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Abstract. In this paper we establish optimal regularity estimates and smoothness of free boundaries
for nonlocal obstacle problems governed by a very general class of integro-differential operators with
possibly singular kernels. More precisely, in contrast to all previous known results, we are able to
treat nonlocal operators whose kernels are not necessarily pointwise comparable to the one of the
fractional Laplacian. Such operators might be very anisotropic in the sense that they “do not see”
certain directions at all, or might have substantial oscillatory behavior, causing the nonlocal Harnack
inequality to fail.

1. Introduction

The goal of this article is to study the regularity theory for nonlocal obstacle problems

min{Lu, u− ϕ} = 0 in Rn, (1.1)

where ϕ : Rn → R is a smooth obstacle and L is an integro-differential operator of the form

Lu(x) = p.v.

∫
Rn

(
u(x)− u(x+ y)

)
K(y) dy. (1.2)

The operator L is governed by its jumping kernel K : Rn → [0,∞] which is assumed to be symmetric,
i.e. K(y) = K(−y), and homogeneous of degree −n− 2s, where s ∈ (0, 1), i.e.

K(y) = |y|−n−2sK(y/|y|). (1.3)

Due to the homogeneity of K, the operator L is a stable operator of order 2s, whose anisotropy is
governed by the action of K on the unit sphere Sn−1.

1.1. Background. Obstacle problems of the type (1.1)-(1.2) arise naturally in probability and math-
ematical finance (optimal stopping for Lévy processes, pricing of options), as well as in models of
interacting energies in physical, biological, and material sciences; see [19, Chapter 4] for a brief de-
scription of these models.

The regularity theory for obstacle problems (1.1) for integro-differential operators (1.2) was first
developed in [43, 2, 7] for the fractional Laplacian. The main results of Caffarelli-Salsa-Silvestre may
be summarized as follows: When L = (−∆)s, it holds:

(1) Solutions u to (1.1) are C1,s. This regularity is optimal.
(2) The free boundary ∂{u > ϕ} splits into regular and degenerate points.

(2a) Regular points x0 are those for which the following holds:

sup
Br(x0)

(u− ϕ) ≍ r1+s,
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and in addition

(u− ϕ)(x0 + rx)

∥u− ϕ∥L∞(Br(x0))

r→0−−−−→ (x · e)1+s
+ for some e ∈ Sn−1.

Moreover, the set of regular points is an open subset of the free boundary, and near those
points the free boundary is C1,γ .

(2b) Degenerate points x0 are those for which the following holds:

0 ≤ sup
Br(x0)

(u− ϕ) ≲ r1+s+α for some α > 0.

The case of the fractional Laplacian (−∆)s is quite special, because one can use the extension
problem for this operator, making the obstacle problem for the fractional Laplacian equivalent to
a (weighted) thin obstacle problem in Rn+1

+ . The identification with a local problem gives access
to various tools, such as monotonicity formulas, which are known to be very useful in the proof of
regularity results, such as (1) and (2). We refer to [23], [35], [32], [28], [24], [22], [17], [12], [11], [16],
[34], [41], [18], and [20] for further results on the obstacle problem for the fractional Laplacian and
variants thereof, including higher regularity of free boundaries, and fine structure results for degenerate
points.

The analysis of (1.1) becomes significantly more delicate in case L is anisotropic, in the sense that it
can neither be reduced to the fractional Laplacian nor be related to an equivalent local problem. This
requires the application of new tools in order to study the regularity theory for (1.1). Recently, in [6]
and [21], new techniques have been developed to prove (1) and (2) for solutions to obstacle problems
(1.1) governed by nonlocal operators L with kernels K that are pointwise comparable to the one of
the fractional Laplacian, i.e.,

0 < λ ≤ K(θ) ≤ Λ ∀θ ∈ Sn−1. (K≍)

We refer to [5], [1], [39], and [40], for further results on obstacle problems (1.1) for nonlocal operators
(1.2) satisfying (K≍).

Let us point out that, despite the significant recent advances in the theory, so far nothing is known
about the regularity of solutions or free boundaries for the nonlocal obstacle problem if (K≍) is
violated. Some important examples of nonlocal operators of the form (1.2)-(1.3) whose kernels are not
pointwise comparable to the one of the fractional Laplacian are:

L1u(x) = p.v.

