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ABSTRACT. In the past few decades, uniqueness of positive solutions to elliptic equa-
tions with polynomial growth has been extensively studied. However, the corresponding
problems associated with elliptic equation with critical exponential growth given by the
Trudinger-Moser inequalities still remains open. For this kind of equations, the classic
non-degeneracy method based on the Pohozaev identity and the study of the linearized
equation do not seem to work. In this paper, we will solve this uniqueness problem.
More precisely, we obtain uniqueness of positive solutions to equations of the form

—Au = \ue?’, x € B; C R?,
u > 0, x € By,
'Z,L:O, ‘T63B17

where 0 < A < A(Bp) and A;(B;) denotes the first eigenvalue of the operator —A
with Dirichlet boundary condition. This uniqueness result is given in Theorem 1.1. Our
method relies on a delicate and difficult analysis of radial solutions to the above equa-
tion and a careful asymptotic expansion of solutions near the boundary. Furthermore,
building on this uniqueness result, we develop a new strategy to establish a quantization
property for elliptic equations with critical exponential growth in the balls of hyper-
bolic spaces, and obtain the multiplicity and non-existence of positive critical points for
super-critical Trudinger-Moser functional. Our method for the quantization property and
non-existence of the critical points avoids using the complicated blow-up analysis used
in the literature. This method can also be applied to study the similar problems in balls
of high dimensional Euclidean space R™ or hyperbolic spaces provided the uniqueness
for the corresponding quasilinear elliptic equations with the critical exponential growth
is established.
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The main content of this paper is an uniqueness theorem for positive solutions to elliptic
equations with Trudinger-Moser growth and application of this result to quantization
analysis, multiplicity and non-existence of critical points of Trudinger-Moser functional
in balls of Euclidean or hyperbolic spaces. Uniqueness problems and quantization analysis
for elliptic equations have attracted much attention due to their importance in applications
to PDEs and geometric analysis. Let us first present a brief history of the main results
in this direction.

In the past few decades, much attention has been paid to uniqueness of solutions to
elliptic equations with the nonlinearity f of polynomial growth, namely,

—Au = f(u), x € By,
(1.1) u >0, x € By,
u =0, x € 0By,

where Bj is the unit ball in R (n > 2). By the classical moving-plane method, one knows
that every solution of problem (1.1) must be radially decreasing. Hence Problem (1.1)
can be reduced to the following radial equation:

—(r" ) = f(u), re (0,1),
(1.2) u >0, r e (0,1),
uw'(0) = u(l) =0.

Now, we recall some important results for the nonlinearity f(u) of the form f(u) = Au+u?,
with 1 < p < 400 for A > 0 and n > 3. When/\:0and1<p<Z—f§,Gidas,Ni
and Nirenberg [17] proved that problem (1.1) admits only one radial solution through
homogeneity. (By the Pohozaev identity, problem (1.1) does not admit any solution for
A=0andp> Z—J_rg) When A > 0 and 1 < p < -5, uniqueness of a positive solution was
obtained by Ni and Nussbaum [30]. Kwong and Li [31] extended this uniqueness result
to the case A >0 and 1 < p < Z—fg, while uniqueness for the critical case (p = Z—fg, the
Brezis-Nirenberg problem [6]) was proved by Srikanth [32]. In the aforementioned papers,
the main idea to prove uniqueness result is to show that the corresponding linearized
equation has only one zero point in (0,1). This is the so-called non-degeneracy method.
Subsequently, Adimurthi 3] provided an elementary proof for uniqueness when A > 0 and
1<p< Z—fg by exploiting a generalized Pohozaev variational identity. For A > 0 and
p > Z—J_rg, uniqueness cannot be expected to hold. Indeed, it has been shown by Budd and
Norbury [7] that there exists A > 0 such that probelm (1.2) has infinitely many solutions
when 3 <n <9.

It should be noted that by the Sobolev imbedding theorem, critical growth means that
the nonlinearity cannot exceed the polynomial of degree Z—fg when n > 3. While in the
case n = 2, we say that f(s) has critical exponential growth at infinity if there exists
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ap > 0 such that

(1.3) f { 0, for a> aq

t=ooexp (at?) | +oo, for a < ap’

which is given by the famous Trudinger-Moser inequality ([28, 37])

(1.4) sup /exp(a\u|2)dx< 0o, iff o < 4,
[Vul2<1,uew, 2 (@) /Q

where Q C R? is a bounded domain and W,"*(€2) denotes the usual Sobolev space.

Thus, the maximal growth in the case n = 2 is of exponential type. A natural but
nontrivial problem arises: Can the uniqueness result still hold if we replace the nonlinearity
of equation (1.1) with exponential growth, and in particular for f(t) = Me®, with 0 <
uw<2and A > 07

When i = 1, by using a new identity from the beautiful analysis developed by Atkinson
and Peletier [1], Adimurthi [4] obtained uniqueness for the subcritical case f(t) = te'.
Tang [35] further showed that the uniqueness is still true for more general nonlinearity
of the type f(t) = Ag(t)e!, where g(t) is a polynomial and satisfies certain conditions.
However, this method cannot be extended for the case p > 1. Recently, under the
assumption that ||u|| is large enough, Adimurthi, Karthik A and Giacomoni [5] proved
uniqueness of positive radial solution under suitable growth conditions on the nonlinearity.
We remark that the nonlinearity in [5] includes the subcritical case 1 < p < 2 and
partially critical case such as f(t) = t?e’"+# with 8 > 0. However, their results do not
include the standard critical case Me!. We also mention that uniqueness of solutions

et

to a nonlocal equation of the form —Au = Pl with Dirichlet boundary condition on
Q
bounded domains € in R? was established in [9] and [33].

The first purpose of this paper is to solve the uniqueness problem for the elliptic equation
with the standard critical exponential growth:

—Au = \ue?’, r € By,
(15) u > 0, x € By,
U:O, J:E@Bl,

where A\ > 0 and B is the unit disk in R?.

Adimurthi in [2] proved that the above equation (1.5) has a positive solution if and
only if A € (0,\(B1)), where A\;(B;) denotes the first eigenvalue of Laplace operator on
the unit ball with the Dirichlet boundary. By the method of moving-plane, we know that
every positive solution of equation (1.5) must be radially decreasing and hence satisfies

—(ru') = riue”, r e (0,1),
(1.6) u >0, r e (0,1),
u'(0) = 0,u(1) = 0.
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Our first main result can be stated as follows:
Theorem 1.1. For any A > 0, problem (1.6) admits at most one solution.

Remark 1.2. Classical approaches based on the non-degeneracy method has been suc-
cessfully applied to solve the uniqueness problem if f(t) has the subcritical or critical
polynomial growth. However, this method fails to deal with the exponential nonlinearity
f(t) like te. It is mainly because in this case we have tLieroo % = 400, which is signif-

wcantly different from that in the case of polynomial nonlinearity. To handle the critical
exponential case, we will establish an elementary, but deep and powerful result (see Lemma
2.83). More precisely, we can show that there exists some 0 <t < 1 such that w = u — tv
satisfies w > 0, w' < 0 in (0,1) and w(1) = w'(1) = 0, provided there exist two solutions
u and v. Then we can deduce a contradiction through the local Pohozaev-type variational
wdentity and a careful asymptotic expansion of u and v at the boundary.

