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Abstract. Here we consider two notions of mappings of bounded variation (BV) from
a metric measure space into a metric space; one based on relaxations of Newton-Sobolev
functions, and the other based on a notion of AM-upper gradients. We show that when
the target metric space is a Banach space, these two notions coincide with comparable
energies, but for more general target metric spaces, the two notions can give different
function-classes. We then consider the fine properties of BV mappings (based on the
AM-upper gradient property), and show that when the target space is a proper metric
space, then for a BV mapping into the target space, co-dimension 1-almost every point
in the jump set of a BV mapping into the proper space has at least two, and at most k0,
number of jump values associated with it, and that the preimage of balls around these
jump values have lower density at least γ at that point. Here k0 and γ depend solely on
the structural constants associated with the metric measure space, and jump points are
points at which the map is not approximately continuous.
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1. Introduction

The theory of functions of bounded variation were first developed in order to study existence and
regularity properties of minimal surfaces, and a nice overview can be obtained from the book [5];
much of the original work on regularity theory can be found in the collection [10], and the discussion
in [16] gives a nice discussion on fine properties of BV functions in Euclidean spaces. Since then
the theory has found applications in other areas as well, including image processing [4, 8], plasma
physics [29, 19], and quasiconformal mappings [18, 32], and the references contained in these papers
provide further valuable information. In image processing or in plasma-blistering in media that are
not uniform and might even exhibit non-smoothness, a theory of functions of bounded variation
in metric spaces is useful. Recent research on mappings of finite distortion and quasisymmetric
mappings indicate a need to understand metric space-valued mappings of bounded variation on
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metric measure spaces, see for instance [2, 34, 24, 41, 9, 7] for a sampling of the currently extant
literature on this topic. In this paper we seek to study mappings of bounded variation in non-smooth
metric measure spaces of controlled geometry, that is, spaces where the measure is doubling and
supports a 1-Poincaré inequality (see Section 3).

Unlike Sobolev functions, functions of bounded variation exhibit less regularity; classic examples
include the Cantor staircase function on the Euclidean unit interval and characteristic functions
of smooth Euclidean sets. However, a Euclidean set whose characteristic function is of bounded
variation can have non-smooth boundary. As with characteristic functions of such sets, more general
functions of bounded variation in Euclidean domains exhibit discontinuous behavior along certain
subsets, called jump sets. The situation gets more complicated when the function of bounded
variation is not real-valued but a map from a Euclidean domain into a metric space, as in [2]. Yet
another layer of complication comes from considering functions of bounded variation from a metric
measure space into a metric space. The goal of the present paper is to explore regularity properties
of such maps. In this case, the lack of smoothness implies that we have no notion of inward normal
direction in the sense analogous to [17] or [42, (1.2)], and hence the classical definition of jump
points as in [17, 42] (see also [5, Definition 3.67]) is not suitable here.

To do so, the first question to address is what is a reasonable notion of mappings of bounded
variation from a metric measure space into a metric space. First proposed by Miranda Jr. in [40],
the notion of real-valued functions of bounded variation on metric measure spaces equipped with a
doubling measure supporting a 1-Poincaré inequality has been extensively studied, and the papers [3,
6, 13, 14, 25, 26, 27, 28, 33, 36, 37] contain a small sample of the outcomes from such a study. The
papers [40, 3, 6, 14, 36] consider the definition of functions of bounded variation in the metric
setting via relaxation of Sobolev functions, while the papers [25, 26, 27, 28] consider functions of
bounded variation as those whose local behavior is controlled by a sequence of non-negative Borel
functions that serve as a substitute for upper gradients [39]. In [13] it was shown that these two
approaches yield the same class of real-valued functions of bounded variation.

In the present paper we consider two definitions of mappings of bounded variation from a metric
measure space into a metric space or, in particular, a Banach space, by adopting the two approaches
described above. We show that when the domain metric measure space is complete, doubling, and
supports a 1-Poincaré inequality and the target metric space is a Banach space, both notions yield
the same class of maps. However, when the target metric space is not a Banach space, the two
approaches do not in general yield the same function class, with the notion of relaxation of Sobolev
functions yielding a strictly smaller subclass of maps. Thus, in the setting of general metric space
targets, it is more appropriate to study mappings of bounded variation based on the sequence of
upper gradients as first proposed by Martio in [39]. Other alternate notions of metric-valued BV
mappings defined via relaxation with simple maps and test plan-based BV mappings were studied in
[7], where they were shown to be equivalent to definitions given by test plans and post-composition
with Lipschitz functions. However, the fine properties of those mappings are not considered in [7].

Having made the choice of the definition of mappings of bounded variation, in the second part of
the paper we explore the fine properties of mappings of bounded variation, from a complete doubling
metric measure space supporting a 1-Poincaré inequality, into a proper metric space. We determine
Hausdorff co-dimensional measure properties of sets of jump discontinuity points of such mappings.
While the study of fine properties of real-valued BV functions on Euclidean domains is now well-
established (see for instance [42, 17, 5]), the corresponding study of metric space-valued mappings
on Euclidean domains has a much shorter history. Moreover, real-valued BV functions in Euclidean
domains can exhibit more than two jump values at a jump point, as demonstrated by the function f
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on the complex plane given by f = 2χA+χE−χF with A = {(x, y) ∈ R2 : x ≥ 0, y ≥ 0, x2+y2 ≤ 1},
E = {(x, y) ∈ R2 : x ≥ 0, y < 0, x2 + y2 ≤ 1}, and F = {(x, y) ∈ R2 : x < 0, y < 0, x2 + y2 ≤ 1}
having four jump values at the point (0, 0). However, at Hn−1-a.e. point in Rn we see only two
jump values. In such a Euclidean setting, similar results hold true once we know that there are
jump values for metric space-valued BV maps. The proof of Theorem 1.3 below gives a more
complete and alternate verification of the corresponding result stated in [2] for metric space-valued
BV mappings from Euclidean domains, as the existence of jump values as claimed in [1, 2], lacks
some details. One key part of the verification requires the directions νφ in [2, Theorem 2.3] to be
independent of the functions φ, for which [2] points to the unproven statement in [2, Remark 1.5].
Note also that the results of this paper also covers mappings from subsets of Rn even when the
subset is not open, provided it carries a doubling measure supporting a suitable Poincaré inequality.
A few words of caution are appropriate here. The definition of jump set as considered here follows
the convention of [16, Definition 5.9]. In [5] the term approximate discontinuity set is used instead
(with the notation Su used for the set corresponding to the BV function u in [5, 6]), in order to
distinguish the points where one can obtain two jump values, see [5, Definition 3.67]. As we do not
have access to the notion of inner normal vectors for level surfaces of BV functions, we follow the
simpler categorization of [16] instead.

The following are the two main results of this note. The first result focuses on comparing the
two notions of mappings of bounded variation. The space BV (X : V ) is defined using the Miranda
Jr. [40] approach of relaxation of Sobolev function class, while the space BVAM (X : V ) is obtained
by using sequences of non-negative Borel functions that act as upper gradients as in [39].

Theorem 1.1. Let (X, d, µ) be a complete doubling metric measure space supporting a 1-Poincaré
inequality, and let V be a Banach space. Suppose also that for µ-a.e. x ∈ X we have that
lim infr→0+ µ(B(x, r))/r = 0. Then BV (X : V ) = BVAM (X : V ), with comparable BV energy
seminorms.

Theorem 1.1 will be proved in Section 4. Before doing so, in Section 3 we adapt the notion
of Semmes pencil of curves and Poincaré inequality to the setting of Banach space-valued BV
functions.

In the next main theorem, we determine the fine properties of a metric space-valued BVAM -map,
when the metric space target is proper (that is, closed and bounded subsets of Y are compact).

In what follows, we consider maps u ∈ BVAM (X : Y ) with (Y, dY ) a metric space.

Definition 1.2. A point x ∈ X is said to be a point of approximate continuity of u if there is a
point yx ∈ Y such that for each ε > 0 we have

lim sup
r→0+

µ(B(x, r) \ u−1(B(yx, ε)))

µ(B(x, r))
= 0.

We say that x is a jump point of u, that is, x ∈ J (u), if it is not a point of approximate continuity
of u. If x is a jump point of u, we say that a point y ∈ Y is a jump value of u at x if for all ε > 0,
we have

lim sup
r→0+

µ(B(x, r) ∩ u−1(B(y, ε)))

µ(B(x, r))
> 0.

Theorem 1.3. Let (X, d, µ) be a complete doubling metric measure space supporting a 1-Poincaré
inequality, and let (Y, dY ) be a proper metric space. Then for each u ∈ BVAM (X : Y ) we have that
J (u) is σ-finite with respect to the codimension 1 Hausdorff measure H−1 on X and there exists a
set N ⊂ J (u) with H−1(N) = 0 such that the following hold:
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(a) A point x0 ∈ X belongs to J (u) if and only if there exist sets E1, E2 ⊂ X such that

lim sup
r→0

µ(B(x0, r) ∩ Ei)

µ(B(x0, r)
> 0 for i = 1, 2,

and there exist balls B1, B2 ⊂ Y with dist(B1, B2) ≥ rad(B1) such that u(Ei) ⊂ Bi for
i = 1, 2.

(b) For each x0 ∈ J (u)\N there are at least two, and at most k0, number of jump values, that
is, points y1, y2, · · · , yk ∈ Y such that for each ε > 0 and i = 1, 2, · · · , k we have

lim inf
r→0+

µ(B(x, r) ∩ u−1(B(yi, ε)))

µ(B(x, r))
≥ γ,

and

lim sup
r→0+

µ(B(x, r) \
⋃k

i=1 u
−1(B(yi, ε)))

µ(B(x, r))
= 0.

In the above, both k0 and γ are constants that depend solely on the doubling and Poincaré constants
of the space X, and in particular are independent of Y , u and ε.

Theorem 1.3 will be proved in Section 5. The set J (u) is called the jump set of u, and is defined
in the initial discussion of Section 5 as the complement of the set of points of approximate continuity
of u, and so (a) is immediate from the construction. The σ-finiteness of the jump set is proved as
Corollary 5.10. Subsequently, (b) is proved via Proposition 5.12, completing the proof. We point
out here that, with our definition of the jump set J (u), we cannot be guaranteed that the set N
referred to in the above theorem will be empty. Indeed the argument function f(z) = Arg(z) in the
complex unit disk has the complex number 0 as part of its jump set, but at 0 the function f takes
on infinitely many jump values. From the expository monograph [5] we know that for a real-valued
BV function on Euclidean domains, such points form a very small set; the above theorem extends
this to metric space-valued mappings in metric measure spaces.

2. Background notions

In this note, (X, d, µ) will denote a metric measure space, where (X, d) is a complete metric space
and µ a Borel measure, and V is a general Banach space. The ball centered at x ∈ X with radius
r > 0 will be denoted B(x, r) = {y ∈ X : d(x, y) < r}. A ball in X may have more than one center
and more than one radius. Hence, by a ball, we understand that it comes with a pre-selected center
and radius. The radius of a ball B will be denoted by rad(B). The closed ball centered at x with
radius r > 0 is the set B(x, r) := {z ∈ X : d(x, z) ≤ r}, and is in general potentially larger than
the topological closure of the open ball B(x, r). Moreover, given two sets E,F ⊂ X, the distance
between them is denoted dist(E,F ) := inf{d(x, y) : x ∈ E, y ∈ F}.

We will assume throughout that the measure µ is doubling, that is, there is some constant Cd ≥ 1
such that whenever x ∈ X and r > 0, we have

0 < µ(B(x, 2r)) ≤ Cd µ(B(x, r)) <∞.

Given such a measure µ, and a set A ⊂ X, the co-dimension 1 Hausdorff measure of A is given by

H−1(A) := lim
δ→0+

inf

{ ∑
i∈I⊂N

µ(Bi)

rad(Bi)
: A ⊂

⋃
i∈I

Bi, rad(Bi) ≤ δ

}
.

Next, we introduce the definitions of two notions of mappings of bounded variation. The first one,
BV (X : V ), was widely studied in [40], while the other one, BVAM (X : V ), was first introduced
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in [39] and was proven to be equal to BV (X : V ) in [13], when V = R and the measure on X
is doubling and supports a 1-Poincaré inequality. As a natural question, we will study here the
equality of both spaces when V is a general Banach space.

