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Abstract. In the past few decades, uniqueness of positive solutions to elliptic equa-
tions with polynomial growth has been extensively studied. However, the corresponding
problems associated with elliptic equation with critical exponential growth given by the
Trudinger-Moser inequalities still remains open. For this kind of equations, the classic
non-degeneracy method based on the Pohozaev identity and the study of the linearized
equation do not seem to work. In this paper, we will solve this uniqueness problem.
More precisely, we obtain uniqueness of positive solutions to equations of the form

−∆u = λueu
2

, x ∈ B1 ⊂ R2,

u > 0, x ∈ B1,

u = 0, x ∈ ∂B1,

where 0 < λ < λ1(B1) and λ1(B1) denotes the first eigenvalue of the operator −∆
with Dirichlet boundary condition. This uniqueness result is given in Theorem 1.1. Our
method relies on a delicate and difficult analysis of radial solutions to the above equa-
tion and a careful asymptotic expansion of solutions near the boundary. Furthermore,
building on this uniqueness result, we develop a new strategy to establish a quantization
property for elliptic equations with critical exponential growth in the balls of hyper-
bolic spaces, and obtain the multiplicity and non-existence of positive critical points for
super-critical Trudinger-Moser functional. Our method for the quantization property and
non-existence of the critical points avoids using the complicated blow-up analysis used
in the literature. This method can also be applied to study the similar problems in balls
of high dimensional Euclidean space Rn or hyperbolic spaces provided the uniqueness
for the corresponding quasilinear elliptic equations with the critical exponential growth
is established.
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The main content of this paper is an uniqueness theorem for positive solutions to elliptic
equations with Trudinger-Moser growth and application of this result to quantization
analysis, multiplicity and non-existence of critical points of Trudinger-Moser functional
in balls of Euclidean or hyperbolic spaces. Uniqueness problems and quantization analysis
for elliptic equations have attracted much attention due to their importance in applications
to PDEs and geometric analysis. Let us first present a brief history of the main results
in this direction.

In the past few decades, much attention has been paid to uniqueness of solutions to
elliptic equations with the nonlinearity f of polynomial growth, namely,

(1.1)


−∆u = f(u), x ∈ B1,

u > 0, x ∈ B1,

u = 0, x ∈ ∂B1,

where B1 is the unit ball in Rn (n ≥ 2). By the classical moving-plane method, one knows
that every solution of problem (1.1) must be radially decreasing. Hence Problem (1.1)
can be reduced to the following radial equation:

(1.2)


−(rn−1u′)′ = rn−1f(u), r ∈ (0, 1),

u > 0, r ∈ (0, 1),

u′(0) = u(1) = 0.

Now, we recall some important results for the nonlinearity f(u) of the form f(u) = λu+up,
with 1 < p < +∞ for λ ≥ 0 and n ≥ 3. When λ = 0 and 1 < p < n+2

n−2
, Gidas, Ni

and Nirenberg [17] proved that problem (1.1) admits only one radial solution through
homogeneity. (By the Pohozaev identity, problem (1.1) does not admit any solution for
λ = 0 and p ≥ n+2

n−2
). When λ > 0 and 1 < p ≤ n

n−2
, uniqueness of a positive solution was

obtained by Ni and Nussbaum [30]. Kwong and Li [31] extended this uniqueness result
to the case λ > 0 and 1 < p < n+2

n−2
, while uniqueness for the critical case (p = n+2

n−2
, the

Brezis-Nirenberg problem [6]) was proved by Srikanth [32]. In the aforementioned papers,
the main idea to prove uniqueness result is to show that the corresponding linearized
equation has only one zero point in (0, 1). This is the so-called non-degeneracy method.
Subsequently, Adimurthi [3] provided an elementary proof for uniqueness when λ ≥ 0 and
1 < p ≤ n+2

n−2
by exploiting a generalized Pohozaev variational identity. For λ > 0 and

p > n+2
n−2

, uniqueness cannot be expected to hold. Indeed, it has been shown by Budd and
Norbury [7] that there exists λ > 0 such that probelm (1.2) has infinitely many solutions
when 3 ≤ n ≤ 9.

It should be noted that by the Sobolev imbedding theorem, critical growth means that
the nonlinearity cannot exceed the polynomial of degree n+2

n−2
when n ≥ 3. While in the

case n = 2, we say that f (s) has critical exponential growth at infinity if there exists
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α0 > 0 such that

(1.3) lim
t→∞

f (t)

exp (αt2)
=

{
0, for α > α0

+∞, for α < α0

,

which is given by the famous Trudinger-Moser inequality ([28, 37])

(1.4) sup
∥∇u∥22≤1,u∈W 1,2

0 (Ω)

∫
Ω

exp(α|u|2)dx < ∞, iff α ≤ 4π,

where Ω ⊆ R2 is a bounded domain and W 1,2
0 (Ω) denotes the usual Sobolev space.

Thus, the maximal growth in the case n = 2 is of exponential type. A natural but
nontrivial problem arises: Can the uniqueness result still hold if we replace the nonlinearity
of equation (1.1) with exponential growth, and in particular for f(t) = λtet

µ
, with 0 <

µ ≤ 2 and λ > 0?

When µ = 1, by using a new identity from the beautiful analysis developed by Atkinson
and Peletier [1], Adimurthi [4] obtained uniqueness for the subcritical case f(t) = tet.
Tang [35] further showed that the uniqueness is still true for more general nonlinearity
of the type f(t) = λg(t)et, where g(t) is a polynomial and satisfies certain conditions.
However, this method cannot be extended for the case µ > 1. Recently, under the
assumption that ∥u∥∞ is large enough, Adimurthi, Karthik A and Giacomoni [5] proved
uniqueness of positive radial solution under suitable growth conditions on the nonlinearity.
We remark that the nonlinearity in [5] includes the subcritical case 1 < µ < 2 and

partially critical case such as f(t) = tpet
2+βt with β > 0. However, their results do not

include the standard critical case λtet
2
. We also mention that uniqueness of solutions

to a nonlocal equation of the form −∆u = ρ eu∫
Ω eu

with Dirichlet boundary condition on

bounded domains Ω in R2 was established in [9] and [33].

The first purpose of this paper is to solve the uniqueness problem for the elliptic equation
with the standard critical exponential growth:

(1.5)


−∆u = λueu

2
, x ∈ B1,

u > 0, x ∈ B1,

u = 0, x ∈ ∂B1,

where λ > 0 and B1 is the unit disk in R2.
Adimurthi in [2] proved that the above equation (1.5) has a positive solution if and

only if λ ∈ (0, λ1(B1)), where λ1(B1) denotes the first eigenvalue of Laplace operator on
the unit ball with the Dirichlet boundary. By the method of moving-plane, we know that
every positive solution of equation (1.5) must be radially decreasing and hence satisfies

(1.6)


−(ru′)′ = rλueu

2
, r ∈ (0, 1),

u > 0, r ∈ (0, 1),

u′(0) = 0, u(1) = 0.
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Our first main result can be stated as follows:

Theorem 1.1. For any λ > 0, problem (1.6) admits at most one solution.

Remark 1.2. Classical approaches based on the non-degeneracy method has been suc-
cessfully applied to solve the uniqueness problem if f(t) has the subcritical or critical
polynomial growth. However, this method fails to deal with the exponential nonlinearity

f(t) like tet
µ
. It is mainly because in this case we have lim

t→+∞
f ′(t)
f(t)

= +∞, which is signif-

icantly different from that in the case of polynomial nonlinearity. To handle the critical
exponential case, we will establish an elementary, but deep and powerful result (see Lemma
2.3). More precisely, we can show that there exists some 0 < t < 1 such that w = u− tv
satisfies w > 0, w′ < 0 in (0, 1) and w(1) = w′(1) = 0, provided there exist two solutions
u and v. Then we can deduce a contradiction through the local Pohozaev-type variational
identity and a careful asymptotic expansion of u and v at the boundary.

It was shown by Carleson-Chang [8] that if α = 4π and Ω is a ball, then the supremum
in (1.4) can be achieved by a radial function u0 satisfying the equation

−∆u = λ0ue
u2
, x ∈ B1,

u > 0, x ∈ B1,

u = 0, x ∈ ∂B1,

for some 0 < λ0 < λ1(B1). Hence, uniqueness result for ODE equation (1.6) will be an
important step towards solving the following uniqueness conjecture about the maximizers
of the Trudinger-Moser inequality.

Conjecture 1.3. If α = 4π and Ω is a ball, then the maximizers of the Trudinger-Moser
inequality (1.4) are unique.