∫
C

(
u(x)− u(x+ y)

) dy

|y|n+2s
, C double-cone with vertex at 0,

L2u(x) = p.v.

∫
Rn

(
u(x)− u(x+ y)

)a(y/|y|)
|y|n+2s

dy, with a ∈ Lp(Sn−1) \ L∞(Sn−1),

L3u(x) = (−∂2x1x1
)su(x) + · · ·+ (−∂2xnxn

)su(x).

Note that the corresponding jumping kernels

K1(θ) := 1C(θ), K2(θ) := a(θ), K3 := δ±e1 + δ±e2 + · · ·+ δ±en

clearly violate (K≍) since they are either not fully supported, or possess singularities on Sn−1. More-
over, in the absence of (K≍), jumping kernels can exhibit oscillatory behavior leading to the failure
of the Harnack inequality; see [3], [4].

The purpose of this article is precisely to investigate the nonlocal obstacle problem (1.1) for operators
that violate (K≍), and to establish for the first time optimal C1,s-regularity estimates for solutions
(1), as well as the regularity of the free boundary near regular points (2) in such general setting.
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More precisely, we will consider general stable operators of the type (1.2)-(1.3); see [36, 19]. The
ellipticity conditions then become

inf
e∈Sn−1

∫
Sn−1

|e · θ|2K(θ) dθ ≥ λ > 0, (G≥)

∥K∥L1(Sn−1) ≤ Λ. (G≤)

These conditions are satisfied for any K|Sn−1 ∈ L1(Sn−1)\{0}. In fact, in some of our results we could
even allow K to be a purely singular measure as in L3 above; however for simplicity of notation we
assume that K is absolutely continuous.

Note that (G≥) and (G≤) are natural conditions in the sense that they are equivalent to the com-
parability of the Fourier symbols of L and (−∆)s; see Lemma 2.1 below.

In some of our results, we need a slightly stronger assumption on K, namely

∥K(·)∥Lp(Sn−1) ≤ Λ (Kp
≤)

with p > 1.

1.2. Main results. Our first main result is the following quantitative estimate which states that
closeness of the solution to a blow-up of the form (x · e)1+s

+ implies local smoothness of the free

boundary and local C1,s-estimates of the solution. This result holds for any stable operator L:

Theorem 1.1 (Flatness implies C1,γ). Let s ∈ (0, 1) and L be a general stable operator of the form
(1.2)-(1.3)-(G≥)-(G≤). Let α ∈ (0,min{s, 1− s}) and κ0 > 0. Then, there are ε > 0, δ > 0, depending
only on n, s, λ,Λ, α, κ0, such that the following holds true:

Let u ∈ C0,1
loc (R

n) be such that

(i) min{Lu− f, u} = 0 in B1 in the distributional sense, with |∇f | ≤ 1,
(ii) D2u ≥ −Id in B1 with 0 ∈ ∂{u > 0},
(iii) ∥∇u∥L∞(BR) ≤ Rs+α for all R ≥ 1,

(iv) ∥u− κ(x · e)1+s
+ ∥C0,1(B1) ≤ ε for some κ ≥ κ0 and e ∈ Sn−1.

Then, the free boundary ∂{u > 0} is a C1,γ-graph in Bδ, and moreover u ∈ C1+s(Bδ) with

∥∇u∥Cs(Bδ) ≤ C.

The constants C and γ > 0 depend only on n, s, λ,Λ, α, κ0.

This type of “flatness implies C1,γ” results are one of the crucial ingredients in the regularity theory
for free boundary problems.

In case of obstacle problems, the second key ingredient is a classification of blow-ups at non-
degenerate points. In [6], the classification of blow-ups was established for nonlocal operators whose
kernels satisfy (K≍). One of the main ingredients in their proof is a boundary Harnack principle.
Unfortunately, even the interior Harnack inequality fails for general stable operators not satisfying
(K≍), and therefore new ideas are required in order to classify blow-ups in our context.

