<1H00 [ Rt ey s | gkdp
Taking € — 07 yields the desired result. O

Corollary 3.6. The following are equivalent whenever (X,d, u) is a metric measure space with p
a doubling measure satisfying limsup,_, o+ p(B(z,7))/r =0 for each x € X.

(i) X supports an AM—Poincaré inequality for every Banach space V target.
(ii) X supports an AM-Poincaré inequality for some Banach space V target.
(#i1) X supports an AM—Poincaré inequality for real-valued functions.
(iv) X supports a Semmes pencil of curves.
(v) X supports a 1-Poincaré inequality.
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Proof. (i) = (i4) is immediate. If (é¢) holds, then in particular X supports a 1-Poincaré inequality
for Banach space-valued functions, and hence supports a 1-Poincaré inequality for real-valued func-
tions, as R can be isometrically embedded into that Banach space, that is, (ii) = (v). From [13,
Theorem 3.10] we know that (v), (iv), and (éi?) are equivalent. Finally, (iv) = (i) follows from
Theorem 3.3. ]

The condition liminf,_,o+ pu(B(z,7))/r = 0 for p-a.e. x € X precludes us from considering spaces
that have components that are one-dimensional in nature, as for example in R and graphs. It is
perhaps possible to handle this situation separately, as was shown for real-valued BV functions
in [37]. We do not do so here.

4. PROOF OF THEOREM 1.1

The focus of this section is to complete the proof of the first main theorem of the paper, Theo-
rem 1.1. By Lemma 2.14 we have seen that BV (X : V) C BVay (X : V) with the energy seminorm
control ||[Damul|(X) < ||[Dul/(X). Thus it only remains to show the reverse inequality. To this
end, let u € BVap (X : V). We will make use of the version of Poincaré inequality identified in
Lemma 3.1 above.

Since the measure p is doubling, for each £ > 0 there is a countable covering {B;}; of X by balls
of radius € such that for each T' > 1 there is a constant Cp > 0, depending solely on T and the
doubling constant associated with p, such that >, xrp, < Cr on X. Moreover, for each i there
is a non-negative C'/e-Lipschitz function ¢;, with support in 2B;, so that >, p; = 1 on X; see for
example the discussion at the beginning of [23, Section 9.2]. Such a collection of functions {¢;}; is
called a Lipschitz partition of unity in X. Using this Lipschitz partition of unity, we now construct
a locally Lipschitz continuous approximation of u as follows:

Ug := E UB, Pi, where Uup, ::]Z u dp.
- B,
7 %

Let « € X and fix an index j such that « € B;. Then it follows that whenever ¢;(x) # 0, necessarily
x € 2B; and so 2B; N B; is non-empty; in this case, 2B; C 5B;. Hence, using also the fact that

w(x) = >, u(x)p;(z), we obtain
() —u(@) =Y up, —u(@)lpiz) = Y [up, —ul@)]pi(z)

i 4;2B;NB; #0

Z %‘(w)]i [u — u(x)] dp.

4;2B;NB; #0 i

Thus by the doubling property of 4 and the bounded overlap property of the balls {5B;};, we

obtain
Jue(e) —u@)l < 3 fuu—u ) di

;2B;N B, #0

< ¥ f\\u—u53||du+||u53 (o))

;2B;N B, #0

< ]l lu— uss, || dyt + Juss, — u(@)])
5

J
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and integrating over B; and summing up over j, and using the fact that {B;}, is a cover of X, we
obtain

/X lue() — u(@) | du(z) < Z /B (o) )l du)

S XJ:/B] (]ﬁBj ||U — U5Bj|| d,u + ||U5Bj — u(gj)|> d'u(m)
S Z (.U(Bj)jgg |lw — UsB; | dp + M(Bj)][

5B;j
<3 u(B;) ]l lu — us, | du

S D elDanrul| (5ABy)
i
S e 1D anrul|(X).

lusp; — u(z)]| du(%))

In obtaining the penultimate inequality above, we used the AM-Poincaré inequality, and in obtaining
the last inequality above, we relied on the bounded overlap of the collection {5AB;};. Thus u. — u
in LY(X : V) as e — 0F. As u. is locally Lipschitz continuous (as we will show next) on the
separable metric space X, it follows that u. is Bochner measurable, and so the convergence holds
in LY(X : V).

To show that u. € NM1(X : V), it suffices to show that u. is locally Lipschitz continuous on X
with its local Lipschitz constant function Lipu. € L'(X). Here,

Lipuz() = lim sup W.