Remark 1.4. We remark that the maximizers of (1.4) on the unit disk must satisfy the
following nonlocal equation:

−∆u = λuue
u2
, x ∈ B1,

u > 0, x ∈ B1,

u = 0, x ∈ ∂B1,

where Lagrange multiplier λu = 4π∫
B1

u2eu2
, which is a parameter associated with u. If one

can furthermore prove that all maximizers of Trudinger-Moser inequality correspond to
the same Lagrange multiplier, which together with the uniqueness of positive solution of
Theorem 1.1 will give uniqueness of maximizer of Trudinger-Moser inequality on the disk.

From [2], we know that equation (1.5) admits a positive ground-state solution uλ with
functional energy

Iλ(u) =
1

2

∫
B1

|∇u|2dx− λ

2

∫
B1

eu
2

dx < 2π
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for any 0 < λ < λ1(B1). In [14], del Pino, Musso and Ruf proved that if Ω in problem (1.5)
is not a simply connected domain, then one can construct a family of positive solutions
uλ satisfying the equation

(1.7)


−∆u = λueu

2
, x ∈ Ω,

u > 0, x ∈ Ω,

0 < λ < λ1(Ω),

u = 0, x ∈ ∂Ω,

such that

Iλ(uλ) =
1

2

∫
Ω

|∇uλ|2dx− λ

2

∫
Ω

eu
2
λdx → 4π

as λ → 0. From their proof, one may conjecture that if the domain of problem (1.5) is a
simply connected or even a convex one, there is no positive solution uλ to (1.7) such that
the above property holds. When Ω is a ball, we can give a positive answer to this problem.
Indeed, through our uniqueness result, we see that each positive solution of (1.5) must be
a ground-state solution. Consequently, this implies that one cannot construct a family of
solutions uλ such that its functional energy exceeds 2π. More precisely, it can be stated
as follows:

Corollary 1.5. Given any family of positive solutions uλ satisfying the equation

(1.8)


−∆u = λueu

2
, x ∈ B1,

u > 0, x ∈ B1,

0 < λ < λ1(B1),

u = 0, x ∈ ∂B1,

there must hold

Iλ(uλ) =
1

2

∫
B1

|∇uλ|2dx− λ

2

∫
B1

eu
2
λdx < 2π.

Slightly modifying the proof of Theorem 1.1, we can also obtain uniqueness of positive
solutions for elliptic equations with the critical exponential growth in the ball of hyperbolic
space. Using this uniqueness result, we can establish the quantization property of positive
solutions for corresponding elliptic equations. Quantization property for elliptic equations
with the critical exponential growth dates back to the work of Druet in [15], which can
be stated as follows:

Let {uk}k be a sequence of positive solutions of problem (1.7) with λ replaced by
λk. Suppose that uk is bounded in W 1,2

0 (Ω) and uk blows up. Then after passing to a
subsequence, one has λk → λ0, uk ⇀ u0 and there exists some integer N such that

lim
k→+∞

∥∇uk∥22 = ∥∇u0∥22 + 4πN.

When Ω is a disk, the positive solution uk must be radially symmetric through standard
moving-plane method. (see e.g. [13], [17].) By the ODE technique, Malchiodi and
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Martinazzi [25] proved that u0 = 0 and N = 1. Furthermore, they showed that the
functional Iλ under the constraint

∫
B1

|∇u|2dx = γ does not admit any positive critical

point for γ sufficiently large. More recently, Druet and Thizy [16] showed for more general
domain Ω that u0 = 0 and N is equal to the number of concentration points by the
complicated blow-up analysis technique combining with a comparison theorem.

In this paper, we will also utilize the uniqueness result to develop a new strategy to
establish the quantization property for elliptic equations with the critical exponential
growth in the hyperbolic space H. Before we state our main results, we introduce some
notations about two-dimensional hyperbolic space. Let H denote the standard hyperbolic

space H = (B1,
(

2
1−|x|2

)2

dx2) which is a unit disk equipped with the Poincaré metric

( 2
1−|x|2 ))

2dx2, BH(0, R) denote the hyperbolic ball centered at the origin with the geodesic

radius equal to R, −∆H denote Laplace-Beltrami operator in H, λ1(BH(0, R)) denote the
first eigenvalue of the operator −∆H with the Dirichlet boundary in BH(0, R).

Our second main result in this paper reads as follows:

Theorem 1.6. Assume that uλ is a family of solutions satisfying equation

(1.9)


−∆Hu = λueu

2
, x ∈ BH(0, R),

u > 0, x ∈ BH(0, R),

0 < λ < λ1(BH(0, R)),

u = 0, x ∈ ∂BH(0, R).

Then uλ is radially symmetric and unique. Furthermore, when λ → λ0, we have:

(i) If λ0 = 0, then uλ blows up at the origin, and |∇Huλ|2dVH ⇀ 4πδ0, λuλe
u2
λ ⇀ 4πδ0;

(ii) If λ0 ∈ (0, λ1(BH(0, R))), then uλ → u0 in C2(BH(0, R))) and u0 is a positive radial
solution of the equation

(1.10)


−∆Hu = λ0ue

u2
, x ∈ BH(0, R),

u > 0, x ∈ BH(0, R),

u = 0, x ∈ ∂BH(0, R);

(iii) If λ0 = λ1(BH(0, R)), then uλ → 0 in C2(BH(0, R)).

Remark 1.7. Existence of a ground state solution (and consequently positive solution)
for elliptic equation (1.6) can be verified following the same line as in [2, 10, 11].

Remark 1.8. Our proofs of quantization result on the hyperbolic spaces are based on the
uniqueness result of positive solutions of equation (1.9). Once the uniqueness property is
obtained, we can study the quantization properties of the least energy solutions instead of
the positive solutions. Our method is very simple and we can avoid using the complicated
blow-up analysis of ODEs. We stress that this method can be also applied to study the
quantization result for high dimensional ball of Rn or general hyperbolic space Hn, provided
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the uniqueness for solutions of the corresponding equations is established. This will be
carried out in our forthcoming work.

Remark 1.9. Since the uniqueness result for problem (1.9) holds for any fixed λ, hence
we need not to choose a subsequence of {uλ}λ to obtain quantization result. Furthermore,
in our proofs for the quantization result, we get rid of the assumption that uλ is uniformly
bounded in W 1,2(BH(0, R)), which was required in [15, 16], hence we can directly obtain the
non-existence and multiplicity of positive critical point for supercritical Trudinger-Moser
functional in BH(0, R).

Theorem 1.10. There exists γ∗ > 4π such that the Trudinger-Moser functional F (u) =∫
BH(0,R)

(eu
2 −1)dVH under the constraint

∫
BH(0,R)

|∇Huλ|2dVH = γ has at least two positive

critical points for γ ∈ (4π, γ∗), at least one critical point for γ = 4π or γ = γ∗, no positive
critical point for γ ∈ (γ∗,+∞).

Remark 1.11. Exploiting the existence of the critical points of the Trudinger-Moser func-
tional M(u) =

∫
Ω
(eu

2 − 1)dx under the constraint
∫
Ω
|∇u|2dx = σ for σ > 4π has been a

challenging problem. Using a variational method and the monotonicity of the functional
M(u), Struwe [34] proved that there exits σ∗ > 4π such that M(u) has at least two positive
critical points for almost γ ∈ (4π, σ∗). Later, Lamm, Robert and Struwe [18] introduced
the Trudinger-Moser flow and strengthened it to every γ ∈ (4π, σ∗). When Ω is a disk,
Malchiodi and Martinazzi [25] applied refined blow-up analysis for radial critical point of
M to derive that M(u) does not admit any positive critical point for σ sufficiently large. It
is conjectured that if Ω is a simply connected domain, the above non-existence result still
holds. We also mention that recently Marchis, Malchiodi, Martinazzi and Thizy [24] proved

when Ω is a closed manifold that the Trudinger-Moser functional M(u) =
∫
Ω
(eu

2 − 1)dx

under the constraint
∫
Ω

(
|∇u|2 + |u|2

)
dVg = σ always has a nontrivial positive critical

point for any σ > 0.

Finally, we note that the following improved Trudinger-Moser inequality (see [36]) still
holds:

(1.11) sup
u∈W 1,2

0 (B1),
∫
B1

(|∇u|2−λ|u|2)dx≤1

∫
B1

e4πu
2

dx < +∞

if λ < λ1(B1). Furthermore, it is proved in [38] that the improved Trudinger-Moser
inequality (1.11) admits an extremal function through the blow-up technique. Hence it is
also interesting to consider the uniqueness for the extremal of (1.11) and the problems of

positive critical point for super-critical Trudinger-Moser functional H(u) =
∫
B1
(eu

2−1)dx

under the constraint
∫
B1
(|∇u|2 − λ|u|2)dx = β for β > 4π. In fact, slightly modifying the

proofs of our Theorems 1.1, 1.6 and 1.10, we can also obtain uniqueness of the problem
(1.9), the quantization results, multiplicity and non-existence for positive critical point
of supercritical Trudinger-Moser functional. We only list these results without giving the
detailed proof.
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Theorem 1.12. For any λ < λ1(B1) = 2π. Let uθ be a family of solutions satisfying

(1.12)


−∆u− λu = θueu

2
, x ∈ B1,

u > 0, x ∈ B1,

u = 0, x ∈ ∂B1,

where θ satisfies 0 < θ < λ1(B1)−λ. Then uθ is radially decreasing and unique. Further-
more, when θ → θ0, there holds

(i) If θ0 = 0, then uθ blows up at the origin, λu2
θ exp(u

2
θ)dx ⇀ 4πδ0 and ∥∇uθ∥22 → 4π

as θ → 0.