It was shown by Carleson-Chang [8] that if & = 47 and ) is a ball, then the supremum
in (1.4) can be achieved by a radial function wu, satisfying the equation

—Au = )\oue“2, x € By,
u > 0, x € DBy,
U,:07 IGth

for some 0 < Ao < A1(Bj). Hence, uniqueness result for ODE equation (1.6) will be an
important step towards solving the following uniqueness conjecture about the maximizers
of the Trudinger-Moser inequality.

Conjecture 1.3. If a = 471 and ) is a ball, then the maximizers of the Trudinger-Moser
inequality (1.4) are unique.

Remark 1.4. We remark that the mazimizers of (1.4) on the unit disk must satisfy the
following nonlocal equation:

—Au = \ue®, x € DBy,

u > 0, x € By,

u=0, x € 0By,
dr

where Lagrange multiplier A, = which is a parameter associated with w. If one

fBl uZen?’
can furthermore prove that all maximizers of Trudinger-Moser inequality correspond to
the same Lagrange multiplier, which together with the uniqueness of positive solution of
Theorem 1.1 will give uniqueness of mazimizer of Trudinger-Moser inequality on the disk.

From [2], we know that equation (1.5) admits a positive ground-state solution uy with

functional energy
1 A 2
I\(u) = —/ |Vul*dz — —/ e dr < 2w
2 B 2 B
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for any 0 < A\ < A1(Bj). In [14], del Pino, Musso and Ruf proved that if 2 in problem (1.5)
is not a simply connected domain, then one can construct a family of positive solutions
uy, satisfying the equation

—Au = )\ueuz, x €€,
(1.7) u >0, x €€,

u =0, x € 01,
such that

1 A 2
I(uy) = 5/ |Vuy|?de — 5/ eNdr — 4m
0 Q

as A — 0. From their proof, one may conjecture that if the domain of problem (1.5) is a
simply connected or even a convex one, there is no positive solution uy to (1.7) such that
the above property holds. When €2 is a ball, we can give a positive answer to this problem.
Indeed, through our uniqueness result, we see that each positive solution of (1.5) must be
a ground-state solution. Consequently, this implies that one cannot construct a family of
solutions u) such that its functional energy exceeds 2w. More precisely, it can be stated
as follows:

Corollary 1.5. Given any family of positive solutions uy satisfying the equation

—Au = \ue®’, x € By,
B
(18) u > 0, T € Db,
O0< A< )\1(31),
u =0, :1:6831,

there must hold

1 A
L(uy) = 3/, |Vuy|?de — §/B eAdx < 2.
1 1

Slightly modifying the proof of Theorem 1.1, we can also obtain uniqueness of positive
solutions for elliptic equations with the critical exponential growth in the ball of hyperbolic
space. Using this uniqueness result, we can establish the quantization property of positive
solutions for corresponding elliptic equations. Quantization property for elliptic equations
with the critical exponential growth dates back to the work of Druet in [15], which can
be stated as follows:

Let {ur}r be a sequence of positive solutions of problem (1.7) with A replaced by
Ak. Suppose that u, is bounded in Wol’2(Q) and ug blows up. Then after passing to a
subsequence, one has A\, — A\, ur — 1o and there exists some integer N such that

lim || Vg2 = | Vao||2 + 47 N.
k—+o00

When 2 is a disk, the positive solution u; must be radially symmetric through standard
moving-plane method. (see e.g. [13], [17].) By the ODE technique, Malchiodi and
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Martinazzi [25] proved that uy = 0 and N = 1. Furthermore, they showed that the
functional I, under the constraint [ B, |Vu|*dr = ~ does not admit any positive critical
point for v sufficiently large. More recently, Druet and Thizy [16] showed for more general
domain 2 that ug = 0 and N is equal to the number of concentration points by the
complicated blow-up analysis technique combining with a comparison theorem.

In this paper, we will also utilize the uniqueness result to develop a new strategy to
establish the quantization property for elliptic equations with the critical exponential
growth in the hyperbolic space H. Before we state our main results, we introduce some
notations about two-dimensional hyperbolic space. Let H denote the standard hyperbolic

2
space H = (By, (ﬁ) dx?) which is a unit disk equipped with the Poincaré metric
(ﬁ))zalyﬂ7 By (0, R) denote the hyperbolic ball centered at the origin with the geodesic
radius equal to R, —Apg denote Laplace-Beltrami operator in H, A\;(Bg(0, R)) denote the
first eigenvalue of the operator —Ay with the Dirichlet boundary in By(0, R).

Our second main result in this paper reads as follows:

Theorem 1.6. Assume that uy is a family of solutions satisfying equation

—Apu = \ue®’, z € By(0, R),

u >0, x € By(0, R),
(1.9)

0 <A< A\ (Bu(0,R)),

u=0, r € 0By(0, R).

Then uy s radially symmetric and unique. Furthermore, when A — \g, we have:
(i) If \g = 0, then uy blows up at the origin, and |[Vguy|*dVyg — 4mdy, Auye'® — 47do;

(i) If \o € (0, A\1(Bu(0, R))), then uy — ug in C*(By(0, R))) and ug s a positive radial
solution of the equation

—Agu = Mue”, x € By(0, R),
(1.10) u> 0, x € Bg(0, R),
u=0, x € 0By(0, R);

(iii) If Ao = M (Br(0, R)), then uy — 0 in C?(Bg(0, R)).

Remark 1.7. Existence of a ground state solution (and consequently positive solution)
for elliptic equation (1.6) can be verified following the same line as in [2, 10, 11].

Remark 1.8. Our proofs of quantization result on the hyperbolic spaces are based on the
uniqueness result of positive solutions of equation (1.9). Once the uniqueness property is
obtained, we can study the quantization properties of the least energy solutions instead of
the positive solutions. Our method is very simple and we can avoid using the complicated
blow-up analysis of ODFEs. We stress that this method can be also applied to study the
quantization result for high dimensional ball of R™ or general hyperbolic space H", provided
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the uniqueness for solutions of the corresponding equations is established. This will be
carried out in our forthcoming work.

Remark 1.9. Since the uniqueness result for problem (1.9) holds for any fixed X, hence
we need not to choose a subsequence of {uy} to obtain quantization result. Furthermore,
i our proofs for the quantization result, we get rid of the assumption that uy is uniformly
bounded in W12(By(0, R)), which was required in [15, 16], hence we can directly obtain the
non-existence and multiplicity of positive critical point for supercritical Trudinger-Moser
functional in By (0, R).

Theorem 1.10. There exists v* > 4m such that the Trudinger-Moser functional F(u) =
fBH(O,R)(eUQ —1)dViy under the constraint [y o [Veua|*dVis = v has at least two positive
critical points for~y € (4m,~*), at least one critical point for v = 4w or y = ~*, no positive
critical point for v € (v*,+00).

Remark 1. 11 Ea:ploz'ting the existence of the critical points of the Trudinger-Moser func-
tional M(u) = [ (" — 1)dx under the constraint [, |Vu|*dz = o for o > 4m has been a
challengmg problem. Usmg a variational method and the monotonicity of the functional
M (u), Struwe [34] proved that there exits o* > 4w such that M (u) has at least two positive
critical points for almost v € (4m,0*). Later, Lamm, Robert and Struwe [18] introduced
the Trudinger-Moser flow and strengthened it to every v € (4w,0*). When Q is a disk,
Malchiodi and Martinazzi [25] applied refined blow-up analysis for radial critical point of
M to derive that M (u) does not admit any positive critical point for o sufficiently large. It
1s congectured that if Q is a simply connected domain, the above non-existence result still
holds. We also mention that recently Marchis, Malchiodi, Martinazzi and Thizy [24] proved
when Q is a closed manifold that the Trudinger-Moser functional M (u fﬂ — 1)dx
under the constraint [, (]VUP + |ul )dVg = o always has a nontmmal positive crztzcal
point for any o > 0.