To do so, we fix £ € X and choose an index j such that x € B;. Considering y € B; as well, we see
that

we(y) —us(x) = D up (pile) —wiy) = Y (u —uss,) (pilz) —wily)).

i;2B;NB,; #0 4;2B;NB; #D

Using the Lipschitz property of the functions ¢;, we now see by the Poincaré inequality that

d(z,y d(z,y

) = w @ S 922 S s sl ST S fu— s, g
i:2B;N B, #0 4:2B;nB;#£0” Bi
d(zx,
UL s,
€ 5B,
D AB;
< d(x,y) ” AMu||(5 J)
w(Bj)
It follows that

Lipuo(z) < inf  12asrl(OAB;)
€ ~ jil?ij N“(Bj) .
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Thus u. is locally Lipschtiz continuous on X, and it only remains to show that Lipu. € L'(X).
Using the fact that {B;}; covers X, we see that

. D aprul|(BAB;
/ Lipu.dp < / % dp ="y | Danul (5AB;) < [ Danrul|(X) < oc,
X 5 /B 1(B;) ;

and this completes the proof that u. € N''(X). Asu. — uwin L' (X : V) and assup, [ Lipuc dp <
IDapul|(X) < oo, it follows that u € BV(X : V) with || Dul[(X) < ||[Damul|(X), completing the
proof of Theorem 1.1. Note that the comparison constant in the above inequality depends solely
on the doubling constant of the measure p and the constants from the Poincaré inequality.

5. APPROXIMATE CONTINUITY AND JUMP SETS; PROOF OF THEOREM 1.3

Throughout this section, in addition to the measure u being doubling and supporting a 1-Poincaré
inequality, we will also assume that X is complete. In this section we consider the regularity
properties of functions in the class BVapy (X : YY), with (Y,dy) a proper metric space (that is,
closed and bounded subsets of Y are compact). As seen from the examples in Subsection 2.4,
when Y is not a Banach space, it is more natural to consider the class BV4y/(X : Y) rather than
BV(X:Y).

For functions u in the class L'(X : Y), by isometrically embedding Y into a Banach space if
necessary, we know that for p-almost every z € X, the Lebesgue point property holds at x:

fimsupf dy (u(y), u(w)) duy) =0,
r—0t JB(z,r)
and we refer the interested reader for more on this topic to [23, Page 77]. At such points z, as in
the proof of Theorem 3.3, if we set E.(z) := {y € X : dy (u(y),u(z)) > €}, then we have that
o A8 7) 0 E.(@)
r—0+t M(B(xa T))

For the convenience of the reader, we rephrase the definition of approximate continuity from Defi-
nition 1.2 now.

=0.

Definition 5.1. We say that a point z € X is a point of approximate continuity of u if for every
€ > 0 we have

=0.

o A48 € B@.1) : dy (u(a). u(y)) > )
r—0+ /J(B(ZC,T'))

The discussion from the previous paragraph tells us that p-almost every point in X is a point of
approximate continuity of u € L'(X : V). For functions u € BVap (X : Y) we would like a better
control. We may broaden the definition of approximate continuity by saying that u is approximately
continuous at z if there is some yo € Y such that for every £ > 0 we have

lim sup p({y € B(z,r) : dy(yo,u(y)) > €}) 0

0+ w(B(z,r))
Since p-almost every point in X is a point of approximate continuity of u, if x € X such that there
is some yg satisfying the above density condition, then we can re-define u at x by setting u(z) := yo;
such a modification is a better representative of u; moreover, such a modification needs to be done
only on a set of y-measure zero, thanks to the Lebesgue differentiation theorem mentioned above.
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Note that if x is a point of approximate continuity in the above sense with g the corresponding
value, and if Y is bounded, then for each € > 0 we have

lim sup]{g (). o) ) < € ()t plly € Bla,r) - dy(u) 2 )

r—0+ r—0+ /J(B((E, T))
and so necessarily x is a Lebesgue point of u as well.

The notions of approximate continuity and jump values as considered in [1, page 294] are some-
what different than ours in that it is required there that for every continuous function g : ¥ — R,
the map g o u is approximately continuous at x with the approximate limit being g(yo). Such an
indirect definition seems to be not needed here, and we take the definition of approximate continuity
proposed by Ambrosio in [2, Definition 1.1].

Let us consider points € X that are not points of approximate continuity in the above, more
expanded, sense. We would like to know that for € J(u) there are only finitely many points
Y1, Y2, Yk, with k < kg where kg is independent of u and x, that act as jump values of u at
2. This may not be possible at all x € J(u), but we would like to ensure that this is possible for

Hlae x € J(u).

