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ABSTRACT. We investigate the one-dimensional random assignment problem in the con-
cave case, i.e., the assignment cost is a concave power function, with exponent 0 < p < 1,
of the distance between n source and n target points, that are i.i.d. random variables
with a common law on an interval. We prove that the limit of a suitable renormaliza-
tion of the costs exists if the exponent p is different than 1/2. Our proof in the case
1/2 < p < 1 makes use of a novel version of the Kantorovich optimal transport prob-
lem based on Young integration theory, where the difference between two measures is
replaced by the weak derivative of a function with finite g-variation, which may be of
independent interest. We also prove a similar result for the random bipartite Traveling
Salesperson Problem.

1. INTRODUCTION

The assignment problem (or bipartite matching) is a classic optimization problem that
arises in a variety of applications. The task is to find an optimal correspondence between
two sets of objects ()i, (vi)i~;, such as workers and jobs, or producers and sellers
of goods, such that the total cost optimized, e.g. minimized. When the cost c(x;,y;)
between pairs of objects is a function of a distance, the solution naturally reflects some of
the geometry of the underlying space. Already in the case of points on the line, it is well-
known that a convex function favours monotone assignments, while a concave function,
such as c¢(z,y) = |z — y|* with a € (0, 1) yields a richer structure, exhibiting a variety of
hierarchies at different scales, with a compelling economic interpretation [27].

There is a rich literature studying random instances of combinatorial optimization prob-
lems in Euclidean spaces, stemming from the seminal paper [8]. The main focus is on
convergence results and concentration around the typical behavior for large instances of
the problems, see e.g. the monographs [31, 28]. When the problem is bipartite, i.e., for-
mulated over two random sets of points, such as the assignment problem, the classical
methods encounter some limitations, due to local fluctuations of the number of samples in
the two families [12, 7]. The same fluctuations give rise to unexpected scaling behaviors
of the costs, which tend to be asymptotically larger than their non-bipartite counterparts.
This phenomenon was crucially observed in [1] for the assignment problem on the square,
with the cost given by the Euclidean distance.

In recent years, progress has been made in the study of random Euclidean combinatorial
problems, starting from the assignment problem, thanks to its link with Optimal Transport
theory, which constitutes its natural linear programming relaxation and can be formulated
for general source and target measures, not necessarily discrete ones. Thanks to the
rich and much explored structure of optimal transport problems and their solutions, in
particular for absolutely continuous densities, several results have been obtained in the
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study of the random Euclidean bipartite matching problem [14, 16, 3, 5, 4, 9, 6, 23, 22]
but also for other random bipartite combinatorial optimization problems, e.g. [13, 17, 24].

Aim of this paper is to provide a description of the asymptotic behaviour of the cost
functional associated to the assignment problem over two sets of random i.i.d. points
(Xi)iy, (Y5, € R, with respect to a concave power cost. We introduce the optimal
assignment cost functional

n
Ma ((Xi)izq, (Yi)izq) = min D IX = Yo%
™i=1

where S,, denotes the set of permutations over n elements and the exponent o € (0,1)
is fixed. Assuming that the common law p is supported on a bounded interval I, the
heuristics is that the points are equally spread over I, hence at distance roughly 1/n
from each other. Thus, we expect that M ((X;)!_¢, (Y;),) should approximately behave
like n!=. This is true in the range 0 < o < 1/2, and upper and lower bounds for the
renormalized cost

no‘_lMa((Xi)?:p (Yi)iz1)

are established e.g. in [7, Theorem 2]. However, to our knowledge, existence of the limit
is proved only when the points are distributed according to a probability measure that
is singular with respect to the Lebesgue measure, or its absolutely continuous part is
uniform on a set (again e.g. in [7, Theorem 2]). Of course, a similar result is putatively
assumed to hold also for non-uniform distributions, and in this work we precisely settle
such conjecture.

In the range 1/2 < a < 1, local fluctuations in the number of points become dominant
and one obtains an asymptotic rate of the order n'/2 (actually, the same rate holds also for
a > 1). Such “phase transition” was investigated in e.g. [15, 11], where upper bounds have
been rigorously established. In this work we are able to give a precise description of the
limit also in this case. The main idea in the proof is that after re-scaling by the order n'/2,
the matching problem converges to a suitable version of an optimal transport problem,
where the two source and target measures are now replaced by a Brownian bridge, because
of the Central Limit Theorem. Elaborating upon this idea, we propose an extension of the
Kantorovich problem by relying upon Young’s integration theory [30], which yields in our
case a robust description of the assignment problem in the limit n — oo, but we believe
may be of independent interest.

The case o = 1/2 cannot be settled by our arguments, hence existence of the limit
remains an open question. However, we complement the upper bounds from [11] with an
asymptotic lower bound using a standard space-filling curve argument, showing indeed
that the correct asymptotic rate is of the order y/nlogn.

1.1. Main result. With the notation introduced above, we are in a position to state our
main result concerning the asymptotic behaviour of the random assignment problem with
respect to a concave power of the distance, on the real line.

Theorem 1.1. Let (X;)2,, (Y;)72; C R be i.i.d. random variables with common law .
Denote with f the absolutely continuous part of u (with respect to Lebesque measure) and
F(t) = pu((—o0,t]) the cumulative distribution of p.

(1) If « € (1/2,1) and u is supported on a bounded interval, then convergence in law
holds:

lim 1Mo (X1, (Y)1y) = V2B o Flw,, (L1)

n—oo

where (B(t)):ejo,1) denotes a standard Brownian bridge process, and || - [lw, denote
the Young-Kantorovich cost (to be defined below).
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(2) If o € (0,1/2) and [g |t|Pdu(t) < oo for some B> 4o /(1 — 2c), then almost sure
convergence holds:

i Mo (6T (V)i) = M) [ (00

n—oQ

where ¢(Mgy) € (0,00) is a constant depending on o only.
In both cases, convergence holds also in expectation.