Finally, we note that the following improved Trudinger-Moser inequality (see [36]) still
holds:

(111) sup / 647ru2dx<_i_oo
weWy 2 (B1), [, (IVul2—AJu|)de<1 By

if A < A\(Bj). Furthermore, it is proved in [38] that the improved Trudinger-Moser
inequality (1.11) admits an extremal function through the blow-up technique. Hence it is
also interesting to consider the uniqueness for the extremal of (1.11) and the problems of
positive critical point for super-critical Trudinger-Moser functional H (u f B, —1)dx
under the constraint [, (|Vu|* — Au|?)dz = 8 for § > 47. In fact, shghtly modlfymg the
proofs of our Theorems 1.1, 1.6 and 1.10, we can also obtain uniqueness of the problem
(1.9), the quantization results, multiplicity and non-existence for positive critical point
of supercritical Trudinger-Moser functional. We only list these results without giving the
detailed proof.
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Theorem 1.12. For any A\ < A\{(By) = 2w. Let ug be a family of solutions satisfying

—Au — \u = Que*, x € By,
(1.12) u >0, x € By,
U,:(), anBl,

where 0 satisfies 0 < 6 < A\(By1) — A. Then uy is radially decreasing and unique. Further-
more, when 0 — 0y, there holds

(i) If 0y = 0, then uy blows up at the origin, Mui exp(us)dx — 4ndy and ||[Vugl|3 — 47
as 6 — 0.

(i1) if o € (0, \1(By1) — \), then ug — ug in C*(By) and ug is a positive radial solution
of the equation

—AUO — /\UQ = 6’0U06ug T e Bl,
(113) ug > 0, x € By,
Uy = 07 T € aBl

(i) if 0g = A\ (B1) — A, then ug — 0 in C*(By).

Theorem 1.13. There exists * > 4w such that the Trudinger-Moser functional H(u) =
5, (e — 1)dx under the constraint |[Vull3 — Mul|} = 8 does not admit any positive
critical point for B > B* and admits at least two positive critical points for 5 € (4x, 5*).

Remark 1.14. When \ = 0, the multiplicity and non-existence of positive critical point of
super-critical Trudinger-Moser functional have been obtained by Malchiodi and Martinazzi
in [25] through the accurate Dirichlet energy expansion formula obtained by the ODE
technique. It should be noted that even if A = 0, there is no upper bound estimate for
B*. A famous conjecture proposed by Malchiodi is that 3* should be equal to 8r. Using
the method we developed in this paper, we can deduce that f* < 8w if we consider the
perturbed Trudinger-Moser functional H(u) = f31(6u2 — 1 — u?)dx under the constraint

[, IVul?dz = 8.

Theorem 1.15. The perturbed supercritical Trudinger-Moser functional H(u) = fBl (e —
1 —u?)dz under the constraint fBl |Vul?dx = B does not admit any positive critical point

if B> 8.

2. PROOF OF THEOREM 1.1

In order to prove uniqueness of positive solutions of equation (1.6), we need some
lemmas.

Lemma 2.1. Let u and v be non-negative C' functions on [Ry, Rs|, with v # 0 and u > 0
in (Ry1, Ry). Assume that v(R;) = 0 and v/ (R;) # 0 if u(R;) = 0, where i = 1,2. Then
there exists a unique t € (0,00) such that w = u —tv > 0 in [Ry, Ry] and w(§) = 0 for
some & € [Ry, Ry]. Furthermore
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(1) if £ € (Ry, Ry) and w is in C? in a neighbourhood of &, then w(§) = w'(€) = 0,
w'(§) = 0;

(i1) if € = R; and u(R;) = 0 for some i € {1,2}, then w'(§) = 0;

(111) if w(R;) # 0 and v(R;) = 0, then £ # R;, where i = 1,2.

Proof. This result was first essentially established by Rabinowitz [26] (see also [3]). Since
the proof is short, for the convenience of the reader, we prefer to give the proof. By the
hypotheses, v/u is a continuous function on [Ry, Rs]. Let w = u — tv, where

1
t—max{ — < 1} = {maxg} .
U U

Then w > 0 and there exists a { € [Ry, Ry| such that w(§) = 0. If £ € (R;, Rs), then ¢ is
a local minimizer and hence (i) holds. If £ = R; for some i € {1,2}, then by 1’'Hopital’s
rule

and hence w'(§) = 0. This proves (ii). We prove (iii) by contradiction. If £ = R;, then we
()

have 1 " 0 this is impossible since ¢ € (0, 00). Hence (iii) holds.

:

O

Lemma 2.2. Let u and v be two solutions of problem (1.6) and ri,r2 € (0,1). For any
t >0, set w=wu—tv. Then we have
(1) if w(ry) =w'(r1) =0 and w"(ry) >0, then t < 1.

(i) if t = u(0)/v(0) and w > 0 in (0,72), then t < 1.

In either case, t = 1 implies that u = v.

Proof. If w(ry) = w'(r1) = 0, then u(ry) = tv(r;). Combining this, (1.6) and the assump-
tion of (i), we have

1 2 2
(2.1) 0> — <w” + —w/) (r1) = Ato(ry)(e* (r) _ v (”)).
r

Hence e*?*() = ¢#*() < ¢”(") which implies that ¢ < 1. This proves (i).

Now we prove (ii) by contradiction. Suppose that (ii) is not true. From the assumption
that w > 0 in (0,79), we observe that for any 0 < n < 7y, there exists a £ € (0,7) such
that w'(§) > 0. Now, we claim that there exists ey > 0 such that w’ > 0 in [0, g¢]. Indeed,
if this is not true, then there exists a sequence &, — 0 such that w’(&) < 0. This implies
that w’ changes sign infinitely often near zero and then we can find a sequence 1, — 0
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such that w'(ng) > 0, w”(ng) > 0. Similar as (2.1), from the assumption that w > 0 in
(0,72) and (1.6), we have

1
(22) 0> — <w” + _w/> (nk) > )\tv(nk)<eu2(ﬁk) _ evz(nk))'
r

Letting 7, — 0, we obtain ¢*'(® < ¢**© and hence t = u(0)/v(0) < 1. This contradict
with ¢ > 1, and the claim is proved. Since t > 1, it follows from the claim that w’ > 0
in [0,g0] and w'(0) = 0. Hence there exists a sequence 1, — 0 such that w”(n) > 0.
Now by repeating the same argument at 7y as (2.2), we conclude that ¢ < 1, which is a
contradiction. This proves (ii).

Finally, if ¢ = 1, then u(p) = v(p) and «/(p) = v'(p), where p € {ry,0}, which together
with uniqueness of the second order ODE equation with the Cauchy initial value implies
that u = v. 0

Lemma 2.3. Let u # v be two solutions of problem (1.6). Then there exist t € (0,1),
€ € (0,1) such that for w = u — tv, one of the following condition holds:

(a) u(0) = tv(0),
(b) w=0n 0,8, w" < 0n [0,], w(E) = w'(§) =0,

(¢c)w>0,w <0 in[0,1],w (1) =0.