Remark 5.2. A drawback in [2] is that, as pointed out in the introduction, the discussion regarding
jump sets is incomplete; if we know that there is a set F', of positive density at 2 € J(u), for which
g o u takes on an approximate limit at x along F' for each continuous g : ¥ — R, then from [1,
Proposition 1.1(v)] we know that v has an approximate continuity value along F' at x. The proof
of the existence of such F is not provided in [2, Proposition 1.1] nor in [2, Remark 1.5]. Indeed,
in proving [2, Theorem 2.3], the family F considered in [2] is a countable collection of distance
functions, and in the case of more general metric space targets, F is too small. Indeed, in order
to detect the distinct possible jump values without knowing ahead of time that there are only two
jump values, we would need to expand F to include 1-Lipschitz functions on the target metric
space such that whenever yi,---,y; are distinct points in that target space, there is a function
¥ € F such that {¢(yx) : k = 1,---,4} is of cardinality j. It is not clear to us that such F
always exists. For instance, with the target metric space R? equipped with the ¢, .-metric, we are
unable to guarantee such a separation when j > 6. The proof of [2, Theorem 2.3] might perhaps be
completed by considering instead the directions v, of the normal to the jump sets of ¢ o u, but we
work directly with the maps u themselves. In order to be able to locate jump values, we need an
alternate characterization of points in J(u), as in the claim of Theorem 1.3(a). This is the focus
of the proof below.

Proof of Theorem 1.3(a). We first make the simplifying reduction that Y is a compact metric space.
We refer the interested reader to the final section of the paper, the appendix, for the final step that
allows us to extend the result to non-compact proper metric space Y.

We fix u € BVay (X :Y). Now, if x € J(u), then for every y € Y there is some ¢, > 0 such

that B J S
oy M2 € Br) s dy(puz) 2 2,)
r—0t M(B(mv T))
For each y € Y and € > 0 set
(5.3) F(y,e):={z€ X : dy(u(z),y) > e}.

Note that then for every 0 < € < g, we have that

o sup 2B T) O F(5.)
ol alB )

> 0.
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We fix € > 0, and cover the compact set Y by finitely many balls B(y;,¢), 4 =1,--- , N.. Note that
as B(x,r) = Uivjl u~1(B(y;,€), necessarily there is some y; € Y, relabeled if necessary, such that
B 4B
s B N0 (B, )

m W(Bxr)) >0

If we also have that
B -(Y\B
(5.4) lim sup HB @) Nu (VA Blys, 32)))
r—0+t ,LL(B(:B, T))
then we have two sets By, By © X with By = ™ (B(yr,)) and By = u™* (B(ws, ), dy (yr, w) 2
3¢, such that

>0,

. w(B(x,r) N EY) . p(B(z,r) N Ey)
5.5 limsup ———————= >0, and limsup ———————=
) o (B ) o B )
If (5.4) fails, then we know that

> 0.

p(B(x,r) \ u" (B(y1,3¢)))

i, 1W(B(z,r)) 0
and so -

L nBr) 0 (Bl 39)

0+ w(B(z, 1)) ’

In this case, we can cover the compact set B(yi,3¢) by balls of radii £/62, and obtain a point
y2 € B(y1,3¢) so that
p(B(z, ) Nu (B(y2,£/6%)))

lim sup > 0.
r—0t /L(B(.’E, T))
If we know that . )
B —(B
oy BB ) V0 (Bla 32/6%)))
r0+ W(B(z, 1))

then we can set By = u~(B(ya,£/6%)) and Fy = u~1(B(wg,£/6%)), with 6 > dy (ya, ws) > 3¢/6>
such that (5.5) holds. If the above analog of (5.4) fails, then we know that

p(B(z,r) Nu” ! (B(ys, 3¢/6%)))

li =1
0+ REIEND) ’
and the process inductively continues. Thus we obtain a sequence of points y1, Yo, - - - with dy (v, yi+1) <
3¢/6% and so that
o BB Nu (Bl 3/60) |

r—0+ w(B(z, 1))
If this process continues ad infinitum, then we obtain a Cauchy sequence {y;}; in Y which, by the
completeness of Y, must converge to a point y, for which we would have that for each 7 > 0,

g BB 00 (B, 7))

r—0+ w(B(z,r))
and so re-setting u(x) = yo, would show that ¢ J(u). Therefore the inductive process above must
terminate at some index k, and so we know that there is some yi,w, € Y such that dy (yx, wr) >
3¢/6%, and with E; = u=!(B(yy,c/6%)) and E; = v~ (B(wy,e/6%)), condition (5.5) holds. Note
that dist(B(yx,e/6"), B(wy,e/6%)) > /6% > 0. Hence, the condition described in Theorem 1.3(a)
is a characterization of a jump point of u € BVap (X : Y). O

:]_7
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Given the above proof, we re-cast the definition of jump points next, as this version is most
useful in the proof of Theorem 1.3(b), see Definition 1.2 for the original construction of J(u).

