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ABSTRACT. We establish the Schauder estimates at the boundary away from
the characteristic points for the Dirichlet problem by means of the double layer
potential in a Heisenberg-type group G. Despite its singularity we manage
to invert the double layer potential restricted to the boundary thanks to a
reflection technique for an approximate operator in G. This is the first instance
where a reflection-type argument appears to be useful in the sub-Riemannian
setting.

1. INTRODUCTION

Schauder estimates at the boundary are important tools in regularity theory
and applications to PDEs. On an Euclidean (smooth) domain, they are obtained
classically by combining a flattening of the boundary together with a reflection
argument that allows to use interior estimates.

This classical reflection technique does not work when the ambient space, instead
of R™, is the simplest sub-Riemannian manifold: the Heisenberg H", n > 1. Given
f,g € C> Kohn and Nirenberg in [21] proved that the solution is smooth up to the
boundary at the non-characteristic points of the boundary OS2, where the projection
of the Euclidean normal to 02 onto the horizontal distribution is different from
zero. Then Jerison in [18] using the method of the single layer potential was able to
invert the operator restricted to the boundary to construct a Poisson kernel that
directly yields to the Schauder estimates around a non-characteristic point. Later
in [19] under suitable conditions on the characteristic point Jerison obtained the
Schauder estimates around a strongly isolated characteristic boundary point. On
the other hand, always in [19, Section 3] Jerison showed the celebrated example of
the paraboloid where the Schauder estimate fails, since the solution of the Dirichlet
problem with real analytic datum g and f = 0 may be not better than holder
continuous near a characteristic boundary point.
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Recently Baldi, Citti and Cupini [3], assuming a geometric hypothesis on the
boundary, obtained Schauder estimates at the boundary in neighborhood of non-
characteristic points for the problem Agu = f in Q with Dirichlet boundary condition
u = g on 0f). Here Ag = Zle X? is the sub-Laplacian in a generic Carnot group G
with distribution V! generated by the vector fields X7, ..., X} and € is a bounded
open set of G. Here f and g belong to suitable classes of holderian functions. The
additional hypothesis that Baldi, Citti and Cupini [3] assume is that the induced
distribution on the boundary, generated by the vector fields tangent to the boundary
that belongs to the distribution V!, verifies the Hormander condition. However
even in the simplest case of the Heisenberg group H' this hypothesis is not verified.
Another relevant paper concerning the C*® Schauder estimates in Carnot groups
near a non-characteristic portion of the boundary of regularity C1'* is [4]. The
full Schauder estimates have been subsequently obtained in the recent paper [5]
where the authors obtain estimates in T'*¢ for k > 2 near a C*® non-characteristic
portion of the boundary in a Carnot group by means of a compactness method
going back to seminal works of Caffarelli (see e.g. [9]).!

The aim of this work is to establish the Schauder estimates at the boundary away
from the characteristic points for the Dirichlet problem

{AGu—f in O

1.1
(L.1) u=g on 0N

by means of the double layer potential in a group of Heisenberg type G. Here 2 C G
is a bounded open set and f € C%(Q), g € C>%(99Q). Since the function f in
(1.1) concerns only interior estimates, it is not restrictive to study the associated
homogeneous problem Agu = 0 in Q and u = g on 9f). By the Green’s representation
formula the solution of the previous problem is given by

ulz) = /d 9)(TeGle. ), v)day),

where Vg is the horizontal gradient and G(z,y) is the Green’s function such that
G = 0 on 0f). Then we consider an harmonic approximation of u(x) given by D(g)(x)
where instead of VgG(x,y) we consider VgI'(z,y), where T' is the fundamental
solution for Ag. We will call D(g) the double layer potential. Clearly the harmonic
function D(g) does not assume the boundary datum g, but when x — £ € 9Q and
¢ is a non-characteristic point, we get that the limit of the double layer potential
coincides with T'(g)(€) := $9(&) + K(g)(£), where K is a singular operator from
C?* into C?%2. Jerison in [18] pointed already the singularity of K and chose to use
instead the single layer potential to derive Schauder estimates up to the boundary.
On one hand in the Euclidean case the analogous of K is a compact operator if
the boundary is smooth, thus T is invertible, by the Fredholm alternative. Then,
we have that D(T1(g)) is harmonic and assume the boundary datum. Hence the
Schauder estimates follow automatically by the holder estimates for 7. On the other
hand when the boundary 92 is Lipschitz the operator K is singular as well as in the
sub-Riemannian case. However, Verchota in [26] inverted the operator T' between
L? classes on the Lipschitz boundary in an Euclidean domain. He showed that

LA first version of the current paper was only considering the case of the first Heisenberg group.
We decided in this new version to deal with all possible H-type groups; the paper [5] appeared
while this work was in preparation.
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the L2 norm of K is small compared to % extending the previous result by Fabes,
Jodeit, and Riviére [13] for C' domains in R™. The technique developed in [26] was
influenced by the previous seminal papers by Calderén [10] and Coifman, McIntosh,
and Meyer [12] which established the LP-boundedness of the Riesz transform and
the double layer potential in this Lipschitz Euclidean setting. All these results are
very well explained and (some of them) extended in the book [20] by Kenig. It is
important to keep in mind that in this Euclidean setting, the double layer potential
is singular since the domain is rough. Several extensions of the boundary layer
technique have been developed over the last years in a variety of settings (see e.g.
[2] and references therein for recent developments).

In the present situation, as mentioned above, the situation is more dramatic since
the double layer potential is singular even on smooth domains. Fortunately in the
present work we do not need to develop an L? theory for singular integrals in the
sub-Riemannian setting as Orponen and Villa did in [23]; instead we need to prove
that K has small C?® norm with respect to % in order to use the continuity method
developed by [26] (see also [20, page 56]). Crucial to our strategy is a reflection
argument, special to the sub-Riemannian setting, which we believe will be proved
to be useful for other problems when the lack of commutativity is critical.

We now describe our strategy in the case of the upper half space {z1 > 0} of
the first Heisenberg group H! with coordinates (x1, 2, x3) in H'. The boundary of
{z1 > 0} is given by the intrinsic plane IT = {z1 = 0}, so called in literature since it
does not contain characteristic points. In this case the singular operator K is an
operator on II with convolution kernel &k given by (3.12). In order to prove that K
has small C%“ norm with respect to % we use a surprising reflection technique in
the Heisenberg group. Indeed the main obstacle in applying the reflection technique
in the Heisenberg group is the fact that if u satisfies an equation, its reflection
u(—x1, 2, x3) does not satisfy the same equation, because of the non commutation
properties of X7 and X5. As a consequence, while the increments appearing in the
kernel along the horizontal directions are the standard ones, 1 — y; and xo — ys, in
the third increment mixed variables show up

1
I3 —Ys — 5(3/1962 - y2$1)~

However this increment, restricted to the boundary xz; = y; = 0, reduces to the
standard one, and all variables decouple. This allows to apply a reflection technique,
if we are interested in the limit, when the operators tend to the boundary. Hence
we modify the operators on the whole space, removing the mixed term, which is not
present in the limit, and is the cause of preventing reflection. Hence the symmetry
of these new operators on the whole space yields that in the limit the C>® norm of
%I + K and —%I + K coincide. Finally the continuity method allows to prove the
invertibility of %I + K, thus the solution of the Dirichlet problem on the half space
is given by harmonic function D((31 + K)~'g). Once we obtain the invertibility
of %I + K on the flat space the general case for curved domains follows directly.
Indeed flattening the boundary around a non-charatheristic point involves a compact
operator K p that does not affect the invertibility %I + K + K. Hence the Schauder
estimates around a non-charatheristic point are a direct consequence of the Holder
estimates for the inverse of %I + K+ Kp.

Even if the result in the present paper, i.e. the Schauder estimates at the boundary
on H', is known since the works of Jerison and by now thanks to [5], in the full
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generality of any Carnot groups, we want to emphasize that it was not known that
one could achieve such results via the double layer potential. We believe that our
method, being independent of all the previous ones, will be proved to be useful for
other problems and provide a new point of view on singular integrals in groups.

In order to simplify the exposition, we concentrate in the first five sections only
on the case of H', for which the computations are easier. In the last section 6 we
show that the same technique provides the Schauder estimates in the more general
setting of H-type groups. We emphasize that for the C? estimates of the singular
operator K (Theorem 4.9) in the case of H! we provide a standard proof based on
[16, Lemma 4.4] in order to make the exposition self-contained, whereas in the case
of the H-type group G (Theorem 6.15) we used a deep result by Nagel and Stein
[22].

To be more precise on the boundary 0f) the holder classes are defined by the non-
isotropic Folland-Stein holder classes I'»%(9) introduced by Jerison [18, Section 4],
see also [22, 15]. Roughly speaking a function belongs to I'>%(952) if at each scale
0 we approximate the function by a second order polynomial in local coordinates
on 90 with an error that goes as 627%, this idea in the Euclidean setting goes
back to Campanato [11]. We show that on the plane II = {z; = 0} the class
I'29(II) coincides with the classical sub-Riemannian hélder space C%<(II), that
means that the second order horizontal tangential derivatives and the first order
vertical derivatives are holder continuous with respect to the induced distance on II.
The control on the first order vertical derivatives is crucial since on II we do not
verify the Hormander rank condition such as in [3], thus the vertical derivatives are
not a priori commutators of vector fields that belong to the distribution. To our
knowledge the equivalence of these two classes of functions was known only when
instead of the intrinsic plane IT we consider the whole group G, see [15, Theorem
5.3].

Finally we point out that the Schauder estimates for general H-type groups,
obtained in Section 6, are not consequences of the results in [3] (but of course follow
from the results in [5]); indeed there are several examples of H-type groups, different
from H', that does not satisfy the Héormander rank condition on II, see for instance
Example 6.3. As is usual in layer potential methods, one needs to have a rather
precise formula for the fundamental solution of the operator to be able to conclude.
This is the main issue in our technique to deal with general Carnot groups.