Proof. We first claim that there exist ¢ € (0,1) and £ € (0,1) such that for w = u — tv,
one of the following conditions holds:

(1) u(0) = tv(0),
(IT) w > 0in [0, &), w(€) = w'(§) = 0,w" (&) > 0,

(III) w > 0,w" < 0 in [0,1],w'(1) = 0.

From Lemma 2.1, we can choose t; > 0, & € [0,1] such that w; = u — t;v satisfies
wyp > 01n [0,1], wy(&) = wy(&) = 0. Indeed, we have ¢t; < 1. This is because if t; > 1,
it holds v < t;v < u. Then we can deduce that © = v, which is a contradiction with u
and v being the different solutions of equation (1.6). In fact, if v > v in some interval
(a,b) C (0,1), since u and v satisfy equation (1.6), we have

/ (—Auv 4+ Avu)dxr = )\/ w(e” — e )dx > 0.
By

By

On the other hand, integration by parts directly gives that
/ (—Auv + Avu)dr = 27 (v (1)u(l) — ' (1)v(1)) = 0,
By

which is a contradiction.
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If & =0, then u(0) = #,v(0) and (I) holds. If & € (0,1), then & is a local minimum
and (II) holds.

Again from Lemma 2.1, for every n € (0,00), one can choose t, > 0, &, € [0,7], such
that w, = u — t,v satisfies w, > 0 in [0,7], w,(§,) = 0. We claim that if (I) and (II) do
not hold, then &, = 7. We prove this by contradiction. Indeed, if £, € (0,7), then &, is a
local minimizer for w, and therefore w; (§,) = 0, w;(§,;) > 0. Hence from (i) of Lemma
2.2, we get t, < 1, which contradicts the assumption that (II) does not hold. If ¢, = 0,

from (ii) of Lemma 2.2, we conclude that ¢, < 1. This contradicts the assumption that
(I) does not hold.

Now, we show that if (I) and (II) do not hold, then w'(r) < 0 for r € [0, 1]. We prove
this by contradiction. Suppose that there exists 79 € (0,1) such that wj(ny) > 0. We
consider the interval [0, 7,]. From the above argument, we see that &,, = 1, thus we have
tyo = u(no)/v(no). Hence for 0 <r < ny < oo, we deduce from wy,(r) > 0 that

ulr) o, ulm)
o(r) ~ v(ne)
Thus u/v is a decreasing function, this implies that u/v < u’/v". Let 1 > r > np, so that

u(r) < u(1po) < ' (1o)

v(r) = v(no) ~ v'(mo)
and hence wy (r) < 0, which is a contradiction. Therefore, w] < 0 in [0, 1] and this proves
(IIT), and the claim is proved.

Next, we show that if (I) and (III) do not hold, then (b) holds. Let
no = inf{n > 0; (II) holds in [0, n]}.

We claim that 79 > 0. We prove this by contradiction. Suppose that ny = 0, then there
exists a sequence 7, — 0 with ¢,, — to for some t; < 1 such that w,, (n;) = 0. This
implies that u(0) = tov(0). If tx = 1, then u = v, which is a contradiction. If £y < 1, then
(I) holds, which contradicts our assumption, hence 7y > 0. Now by the definition of 7,
we have wy, (o) = w;, (n0) = 0, wy (no) > 0. Then it follows from (i) of Lemma 2.2 that
ty < 1.

Now, we show that w; < 0in [0,79]. We assert that for any 0 < 1 < no, one has
& =1, t, = u(n)/v(n). Indeed, if &, € (0,7n), then &, is a local minimizer of w,, and
hence w;(§,) = 0, w;(§,) > 0. Therefore from (i) of Lemma 2.2, ¢, < 1, but this is
impossible from the definition of 7. If &, = 0, then ¢, = u(0)/v(0) and hence from (ii)
of Lemma 2.2, t,, < 1. Thus (I) holds, which contradicts our assumption. Therefore we
have &, = n and t,, = u(n)/v(n). This implies that w,(r) > 0 for 0 < r < 7, and hence
u(r)/v(r) > u(n)/v(n). Thus u/v is a decreasing function in [0,7,] and u/v < /v’ in
[0,70]. Suppose that there exists 71 < 1o such that w; (1) > 0, then for n; <r <y we
have

<t

u(r) _ ulm) _ o(m)
o(r) = o(m) = v(m)

<ty
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Hence wy, (r) < 0, which is a contradiction. Therefore w; < 0 in [0,70], and (b) holds in
[0,70]. The proof of this lemma is finished.
U

Lemma 2.4. Let u and us be two solutions of (1.6) with u(0) < uy(0). Then there exists
a solution uy of (1.6) such that uy(0) < uy(0). Furthermore, u; and uy intersects at most
once in (0,1).

Proof. Let a > 0 and w(-, &) be the unique solution of the following initial-value problem,

(ruy = ).
2 {<>= w(0) =0

where f(w) = Awe®”. We also denote R(«) the first zero of w(-, ) defined by
R(a) = sup{r : w(s,a) > 0 for all s € [0,7]}.

Assume that u and uy intersect at least twice (otherwise there is nothing to prove). Let
0 < Ry < Ry < 1 be the first two consecutive points of intersection with u(r) < uq(r) for
all 7 € (0, Ry). Clearly, w(r, o) = u(r) and w(r, ae) = us(r), where ag = u(0), ag = u2(0)
with R(ag) = R(aw) = 1. Let a < o and be close to ag, and 0 < Ry(a) < Rs(a) < o0
be the first two consecutive points of intersections of w(-,a) with uy (which exist by
continuity) such that w(r, «) < us(r) for r € (0, Ry(«)).

Now, as o moves towards zero, one of the following three possibilities holds.

(i) There exists a a; € (0, ap) such that Re(a;) = 1. Then the conclusion of the lemma
holds.

(i) There exists a ay € (0, ap) and a point R € (0,1) such that
w(R, a1) = uz(R), w'(R, an) = uy(R).

Then, by uniqueness of the initial-value problem, w(r, ) = uo(r) for all r € (0, 1), which
is a contradiction.

(iii) 0 < Ri(a) < Ro(a) < 1 for all a and lim,—,0(R2(a) — Ri(cr)) = 0. In this cases,
let I(a) = [Ri(a), Re()] and v(r) = w(r, @) — ua(r). Then v(r) satisfies

—(rv') = Qu, re l(a),
(2.4) v >0, rel(a),

v(Ra(@)) = v(Ra(a)) =0,
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Hence v is the first eigenfunction with eigenvalue iy = 1 of the following eigenvalue
problem:

{—(w’)’ = uQep, r € Il(a),

v =0, r e dl(a).
For a € (0, ) and 0 < Ry < Ry(«), we have
(2.5) M =sup{Q(r) : r € I(a),x € (0, 0p)} < 00.

Let A\ () be the first eigenvalue of

Zif = )‘907 NS [(C\f),
© =0, x € 0I(a).

Then, from (2.4)-(2.6), we get

)2dr
- {W oeHi(I)]
2.6 Jr (&) "dr 1
26) 2 T e < i)}
Ry
> M)‘l( ).

Since Ry(a) — Ry(a) — 0 as a — 0, we derive that A;(«a) — oo, which contradicts (2.6).
This proves the lemma.