(ii) if θ0 ∈ (0, λ1(B1)− λ), then uθ → u0 in C2(B̄1) and u0 is a positive radial solution
of the equation

(1.13)


−∆u0 − λu0 = θ0u0e

u2
0 x ∈ B1,

u0 > 0, x ∈ B1,

u0 = 0, x ∈ ∂B1.

(iii) if θ0 = λ1(B1)− λ, then uθ → 0 in C2(B̄1).

Theorem 1.13. There exists β∗ > 4π such that the Trudinger-Moser functional H(u) =∫
B1

(
eu

2 − 1
)
dx under the constraint ∥∇u∥22 − λ∥u∥22 = β does not admit any positive

critical point for β > β∗ and admits at least two positive critical points for β ∈ (4π, β∗).

Remark 1.14. When λ = 0, the multiplicity and non-existence of positive critical point of
super-critical Trudinger-Moser functional have been obtained by Malchiodi and Martinazzi
in [25] through the accurate Dirichlet energy expansion formula obtained by the ODE
technique. It should be noted that even if λ = 0, there is no upper bound estimate for
β∗. A famous conjecture proposed by Malchiodi is that β∗ should be equal to 8π. Using
the method we developed in this paper, we can deduce that β∗ < 8π if we consider the
perturbed Trudinger-Moser functional H̃(u) =

∫
B1
(eu

2 − 1 − u2)dx under the constraint∫
B1

|∇u|2dx = β.

Theorem 1.15. The perturbed supercritical Trudinger-Moser functional H̃(u) =
∫
B1
(eu

2−
1− u2)dx under the constraint

∫
B1

|∇u|2dx = β does not admit any positive critical point
if β ≥ 8π.

2. proof of Theorem 1.1

In order to prove uniqueness of positive solutions of equation (1.6), we need some
lemmas.

Lemma 2.1. Let u and v be non-negative C1 functions on [R1, R2], with v ̸= 0 and u > 0
in (R1, R2). Assume that v(Ri) = 0 and u′(Ri) ̸= 0 if u(Ri) = 0, where i = 1, 2. Then
there exists a unique t ∈ (0,∞) such that w = u − tv ≥ 0 in [R1, R2] and w(ξ) = 0 for
some ξ ∈ [R1, R2]. Furthermore
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(i) if ξ ∈ (R1, R2) and w is in C2 in a neighbourhood of ξ, then w(ξ) = w′(ξ) = 0,
w′′(ξ) ≥ 0;

(ii) if ξ = Ri and u(Ri) = 0 for some i ∈ {1, 2}, then w′(ξ) = 0;

(iii) if u(Ri) ̸= 0 and v(Ri) = 0, then ξ ̸= Ri, where i = 1, 2.

Proof. This result was first essentially established by Rabinowitz [26] (see also [3]). Since
the proof is short, for the convenience of the reader, we prefer to give the proof. By the
hypotheses, v/u is a continuous function on [R1, R2]. Let w = u− tv, where

t = max

{
s :

sv

u
≤ 1

}
=

[
max

v

u

]−1

.

Then w ≥ 0 and there exists a ξ ∈ [R1, R2] such that w(ξ) = 0. If ξ ∈ (Ri, R2), then ξ is
a local minimizer and hence (i) holds. If ξ = Ri for some i ∈ {1, 2}, then by 1’Hôpital’s
rule

1

t
= lim

r→Ri

v(r)

u(r)
=

v′(Ri)

u′(Ri)

and hence w′(ξ) = 0. This proves (ii). We prove (iii) by contradiction. If ξ = Ri, then we

have 1
t
= v(Ri)

u(Ri)
= 0, this is impossible since t ∈ (0,∞). Hence (iii) holds.

□

Lemma 2.2. Let u and v be two solutions of problem (1.6) and r1, r2 ∈ (0, 1). For any
t > 0, set w = u− tv. Then we have
(i) if w(r1) = w′(r1) = 0 and w′′(r1) ≥ 0, then t ≤ 1.

(ii) if t = u(0)/v(0) and w > 0 in (0, r2), then t ≤ 1.

In either case, t = 1 implies that u ≡ v.

Proof. If w(r1) = w′(r1) = 0, then u(r1) = tv(r1). Combining this, (1.6) and the assump-
tion of (i), we have

(2.1) 0 ≥ −
(
w′′ +

1

r
w′
)
(r1) = λtv(r1)(e

u2(r1) − ev
2(r1)).

Hence et
2v2(r1) = eu

2(r1) ≤ ev
2(r1), which implies that t ≤ 1. This proves (i).

Now we prove (ii) by contradiction. Suppose that (ii) is not true. From the assumption
that w > 0 in (0, r2), we observe that for any 0 < η < r2, there exists a ξ ∈ (0, η) such
that w′(ξ) > 0. Now, we claim that there exists ε0 > 0 such that w′ ≥ 0 in [0, ε0]. Indeed,
if this is not true, then there exists a sequence ξk → 0 such that w′(ξk) < 0. This implies
that w′ changes sign infinitely often near zero and then we can find a sequence ηk → 0
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such that w′(ηk) ≥ 0, w′′(ηk) ≥ 0. Similar as (2.1), from the assumption that w > 0 in
(0, r2) and (1.6), we have

(2.2) 0 ≥ −
(
w′′ +

1

r
w′
)
(ηk) > λtv(ηk)(e

u2(ηk) − ev
2(ηk)).

Letting ηk → 0, we obtain eu
2(0) ≤ ev

2(0), and hence t = u(0)/v(0) ≤ 1. This contradict
with t > 1, and the claim is proved. Since t > 1, it follows from the claim that w′ ≥ 0
in [0, ε0] and w′(0) = 0. Hence there exists a sequence ηk → 0 such that w′′(ηk) ≥ 0.
Now by repeating the same argument at ηk as (2.2), we conclude that t ≤ 1, which is a
contradiction. This proves (ii).

Finally, if t = 1, then u(p) = v(p) and u′(p) = v′(p), where p ∈ {r1, 0}, which together
with uniqueness of the second order ODE equation with the Cauchy initial value implies
that u ≡ v. □

Lemma 2.3. Let u ̸= v be two solutions of problem (1.6). Then there exist t ∈ (0, 1),
ξ ∈ (0, 1) such that for w = u− tv, one of the following condition holds:

(a) u(0) = tv(0),

(b) w ≥ 0 in [0, ξ], w′ ≤ 0 in [0, ξ], w(ξ) = w′(ξ) = 0,

(c) w ≥ 0, w′ ≤ 0 in [0, 1], w′(1) = 0.

Proof. We first claim that there exist t ∈ (0, 1) and ξ ∈ (0, 1) such that for w = u − tv,
one of the following conditions holds:

(I) u(0) = tv(0),

(II) w ≥ 0 in [0, ξ], w(ξ) = w′(ξ) = 0, w′′(ξ) ≥ 0,

(III) w ≥ 0, w′ ≤ 0 in [0, 1], w′(1) = 0.

From Lemma 2.1, we can choose t1 > 0, ξ1 ∈ [0, 1] such that w1 = u − t1v satisfies
w1 ≥ 0 in [0, 1], w1(ξ1) = w′

1(ξ1) = 0. Indeed, we have t1 < 1. This is because if t1 ≥ 1,
it holds v ≤ t1v ≤ u. Then we can deduce that u ≡ v, which is a contradiction with u
and v being the different solutions of equation (1.6). In fact, if u > v in some interval
(a, b) ⊆ (0, 1), since u and v satisfy equation (1.6), we have∫

B1

(−∆uv +∆vu)dx = λ

∫
B1

uv(eu
2 − ev

2

)dx > 0.

On the other hand, integration by parts directly gives that∫
B1

(−∆uv +∆vu)dx = 2π(v′(1)u(1)− u′(1)v(1)) = 0,

which is a contradiction.
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If ξ1 = 0, then u(0) = t1v(0) and (I) holds. If ξ1 ∈ (0, 1), then ξ1 is a local minimum
and (II) holds.