The paper is organized as follows. In Section 2 the Heisenberg group, the
fundamental solution for the sub-Laplacian and the Holder classes are introduced.
Section 3 deals with the double layer potential and its jump formulas. In Section 4
we provide the invertibility of the double layer potential on the intrinsic plane by
the reflection technique. In Section 5 we show the local Schauder estimates around
a non-characteristic point and the global Schauder estimates for bounded domains
without characteristic points. Examples of such domains are constructed in [1].
Finally in Section 6 we show that all the previous results hold in the more general
setting of H-type groups.

2. PRELIMINARIES

The first Heisenberg group H! is an analytic, simply connected 3-dimensional
Lie group such that its Lie algebra g admits a stratification

g=V'eV? [VLV]=V? and [V',V?={0}.
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The stratification induces a natural notion of degree of a vector field
deg(X) =4 whenever X €V},

for j = 1,2. By [8, Theorem 2.2.18] the first Heisenberg group H' can be identified
with the triple (R3, 0,6y ), where o is the polynomial group law given by

1
yoxr = (2/1 +x1,Y2 +22,Y3 + T3 + §(y1x2 _92331))7

for any pair of points x = (21, 22, %3), ¥ = (y1,%2,y3) in R® and {6, } x>0 is a family
of automorphisms of (R?,0) such that

Ox(w1, w9, 23) = (Ar1, Az, \2a3).
The homogenous dimension @ is given by
Q = dim(V') + 2dim(V?) = 4.
We call horizontal distribution the subspace V! and we choose the basis of left
invariant vector fields
)
Xl = 8$1 - 7
We denote by Vi the horizontal gradient Vi = (X1, X3) and by V = (91, 02, 03)
the standard Euclidean gradient. The sub-Laplacian operator is given by
Ag = X? + X2 = divyg(Va),

where divy(¢) = X1(¢1) + Xa(¢a) for ¢ = ¢1 X1 + ¢2 X2 € VI Is is well known
(see [8, Chapter 5]) that the sub-Laplacian admits a unique fundamental solution

Ie C>°(R3~ {0}), T € LL _(R3), T'(z) — 0 when z tends to infinity and such that

loc

X
Opyr  Xo=0,, + 510353.

[ 1@ dapla) do = —4(0) Ve € CF (R,

Definition 2.1. We call Gauge norm on H' a homogeneous symmetric norm d
smooth out of the origin and satisfying

Ag(d(z)* Q) =0 Vz#0.
Following [14, 7] a Gauge norm in H! is given by
1
|zl = ((aF +23) + 1623) 1.
Therefore we have

D(x) = (2m) a2l @ = v

Finally we define the fundamental solution I'(x,y) = f(y‘l o x) that is given by

(21) F(l‘,y) = N ! 2\ 172
QW(((fﬂl—yl)z-‘r(m—m)z) +16(r3—y3—%(y112—y211)) )

and the Gauge distance d(z,y) = |y~ ! o x|y for all x,y € H' . The Gauge ball
center at x € H! of radius 7 > 0 is given B,.(z) := {y € H' : d(z,y) < r}.
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Definition 2.2. Let 0 < o < 1,  C H! be an open set and f : Q2 — R be function
on . We say that f € C*(Q) if there exists a positive constant M such that for
every x,y in

[f(@) = fly)| < M d°(z,y).

o @) = f)l
”fHCQ(Q) = ii}fy) W + ilelg |f(z)]-

Iterating this definition, when k& > 1 we say that f € C*(Q) if X,u € C*~1(Q)
foralli =1,2.

We set

2.1. Smooth domains, characteristic points and holder classes on the
boundary.

Definition 2.3. The set € is called a domain of class C'*° if for each £ € 02 then
there exists a neighborhood U and a function ¢¢ € C°(Ug) with [Vipe| > @ > 0 in
Ue such that

UenNQ={zecU: : ¢(z) <0}
UsnNoQ={xeUs : ¢(x) =0}
We say that € in 99 is a characteristic point if Vg (€) = 0.

Let &, n in 012, we define the induced distance d on 9 by

d(&,m) = d(&,n),
where d is the Gauge distance in H! and for r > 0 we call B, (&) the induced ball
given by R
B,(§) = B(£) N oL,
where B,.(£) is a Gauge ball in H! centered at £.

Definition 2.4. Let 0 < a < 1. We say that a continuous function f belongs to
C*(09Q) if there exists a constant C' such that

1)~ S (o)
d(&, )"
for each &, in 9. Then the holder semi-norm [f],, is defined by
e s MOS0
¢neon d(&,n)*
&#n

<C,

and the holder norm is defined by
17l = [l + sup 1£0)
£€o0

Definition 2.5. Let 0 < o < 1 and k € NU{0}. We say that a bounded function
f belongs to I'**(9Q) if for each £ € 90 and & > 0 there exist a polynomial P (n)
of degree k in local coordinates on 9§2 and a uniform constant C' such that

[f(n) = Pe(n)] < C&*F, d(n,€) <6

Then the Holder semi-norm [f]x o is the least possible C' above + the supremum of
the coefficient of P: and the holder norm is defined by

[fllpr.e = [flk,a + sup [f(E)],
£€0Q



SCHAUDER ESTIMATES UP TO THE BOUNDARY ON H-TYPE GROUPS 7

These classes are the non-isotropic Folland-Stein hélder classes (see [15] or Section
9 of [22]) introduced by Jerison [18, Section 4].

2.2. Polynomial in local coordinates far from the characteristic points.
Let € in 092 be a non-characteristic point and ¢ be the defining function of the
boundary, see Definition 2.3. Then the horizontal normal to 912 is defined by

Ve

| Vay|

Then there exists an orthonormal frame Z, S tangent to 992 such that deg(Z) =1
and deg(S) = 2. Then we consider the exponential map

(2.2) (21,22, 23) = exp(vivy) © exp (v22) o exp (v3S) (§)

Vp

On the neighborhood U C H! of ¢ we consider the local coordinates v = (vy,vo, v3)
given by the inverse map Z¢ of the exponential map defined in (2.2). In the literature,
these coordinates are commonly called exponential or canonical coordinates of the
second kind, see [6]. In these new coordinates Z¢ (U N 0N) C {v1 = 0}. Then we set
U= (UQaU3) and J = (j?aj3)
deg(J) =ja+2-J3
and o
o7 = vl
A polynomial of order k in local coordinates on the boundary is given by
P@)= > a0’
deg(J)<k

where a; are constants. Hence assuming that n = Egl(ﬁ) we set Pe(n) := P(v) in
Definition 2.5.

3. DOUBLE LAYER POTENTIAL

Let Q be a bounded smooth domain of H!. We consider the following Dirichlet
problem

Agu = in Q
(3.1) mu =0 in
u=g on 0N.

Let h,(y) be an harmonic function in Q such that

(3.2) ha()loe = T(- z) o0,
then the Green function G(z,y) is given by

Under the assumptions (9€2 smooth, negligible surface measure of the singular set
and uniform exterior ball property) by [25] a solution of (3.1) is

(3.3) ulz) = /a 9)(VEG (. 9). ()i,

where v(y) is the unit normal at the point y € 952. Following [20] we consider the
approximation of (3.3) given by

(3.4) D(g)(x) = /a (VAT @.9). ()i (y)
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proposed by C. Neumann in the classical setting. Clearly we have that AgD(g)(z) =
0 for each x € Q.

3.1. The jump formulas across an intrinsic plane. Let Q = {z; > 0} Cc H!
and 0Q = {z1 = 0} = II. Then the induced distance d is given by

1
(3.5) (&,9) = ((z2 = y2)" + 16(23 — y3)*) 3
for each & = (z2,x3) and § = (y2,ys3) in II and the induced ball is given by

B.(#) = {(vos) € 11 ¢ d(2,9) <r}.

Proposition 3.1. Let Q = {z; > 0} C H! and 9Q = {z; = 0} = II. Then the
double layer potential D(g)(x) is given by

(3.6) D(g)(x) = K1(9)(x) + K(g)(x)

for x € Q, where Ky and K are operators with kernels respectively k1 and k defined
as

(7 + (22 —92)*) 21

((a;2+(x - )2)2-1—16(;10 —ys+3 )2>3/2
1 2~ Y2 3 —Ys T 3Y221

67 k()=

(38) k(%,ﬂ) — _é (l‘g - yQ)(x3 —Ys — %ygxl)

(4 (@2~ 12)2)" + 16 (x5 — s + Syom1)

2)3/2’

where § = (y2,y3) and (0,y) € II.

Proof. By left invariance an explicit computation shows that the derivative (2.1)
with respect to X7 is given by

X{(T(z,y) = (X, D)y~ '2) =
_ ((931 —y1)? + (22 — 92)2)(% — 1) — (w2 — y2)(=’f3 — Y3 — %(ylwz - yﬂl))
W(((xl — )2+ (22— 12)2)” + 16 (25 — y5 — L (yr2s — y2w1))2>3/2
Since I" is symmetric we also have
X{T(z,y) = (VT (2,y), X{)
(@ = y)? + (22 = 92)?) (1 — 1) — 4(y2 — 22) (y3 — 23 — 5(x1y2 — 2291))

B W(((fﬂl —y1)? + (22 — y2)2)2 +16(2z3 — ys — 3 (Y12 — yle))2>3/2

Evaluating this derivative over the plane II = {y; = 0} for 21 > 0 we get

(23 + (w2 — y2)?) w1 — 4(w2 — yo) (y3 — 23 — S212)

X{T(2,(0,y2,y3)) = 5 372
(3.9) w((mf + (z2 — 42)2)” 4+ 16(23 — y3 + 2yo11)) )

= kl('rv (7;) + /{J(LE, 7))

where k1 and k are defined in (3.7) and (3.8). Integrating (3.9) over the plane II
and assuming y; = 0, and x; > 0 we get (3.6). O
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Remark 3.2. Notice that for each » > 0 it holds
(3.10) [ (ar ) v)doty) = 1.
9B, (x)

Indeed, by the mean value formula for each open subset O C H! such that x € O,
for each r > 0 such that B,.(z) C O and for each harmonic function ¥ € H(O) we
have

6@ = [ )Tl )0 i)
In particular if we consider ¢¥» =1 in O we obtain (3.10).