O

Lemma 2.5. Let u and uy be two solutions of (1.6) with u(0) < uy(0), then there exists
uy of (1.6) such that ui(0) < u2(0), uy and uy intersects only once in (0,1). Moreover,

Z;E:; is strictly increasing.

Proof. According to Lemma 2.4, in order to prove that u; and us intersects only once in
(0,1), we only need to prove that u; and wus intersects at least once. We argue this by
contradiction. Assume that u; and us does not intersect in (0, 1), then us > u; in (0, 1).
Since u; and uy satisfies equation (1.6), we have

/ (—Auguy + Aujug)dr = )x/ uguq (" 2 et )dx > 0.
B1

B1

On the other hand, integration by parts directly gives that
/ (—Auguy + Augug)dr = 2w (uy(1)uz(1) — ub(1)ui(1)) =0,
B1

which is obviously a contradiction.
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uy(r)
uz(r)

point of u; and wus is 7o, then us(r) > uy(r) in (0,r0]. By equation (1.6), one can directly
obtain that for any r € (0, o],

Now, we start to prove that is strictly increasing. Assume that the only intersection

/ (—Auguy + Augug)dr = / uQul(e“% — e“%)dx > 0.

T T

On the other hand, integration by parts directly gives

/ (—Auguy + Augug)dr = 2 (uy (r)ug(r) — usy(r)uy (r))r.

Combining the above estimate, we derive that w)(r)us(r) — uh(r)us(r) > 0 for r €
(0,70], that is Z;E:i is strictly increasing in (0,7y]. Now, we will prove that u/(r)us(r) —
ub(r)uy (r) > 0 holds for r € (rg,1). By equation (1.6), one can similarly obtain

/ (—Auguy + Augug)dr = / uQul(e“% — e“%)dz < 0.
BI\BT‘ Bl\Br

Again applying integration by parts, one can derive that
27 (u) (r)us(r) — ub(r)uy(r))r = —/ (—Auguy + Augug)dz > 0.
B1\B,
Then we accomplish the proof of Lemma 2.5. 0

Now, we are in position to give the proof of uniqueness of positive radial solution to
equation (1.6).

Proof of Theorem 1.1. Assume that u and v are two positive solutions of equation (1.6)
with v(0) < u(0), v and v intersecting only once in (0,1). According to Lemma 2.3, there
exist t € (0,1), £ € (0,1) such that for w = u — tv one of the following holds:

(b) w=0,w" <0in (0,8, w(§) = w'(&) =0,

(¢) w>0,w <0in [0,1],w'(1) =0.

Obviously, (a) does not occur. According to Lemma 2.5, we know that % is strictly

increasing in (0, 1). This gives that for any r € (0,1), % < ZE:% Hence it follows that
there does not exists & € (0,1) such that w(§) = w'(§) = 0, that is to say that (b) is
also impossible. In order to prove the uniqueness theorem, we only need to prove that (c)
does not happen. Assume that (¢) happens, then w(1) = w’(1) = 0. A simple calculation

combining with /(1) = ¢v/(1) and u(1) = v(1) = 0 yields that
(2.7) W?(1) = 0@ (1), w® (1) = (1), u(1) =1 (1)
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and
(28) (1) = (1) = —=6((u)*(1) = t(v')*(1)) = =60/ (1) ((«')*(1) = (v)*(1)).
Furthermore, we also have
u®(1) — tv® (1) + u® (1) — tv® (1) + 36(u)? (1) (1) — 36t(v")3(1)v" (1) = 0.
This together with u”(1) +«/(1) = 0 and (2.8) gives that
u@(1) — 0@ (1) = 36(u)*(1) — 36t(v")*(1) — (u® (1) — tv®) (1))
(2.9) = 36u/(1)((«)*(1) — (')*(1))) + 6/ (1) ((w)*(1) = (v')*(1))
= 42d'(1)((«)*(1) = (v')*(1))

Since u and v satisfy equation (1.7), using the Pohozaev identity and combining the
radial symmetry of v and v, we have

/ e Vu)ds = .- /a VU)o =~ ()

2
and
2 1 2
/ ue" (x - Vu) :4_1/ V(e —1)V(z)
- 1 u? 2 1 u? 8|$C|2
= —/ (e — Ddx + mr?(e® ") — 1),
That is

This deduces that
(2.10) w(2(1) — 7 (o (r) = / (e — 1)da + 72 (0 — 1),
B1\B,
Similarly, we also have
@) AP - w0 = [ (e - Dde s e - 1),
BI\BT‘

Multiplying (2.11) by ¢?, and then subtracting (2.10), we can obtain from «/(1) = tv’'(1)
that

(2.12)
wr?((u)?(r) — 2 (v')?(r)) = /B . (12(e” = 1) = (¥ —1))da + mr2(2(e” = 1) — (¥ = 1))

= mr?(I + I1).
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In view of (2.7), (2.8) and (2.9), we have

(2.13)
(W)?(r) = () (r) = (u'(r) + 8" (r)) (' (r) — 1/ (1))

=(2u/(1) + 20" (1)(r — 1) + O((r — 1)%)) x (%(u@u) — t® (1)) (r — 1)*+

+ 2 (wO(1) — O = 17+ O((r — 1))
=~ SEPW (P () ~ @PW) 0~ 1+ S0 (1) — WPW0) (r — 1)+
+ %(U’P(l)((u/)?(l) — (Ul)Q(l))(’F . 1)5 + O((’l” B 1)6)'

For 11, we have

IT = (203(r) — u(r) + %t%‘*(r) _ %u4(7”)) +O((r - 1))

= ((tv(r) + u(r))(tv(r) —u(r)) + %((“0202(7”) —u'(r))) +O((r —1)°)
tv® (1) — u® (1)

= (2u'(1)(r - 1) +0((r— 1)2)) (( | Yr—1)° +O((r — 1)6))—|—
A0 - 1)+ s (O - 17+ 0~ D) - 1)+ -1y

2

FO(lr =1%) = 3 (V) = 1) + 2" (D) = 1+ O((r — 1) + O((r — 1))
S = 1)+ 5 (W)= 17+ 0~ 19)” x (1) = 1)+ 0" () = 17+
+0((r—1)%)* = (W (1)(r — 1) + = 2(1) (r=1)2+0((r - 1)3))2) +0((r—1)%
a0 (W) - () - 1)

+ %(u/)z(l)(v/(l)v”(l) — ' (Du"(1))(r = 1)” + O((r — 1)°)

+O((r —1)%),

where in the last step, we have used the fact that «”(1) + /(1) = 0.
For I, we have

‘2737@ (W) (()?(1) = P W) = D)1= 1%) + O((r = 1)°)

= ()*()(()*(1) = @) W))(r = 1)° + O((r — 1)°).

I =
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Combining (2.12), (2.13) and the estimates of I and /I, we derive that

1 84

(5 + 129 @M (@)*(1) = @)W (r = 1) = 2P (1) (()* (1) = () (1) (r = 1)°,
which is a contradiction. Hence (c) is impossible. This accomplishes the proof of Theorem
1.1. O

3. PROOF OF THEOREM 1.6

In this section, we will prove uniqueness of positive solution for elliptic equation in
the ball of hyperbolic space and give quantization result for positive critical point of
Trudinger-Moser functional in the ball of hyperbolic space.