Remark 1.2. In the case o = 1 a related convergence result was obtained in [18, Theorem
2.4], see also [10, Corollary 3.9].

We also have an analogue theorem for the Travelling Salesperson Problem (TSP), which
reads almost the same as Theorem 1.1, with the cost TSP, (defined in 3.2) in place of
My, and an additional factor 2 in the right-hand side of (1.1), and a different constant
¢(TSP,,) instead of ¢(Mgy). See Theorem 5.2 for a precise statement.

1.2. Comments on the proof technique. As already mentioned, one of the main nov-
elties is the formulation of a suitable Kantorovich-Young problem. In brief, for every
function g : I — R over a bounded interval I, with finite g-variation, and « € (0, 1) such
that o+ 1/q > 1, we define

lgllw, = sup{ / fdg : fles < 1},

where the integral is understood in the sense of Young and || - ||ce denotes the Holder
norm. Such a Kantorovich-Young problem recovers the classical optimal transport when
applied to functions g with bounded variation (corresponding to the case of transporting
two measures). Indeed, in Section 4 we investigate some basic properties of this problem,
some of which are not strictly necessary in the proof of Theorem 1.1.

In the random case, we have that g(t) = B(t) is a Brownian bridge, which has finite
g-variation only if ¢ > 2, hence the Kantorovich-Young problem will be meaningful only if
a > 1/2. This may also provide a explanation of the occurrence of the “phase transition”
at a = 1/2, which in stochastic analysis motivates the introduction of Rough Paths theory
[21, 20].

Thus, for v < 1/2 we need to argue in a different way, and we do so by exploiting the
so-called boundary functional associated to the assignment problem, where one is allowed
to assign arbitrary points from/to the boundary of a given interval (for simplicity, we
work in the case I = [0, 1]). The use of such functional is standard in the theory of (non-
bipartite) random combinatorial optimization problems [28, 31], and is also advocated
in [7]. It is however a widely open question to determine whether the asymptotic cost
of the boundary functional coincides with that of the original assignment problem. In
the present case of a concave cost on the interval, we are able to answer affirmatively to
this question, by exploiting the specific structure of optimal assignments (in particular,
we use the no-crossing property). The key estimate in our derivation is established in
Lemma 3.5.

1.3. Further questions. Our result settles several questions about existence of the limit
for the renormalized costs of random bipartite assignment problem in the concave case on
the line. Let us mention some problems that seem worth exploring.

(1) For 1/2 < a < 1, Theorem 1.1 is limited to laws with bounded support. This is
because we develop a minimal theory for the Kantorovich-Young problem, valid
only in the case of a bounded interval. As with the classical transport problem, to
address the case of unbounded intervals, some growth condition should be imposed.
In turn, this condition should then be verified in the convergence of the empirical
process towards the Brownian bridge, hence extending the results from [25] which
we employ in our argument.
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(2) A natural question is what happens in the a = 1/2 case. It is known [11, Corollary
3.2] that for i.i.d. points (X;)2,, (¥;)52; C I with common law g,

limsupE [Myo(X0)i, (V)] /V/mlog n < oo, (1.2)
hence a natural conjecture would be that
nh_{gOE [MI/Q((XZ')?:I’ (Yz)?:l)] /\/m
always exists. In Remark 5.1 below, we prove that if y is uniform on I, then
liminf B [My /2 ((Xi)iy, (Y)izy)] /v/nlogn > 0. (1.3)

(3) Our method is clearly not limited to the assignment problem, as the application
to the TSP shows. We conjecture that the connected bipartite xk-factor problem,
see [7, 24], should allow for a similar analysis (the case x = 2 yields the TSP).

1.4. Structure of the paper. In Section 2 we introduce the notation and collect some
known facts on Holder functions, g-variation, optimal transport theory and the conver-
gence of empirical processes towards Brownian bridges. In Section 3, we recall some simple
properties of the assignment problem and the TSP in the concave case. We also establish
a fundamental bound, Lemma 3.5, relating the boundary functional to the original prob-
lem. In Section 4, we introduce the Kantorovich-Young problem, and provide a duality
result (Proposition 4.1) in terms of a suitable minimization of a transport cost over a set
of couplings. Finally, in Section 5, we prove Theorem 1.1 and its variant for the TSP,
Theorem 5.2.
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der the NextGeneration EU programme. D.T. thanks S. Caracciolo, A. Sportiello and M.
D’Achille for valuable discussions about the statistical physics perspective on the problem.

2. NOTATION AND BASIC FACTS

We write throughout I for an interval I = [a,b] C R (not necessarily bounded) with
length |I|. To avoid measure-theoretic issues, we tacitly assume that all the functions
f: I — R are right-continuous.

2.1. Holder functions. Given a function f : I — R, we define its Holder semi-norm of
exponent « € (0, 1], as

[f(t) = £(s)]
floa = sup ———+
o stter |t —s|*
Notice that [f]o1 denotes the Lipschitz constant of f (and not the usual C* norm). For

a =0, we set [f]oo = supg 7 |f(t) — f(s)], the oscillation of f. To turns these quantities
into norms, we define

€ [0, 00].

[fllce = [f()] + [flee,
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for a chosen ¢ € I (the precise choice is not relevant). We write as usual C*(I) for the
Banach space of functions f with finite norm | f||ce < co. For 0 < a < 8 < 1, the
inclusion C#(I) € C*(I) holds and, by the Arzela-Ascoli theorem, if I is bounded, the
inclusion is also compact, i.e., for any bounded sequence (f,), € C?(I), one can extract
a converging subsequence (fy, )r towards some f, i.e.,

li — o = 0.
i [ fr, ~ fllee =0
In particular, one also has pointwise convergence and f € C#(I) with
[fles < liminf[fn, Jos.
k—o00

Moreover, C8(I) (in particular C*(I)) is dense in the following weak sense: for every
f € C(I) there exists (fu)n C CP(I) such that f, — f and lim, ,oo[f]ce = [floa.
Explicitly, one can let f,(t) := infser { f(s) + n|s — t|°}.