Lemma 3.3. Let zo = (0,20) € IT, R > 0 and Bgr(i¢) = {§ € I d(&0,9) < R} C 11
Then the integral

[ 0.0), Xt W)

Br(Zo)

is well defined if the first component x1 of x satisfies x4 > 0 and tends to 1/2 as
T — Tg.

Proof. Let {«"™},en be a sequence of points in Q = {z; > 0} converging to z( as
n — +o0o and €, > 0 small enough such that B(z",¢,) C Q for each n € N. Then
we consider the bounded domain

QF = {21 > 0} N Br(zo) ~ B(z",¢,).

By the divergence theorem for each n € N we have

0= Aul'(z™,y)dy = / (VAL (2, y), va(y))do(y)
fo 895
- / (VT (n, 9), v(9))do(y)
OBR(z0)N{z1>0}

(3.11)
+ / (VLT (@0, ), () do(y)
HﬂBR(:E())

~ [ ) )i )
OB(z™,e,)

For each n € N the ball B(z",¢,) is contained in {z; > 0} thus by Remark 6.5 we
get

[ ) mt)is) =1
OB(z™,en)
Noticing that ITN Br(xo) = Br(io) and rearranging terms in (3.11) we get
| @ viet) <1 [ (VAT (e, () dor ().
Br(%0) OBRr(xo)N{z1>0}

Letting n — +oo the left hand side of the previous equality converges to

1
- | (VT (0,9). 1(y))do(y) = 5.
(9BR($0)PI{11 >O}

since we only consider half of the integral equation (3.10). (]

The operator K is totally degenerate while restricted to II, so that we can not
restrict it to functions defined on II; however we can compute the limit from the
interior of the set.
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Proposition 3.4. Let g be a Lipschitz compact supported function in Il and xq be
a point in II. For x € H' \. II we consider

K1(g)(x) = / (2, 9)g (v)do (y).

II

Then we have

1
Ki(g)(w) > 39(x0)  asw— a7,

K(9)(w) = —50(e0) as > w5,

so that (K1)™ = 11d while restricted to Il and (K1)~ = —$1d while restricted to II.

Proof. Let R > 0 big enough such that supp(g) C Br(&). Let us assume that
x = (x1,%), x1 > 0 and

K1(g)(x) = /H (2, 9)g () do (y) = / k1 (2, 9) (9(y) — 9(2))do(y)

Br(#o)

+(@) [ i)

On one hand we have

[ kaws)lot) — gta)doty)
Br(#o)

<L / (2, ) d(y, 7)do (y)
Br(Zo)

<L Vaid(y, z) " 2do(y) — 0,
Br(#o)
as  — xg and where L is the Lipschitz constant of g. On the other hand by
Lemma 3.3 we have

o(x) /B R = 9@ / (ky(2.y) + Kz, y))do(y)+

Br(#o)

o) [ Kado) —— Sateo) ~ate) [ Ko nidets) = som)

T, Br(#o)

by symmetry of the kernel k restricted to II, see Lemma 4.7. Finally when z; < 0
the kernel k; defined (3.7) has the same sign of x; , then —k; and —x; are positive
and by Lemma 3.3 we have

() /B o hiety) = —o(a) / (—k1(2,) + Kz, 9))do(y)+

Br(Zo0)
1
o) [ Ka)doly) ————— ~3g(zo). =
Br(20) (711,22,13)%23

Definition 3.5. As z — z the kernel k(z,7) defined in (3.8) converges to the
convolution kernel

k(i — ) = —= (w2 — y2) (3 — ys)

(3.12) — - 7
((3?2 — ) +16(z3 — ys) )
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Thus, if ¢ is a continuous compactly supported function in IT the operator K(g)
converges to

[+ = (@),
n
that with an abuse of notation we also denoted by K(g).
Hence the analogue of [24, Theorem 4.4] in this setting is the following

Theorem 3.6. Let g be a Lipschitz compacty supported function in I1 and xq be a
point in I1. Let D(g) be the double layer potential defined in (3.6), then the limits
of D(g)(x) when x tends to x& for x € {z; > 0} and when x tends to z; for
x € {z1 < 0} exist. Moreover the limits verify the following relations

lim, D(g)(a) = dg(a0) + K (w0) if e {n >0
lim_D(g)(@) = ~4g(w) + K f(a0) if e {m <0},

where K is the operator with convolution kernel k defined in (3.12).
Proof. By Propositions 3.4 and Definition 3.5 we obtain
1
D(g)(z) — (51 + K)(9)(x0)

in the limit from positive values of x1, while

Dlg)() —» (5T + K)(9)(xo)

in the limit from negative values of x;. O

4. INVERTIBILITY OF THE DOUBLE LAYER POTENTIAL ON THE INTRINSIC PLANE
4.1. The C*“ estimates of K.

Definition 4.1 (Classical Holder class C1%). Let r € R, we say that a function g
defined on the boundary I, = {x = (r, z2,x3)} is of class C**(II,) if and only if
029 is a continuous function and there exists C' > 0 such that

1029(9) — D2g()| < Cd(#, )
for each & = (x2,x3) and § = (y2,ys3) in II, and where
(4.1) d(&,9) = (2 — y2)* + 16(z3 — y3)?)
Remark 4.2. Notice that the induced distance

~ 1
d(#,9) = ((x2 — y2)* + 16(x3 — y3 — 2r(z2 — 12))*)4

on II,., considered in Definition 2.5, is different from d. They coincide only when
r=0,ie. I =1L

=

In addition, we set

9ll,e =9l + sup e a
lgll1,a = llgll o iG.9)

where
lglli = sup g(Z) + sup O29(2).

zell,. zell,
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Definition 4.3 (Classical Holder classes C??). Let r € R, we say that a function
g defined on the boundary I, = {x = (r,x2,23)} is of class C%%(II,) if and only if
02g and 03¢ are continuous functions and there exists C' > 0 such that

1039(9) — O3g(#)| < Cd(&, 9)"
and

|039(9) — 939(2)| < Cd(Z, §)*
for each & = (z2,x3) and § = (y2,ys) in II,.. In addition, we set

I9ll2,0 = llgll2 + [Osg]a + [039]a

where . .
[039](1 _ sup ‘839(3{) - 339(55”7
&,9€ll,, #Y d Zi',g)a
o~ sy 1PB000) ~ R0l
&.g€ll,, 49 d(z,9)*
and

lgllz = llglls + sup [93g(2)| + sup [939(2)].
ell, zell,

Proposition 4.4. A function f belongs to C*(Ily) if and only if f belongs to
'%%(Ily), namely for each & € g, p > 0 there exists a polynomial P;(§) =
az + bzvg + czv3 + dgvs with © = § — & and C > 0 such that

(4.2) [F(§) — P:(9)] < Cp**

for each § € B,(Z) (see Definition 2.5).

Proof. Assume that f € C*%(Ily). Let

Pi(9) = f(&) + 02f (2)(y2 — x2) + %@)(yz — 22) + 03 f(2)(y3 — x3).

By the Lagrange mean value theorem for the function ¢t — f(y2, z3 + t(ys — x3))
with t € [0,1] we get

T(y2,y3) = f(y2,23) + 03 f(§)(y3 — x3)

where £ = (y2,23 + 0(ys — x3)) for 6 € (0,1). Moreover, by the Taylor’s formula
with Lagrange remainder for the function ¢ — f(z2 + t(y2 — x2),x3) with ¢ € [0, 1]
we get

2
Fles) = Sl es) + 021 @) w2 — 2) + 220 oy
where 7 = (22 + 0(y2 — x2),x3) for § € (0,1). Then we get

f(y2,y3) = f(w2,23) + 02 f (%) (y2 — 72) + 82]67(77)(2/2 —x2)” + 03 f (&) (ys — w3)
5 f(n) — 9 f(2)

5 (y2 — @2)* + 93 f(§) — B3f (&) (y3 — 3).

= Pa(9) +

Therefore
2 _ 92 &
Fwos) — ot < IO ZI@N o410, 116) — 0478 s — )

< Cd(n, &)%d(g,2)* + Cd(€,2)%d(,&)* < Cd(&, 9)*.
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Now, for any fixed # € Il and p > 0, taking § € B, (&), clearly since d(&,§)>t® <
P>t we get

[F(§) = P:(9)] < Cp**.
For the reverse implication we set
u(0 (%))
p?
where 0,(2) = (pz2, p*x3). Let &, § two points at distance p apart, by Remark 4.5

there exists & such that d(%,€),d(§,€) < 8 V3, Then after a translation of —¢, we
have B/,/Q = BP/Q(O) - pr( ) B\f ( ) Let

uy(2) =

1Pz,p72 = Py pr2llLee ) < fos2 = Papralloe sy + [1for2 = Py ps2llie(sy)

:;iz sup |f(5) — <>|+pi sup |f(0) — Py(0)]

9€B, /2 9€B,/2

4
<— sup [f(
p? 9€B 3,(2) P~ 9€B s3,(9)

< 8(3)! T 2Cp”.

>
=
I
.
—
>
-
_|_
|
wn
=
o]
=
—~
>
S~—
|
e
—
>
-

Notice that

. 4
(P.pj2 — Py py2)(0) = ?[(% — ay) + (by — by)pv2 + (¢ — ¢)p*v3 + (do — dy) p°v3].

Then by Lemma 4.6 we get
43) laz — ag) < 2(3)1F/20p* e and  |bs — by| < 4(3)H/20ptte
. les — ¢l <4(3)1F2Cp™  and  |dg — dy| < 4(3)1F/2Cp%.

By assumption (4.2) we easily get that az = f(&), f is continuous, 9af(Z) = bz,
03f(Z) = dz. Then by (4.3) we obtain that s f, J5f are continuous and 93 f is C* .
Moreover, setting es = (1,0) by (4.2) we have

(f(@+ (h+s)e2) = f(@+hez)) = (f(&+se2) = f(2)) = 2c:hs +O(s*T¥) + O(h*T).