Assume that u, is a positive solution of equation (1.9). By the conformal invariance
between (B,dVy) and (B, dx), the elliptic equation in hyperbolic ball By(0, R) can be

rewritten as the elliptic equation in the ball By of R?, with radius R equal to 2?1

—Auy = dure" (=5p)%, x € By,
(31) uy > 0, S BR’

0 < A< M\(Bu(0,R)),

uy = 0, xr € 0Bp.

Using the moving plane method on hyperbolic spaces, we can show that u, must be
radially symmetric about the origin and decreasing. (see e.g., [19]). Hence u, satisfies the
following ODE equation

—(rul) = r)\uAeui(ﬁ)Q, re (0,R),
(32) Uy > 07 re (07 R)?

u) (0) = 0,u\(R) = 0.
We remark that in the work of Naito and Suzuki [29], they also considered the radial
symmetry of positive solutions for a class of semilinear elliptic equations with some weight
on the unit ball, however, our equation (3.1) does not satisfy the hypothesis made in the
paper of Naito and Suzuki.

Since the weight function (1_27“2)2 has no singular points on the corresponding defined
interval, the weight function and its derivatives don’t contribute to any vanishing factor
around r = R, hence a slight modification of the proof of Theorem 1.1 can show that
the positive solution wu, is unique. Therefore, u) is also a least-energy solution of elliptic
equation (3.1). Now we are in position to give quantization result for least energy solution
of elliptic equation (3.1).

Proof of (i) in Theorem 1.6: We recall that u, is a least energy solution of elliptic
equation (3.1) if its functional energy I,(u) defined by

1 A
]A(U) = —/ |VHU|2dVH — —/ (€u2 - 1)dVH
2 JBu(o,R) 2 JBu(o,R)
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is equal to my := min{/(u) : Ii(u) = 0}, which is equivalent to say I)(uy) = m,. We
claim that }\irr(l) my has the positive lower bound. We argue this by contradiction. Suppose

%
not, then }\ILI%) my =0, whiCQh together with I} (uy)uy = 0 implies that }\IL% fBH(O,R) |Viuy2dVg =
0. Then it follows that e"s is bounded in L?(By(0, R)) for any ¢ > 1. Let vy = INEENIER

then v, is bounded in W12?(By(0, R)). Hence, there exists vg € W1?(Bg(0, R)) such that
vy strongly converges to vy in L?(Bg(0, R)) for any g > 1. Noticing that I} (uy)uy = 0,
one can write 1 =X [, o v2e“3dViy. This together with the boundedness of v? and "X
in L4(By(0, R)) yields that

lim A / vieRdVig = 0,
A—0 BH(O,R)

which is a contradiction. This proves that there exists ¢o > 0 such that lim [ |Viuy2dVig >
A0 Bu(0.R)
co. Through I} (uy)uy = 0, we have that
(3.3) / Vi |? dVig = )\/ u3 exp(u3 )dVi,
BH(OvR) BH(O,R)
which implies that
(3.4) lim u3 exp(u3 )dVy = +oc.
This deduces cy := /l\in% ux(0) = 400, that is to say that u, blows up at the origin. Now,
—

we will prove that
(3.5) lim | Viuy|?dVig = 4.
A—0 BH(O,R)
Since wy is the least energy critical point of functional I)(u), one can deduce that

(3.6) 0 < In(uy) < 2w

by the Trudinger-Moser inequality on compact manifold (see the Appendix). This together
with I'(uy)uy = 0 yields that uy is bounded in Wy?(Bg(0, R)) if A — 0. Then there
exists some ug such that uy — ug weakly in Wy*(Bg(0, R)) and uy — ug strongly in
L9(By(0, R)) for any ¢ > 1. Now we claim that

This is mainly because

A—=0

(3.8) lim A / e AdViy = 0.
By (0,R)
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Indeed, we can write

A / e dViy = A / eXdVig + A / e"AdVy
(3.9) Bu(0,R) {Jux|>M} {Jux|<M}

=1+ L.
For Iy, through A fBH(O R) uie“idVH < 1, we obtain

< A
1 -
M? By (0,R)

1

2 2
uAe“AdVH S W’

(3.10) I

which implies lim lim [; = 0. For I, Obviously I, < )\eM2VolH(BH(O7R)), hence

M—00 A——+00 -
lim lim I = 0. Combining the estimates of I; and Iy, we conclude that

M—o00 k—400
. 2
lim >\/ eNdVyg =0,
k=+oo  JBy(0,R)

hence the claim is proved.
. o, . . 2 . .
Now, we are in position to prove that /l\li% fBH(o,R) |Viua|*dVg = 4m. We argue this

by contradiction. Suppose that }\lir(l) i) Ba(0.R) |Vauy|?dVig < 4, it follows from Trudinger-

Moser inequalities (see e.g., [23], [27]) that [ Ba(0.R) u3e3dVy is bounded, which is a con-
tradiction with (3.4). Hence (3.8) holds.
Finally, we claim
|V [2dViy — 47d,.

We argue this by contradiction. Suppose not, then there exists some ¢ > 0 such that
/ |VHU>\|2dVH < 4.
Bu(0,5)
Hence, using the Trudinger-Moser inequality again, we derive that uye's € LP (Bu(0,9)),
for some p > 1. Then it follows from the standard elliptic estimates that
Sl;p [uller (Baco.6)) < 00,

which is a contradiction with lim w,(0) = +oc.
A—+00

Proof of (i) in Theorem 1.6: when A — X\ € (0, \;(Bu(0, R)), one can similarly obtain
that there exist 0 < p; < py < 27 such that

p1 < lim Iy(uy) < py < 2,
)\—))\0

as A — Ao. Gathering this and I'(uy)uy = 0, we deduce that w, is bounded in W, *(Bg(0, R))).
Then there exists some uy such that uy, — uo weakly in Wy*(Bu(0, R)). Next, we will
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show that ug satisfies equation

—AHUO = )\ouoe“(%, T e BH(O, R),
(3.11) uy > 0, x € By(0, R),
Uy = 0, S 8BH(0, R)

For this purpose, according to the definition of weak solution, we only need to prove that

lim A / ure'>dVig = Ao / wpe 0 dViy.
A=2o0 ) By(0,R) Bu(0,R)

Indeed, we can write

)\/ u,\euidVH = )\/ u,\euidVH + )\/ u,\euidVH
(3.12) Bi(0,R) {|ux|>M} {lurl<M}

=1+ L.
For I, through A fBH(O R) u3e3dViy < 1, we obtain

A ) 1
3.13 I <= use" dVy S —,
( ) 1 M Bu(0.5) A M2

which implies lim lim /; = 0. For [y, through Lebesgue dominated convergence the-
M—00 A>Xo

. . . - u2 . .
orem, we can derive that Nl{gnoo /\113\10 I, = X f Bu(0.R) 40€ 0dVy, which together with the

estimate of I; gives

(3.14) lim )\/ ure"AdVy = )\0/ g exp(ug)dVig.
A0S By(0,R) By (0,R)
Similarly, we can also prove that
(3.15) lim \ / e dVig = A / e dVi.
A=A J By (0,R) By (0,R)

Now, we claim that uy # 0. We argue this by contradiction. If uy = 0, then from

. . 2 . . .
equality (3.14), we see that /\lgg\lo fBH(O,R) |Viauy|*dVyg = 2/\151;10 I(uy) < 2p; < 47w, Using

the Trudinger-Moser inequality and Vitali convergence theorem, we derive that

lim )\/ uie“idVH = )\0/ uge“?}dVH =0,
Bu(0,R)

A= Ao BH(O,R)
which implies that Ahrg\l I\(uy) = 0. This poses a contradiction to the following fact:
—A0
0< p1 < lim ]A(U)\).
)\—))\0

So Uo#o
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Next, we will prove that uy — ug in W, *(Bg(0, R)). According to the convexity of
norm in Wy?(Bg(0, R)), we only need to prove that

lim ’vHuAPdVH >/ ’VHUOPdVH
A=20 J By (0,R) By (0,R)
is impossible. We argue this by contradiction. Set

Ux
= and vy 1=

. 2
Alig\lo HVHUAHLZ(BH&R))

Uo

- 2 ’
)\ll)rg\lo IVaurllZ2 g, 0.5

We claim that there exists gy > 1 sufficiently close to 1 such that
AT

1- ||VHUO||%2(BH(O7R)).