Again from Lemma 2.1, for every η ∈ (0,∞), one can choose tη > 0, ξη ∈ [0, η], such
that wη = u − tηv satisfies wη ≥ 0 in [0, η], wη(ξη) = 0. We claim that if (I) and (II) do
not hold, then ξη = η. We prove this by contradiction. Indeed, if ξη ∈ (0, η), then ξη is a
local minimizer for wη and therefore w′

η(ξη) = 0, w′′
η(ξη) ≥ 0. Hence from (i) of Lemma

2.2, we get tη < 1, which contradicts the assumption that (II) does not hold. If ξη = 0,
from (ii) of Lemma 2.2, we conclude that tη < 1. This contradicts the assumption that
(I) does not hold.

Now, we show that if (I) and (II) do not hold, then w′(r) ≤ 0 for r ∈ [0, 1]. We prove
this by contradiction. Suppose that there exists η0 ∈ (0, 1) such that w′

1(η0) > 0. We
consider the interval [0, η0]. From the above argument, we see that ξη0 = η0, thus we have
tη0 = u(η0)/v(η0). Hence for 0 ≤ r < η0 ≤ ∞, we deduce from wη0(r) ≥ 0 that

u(r)

v(r)
≥ u(η0)

v(η0)
.

Thus u/v is a decreasing function, this implies that u/v ≤ u′/v′. Let 1 > r > η0, so that

u(r)

v(r)
≤ u(η0)

v(η0)
≤ u′(η0)

v′(η0)
< t1

and hence w1(r) < 0, which is a contradiction. Therefore, w′
1 ≤ 0 in [0, 1] and this proves

(III), and the claim is proved.

Next, we show that if (I) and (III) do not hold, then (b) holds. Let

η0 = inf{η > 0; (II) holds in [0, η]}.
We claim that η0 > 0. We prove this by contradiction. Suppose that η0 = 0, then there
exists a sequence ηk → 0 with tηk → t0 for some t0 ≤ 1 such that wηk(ηk) = 0. This
implies that u(0) = t0v(0). If t0 = 1, then u ≡ v, which is a contradiction. If t0 < 1, then
(I) holds, which contradicts our assumption, hence η0 > 0. Now by the definition of η0,
we have wη0(η0) = w′

η0
(η0) = 0, w′′

η0
(η0) ≥ 0. Then it follows from (i) of Lemma 2.2 that

tη0 < 1.

Now, we show that w′
η0

≤ 0 in [0, η0]. We assert that for any 0 < η < η0, one has
ξη = η, tη = u(η)/v(η). Indeed, if ξη ∈ (0, η), then ξη is a local minimizer of wη, and
hence w′

η(ξη) = 0, w′′
η(ξη) ≥ 0. Therefore from (i) of Lemma 2.2, tη < 1, but this is

impossible from the definition of η0. If ξη = 0, then tη = u(0)/v(0) and hence from (ii)
of Lemma 2.2, tη < 1. Thus (I) holds, which contradicts our assumption. Therefore we
have ξη = η and tη = u(η)/v(η). This implies that wη(r) > 0 for 0 < r < η, and hence
u(r)/v(r) > u(η)/v(η). Thus u/v is a decreasing function in [0, η0] and u/v ≤ u′/v′ in
[0, η0]. Suppose that there exists η1 < η0 such that w′

η0
(η1) > 0, then for η1 < r < η0 we

have
u(r)

v(r)
≤ u(η1)

v(η1)
≤ u′(η1)

v′(η1)
< tη0 .
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Hence wη0(r) < 0, which is a contradiction. Therefore w′
η0

≤ 0 in [0, η0], and (b) holds in
[0, η0]. The proof of this lemma is finished.

□

Lemma 2.4. Let u and u2 be two solutions of (1.6) with u(0) < u2(0). Then there exists
a solution u1 of (1.6) such that u1(0) < u2(0). Furthermore, u1 and u2 intersects at most
once in (0, 1).

Proof. Let α > 0 and w(·, α) be the unique solution of the following initial-value problem,

(2.3)

{
−(rw′)′ = rf(w),

w(0) = α,w′(0) = 0,

where f(w) = λwew
2
. We also denote R(α) the first zero of w(·, α) defined by

R(α) = sup{r : w(s, α) > 0 for all s ∈ [0, r]}.

Assume that u and u2 intersect at least twice (otherwise there is nothing to prove). Let
0 < R1 < R2 < 1 be the first two consecutive points of intersection with u(r) < u2(r) for
all r ∈ (0, R1). Clearly, w(r, α0) = u(r) and w(r, α2) = u2(r), where α0 = u(0), α2 = u2(0)
with R(α0) = R(α2) = 1. Let α < α0 and be close to α0, and 0 < R1(α) < R2(α) < ∞
be the first two consecutive points of intersections of w(·, α) with u2 (which exist by
continuity) such that w(r, α) ≤ u2(r) for r ∈ (0, R1(α)).

Now, as α moves towards zero, one of the following three possibilities holds.

(i) There exists a α1 ∈ (0, α0) such that R2(α1) = 1. Then the conclusion of the lemma
holds.

(ii) There exists a α1 ∈ (0, α0) and a point R ∈ (0, 1) such that

w(R,α1) = u2(R), w′(R,α1) = u′
2(R).

Then, by uniqueness of the initial-value problem, w(r, α1) = u2(r) for all r ∈ (0, 1), which
is a contradiction.

(iii) 0 < R1(α) < R2(α) < 1 for all α and limα→0(R2(α) − R1(α)) = 0. In this cases,
let I(α) = [R1(α), R2(α)] and v(r) = w(r, α)− u2(r). Then v(r) satisfies

(2.4)


−(rv′)′ = Qv, r ∈ I(α),

v > 0, r ∈ I(α),

v(R1(α)) = v(R2(α)) = 0,

where

Q(r) = r
f(w(r, α))− f(u2(r))

w(r, α)− u2(r)
.
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Hence v is the first eigenfunction with eigenvalue µ1 = 1 of the following eigenvalue
problem: {

−(rφ′)′ = µQφ, r ∈ I(α),

φ = 0, r ∈ ∂I(α).

For α ∈ (0, α0) and 0 < R1 ≤ R1(α), we have

(2.5) M = sup{Q(r) : r ∈ I(α), α ∈ (0, α0)} < ∞.

Let λ1(α) be the first eigenvalue of{
−d2φ

dr2
= λφ, x ∈ I(α),

φ = 0, x ∈ ∂I(α).

Then, from (2.4)-(2.6), we get

1 = inf

{∫
I(α)

r(φ′)2dr∫
I(α)

Qφ2dr
;φ ∈ H1

0 (I(α))

}

≥ R1

M

{∫
I(α)

(φ′)2dr∫
I(α)

φ2dr
;φ ∈ H1

0 (I(α))

}
≥ R1

M
λ1(α).

(2.6)

Since R2(α)− R1(α) → 0 as α → 0, we derive that λ1(α) → ∞, which contradicts (2.6).
This proves the lemma.

□

Lemma 2.5. Let u and u2 be two solutions of (1.6) with u(0) < u2(0), then there exists
u1 of (1.6) such that u1(0) < u2(0), u1 and u2 intersects only once in (0, 1). Moreover,
u1(r)
u2(r)

is strictly increasing.

Proof. According to Lemma 2.4, in order to prove that u1 and u2 intersects only once in
(0, 1), we only need to prove that u1 and u2 intersects at least once. We argue this by
contradiction. Assume that u1 and u2 does not intersect in (0, 1), then u2 > u1 in (0, 1).
Since u1 and u2 satisfies equation (1.6), we have∫

B1

(−∆u2u1 +∆u1u2)dx = λ

∫
B1

u2u1(e
u2
2 − eu

2
1)dx > 0.

On the other hand, integration by parts directly gives that∫
B1

(−∆u2u1 +∆u1u2)dx = 2π(u′
1(1)u2(1)− u′

2(1)u1(1)) = 0,

which is obviously a contradiction.
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Now, we start to prove that u1(r)
u2(r)

is strictly increasing. Assume that the only intersection

point of u1 and u2 is r0, then u2(r) ≥ u1(r) in (0, r0]. By equation (1.6), one can directly
obtain that for any r ∈ (0, r0],∫

Br

(−∆u2u1 +∆u1u2)dx =

∫
Br

u2u1(e
u2
2 − eu

2
1)dx > 0.

On the other hand, integration by parts directly gives∫
Br

(−∆u2u1 +∆u1u2)dx = 2π(u′
1(r)u2(r)− u′

2(r)u1(r))r.

Combining the above estimate, we derive that u′
1(r)u2(r) − u′

2(r)u1(r) > 0 for r ∈
(0, r0], that is

u1(r)
u2(r)

is strictly increasing in (0, r0]. Now, we will prove that u′
1(r)u2(r) −

u′
2(r)u1(r) > 0 holds for r ∈ (r0, 1). By equation (1.6), one can similarly obtain∫

B1\Br

(−∆u2u1 +∆u1u2)dx =

∫
B1\Br

u2u1(e
u2
2 − eu

2
1)dx < 0.