2.2. p-variation. For p € [1,00), we define the p-variation semi-norm of f: I — R as

m 1/17
[f]pfvar = sup (Z ’f(tl) — f(ti_l)‘p> : {ti};’io Cl, to<ti <...<tm
i=1

We may also set [f] = [f]co, so that, for any o € [0,1], we have the inequality

[f]l/oc—var < ‘I‘a[f]co" (21)

oo—var

Moreover,
[f]CO < [f]p*var (2-2)

for every p > 1. The p-variation decreases with respect to composition with increasing
functions: if J C R is an interval and j : J — [ is increasing (not necessarily continuous),
then

[f oj]p—var S [f]p—var- (23)
When p = 1, the 1-variation [f];_var is simply called the total variation of f, and functions

with finite 1-variation may be also called functions with bounded variation (BV (I)). Given
two finite Borel measures u™, = over I, the function

ft) = (=00, ] N I) — p~ (o0, t] N 1)
has finite total variation and it is well-known that, up to an additive a constant, (and

choosing an a.e. representative to ensure right-continuity) any f € BV (I) can be repre-
sented as above.

2.3. Young integration. Given f, g : I — R, we say that the Riemann-Stieltjes integral
[; fdg is well defined if the following limit exists

3 f(6-1)(0(6) — o(i-1) = | rdg

along any sequence of partitions {#;}/, C I, such that its mesh sup,_; _,, [t; —t;—1] is
infinitesimal as m — oo, and the limit does not depend on the chosen partitions. The
(Lebesgue-)Riemann-Stieltjes theory of integration ensures that [, fdg exists if both [f]co
and [g]1—var are finite. L.C. Young [30] established the following result.

Theorem 2.1 (Young). Let p, ¢ > 1 be such that 1/p+ 1/q > 1. Then, the Riemann-
Stieltjes integral [; fdg exists for every pair of functions f, g : I — R such that f, g have
no common points of discontinuity and both |f] and [g] are finite. Moreover, if
I =a,b], it holds

p—var q—var

/I fdg = F(@)(g(5) — 9(0))] < C,0) [F, e 181y e (2.4)
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where C(p,q) € (0,00) is a constant depending on p and q only (not even upon I ).

We are going to use the above construction in the special case of f being Holder contin-
uous of exponent a = 1/p > 1 — 1/q, in particular continuous and of finite p-variation by
(2.1), and g with g(a) = g(b) (if I = [a,b]). In such a case, the Riemann-Stieltjes integral
7 fdg exists and, combining (2.1) with (2.4), we have the inequality

\ /1 fdg‘ < C. T flloe 190l vue- (2.5)

2.4. Wasserstein distance. Given ¢ > 0 and positive Borel measures u, A on a Polish
space (X,d) with u(X) = A(X) € (0,00) and finite g-th moments, i.e.,

/ d(x,z0)?p(dx) +/ d(x,20)I\(dz) < oo
X X

for some (hence all) zp € X, the optimal transport cost of order ¢ between p and A is
defined as the quantity

el (1,\)

where I'(p1, A) is the set of couplings between p and A, i.e., finite Borel measures 7 on the
product X x X such that their marginals are respectively u and A. A simple compactness
argument yields that the infimum in (2.6) is always a minimum. Moreover, if g € (0, 1],
then (2.6) actually defines a distance, while if ¢ > 1 one needs to take the ¢-th root in (2.6)
to obtain a distance. With this convention, for every ¢ > 0, one defines the Wasserstein
distance of order ¢ between p and A, which we denote by W,(i, A). Convergence with
respect to W, is easily characterized [2]: for a given ¢ > 0, a sequence of measures (fu)n
with finite g-th moment converge towards p with respect to the distance W, if and only if
n — p weakly, i.e.,

inf /XXXd(a:,y)’ITr(dx,dy), (2.6)

lim / fdu, = / fdp  for every f: X — R bounded and continuous,
x x

n—o0

and for some (hence all) zg € X,

lim d(x,$o)qun(dx):/ d(z, zo)?p(dx).

The optimal transport cost of any order g admits a dual formulation. We are going to
use only the case ¢ € (0,1], which is particularly simple:

vvq<u,u>=s1;p{ [ =) 1@ - )] < dGa* \m,yex}. 2.7

2.5. Empirical processes. Let (X;)°; be i.i.d. real valued random variables with com-
mon law p and cumulative distribution function

F(t) = p((~o00,1]), forteR. (2.8)

When clear from the context we write F' for F,. For every n > 1, denote with u, =
% >, dx, the empirical process, whose cumulative distribution function is

1 n
() = (=00, 1)) = — ; lix,<y, forteR.
By the Central Limit Theorem, /n(F,(t) — F(t)) converges in law to a Gaussian pro-
cess. Precisely, define a Brownian bridge (B(t))¢c[o,1) as a continuous Gaussian process
E[B(t)] = 0 and E [B(s)B(t)] = min {s,t} —st for every s,¢ € [0,1]. Then, one can approx-
imate \/n(Fy(t) — F(t)) with Bo F(t) in law. In [25], extending a classical construction of
Komlés, Major and Tusnddy [26], the convergence is made quantitative by providing, for
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every q € (2,00) and n > 1, a coupling between the process /n(F, — F) and a Brownian
bridge B,,, such that

P ([\/H(Fn — F) — Bpo Fly—yar > xn_(q_z)/@‘”) < e ®A4)  for every z > qA(q),
(2.9)

where A(q) € (0,00) denotes a constant depending on ¢ only. This implies, for every
p > 1, convergence in LP(P) of the g-variation:

E [[Vn(F, — F) — By o F¥

Consider an additional family (;)72; of i.i.d. values with the same law, and independent
of the family (X;)2,. Denote with F), the associated empirical cumulative distribution
function associated to the points (Y;)!"_;, and B,, a Brownian bridge coupled with /n(F,, —

F') such that the analogue of (2.9) holds. Without loss of generality, we may assume that
B and B are independent. Then,

Law(B, o F — B, o F) = Law(V2B,, o F)

and using the triangle inequality we obtain that, for every p > 1 and some constant
C(p.q) >0,

] YP < O(p, qn~ (/).

q—var

. 1/
E|[va(F, — B) = V2B o FP_. | < C(p, qn~a-2/20) (2.10)
for a suitable Brownian bridge process B,,.