Since the approach in [40] is based on approximation via Newtonian mappings, we recall here
the definition of upper gradients and the Newton-Sobolev space. An upper gradient of a mapping
f : X → V is a non-negative Borel function g : X → [0,∞] such that for each nonconstant compact
rectifiable curve γ : [a, b] → X (with a, b ∈ R and a < b), we have

(2.1) ∥f(γ(b))− f(γ(a))∥ ≤
∫
γ

g ds.

The function g is called a 1-weak upper gradient of f if (2.1) holds for 1-almost every curve (see
Section 2.2 below for the concept of 1-modulus). It turns out that if f has a 1-weak upper gradient
in the class L1(X), then there is a unique 1-weak upper gradient of f with the smallest L1-norm;
moreover, every 1-weak upper gradient of f that belongs to L1(X) is µ-a.e. bounded below by this
unique weak upper gradient; we denote by gu the minimal 1-weak upper gradient of u. Note that
modifying a map f , that has an upper gradient belonging to L1(X), on a set of measure zero can
result in a function with no upper gradient in L1(X). Thus the above notion is at the level of maps,
not equivalence classes of maps. However, we say that two maps f1, f2 are equivalent if f1 = f2
µ-a.e. in X and in addition, for each ε > 0 there is an upper gradient gε of f1 − f2 such that∫
X
gε dµ < ε. The Newton Sobolev space N1,1(X : V ) is the collection of all equivalence classes of

mappings f : X → V with f ∈ L1(X : V ) and each map in the equivalence class having an upper
gradient in L1(X). We refer the interested reader to [23] for more details on N1,1(X : V ) and upper
gradients.

2.1. Vector-valued mappings of bounded variation via relaxation of Newton-Sobolev
mappings. Let u ∈ L1(X : V ) with L1(X : V ) in the sense of Bochner integrals, and define

∥Du∥(X) := inf

{
lim inf
i→∞

∫
X

gui
dµ : (ui)i∈N ∈ N1,1(X : V ), ui

L1

→ u

}
.

Definition 2.2. Let (X, d, µ) be a metric measure space and V a Banach space. Following
Miranda [40], we define BV (X : V ) to be the class of mappings u ∈ L1(X : V ) such that
∥Du∥(X) <∞. We denote BV (X) := BV (X : R).

It was shown in [40] that the map U 7→ ∥Du∥(U) for open sets U ⊂ X can be extended via
a Carathéodory construction to a Radon outer measure on X, which is also denoted by ∥Du∥; in
particular, for Borel sets A ⊂ X we set

∥Du∥(A) := inf{∥Du∥(U) : U is open in X and A ⊂ U}.

If E ⊂ X is a measurable set, we say that E is of finite perimeter if χE ∈ BV (X) and we denote
the perimeter measure by P (E, ·) := ∥DχE∥(·). For functions in the class BV (X) the following
co-area formula is known.

Lemma 2.3. (coarea formula, [40, Proposition 4.2]) Let E ⊂ X be a Borel set and u ∈ BV (X).
Then

∥Du∥(E) =

∫ ∞

−∞
P ({u > t}, E)dt.



6 CAAMAÑO, KLINE, SHANMUGALINGAM

Thanks to the work of Ambrosio [3], we know the structure of sets of finite perimeter. To describe
these results we first describe the measure-theoretic and reduced boundaries of subsets of X. For
E ⊂ X we say that a point x ∈ X belongs to the measure-theoretic boundary ∂∗E of E if

(2.4) lim sup
r→0+

µ(B(x, r) ∩ E)

µ(B(x, r))
> 0 and lim sup

r→0+

µ(B(x, r) \ E)

µ(B(x, r))
> 0.

For a real number β > 0 we say that x ∈ X belongs to the reduced boundary ΣβE of E if

(2.5) lim inf
r→0+

µ(B(x, r) ∩ E)

µ(B(x, r))
≥ β and lim inf

r→0+

µ(B(x, r) \ E)

µ(B(x, r))
≥ β.

Lemma 2.6. Suppose that X is complete and that µ is doubling and supports a 1-Poincaré in-
equality. Then there is a positive real number γ ≤ 1/2, depending only on the doubling constant
and constants associated with the Poincaré inequality, such that for each set E of finite perimeter,

H−1(∂∗E \ ΣγE) = 0 and P (E,X) ≈ H−1(ΣγE).

We also point out that in fact, the property of a measurable set being of finite perimeter is
characterized by the property that H−1(ΣγE) is finite; this result was first proved by Lahti [33],
and is new even in the Euclidean setting, refining Federer’s characterization of Euclidean sets of
finite perimeter.

2.2. 1-modulus and AM-modulus. Recall the definition of 1-modulus of a family of nonconstant,
compact and rectifiable curves Γ:

Mod1(Γ) := inf
ρ

∫
X

ρ dµ

where the infimum is taken over all non negative Borel functions ρ : X → [0,+∞] s.t.
∫
γ
ρds ≥ 1

for each γ ∈ Γ. It turns out that there is another notion of modulus that is better suited to the
study of BV functions. This notion, called AM -modulus, was first proposed by Martio in [39].
Following [39] we define the AM -modulus to be

AM(Γ) := inf
(ρi)i∈N

lim inf
i→∞

∫
X

ρidµ,

where the infimum is taken over all sequences of AM-admissible functions, that is, sequences (ρi)i
of non negative Borel functions such that for each γ ∈ Γ we have

lim inf
i→∞

∫
γ

ρids ≥ 1.

We say that a property holds for 1-almost every curve (respectively AM-almost every curve) on X
if it holds outside a family of curves of zero 1-modulus (resp. AM-modulus).
For a curve family Γ we always have AM(Γ) ≤ Mod1(Γ).

Lemma 2.7. Let Γ be a family of curves in X. Then

(a) Mod1(Γ) = 0 if and only if there is a non-negative Borel function ρ ∈ L1(X) such that for
each γ ∈ Γ we have

∫
γ
ρ ds = ∞.

(b) AM(Γ) = 0 if and only if there is a sequence (ρi)i∈N of non-negative Borel functions with
supi

∫
X
ρi dµ <∞ such that for each γ ∈ Γ we have

lim inf
i→∞

∫
γ

ρi ds = ∞.
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Proof. A proof of (a) can be found in [23, Lemma 5.2.8]. To prove (b) we argue as follows. Sup-
pose first that AM(Γ) = 0. Then for each positive integer k we can find a sequence (ρk,i)i∈N
of non-negative Borel functions on X with lim infi→∞

∫
γ
ρk,i ds ≥ 1 for each γ ∈ Γ, such that

supi
∫
X
ρk,i dµ < 2−k. For each positive integer i we set ρi =

∑∞
k=1 ρk,i. By the monotone conver-

gence theorem we know that for each γ ∈ Γ,∫
γ

ρi ds =

∞∑
k=1

∫
γ

ρk,i ds,

and so

lim inf
i

∫
γ

ρi ds ≥
∞∑
k=1

lim inf
i

∫
γ

ρk,i ds = ∞,

and at the same time, for each positive integer i we have∫
X

ρi dµ =

∞∑
k=1

∫
X

ρk,i dµ ≤
∞∑
k=1

2−k = 1.

The desired conclusion follows.
Now suppose that Γ is such that there is a sequence (ρi)i∈N of non-negative Borel functions

on X such that supi
∫
X
ρi dµ =: α < ∞ and for each γ ∈ Γ we have lim infi→∞

∫
γ
ρi ds = ∞.

Then for each ε > 0 the sequence (ερi)i∈N is a sequence of AM-admissible functions for Γ, with
lim supi

∫
X
ερi dµ = εα. Thus AM(Γ) ≤ εα for each ε > 0. Thus we have that AM(Γ) = 0. □

From the above lemma, it follows that if Γ is a family of curves with AM(Γ) = 0, then for
each ε > 0 there is a sequence (ρi)i such that supi

∫
X
ρi dµ < ε and for each γ ∈ Γ we have

lim infi→∞
∫
γ
ρi ds = ∞.

2.3. The notion of BVAM (X : V ). Now we turn our attention to the definition of BVAM (X : V ).
The notion of BVAM (X : R) was first proposed by Honzlová-Exnerová, Malý, and Martio in a series
of papers [26, 27, 28] using the notion of AM-modulus, see also [25]. This notion was adopted by
Lahti in [34] to study metric space-valued BV mappings. In this section we focus on this notion of
BV maps.

Definition 2.8. Let (X, d, µ) be a metric measure space and V a Banach space. Let (ρi)i∈N be
a sequence of non-negative Borel functions on X. We say that this sequence is an AM-bounding
sequence for a function u : X → V if for AM-a.e. curve γ : [a, b] → X there is a null set Nγ ⊂ [a, b]
(that is, H1(Nγ) = 0) such that for every τ, t ∈ [a, b] \Nγ with τ < t, we have

(2.9) ∥u(γ(τ))− u(γ(t))∥ ≤ lim inf
i→∞

∫
γ|[τ,t]

ρids.

We say that a mapping u ∈ L1(X : V ) is in the class BVAM (X : V ) if there is an AM-bounding
sequence (ρi)i∈N for u such that

lim inf
i→∞

∫
X

ρi dµ <∞.

We set

∥DAMu∥(X) := inf
(ρi)i

lim inf
i→∞

∫
X

ρi dµ,

where the infimum is taken over all AM-bounding sequences (ρi)i∈N of u.



8 CAAMAÑO, KLINE, SHANMUGALINGAM

As in the case of the object ∥Du∥, the above ∥DAMu∥ can be extended to be a Radon measure
on X via a Carathéodory construction, see for example [39] and Section 6.1.

Note that in considering an AM-bounding sequence for u, we discount a family Γ of curves in X
such that AM(Γ) = 0. If the AM-bounding sequence (ρi)i∈N is such that the exceptional family Γ
is empty, then we say that (ρi)i∈N is a strong bounding sequence for u.

Lemma 2.10. Let u ∈ BVAM (X;V ) and v : X → V . Suppose that there is a set N ⊂ X with
µ(N) = 0 such that for each x ∈ X \N we have u(x) = v(x). Then a sequence (ρi)i∈N is an AM-
bounding sequence for u if and only if it is an AM-bounding sequence for v; hence v ∈ BVAM (X;V )
with ∥DAMu∥(X) = ∥DAMv∥(X) and ∥DAM (u− v)∥(X) = 0.

Proof. Since N is a null-set, by enlarging it if need be (recall that µ is a Borel measure), we can also
assume that it is a Borel set as well. It follows that with Γ+

N the collection of all nonconstant compact

rectifiable curves γ : [a, b] → X for which H1(γ−1(N)) > 0, we have AM(Γ+
N ) ≤ Mod1(Γ

+
N ) = 0.

Thus, for each AM-bounding sequence (ρi)i∈N of the original function u and for each γ ̸∈ Γ0 ∪ Γ+
N ,

we can replace Nγ with Nγ ∪ γ−1(N) to see that this is an AM-bounding sequence for v as well.
Here Γ0 is the exceptional family associated with the bounding sequence; so AM(Γ0) = 0.

Since u − v = 0 µ-a.e. in X, the final claims follows from noting that AM(Γ+
N ) = 0 and so the

sequence (gi)i∈N, with each gi the zero function, is an AM-bounding sequence for u− v. □

Lemma 2.11. Suppose that (ρi)i∈N is an AM-bounding sequence for a map u from X to V such
that supi

∫
X
ρi dµ < ∞. Then for each ε > 0 we can find a strong bounding sequence (gi)i∈N of u

such that for each i ∈ N we have
∫
X
|gi − ρi| dµ < ε.

Proof. Let u ∈ BVAM (X : V ) and (ρi)i∈N. Then there exists Γ with AM(Γ) = 0 such that for each
non constant compact rectifiable curve γ /∈ Γ, the relation (2.9) holds for s, t ∈ dom(γ)\γ−1(Nγ)
where H1(Nγ) = 0. Since AM(Γ) = 0, by Lemma 2.7 there exists a sequence of non-negative Borel
functions (gi)i such that

lim inf
i→∞

∫
X

gi dµ <∞ and lim inf
i→∞

∫
γ

gi ds = ∞ ∀γ ∈ Γ.