(3.16) G0 Jim [[Vauallzz(s,0.m) <

Indeed, by (3.15) and (3.6), we have

i [Vl za s 0.m (1= [ Vavollz2)

| Vo H%?(BH(O,R)) )

IVeuallZa s, 00,m)

(e"% — 1)dVig — 21, (o) — Ao / ("8 — 1)dVig
By (0,R)

p— ] 2
317) i Vel myom) (

=2 lim I, (uy) +A/
Ao By (0,R))

<A,

and then the claim is proved. Through the concentration-compactness principle for the
Trudinger-Moser inequality [20], one can derive that there exists py > 1 such that

(3.18) sup/ (u?\eui)podVH < 00.
A BIHI(O:R)
Then it follows from the Vitali convergence theorem that
lim )\/ u; exp(us )dVig = )\0/ u exp(ug)dVi.
Bu(0,R)

A=Ao Bi(0,R)

Hence, we conclude that uy — ug in W, (Bg(0, R)) from (3.3). Using the Trudinger-
Moser inequality in Wy *(Bg(0, R)), we derive that for any p > 1, there holds

/ (w3 exp(u3))’dVi < 1.
Bu(0,R)

Since u,, satisfies equation (1.9), standard elliptic estimate gives uy — ug in C?(Bg(0, R)).
Then the proof of (ii) in Theorem 1.6 is accomplished.

Proof of (ii1) in Theorem 1.6: We will prove that if \g = A;(Bg(0, R)), then uy — 0
in C?(By(0, R)). We first show that fBH(O R) |Vmuy|?dVi is bounded. We argue this by
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contradiction. Assume that /\ling |Vuy|?dVyg = +o0, then it follows from I} (uy)uy = 0 and
—A0

I(uy) < 27 that

lim A / udedVy = +oo, lim A / eXdVig = +o0.
)\4))\0 BH(O,R) )\4))\0 BH(O,R)

On the other hand, we can also derive that

li 268 — (e"3 —1))dVig = lim 21 <4
ALH)}O )\/BH(O,R) (U)\e (e )) " )\gg\lo )\(U/\) i

which implies that fBH(O R) (e“i —-1- u?\)dVH is bounded, hence fBH(O R) (e“i — 1)dVH is
bounded since |[ux|[2(Bx0,r) S |[uallza(Bu(o,r))- This arrives at a contradiction with the
fact

lim )\/ (e — 1)dViy = +o0.
)\*))\0 BH(O,R)
Therefore, [ Ba(0.R) |Viuy|2dVi is bounded. Hence, there exists some non-negative function

uy € Wy (By(0, R)) such that uy — uy weakly in W, *(Bg(0, R)). As what we did in the
previous proof for (ii), we can similarly derive that

lim )\/ uy exp(u3)dViy = /\0/ ug exp(ug)dVi
A= Ao Bu(0,R) By(0,R)

and

lim A / exdVi = o / U dViy.
A=2o0 ) By(0,R) By(0,R)

Through equation (1.9) and the definition of weak solution, we see that wu, satisfies equa-
tion

—Agu = \gue®’, x € By,
(3.19) u >0, x € By,
u = 0, S aBl

Noticing Ao = A\ (Bg(0, R)) is the first eigenvalue of —Ay in By(0, R) with the Dirichlet
boundary, hence one can easily obtain uy = 0 through Pohozaev identity. This deduces
that

lim >\/ (exp(u}) — 1)dVi = )\0/ (exp(u3) — 1)dVi = 0.
A=do - By(0,R) Bu(0,R)

. . 2 . . . . .
Hence it follows that Alg\lo Il Bu(0.R) |Vauy|?dVy = 2/\1;1&10 I\(uy) < 4m. Combining this

and the Trudinger-Moser inequality, we find that there exists some py > 1 such that

) Ba(0.R) (u?\eui)podVH is bounded. Using the Vitali convergence theorem, we derive that

lim )\/ uj exp(u3)dViyg = )\0/ ug exp(ul)dVig = 0,
A=A JByu(0,R) Bu(0,R)
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which implies that
(3.20) lim |Viuy|?dVig = 0 and lim Iy(uy) = 0.
>\—>)\0 BH(O,R) )\—>)\0
That is to say uy — 0 in Wy*(Bg(0, R)). Using the Trudinger-Moser inequality again,
we derive that for any p > 1, there holds [ o (u3 exp(u?))’dVir < 1. Since uy satisfies

elliptic equation (3.1), standard elliptic estimate gives that uy — uy = 0 in C%(Bg(0, R)).
Then the proof of (iii) in Theorem 1.6 is accomplished.

4. PROOF OF THEOREM 1.10

In this section, we will prove the multiplicity and non-existence result for the Trudinger-
Moser functional

F(u) = / (e —1)dVy
By (0,R)

under the constraint | Ba( |Viuy|?dVg = v for v > 47, namely we shall give the proof

of Theorem 1.10.

Obviously, the positive critical points ug of the Trudinger-Moser functional F'(u) under
the constraint [ R) |Viuy[2dViy = v must satisfy

0,R)

—Agu = )\oue“2, x € By(0, R),
>0 Br(0, R
(41) u = U, T e H( ) )7
u:O, x € 8BH(O,R),

fBH(o,R) |VHU|2dVH =7

where Ay € (0, A\(Br(0, R))). Set Ay = fBH(O R) |Viuy|?dVi, where uy is the positive
solution of equation

—Aguy = )\u)\eui, x € BH<O, R),
(42) uy > 0, WS BH(O, R),
uy = 0, T € 8BH(0, R)

The definition of A, is well-defined because the positive solution of (4.2) is unique.
Through Theorem 1.6, we see that A, is continuous with the respect to the parameter
A € (0, A\ (Bu(0,R))) and

lim |Viuy |*dVi = 4, lim / |Viuy|*dVi = 0.
A—0 BH(O,R) A—)Al(BH(O,R)) BH(O,R)

Hence A, is bounded in (0, A;(Bg(0, R))). Define v* = sup{A, : A € (0, \(Bg(0, R))},
we see that for any v > ~*, Trudinger-Moser functional F'(u) under the constraint
i) B (0.R) |Viuy|?dVg = 7 does not admit any positive critical point if v > ~*.