Then there exists

1 (f(5:+(h+s)ez)—f(i"+he2) f(i:+sez)—f(i“)> — o,

S S

lim lim —
h—0s—0

On the other hand, letting s — 0 in the previous limit we gain that
O2f (% + hea) — D2 f(2)

2005 — 9.
a5 (&) = Ilzg% A = 2¢;.
Finally, by (4.3) we obtain that |93 (&) — 92f(5)] < 8(3)'+/2Cd(&, §)*. O

Remark 4.5. Given two points Z,¢ € II such that p = ( ,0) then there exists
£ = (L2fyz 2at3Us) guch that d(€,9) :Ag < @p and d(€, %) < —p Moreover if
Z, 4 belongs to Br(Zo) for &g € II then £ in Bag(Zo).

Lemma 4.6. Let © € IT and P(d) = a + bvg + cv3 + dvs. Assume that there exists
C > 0 such that ||P||~(p,) < C, then |a| < C and |b|,|c], |d| <2C
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Proof. Setting vo = v3 = 0 we have |a| < C. Let ¢ > 0, if vo =0, v3 = 1/(1 + ¢)
we get |a + ﬁj_s| < C, thus |d| < 2C(1 + ¢), letting ¢ — 0 we get |d| < 2C. Setting
vy = £1/(1 4 ¢€), v3 = 0 we obtain

b L c
1+ (1+¢)?

b c

—_ | <2C.
1+ (1+4¢)?

— ) ’

Then we have

1 < 1 b +_¢ . b c <90
1+e =~ 2\|1+e (1+4¢)? 1+ (1+¢)?|) —
|e| 1 b c b c
< = — <2C.
1+e =2 1+s+(1+€)2 + 1+ (Q+¢)2|) —
Letting € — 0 we get the desired inequalities. [

Lemma 4.7. Let a; € R for eachi=1,...,4, D; C1II be a set azially symmetric
with respect to ys = xo and y3 = x3 where & € II. Let k(& — §) be the convolution
kernel given by

) = 4 (w2 —y2) (z3 — y3)

(4.4) k(z—19) = - . N 3/2’
(2= 92)" +16(zs — 1))°)

then we have
(45) | =it~y di=o.
for each polynomial )
p(& — ) = a1 + as(#2 — §o) + as (&3 — §s) + aa(@2 — §2)?
of degree less than or equal to 2.

Proof. Changing the variable g, = &5 — 2 and §5 = &3 — g3 we get that (4.5) is
equivalent to
o [ k@)di+ar [ M@iditas [ k@)ind+es [ k@)iEdi=o.
Dy Dy Do Do

since the kernel k is symmetric both in y, and in y3. We denote by Dy the translation
of D3 in the origin. O

Lemma 4.8. Let 0 < a < 1, d(&,9) be the distance defined in (4.1) and

Bo(@) = { (s € 10+ d(a,9) <1

be the associated metric ball of radius r and center & = (xo,x3). Let k(T — §) be the
convolution kernel defined in (4.4). Then there exists a constant Cs such that
(4.6) [k = )iy dg < Carite.

B (2)
When j # 0 then (4.6) holds also for a = 0.

Proof. By Young’s inequality there exist a constant C; such that

3

3 s
T2 — Y2 2|z3 —ys|?

fes —allas — gl < 2220 2 IR gy gty g,

3
4
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then we get that
A s £ oaN—3
k(& —9)| < Crd(#,9)°.

Then we have

/ k(2 — 9)|d(z,9)" dg < C, / d(z, 9y to3dy
B,.() B, (3)

=C, / d(0, (v, v3) YT 3du, dus
BT(O)

T 1
zOl/ gita—3 / —_ dH' | ds
0 aB.(0) |Vd|
- 301|B1(o)|/ Gl gs = Oy pite
0

where |B1(0)] is the 2-Lebesgue measure of B;(0) and H' is the 1-dimensional
Hausdorff measure. In the second to last equality we used

R 1
(4.7) 3r?|B1(0)] :/ —— dH".
0B,(0) |Vd|

Indeed by the coarea formula and using the induced dilations Sr(vg, v3) = (rvg, r?v3)
we have

r3| B =15 Al =B = ' 1~ L ds.
1B1(0)] = [3,(B1(0))] = | B (0) /o</m0) o dH)d

Differentiating this last identity with respect to r we obtain (4.7). O

Theorem 4.9. Let k be the kernel defined in (3.12), we set
K(N(&) = [ k&= )f(5)ds
i}
for each & € II. Assume that f € C**(I1) and f compactly supported in II then

there exists a constant C' such that

(48) IK(Plloae < Cllfllme

Proof. First of all notice that k(Z,¢) is a convolution kernel, so that we can write
k(z — ¢) and by Lemma 4.7, the kernel & satisfies the cancellation condition, thus
K is a well-defined singular integral operator. Moreover, by Lemma 4.7 we have

K@= [ RCIOTE / M D)~ 1)

then, letting Br be a sufficiently large ball that contains the compact support of f
and using Lemma 4.8, we get

K@)l < [

I~ B1(2)

k(& — DI F @)1 + 92 F 1o / k(& — 9)|d(2,9)dg

B (%)

gcl/ CF@)dg+ [ fller < Cllfllen
I~ B4 (£)
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Similarly we have

ox(n@ = [ .
WK = [ kG [k DO6) - 00 )
KNG = [ Ke )@ [ 0)0h0) - ),

Br~B1(&)

then there exists a constant C' such that

05K ()@ < 105 [

Br~B1(2)
< Cllfllcze,

6@ = )ldg + 1 Fleae [ k@ - 9)ld(2.9)°dg

B (2)

0K (f)(2)] < Cllfllc> and |03K (f)(#)] < C|/f|lc2a. Therefore there exists a
constant C5 such that

(4.9) 1K (f)llc < Coll fllcae-

Let # be a point in II. Fix # and 2 in B = Bg(Z) and let § = d(&,2). A

direct computation shows that k(z — §) = 8%36(:% — ¢) where

L. 1 (z2 —y2)
U@ -9)=—
(2~ 92) " 4165 — 35)°)

1/2°

Notice that there exist a constant C'3 such that
(4.10) } . )
[0(2 = §)| < Cad(#,9) ", |02£(2 — §)| < Csd(,9) %, |056(2 — §)| < Csd(&,9) >

Following [16, Lemma 4.4], for each &, 2 € Br(&o) we have

BRUN@) = [ ko= i)0310) ~ @) i+ 035(@) [ Ui = iwada(i),

OBsr

and

AR - |

Bsr

k(2 — )O3 F(5) — 2 F(2))dj + B2 (2) / 0z — Gvado (),

OBsgr

where v = (13, v3) is the unit normal to dBgg. Writing § = d(&, 2) and letting & be
the point given by Remark 4.5 we obtain

03K (f)(2) — 03K (f)(2) =03 f (&) 11 + (03 f(2) — O3 f(2)) o + I3 + L
+(03f(2) = 03 (2))L5 + Ie,
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where

g:/' k(3,9)dg
BSR\B\/§5(§)

Is = (k(&,9) — k(2,9)(03 () — 03 f(2)))dy

Let y(t) = (ry/cos(t), -~ Siln(t)) for t € (=%, %) be a parametrization of 0B,, where
[lv]] = d(0,v). Then we have

(4.11) H'(0B,) =2 / ’ I5lde = - ’ \/Sin(t)i;éf sy — i (0B,).

— —x
2 2

Let 7 = (24 61 (22 — z2), x3) and f = (29,234 02(23 — x3)) for 01,05 € (0,1). Then
there exist constants Cy, ..., Cy independent of R, such that

0| <d@,?) [

O0B2r

|@aﬁ—yww@w+ﬂ@@{/ 1056(C — §)|do ()

OBar

<Cyd(,23)°R™“ =C4 (;) | (by equation (4.10) and (4.11)).
|I5] <Cy.

|13 S/B o k(& — 91103 £ (5) — 03 f(2)dy < 01[5§f]a/ k(& —§)|d(2,9)" dy.
NEL

Bogs/2(2)

< C4[03 fad™ (by Lemma 4.8)
|I,] <Cy [6§f]a5°‘ as in the estimation of I3

[Is| = (& — §)vado(y)

[ U= gwadets)
8B\/§,§ (6)

/3(381%—3\/55(5))

<

S C57

A&Jm—mmw@ﬁ+




18 G. CITTI, G. GIOVANNARDI, AND Y. SIRE

thanks to equations (4.10) and(4.11). Moreover, we have

[I6] <Ced |02k — 9)| 193 £(9) — 95 f(2))]dg
Bsr~B_ /35(£)

162 / 105k (C — )| [(92(5) — 02F(2))|dd
Bsr~\ B /35(£)

, d‘(y72)a 9 J(@,é)a ~
§C7[82f}a < /d(yf;“ 535 ~( 7, )4d +(5 /d V3 ~(?37<A 5dy>
13,9 UA3 )

d
d 75 « Aag)a
C 82 «@ 5 7 F d 52 1 3 d
=G0 < /d(yE) s d(g,8)* ’ /d(yi)>f d(9,€)° !
~ 3

(Since by Remark 4.5 d(f,2) < (14 ¥2)d(3,€), (1 — 22)d(£,7) < d(1, §)

and (1 - %)d(€,9) < d(3,0))
+oo “+oo
<C9[02 f]a (5/ s*72 ds + 62 Pt ds) = Cy[02 f]ad®,
V368 V38

where in the last inequality we used the coarea formula and the equation (4.7).
Collecting terms we gain

(4.12) 5K (f)(#) — 3K (F)(2)] < Cro (R™[105 flloo + [05 fla) d(#, 2)".

Then choosing Zp = & and R = 1 we have Br(&¢) = B1(%), then by equations (4.12)
we get

03K (f)(&) — BBK(f)(2)]

< C1a (1103 flloo + 103 fla) + 20103 K (f) o

d(, 2)

(4.13) 2 2 >

(by eq. (4.9)) < Cu1(107fllc + [02f]a) + Call fllc2.