Definition 5.6. Let u : X — Y. We say that 2y € X is a jump point of u if there exist sets
FEq,Ey; C X such that

B nE;
(5.7) Jimn sup B E.7) N Ei)
r—0 /j‘(B(x()v T)
and there exist balls By, By C Y with dist(B;, B2) > rad(B;) such that «(E;) C B; for i = 1,2.

>0 for i=1,2,

From the discussion preceding the above definition, we know that = € J(u) if and only if z is a
jump point in the sense of Definition 5.6 above.

Since Y 3 w — dy(w,yo) is a 1-Lipschitz map for each yo € Y, the next lemma follows by an
easy verification of (2.9) with the aid of triangle inequality.

Lemma 5.8. Let u € BV (X :Y), and yo € Y. Then v : X — R given by v(z) = dy (u(x), yo)
belongs to the class BVay(X) = BV (X).

As a corollary to the above lemma, the co-area formula from Lemma 2.3 yields the following,
from which we obtain o-finiteness of the jump set with respect to H 1.

Corollary 5.9. Let u € BVay (X : Y). For eachy € Y and p > 0 set E(y,p) := u*(B(
Then for each y € Y there is a set D,, C [0,00) with L' (D,)) = 0 such that for each p € (O 00
we have that E(y, p) is of finite perimeter in X.

Y, p))-
)\ Dy

The next result proves that the set J(u), as constructed above, satisfies its o-finiteness with
respect to the co-dimensional measure H ™! claimed in the statement of Theorem 1.3.

Corollary 5.10. For each uw € BV (X : YY), the jump set J(u) is o-finite with respect to the
co-dimension 1 Hausdorff measure H™' on X.

Proof. As'Y is separable, there exists a countable dense subset Yj of Y, and for each y € Yj, let
R(y) :=={p>0:P(E(y,p), X) < oo}.

By Corollary 5.9, we have that £1((0,00) \ R(y)) = 0, and so there exists a countable subset
Ro(y) C R(y) dense in (0,00). By Lemma 2.6, it follows that H~1(0.(E(y, p)) < oo for each
p € R(y), where 0, E(y, p) is the measure-theoretic boundary of E(y, p), as given by (2.4).

Now, for each z € J(u), we have by Definition 5.6 and the density of Yy in Y, that there
exists y1,y2 € Yo, p1 € Ro(y1), and p2 € Ro(y2) such that u(E1) C By C B(yi,p1), w(Ea) C Bz C
B(ya, p2), and dist(B(y1, p1), B(y2, p2)) > 0. Here Ey, Es, By, and By are as given in Definition 5.6.
Then, we have that « € 0,FE(y1, p1), and so it follows that

JweclJ U 0-Ewn). O

y€Yo pERo(y)

The above notion of jump sets agrees with the notion of jump sets for real-valued BV functions,
see for example [36, 14] for real-valued BV functions in the metric setting, and [16] for the Euclidean
setting (see, however, the discussion in Section 1 on alternate nomenclature used in literature on
Euclidean BV functions). The discussion towards the end of this section gives a brief overview of
why these notions agree. However, as pointed out in [36], a BV function can take on infinitely many
values near the jump point, but such a bad behavior cannot happen on a large set. To demonstrate
a similar behavior of metric space-valued BV functions, we first consider what it means for a point
in the target metric space to be a jump value near a jump point of the BV function.
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Definition 5.11. With v € BV (X : Y) and z € J(u), we say that a point yy € Y is a jump
value of u at z if for every € > 0 we have that

lim sup w(B(z,r) Nu~(B(yo,¢)))

! W (B(,1) >0

The next proposition verifies the claim (b) of Theorem 1.3 whenever Y is compact. We refer the
reader to Appendix 6.2 for the case where Y is unbounded and hence is noncompact.