3. ASSIGNMENT AND OTHER COMBINATORIAL OPTIMIZATION PROBLEMS

3.1. The assignment problem. Given two families of points (z;) {, (y:)"; € R the
assignment (or bipartite matching) cost on the line, with exponent o € (0, 1], is defined as

M ((ml)z 1 (yl 1= 1 - grelgl Z ’1’, yo @)1 > (31)

where S, is the set of permutations over {1,..., n} We call a minimizer ¢ an optimal
assignment between the points (z;)? ¢, (vi)i;-
By Birkhoff theorem, we have the identity

Ma((x )z 1,(:‘/1 i= 1 (Zéﬂcwzé 7,> (3'2)

thus connecting the discrete combinatorial problem with a linear programming problem.
Any optimal assignment o must satisfy the following condition (called monotonicity in
the optimal transport literature)

1Zi = Yo@i)|* + 175 — Yo(i)|* < |20 — Yoi)|* + 125 — Yoi)|*, for every iand j,  (3.3)

otherwise if the converse inequality hold for some i, j, one could get a strictly smaller cost
by modifying o letting instead i — o (j), j — o (7).

Let us recall some simple consequences of (3.3). First, if 2 = y, for some k, ¢, then
there exists an optimal assignment that maps k into ¢. Indeed, let ¢ be any optimal
assignment and write (3.3) with i = k and j = o~ !(¢), which becomes

Yoy = Tkl™ + |2k — Zo-10)|* < |Yo(r) — To-1(9)|,
i.e., a reverse triangle inequality. Therefore, we can modify ¢ by mapping k into ¢ and
o~1(¢) into o (k) to obtain an assignment with the same cost, hence optimal.

Next, we obtain the so-called no-crossing rule for optimal assignments. Given a permu-
tation o € S, and 4,5 € {1,...,n}, the pair (zi,Yo;)), (Zj,¥Yo(j)) is said to be crossing if
the two open intervals determined by the two pairs of points are neither disjoint, nor one
includes the other.
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Lemma 3.1 (no-crossing rule). Let o € (0,1). For any optimal assignment o, no pair
(xia yo‘(i))7 (xjv yU(])) is crossing, fori,j € {17 s ,TL}-

For o = 1, the thesis holds for at least one optimal assignment. Let us report the
argument for later use.

Proof. Assume by contradiction that a pair (zi,Ys(;)), (%), ¥s(j)) is crossing. There are
actually several cases to consider, but without loss of generality we focus only on the
cases that the points are in the order z; < z; < yo;) < Yo(j)- Set @ = Yy, — x; > 0,
b= Y,y — i >0, and let t € (0,1) be such that

Yo(iy — Ti = (1 —t)a + tb.
Since a + b = yo(;) — Ti + Yo(;) — Tj, it also holds with the same ¢ that
Yo(j) — Tj = ta+ (1 —t)b.
By strict concavity,
Yoy — i|" + Yoy — 23] > (1 = t)a® + 1™ + ta® + (1 — £)b*
=a% + b*
= [vo() — il + |vory) — [
which contradicts (3.3). O

3.2. Travelling Salesperson Problem. Some of our arguments apply with minor mod-
ifications to other combinatorial optimization problems. To keep the exposition simple,
let us limit ourselves to the bipartite Traveling Salesperson Problem (TSP), where one
searches for the cheapest cycle visiting two given families of points (x;)! ¢, (v:)-y € R
and alternating between them. For an exponent « € (0, 1] the cost is defined as

TSP&(('ri)?:h (yl);l 1) = min Z ‘xa(z yT( *+ |y7'( ) xcr(z+1)| ) (34)

o,TES) =1

where conventionally we let o(n 4+ 1) = o(1). Instead of dealing with permutations, we
may consider an abstract cycle G on the complete bipartite graph Bip,, over two copies of
{1,...,n}. It is not difficult that there is a correspondence between such cycles and the
parametrizations given by

(07 T) =G = {(U(i)ﬂ—(i))? (U(Z + 1)7 T(i))}?:l :

Reasoning in terms of graphs and cycles simplifies some arguments. For example, let us
consider the analogue of (3.3) for this problem. Let (o, 7) be an optimizer in (3.4) with
associated cycle G C Bip,,. Then, for i, j,k,¢ € {1,...,n}, such that (i, k), (4,¢) € G and
(4,0), (4, k) ¢ G. Then,

|z — ye|® + |z — yel® < |z — | + |zj — ye|™ (3.5)

Otherwise, one could obtain a strictly smaller cost by removing (i, k), (j,¢) from G and
adding instead the edges (i,¢), (j, k), an operation that still yields a cycle.

We deduce from this inequality a no-too-many-crossings rule. Given points (z;)} ,
(yi)_; € R, we say that a pair of edges (i, k), (j,¢) € Bip,, is crossing (or alternatively,
that the edge (j,¢) crosses (i, k)) if the open intervals with extremes respectively {z;, yx},
{xj,ye} are neither disjoint nor one includes the other.

Lemma 3.2. Let a € (0,1), (z:)"q, (yi)-y € R and (o,7) be an optimizer for (3.4),
with associated cycle G C Bip,,. For every edge in G, there can be at most 2 edges in G
that cross it.
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Proof. Following the proof of Lemma 3.1, we see that for each edge (j,¢) € G that crosses
(i,k), at least one edge among (i,¢), (j,k) must belong to G, otherwise the argument
(which uses only (3.3) and strict concavity) would carry on using (3.5) instead. However,
the degree of each vertex in G, in particular of ¢ and k, is exactly 2, so this can happen
at most 2 times (because we take into account the edge (i, k) contributing to the degrees
of i and k). O

It will be useful to bound the cost of the TSP in terms of the assignment problem as
follows.