Again applying integration by parts, one can derive that

2π(u′
1(r)u2(r)− u′

2(r)u1(r))r = −
∫
B1\Br

(−∆u2u1 +∆u1u2)dx > 0.

Then we accomplish the proof of Lemma 2.5. □

Now, we are in position to give the proof of uniqueness of positive radial solution to
equation (1.6).

Proof of Theorem 1.1. Assume that u and v are two positive solutions of equation (1.6)
with v(0) < u(0), u and v intersecting only once in (0, 1). According to Lemma 2.3, there
exist t ∈ (0, 1), ξ ∈ (0, 1) such that for w = u− tv one of the following holds:

(a) u(0) = tv(0),

(b) w ≥ 0, w′ ≤ 0 in [0, ξ], w(ξ) = w′(ξ) = 0,

(c) w ≥ 0, w′ ≤ 0 in [0, 1], w′(1) = 0.

Obviously, (a) does not occur. According to Lemma 2.5, we know that v(r)
u(r)

is strictly

increasing in (0, 1). This gives that for any r ∈ (0, 1), v′(r)
u′(r)

< v(r)
u(r)

. Hence it follows that

there does not exists ξ ∈ (0, 1) such that w(ξ) = w′(ξ) = 0, that is to say that (b) is
also impossible. In order to prove the uniqueness theorem, we only need to prove that (c)
does not happen. Assume that (c) happens, then w(1) = w′(1) = 0. A simple calculation
combining with u′(1) = tv′(1) and u(1) = v(1) = 0 yields that

(2.7) u(2)(1) = tv(2)(1), u(3)(1) = tv(3)(1), u(4)(1) = tv(4)(1)
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and

(2.8) u(5)(1)− tv(5)(1) = −6
(
(u′)3(1)− t(v′)3(1)

)
= −6u′(1)

(
(u′)2(1)− (v′)2(1)

)
.

Furthermore, we also have

u(6)(1)− tv(6)(1) + u(5)(1)− tv(5)(1) + 36(u′)2(1)u′′(1)− 36t(v′)2(1)v′′(1) = 0.

This together with u′′(1) + u′(1) = 0 and (2.8) gives that

u(6)(1)− tv(6)(1) = 36(u′)3(1)− 36t(v′)3(1)−
(
u(5)(1)− tv(5)(1)

)
= 36u′(1)

(
(u′)2(1)− (v′)2(1))

)
+ 6u′(1)

(
(u′)2(1)− (v′)2(1)

)
= 42u′(1)

(
(u′)2(1)− (v′)2(1)

)(2.9)

Since u and v satisfy equation (1.7), using the Pohozaev identity and combining the
radial symmetry of u and v, we have∫

Br

−∆u(x · ∇u)dx = −1

2

∫
∂Br

|∇u|2(x · ν)dσ = −πr2(u′)2(r)

and ∫
Br

ueu
2

(x · ∇u) =
1

4

∫
Br

∇(eu
2 − 1)∇(|x|2)

= −1

4

∫
Br

(eu
2 − 1)∆(|x|2)dx+

1

4

∫
∂Br

(eu
2 − 1)

∂|x|2

∂ν
ds

= −
∫
Br

(eu
2 − 1)dx+ πr2(eu

2(r) − 1).

That is

πr2(u′)2(r) =

∫
Br

(eu
2 − 1)dx− πr2(eu

2(r) − 1).

This deduces that

(2.10) π(u′)2(1)− πr2(u′)2(r) =

∫
B1\Br

(eu
2 − 1)dx+ πr2(eu

2(r) − 1).

Similarly, we also have

(2.11) π(v′)2(1)− πr2(v′)2(r) =

∫
B1\Br

(ev
2 − 1)dx+ πr2(ev

2(r) − 1).

Multiplying (2.11) by t2, and then subtracting (2.10), we can obtain from u′(1) = tv′(1)
that

πr2((u′)2(r)− t2(v′)2(r)) =

∫
B1\Br

(
t2(ev

2 − 1)− (eu
2 − 1)

)
dx+ πr2

(
t2(ev

2 − 1)− (eu
2 − 1)

)
= πr2(I + II).

(2.12)



16 LU CHEN, GUOZHEN LU, YING XUE AND MAOCHUN ZHU

In view of (2.7), (2.8) and (2.9), we have

(u′)2(r)− t2(v′)2(r) = (u′(r) + tv′(r))(u′(r)− tv′(r))

=
(
2u′(1) + 2u′′(1)(r − 1) +O((r − 1)2)

)
×
( 1
4!
(u(5)(1)− tv(5)(1))(r − 1)4+

+
1

5!
(u(6)(1)− tv(6)(1)(r − 1)5 +O((r − 1)6)

)
=− 1

2
(u′)2(1)

(
(u′)2(1)− (v′)2(1)

)
(r − 1)4 +

1

2
(u′)2(1)

(
(u′)2(1)− (v′)2(1)

)
(r − 1)5+

+
84

120
(u′)2(1)

(
(u′)2(1)− (v′)2(1)

)
(r − 1)5 +O((r − 1)6).

(2.13)

For II, we have

II =
(
t2v2(r)− u2(r) +

1

2
t2v4(r)− 1

2
u4(r)

)
+O((r − 1)6)

=
(
(tv(r) + u(r))(tv(r)− u(r)) +

1

2

(
(tv)2v2(r)− u4(r)

))
+O((r − 1)6)

=
(
2u′(1)(r − 1) +O((r − 1)2)

)(
(
tv(5)(1)− u(5)(1)

5!
)(r − 1)5 +O((r − 1)6)

)
+

+
1

2

(
u′(1)(r − 1) +

1

2
u′′(1)(r − 1)2 +O((r − 1)3)

)2(
v′(1)(r − 1) +

v′′(1)

2
(r − 1)2+

+O((r − 1)3)
)2 − 1

2

(
u′(1)(r − 1) +

1

2
u′′(1)(r − 1)2 +O((r − 1)3)

)4
+O((r − 1)6)

=
1

2

(
u′(1)(r − 1) +

1

2
u′′(1)(r − 1)2 +O((r − 1)3)

)2 × ((
v′(1)(r − 1) +

1

2
v′′(1)(r − 1)2+

+O((r − 1)3)
)2 − (

u′(1)(r − 1) +
u′′(1)

2
(r − 1)2 +O((r − 1)3)

)2)
+O((r − 1)6)

=
1

2
(u′)2(1)((v′)2(1)− (u′)2(1))(r − 1)4 +

πr2

2
u(1)u′′(1)

(
(v′)2(1)− (u′)2(1)

)
(r − 1)5

+
1

2
(u′)2(1)(v′(1)v′′(1)− u′(1)u′′(1))(r − 1)5 +O((r − 1)6)

= −1

2
(u′(1))2((u′)2(1)− (v′)2(1))(r − 1)4 + (u′)2(1)((u′)2(1)− (v′)2(1))(r − 1)5+

+O((r − 1)6),

where in the last step, we have used the fact that u′′(1) + u′(1) = 0.
For I, we have

I = − 1

2πr2
(u′)2(1)((u′)2(1)− (v′)2(1))(r − 1)4π(1− r2) +O((r − 1)6)

= (u′)2(1)((u′)2(1)− (v′)2(1))(r − 1)5 +O((r − 1)6).
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Combining (2.12), (2.13) and the estimates of I and II, we derive that(1
2
+

84

120

)
(u′)2(1)

(
(u′)2(1)− (v′)2(1)

)
(r − 1)5 = 2(u′)2(1)

(
(u′)2(1)− (v′)2(1)

)
(r − 1)5,

which is a contradiction. Hence (c) is impossible. This accomplishes the proof of Theorem
1.1. □

3. proof of Theorem 1.6

In this section, we will prove uniqueness of positive solution for elliptic equation in
the ball of hyperbolic space and give quantization result for positive critical point of
Trudinger-Moser functional in the ball of hyperbolic space.

Assume that uλ is a positive solution of equation (1.9). By the conformal invariance
between (B, dVH) and (B, dx), the elliptic equation in hyperbolic ball BH(0, R) can be

rewritten as the elliptic equation in the ball BR̃ of R2, with radius R̃ equal to eR−1
eR+1

:

(3.1)


−∆uλ = λuλe

u2
λ( 2

1−|x|2 )
2, x ∈ BR̃,

uλ > 0, x ∈ BR̃,

0 < λ < λ1(BH(0, R)),

uλ = 0, x ∈ ∂BR̃.

Using the moving plane method on hyperbolic spaces, we can show that uλ must be
radially symmetric about the origin and decreasing. (see e.g., [19]). Hence uλ satisfies the
following ODE equation

(3.2)


−(ru′

λ)
′ = rλuλe

u2
λ( 2

1−r2
)2, r ∈ (0, R̃),

uλ > 0, r ∈ (0, R̃),

u′
λ(0) = 0, uλ(R̃) = 0.