Now, in order to finish the proof of Theorem 1.10, we only need to prove that F'(u)
under the constraint [, o [Viua?dVis = 7 has at least two positive critical points if
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v € (4m,~*). Since A, is continuous with respect to the parameter A € (0, \;(Bw(0, R)))
and A(0) = 47, A(A\(Bu(0,R))) = 0, hence it suffices to prove that there exists a A\, €
(0, A\1(Bm(0,R))) such that A(A\,) > 4mw. This will be easily verified by showing that
the Trudinger-Moser functional F'(u) under the constraint [, g [Viu[*dVir = 7 for v
sufficiently close to 47 has a local maximum point. The argument is essentially similar to
the one for the local maximum point of the super-critical Trudinger-Moser functional on
bounded domain of R? which was proved by Struwe in [34]. For simplicity, we only give
the outline of the proof.

Step 1: Set

Bir = sup / (64”2 — 1)dVy,
Bx(0,R)

fBH(O,R) [Vius|2dViz=1

then the set

Kir = {u € Wy*(Bg(0,R)) : /

Vasuf2dVes = 1, / e AV = B}
By (0,R)

By (0,R)

is compact. The proof of compactness is essential to the proof of existence of extremal
functional for critical Trudinger-Moser functional on two dimensional compact manifold
which is established by Y. X. Li [21, 22].

Step 2: Let ¥ be the set consisting of all functions u € W,?(Bg(0, R)) satisfying
J Bu(0.R) |Viuy|?dVg = 1 and define the Dirichlet norm neighborhoods of Ky, in ¥ by

Ne={u e X| e Ky s.t. / |Va(u —v)[*dVi < €}.
By (0,R)

Similarly, we can show that for sufficiently small € > 0, there holds

(4.3) sup / (™ —1)dViy < BL. = sup / (e — 1)dV.
Bu(0,R) Bu(0,R)

U‘GNQE\NG u€EN,

Step 3: Through compactness of K4, and uniformly local continuity of F', we can show
that there exists o > 47 and € > 0 such that for any a € [4w, o*), there holds

sup / (e — 1)dVy < sup / (e — 1)dVy =: oM
By (0,R) By (0,R)

u€Nac\Ne u€Ne

Combining Steps 1-3, one can easily obtain that Trudinger-Moser functional F'(u) =
S50 R)(e“2 — 1)dVi under the constraint [ o [Vaus|[?dVis = 7 for v sufficiently close
to 47 has a local maximum point. This accomplishes the proof of Theorem 1.10.
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5. PROOF OF THEOREM 1.15

Obv1ously, the p081tlve critical points ug of the perturbed Trudinger-Moser functional

= [, (€ =1 —w?)dz under the constraint [, [Vu[?dz = 3 must satisfy
—Au = Mu(e®’ —1), x € By
u > 0, x € By
5.1
( ) U = 07 RS (931
[5, IVul?dz =

Through the moving-plane method, it is easy to check that ug is radially decreasing. Then
ug satisfies the following ODE equation

—(ru’) = riou(e ui — 1), re (0,1),
(5.2) u >0, r e (0,1),
u'(0) =0,u(1) =0.

Using the argument of Theorem 1.1 again, we can deduce that ug is the least energy
critical point of the functional

1 A

Ly (w) = 5 \Vul?dz — 20

Bl Bl

(e — 1 —u?)da.

By using the Trudinger-Moser inequality and Nehari manifold method (see the Appendix),
one can deduce that Iy, (uo) < 27. Using I} (uo)uo = 0, we obtain

A A
I (ug) = ?0/3 w2(e" — 1)dx — ?0 ; (e" — 1 — ud)da
1 1
(5.3) A\ _ ] )
> 1 ug(e"® — 1)dzx = 1 |Vug|dx.
Bl Bl

This together with I(ug) < 27 yields [ B |Vu0\2dx < 8. Hence the perturbed super-
critical Trudinger-Moser functional H(u) = [, ( By — 1 — u?)dz under the constraint
f B, |Vu|*dz = 3 does not admit any posmve crltlcal point if § > 8.

6. APPENDIX

In this section, we will show that the functional energy I, (uy) < 27, if uy is the least
energy point of functional

1 A
Ly(u) = -/ VudVig — —/ (e — 1)dViy.
2 JByo.R) 2 JBy(o,R)

Recalling the definition of the least energy critical point of functional I)(u), we know that
I\(uy) = my = min{)(u) : I}(u)u = 0}.
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We first show that m, > 0. We argue this by contradiction. Assume that my = 0, then
exists a sequence {uy}, € W, ?(Bg(0, R)) such that

/ Vg *dVi — )\/ ek dVig =0, Vk e N
By (0,R) By(0,R)

and
A

1
lim (—/ |VHuk]2dVH - —/ (e“i — 1)dVH) =0.
k—oo \ 2 Bu(0,R) 2 Bu(0,R)

Direct computations show that

1 A >
my = klim <§/ Vg *dViy — 5/ (e — l)dVH)
—00 By (0,R) By (0,R)

A A
lim <—/ ule"kdViy — —/ (e"F — 1)dVH>
k=00 \ 2 /By (0,R) 2 JBy(o,R)

— lim w2 (et — 1)dVig
4 k—o0 BH(O,R)
1

>

= — lim (IViue)® = Aug|?) dVig.

Since A < A\ (Bu(0, R)), it follows from the Sobolev imbedding theorem that
u, — 0in Wy*(Bu(0, R)) and w, — 0 in LP(Bg(0,R)) for any p > 1.

Let v, = then vy — v in W, (Bg(0, R)) with ||v|2 < lim [|jvg)2 < 1

Since uy — 0 in Wy*(Bg(0, R)), by Trudinger-Moser inequality in Wy *(Bg(0, R)), we
have e“k € LP(By(0,R)) for any p > 1. Then it follows from the Vitali convergence
theorem that

2
1= lim &2
k=t JBy(0,R) | Viu |3

(6.2) = lim )\/ ek |ug,|2dx
Bx(0,R)

e“i dVH

k—+o0

A
= \|v|]2 < <1
Joll3 < ,

which is a contradiction.
Next, we start to prove that my < 27. Let w € W,?(Bg(0, R)) such that || Vgw|3 —
Allw||3 = 1. Then there exists some 7,, > 0 such that

[ (Vamnl = NPt =3 [ (e~ 1)avis =0,
By (0,R) Bg(0,R)
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which implies that

1 A
my < —/ (IVeywwl® — A yww|?)dVis — —/ (e — 1 — (yw)?)dVi
2 JBu(0.r) 2 JBu(o,R)
(6.3) \2 \2
< —W/ (IVaw]* = Aw[*)dVig = 2.
2 JBso,r) 2
Set m, = % Since (6(7“’)2 — 1)w2 is monotone increasing about the variable ~y, we derive
that
/ (6(7""“})2 — 1)w2dVH < / (e(%w)2 - 1)w2dVH
(6.4) Bu(0,R) Bu(0,R)

- / (V]2 — Aw]2)dVis = 1,
Bu(0,R)

which implies that

sup / (6(7“’“’)2 — 1)w2dVH < 00.
fBH(oyR)(|va|2_)‘|w|2)dVH:1 B]HI(OaR)

Noticing

/ \Vw|2da;=/ | Vaw|*dVi,
Bx(0) By (0,R)

and dVig = (=27 d, we obtain that

I=faf?

sup / (e(%ow)2 — 1)w2d:L’ < 00,
IBR(O) |[Vw|2dz=1 J B§(0)

where Bj(0) denotes the ball with radius R equal to 22; in R?. Then one can construct

well-known Moser sequence (that is a concentration sequence which blows up at some
point) to deduce that my = % < 2.
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