Now let Γ0 be the family of all nonconstant compact rectifiable curves γ in X for which we have
lim infi→∞

∫
γ
gids = ∞. Then AM(Γ0) = 0 and each subcurve of a curve that is not in Γ0 is also

not in Γ0. For each ε > 0, since Γ ⊂ Γ0, we have that for each γ /∈ Γ0,

(2.12) ∥u(γ(τ))− u(γ(t))∥ ≤ lim inf
i→∞

∫
γ|[τ,t]

ρids ≤ lim inf
i→∞

∫
γ|[τ,t]

ρi + εgids

for every τ, t /∈ γ−1(Nγ).
If γ ∈ Γ0 is such that every subcurve of γ also belongs to Γ0, then for each τ, t ∈ [a, b] with

τ < t we have lim infi→∞
∫
γ|[τ,t]

gi ds = ∞, and so the choice of Nγ = ∅ works. If it is not the case

that every subcurve of γ also belongs to Γ0, then let C0(γ) be the collection of all non-degenerate
(that is, containing more than one point) intervals I ⊂ [a, b] for which, whenever J is a compact
subinterval of I we must have γ|J ̸∈ Γ0, and whenever J is a compact subinterval of [a, b] containing
I in its interior, we must have γ|J ∈ Γ0. By the maximality of the intervals in the collection C0(γ),
two intervals in this collection are either disjoint or are equal as intervals. Moreover, these intervals
have non-empty interior. It follows that as Q is dense in R, the collection C0(γ) is countable.

With γ : [a, b] → X, consider all a0, b0 ∈ [a, b] ∩ Q with a0 < b0 for which γ|[a0,b0] ̸∈ Γ0, that

is, lim infi→∞
∫
γ|[a0,b0]

gi ds < ∞; hence there is a corresponding null set N [a0, b0] ⊂ [a0, b0] with
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H1(N [a0, b0]) = 0, so that for each τ, t ∈ [a0, b0] \ N [a0, b0] we have (2.12) holding true. Let C(γ)
be the collection of all such [a0, b0] ⊂ [a, b], and set

Nγ :=
⋃

[a0,b0]∈C(γ)

N [a0, b0] ∪
⋃

J∈C0(γ)

{inf J, sup J}.

Note that as a0, b0 ∈ Q, the collection C(γ) is a countable collection. Hence H1(Nγ) = 0 by the
subadditivity of H1 on [a, b]. Now let τ, t ∈ [a, b] \ Nγ with τ < t. If [τ, t] ⊂ [a0, b0] for some
[a0, b0] ∈ C(γ), then (2.12) holds. If there is no [a0, b0] ∈ C(γ) for which [τ, t] ⊂ [a0, b0], then we
must have that lim infi→∞

∫
γ|[τ,t]

gi ds = ∞, and so we now have

∥u(γ(τ))− u(γ(t))∥ ≤ lim inf
i→∞

∫
γ|[τ,t]

(ρi + εgi) ds = ∞.

Therefore (ρi + εgi)i satisfies (2.9) for every non constant compact rectifiable curve. Moreover,
since ε is arbitrary, one can approach the energy ∥DAMu∥(X) just by taking the infimum over the
upper bounds of u that verify (2.9) for every non constant compact rectifiable curve. □

Lemma 2.13. Suppose that (ρi)i is an AM–bounding sequence for u and that η is a non-negative
L-Lipschitz function with support in a bounded set U ; moreover, suppose that η is constant on an
open set V ⋐ U . Then (ηρi + L |u|χU\V )i is an AM–bounding sequence for ηu.

Proof. For each i ∈ N we set gi := ηρi + L |u|χU\V .
Let Γ be the exceptional family for the AM–bounding sequence (ρi)i with respect to u; so

AM(Γ) = 0, and for each nonconstant compact rectifiable curve γ : [a, b] → X with γ ̸∈ Γ, we have
a null set Nγ ⊂ [a, b] with H1(Nγ) = 0 such that whenever t, τ ∈ [a, b] \Nγ with t < τ , we have

|u(γ(t))− u(γ(τ))| ≤ lim inf
i→∞

∫
γ|[t,τ]

ρi ds.

Fix such τ, t ∈ [a, b]. Consider a partition t = t0 < t1 < · · · < tk = τ of the interval [t, τ ] so that
t1, · · · , tk−1 ̸∈ Nγ . Then

|u(γ(t))η(γ(t))− u(γ(τ))η(γ(τ))| ≤
k∑

j=1

|u(γ(tj−1))η(γ(tj−1))− u(γ(tj))η(γ(tj))|

≤
k∑

j=1

|u(γ(tj−1))η(γ(tj−1))− u(γ(tj))η(γ(tj−1))|

+

k∑
j=1

|u(γ(tj))η(γ(tj−1))− u(γ(tj))η(γ(tj))|

≤ lim inf
i→∞

k∑
j=1

∫
γ|[tj−1,tj ]

[η(γ(tj−1))ρi + |u(γ(tj))|Lip η ] ds.

The above must be true for all such partitions of the interval [t, τ ]. Since u ◦ γ and Lip η ◦ γ are
Borel functions on [a, b], it follows that

|u(γ(t))η(γ(t))− u(γ(τ))η(γ(τ))| ≤ lim inf
i→∞

∫
γ|[t,τ]

gi ds. □
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Lemma 2.14. Let u ∈ BV (X : V ). Then the upper gradients of an approximating sequence form
an AM-bounding sequence for u. In particular u ∈ BVAM (X : V ) with ∥DAMu∥(X) ≤ ∥Du∥(X).

Proof. If u ∈ BV (X : V ), then there exists a sequence (ui)i∈N ∈ N1,1(X : V ) with upper gradients
gi such that

lim sup
i→∞

∫
X

gidµ <∞,

and such that ui → u in L1(X : V ). In particular, (passing to a subsequence if necessary) ui → u
pointwise almost everywhere in X. Then there exists a null set N such that limi→∞ ui(x) = u(x)
for every x ∈ X \ N . By enlarging N if necessary, we may also assume that N is a Borel set
(recall that µ is Borel regular). Hence, by considering the non-negative Borel measurable function
ρ = ∞χN on X, we know that if Γ+

N is the collection of all compact nonconstant rectifiable curves

γ in X with H1(γ−1(N)) > 0, then AM(Γ+
N ) ≤ Mod1(Γ

+
N ) = 0.

Let γ : [a, b] → X be a nonconstant compact rectifiable curve such that γ ̸∈ Γ+
N . We set

Nγ := γ−1(N). Then for τ, t ∈ [a, b] \Nγ with τ < t, we have that

lim
i→∞

ui(γ(t))− ui(γ(τ)) = u(γ(t))− u(γ(τ)).

Moreover, since gi is an upper gradient of ui, it follows that

∥ui(γ(t))− ui(γ(τ))∥ ≤
∫
γ|[τ,t]

gi ds.

Combining the above two, we see that for τ, t ∈ [a, b] \Nγ with τ < t, we have

∥u(γ(t))− u(γ(τ))∥ ≤ lim inf
i→∞

∫
γ|[τ,t]

gi ds.

Thus we have shown that (gi)i∈N is an AM-bounding sequence for u. Now fix ε > 0 and choose
(ui)i∈N and (gi)i∈N such that

lim inf
i→∞

∫
X

gidµ ≤ ∥Du∥(X) + ε.

Since the previous argument holds for any choice of (ui)i∈N and (gi)i∈N, we have that (gi)i∈N is an
AM-bounding sequence for u, and hence,

∥DAMu∥(X) ≤ lim inf
i→∞

∫
X

gidµ ≤ ∥Du∥(X) + ε,

and then taking ε→ 0 completes the proof. □

Remark 2.15. Notice that condition (2.9) holds outside a null set Nγ , which depends on the
choice of γ, but as seen in the previous proof, whenever u ∈ BV (X : V ), we can choose a null
set N ⊂ X to be independent of the curve, such that Nγ = γ−1(N). In the following sections we
will prove that BV (X : V ) = BVAM (X : V ). However the construction of the approximation by
Newtonian mappings of a BVAM -mapping will yield a sequence of upper gradients different to the
original AM-bounding sequence for u, and so in general we cannot assume that every AM-bounding
sequence of u comes with a universal null set N ⊂ X as above.
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2.4. Metric space-valued functions of bounded variation. In the prior two sections we con-
sidered mappings from the metric space X into a Banach space V ; in this section we consider the
case of mappings into a metric space (Y, dY ). We will assume here that Y is complete and separable.
Given Ω ⊂ X and y0 ∈ Y , we mean by f ∈ L1(Ω : Y, y0) that∫

Ω

dY (f(·), y0)dµ <∞.

We say that f ∈ L1
loc(X : Y ) if for each y0 ∈ Y (or, equivalently, for some y0 ∈ Y ) we have that

the real-valued function x 7→ dY (f(x), y0) belongs to L
1
loc(X).

We begin with the intrinsic definitions, analogous to the definitions of BV (X : V ) and BVAM (X :
V ) given above.

Lemma 2.16. Let u : X → Y be a measurable function. Then the following are equivalent:

(a) There is a family Γ0 of curves in X with AM(Γ0) = 0 and a sequence (ρi)i∈N of non-negative
Borel measurable functions on X such that for each nonconstant compact rectifiable curve
γ : [a, b] → X with γ ̸∈ Γ0 there is a set Nγ ⊂ [a, b] with H−1(Nγ) = 0 such that for each
τ, t ∈ [a, b] \Nγ with τ < t we have

dY (u(γ(τ)), u(γ(t))) ≤ lim inf
i→∞

∫
γ|[τ,t]

ρi ds,

with

sup
i

∫
X

ρi dµ <∞.

(b) For every Banach space V and isometric embedding Φ : Y → V we have that Φ ◦ u ∈
BVAM (X;V ).

(c) There is a Banach space V and an isometric embedding Φ : Y → V such that Φ ◦ u ∈
BVAM (X;V ).

In any (and hence all) of the cases above, we have that

∥DAMΦ ◦ u∥(X) = inf
(ρi)i∈N

lim inf
i→∞

∫
X

ρi dµ

where the infimum is over all sequences (ρi)i∈N satisfying (a) above.

Proof. If V is a Banach space and Φ is an isometric embedding of Y into V , then for each x, z ∈ X
we have that dY (u(x), u(z)) = ∥Φ(u(x))− Φ(u(z))∥, and so we know that (a) implies (b) and that
(b) implies (c). Indeed, every complete separable metric space can be isometrically embedded in
the Banach space ℓ∞ by the Kuratowski embedding theorem (see, e.g., [23, page 100]).

Thus it only remains to show that (c) implies (a). To this end, suppose that V is a Banach space,
Φ an isometric embedding of Y into V , and that Φ ◦ u ∈ BVAM (X;V ). Then there is a sequence
(ρi)i∈N that is an AM-bounding sequence for Φ ◦ u, and a family Γ0 with AM(Γ0) = 0 such that
whenever γ : [a, b] → X with γ ̸∈ Γ0 there is a set Nγ ⊂ [a, b] with H−1(Nγ) = 0 such that for each
τ, t ∈ [a, b] \Nγ with τ < t we have

∥Φ ◦ u(γ(τ))− Φ ◦ u(γ(t))∥ ≤ lim inf
i→∞

∫
γ|[τ,t]

ρi ds,

with

sup
i

∫
X

ρi dµ <∞.



12 CAAMAÑO, KLINE, SHANMUGALINGAM

As Φ is an isometric embedding of Y into V , it follows that dY (u(γ(τ)), u(γ(t))) = ∥Φ ◦ u(γ(τ))−
Φ ◦ u(γ(t))∥. The condition (a) follows.

The above argument shows that the sequence (ρi)i∈N satisfies (a) if and only if it is an AM-
bounding sequence for Φ ◦ u. The final claim of the above lemma now follows. □

Definition 2.17. We say that a map u : X → Y is in BVAM (X;Y ) if u ∈ L1(X : Y ) and there is
a sequence (ρi)i∈N satisfying the hypothesis of Lemma 2.16 (a).