< Cia|[fllcze

Reasoning in the same way as above, we get

OsK(f — 03K
Putting together equations (4.9), (4.13) and (4.14) we get the desired estimates
(4.8). O

4.2. The reflection technique for singular integrals.

Definition 4.10. Let g be a function on IT and 2 € H* ~ II. We set

Kl(g)(ﬂﬂ):/1_[/51(:8,17)9@)610(@), K(g)(x):/k(ﬂﬂ,z})g(@)da(z})

11
where
(4.15) (2, y) = — (23 + (22 — y2)?) 21 -
" ((:z:% + (22— 12)2)” + 16(z5 — y3)2>
and
(4.16) () = © (22 — yo) (23 — y3)

™

((xg + (w2 = y2)?)” + 16 (s - y3>2)3/2’
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Remark 4.11. Notice that k(z,y) defined in (4.16) converges to the convolution
kernel k(& — ¢) defined in (3.12) as one approaches the boundary.

Lemma 4.12. Let g be a Lipschitz compactly supported function in I and zy be a
point in II. For x € H' \ II we consider

1 (g)(x) = / (2, 9)g (W) do (y),

i
where ki is defined in (4.15). Then we have

~ 1
K()@) = so(ao)  asz - g,
. 1 B
R()(w) = —go(eo) asa > x;,
so that (K1)™ = 31d while restricted to 11 and (K1)~ = —31d while restricted to II.

Proof. By Proposition 3.4 K1(g)(z) converges to +4¢ and since

3/2
K1 (g)(2) — K1 (9)(2)] < sup |1 (e +ea-227) 416 (w0 -vs+ hvae:) )
1 — 1 S — 3/2
z,9 ((xf—&-(xz—yz)z)2+16(I3—y3)2) '

we have K (g)(z) — K1(g)(z) goes to zero when z; tends to 0. Then also K;(g)(z)
converges to £g when z; — 0% and K7 (g)(z) converges to —1g when zy — 0~ . [0

K1(g)()

Given r € R, let us denote II,, = {x = (r,z9,23)}. We consider the C%<(I1,.)
norm with respect to the distance d as we did in Section 4.1. This choice allows us
to completely decouple variables and we have

Proposition 4.13. Let IT = {z1 = 0} and K the singular operator defined by the
kernel k, see (3.8). Then we have

1 1
(=51 + K)(@)llczem = (T + K)(g)llo2eq-

Proof. Since the C%* norm on II, with respect to the distance d are independent
on r, we have

(K1 + K)(g)(— - ezem,) = (K1 + K)(g)llczeq,)-
Letting r to 0, and applying Lemma 4.12 and Remark 4.11 we get the thesis. [

4.3. The method of continuity. Given ¢t € [0,1] and K the singular operator
with kernel &k defined in (3.8), we set

1

Notice that T7 = %I + K. Let us consider the set
A={tel0,1] : T, is invertible on C**(1I)}

First of all we notice that A # @) since Ty = %I is invertible. By Theorem 4.9 we
have that T} : C*(II) — C*%(II) is continuous, namely there exists a constant C
such that

(4.17) T3 (9)l| 2.0y < Cllgllc2oe -
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Proposition 4.14. With the previous notations, it holds that

(4.18) lgllcz.emy < 2)Ti(g)llc2em)

Proof. Clearly we have

1 1
g= (I—i—tK) g+ (I—tK) g.
2 2
Then by Proposition 4.13 we gain
Igllczam < (31 +tK)gllozeqn + (31 — tK)gll o2y
= [|(31 +tK)gllczaqm + (=5 +tK)gllc2am)

=2|[(31 + tK)gll 2oy O
By the estimates (4.17), (4.18) and the contraction mapping principle it follows
that A = [0,1]. Hence T} = 11 + K is invertible from C?*(II) to C**(II).
5. THE POISSON KERNEL AND SCHAUDER ESTIMATES

In this section we will show the Schauder estimates. First of all we consider the
flat case as follows

Theorem 5.1. Let Q C H!' be a bounded domain such that Q C {x; > 0}. Let
z € 00 and assume that there exists an open meighborhood V of T such that
V NoQ C {z; = 0}. Assume that f € C*(Q) and g € TZ*(ONNV) and 0 < a < 1.
Denote u the unique solution to

Agu=finQ, u=g on 0.
Then
(5.1) ullc2.e@y < Clgllrzaoa) + [ fllce@)-

Proof. Let D be the double layer potential on II defined in (3.6) and K be the
operator with convolution kernel k(& — §) defined in (3.12). Therefore we define

Pol9)(x) = D((AT + K)"1g)(z) = /H (AT + K) " g) @)k (. §) + k(s 3))d.
Then u = Py(g) satisfies

(5.2) {AHu:() in Q

u=g on {z; =0},
since Q C {x; > 0}. For each g € T5*(dQ N V) we set

Kaal(g) = 1(g) — Po(g)-

If we choose Vj such that supp(g) CC Vo CC V, then Kapq(g)(xz) = 0 for every
x € 90N V. On the other side g(x) = 0 for = € 9N \ Vj, thus we have

Kaq(g)(x) = =Po(g)(z) = =D((31 + K)'g)(x)

. /H (AT + K) ") (§) (b (. 5) + k(. §))d.
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then the kernel defining Kpq has no singularities when x € 9Q \ {z; = 0}. As a
consequence Kyq is a compact operator, and I — Ky can be explicitly inverted.
Then we set

(5.3) P(9) = Po((I — Koa)~'g) = D((51 + K)~'(I — Koa)™'g)

then P(g) is a Poisson kernel such that u = P(g) satisfies

{AHu—O in Q

5.4
(54) u=g on 0.

Since D is continuous from C%<(II) into C%%({x1 > 0}) (see for instance [17, Main
Lemma 13.12] or [22]), (31 4+ K)~' is continuous from C**(II) into C%*(II) thanks
to Section 4.3, C>%(II) coincides with I'>®(II) by Proposition 4.4 and (I — Kpq)~*
is continuous from I'>%(99) into I'>*(II) we get u = P(g) defined in (5.3) verifies

lullc2.e () < Cllgllr.ea0)-

On the other hand by the interior estimates (see for instance [27]) we have that the
solution v of

Agv = in Q
(5.5) wo =/ in
v=20 on 0f.
verifies
[v]lcz.a @) < Cllfllca (-
Hence considering the function u + v instead of u we get the thesis. (]

Therefore we have solved the problem assuming that the boundary is locally
a plane. Now we have to flatten the boundary and extend the result to general
boundaries.

Theorem 5.2. Let Q C H' be a bounded domain and u is the unique solution to
Agu=finQ, wu=g on 09,

where f € C*(Q) and g € T?2(0Q) and 0 < a < 1. Let = € 9 be a non-
charateristic point, V. C H' be an open neighborhood of T without charateristic
points and ¢ € C§° (V') be a bump function equal to 1 in neighborhood Vo CC 'V of
#. Then we have pu € C**(QNV) and

(5.6) llpull 2.0 @nv) < CUlgllrzea0) + | fllca@)-

Proof. Let us denote by Q a smooth, open bounded set in H' and let 0 € 9Q be a
non characteristic point. The boundary of 2 can be identified in a peighborhood \%4
with the graph of a regular function w, defined on a neighborhood V =V NR? of 0:

ANV = {(w(’),8): 5V}
We can as well assume that w(0) = 0, Vw = 0. This implies that
(5.7) w(3) = O(I3%)

as § — 0. On the set V' the function Z(s1, §) = (s1 — w(8), §) is a diffeomorphism.
It sends 02 NV to a subset of the plane {z; = 0}:

200N V) = {(21,2) : 21 = 0} = II=.
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Moreover, we have
(5.8) Az = dE(Am),
with fundamental solution

Is(z) =T(z1 + w(2), ).

m

For x; small enough we have
I=(21,2) = (21 +w(2), #) = T(x1,2) + R(z1, 2),
where
R(zy1,2) = w(@)oiT(z1 + tw(Z), &)
for some t € (0,1). Furthermore we have that
Xiz =d=2(X7) = 0p, — 505, w(2)0p, — FO0uy-

Notice that I' is a rational function that goes as d~912, its first derivatives go as
d~@*! and its second derivatives go as d~?. On the other side the function w(%)
has a 0 of order 2 thus w(#) goes as d?>. Then we have

XY 2T'=(0,9) = X{T(0,9) + R(0,9),

where
R(()’ y) = X{/R(O, ) — y?zaygw(@)@le(O,y) - %8y3w(@)8y1F(O,g)
that goes as
|R(0,9)] < d~9%2(0,9),

where d is the induce distance. Therefore the operator Ky with kernel Ris compact
since the homogenous dimension of the boundary is Q — 1. Therefore also thanks to
the left-invariance of the distance and of the fundamental solution we get that the
double layer potential

D(¢g)(x) = /H_ X{ =L=(x, §)(09)(9)di = K1(dg)(x) + K(dg)(x) + Kp(dg)(x)

converges to (31 + K + Kp)(¢g)(zo) in the limit  — z{ from positive values of
1. In the previous equation K; and K are the operator defined in Proposition
3.1, 2o = (0,%0) € V. With an abuse of notation we denote in the same way the
function ¢g compactly supported in V' N 9§ and the function ¢g o Z~! compactly
supported on Il=. Since %I + K is invertible, we have

(%I + K + Kp)(wo) = (%I + K)(I + (%I + K) 'K p)(20).

Since K j is compact and (31 4+ K)~! is bounded, then (11 + K)~'K is compact,
so that (I + (314 K)'Kp) is invertible, thus $I + K + K is invertible. Therefore
we define

P(¢g)(x) = D((31 + K + Kp) " ég)(x).
Then u = P(¢pg) satisfies

(59) {Agu =0 in {xl > O}

u=¢g on {r; =0}
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In particular, since ¢ = 1 on Vj we have that ¢u = ¢P(¢pg) solves

Az(pu) =0 in =Z71(VoNQ)
ou = ¢g on Z71(VpNoN),

thus changing variables and noticing that ¢ = 1 on V) we gain that P(¢dg) o = solves

(5.10)

Agru=0 in VpNQ
u=g on VpNoQ.