Proposition 5.12. There exists kg € N so that for every u € BVap (X 1Y) there is a set N C X
with H=Y(N) = 0 such that for each x € J(u)\ N there are at least two and at most ko jump values

Y1, .Yk €Y of u at x. Furthermore, for everye >0 andi=1,2,--- ,k, we have
B Nu~ Y B(y;,
g 2B@ ) N0 (Bl e)
r—0+ u(B(z,r))
and

=0.

ko
oy B UL 0 (B 2)
r—0t /L(B(SC,T))
Here ko and v are constants depending only on the doubling constant and the Poincaré constants
of X, and in particular are independent of Y, u, and €.

Proof. Since Y is compact, it is separable. As above, let Y; be a countable dense subset of Y, and
for each y € Yy let
R(y) ={p>0:P(E(y,p), X) < oo}.

Note from Corollary 5.9 that £1((0,00) \ R(y)) = 0. Let Ro(y) be a countable dense subset of
R(y). For each y € Yy and p € R(y) we know that H (0. E(y,p) \ B+(E(y,p))) = 0, where
0.E(y, p) is the measure-theoretic boundary of E(y, p), as given by (2.4), and X, (E(y, p)) is the
reduced boundary of E(y, p), as given by (2.5). Here 0 < v < % is a number that depends solely
on the constants associated with the doubling property of u and the Poincaré inequality; see for
example [3, Theorem 5.3]. Let

N=) U 0(BEWw)\=(Eyp).

y€Yo pERo(y)

Then, by the countability of the collections, we have that H~1(N) = 0. We now fix z € J(u) \ N.
We proceed in an inductive fashion hinted at in the discussion preceding Definition 5.6.

Let F7 be one of the two sets identified in Definition 5.6, associated with the jump point x, and
let By be the corresponding ball in Y such that «(Fy) C By and

B NE B E
lim sup wBla,r) OBy > 0 and limsup #B(z,r)\ Br)

r—0t /L(B((E,T’)) r—0t /J(B(:E,T))
Since the distance between the balls By and Bs in Definition 5.6 is positive, we are free to choose
the center y; of By to be in Yy and then, by increasing the radius slightly if necessary, have the
radius of B; be in the set Ro(y1). A similar modification can be made to the ball Bs. We can now
replace Fy with u=!(B;) and Fy with u=!(Bs); hence from now on, By = u~'(B;). Thus we have

that x € 0,F1 because of the existence of Bs, and as x & N, we see that
(B(z,m)N Eq) (B(z,7) \ E1) -

LM Lo
1 f > d1 f
Dot B,y - R T (B, )

> 0.
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Let p > 0 be the radius of the biall Bi, and note that the distance between B; and Bs is at
least p. Covering the closed ball By by balls B(ya,1,p/12), -, B(y2,n,, p/12), with y; € Yp for

i=1,---,Ny, and B(ya2,,p/12) intersects B;. By doing so, we can find a point y, € %Bl such

1
that .
B —(B 12
g AB 1) 00~ (Blu. /12)
0+ w(B(z,r))
We can then find ps € Ro(y2) such that p/12 < ps < p/11, so that with Ey 1 = v~ (B(y2, p2)), we
have by the fact that x &€ IV,

> 0.

B E

lim inf wB(z,7) N Fp1) >

o T (B )
In the above, we have used the fact that By does not intersect EUE(yg, p2) to know that = € 0, F3 ;.
We proceed inductively as follows. Once y; € Yy and p; € Ro(y:), ¢ = 1,--- , k, are selected such
that dy (i, yit1) < 2p; and p;11 < p;/11, and with E; 1 = u=(B(y;, p:)), we have

lim inf wB(@,r) 0 Biy) >

o T (Bl )

for i = 2,--- k. We cover B(yg, pi) by balls B(yri1,1,pr/12), -+ s B(Yk+1,Nps1» Pr/12), each in-
tersecting B(yg, pr) with yg41,; € Yy for ¢ = 1,--- , Npq1, and hence find yry1 € Y) so that
d(Yr, Yr+1) < 2px, and
oy B @) N0 (Bl 1/12))
>0+ w(B(z,r))
We then find pry1 € Ro(yk+1) such that pp/12 < pry1 < pg/11, and hence, with Epi111 =
u Y (B(yr11, pri1)), we have that

> 0.

lim inf p(B(2,7) O Bri1) >
r—0+ w(B(z,r))