Lemma 2.18. Let Φ : Y → V be an isometric embedding of the metric space Y into a Banach
space V . Suppose that

(a) u ∈ BVAM (X;V ), and
(b) there is a set N ⊂ X with µ(N) = 0 such that for each x ∈ X\N we have that u(x) ∈ Φ(Y ).

Then u ◦ Φ−1 ∈ BVAM (X;Y ). Here Φ−1 stands in for the inverse map of the bijective map
Φ : Y → Φ(Y ).

Proof. Since any modification of u on a set of µ-measure zero results in the same equivalence class
of u in BVAM (X;V ) (see Lemma 2.10), we can modify u on N by setting u(x) to be some fixed
point in Φ(Y ) if x ∈ N . The conclusion now follows from the previous lemma. □

Unlike BVAM (X;Y ), the situation for BV (X;Y ) is more complicated.

Definition 2.19. We say that a map u : X → Y is in BV (X;Y ) if there is a sequence (uk)k∈N from
N1,1(X;Y ) such that uk → u in L1(X;Y ) and supk∈N

∫
X
guk

dµ < ∞. Here guk
is the minimal

1-weak upper gradient of uk in the sense of [23, page 161].

We will see that BVAM (X;V ) = BV (X;V ) whenever V is a Banach space (see Theorem 1.1),
and as in the proof of Lemma 2.14, we can see that BV (X;Y ) ⊂ BVAM (X;Y ). However, BV (X;Y )
is in general a strictly smaller subset of BVAM (X;Y ). This supports the choice of BVAM (X;Y ) as
the space of mappings of bounded variation in [34, 35].

Example 2.20. Consider X = [−1, 1] and Y = {0, 1}. Let u := χ[0,1] and ρi := iχ[−1/i,0]. Then
for each x, y ∈ [−1, 1], if x, y < 0 or x, y ≥ 0 then |u(x) − u(y)| = 0 so it is immediate that (ρi)i
satisfies the upper bound inequality. If x < 0 and y ≥ 0 then

lim inf
i→∞

∫ y

x

iχ[−1/i,0]dL1 = 1 = |u(x)− u(y)|.

Thus the sequence (ρi)i∈N is an AM-bounding sequence for u (and indeed, it is a strong bounding
sequence for u. Therefore we know that u ∈ BVAM (X : Y ). However Newtonian mappings are
absolutely continuous on [−1, 1], and so, since Y = {0, 1}, they must be constant; hence it is not
possible to approximate (in L1 norm) u by Newtonian mappings, proving that u /∈ BV (X : Y ).

While the above example shows how topological obstructions can prevent approximations by
N1,1-maps, the next example provides a more analytical obstruction.

Example 2.21. Let X = [−1, 1] and Y = ({0} × [0, 1]) ∪ ([0, 1] × {1}) ∪ ({1} × [0, 1]) be both
equipped with the Euclidean metric, and X be also equipped with the Lebesgue measure L1. Let
u ∈ BVAM (X : Y ) be given by u(x) = (0, 0) when −1 ≤ x ≤ 0 and u(x) = (1, 0) when 0 < x ≤ 1. If
(uk)k is a sequence of functions from N1,1(X : Y ) such that uk → u in L1(X), then for sufficiently
large k we know that are points xk, yk ∈ X with |xk + 1| < 1

10 and |yk − 1| < 1
10 such that

|u(xk) − (0, 0)| < 1
10 and |u(yk) − (1, 0)| < 1

10 . On the other hand, by the absolute continuity on

[−1, 1] of functions in N1,1(X : Y ), we have that
∫
X
guk

dL1 = length(uk) ≥ 1 + 2 × 9
10 = 14

5 . In
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inferring the above, we used the fact that uk is also a path in Y . On the other hand, ∥DAMu∥(X) =
1, and so it is not possible to have ∥DAMu∥(X) = inf(uk)⊂N1,1(X:Y ) lim infk→∞

∫
X
guk

dL1.

The above example does not preclude an L1-approximation of the AM–BV function by a sequence
of Newton-Sobolev functions. The next example gives a metric obstruction to the existence of even
such an approximation.

Example 2.22. Let X = [−1, 1] and Y = ({0} × [−1, 1]) ∪ {(x, sin(1/x)) : 0 < x ≤ 1} be both
equipped with the Euclidean metrics, and X also be equipped with the 1-dimensional Lebesgue
measure. Let u : X → Y be given by u(x) = (0, 0) if −1 ≤ x ≤ 0, and u(x) = (1, sin(1)) when

0 < x ≤ 1. Then ∥DAMu∥(X) =
√
1 + sin2(1), but due to the absolute continuity of functions

in N1,1(X : Y ) and the lack of paths in Y connecting u(−1) to u(1), there can be no sequence of
functions in N1,1(X : Y ) that gives an L1-approximation of u.

By the ACL (absolute continuity on lines) property of functions in N1,1(X : Y ), the above
examples have higher dimensional analogs, but we will not go into details here.

Remark 2.23. While BV (X : Y ) need not equal BVAM (X : Y ) in general, we do have a relation-
ship between the two notions. Thanks to the Kuratowski embedding theorem ([23, page 100]), we
can isometrically embed any separable metric space (Y, dY ) into the Banach space ℓ∞. Thanks to
Theorem 1.1 and Lemma 2.18, we know that with V any Banach space and Φ : Y → V an isometric
embedding, whenever Y is complete, we have BVAM (X : Y ) is the same as the class{

u ∈ BV (X : V ) : µ({x ∈ X : u(x) ̸∈ Φ(Y )}) = 0

}
.

3. Poincaré inequalities and Semmes Pencil.

We say that the metric measure space (X, d, µ) supports a 1-Poincaré inequality if there are
constants C > 0, λ ≥ 1 such that for each u, g ∈ L1

loc(X), with g an upper gradient of u, we have∫
B

∥u− uB∥dµ ≤ Crad(B)

∫
λB

gdµ

for each ball B ⊂ X. The metric measure space X supports an AM–Poincaré inequality if there
are C > 0, λ ≥ 1 so that for each u ∈ BVAM (X : V ) and any AM-upper bound (ρi)i of u we have∫

B

∥u− uB∥dµ ≤ Crad(B) lim inf
i→∞

∫
λB

ρidµ

for each ball B ⊂ X. As with the 1-Poincaré inequality, the AM-Poincaré inequality implies the
following version, which involves the AM-BV energy:

Lemma 3.1. If X supports an AM–Poincaré inequality, then for u ∈ BVAM (X : V ), we have that∫
B

∥u− uB∥dµ ≤ C rad(B)
∥DAMu∥(λB)

µ(λB)

for each ball B ⊂ X.

Proof. Let ε > 0 and let {ρk}k be an AM-upper bound for u in λB such that

lim inf
k→∞

∫
λB

ρkdµ < ∥DAMu∥(λB) + ε.
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Let 0 < δ < 1/2, and let η be a 1/δ-Lipschitz function such that η = 1 on λ(1− δ)B and η = 0 on
X \ λB, with 0 ≤ η ≤ 1 on X. We then have that {ηρk + δ−1|u|χλB\λ(1−δ)B}k is an AM-upper
bound for ηu in X, see for example Lemma 2.13 above. Thus, by the AM–Poincaré inequality and
by the doubling property of µ, we have that∫

(1−δ)B

∫
(1−δ)B

∥u(y)− u(x)∥ dµ(y) dµ(x) ≤ 2

∫
(1−δ)B

∥u− u(1−δ)B∥dµ

≤ C(1− δ) rad(B) lim inf
k→∞

∫
λ(1−δ)B

(
ηρk +

|u|
δ
χλB\λ(1−δ)B

)
dµ

≤ C rad(B) lim inf
k→∞

∫
λB

ρkdµ

< C rad(B)

(
∥DAMu∥(λB) + ε

µ(λB)

)
.

Now letting δ → 0 and taking ε→ 0, we have that∫
B

∥u− uB∥dµ ≤ C rad(B)
∥DAMu∥(λB)

µ(λB)
.

Here uB is the Bochner integral average of u over the ball B. □

The goal of this section is to see that if X supports a 1-Poincaré inequality, then it supports
an AM–Poincaré inequality. For that we will use the fact that spaces supporting a 1-Poincaré
inequality have a Semmes Pencil of curves (see [13, Theorem 3.10]).

Definition 3.2. We say that the metric measure space (X, d, µ) supports a Semmes pencil of curves
if there exists C > 0 so that for each x, y ∈ X there exists a family Γx,y of nonconstant compact
rectifiable curves equipped with a probability measure σx,y such that each γ ∈ Γx,y connects x to
y, ℓ(γ) ≤ Cd(x, y), and for each Borel set A ⊂ X the map γ 7→ ℓ(γ ∩A) is σx,y-measurable with∫

Γx,y

ℓ(γ ∩A)dσx,y(γ) ≤ C

∫
A∩CBx,y

Rx,y(z)dµ(z),

where CBx,y := B(x,Cd(x, y)) ∪B(y, Cd(x, y)) and

Rx,y(z) :=
d(x, z)

µ(B(x, d(x, z))
+

d(y, z)

µ(B(y, d(y, z))
.

Theorem 3.3. Suppose that µ is doubling, X has a Semmes pencil of curves, and that for µ-
a.e. x ∈ X we have lim infr→0+ µ(B(x, r))/r = 0. Then X supports an AM–Poincaré inequality for
every Banach space V .

The proof follows along the lines of [13, Proposition 3.9], but as we are now dealing with a
vector-valued map, we provide the complete proof here, especially since there seems to be a gap
in the details of the proof in [13] which we fixed here. In doing so, we saw that we needed the

additional condition that lim infr→0+
µ(B(x,r))

r = 0 for almost every x ∈ X. This condition fails for
example when X = R, but in spaces that are not one-dimensional in nature this is automatically
satisfied via the upper mass bound estimates for the doubling measure µ on the connected space X,
when the upper mass bound exponent can be taken to be larger than 1. When X = R2 is equipped

with the measure dµ(x) = |x|−1dL2, the point x = 0 fails the condition lim infr→0+
µ(B(x,r))

r = 0,

but this condition holds at all other x ∈ R2.
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Proof. Fix a Banach space V and let u ∈ BVAM (X : V ). Let B be a ball in X and (ρk)
∞
k=1 be a

strong bounding sequence for u in 4CB with C the constant associated with the Semmes pencil of
curves, that is, condition (2.9) holds for all curves in 4CB. By the Lebesgue differentiation theorem
for vector-valued functions (see for instance [23, page 77]), we know that µ(N) = 0, where N is the
set of points x ∈ X for which either lim infr→0+ µ(B(x, r))/r > 0 or

lim sup
r→0+

∫
B(x,r)

∥u(x)− u(z)∥dµ(z) > 0.

Let x, y ∈ X \N be two distinct points, and for each ε > 0 consider the sets

Eε(x) := {z ∈ X : ∥u(x)− u(z)∥ > ε}, Eε(y) := {z ∈ X : ∥u(y)− u(z)∥ > ε}.

Now, since x and y are Lebesgue points of u, we know that

lim sup
r→0

µ(B(x, r) ∩ Eε(x))

µ(B(x, r))
= 0 and lim sup

r→0

µ(B(y, r) ∩ Eε(y))

µ(B(y, r))
= 0.

Let {ri}i be a decreasing sequence of radii so that r1 ≤ 1
4d(x, y), ri+1 ≤ 1

4ri,
µ(B(x,ri))

ri
≤ 2−i,

µ(B(y,ri))
ri

≤ 2−i, and in addition

µ(B(x, ri) ∩ Eε(x))

µ(B(x, ri))
< 2−i and

µ(B(y, ri) ∩ Eε(y))

µ(B(y, ri))
< 2−i.