Lemma 3.3. Given a € (0,1), for every (x;)I, (yi)i—y C [0,1], it holds
0 < TSPa((2i)iny, (9i)iey) — 2Ma((@)ity, (wi)iny) < 1+n'7% (3.6)

Proof. We argue as in [13], see also [24] and [4]. For the first inequality, simply notice that
any cycle alternating between the x and y’s induces a pair of assignments (not necessarily
optimal), hence

TSPo((xi)iz1, (Wi)iz1) = 2Ma((@i)izys (yi)isr)-
For the converse, assume without loss of generality that the (z;)]", are increasingly or-
dered. In (3.4), we let o(i) = i the identity permutation, and 7 € S,, an optimal assignment
between (x;)? ; and (y;)}_;. By the triangle inequality, for every i =1,...,n, we have

1Yz — Tirr|* < yrey — @il + 20 — 211 |%,

(with the convention that n + 1 = 1), hence summing upon i gives

n
TSPo((@i)i1, (i)iz1) < 22‘97(1') —i|* + [z — 2|

i=1
n—1

< Mo (()isy, ()imy) + 1+ ) s — miga ™.
i=1

To conclude, notice that, by Holder inequality,

n—1 n—1 «
Dol =z < (Z i — 3«"@'+1\> nimY <t
i=1 =1

hence the thesis. O

3.3. Boundary functionals. We recall the boundary functional associated to the as-
signment problem and the TSP from [7]. For simplicity, we consider only the case that
(@i)q, (yi)i_q € (0,1). We define, for the assignment problem,

ME ()i, (yi)i) = inf Ma((23)iy U (85)72, ()i U (§5)720), (3.7)
and for the TSP,

TSP ((xi)io1, (yi)iey) = inf TSP ((2i)foy U () Ter, (9a)iey U (5)721),  (3:8)
where in both cases the infimum runs over all the possible families of boundary points
(Z7)7L1, (97)721 € {0,1} with m € N arbitrary.

Clearly, the boundary functional is always smaller than the original cost functional
(one may let m = 0). In this section, we prove a converse inequality, up to some error.
The strategy is to prove that m cannot be too large, and then use the following simple
inequality.

Lemma 3.4. Let (x;)!", (y;)!4™ € [0,1]. Then,

Ma((22)i27", ()i2™) = Ma((20)ieys (4i)ier) —m, (3.9)
and
TSPo ()i 21", ()iZ™) = TSPa((z:)iy, (vi)izy) — 2m. (3.10)
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Proof. 1t is sufficient to argue by induction, and prove the inequalities in the case m = 1.

To prove (3.9), consider an optimal assignment o € S,,11 for the left hand side. If
o(n+1) =n+1, then o can be restricted on {1,...,n} to obtain an assignment between
the first n points, and by dropping |Z,11 — Ys(n+1)|* from the left hand side, we obtain
an upper bound for the right-hand side. Otherwise, we define an assignment ¢ € S,, by
letting 5(c~'(n + 1)) = o(n+ 1) and & = ¢ for all the remaining elements. We have
therefore

Ma (274 ()12) = Mal(@)i, (971) = onst) = Bitos)|°

hence (3.9) with m = 1, since |2,-1(41) = Yo(ng1)|* < 1.

The argument leading to (3.10) is similar but slightly more involved. Let G C Bip,,
be an optimizer for (3.4). Consider first the case that x,11, yn+1 do not form an edge in
G,ie., (n+1,n+1) ¢ G. Without loss of generality, i.e., up to relabelling the points, we
can then assume that z,1 is connected to the points y1, y2 in G, and similarly 4,11 to the
points x1, z9. Since G is a cycle, after removing x,+1 and y,+1, we have two connected
components, GG; and Go. Up to relabeling the points, we may assume that x1, y1 € G,
and x9, yo € Go2. Thus, to define a cycle it is sufficient to add two pair of edges, one
connecting x1 to y2 and one connecting x5 to y;. This yields (3.10) with m = 1 in the case
that 41 ynt1 do not form an edge in G. If instead they are connected, it is sufficient to
connect the two other points connected to them to form a cycle, which also leads (3.10)
(actually without the factor 2 in this case). U

We end this section with the following result, that is crucial for the proof of Theorem 1.1
in the case 0 < a < 1/2 — although it holds more generally for o € (0,1).

Lemma 3.5. Let o € (0,1), n > 2, (x;)I", (vi)i~y € (0,1) be all distinct. Define, for
t €0,1],

Ft)=> Ty, FO) =) Iy<y
=1 i=1

Then, minimization in (3.7) can be restricted to m < [F — F)co, while minimization in
(3.8) can be restricted to m < [F — F|co + 1.

Proof. Let us focus on the assignment problem first. Given m pairs of boundary points
(Z7)7Ly, (9;)7 € {0,1}, with m > [F — Flco, and an optimal assignment o € Sy, We
argue that one can find a (not necessarily strictly) cheaper assignment by removing a pair
of points. Arguing recursively, this yields the first claim.

First, there is a trivial way to remove a pair of points: if Z; = g, for some j,k =1,...,m,
then for some optimal assignment (not necessarily o) these two points are matched to-
gether, hence we can remove them obtaining a cheaper assignment with m — 1 pairs.
Hence, we can assume that Z; # g, for every j,k = 1,...,m. This implies that either
Zj =0 (hence g; = 1) for all j’s, or ; = 1 (hence g; = 0) for all j’s. For simplicity, let us
consider only the first case (the other being symmetric).