Note that as for each j we have p; < (11)77 p, and as dist(By, B2) > p, necessarily B(y, p) N B2 =
@. Moreover, as dy (yk, yr+1) < (11)F71p, we also have that the sequence {y;}; is a Cauchy sequence
inY, and as Y is complete, converges to some yo, € Y. We now show that y., is a jump value of u
at x. Let € > 0; then there is some positive integer k so that B(yk, pr) C B(yoo,€). It follows that

B (B (Yoo, B(z, E
i inf AB@E ) U (Byeo,€))) o e MB@ ) N B
s w(B(@,) ot a(Ble,7)
Thus u has at least one jump value at x, and moreover, we also have that for each € > 0,
B (B
bing BB @ 1) 00 By, 2))
= u(B(w, 7))
Note also, from switching the roles of the sets F; and Fs, we obtain a second jump value of u at x.
Now, if z € Y is any other jump value of u at z, then for each £ > 0 with £ < dy (2, Y )/20, we

can find z; € B(2,6/2)NYp and 0 < 7 < £/4 such that 7 € Ro(z1) and note that u=1(B(z1,7)) C
u~1(B(z,¢)) with

v > 0.

B Nu-1(B B Nu-1(B
r—0 u(B(z,r)) r—0 u(B(z,r))
that is, each jump value of u at x satisfies the above lower density at least v at xg. As y > 0, there
are at most kg := [1/] number of such jump values for z.

>
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Now suppose that we have identified all the jump values yq,--- ,yr of u at z, with 2 < k < k.
We claim that for each 7 > 0, the set E(7) := U§:1 E(y;,7;) has density 1 at z, that is,

(B(z,r) N E(T))
r—0+ w(B(z, 1))

=1

Here 7; € Ro(y;) is such that %T < 7; < 7. It suffices to know this for all sufficiently small 7 > 0,

and so we consider 7 > 0 for which the closed balls B(y;, ;) are pairwise disjoint. If the claim does
not hold, then we would have that

lim sup
r—0t M(B($7 T))

Then let 0 < £ < 7/20 such that for each i, j with i # j we have that dist(B(y;, ), B(y;j, 7)) > 20e.
Now setting K (7) = X \ E(7), we have from (5.13) that

B NK
>~ > 0 and simultaneously, limsup wB(r) ()

e B T Bl r)

Now, by a repeat of the covering argument employed in the first part of this proof, we cover
Y\ U§:1 B(y;,7;) by finitely many balls of radii €, and so find a ball By, centered at w; €

Y U?zl B(yj,7;), such that

T sup w(B(z,r) N K(7)N E(w,¢))

! 1(B(x7)) >0

Then by modifying w; if necessary, we can ensure that wy € Yy, and then find p; € Ro(w1) so that
e < p1 < 13e. Note that B(wi, p1) is necessarily disjoint from u(E(7/2)) by this choice. Therefore
we must have E (w1, p1) C K(7/2), and so

lim inf p(B(z,r) N K(1/2) N E(wy, p1)) — liminf p(B(z,r) N E(wi, p1))
r—0+ w(B(x, 1)) r0+ w(B(z,7))

At this point, we can repeat the preceding argument that established the existence of the jump
values to conclude that there must be a jump value in Y attained by u along K(7), violating the
maximality of the collection of jump values considered above. It follows that K (7) has density 0 at
x. ]

As pointed out in the early sections of this paper, the theory of real-valued functions of bounded
variation on complete doubling metric measure spaces supporting a 1-Poincaré inequality is reason-
ably well-established. The notion of real-valued functions of bounded variation in metric measure
spaces was first proposed by Miranda Jr. in [40], and its fine properties were studied in [6, 33];
an elegant account of real-valued functions of bounded variation and their fine properties in the
Euclidean setting can be found in [16, Definition 5.9 and Theorem 5.17]. The fine properties of
real-valued BV functions studied there includes approximate continuity and jump points. The no-
tion of approximate continuity, as proposed in Section 5, is the same as that found in real analysis
texts and in [3, 6]. We now verify that the notion of jump values, as given in Section 5, agrees with
the corresponding notion as given in [5].
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As considered in [3], given u: X — R 2 € X is a jump point of w if u”(x¢) < u"(z0), where
) B(zo,7m) N{u < t})
M) = teR: lim ABE0 —0
(o) = sup {1 By M |

uY(zo) = inf {t €R: lim M(B(z?g()x:,%)z ) _ o} .