For each i let Ri(x) := B(x, ri)\B(x, ri/2) and denote by Γi(x) the collection of all curves γ ∈ Γx,y

such that

H1
(
γ−1(Ri(x)\Eε(x))

)
= 0

and define Γi(y) analogously, replacing x by y. Now use the fact that µ is doubling and Γx,y is a
Semmes family of curves to obtain

ri
2
σx,y(Γi(x)) ≤

∫
Γx,y

ℓ(γ ∩ Ri(x) ∩ Eε(x))σx,y(γ)

≤
∫
CBx,y∩Eε(x)∩Ri(x)

Rx,y(z)dµ(z)

≤
∫
CBx,y∩Eε(x)∩Ri(x)

(
d(x, z)

µ(B(x, d(x, z)))
+

d(y, z)

µ(B(y, d(y, z)))

)
dµ(z)

≤
∫
CBx,y∩Eε(x)∩Ri(x)

(
ri

µ(B(x, ri/2))
+

2Cdd(x, y)

µ(B(x, d(x, y)/2))

)
dµ(z)

≤ ri
µ(B(x, ri/2))

µ(Eε(x) ∩B(x, ri)) +
2Cdd(x, y)

µ(B(x, d(x, y)/2))
µ(B(x, ri))

≤ riCd2
−i +

2Cdd(x, y)

µ(B(x, d(x, y)/2))
µ(B(x, ri)).

We note that the above estimate also fills in the gap found in the proof for the real-valued case

in [13, page 243]. Set Cx,y := Cd +
2Cdd(x,y)

µ(B(x,d(x,y)/2)) . Then from the above argument we see that

σx,y(Γi(x)) ≤ 2Cd 2
−i +

4Cdd(x, y)

µ(B(x, d(x, y)/2))

µ(B(x, ri))

ri
≤ 2Cx,y 2

−i.



16 CAAMAÑO, KLINE, SHANMUGALINGAM

Then for each positive integer n we have

σx,y

( ∞⋃
i=n

Γi(x)

)
≤ Cx,y 2

1−n.

Define

Γ(x) :=
⋂
n∈N

∞⋃
i=n

Γi(x).

It follows that σx,y(Γ(x)) = 0. When γ ∈ Γx,y\Γ(x), there exists a positive integer n0 such that
γ /∈ Γi(x) for every i ≥ n0. It suffices to have γ /∈ Γi(x) for some i ≥ n0 to get that there exists
x̂ ∈ γ\(Eε(x) ∪Nγ) for any H1-null set Nγ in γ. Now consider the same argument replacing x by
y in order to construct Γ(y). Note that σx,y(Γ(x) ∪ Γ(y)) = 0.

Recall that condition (2.9) holds for every nonconstant, compact, rectifiable curve because (ρi)i
is a strong AM-bounding sequence. Therefore, for every curve γ ∈ Γx,y\(Γ(x) ∪ Γ(y)) there exists
an H1-null set Nγ such that

∥u(γ(τ))− u(γ(t))∥ ≤ lim inf
k→∞

∫
γ

ρk ds

whenever τ, t ∈ dom(γ)\γ−1(Nγ). Since γ /∈ Γ(x) ∪ Γ(y), there exist x̂ ∈ γ\(Eε(x) ∪ Nγ) and
ŷ ∈ γ\(Eε(y) ∪Nγ) such that

(3.4) ∥u(x)− u(y)∥ ≤ ∥u(x̂)− u(ŷ)∥+ 2ε ≤ lim inf
k→∞

∫
γ

ρkds+ 2ε.

(Notice that we can actually get not only such x̂ and ŷ but two sequences of points xi /∈ Eε(x)∪Nγ

and yi /∈ Eε(y) ∪ Nγ converging to x and y respectively, but we do not need that here). By the
Semmes family inequality, we have∫

Γx,y

∫
γ

ρk ds dσx,y(γ) ≤ C

∫
CBx,y

ρk(z)Rx,y(z)dµ(z)

for each x, y ∈ X \N , k ∈ N. Therefore, by σx,y(Γ(x) ∪ Γ(y)) = 0 and by (3.4), we see that

∥u(x)− u(y)∥ =

∫
Γx,y

∥u(x)− u(y)∥dσx,y(γ) ≤ C lim inf
k→∞

∫
CBx,y

ρk(z)Rx,y(z)dµ(z) + 2ε.

Recall that µ(N) = 0. Now, for each ball B ⊂ X,∫
B

∥u− uB∥dµ ≤
∫
B

∫
B

∥u(x)− u(y)∥dµ(y)dµ(x)

≤ C

∫
B

∫
B

lim inf
k→∞

∫
CBx,y

ρk(z)Rx,y(z)dµ(z)dµ(y)dµ(x) + 2ε

≤ C

µ(B)2
lim inf
k→∞

∫
B

∫
B

∫
4CB

ρk(z)Rx,y(z)dµ(z)dµ(y)dµ(x) + 2ε

=
C

µ(B)2
lim inf
k→∞

∫
4CB

ρk(z)

∫
B

∫
B

Rx,y(z)dµ(y)dµ(x)dµ(z) + 2ε,(3.5)

where we have used Tonelli’s theorem in the last equality.
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Now, to obtain an estimate for the inner two integrals above, we fix z ∈ 4CB. Let R := rad(B).
By the doubling property of µ, we have with Bi = B(z, 5C 2−iR) for i = 0, 1, · · · ,∫

B

∫
B

d(x, z)

µ(B(x, d(x, z)))
dµ(y) dµ(x) = µ(B)

∫
B

d(x, z)

µ(B(x, d(x, z)))
dµ(x)

≤ µ(B)

∫
B(z,5CR)

d(x, z)

µ(B(x, d(x, z)))
dµ(x)

≲ µ(B)

∞∑
i=0

∫
Bi\Bi+1

2−iR

µ(B(z, 5C 2−iR))
dµ(x)

≲ µ(B)

∞∑
i=0

2−iR

≲ µ(B)R,

where we have implicitly used the fact that µ({w}) = 0 for each w ∈ X. The comparison constants
above depend solely on the doubling constant of µ and the constant C. A similar estimate also
gives ∫

B

∫
B

d(y, z)

µ(B(y, d(y, z)))
dµ(y) dµ(x) ≲ µ(B)R.

Now from (3.5) we see that∫
B

∥u− uB∥ dµ ≲
C rad(B)

µ(B)
lim inf
k→∞

∫
4CB

ρk(z) dµ(z) + 2ε.

Taking ε→ 0, we have that∫
B

∥u− uB∥dµ ≤ C rad(B) lim inf
k→∞

∫
4CB

ρkdµ.

Now, let {ρk}∞k=1 be an AM-upper bound for u. That is, (2.9) holds for AM-a.e. curve. Then by
Lemma 2.11, we know that there exists a sequence of non-negative Borel functions {gk}∞k=1 with
lim supk→∞

∫
X
gk dµ <∞ such that for all ε > 0, {ρk + εgk}∞k=1 is a strong bounding sequence for

u, that is, (2.9) holds for all curves. Applying the above result, we obtain∫
B

∥u− uB∥dµ ≤ C rad(B) lim inf
k→∞

∫
4CB

(ρk + εgk)dµ

≤ C rad(B)

(
lim inf
k→∞

∫
4CB

ρkdµ+ ε lim sup
k→∞

∫
4CB

gkdµ

)
≤ C rad(B)

(
lim inf
k→∞

∫
4CB

ρkdµ+
ε

µ(4CB)
lim sup
k→∞

∫
X

gkdµ

)
.

Taking ε→ 0+ yields the desired result. □

Corollary 3.6. The following are equivalent whenever (X, d, µ) is a metric measure space with µ
a doubling measure satisfying lim supr→0+ µ(B(x, r))/r = 0 for each x ∈ X.

(i) X supports an AM–Poincaré inequality for every Banach space V target.
(ii) X supports an AM–Poincaré inequality for some Banach space V target.
(iii) X supports an AM–Poincaré inequality for real-valued functions.
(iv) X supports a Semmes pencil of curves.
(v) X supports a 1-Poincaré inequality.
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Proof. (i) ⇒ (ii) is immediate. If (ii) holds, then in particular X supports a 1-Poincaré inequality
for Banach space-valued functions, and hence supports a 1-Poincaré inequality for real-valued func-
tions, as R can be isometrically embedded into that Banach space, that is, (ii) ⇒ (v). From [13,
Theorem 3.10] we know that (v), (iv), and (iii) are equivalent. Finally, (iv) ⇒ (i) follows from
Theorem 3.3. □

The condition lim infr→0+ µ(B(x, r))/r = 0 for µ-a.e. x ∈ X precludes us from considering spaces
that have components that are one-dimensional in nature, as for example in R and graphs. It is
perhaps possible to handle this situation separately, as was shown for real-valued BV functions
in [37]. We do not do so here.

4. Proof of theorem 1.1

The focus of this section is to complete the proof of the first main theorem of the paper, Theo-
rem 1.1. By Lemma 2.14 we have seen that BV (X : V ) ⊂ BVAM (X : V ) with the energy seminorm
control ∥DAMu∥(X) ≤ ∥Du∥(X). Thus it only remains to show the reverse inequality. To this
end, let u ∈ BVAM (X : V ). We will make use of the version of Poincaré inequality identified in
Lemma 3.1 above.

Since the measure µ is doubling, for each ε > 0 there is a countable covering {Bi}i of X by balls
of radius ε such that for each T ≥ 1 there is a constant CT > 0, depending solely on T and the
doubling constant associated with µ, such that

∑
i χTBi

≤ CT on X. Moreover, for each i there
is a non-negative C/ε-Lipschitz function φi, with support in 2Bi, so that

∑
i φi = 1 on X; see for

example the discussion at the beginning of [23, Section 9.2]. Such a collection of functions {φi}i is
called a Lipschitz partition of unity in X. Using this Lipschitz partition of unity, we now construct
a locally Lipschitz continuous approximation of u as follows:

uε :=
∑
i

uBi
φi, where uBi

:=

∫
Bi

u dµ.

Let x ∈ X and fix an index j such that x ∈ Bj . Then it follows that whenever φi(x) ̸= 0, necessarily
x ∈ 2Bi and so 2Bi ∩ Bj is non-empty; in this case, 2Bi ⊂ 5Bj . Hence, using also the fact that
u(x) =

∑
i u(x)φi(x), we obtain

uε(x)− u(x) =
∑
i

[uBi − u(x)]φi(x) =
∑

i;2Bi∩Bj ̸=∅

[uBi − u(x)]φi(x)

=
∑

i;2Bi∩Bj ̸=∅

φi(x)

∫
Bi

[u− u(x)] dµ.

Thus by the doubling property of µ and the bounded overlap property of the balls {5Bj}j , we
obtain

∥uε(x)− u(x)∥ ≤
∑

i;2Bi∩Bj ̸=∅

∫
Bi

∥u− u(x)∥ dµ

≤
∑

i;2Bi∩Bj ̸=∅

∫
Bi

∥u− u5Bj∥ dµ+ ∥u5Bj − u(x)∥

≲
∫
5Bj

∥u− u5Bj∥ dµ+ ∥u5Bj − u(x)∥,
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and integrating over Bj and summing up over j, and using the fact that {Bj}j is a cover of X, we
obtain∫

X

∥uε(x)− u(x)∥ dµ(x) ≤
∑
j

∫
Bj

∥uε(x)− u(x)∥ dµ(x)

≲
∑
j

∫
Bj

(∫
5Bj

∥u− u5Bj∥ dµ+ ∥u5Bj − u(x)∥

)
dµ(x)

≲
∑
j

(
µ(Bj)

∫
5Bj

∥u− u5Bj∥ dµ+ µ(Bj)

∫
5Bj

∥u5Bj − u(x)∥ dµ(x)

)

≲
∑
j

µ(Bj)

∫
5Bj

∥u− u5Bj∥ dµ

≲
∑
j

ε ∥DAMu∥(5λBj)

≲ ε ∥DAMu∥(X).

In obtaining the penultimate inequality above, we used the AM-Poincaré inequality, and in obtaining
the last inequality above, we relied on the bounded overlap of the collection {5λBj}j . Thus uε → u
in L1(X : V ) as ε → 0+. As uε is locally Lipschitz continuous (as we will show next) on the
separable metric space X, it follows that uε is Bochner measurable, and so the convergence holds
in L1(X : V ).

To show that uε ∈ N1,1(X : V ), it suffices to show that uε is locally Lipschitz continuous on X
with its local Lipschitz constant function Lipuε ∈ L1(X). Here,

Lipuε(x) := lim sup
y→x

∥u(y)− u(x)∥
d(x, y)

.