Let jo € {1,...,m} be such that y,(j,) is maximum among the values {yo(j)};n:p ie.
Zj, is assigned to the rightmost position among all the Z;’s. We argue that y,(;,) = 1,
i.e. it is one among the g;’s, hence by removing the pair Zj,, ys(j,), we obtain a family
with m — 1 pairs of boundary points, and (strictly) cheaper cost. Assume by contradiction
that y,(jo) = t < 1. Then, the assumption m > [F' — Flco, together with the fact that
the x;’s and y;’s for ¢« = 1,...,n are all distinct and g; = 1 for i = 1,...,m, yields
that, on the interval [0,¢), there are strictly more points from the family (z;)i; U (Z;)}%,
rather than the family (y;);; U (9;)72;. Thus, there must be at least one z; € [0,¢) with
Yo(i) € (L 1]. By construction, it cannot be x; = 0, hence the pair (z;, ya(i)) is crossing the
pair (Zjy, Ys(jo)) = (0,t), which is a contradiction since o is assumed to be optimal. This
concludes the argument for the assignment problem.
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For the TSP, we proceed along the same lines, with due modifications. Given m pairs of
boundary points (Z;)jL;, (9;)72; € {0,1}, with m > [F' — Fleo + 1, and an optimal cycle
G C Bip,,;,, we find a cheaper cycle G’ with m —1 boundary points. Again, consider first
the case that for some j,k = 1,...,m, it holds z; = ;. Here, we argue as in the proof
of Lemma 3.4 with Z; instead of x,,41 and ¥ instead of y,41. The construction yields a
cycle G’ which is cheaper, because we are substituting pairs of edges of the form (Z;,u),
(v, k) for some u among the z’s and v among the y’s with a single edge (u,v), leading to
a lower cost by the triangle inequality:

|w— 5" + |Gk — v[* = |u—v]%,

(since Z; = Ur).

Thus, we can assume that z; # gy, for every j,k = 1,...,m and for simplicity, we discuss
only the case Z; = 0 for every j =1,...,m. Let y;, be maximum among the y;’s (or the
7;’s) which share an edge in the cycle G with some Z;, j = 1,...,m. For simplicity assume

that the edge is (xj,,yj,). We argue also in this case that y;, = 1, i.e. it is one of the g;’s.
Assume by contradiction that y,(;,) =t < 1. Then, the assumption m > [F' — F]Co + 1,
together the fact that the z;’s and y;’s for i = 1,...,n are all distinct and gy; = 1 for
i =1,...,m, yields that, on the interval [0,t), there are at least 2 more points from the
family ()i, U (Z;)72, rather than the family (y;)i; U (9;)7L,. Since each point in G
has degree exactly 2, there must be at least two distinct edges in G such that the x point
belongs to [0,%) while its y point is in (¢,1]. By construction, the former cannot be 0,
hence the pairs are crossing the pair (Zj,, Y (j,)) = (0,%), which is a contradiction since G
is assumed to be optimal. Hence, we have that y;, = 1, i.e. it is one among the y;’s. Let T
denote the other point which shares an edge with y;, (different than x;,) and § denote the
other point which shares an edge with z, (different than y;,). We now remove both z;,
and yj, from the graph G, together with their associated edges, and add the edge (z,7),
whose cost is anyway smaller than 1. Notice that (Z,y) cannot be already an edge in G
otherwise it would be a cycle of length 4, which is not the case, since n > 2. O

4. A KANTOROVICH-YOUNG PROBLEM

In view of identity (2.7), taking into account Young’s Theorem 2.1, one is lead to the
following definition of a Kantovorich problem associated to a function g : I = [a,b] — R
with ¢g(b) = g(a) and finite g-variation:

lgllw, = sup{ /I fdg : flee < 1}7 (4.1)

provided that a + 1/g > 1, so that the integral is well-defined. Notice that by (2.7) we
have (recall (2.8))

Wa(p,v) = [[Fp = Fullw, - (4.2)
Moreover, by (2.5), for some C(a, q) € (0,00) it holds,

lgllwe < Cles DI gl g—var -
We have then immediately the following stability estimate:

Hglwa = lIglwal < llg = gllw., < Cle, )" [lg = gl var - (4.3)

It is quite natural to search for a primal problem, akin to (2.6), which should be in-
terpreted as an optimal transport problem. To this aim, we introduce a suitable notion
of coupling associated to g : I — R with [g];—var < 00. We say that a positive Borel
measure 7 on I x I (not necessarily finite) is a coupling for g with finite a-energy, and
write m € 'y (g), if

/ 1t — 5| (ds, dt) < oo, (4.4)
IxI
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and
(F(t) — f(s)) m(ds, di) = / fdg, (4.5)
IxI I

for every f € C%(I), where again the right-hand side is well-defined by Theorem 2.1. In
fact, one could completely avoid the use of Young’s integration theory here, by noticing
that (4.4) together with the validity of (4.5) for f € C1(I) in the “integrated-by-parts”
form

/ ((t) — /() n(ds, dt) = — / gdf,
IxI I

can be used to extend the integration functional to a any f € C*(I),

/ fdg = / (F(t) — F(s)) m(ds, dt).
I IxI

A further equivalent point of view on couplings is provided by defining the positive
Borel measure b(ds,dt) = |t — s|“m(ds,dt), which has then finite total mass and rewrite
(4.5) as

FO=IG)y s ar) = / fdg.
<1 [t—s® I
which we should interpret as an analogue of divb = p— A in the classical optimal transport
problem (here b plays the role of a flow).

The following duality result provides, as expected, an identification between the two
problems.

Proposition 4.1. Let I = [a,b] C R, g > 1 and g : I — R be a function with finite
q-variation and such that g(a) = g(b). For every a € (1 — 1/q,1], define ||g|lw, as in
(4.1) where the integral [, fdg is in the sense of Young. Then, the supremum in (4.1) is
attained by some f: I — R with [f]lce =1 and

llgllw, = min / |t — s|m(ds,dt) < 0. (4.6)
m€Ta(g) JIxT

We refer to a maximizer f in (4.1) as a Kantorovich-Young potential associated to g.