We remark that in the work of Naito and Suzuki [29], they also considered the radial
symmetry of positive solutions for a class of semilinear elliptic equations with some weight
on the unit ball, however, our equation (3.1) does not satisfy the hypothesis made in the
paper of Naito and Suzuki.

Since the weight function ( 2
1−r2

)2 has no singular points on the corresponding defined
interval, the weight function and its derivatives don’t contribute to any vanishing factor
around r = R̃, hence a slight modification of the proof of Theorem 1.1 can show that
the positive solution uλ is unique. Therefore, uλ is also a least-energy solution of elliptic
equation (3.1). Now we are in position to give quantization result for least energy solution
of elliptic equation (3.1).

Proof of (i) in Theorem 1.6: We recall that uλ is a least energy solution of elliptic
equation (3.1) if its functional energy Iλ(u) defined by

Iλ(u) =
1

2

∫
BH(0,R)

|∇Hu|2dVH − λ

2

∫
BH(0,R)

(eu
2 − 1)dVH
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is equal to mλ := min{Iλ(u) : I ′λ(u) = 0}, which is equivalent to say Iλ(uλ) = mλ. We
claim that lim

λ→0
mλ has the positive lower bound. We argue this by contradiction. Suppose

not, then lim
λ→0

mλ = 0, which together with I ′λ(uλ)uλ = 0 implies that lim
λ→0

∫
BH(0,R)

|∇Huλ|2dVH =

0. Then it follows that eu
2
λ is bounded in Lq(BH(0, R)) for any q > 1. Let vλ = uλ

∥∇Huλ∥2
,

then vλ is bounded in W 1,2(BH(0, R)). Hence, there exists v0 ∈ W 1,2(BH(0, R)) such that
vλ strongly converges to v0 in Lq(BH(0, R)) for any q > 1. Noticing that I ′λ(uλ)uλ = 0,

one can write 1 = λ
∫
BH(0,R)

v2λe
u2
λdVH. This together with the boundedness of v2λ and eu

2
λ

in Lq(BH(0, R)) yields that

lim
λ→0

λ

∫
BH(0,R)

v2λe
u2
λdVH = 0,

which is a contradiction. This proves that there exists c0 > 0 such that lim
λ→0

∫
BH(0,R)

|∇Huλ|2dVH ≥
c0. Through I ′λ(uλ)uλ = 0, we have that

(3.3)

∫
BH(0,R)

|∇Huλ|2 dVH = λ

∫
BH(0,R)

u2
λ exp(u

2
λ)dVH,

which implies that

(3.4) lim
λ→0

∫
BH(0,R)

u2
λ exp(u

2
λ)dVH = +∞.

This deduces cλ := lim
λ→0

uλ(0) = +∞, that is to say that uλ blows up at the origin. Now,

we will prove that

(3.5) lim
λ→0

∫
BH(0,R)

|∇Huλ|2dVH = 4π.

Since uλ is the least energy critical point of functional Iλ(u), one can deduce that

(3.6) 0 < Iλ(uλ) < 2π

by the Trudinger-Moser inequality on compact manifold (see the Appendix). This together
with I ′(uλ)uλ = 0 yields that uλ is bounded in W 1,2

0 (BH(0, R)) if λ → 0. Then there
exists some u0 such that uλ ⇀ u0 weakly in W 1,2

0 (BH(0, R)) and uλ → u0 strongly in
Lq(BH(0, R)) for any q > 1. Now we claim that

(3.7) lim
λ→0

∫
BH(0,R)

|∇Huλ|2dVH = lim
λ→0

2Iλ(uλ) ≤ 4π.

This is mainly because

(3.8) lim
λ→0

λ

∫
BH(0,R)

eu
2
λdVH = 0.
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Indeed, we can write

λ

∫
BH(0,R)

eu
2
λdVH = λ

∫
{|uλ|>M}

eu
2
λdVH + λ

∫
{|uλ|≤M}

eu
2
λdVH

= I1 + I2.

(3.9)

For I1, through λ
∫
BH(0,R)

u2
λe

u2
λdVH ≲ 1, we obtain

I1 ≤
λ

M2

∫
BH(0,R)

u2
λe

u2
λdVH ≲

1

M2
,(3.10)

which implies lim
M→∞

lim
λ→+∞

I1 = 0. For I2, Obviously I2 ≤ λeM
2
VolH(BH(0, R)), hence

lim
M→∞

lim
k→+∞

I2 = 0. Combining the estimates of I1 and I2, we conclude that

lim
k→+∞

λ

∫
BH(0,R)

eu
2
λdVH = 0,

hence the claim is proved.

Now, we are in position to prove that lim
λ→0

∫
BH(0,R)

|∇Huλ|2dVH = 4π. We argue this

by contradiction. Suppose that lim
λ→0

∫
BH(0,R)

|∇Huλ|2dVH < 4π, it follows from Trudinger-

Moser inequalities (see e.g., [23], [27]) that
∫
BH(0,R)

u2
λe

u2
λdVH is bounded, which is a con-

tradiction with (3.4). Hence (3.8) holds.

Finally, we claim

|∇Huλ|2dVH ⇀ 4πδ0.

We argue this by contradiction. Suppose not, then there exists some δ > 0 such that∫
BH(0,δ)

|∇Huλ|2dVH < 4π.

Hence, using the Trudinger-Moser inequality again, we derive that uλe
u2
λ ∈ Lp(BH(0, δ)),

for some p > 1. Then it follows from the standard elliptic estimates that

sup
λ

∥uλ∥C1(BH(0,δ)) < ∞,

which is a contradiction with lim
λ→+∞

uλ(0) = +∞.

Proof of (ii) in Theorem 1.6: when λ → λ0 ∈ (0, λ1(BH(0, R)), one can similarly obtain
that there exist 0 < ρ1 < ρ2 < 2π such that

ρ1 ≤ lim
λ→λ0

Iλ(uλ) ≤ ρ2 < 2π,

as λ → λ0. Gathering this and I ′(uλ)uλ = 0, we deduce that uλ is bounded inW 1,2
0 (BH(0, R))).

Then there exists some u0 such that uλ ⇀ u0 weakly in W 1,2
0 (BH(0, R)). Next, we will
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show that u0 satisfies equation

(3.11)


−∆Hu0 = λ0u0e

u2
0 , x ∈ BH(0, R),

u0 > 0, x ∈ BH(0, R),

u0 = 0, x ∈ ∂BH(0, R).

For this purpose, according to the definition of weak solution, we only need to prove that

lim
λ→λ0

λ

∫
BH(0,R)

uλe
u2
λdVH = λ0

∫
BH(0,R)

u0e
u2
0dVH.

Indeed, we can write

λ

∫
BH(0,R)

uλe
u2
λdVH = λ

∫
{|uλ|>M}

uλe
u2
λdVH + λ

∫
{|uλ|≤M}

uλe
u2
λdVH

= I1 + I2.

(3.12)

For I1, through λ
∫
BH(0,R)

u2
λe

u2
λdVH ≲ 1, we obtain

I1 ≤
λ

M

∫
BH(0,R)

u2
λe

u2
λdVH ≲

1

M2
,(3.13)

which implies lim
M→∞

lim
λ→λ0

I1 = 0. For I2, through Lebesgue dominated convergence the-

orem, we can derive that lim
M→∞

lim
λ→λ0

I2 = λ0

∫
BH(0,R)

u0e
u2
0dVH, which together with the

estimate of I1 gives

(3.14) lim
λ→λ0

λ

∫
BH(0,R)

uλe
u2
λdVH = λ0

∫
BH(0,R)

u0 exp(u
2
0)dVH.

Similarly, we can also prove that

(3.15) lim
λ→λ0

λ

∫
BH(0,R)

eu
2
λdVH = λ0

∫
BH(0,R)

eu
2
0dVH.

Now, we claim that u0 ̸= 0. We argue this by contradiction. If u0 = 0, then from
equality (3.14), we see that lim

λ→λ0

∫
BH(0,R)

|∇Huλ|2dVH = 2 lim
λ→λ0

Iλ(uλ) ≤ 2ρ1 < 4π. Using

the Trudinger-Moser inequality and Vitali convergence theorem, we derive that

lim
λ→λ0

λ

∫
BH(0,R)

u2
λe

u2
λdVH = λ0

∫
BH(0,R)

u2
0e

u2
0dVH = 0,

which implies that lim
λ→λ0

Iλ(uλ) = 0. This poses a contradiction to the following fact:

0 < ρ1 ≤ lim
λ→λ0

Iλ(uλ).

So u0 ̸= 0.
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Next, we will prove that uλ → u0 in W 1,2
0 (BH(0, R)). According to the convexity of

norm in W 1,2
0 (BH(0, R)), we only need to prove that

lim
λ→λ0

∫
BH(0,R)

|∇Huλ|2dVH >

∫
BH(0,R)

|∇Hu0|2dVH

is impossible. We argue this by contradiction. Set

vλ :=
uλ

lim
λ→λ0

∥∇Huλ∥2L2(BH(0,R))

and v0 :=
u0

lim
λ→λ0

∥∇Huλ∥2L2(BH(0,R))

.