Since D is continuous from C?%(Ilz) into C**({z; > 0}) (see for example [17,
Main Lemma 13.12] or [22]), (31 + K + K)~" is continuous form C%*(Ilg) into
C?*(Ilz), C**(Ilz) coincides with ['>*(Ilz) by Proposition 4.4 and Z is a smooth
diffeomorphism we get that ¢u = ¢P(¢g) o = verifies

lpullcz.0(vnn) < Cllggllrze@a) < Cllgllr2.a@0)-

On the other hand by the interior estimates (see for instance [27]) we have that the
solution v of

Agv = in Q
(5.11) wv=/f in
v=20 on O
verifies
[vllc2e@) < Cllfllcay-
Hence considering the function u + v instead of u we get the thesis. 0

Corollary 5.3. Let Q C H' be a bounded domain without characteristic points and
let u is the unique solution to

Agu = fin Q, wu=g on 09,
where f € C*(Q) and g € T2%(0Q) and 0 < a < 1. We have
(5.12) ||U||02»a(Q) < C(||9||F2va(aﬂ) + ||fHCa(Q))~

Proof. We can cover the boundary 9 by a finite number of balls {B;};=1,... n and
an associated partition of the unity ¢1,...,¢xn. Then on each ball B; we have that
¢;g is compactly supported in B;, then by Theorem 5.2 we get

pivllcz.a(m,n0) < Cllgllcz.a(aq)-

Since we have

N
||U||c2,°((z) = HUHCQ:“(Q\Uf’:lBi) + || Z@‘UH(JM(Q),
=1

we estimate the first term by means of the interior estimates and the second therm
as follows

N N
I Z@UHCM(Q) < Z [piullc2.aB;nq) < NCgllrz.a(a0)-
=1 =1

Hence we get the result. [
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6. GENERALIZATION TO HEISENBERG-TYPE GROUPS

Definition 6.1. A Heisenberg-type algebra is a finite-dimensional real Lie algebra
g which can be endowed with an inner product (-, -) such that

a7 =3
where 3 is the center of g and moreover, for every fixed z € 3 the map

J.i3t =t
defined by

(To(v),w) = (2, [v,w]) Yo, we st
is an orthogonal map whenever (z, z) = 1.
A Heisenberg-type group G (H-type group, in short) is a connected and simply

connected Lie group whose Lie algebra is an H-type algebra.

Let n,m € N, m > 2 and n > 1. Following [8, Chapter 18] a prototype of H-type
group (R™*" §,,0) is given by R equipped with the group law
_ Tg + Yk k=1,....m
(@8) 0 (y,7) = ( tet T+ 3A®z ) k=1,...,n

and the dilation dy(z,t) = (Ax, A\*t). Here A% is a skew-symmetric orthogonal
matrix, such that,

(6.1) AB AO L A0 40) —

for k=1,...,n with k # £. By [8, Theorem 18.2.1] any H-type group is naturally
isomorphic to a prototype H-group. Therefore we use the notation G for the
prototype H-type group (R™*" §y,0) associated to a H-type group. A family of

left invariant vector fields that agree with % for j =1,...,m at the origin is given
J
by
0 1G((w d
Xi=—+- ki | =

Setting that m = dim(3*) and n = dim(3) we have that {Xi,..., X} is a basis of
the horizontal distribution 3. Then that we have

- 0
;(ia‘(' = k
[ il k:Z:I j.i Oty

and setting Zj = % for k=1,...,n we get that Zy,...,Z, is an orthonormal
basis of 3. The homogenous dimension @ is given by @ = m + 2n. We denote by
V¢ the horizontal gradient Vg = (X1, ..., X,,) and by V the standard Euclidean
gradient. The sub-Laplacian operator is given by

Ag =) X} =dive(Ve),
k=1
where divg(¢) = X1(¢1) + ... + Xpn(dm) for ¢ = o1 X1 + ... + ¢ X €37 Isis
well known (see [8, Chapter 5]) that the sub-Laplacian admits a unique fundamental
solution ' € C=(R™" ~ {0}), T' € L. (R™*"), T'(,t) — 0 when & = (z,t) tends
to infinity and such that

/ D(z,t) Agp(z,t) dz dt = —p(0) Vo € C(R™H™).
Rt
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Definition 6.2. We call Gauge norm on G a homogeneous symmetric norm d
smooth out of the origin and satisfying

Ag(d(z,£)>"9) =0 Y(z,t) % (0,0).

Following [8] a Gauge norm in G is given by

1
[€le = (|l=[* +16J¢*) 1,

where £ = (z,t). Therefore there exists a positive constant Cg such that

P - c
[(€) =Calelg @ = e
\z|4+16\t|2)

Strictly speaking |- |g and I are defined on the algebra g and d(&,7) = |n~ ' o€|g on
the group G. Indeed, for every couple of points £ = (z,t), n = (y,7) in R™*™ there

exists and are unique coefficients v = (vq,...,vn) and z = (z1,. .., z,) such that
m n
£ =exp <Z v; X5 + Z Zka) (n).
i=1 k=1

We call these coefficients (v, z) = Log, () and a straightforward computation shows
that Log, (€) = n~! o&. Finally we define the fundamental solution I'(¢,7) on G as
f(Logn(g)) =TD(n~'o&), that is given by

2-9)

62 1En =C@(|jr o' +163 (17— 1 (ADy.2)?)
k=1

Example 6.3. Let us consider the H-type group given by R® with the following
vector fields
0 Zo 0 0 I 0 0
Xi=————, Xo=—+——, Xg=— —,
! 6:61 2 3t1 2 81‘2 + 2 (’%1 3 (91‘3 +-T1 8152

that generate the horizontal distribution 3%, and Z; = %7 Zy = 6%2. When we
consider IT = {x; = 0} we obtain that 3 N1II, that is generated by 8%2 and 8%3, does
not satisfy the Hormander condition. In particular this a Carnot group, different

from H*, that does not satisfy the structure condition (1.5) in [3].

Proposition 6.4. Let Q = {(x,t) e R™*"™ : 21 >0} C G and 9Q = {z, =0} =1I.
Then the double layer potential D(g)(x) is given by

(6.3) D(9)(§) = K1(9)(§) + K(9)(&)

for € € Q, where K1 and K are operators with kernels respectively ki1 and k defined
as

(6.4)
ki(€1) = Co(Q — 2) |z — (0, )Pz _
(|x = (0.9)]" +16 Soney (e —te — 3 (AP z, (0,3})))2) o

(6.5)

42:&2 ZZ:l (Tk —lg = %<A(k)xa (07 g»)a’]lc,z(yl - ‘Tl)

Q+2 )
(Jo = 0] + 16 5, (m — b — HA®, 0,9)))°)

where § = (y2,...,ym) and 7 = (0,4,7) € II.

k(&) = Co2-Q)
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Proof. First of all we have

- [oPor + 4377 ST 1a1 iViZk
XiT'(v,2) =Cq(2 - Q) °Em)

(1ol +16]2p2) *
Then, by left invariance an explicit computation shows that the derivative (6.2)
with respect to X f is given by

X (T(&m) = (Xp, D)7t og) =
o —ylP (21 —y1) + 430 sy (e — 7 — 5(APy, 2))af (2 — ;)

)

= CQ(Q_Q) 4 R QIQ
<|x — y| + 16 ZZ:l (tk — Tk — %<A(k)y,x>) )

Since I' is symmetric we also have
X{T(€,n) = (VET'(§,m), X{)
|z —ylP(y — @) + 4307 S (7 — te — 5 (A x,y> ( — i)
(!x - y’ +163 5, (tk — Tk~ 3 A(k)y’ )2
o =yl — @) + 45 Sy (7 — b — 3{AW ) )al, (vi — 4)
o .

(sl + 1650 (e L0 07)

=Co(2-Q)

Evaluating this derivative over the plane IT = {y; = 0} for z; > 0 and notincing
that a’f71 =0 we get

—lo — (0, 9)Pe1 + 4307, Sk (me — te — 3(AM, 0,9)) af (i — )

X?F(& 77) = CQ(2 - Q) 2 Q+2
(o= ©.9)* + 165y (e — i = $(A®z, (0,5)))
Remark 6.5. Notice that for each » > 0 it holds
(6.6) | (Serm.vindotn =1,
3B, (€)

Indeed, by the mean value formula for each open subset O C G such that £ € O, for
each r > 0 such that B,.(£) C O and for each harmonic function ¢ € H(O) we have

b(E) = / $(n) (V6T (E,m), w(n))do(n).
9B, (€)

In particular if we consider ¥ = 1 in O we obtain (6.6).

Let Q = {21 > 0} C G and 9Q = {z; = 0} = II. Then the induced distance d is
given by

(67) d(éa ﬁ) = |(07ﬁ>_1 o (07£)|G
for each € = (0,,t) and 7 = (0,9, 7) in IT and the induced ball is given by

Bué)={iem : déq<r}.
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Lemma 6.6. Let & = (0,d0,t0) € II, R > 0 and Br(&) = {n € I d(&,§) <
R} C II. Then the integral

| e 0.0, X1

Br (o)

is well defined if the first component x1 of & satisfies x1 > 0 and tends to 1/2 as
£ — &o-

Proof. Let {£™},,en be a sequence of points in = {z; > 0} converging to & as

n — +oo and €, > 0 small enough such that B(£",¢,) C Q for each n € N. Then
we consider the bounded domain

Qff = {1 > 0} N Br(&) ~ B(£" en).