To do so, we fix x ∈ X and choose an index j such that x ∈ Bj . Considering y ∈ Bj as well, we see
that

uε(y)− uε(x) =
∑

i;2Bi∩Bj ̸=∅

uBi
(φi(x)− φi(y)) =

∑
i;2Bi∩Bj ̸=∅

(
uBi

− u5Bj

)
(φi(x)− φi(y)) .

Using the Lipschitz property of the functions φi, we now see by the Poincaré inequality that

∥uε(y)− uε(x)∥ ≲
d(x, y)

ε

∑
i;2Bi∩Bj ̸=∅

∥uBi − u5Bj∥ ≲
d(x, y)

ε

∑
i;2Bi∩Bj ̸=∅

∫
Bi

∥u− u5Bj∥ dµ

≲
d(x, y)

ε

∫
5Bj

∥u− u5Bj
∥ dµ

≲ d(x, y)
∥DAMu∥(5λBj)

µ(Bj)
.

It follows that

Lipuε(x) ≲ inf
j :x∈Bj

∥DAMu∥(5λBj)

µ(Bj)
.
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Thus uε is locally Lipschtiz continuous on X, and it only remains to show that Lipuε ∈ L1(X).
Using the fact that {Bj}j covers X, we see that∫

X

Lipuε dµ ≲
∑
j

∫
Bj

∥DAMu∥(5λBj)

µ(Bj)
dµ =

∑
j

∥DAMu∥(5λBj) ≲ ∥DAMu∥(X) <∞,

and this completes the proof that uε ∈ N1,1(X). As uε → u in L1(X : V ) and as supε
∫
X
Lipuε dµ ≲

∥DAMu∥(X) < ∞, it follows that u ∈ BV (X : V ) with ∥Du∥(X) ≲ ∥DAMu∥(X), completing the
proof of Theorem 1.1. Note that the comparison constant in the above inequality depends solely
on the doubling constant of the measure µ and the constants from the Poincaré inequality.

5. Approximate continuity and jump sets; proof of Theorem 1.3

Throughout this section, in addition to the measure µ being doubling and supporting a 1-Poincaré
inequality, we will also assume that X is complete. In this section we consider the regularity
properties of functions in the class BVAM (X : Y ), with (Y, dY ) a proper metric space (that is,
closed and bounded subsets of Y are compact). As seen from the examples in Subsection 2.4,
when Y is not a Banach space, it is more natural to consider the class BVAM (X : Y ) rather than
BV (X : Y ).

For functions u in the class L1(X : Y ), by isometrically embedding Y into a Banach space if
necessary, we know that for µ-almost every x ∈ X, the Lebesgue point property holds at x:

lim sup
r→0+

∫
B(x,r)

dY (u(y), u(x)) dµ(y) = 0,

and we refer the interested reader for more on this topic to [23, Page 77]. At such points x, as in
the proof of Theorem 3.3, if we set Eε(x) := {y ∈ X : dY (u(y), u(x)) > ε}, then we have that

lim sup
r→0+

µ(B(x, r) ∩ Eε(x))

µ(B(x, r))
= 0.

For the convenience of the reader, we rephrase the definition of approximate continuity from Defi-
nition 1.2 now.

Definition 5.1. We say that a point x ∈ X is a point of approximate continuity of u if for every
ε > 0 we have

lim sup
r→0+

µ({y ∈ B(x, r) : dY (u(x), u(y)) ≥ ε})
µ(B(x, r))

= 0.

The discussion from the previous paragraph tells us that µ-almost every point in X is a point of
approximate continuity of u ∈ L1(X : Y ). For functions u ∈ BVAM (X : Y ) we would like a better
control. We may broaden the definition of approximate continuity by saying that u is approximately
continuous at x if there is some y0 ∈ Y such that for every ε > 0 we have

lim sup
r→0+

µ({y ∈ B(x, r) : dY (y0, u(y)) ≥ ε})
µ(B(x, r))

= 0.

Since µ-almost every point in X is a point of approximate continuity of u, if x ∈ X such that there
is some y0 satisfying the above density condition, then we can re-define u at x by setting u(x) := y0;
such a modification is a better representative of u; moreover, such a modification needs to be done
only on a set of µ-measure zero, thanks to the Lebesgue differentiation theorem mentioned above.
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Note that if x is a point of approximate continuity in the above sense with y0 the corresponding
value, and if Y is bounded, then for each ε > 0 we have

lim sup
r→0+

∫
B(x,r)

dY (u(z), y0) dµ(z) ≤ ε+ diam(Y ) lim sup
r→0+

µ({y ∈ B(x, r) : dY (y0, u(y)) ≥ ε})
µ(B(x, r))

= ε,

and so necessarily x is a Lebesgue point of u as well.
The notions of approximate continuity and jump values as considered in [1, page 294] are some-

what different than ours in that it is required there that for every continuous function g : Y → R,
the map g ◦ u is approximately continuous at x with the approximate limit being g(y0). Such an
indirect definition seems to be not needed here, and we take the definition of approximate continuity
proposed by Ambrosio in [2, Definition 1.1].

Let us consider points x ∈ X that are not points of approximate continuity in the above, more
expanded, sense. We would like to know that for x ∈ J (u) there are only finitely many points
y1, y2, · · · , yk, with k ≤ k0 where k0 is independent of u and x, that act as jump values of u at
x. This may not be possible at all x ∈ J (u), but we would like to ensure that this is possible for
H−1-a.e. x ∈ J (u).

Remark 5.2. A drawback in [2] is that, as pointed out in the introduction, the discussion regarding
jump sets is incomplete; if we know that there is a set F , of positive density at x ∈ J (u), for which
g ◦ u takes on an approximate limit at x along F for each continuous g : Y → R, then from [1,
Proposition 1.1(v)] we know that u has an approximate continuity value along F at x. The proof
of the existence of such F is not provided in [2, Proposition 1.1] nor in [2, Remark 1.5]. Indeed,
in proving [2, Theorem 2.3], the family F considered in [2] is a countable collection of distance
functions, and in the case of more general metric space targets, F is too small. Indeed, in order
to detect the distinct possible jump values without knowing ahead of time that there are only two
jump values, we would need to expand F to include 1-Lipschitz functions on the target metric
space such that whenever y1, · · · , yj are distinct points in that target space, there is a function
ψ ∈ F such that {ψ(yk) : k = 1, · · · , j} is of cardinality j. It is not clear to us that such F
always exists. For instance, with the target metric space R2 equipped with the ℓ∞-metric, we are
unable to guarantee such a separation when j ≥ 6. The proof of [2, Theorem 2.3] might perhaps be
completed by considering instead the directions νφ of the normal to the jump sets of φ ◦ u, but we
work directly with the maps u themselves. In order to be able to locate jump values, we need an
alternate characterization of points in J (u), as in the claim of Theorem 1.3(a). This is the focus
of the proof below.

Proof of Theorem 1.3(a). We first make the simplifying reduction that Y is a compact metric space.
We refer the interested reader to the final section of the paper, the appendix, for the final step that
allows us to extend the result to non-compact proper metric space Y .

We fix u ∈ BVAM (X : Y ). Now, if x ∈ J (u), then for every y ∈ Y there is some εy > 0 such
that

lim sup
r→0+

µ({z ∈ B(x, r) : dY (y, u(z)) ≥ εy})
µ(B(x, r))

> 0.

For each y ∈ Y and ε > 0 set

(5.3) F (y, ε) := {z ∈ X : dY (u(z), y) ≥ ε}.
Note that then for every 0 < ε ≤ εy, we have that

lim sup
r→0+

µ(B(x, r) ∩ F (y, ε))
µ(B(x, r))

> 0.
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We fix ε > 0, and cover the compact set Y by finitely many balls B(yi, ε), i = 1, · · · , Nε. Note that

as B(x, r) =
⋃Nε

i=1 u
−1(B(yi, ε), necessarily there is some y1 ∈ Y , relabeled if necessary, such that

lim sup
r→0+

µ(B(x, r) ∩ u−1(B(y1, ε)))

µ(B(x, r))
> 0.

If we also have that

(5.4) lim sup
r→0+

µ(B(x, r) ∩ u−1(Y \B(y1, 3ε)))

µ(B(x, r))
> 0,

then we have two sets E1, E2 ⊂ X with E1 = u−1(B(y1, ε)) and E2 = u−1(B(w1, ε)), dY (y1, w1) ≥
3ε, such that

(5.5) lim sup
r→0+

µ(B(x, r) ∩ E1)

µ(B(x, r))
> 0, and lim sup

r→0+

µ(B(x, r) ∩ E2)

µ(B(x, r))
> 0.

If (5.4) fails, then we know that

lim
r→0+

µ(B(x, r) \ u−1(B(y1, 3ε)))

µ(B(x, r))
= 0,

and so

lim
r→0+

µ(B(x, r) ∩ u−1(B(y1, 3ε)))

µ(B(x, r))
= 1.

In this case, we can cover the compact set B(y1, 3ε) by balls of radii ε/62, and obtain a point
y2 ∈ B(y1, 3ε) so that

lim sup
r→0+

µ(B(x, r) ∩ u−1(B(y2, ε/6
2)))

µ(B(x, r))
> 0.

If we know that

lim sup
r→0+

µ(B(x, r) \ u−1(B(y2, 3ε/6
2)))

µ(B(x, r))
> 0,

then we can set E1 = u−1(B(y2, ε/6
2)) and E2 = u−1(B(w2, ε/6

2)), with 6ε ≥ dY (y2, w2) ≥ 3ε/62

such that (5.5) holds. If the above analog of (5.4) fails, then we know that

lim
r→0+

µ(B(x, r) ∩ u−1(B(y2, 3ε/6
2)))

µ(B(x, r))
= 1,

and the process inductively continues. Thus we obtain a sequence of points y1, y2, · · · with dY (yi, yi+1) ≤
3ε/6i and so that

lim
r→0+

µ(B(x, r) ∩ u−1(B(yi, 3ε/6
i)))

µ(B(x, r))
= 1.

If this process continues ad infinitum, then we obtain a Cauchy sequence {yi}i in Y which, by the
completeness of Y , must converge to a point y∞ for which we would have that for each τ > 0,

lim sup
r→0+

µ(B(x, r) ∩ u−1(B(y∞, τ)))

µ(B(x, r))
= 1,

and so re-setting u(x) = y∞ would show that x ̸∈ J (u). Therefore the inductive process above must
terminate at some index k, and so we know that there is some yk, wk ∈ Y such that dY (yk, wk) ≥
3ε/6k, and with E1 = u−1(B(yk, ε/6

k)) and E2 = u−1(B(wk, ε/6
k)), condition (5.5) holds. Note

that dist(B(yk, ε/6
k), B(wk, ε/6

k)) ≥ ε/6k > 0. Hence, the condition described in Theorem 1.3(a)
is a characterization of a jump point of u ∈ BVAM (X : Y ). □
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Given the above proof, we re-cast the definition of jump points next, as this version is most
useful in the proof of Theorem 1.3(b), see Definition 1.2 for the original construction of J (u).

Definition 5.6. Let u : X → Y . We say that x0 ∈ X is a jump point of u if there exist sets
E1, E2 ⊂ X such that

(5.7) lim sup
r→0

µ(B(x0, r) ∩ Ei)

µ(B(x0, r)
> 0 for i = 1, 2,

and there exist balls B1, B2 ⊂ Y with dist(B1, B2) ≥ rad(B1) such that u(Ei) ⊂ Bi for i = 1, 2.

From the discussion preceding the above definition, we know that x ∈ J (u) if and only if x is a
jump point in the sense of Definition 5.6 above.

Since Y ∋ w 7→ dY (w, y0) is a 1-Lipschitz map for each y0 ∈ Y , the next lemma follows by an
easy verification of (2.9) with the aid of triangle inequality.

Lemma 5.8. Let u ∈ BVAM (X : Y ), and y0 ∈ Y . Then v : X → R given by v(x) = dY (u(x), y0)
belongs to the class BVAM (X) = BV (X).

As a corollary to the above lemma, the co-area formula from Lemma 2.3 yields the following,
from which we obtain σ-finiteness of the jump set with respect to H−1.