We claim that there exists q0 > 1 sufficiently close to 1 such that

(3.16) q0 lim
λ→λ0

∥∇Huλ∥2L2(BH(0,R)) <
4π

1− ∥∇Hv0∥2L2(BH(0,R))

.

Indeed, by (3.15) and (3.6), we have

lim
λ→λ0

∥∇Huλ∥2L2(BH(0,R))

(
1− ∥∇Hv0∥2L2

)
= lim

λ→λ0

∥∇Huλ∥2L2(BH(0,R))

(
1−

∥∇Hu0∥2L2(BH(0,R))

∥∇Huλ∥2L2(BH(0,R))

)
= 2 lim

λ→λ0

Iλ(uλ) + λ

∫
BH(0,R))

(eu
2
λ − 1)dVH − 2Iλ0(u0)− λ0

∫
BH(0,R)

(eu
2
0 − 1)dVH

< 4π,

(3.17)

and then the claim is proved. Through the concentration-compactness principle for the
Trudinger-Moser inequality [20], one can derive that there exists p0 > 1 such that

sup
λ

∫
BH(0,R)

(
u2
λe

u2
λ)p0dVH < ∞.(3.18)

Then it follows from the Vitali convergence theorem that

lim
λ→λ0

λ

∫
BH(0,R)

u2
λ exp(u

2
λ)dVH = λ0

∫
BH(0,R)

u2
0 exp(u

2
0)dVH.

Hence, we conclude that uλ → u0 in W 1,2
0 (BH(0, R)) from (3.3). Using the Trudinger-

Moser inequality in W 1,2
0 (BH(0, R)), we derive that for any p > 1, there holds∫

BH(0,R)

(
u2
λ exp(u

2
λ)
)p
dVH ≲ 1.

Since uλ satisfies equation (1.9), standard elliptic estimate gives uλ → u0 in C2(BH(0, R)).
Then the proof of (ii) in Theorem 1.6 is accomplished.

Proof of (iii) in Theorem 1.6: We will prove that if λ0 = λ1(BH(0, R)), then uλ → 0
in C2(BH(0, R)). We first show that

∫
BH(0,R)

|∇Huλ|2dVH is bounded. We argue this by
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contradiction. Assume that lim
λ→λ0

|∇uλ|2dVH = +∞, then it follows from I ′λ(uλ)uλ = 0 and

Iλ(uλ) < 2π that

lim
λ→λ0

λ

∫
BH(0,R)

u2
λe

u2
λdVH = +∞, lim

λ→λ0

λ

∫
BH(0,R)

eu
2
λdVH = +∞.

On the other hand, we can also derive that

lim
λ→λ0

λ

∫
BH(0,R)

(
u2
λe

u2
λ − (eu

2
λ − 1)

)
dVH = lim

λ→λ0

2Iλ(uλ) < 4π,

which implies that
∫
BH(0,R)

(
eu

2
λ − 1 − u2

λ

)
dVH is bounded, hence

∫
BH(0,R)

(
eu

2
λ − 1

)
dVH is

bounded since ∥uλ∥L2(BH(0,R)) ≲ ∥uλ∥L4(BH(0,R)). This arrives at a contradiction with the
fact

lim
λ→λ0

λ

∫
BH(0,R)

(
eu

2
λ − 1

)
dVH = +∞.

Therefore,
∫
BH(0,R)

|∇Huλ|2dVH is bounded. Hence, there exists some non-negative function

u0 ∈ W 1,2
0 (BH(0, R)) such that uλ ⇀ u0 weakly in W 1,2

0 (BH(0, R)). As what we did in the
previous proof for (ii), we can similarly derive that

lim
λ→λ0

λ

∫
BH(0,R)

uλ exp(u
2
λ)dVH = λ0

∫
BH(0,R)

u0 exp(u
2
0)dVH

and

lim
λ→λ0

λ

∫
BH(0,R)

eu
2
λdVH = λ0

∫
BH(0,R)

eu
2
0dVH.

Through equation (1.9) and the definition of weak solution, we see that u0 satisfies equa-
tion

(3.19)


−∆Hu = λ0ue

u2
, x ∈ B1,

u > 0, x ∈ B1,

u = 0, x ∈ ∂B1.

Noticing λ0 = λ1(BH(0, R)) is the first eigenvalue of −∆H in BH(0, R) with the Dirichlet
boundary, hence one can easily obtain u0 = 0 through Pohozaev identity. This deduces
that

lim
λ→λ0

λ

∫
BH(0,R)

(
exp(u2

λ)− 1)dVH = λ0

∫
BH(0,R)

(
exp(u2

λ)− 1)dVH = 0.

Hence it follows that lim
λ→λ0

∫
BH(0,R)

|∇Huλ|2dVH = 2 lim
λ→λ0

Iλ(uλ) < 4π. Combining this

and the Trudinger-Moser inequality, we find that there exists some p0 > 1 such that∫
BH(0,R)

(
u2
λe

u2
λ

)p0dVH is bounded. Using the Vitali convergence theorem, we derive that

lim
λ→λ0

λ

∫
BH(0,R)

u2
λ exp(u

2
λ)dVH = λ0

∫
BH(0,R)

u2
0 exp(u

2
0)dVH = 0,
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which implies that

(3.20) lim
λ→λ0

∫
BH(0,R)

|∇Huλ|2dVH = 0 and lim
λ→λ0

Iλ(uλ) = 0.

That is to say uλ → 0 in W 1,2
0 (BH(0, R)). Using the Trudinger-Moser inequality again,

we derive that for any p > 1, there holds
∫
BH(0,R)

(
u2
λ exp(u

2
λ)
)p
dVH ≲ 1. Since uλ satisfies

elliptic equation (3.1), standard elliptic estimate gives that uλ → u0 = 0 in C2(BH(0, R)).
Then the proof of (iii) in Theorem 1.6 is accomplished.

4. proof of Theorem 1.10

In this section, we will prove the multiplicity and non-existence result for the Trudinger-
Moser functional

F (u) =

∫
BH(0,R)

(eu
2 − 1)dVH

under the constraint
∫
BH(0,R)

|∇Huλ|2dVH = γ for γ > 4π, namely we shall give the proof

of Theorem 1.10.

Obviously, the positive critical points u0 of the Trudinger-Moser functional F (u) under
the constraint

∫
BH(0,R)

|∇Huλ|2dVH = γ must satisfy

(4.1)


−∆Hu = λ0ue

u2
, x ∈ BH(0, R),

u ≥ 0, x ∈ BH(0, R),

u = 0, x ∈ ∂BH(0, R),∫
BH(0,R)

|∇Hu|2dVH = γ,

where λ0 ∈ (0, λ1(BH(0, R))). Set Λλ =
∫
BH(0,R)

|∇Huλ|2dVH, where uλ is the positive

solution of equation

(4.2)


−∆Huλ = λuλe

u2
λ , x ∈ BH(0, R),

uλ ≥ 0, x ∈ BH(0, R),

uλ = 0, x ∈ ∂BH(0, R).

The definition of Λλ is well-defined because the positive solution of (4.2) is unique.
Through Theorem 1.6, we see that Λλ is continuous with the respect to the parameter
λ ∈ (0, λ1(BH(0, R))) and

lim
λ→0

∫
BH(0,R)

|∇Huλ|2dVH = 4π, lim
λ→λ1(BH(0,R))

∫
BH(0,R)

|∇Huλ|2dVH = 0.

Hence Λλ is bounded in (0, λ1(BH(0, R))). Define γ∗ = sup{Λλ : λ ∈ (0, λ1(BH(0, R))},
we see that for any γ > γ∗, Trudinger-Moser functional F (u) under the constraint∫
BH(0,R)

|∇Huλ|2dVH = γ does not admit any positive critical point if γ > γ∗.

Now, in order to finish the proof of Theorem 1.10, we only need to prove that F (u)
under the constraint

∫
BH(0,R)

|∇Huλ|2dVH = γ has at least two positive critical points if
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γ ∈ (4π, γ∗). Since Λλ is continuous with respect to the parameter λ ∈ (0, λ1(BH(0, R)))
and Λ(0) = 4π, Λ(λ1(BH(0, R))) = 0, hence it suffices to prove that there exists a λ∗ ∈
(0, λ1(BH(0, R))) such that Λ(λ∗) > 4π. This will be easily verified by showing that
the Trudinger-Moser functional F (u) under the constraint

∫
BH(0,R)

|∇Huλ|2dVH = γ for γ

sufficiently close to 4π has a local maximum point. The argument is essentially similar to
the one for the local maximum point of the super-critical Trudinger-Moser functional on
bounded domain of R2, which was proved by Struwe in [34]. For simplicity, we only give
the outline of the proof.