By the divergence theorem for each n € N we have

0= [ AcT(e"n)dn— / (VAT (60, 1), v(n))do (1)
fo- aﬂﬁ
- / (VAT(En 1), v(n))do(n)
OBRr(&0)N{z1>0}

(6.8)
+ / (VAT (s 1), v(n))dor ()
HQBR(&))

- / (VA (), () do ().
OB(£™,en)

For each n € N the ball B(£",¢,,) is contained in {z; > 0} thus by Remark 6.5 we
get

[ et = 1
OB(£™,en)
Noticing that ITN Bg(20) = Br(Zo) and rearranging terms in (6.8) we get
| e vmdem =1~ [ (VAT (En,n), vn))do ).
Br(£o)

aBR(EQ)ﬂ{ZE1>O}
Letting n — +oo the left hand side of the previous equality converges to

1
- | (VA (€, m). () (n) = .
O0BR(§)N{x1>0}

since we only consider half of the integral equation (6.6). O

The operator K is totally degenerate while restricted to II, so that we can not
restrict it to functions defined on II; however we can compute the limit from the
interior of the set.

Proposition 6.7. Let g be a Lipschitz compact supported function in II and &y be
a point in II. For £ € G 11 we consider

K (9)(€) = /H (€. m)g(n)do ().

Then we have

Ki(9)(©) = 30(60) a5 €= &,

Ki()(©) » —50(60)  as €&,
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so that (K1)* = 11d while restricted to Il and (K1)~ = —31d while restricted to IL.

Proof. Let R > 0 big enough such that supp(g) € Bgr(&). Let us assume that
&= (x1,&,t), x1 >0 and

K1(g)(€) = /H k(€. m)g(n)do(n) = /B CCRIIORFOIED

+(e) /B o &)

On one hand we have

| m(enatn - g©)dotn)
Br(£o)

<L / k(€. m)d(€, m)do(n)
Br(&o)

<L Vard(n, €)= 2 da(n) — 0,
Br (o)

as & = &y and where L is the Lipschitz constant of g. On the other hand by Lemma
6.6 we have

9(6) / B mdo(n) = g(€) /  (ka(Eam) + (€ m))do () +
Br(&o) Br(&o)

1 1
0 [, WEol) > 0(e0) (&) [ Ko miotn) = 5060

by symmetry of the kernel k restricted to II, see Lemma 6.14. Finally when 1 < 0
the kernel k; defined (6.4) has the same sign of x; , then —k; and —x; are positive
and by Lemma 6.6 we have

—g(e) / k(€ m)do(n) = —g(€) / (—ka(€m) + k(€ m))do () +
Br(£o) Br(&o)

—g(©) / k(€ mdo(n) ———— —2g(&). 0
Br(éo) (—zrdt) el 2

Definition 6.8. As £ — & the kernel k(¢,7) defined in (6.5) converges to the
kernel

421 2 Zk 1 (Tk tr — *<A(k)iag>)alf,i(yi — &y
Q

(6.9 k(1) =Co(2-Q) ;
(1 + 105, (- i)
0

x—y

where A®) = (a¥;)ij=2,...m- Notice that k(¢,7) = k((0,2)) where (0,0,2) =
Log(o g)((o 77))’ 0= (027 v avm) and

(6.10) k((9,2)) = Co(2 - Q) A3, Yo al ;szk.

(121 + 16]22)
Thus, if ¢ is a continuous compactly supported function in IT the operator K(g)
converges to

| KE gtz o),
that with an abuse of notation we also denoted by K(g).

Hence the analogous of [24, Theorem 4.4] in this setting is the following
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Theorem 6.9. Let g be a Lipschitz compacty supported function in II and &y be
a point in II. Let D(g) be the double layer potential defined in (6.3), then the
limits of D(g)(€) when & tends to & for € € {x1 > 0} and when & tends to & for
€ € {z1 <0} exist. Moreover the limits verify the following relations

51_i>r?+ D(g)(&) = 59(¢0) + K f(&) if §€{x1>0}
fl_igl_ D(g)(&) = —39(%0) + K f(&o) if €€ {x1 <0},

where K is the operator with convolution kernel k defined in (6.9).

Proof. By Propositions 6.7 and Definition 6.8 we obtain
1
D(9)(€) = (51 + K)(g)(%)

in the limit from positive values of x1, while
1
D(9)(€) = (=51 + K)(9)(&)
in the limit from negative values of x;. O
6.1. Invertibility of the double layer potential on the intrinsic plane.
6.2. The C2“ estimates of K. Let r € R and II, = {€ = (r,2,1)}. Let & =

@,t),n=(y,7) €I, andv—(vg,.. vm) and z = (21, ..., 2,) such that (0,0,2) =
Logg,4((0,§)). We set X; = X; | . On II, we consider the distance

- s . 1
(6.11) d(&,m) = (0, =) 0 (0,€)|c = (|o[" + 16]2[*) 1

instead of d on II,.. Notice that d coincides with d on IL,. if and only if r = 0.

Definition 6.10 (Classical Holder classes C2). Let X2g(£) be the horizontal
tangential Hessian given by

o 2 XiX;9(6) + X;Xi9()

X2g(€)7f;] = : 2 ?
Let r € R, we say that a function g defined on the boundary II, = {x = (r, &,¢)} is
of class C**(IL,.) if and only if X;X;g fori=2,...,m and Zyg for k =1,...,n are
continuous functions and there exists C' > 0 such that

1X2g(7)i; — X?9(£)i| < Cd(n,€)

1,j=2,...,m

fori,j=2,...,m and
|Zkg (i) — Zig(€)] < Cd(E,7)°,
for k =1,...,n and for each é, 7 in II,.. In addition, we set
| = llgllz + , max [(X%g)ila + pax [Zkgla
where
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and

lgll2 = llglloot, max  sup [Xig(E)l+, Jmax - sup [X%g(¢ )i 1+ jJax sup | Zig(€)].
""" £ell, v e, " éer,

Proposition 6.11. A function f belongs to C*(Ily) if and only if f belongs
to T'%(Ily), namely for each & € Tly, p > 0 there exists a polynomial Pé(ﬁ) =

ag +bg -+ 0T Ced + dg - 2 with (0,9, 2) = Logg 4)((0,€)) and C > 0 such that
(6.12) [F() — Pe(i)| < Cp**+e
for each ij € B,(€) (see Definition 2.5).
Proof. Assume that f € C%(Il). Let
Pe(i) = f(&) + XF(€)- (5 —2) + 50 -2 X2f() - (5 - 2)
+ Z Zif(€)(me — tr — 3(AWz, ),
k=1

where X = (Xo,..., X)), Z = (Zl,...

n) an

By the Taylor’s formula with Lagrange remainder for the function s — f(v(s)) with

i(s) = YTy viXs, with © = (5 — ) s € [0,1], 7(0) = (&), (1) = (3,1) we get

£, = FGt) + XF@) - (- ) + 50— T R2F(G) - (5~ 2)

where fi = () for 6 € (0,1) and & =t + %(A(k):i,m. Moreover, by the Lagrange
mean value theorem for the function s — f(¢,t + s(7 —t)) with s € [0, 1] we get

F@,7) = f@,0+Zf() - (r—1)
where ¢ = (4, + (7 — 1)) for 6 € (0,1). Then we get
F@ ) =f@EO+XFE) -G -2)+ 3@ -2)" X (@) (- %)

+ Z Zif(C) (e — t, — 1AMz, )

ij=2,...,m.

Therefore

f) = P < sup  [X2f()i; — X2F(E)isllol® + sup [Zif(C) = Zif(€)]|2]

,J=2,...,m k=1,....n

< Cd(p,€)d(#,€)* + Cd(&, ()*d(4,€)* < Cd(#, ).
Now, for any fixed £ € Iy and p > 0, taking 7 € B, (€), clearly since d(€,7)?T® <
P>t we get

F@) - Pa@)| < Cp*+.
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For the reverse implication we set
u(9,(£))
p*
where (5,)(5) = (pi, p2t). Let £, /) two points at distance p apart, by Remark 6.12

there exists ¢ such that J(é, f), J(ﬁ, é) < ?p. Then after a translation by the group
low of —(, we have B, /5 = B,5(0) C B /3,(£), B, 3,(7)). Let

1Pe py2 = PapsllLe (s

up(é) =

< forz = Pe ppallLee sy + 1072 = Papsallie (s

4 N . 4 . N
=— sup |f(D,2) = Pe(d,2)[+ — sup [f(D,2) — P3(0,2)|
P~ (9,2)€B, )2 P* (9,2)€B, 2
4 . . 4 . N
< sup |f(0,2) = Pe(0,2)| + — sup |f(D,2) — Ps(0, 2)]
P™ (8,2)€B 43, (€) P” (8,2)€EB s3,(1)

< 8(3)1+/2C)pe.
Notice that
(Pe 0= Pip2) (0, 2) = %[ag — a5+ (b —bs) - pi+ p*0" (Ce = C) 0+ (dg — dyy) - p2].
Then by Lemma 6.13 we get
lag — agl < 2(3)42Mp?* and  [b; — by| < 8(3)"F*/2/mMpH+e

6.13
(6.13) C:— Co|| <4B3)™2Mp™  and  |ds — dg| < 4(3) T2 M p®.
13 n i

By assumption (6.12) we easily get that a; = f(), f is continuous, X f(£) = be,

Zf(€) = dg. Then by (6.13) we obtain that X f, Zf are continuous and Zf is C* .

Moreover, since by Baker-Campbell-Hausdorff formula, see [8, Theorem 15.1.1], we
have

exp(sX;)(exp(hX;)(€)) = exp (sX +hX; + 2[X;, Xi] + O(s*h) + O(hsz)) ),

thanks to (6.12) a straightforward computation shows

(F(exp(sX:) (exp(hX;)(€))) — flexp(hX;)(€)) — (Flexp(sX:)(€)) — (£))
" ak.
- (2(05»,]- 23 ;Jzkf@)) hs + O(s+%) + O(h**2).

k=1
Then there exists

1 (f(exp(in)(eXp(hXj)(é))) — flexp(hX;)(€)  flexp(sXi)(&)) — f(f))

lim lim —
h—0s—0 h s S

a

" ak.
= Q(Cé)i,j + Z ;] Zif(£).
k=1

On the other hand, letting s — 0 in the previous limit we gain that

P lexo(hX N (E)) — X (E " ak
X556 = tim Xif(e p(th})L(f)) Xif(©) _ 2Ceis = ‘%Jzkf(g).
k=1
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Therefore since >, _, a} ]Zk [X;, X ] we obtain

o X X )+ X, X;
Finally, by (6.13) we obtain that |X2f(€); ; — X2f(7): ;| < 8(3)'F*/2Cd(€,7)®, for
1, =2,...,m. ([l

Remark 6.12. Given two points é, 7 € II such that p = &(é 7)) then there exists
¢ = (L, HfT — 5(A#,9)) such that d(¢,7) = g < ip and d((,€) < @p.
Moreover if £, /) belongs to BR(fo) for £ € II then ¢ in BgR(fo).