Corollary 5.9. Let u ∈ BVAM (X : Y ). For each y ∈ Y and ρ > 0 set E(y, ρ) := u−1(B(y, ρ)).
Then for each y ∈ Y there is a set Dy ⊂ [0,∞) with L1(Dy) = 0 such that for each ρ ∈ (0,∞) \Dy

we have that E(y, ρ) is of finite perimeter in X.

The next result proves that the set J (u), as constructed above, satisfies its σ-finiteness with
respect to the co-dimensional measure H−1 claimed in the statement of Theorem 1.3.

Corollary 5.10. For each u ∈ BVAM (X : Y ), the jump set J (u) is σ-finite with respect to the
co-dimension 1 Hausdorff measure H−1 on X.

Proof. As Y is separable, there exists a countable dense subset Y0 of Y , and for each y ∈ Y0, let

R(y) := {ρ > 0 : P (E(y, ρ), X) <∞}.
By Corollary 5.9, we have that L1((0,∞) \ R(y)) = 0, and so there exists a countable subset
R0(y) ⊂ R(y) dense in (0,∞). By Lemma 2.6, it follows that H−1(∂∗(E(y, ρ)) < ∞ for each
ρ ∈ R(y), where ∂∗E(y, ρ) is the measure-theoretic boundary of E(y, ρ), as given by (2.4).

Now, for each x ∈ J (u), we have by Definition 5.6 and the density of Y0 in Y , that there
exists y1, y2 ∈ Y0, ρ1 ∈ R0(y1), and ρ2 ∈ R0(y2) such that u(E1) ⊂ B1 ⊂ B(y1, ρ1), u(E2) ⊂ B2 ⊂
B(y2, ρ2), and dist(B(y1, ρ1), B(y2, ρ2)) > 0. Here E1, E2, B1, and B2 are as given in Definition 5.6.
Then, we have that x ∈ ∂∗E(y1, ρ1), and so it follows that

J (u) ⊂
⋃

y∈Y0

⋃
ρ∈R0(y)

∂∗E(y, ρ). □

The above notion of jump sets agrees with the notion of jump sets for real-valued BV functions,
see for example [36, 14] for real-valued BV functions in the metric setting, and [16] for the Euclidean
setting (see, however, the discussion in Section 1 on alternate nomenclature used in literature on
Euclidean BV functions). The discussion towards the end of this section gives a brief overview of
why these notions agree. However, as pointed out in [36], a BV function can take on infinitely many
values near the jump point, but such a bad behavior cannot happen on a large set. To demonstrate
a similar behavior of metric space-valued BV functions, we first consider what it means for a point
in the target metric space to be a jump value near a jump point of the BV function.



24 CAAMAÑO, KLINE, SHANMUGALINGAM

Definition 5.11. With u ∈ BVAM (X : Y ) and x ∈ J (u), we say that a point y0 ∈ Y is a jump
value of u at x if for every ε > 0 we have that

lim sup
r→0+

µ(B(x, r) ∩ u−1(B(y0, ε)))

µ(B(x, r))
> 0.

The next proposition verifies the claim (b) of Theorem 1.3 whenever Y is compact. We refer the
reader to Appendix 6.2 for the case where Y is unbounded and hence is noncompact.

Proposition 5.12. There exists k0 ∈ N so that for every u ∈ BVAM (X : Y ) there is a set N ⊂ X
with H−1(N) = 0 such that for each x ∈ J (u)\N there are at least two and at most k0 jump values
y1, · · · , yk ∈ Y of u at x. Furthermore, for every ε > 0 and i = 1, 2, · · · , k, we have

lim inf
r→0+

µ(B(x, r) ∩ u−1(B(yi, ε)))

µ(B(x, r))
≥ γ,

and

lim sup
r→0+

µ(B(x, r) \
⋃k

i=1 u
−1(B(yi, ε)))

µ(B(x, r))
= 0.

Here k0 and γ are constants depending only on the doubling constant and the Poincaré constants
of X, and in particular are independent of Y , u, and ε.

Proof. Since Y is compact, it is separable. As above, let Y0 be a countable dense subset of Y , and
for each y ∈ Y0 let

R(y) = {ρ > 0 : P (E(y, ρ), X) <∞}.
Note from Corollary 5.9 that L1((0,∞) \ R(y)) = 0. Let R0(y) be a countable dense subset of
R(y). For each y ∈ Y0 and ρ ∈ R(y) we know that H−1(∂∗E(y, ρ) \ Σγ(E(y, ρ))) = 0, where
∂∗E(y, ρ) is the measure-theoretic boundary of E(y, ρ), as given by (2.4), and Σγ(E(y, ρ)) is the
reduced boundary of E(y, ρ), as given by (2.5). Here 0 < γ ≤ 1

2 is a number that depends solely
on the constants associated with the doubling property of µ and the Poincaré inequality; see for
example [3, Theorem 5.3]. Let

N :=
⋃

y∈Y0

⋃
ρ∈R0(y)

∂∗(E(y, ρ)) \ Σγ(E(y, ρ)).

Then, by the countability of the collections, we have that H−1(N) = 0. We now fix x ∈ J (u) \N .
We proceed in an inductive fashion hinted at in the discussion preceding Definition 5.6.

Let E1 be one of the two sets identified in Definition 5.6, associated with the jump point x, and
let B1 be the corresponding ball in Y such that u(E1) ⊂ B1 and

lim sup
r→0+

µ(B(x, r) ∩ E1)

µ(B(x, r))
> 0 and lim sup

r→0+

µ(B(x, r) \ E1)

µ(B(x, r))
> 0.

Since the distance between the balls B1 and B2 in Definition 5.6 is positive, we are free to choose
the center y1 of B1 to be in Y0 and then, by increasing the radius slightly if necessary, have the
radius of B1 be in the set R0(y1). A similar modification can be made to the ball B2. We can now
replace E1 with u−1(B1) and E2 with u−1(B2); hence from now on, E1 = u−1(B1). Thus we have
that x ∈ ∂∗E1 because of the existence of B2, and as x ̸∈ N , we see that

lim inf
r→0+

µ(B(x, r) ∩ E1)

µ(B(x, r))
≥ γ and lim inf

r→0+

µ(B(x, r) \ E1)

µ(B(x, r))
≥ γ.
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Let ρ > 0 be the radius of the ball B1, and note that the distance between B1 and B2 is at
least ρ. Covering the closed ball B1 by balls B(y2,1, ρ/12), · · · , B(y2,N2 , ρ/12), with y2,i ∈ Y0 for

i = 1, · · · , N2, and B(y2,i, ρ/12) intersects B1. By doing so, we can find a point y2 ∈ 13
12B1 such

that

lim sup
r→0+

µ(B(x, r) ∩ u−1(B(y2, ρ/12)))

µ(B(x, r))
> 0.

We can then find ρ2 ∈ R0(y2) such that ρ/12 ≤ ρ2 < ρ/11, so that with E2,1 = u−1(B(y2, ρ2)), we
have by the fact that x ̸∈ N ,

lim inf
r→0+

µ(B(x, r) ∩ E2,1)

µ(B(x, r))
≥ γ.

In the above, we have used the fact that B2 does not intersect B1∪B(y2, ρ2) to know that x ∈ ∂∗E2,1.
We proceed inductively as follows. Once yi ∈ Y0 and ρi ∈ R0(yi), i = 1, · · · , k, are selected such
that dY (yi, yi+1) < 2ρi and ρi+1 < ρi/11, and with Ei,1 = u−1(B(yi, ρi)), we have

lim inf
r→0+

µ(B(x, r) ∩ Ei,1)

µ(B(x, r))
≥ γ

for i = 2, · · · , k. We cover B(yk, ρk) by balls B(yk+1,1, ρk/12), · · · , B(yk+1,Nk+1
, ρk/12), each in-

tersecting B(yk, ρk) with yk+1,i ∈ Y0 for i = 1, · · · , Nk+1, and hence find yk+1 ∈ Y0 so that
d(yk, yk+1) < 2ρk, and

lim sup
r→0+

µ(B(x, r) ∩ u−1(B(yk+1, ρk/12)))

µ(B(x, r))
> 0.

We then find ρk+1 ∈ R0(yk+1) such that ρk/12 ≤ ρk+1 < ρk/11, and hence, with Ek+1,1 =
u−1(B(yk+1, ρk+1)), we have that

lim inf
r→0+

µ(B(x, r) ∩ Ek+1,1)

µ(B(x, r))
≥ γ.

Note that as for each j we have ρj < (11)−j ρ, and as dist(B1, B2) > ρ, necessarily B(yk, ρk)∩B2 =
∅. Moreover, as dY (yk, yk+1) < (11)k−1ρ, we also have that the sequence {yj}j is a Cauchy sequence
in Y , and as Y is complete, converges to some y∞ ∈ Y . We now show that y∞ is a jump value of u
at x. Let ε > 0; then there is some positive integer k so that B(yk, ρk) ⊂ B(y∞, ε). It follows that

lim inf
r→0

µ(B(x, r) ∩ u−1(B(y∞, ε)))

µ(B(x, r))
≥ lim inf

r→0+

µ(B(x, r) ∩ Ek,1)

µ(B(x, r))
≥ γ > 0.

Thus u has at least one jump value at x, and moreover, we also have that for each ε > 0,

lim inf
r→0

µ(B(x, r) ∩ u−1(B(y∞, ε)))

µ(B(x, r))
≥ γ.

Note also, from switching the roles of the sets E1 and E2, we obtain a second jump value of u at x.
Now, if z ∈ Y is any other jump value of u at x, then for each ε > 0 with ε < dY (z, y∞)/20, we

can find z1 ∈ B(z, ε/2) ∩ Y0 and 0 < τ < ε/4 such that τ ∈ R0(z1) and note that u−1(B(z1, τ)) ⊂
u−1(B(z, ε)) with

(5.13) lim inf
r→0

µ(B(x, r) ∩ u−1(B(z, ε)))

µ(B(x, r))
≥ lim inf

r→0

µ(B(x, r) ∩ u−1(B(z1, τ)))

µ(B(x, r))
≥ γ;

that is, each jump value of u at x satisfies the above lower density at least γ at x0. As γ > 0, there
are at most k0 := ⌈1/γ⌉ number of such jump values for x.
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Now suppose that we have identified all the jump values y1, · · · , yk of u at x, with 2 ≤ k ≤ k0.

We claim that for each τ > 0, the set E(τ) :=
⋃k

j=1E(yj , τj) has density 1 at x, that is,

lim inf
r→0+

µ(B(x, r) ∩ E(τ))

µ(B(x, r))
= 1.

Here τi ∈ R0(yi) is such that 2
3τ < τi ≤ τ . It suffices to know this for all sufficiently small τ > 0,

and so we consider τ > 0 for which the closed balls B(yi, τi) are pairwise disjoint. If the claim does
not hold, then we would have that

lim sup
r→0+

µ(B(x, r) \ E(τ))

µ(B(x, r))
> 0.

Then let 0 < ε < τ/20 such that for each i, j with i ̸= j we have that dist(B(yi, τi), B(yj , τj)) > 20ε.
Now setting K(τ) = X \ E(τ), we have from (5.13) that

lim inf
r→0+

µ(B(x, r) \K(τ))

µ(B(x, r))
≥ γ > 0 and simultaneously, lim sup

r→0+

µ(B(x, r) ∩K(τ))

µ(B(x, r))
> 0.

Now, by a repeat of the covering argument employed in the first part of this proof, we cover

Y \
⋃k

j=1B(yj , τj) by finitely many balls of radii ε, and so find a ball B1, centered at w1 ∈
Y \

⋃k
j=1B(yj , τj), such that

lim sup
r→0+

µ(B(x, r) ∩K(τ) ∩ E(w1, ε))

µ(B(x, r))
> 0.

Then by modifying w1 if necessary, we can ensure that w1 ∈ Y0, and then find ρ1 ∈ R0(w1) so that
ε ≤ ρ1 <

13
12ε. Note that B(w1, ρ1) is necessarily disjoint from u(E(τ/2)) by this choice. Therefore

we must have E(w1, ρ1) ⊂ K(τ/2), and so

lim inf
r→0+

µ(B(x, r) ∩K(τ/2) ∩ E(w1, ρ1))

µ(B(x, r))
= lim inf

r→0+

µ(B(x, r) ∩ E(w1, ρ1))

µ(B(x, r))
≥ γ.