Step 1: Set

β∗
4π = sup∫

BH(0,R) |∇Huλ|2dVH=1

∫
BH(0,R)

(e4πu
2 − 1)dVH,

then the set

K4π = {u ∈ W 1,2
0 (BH(0, R)) :

∫
BH(0,R)

|∇Hu|2dVH = 1,

∫
BH(0,R)

e4πu
2

dVH = β∗
4π}

is compact. The proof of compactness is essential to the proof of existence of extremal
functional for critical Trudinger-Moser functional on two dimensional compact manifold
which is established by Y. X. Li [21, 22].

Step 2: Let Σ be the set consisting of all functions u ∈ W 1,2
0 (BH(0, R)) satisfying∫

BH(0,R)
|∇Huλ|2dVH = 1 and define the Dirichlet norm neighborhoods of K4π in Σ by

Nϵ = {u ∈ Σ| ∃v ∈ K4π s.t.

∫
BH(0,R)

|∇H(u− v)|2dVH < ϵ}.

Similarly, we can show that for sufficiently small ϵ > 0, there holds

(4.3) sup
u∈N2ϵ\Nϵ

∫
BH(0,R)

(e4πu
2 − 1)dVH < β∗

4π = sup
u∈Nϵ

∫
BH(0,R)

(e4πu
2 − 1)dVH.

Step 3: Through compactness of K4π and uniformly local continuity of F , we can show
that there exists α∗ > 4π and ε > 0 such that for any α ∈ [4π, α∗), there holds

sup
u∈N2ϵ\Nϵ

∫
BH(0,R)

(eαu
2 − 1)dVH < sup

u∈Nϵ

∫
BH(0,R)

(eαu
2 − 1)dVH =: β∗

α

Combining Steps 1-3, one can easily obtain that Trudinger-Moser functional F (u) =∫
BH(0,R)

(eu
2 − 1)dVH under the constraint

∫
BH(0,R)

|∇Huλ|2dVH = γ for γ sufficiently close

to 4π has a local maximum point. This accomplishes the proof of Theorem 1.10.
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5. Proof of Theorem 1.15

Obviously, the positive critical points u0 of the perturbed Trudinger-Moser functional
H̃(u) =

∫
B1
(eu

2 − 1− u2)dx under the constraint
∫
B1

|∇u|2dx = β must satisfy

(5.1)


−∆u = λ0u(e

u2 − 1), x ∈ B1

u > 0, x ∈ B1

u = 0, x ∈ ∂B1∫
B1

|∇u|2dx = β.

Through the moving-plane method, it is easy to check that u0 is radially decreasing. Then
u0 satisfies the following ODE equation

(5.2)


−(ru′)′ = rλ0u(e

u2
λ − 1), r ∈ (0, 1),

u > 0, r ∈ (0, 1),

u′(0) = 0, u(1) = 0.

Using the argument of Theorem 1.1 again, we can deduce that u0 is the least energy
critical point of the functional

Iλ0(u) =
1

2

∫
B1

|∇u|2dx− λ0

2

∫
B1

(eu
2 − 1− u2)dx.

By using the Trudinger-Moser inequality and Nehari manifold method (see the Appendix),
one can deduce that Iλ0(u0) < 2π. Using I ′λ0

(u0)u0 = 0, we obtain

Iλ0(u0) =
λ0

2

∫
B1

u2
0(e

u2
0 − 1)dx− λ0

2

∫
B1

(eu
2
0 − 1− u2

0)dx

≥ λ0

4

∫
B1

u2
0(e

u2
0 − 1)dx =

1

4

∫
B1

|∇u0|2dx.
(5.3)

This together with I(u0) < 2π yields
∫
B1

|∇u0|2dx < 8π. Hence the perturbed super-

critical Trudinger-Moser functional H̃(u) =
∫
B1
(eu

2 − 1 − u2)dx under the constraint∫
B1

|∇u|2dx = β does not admit any positive critical point if β ≥ 8π.

6. Appendix

In this section, we will show that the functional energy Iλ(uλ) < 2π, if uλ is the least
energy point of functional

Iλ(u) =
1

2

∫
BH(0,R)

|∇Hu|2dVH − λ

2

∫
BH(0,R)

(eu
2 − 1)dVH.

Recalling the definition of the least energy critical point of functional Iλ(u), we know that
Iλ(uλ) = mλ := min{Iλ(u) : I ′λ(u)u = 0}.
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We first show that mλ > 0. We argue this by contradiction. Assume that mλ = 0, then
exists a sequence {uk}k ∈ W 1,2

0 (BH(0, R)) such that∫
BH(0,R)

|∇Huk|2dVH − λ

∫
BH(0,R)

u2
ke

u2
kdVH = 0, ∀k ∈ N

and

lim
k→∞

(
1

2

∫
BH(0,R)

|∇Huk|2dVH − λ

2

∫
BH(0,R)

(
eu

2
k − 1

)
dVH

)
= 0.

Direct computations show that

mλ = lim
k→∞

(
1

2

∫
BH(0,R)

|∇Huk|2dVH − λ

2

∫
BH(0,R)

(eu
2
k − 1)dVH

)
= lim

k→∞

(
λ

2

∫
BH(0,R)

u2
ke

u2
kdVH − λ

2

∫
BH(0,R)

(eu
2
k − 1)dVH

)
≥ λ

4
lim
k→∞

∫
BH(0,R)

u2
k(e

u2
k − 1)dVH

=
1

4
lim
k→∞

∫
BH(0,R)

(
|∇Huk|2 − λ|uk|2

)
dVH.

(6.1)

Since λ < λ1(BH(0, R)), it follows from the Sobolev imbedding theorem that

uk → 0 in W 1,2
0 (BH(0, R)) and uk → 0 in Lp(BH(0, R)) for any p ≥ 1.

Let vk =
uk

∥∇Huk∥2
, then vk ⇀ v in W 1,2

0 (BH(0, R)) with ∥v∥22 ≤ lim ∥vk∥22 < 1
λ1(BH(0,R))

.

Since uk → 0 in W 1,2
0 (BH(0, R)), by Trudinger-Moser inequality in W 1,2

0 (BH(0, R)), we

have eu
2
k ∈ Lp(BH(0, R)) for any p > 1. Then it follows from the Vitali convergence

theorem that

1 = lim
k→+∞

∫
BH(0,R)

λu2
k

∥∇Huk∥22
eu

2
kdVH

= lim
k→+∞

λ

∫
BH(0,R)

eu
2
k |vk|2dx

= λ∥v∥22 ≤
λ

λ1(BH(0, R))
< 1,

(6.2)

which is a contradiction.
Next, we start to prove that mλ < 2π. Let w ∈ W 1,2

0 (BH(0, R)) such that ∥∇Hw∥22 −
λ∥w∥22 = 1. Then there exists some γw > 0 such that∫

BH(0,R)

(|∇Hγww|2 − λ|γww|2)dVH − λ

∫
BH(0,R)

(γww)
2
(
e(γww)2 − 1

)
dVH = 0,
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which implies that

mλ ≤ 1

2

∫
BH(0,R)

(
|∇Hγww|2 − λ|γww|2

)
dVH − λ

2

∫
BH(0,R)

(
e(γww)2 − 1− (γww)

2
)
dVH

<
γ2
w

2

∫
BH(0,R)

(
|∇Hw|2 − λ|w|2

)
dVH =

γ2
w

2
.

(6.3)

Set mλ = γ2
∞
2
. Since

(
e(γw)2 −1

)
w2 is monotone increasing about the variable γ, we derive

that ∫
BH(0,R)

(
e(γ∞w)2 − 1

)
w2dVH ≤

∫
BH(0,R)

(
e(γww)2 − 1

)
w2dVH

=

∫
BH(0,R)

(|∇Hw|2 − λ|w|2)dVH = 1,

(6.4)

which implies that

sup∫
BH(0,R)(|∇Hw|2−λ|w|2)dVH=1

∫
BH(0,R)

(
e(γ∞w)2 − 1

)
w2dVH < ∞.

Noticing ∫
BR̃(0)

|∇w|2dx =

∫
BH(0,R)

|∇Hw|2dVH,

and dVH =
(

2
1−|x|2

)2
dx, we obtain that

sup∫
B
R̃

(0) |∇w|2dx=1

∫
BR̃(0)

(
e(γ∞w)2 − 1

)
w2dx < ∞,

where BR̃(0) denotes the ball with radius R̃ equal to eR−1
eR+1

in R2. Then one can construct
well-known Moser sequence (that is a concentration sequence which blows up at some

point) to deduce that mλ = γ2
∞
2

< 2π.
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[34] M. STRUWE, Critical points of embeddings of into Orlicz spaces, Ann. Inst. H. Poincaré C Anal.
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