Lemma 6.13. Let © € Il and P(d,2) = a+b-9+ 7Co +d - z, where C is a
symmetric matriz. Assume that there exists M > 0 such that ||P| g p,) < M, then
jal < M and |C],|d] < 2M, [b] < 2,/mM.

Proof. Setting & = 0, 2 = 0 we have |a| < M. Let ¢ > 0,if 6 =0, z = W
we get |a + 1‘%‘5| < M, thus |d| < 2M (1 + ¢), letting € — 0 we get |d| < 2M. Let
o,...,9™ be an orthonormal basis of C' with eigenvalue A1, ..., A,. Then for each
i, setting v = :I:(lv—ie), z = 0, we obtain
b0 Ai b0 Ai
vt < 2M, 22U < oM.
1+e  (1+4¢)? 1+e (1+4¢)?
Then we have
1+€ 2 1+E (14¢)? 1+e (1+4¢)?
. L . Y )
[Adl <1 b-o i b-ot N < oM.
(14+e)2 =2 \|1l+e (1+4¢)? 1+ (Q+¢)2|) —
Letting € — 0 we get ||C|| = max;—1,._m |A;| < 2M and |b|] < 2y/mM. O

Lemma 6.14. Let Dy C II = {v1 = 0} be a set axially symmetric with respect to
v;=0fori=2,....mand zx =0 fork=1,...,n. Let

m n
D¢ = exp(Dy) = {exp(z v; X; + Z z2kZk) (&) : (0,2) € Do}
i=2 k=1
and p be a polynomial of degree less than or equal to 2,

p((D, 2) —ao—i-ZavZ—&—Zbkzk—&— Zc”vjvl

4,j=2
Let k be the kernel given by (6.9) then we have
(6.14) || wEip(Losetn)) di =
é
where & = (0,€), n = (0,7) and Loge(n) = (0,£) © (0,7)
Proof. Changing the variable (9, z) = ®(n) = Log,(n) we have det(d®) = 1. There-
fore we gain that the left hand side of (6.14) is equivalent to

(6.15) /D k (b, 2)p(0, z) didz
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Since the kernel

» 4 Zﬁz ZZ=1 a’f,i”izk

k((ﬁ, Z)) = CQ(2 - Q) Q12
4
(121 + 16]212)
is symmetric both in v; for i = 2...,m and in z; for £k = 1,...,n the product
between k and p is still odd in some variables. Then the integral (6.15) vanishes on
the axial symmetric domain Dy. |

Theorem 6.15. Let k be the kernel defined in (6.9), we set

K(f)(€) = / K(E ) £ (7)di

II

for each é € II. Assume that f € C>*(II) and f compactly supported in 11 then
there exists a constant C such that

(6.16) K (f)llczemn < Cll flloze)

Proof. First of all we notice that II with the law induced by G is an homogenous
group of homogeneous dimension @@ — 1. Setting (0,0, z) = Log é)((), 7)) we have
that k(d,z) defined in (6.10) is C°°(II . {0}), homogeneous of degree 1 — Q and
thanks to Lemma 6.14 defines a singular integral on II. Following [18, Section 3]
or [22, p. 32] there exists a linear map L; such that Lg( — %) = (0,7)" 0 (0,8).
Denote Eé = (LEI)T then K is realized as a pseudo-differential operator with symbol
a(€,¢) = ]-'(l%)([%(()) where F denotes the Fourier transform and k does not refer

to the Fourier transform, but to definition (6.10). Since k is of class 1 — Q, by [22,
Theorem 1, p. 9] we have F(k) is of class 0. Therefore the symbol a belongs to the
class 52, see [22, p. 56]. Then by [22, Theorem 13, p. 83] we get that a(§, D) (that

coincides with K) is bounded from I'%(II) to I'>®(II). Hence, by Proposition 6.11
we obtain the desired estimates (6.16) in C*<(II). O

6.3. The reflection technique.
Definition 6.16. Let g be a function in IT and € H' ~ II. We set

Kl(g)(f):/Hl?rl(éyﬁ)g(ﬁ)dﬂ(ﬁ), K(g)(é):/né(&ﬁ)g(ﬁ)da(ﬁ)

where
(6.17) )
Fi(6,7) = Co(Q - 2) [z = (0. 9)'m —
(lo = 9" +16 5, (e — s — $(A®2,9))?)
and
(6.18)

n P (=t — HA®E ) ak (g —
I’%(é‘/’?) — CQ(2 _ Q) 421:2 Zk,‘ZI ( k tk 2<A ’y>) 1,z(yl le .

(e = ©.9)* + 16 5y (70 — s — (AW, ))*)

Remark 6.17. Notice that /%(f, 7)) defined in (6.18) converges to the convolution
kernel k(&,7) defined in (6.9) as one approaches the boundary.
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Lemma 6.18. Let g be a Lipschitz compactly supported function in II and éo be a
point in II. For x € H' \ II we consider

_ / Fa (€, 7)g(7)dor(7),
I

where ky is defined in (6.17). Then we have
~ 1 - ~
Ki(9)(€) = 59(%)  as & = &7,

. 1 . o

K1(9)(€) = —59(%)  as&— &,
so that (K1)* = 11d while restricted to Il and (K1)~ = —31d while restricted to IL.
Proof. By Proposition 6.7 K1(g)(£) converges to :I:%g and since

1K1(9)(€) — K1(9)(€)]

(|x ©0.9)] 116 552, (re—ti— 3 (AW ( )
<sup |l — aFz )

& (|m—<o,y>| 16 7y (7 tk—§<A<k>zy>>)2)

we have K (g)(€) — K1(g)(€) goes to zero when z; tends to 0. Then also Ki(9)(€)
converges to %g when 21 — 07 and K1 (g)(€) converges to —%g when 1 — 07. O

Given r € R, let us denote I, = {¢ = (r,#,t)}. We consider the C%%(II,.) norm
with respect to the distance d as we did in Section 6.2. This choice allows us to
completely decouple variables and we have

Proposition 6.19. Let IT = {x; = 0} and K the singular operator defined by the
kernel k, see (6.5). Then we have

5T+ K)@ e = (51 + E)@)llcanqny

Proof. Since the C%“ norms on I, with respect to the distance d are independent
on r, we have

1K1+ K)(9) (= Mlezam ) = [|(Ki + K)(9)|lc2m,)-
Letting r to 0, and applying Lemma 6.18 and Remark 6.17 we get the thesis. [

All the results in Section 4.3 follow in the same way and we obtain that %I + K
is invertible from C%%(II) to C%*(II).

6.4. The Poisson kernel and Schauder estimates. Once we have the invert-
ibility of %I + K, we consider the Poisson kernel (5.3) and the analogous of Theorem
5.1 for a bounded domain © C G follows in the same way, clearly replacing Am
with Ag . The definition of smooth domain is the same of Definition 2.3 and we
say that £ in 99 is a characteristic point if Vgip(€) = 0, where v is the defining
function of the boundary defined in 2.3.

Theorem 6.20. Let Q0 C G be a smooth bounded domain and u is the unique
solution to

Agu=finQ, wu=g on 09,
where f € C*() and g € T?2*(0N) and 0 < a < 1. Let £ € 9N be a non-
charateristic point, V. C G be an open neighborhood of & without charateristic points
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and ¢ € C5°(V) be a bump function equal to 1 in neighborhood Vo CC V' of £. Then
we have pu € C**(QNV) and
(6.19) pull 2.0 vy < CUlgllrzea0) + | fllca@)-

Proof. Let us denote by 2 a smooth, open bounded set in G and let 0 € 92 be a
non characteristic point. The boundary of 2 can be identified in aAneighborhood \%4
with the graph of a regular function w, defined on a neighborhood V = V nR™+n—1
of 0:

0NV = {(w(é),é) L5e VY.
We can as well assume that w(0) = 0, Vw = 0. This implies that

(6.20) w(8) = 0(|3 \ )

as § — 0. On the set V the function Z(s1, §) = (s1 — w(8), §) is a diffeomorphism.
It sends 9Q NV to a subset of the plane {x; = 0}:

E(@Qﬁ V) = {(l‘l,é) X = 0} = HE~
Moreover, we have
(6.21) Az = dE(Am),

with fundamental solution

For 1 small enough we have

Pz (x1,8) = (a1 +w(§),€) = T(21,€) + R(x1, ),
where
R('rl,é) = w(£>8lr(wl + O-w(é)’é)

for some o € (0,1). Furthermore we have that
- 5N :
= = d2(X]) = X{ — 5 > af 2i0,w(€)s,
k=1

Notice that I is a rational function that goes as d~9%2, its first derivatives go as
d=9*! and its second derivatives go as d~%. On the other side the function w(&)
has a 0 of order 2 thus w(£) goes as d?. Then we have

X7 2T=(0,9) = X{T(0,7) + R(0,7),

where
‘f{(o ) = X{R(0,7)—5 Zal YiOy, w 8y1R -5 Zal YiOy w( (3y1F( 9)

that goes as

|[R(0,7)] < d=9F2(0,7),
where d is the induce distance. Therefore the operator K with kernel Ris compact
since the homogeneous dimension of the boundary is ) — 1. Finally, the proof ends

following the same steps of the proof of Theorem 5.2 and using Proposition 6.4
instead of Proposition 3.1. O

Finally, the analogous of Corollary 5.3 for a bounded domain 2 C G without
characteristic points follows in the same way, clearly replacing A with Ag .
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