Proof. To show that (4.1) is attained by some f, consider a maximizing sequence f,, i.e.
such that

lim / Fudg = llgllw,,
n—oo I

with [fn]ce < 1 for every n. Up to adding a constant — which does not change the
integrals [; fndg since g(b) = g(a) — we may assume that f(a) = 0. By compactness of
the embedding C* C CP, for f < «, we can assume, up to extracting a subsequence,
that f, — f € CP(I) where convergence is in the sense of C?(I) for some 3 < « such
that 8+ 1/g > 1 (this is possible since o + 1/q > 1). Moreover, by lower semicontinuity,
[flce < liminf,[f,]ce < 1. Finally, using (2.5), we deduce that

lim
n—oo

- f)dg‘ < limsup C(8 ) fr — Fles [g)gvar = 0.

I n—o00

hence [; fdg = ||gllw,,- It must be [f]ce = 1, otherwise letting f = f/[f]ce would lead to

I; fdg > |lgllw,, a contradiction. For the proof of (4.6), we use the Fenchel-Rockafellar
duality theory, as in [29, Theorem 1.9]. Let E = C(I x I;R) endowed with the uniform
norm and continuous dual E* = M(I x I) given by the signed Borel measures (with finite
total variation). We introduce the following convex functions defined on E,

o(u) 0 if u(s,t) > —1, for every s,t € I,
u) =
400 otherwise,
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and

(w) = {fl fdg if for some f € C'(I), it holds u(s,t) = FO=1) o every s £t € I,

sl

[1]

+00 otherwise.

Notice that 2 is well defined since, if f(t)—f(s) = f(t)—f(s), we obtain that f(t) = f(t)+c
for some constant ¢ € R, and [, fdg = [; fdg since J;edg = c(g(b) — g(a)) = 0. If we let
uo(s,t) =0 for s, t € I, then ©(up) = 0 and =(up) = 0, moreover O is continuous at ug
(with respect to the uniform norm). By [29, Theorem 1.9], it follows that

inf = = —O*(—b) — =
inf [O(u) + E(u)] = max[-67(-b) )],
where ©* and =* denote the Legendre transforms of © and Z, respectively. Clearly,

inf [O(u) + E(u)] = inf {/fdg Ft) = f(s) > —|t — s|* vs,t}

uel fect(1

= —llgllwa,

where the second identity follows by a density argument (see the end of Section 2.1). It is
then enough to recognize the dual problem as the opposite of the right-hand side in (4.6).
We easily see that

b(I xI) ifbi - ti
©*(—b) = sup {_/ udb — @(u)} _ { (IxI) ifbis n‘on negative
uek IxI ~+00 otherwise.
Moreover, we see that
=*(b) = 0 if [rur |? S{és)b(ds,dt) = [; fdg for every f € CP(I),
+o00 otherwise.

Let us notice that integration above can be restricted on {(s,t) € I x I : s # t}. There-
fore, by defining 7(ds, dt) := x sz}t — 5|7*b(ds, dt) we conclude that

max [—0*(—b) — Z*(b)] = max —/ t—Saﬂ'dS,dt},
[0 (-0) = 0] = max {- [0 sfentasan

hence (4.6). O

(1]

Remark 4.2. The fact that I'4(g) is not empty is implicit in (4.6), however it may be
interesting to notice that the construction of Young’s integral amounts to providing a
coupling with finite a-energy. For simplicity, let us discuss only the case of a Holder
continuous g € C5([0,1]) with 8 = 1/q. Then, the argument simplifies as one can prove
(see e.g. [19]) that

oo 211

/ fdg=>Y" Z — [ ((2k+1)27")(g ((2k +2)27") — g ((2k + 1)277)),
n=1

where we used that ¢g(0) = g(1) = 0. Thus, by defining the measure

0o 27711
mi=) Z ((2k+2)27") — g ((2k +1)27")) " ((2m)2-n (2h+1)2-)
n=1
(9 ((% +2)27") — g ((2k + 1)2_n))_5((2k+1)2—n,(2k)2—n)

where 27 = max {z,0}, = = (—z)" and §, denotes the Dirac measure at z, one obtains
that m € I'y(g). Let us notice that, in general 7 is not a finite measure, but b(ds, dt) :=
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|t — s|*n(ds, dt) is. Indeed,

oo 211

[ -stasdn 30 Y lallor 2z
xI n=1 k=0
N (4.7)
< llglles(n Zzn(liaim < 00.
n=1

A relevant notion in optimal transport theory is cyclical monotonicity of optimal cou-
plings, which we similarly recover here.

Definition 4.3. A set I' C R x R is said to be a-monotone if, for every ((s;,t;))"; C T,
and every permutation o over {1,...,n},

n n
D i = sil® <D [t — so()®
i—1 i=1

Clearly, any subset ((s;,t;))i; € I' of an a-monotone set I" provides an optimal assign-
ment for the pair of points (s;);, (t;)7-; € R. In particular, it satisfies the no-crossing
property of Lemma 3.1.

Proposition 4.4. If 7 € T',(g) is optimal, then supp7 is a-monotone. Viceversa, if
m € I'a(g) is concentrated on a a-monotone set, then it is optimal.

Proof. Let f : I — R be a Kantorovich-Young potential associated to g. Then, by (4.6)

/Ifdg = /I><I |t — s|m(ds,dt),
but also, by (4.5),
/f@:i/ (F(t) — £(5)) m(ds, dt).
I IxI
Hence,
/‘<u—ﬂ“—uv»—ﬂﬂ»wwaw>:m
IxI

but the integrand is non-negative for every s, t € I, since [f]ce < 1, hence 7 is concentrated
on the closed set

F'={(s,t)eIxI: f(t)— f(s)=|t—s|*}.