Lemma 5.14. Let u: X — R. Then zo € J(u) if and only if u™(zg) < u"(z9).
Proof. Suppose first that v (xg) = u¥ (x¢) =: B. It then follows that for each £ > 0,

i AB0,T) 0 = 5] = <))
s u(Blaor))

:07

and so by Definition 5.1 the point z is a point of approximate continuity of u, that is, g € J(u).
For the converse suppose that —oco < u”(x9) < u"(z¢) < oo, and choose ¢ ,t],t;, and t5 such
that t; < u(wo) < tf <ty <u"(z0) <t5. Then

i MBEo ) N {ust ) o (B, r) N{u > t5)

=0 1(B(xo, 7)) r—0 w(B(zo,7)) -0

Since u”(xg) < t] and u"(x) > t, we also have

. u(Bo,) n{u <t (B, N{u> 1))
msup === gy >0 and lmsup =

>0,

and so if we set B; = {t; <u < tj} then

lim w(B(zo, ) N E;)

>0 for i=1,2,
2 a(Blao, 1))

with u(E;) C B; = (t; ,t}). Since t{ < t5, dist(By, B2) > 0. Thus z is not a point of approximate
continuity of u, that is, xg € J(u). If u"(x¢) = —oo or if u¥(zg) = oo, then we replace u with

Xx, -« and proceed as above, with K, = {|u] < n}. O

6. APPENDIX

6.1. The outer measure property of | D4pull. In [40, Theorem 3.4], Miranda Jr. proves the
outer measure property of || Dul| for a function in u € BV (X)) using the criterion given in DeGiorgi—
Letta [11, Theorem 5.1]. To do so, he relies upon a delicate construction by which approximating
sequences of locally Lipschitz functions defined on two open sets are stitched together to obtain
an approximating sequence defined on the union of the open sets. By the nature of Definition 2.2,
this must be done in a manner so that both the L!-convergence and energies of the new sequence
of functions are controlled. In [39, Theorem 4.1], Martio proves the outer measure property of
1D apul| for w € BVp(X) using [11, Theorem 5.1] in a similar manner. However, the stitching
argument employed there is much simpler due to definition of BV4,s(X), since one only needs to
stitch together the AM-upper bounds. We include a detailed proof of this stitching lemma for the
convenience of the reader.
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Lemma 6.1. [39, Lemma 2.4] Let Q1,02 C X be open sets, and let {g}}; and {g?}; be AM-upper
bounds for a function u € L'(Q1 U Qs : V) in Q1 and Qo respectively. Then

g; (z), €M\ Q2
gi(xz) = ¢ max{g}(z),¢?(x)}, =€ QN
g2 (z), x € Qa\ N

is an AM-upper bound for u in Q1 U Qs.

Proof. For j = 1,2, let I'; denote the collection of curves in §; for which (2.9) fails for the AM-
upper bound {gf }i. Let T' denote the collection of curves in €7 U Q9 which have a subcurve in
I’y UT5. Then it follows that AM(T) < AM(T; UTs) = 0.

Let v be a curve in ©; U Qs such that v ¢ T'. By compactness of v([0,1()]), there exists § > 0
such that 4’ lies in €y or Qs whenever 4’ is a subcurve of v with I(7") < §. Choose a partition
0=ty <t; <- -+ <ty =1I) such that ty —tx_1 < §/2 for 1 < k < n. Since v ¢ T, it follows
that vy, ¢,.0) & T1 U2 for 0 < k& < n — 2. Therefore, for each such &, there exists a subset
Ny, C [tg, trio] with H1(Ny) = 0 and a such that for all s,t € [tg,tx12] \ Ni, we have

(6.2) Ju(y(s) = ulr ()] < mint [ s
Y[s,¢]

k—o0

Let N = J,, Ni, and let 7,¢ € [0,1()] \ N, with 7 < ¢. Then there exists 0 < k; < ks <n — 1 such
that s € [tg,,tk,+1] and ¢ € [tgy,try+1]. Let s = s, t =: si,, and for each k1 < k < ko choose
Sk € [tk, tk+1] \ N. By the triangle inequality and (6.2), it follows that

k2o—1 ko—1

u(y(7)) = u(y)II < D llu(v(sk) — u(y(ska )l < > 1igg}f/ gids
k=k: k=k1 Visg 1]
< lim inf/ g; ds. O
i—00 ’Y|[r,t]

Using Lemma 6.1, Martio obtains the following using an argument analogous to the proof of [40,
Theorem 3.4]:

Theorem 6.3. [39, Theorem 4.1] If u € BVap (X : V), then |Danrul|(-) (defined on open sets)
defines a Borel outer measure in X.