At this point, we can repeat the preceding argument that established the existence of the jump
values to conclude that there must be a jump value in Y attained by u along K(τ), violating the
maximality of the collection of jump values considered above. It follows that K(τ) has density 0 at
x. □

As pointed out in the early sections of this paper, the theory of real-valued functions of bounded
variation on complete doubling metric measure spaces supporting a 1-Poincaré inequality is reason-
ably well-established. The notion of real-valued functions of bounded variation in metric measure
spaces was first proposed by Miranda Jr. in [40], and its fine properties were studied in [6, 33];
an elegant account of real-valued functions of bounded variation and their fine properties in the
Euclidean setting can be found in [16, Definition 5.9 and Theorem 5.17]. The fine properties of
real-valued BV functions studied there includes approximate continuity and jump points. The no-
tion of approximate continuity, as proposed in Section 5, is the same as that found in real analysis
texts and in [3, 6]. We now verify that the notion of jump values, as given in Section 5, agrees with
the corresponding notion as given in [5].
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As considered in [3], given u : X → R x0 ∈ X is a jump point of u if u∧(x0) < u∨(x0), where

u∧(x0) = sup

{
t ∈ R : lim

r→0

µ(B(x0, r) ∩ {u ≤ t})
µ(B(x0, r))

= 0

}
,

u∨(x0) = inf

{
t ∈ R : lim

r→0

µ(B(x0, r) ∩ {u ≥ t})
µ(B(x0, r))

= 0

}
.

Lemma 5.14. Let u : X → R. Then x0 ∈ J (u) if and only if u∧(x0) < u∨(x0).

Proof. Suppose first that u∧(x0) = u∨(x0) =: β. It then follows that for each ε > 0,

lim
r→0+

µ(B(x0, r) ∩ {|u− β| ≥ ε})
µ(B(x0, r))

= 0,

and so by Definition 5.1 the point x0 is a point of approximate continuity of u, that is, x0 ̸∈ J (u).
For the converse suppose that −∞ < u∧(x0) < u∨(x0) < ∞, and choose t−1 , t

+
1 , t

−
2 , and t

+
2 such

that t−1 < u∧(x0) < t+1 < t−2 < u∨(x0) < t+2 . Then

lim
r→0

µ(B(x0, r) ∩ {u ≤ t−1 })
µ(B(x0, r))

= 0 and lim
r→0

µ(B(x0, r) ∩ {u ≥ t+2 })
µ(B(x0, r))

= 0.

Since u∧(x0) < t+1 and u∨(x0) > t−2 we also have

lim sup
r→0

µ(B(x0, r) ∩ {u ≤ t+1 })
µ(B(x0, r))

> 0 and lim sup
r→0

µ(B(x0, r) ∩ {u ≥ t−2 })
µ(B(x0, r))

> 0,

and so if we set Ei = {t−i ≤ u ≤ t+i } then

lim
r→0

µ(B(x0, r) ∩ Ei)

µ(B(x0, r))
> 0 for i = 1, 2,

with u(Ei) ⊂ Bi := (t−i , t
+
i ). Since t

+
1 < t−2 , dist(B1, B2) > 0. Thus x0 is not a point of approximate

continuity of u, that is, x0 ∈ J (u). If u∧(x0) = −∞ or if u∨(x0) = ∞, then we replace u with
χKn · u and proceed as above, with Kn = {|u| ≤ n}. □

6. Appendix

6.1. The outer measure property of ∥DAMu∥. In [40, Theorem 3.4], Miranda Jr. proves the
outer measure property of ∥Du∥ for a function in u ∈ BV (X) using the criterion given in DeGiorgi–
Letta [11, Theorem 5.1]. To do so, he relies upon a delicate construction by which approximating
sequences of locally Lipschitz functions defined on two open sets are stitched together to obtain
an approximating sequence defined on the union of the open sets. By the nature of Definition 2.2,
this must be done in a manner so that both the L1-convergence and energies of the new sequence
of functions are controlled. In [39, Theorem 4.1], Martio proves the outer measure property of
∥DAMu∥ for u ∈ BVAM (X) using [11, Theorem 5.1] in a similar manner. However, the stitching
argument employed there is much simpler due to definition of BVAM (X), since one only needs to
stitch together the AM-upper bounds. We include a detailed proof of this stitching lemma for the
convenience of the reader.
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Lemma 6.1. [39, Lemma 2.4] Let Ω1,Ω2 ⊂ X be open sets, and let {g1i }i and {g2i }i be AM-upper
bounds for a function u ∈ L1(Ω1 ∪ Ω2 : V ) in Ω1 and Ω2 respectively. Then

gi(x) =


g1i (x), x ∈ Ω1 \ Ω2

max{g1i (x), g2i (x)}, x ∈ Ω1 ∩ Ω2

g2i (x), x ∈ Ω2 \ Ω1

is an AM-upper bound for u in Ω1 ∪ Ω2.

Proof. For j = 1, 2, let Γj denote the collection of curves in Ωj for which (2.9) fails for the AM-

upper bound {gji }i. Let Γ denote the collection of curves in Ω1 ∪ Ω2 which have a subcurve in
Γ1 ∪ Γ2. Then it follows that AM(Γ) ≤ AM(Γ1 ∪ Γ2) = 0.

Let γ be a curve in Ω1 ∪ Ω2 such that γ ̸∈ Γ. By compactness of γ([0, l(γ)]), there exists δ > 0
such that γ′ lies in Ω1 or Ω2 whenever γ′ is a subcurve of γ with l(γ′) < δ. Choose a partition
0 = t0 < t1 < · · · < tn = l(γ) such that tk − tk−1 < δ/2 for 1 ≤ k ≤ n. Since γ ̸∈ Γ, it follows
that γ|[tk,tk+2] ̸∈ Γ1 ∪ Γ2 for 0 ≤ k ≤ n − 2. Therefore, for each such k, there exists a subset

Nk ⊂ [tk, tk+2] with H1(Nk) = 0 and a such that for all s, t ∈ [tk, tk+2] \Nk, we have

(6.2) ∥u(γ(s))− u(γ(t))∥ ≤ lim inf
k→∞

∫
γ|[s,t]

gids.

Let N =
⋃

kNk, and let τ, t ∈ [0, l(γ)] \N, with τ < t. Then there exists 0 ≤ k1 ≤ k2 ≤ n− 1 such
that s ∈ [tk1 , tk1+1] and t ∈ [tk2 , tk2+1]. Let s = sk1 , t =: sk2 , and for each k1 < k < k2 choose
sk ∈ [tk, tk+1] \N . By the triangle inequality and (6.2), it follows that

∥u(γ(τ))− u(γ(t))∥ ≤
k2−1∑
k=k1

∥u(γ(sk))− u(γ(sk+1))∥ ≤
k2−1∑
k=k1

lim inf
i→∞

∫
γ|[sk,sk+1]

gi ds

≤ lim inf
i→∞

∫
γ|[τ,t]

gi ds. □

Using Lemma 6.1, Martio obtains the following using an argument analogous to the proof of [40,
Theorem 3.4]:

Theorem 6.3. [39, Theorem 4.1] If u ∈ BVAM (X : V ), then ∥DAMu∥(·) (defined on open sets)
defines a Borel outer measure in X.

6.2. Dealing with a non-compact proper Y . We now consider the case that the metric space
(Y, dY ) is a proper metric space that is not compact. Recall that the proofs and discussions in
Section 5 dealt with the case that Y is compact as then we can focus on covering Y by finitely
many balls of radius ε > 0 and hence find a ball whose pre-image has positive density at a point
x ∈ J (u). If we had instead a countably infinite many balls needed to cover Y , then we do not know
that there must be one ball whose pre-image has positive density at x. When Y is not compact,
this is because Y is not bounded; hence we cannot cover Y by finitely many balls of fixed radius
ε > 0. In this subsection we point out how to deal with this situation.

As in the proof of Proposition 5.12, let Y0 be a countable dense subset of Y , and for each y ∈ Y0
let R0(y) be a countable dense subset of R(y). If there is some R > 0 and a ∈ Y such that
µ(u−1(Y \ B(a,R))) = 0, then we can replace Y with B(a,R) and the proof of Proposition 5.12
identifies the jump values of u at points in J (u) \ N . Hence we may assume without loss of
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generality that no such a, R, exists. In this case, we fix a point a ∈ Y0 and note by the co-
area formula Lemma 2.3 applied to the real-valued function da ◦ u of bounded variation given by
x 7→ dY (a, u(x)), that∫ ∞

0

P (u−1(B(a, t)), X) dt = ∥Dda ◦ u∥(X) ≤ ∥DAMu∥(X) <∞.

It follows that for each positive integer n we can find Rn > n such that P (u−1(B(a,Rn)), X) < 1/n.
We now enlarge the null set N , chosen in the proof of Proposition 5.12, by replacing N with

N ∪
⋃
k∈N

∂∗u
−1(B(a,Rk)) \ Σγu

−1(B(a,Rk)).

We now fix x ∈ J (u) \N . Then, with x ∈ J (u) \N as in the proof of Proposition 5.12, we have
one of two cases:

(a) For each positive integer n we have that

lim sup
r→0+

µ(B(x, r) ∩ u−1(B(a,Rn)))

µ(B(x, r))
= 0.

(b) There is some positive integer n0 such that for each n ≥ n0 we have

lim sup
r→0+

µ(B(x, r) ∩ u−1(B(a,Rn)))

µ(B(x, r))
> 0.

Should Case (a) happen, we say that u is approximately continuous at x with approximate limit ∞.
Such points form a µ-measure null subset of X because, by embedding Y into a Banach space and
using Bochner integrals, we know that µ-a.e. point in X is a Lebesgue point of u as u ∈ L1(X : V );
note that the value of the function at a Lebesgue point must necessarily be a point in the Banach
space and hence cannot be infinite in nature. We can include them in the set of approximately
continuous points of u. Thus it suffices to take care of Case (b). In this case, we focus on covering
the compact set B(a,Rn) for some fixed n ≥ n0 by balls B(yi, ε), i = 1, · · · , Nε, where implicitly
Nε now depends on the choice of Rn as well, but as n is fixed, this dependence is suppressed. Here
we ensure that 0 < ε < Rn/10. In so doing, we find one point, say y1, such that

lim sup
r→0+

µ(B(x, r) ∩ u−1(B(y1, ε)))

µ(B(x, r))
> 0.

Thus we can choose E1 = u−1(B(y1, ε)), and as x is not a point of approximate continuity of u, we
also know that

lim sup
r→0+

µ(B(x, r) \ u−1(B(y1, ε)))

µ(B(x, r))
> 0.

If we also have

lim sup
r→0+

µ(B(x, r) \ u−1(B(a,R2n)))

µ(B(x, r))
> 0,

then necessarily x ∈ ∂∗u
−1B(a,R2n) and so as x ̸∈ N , we must have that

lim inf
r→0+

µ(B(x, r) \ u−1(B(a,R2n)))

µ(B(x, r))
≥ γ.

If for all positive integers n the above density property holds for u−1(B(a,R2n)), then we can
consider ∞ to be one of the jump values of u at x. Continuing the argument found in the proof
of Proposition 5.12 by covering B(a, 1110Rn) by balls of radius ε/62 to find y2, and proceeding from
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there to find a sequence yi ∈ Y that converges to y∞ ∈ Y , we see that y∞ must also be a jump
value of u at x. The rest of the argument as found in the proof of Proposition 5.12 holds, as long
as we consider ∞ to be one of the jump values if necessary.

If ∞ is a jump value of u at x, then we must necessarily have that x ∈ Σγu
−1(B(a,Rk)) for each

k. As

1/k > P (u−1(B(a,Rk)), X) ≈ H−1(Σγu
−1(B(a,Rk))),

we must have that

H−1(
⋂
k

Σγu
−1(B(a,Rk))) = 0.

That is, the collection of all points x ∈ J (u) \ N that have ∞ as a jump value must be of H−1-
measure zero as well. All other points in J (u) can be handled by the proof of Proposition 5.12 by
using covering arguments only for the compact set B(a,Rj) for sufficiently large j.
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