One checks easily that I' is a-monotone, since for every ((s;,t;))y CI' and 0 € S,,,

Dot — sl =D ft) = f(si) =D flta) = F(50) <D ltogi) — sil™
=1 =1 1=1 1=1

For the converse, one argues verbatim as in [2, theorem 6.1.4] in order to construct f :
I — R with [f]ca =1 and such that

T ({(s,8) € I x T : f(t) = f(s) < |t —5°}) = 0.
Hence,

/ﬂ@:ﬁﬂuuwwmwﬂwdw:ﬂﬂu—ﬂ%uaw

and by (4.6) we see that f is Kantorovich-Young potential associated to g and [ Isr 1t —
s|*m(ds, dt) = [|glw.,-
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5. PROOF OF THEOREM 1.1

We split the argument into the two cases: 0 < o < 1/2 and 1/2 < o < 1. In the latter
case, we combine the results of Section 2.5, in particular inequality (2.10) with those of
Section 4, in particular inequality (4.3). For every n, there exists a Brownian bridge B,
defined on a suitable probability space, together with the empirical cumulative distribution
functions F,,, F,, associated to (X;)%, (Yi)P,, such that (2.10) holds, for some ¢ > 2,
such that « + 1/g > 1. Since B, is f-Hoélder continuous for every 5 < 1/2, we have by
(2.3) and (2.1) that [B, o Flg—var < [Bnlg—var < [Bn]oi/a < 00 P-a.s. (and with finite
moments of all orders).

Recall that by (3.2) and (4.2), we have the identity

n” M (Xi)iers (Yier) = IVa(Fa = Fo)lw,-
By (4.3) and (2.10), we obtain

[ Iva(E, ~ Folw, ~ 1V3By o Fw, ']

~ 1
< Ol IIE [[VA(Fs — Fu) ~V2Bo o FIj ] " < Clag) 1702/

q—var

which yields the claimed convergence in law, as well as the convergence in expectation for
a € (1/2,1) (actually, we have convergence of the moments of any order).

To settle the case 0 < a < 1/2, we rely upon the theory developed in [7]. Precisely, by
[7, Theorem 2, Lemma 11], it is sufficient argue only in the case of uniformly distributed
points on the interval [0, 1], and identify the two limits (the fact that both limits exist is
also proved in [7])

Tim 2B M (X)L, (V))] = Tim n® 'E Ma(X0)ly, 0] (5.1)

Since inequality < is trivially true, we only need to prove inequality >. Combining
Lemma 3.4 with Lemma 3.5, we reduce the problem to show that

lim n®'E [[Fn - Fn}co} =0,

n—o0

where F,, F, are the cumulative distribution functions associated to (X;),, (Y;)%,. But
this in turn is a simple consequence of (2.10) with p =1,

\/EE [[Fn - Fn]co} S E [\/E[Fn - Fn]qfvar} S \/iE [[Bn © F]qfvar] + C(l, q)n_(q_2)/(2q).
(5.2)

a=1/2 Jeads to

where the first inequality follows from (2.2). Multiplying both sides by n
the conclusion (recall that E[[B, o Flq—var] < E[[Bn]ei/q) < 00.)

Remark 5.1. When o = 1/2, the argument above shows that

B M, (X (9] B Mup (L 09L)]

n—+00 Vvnlogn
(it is sufficient to divide both sides of (5.2) by y/logn). Thus, if the limits

Tim E [My5((X0)y, (V)] /Vnlogn,  lim B [MD, (X0, (V)iy)| /v/nlogn,

exist, they coincide. However, only the upper bound (1.2) is known. Using a square-filling
curve argument, we can prove

liminf B [ME,((X0)iy, (Vo)1) | /v/nlogn > 0, (5.3)

which also implies the lower bound (1.3). Indeed, consider the Peano curve v : [0,1] —
[0,1]%, which is 1/2-Hélder continuous and pushes the one-dimensional Lebesgue mea-
sure on [0,1] into the two-dimensional Lebesgue measure on [0,1]?, so that the points
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(X)), (v(Y), are ii.d. uniformly distributed on [0, 1]2. Since v(0) = (0,0) and
7(1) = (1,1), the additional (random) boundary points (Z;)7L, (9)j2; € {0,1} for the
problem Mf)/Q((Xi)?:l, (Y;)",) are pushed via v to the boundary of [0,1]2. Moreover,
since v is 1/2-Holder continuous, |y(y) — v(z)| < [v]c1/2|y — z|'/? for every s, t € [0,1]. Tt
follows that

MY ((7(X0))izr, (V(Ya))isy) < (oMo (Xa)iey, (Y)iy),
where the left hand side denotes the boundary functional associated to the assignment
problem on the square, with Euclidean cost. It is known [4, Remark 3.3] (notice that
there is a missing factor \/n there) that for ii.d. uniformly distributed points one the

square (X;)™, (V)™ C [0,1]?%, it holds

lim inf B [MP (X)), (V)iy)] /v/nlogn > 0,
hence (5.3).

We end this section stating the variant of our main result for the TSP. For a proof, we
combine straightforwardly Theorem 1.1 with Lemma 3.3 in the case o > 1/2, while for
a < 1/2, we follow the same argument as in the assignment problem, using Lemma 3.4
and Lemma 3.5 in the TSP case.

Theorem 5.2. Let (X;)2,, (Y3)2; C R be i.i.d. points with common law pu. Denote
with f the absolutely continuous part of p (with respect to Lebesque measure) and F(t) =
wu((—o0,t]) the cumulative distribution of p.

(1) If « € (1/2,1) and p is supported on a bounded interval, then convergence in law
holds:
Jim ™A TSPa((X0)i, (Y)i) = 21 V2B @ Fllw,. (54)

where (B(t))e[o,1] denotes a Brownian bridge process.
(2) If a € (0,1/2) and [ |z|Pdu < oo for some B > 4a/(1 — 2a), then almost sure
convergence holds:

i 7 TSP (X, (VD)) = e(TSPa) [ F1-(tjat,
n—oo I

where ¢(TSP,,) € (0,00) is a constant, depending on « only.

In both cases, convergence holds also in expectation.
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