6.2. Dealing with a non-compact proper Y. We now consider the case that the metric space
(Y,dy) is a proper metric space that is not compact. Recall that the proofs and discussions in
Section 5 dealt with the case that Y is compact as then we can focus on covering Y by finitely
many balls of radius € > 0 and hence find a ball whose pre-image has positive density at a point
x € J(u). If we had instead a countably infinite many balls needed to cover Y, then we do not know
that there must be one ball whose pre-image has positive density at . When Y is not compact,
this is because Y is not bounded; hence we cannot cover Y by finitely many balls of fixed radius
€ > 0. In this subsection we point out how to deal with this situation.

As in the proof of Proposition 5.12, let Yy be a countable dense subset of Y, and for each y € Y}
let Ro(y) be a countable dense subset of R(y). If there is some R > 0 and a € Y such that
w(u=t (Y \ B(a,R))) = 0, then we can replace Y with B(a, R) and the proof of Proposition 5.12
identifies the jump values of w at points in J(u) \ N. Hence we may assume without loss of
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generality that no such a, R, exists. In this case, we fix a point a € Yy and note by the co-
area formula Lemma 2.3 applied to the real-valued function d, o u of bounded variation given by
x> dy(a,u(x)), that

/OOO P(u'(B(a,t)),X)dt = ||Dd, oul|(X) < ||Danul|(X) < oco.

It follows that for each positive integer n we can find R,, > n such that P(u=!(B(a, R,)), X) < 1/n.
We now enlarge the null set N, chosen in the proof of Proposition 5.12, by replacing N with

NU [ 0.u"(B(a, Re)) \ Syu~ " (B(a, Ry)).
keN

We now fix x € J(u) \ N. Then, with z € J(u) \ N as in the proof of Proposition 5.12, we have
one of two cases:

(a) For each positive integer n we have that

o sup £B) 00 (Bla, )
s p(B(z. 1))

(b) There is some positive integer ng such that for each n > ng we have

o sup 2(B7) N0~ (Bla F))
r—0t /L(B(.T,T))

Should Case (a) happen, we say that u is approximately continuous at & with approximate limit co.
Such points form a p-measure null subset of X because, by embedding Y into a Banach space and
using Bochner integrals, we know that u-a.e. point in X is a Lebesgue point of u as u € L} (X : V);
note that the value of the function at a Lebesgue point must necessarily be a point in the Banach
space and hence cannot be infinite in nature. We can include them in the set of approximately
continuous points of u. Thus it suffices to take care of Case (b). In this case, we focus on covering
the compact set B(a, R,,) for some fixed n > ng by balls B(y;,¢), i = 1,--- , N., where implicitly
N, now depends on the choice of R, as well, but as n is fixed, this dependence is suppressed. Here
we ensure that 0 < e < R,,/10. In so doing, we find one point, say y1, such that

lim sup u(B(z,r) Nu=' (B(y1,¢)))
0+ w(B(z,r))

Thus we can choose By = u~1(B(y1,€)), and as z is not a point of approximate continuity of u, we

also know that
p(B(x,r) \ u” (B(y1,¢)))

=0.

> 0.

> 0.

lim sup > 0.
r—0t M(B(xa T))
If we also have .
sy AB )\ (Bla o))
r—0+ ,LL(B(J?, 7‘))

then necessarily = € d,u~'B(a, R2,) and so as z ¢ N, we must have that

lim inf ,U(B(JZ, T) \ u_l(B(a’ R2n)))
T 0t n(B(z,r)) -

If for all positive integers n the above density property holds for u=!(B(a, Ra,)), then we can
consider co to be one of the jump values of u at . Continuing the argument found in the proof

of Proposition 5.12 by covering B(a, %Rn) by balls of radius £/62 to find 32, and proceeding from
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there to find a sequence y; € Y that converges to y., € Y, we see that y,, must also be a jump
value of u at . The rest of the argument as found in the proof of Proposition 5.12 holds, as long
as we consider co to be one of the jump values if necessary.

If oo is a jump value of u at z, then we must necessarily have that € ¥,u~!(B(a, Ry)) for each
k. As

1/k > P(u'(B(a, Rg)), X) ~ H *(Z,u" ' (B(a, Ry))),
we must have that

H () Byu (Bla, Ry))) = 0.
k

That is, the collection of all points z € J(u) \ N that have co as a jump value must be of H~!-
measure zero as well. All other points in J(u) can be handled by the proof of Proposition 5.12 by
using covering arguments only for the compact set B(a, R;) for sufficiently large j.
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