Here, we extend for the first time the results of [6] to operators with kernels not satisfying (K≍),
and more precisely, we assume K ∈ Lp(Sn−1) for some p > n

2s . Notice that this is completely new
even for the case p = ∞, since we do not assume any uniformly positive lower bound as in (K≍).

Theorem 1.2 (Classification of blow-ups). Let s ∈ (0, 1) and L be any stable operator of the form
(1.2)-(1.3) satisfying K ̸= 0 and

K ∈ Lp(Sn−1) for some p >
n

2s
.

Let α ∈ (0,min{s, 1− s}), and u0 ∈ C0,1
loc (R

n) be such that:
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• u0 ≥ 0 and D2u0 ≥ 0 in Rn with 0 ∈ ∂{u0 > 0}.
• u0 solves in the distributional sense

L(∇u0) = 0 and L(Dhu0) ≥ 0 in {u0 > 0} ∀h ∈ Rn,

where Dhu(x) =
u(x+h)−u(x)

|h| .

• u0 has controlled growth at infinity, i.e.,

∥∇u0∥L∞(BR) ≤ Rs+α for all R ≥ 1.

Then,

u0 = κ(x · e)1+s
+

for some κ ≥ 0 and e ∈ Sn−1.

By combining the previous two results, we establish the optimal regularity of solutions (1) and the
regularity of free boundaries near regular points (2) for solutions to nonlocal obstacle problems (1.1)
with kernels satisfying K ∈ Lp(Sn−1) for p > n

2s . As said before, this is the first regularity result
for the nonlocal obstacle problem with kernels that are not pointwise comparable to the one of the
fractional Laplacian, and it is new even for p = ∞.

Theorem 1.3. Let s ∈ (0, 1) and let L be any operator of the form (1.2)-(1.3) satisfying (G≥) and
(Kp

≤) for some p > n
2s , and let α ∈ (0,min{s, 1− s}).

Let ϕ ∈ C2,ε
c (Rn) with ε > max{2s− 1, 0} and let u be any weak solution to the obstacle problem

min{Lu, u− ϕ} = 0 in Rn.

Denote C0 := ∥ϕ∥C2,ε(Rn). Then, we have:

(i) u ∈ C1+s(Rn), with

∥u∥C1+s(Rn) ≤ CC0,

where C > 0 depends only on n, s, λ,Λ.
(ii) For any free boundary point x0 ∈ {u > ϕ} there exist cx0 ≥ 0, e ∈ Sn−1 such that∣∣∣u(x)− ϕ(x)− cx0

(
(x− x0) · e

)1+s

+

∣∣∣ ≤ CC0|x− x0|1+s+α ∀x ∈ B1(x0),

where C > 0 depends only on n, s, λ,Λ, α.
(iii) Moreover, if cx0 > 0, then the free boundary ∂{u > ϕ} is a C1,γ-graph in a neighborhood of x0,

where γ > 0 depends only on n, s, λ,Λ, α.

The optimal regularity of solutions and the study of the free boundary remain open in caseK merely
satisfies (G≥) and (G≤), but not K ∈ Lp(Sn−1) with p > n

2s . However, thanks to Theorem 1.1, the
only missing point in the regularity theory for general stable operators is the classification of blow-ups
(i.e., to prove Theorem 1.2 for p = 1). We believe that an entirely new approach is required in order
to tackle this problem (see subsection 1.3 for a more detailed discussion).

1.3. Difficulties and strategy of proof. The analysis of obstacle problems for nonlocal operators
with kernels not satisfying (K≍) comes with two main difficulties:
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Lack of full support. First, although L is non-degenerate due to (G≥), the kernel K might not be fully
supported. As a consequence, it is not possible to establish locally uniform lower bounds on L applied
to bump functions, since the bump might not be seen by the operator from all points. Such estimates
are used several times in [6], in particular in order to perform barrier arguments. Here, we circumvent
this issue by suitably adjusting the shape of the bump functions, depending on the geometry of the
problem (see for instance the proof of Theorem 4.6), together with a quantification of the directions
in which the kernel is possibly degenerate (see Lemma 2.3).

Failure of the Harnack inequality. Second, and more importantly, a key tool in [6] is the Harnack
inequality, and more precisely the two “half Harnacks”:

Lu ≥ 0 in B2

u ≥ 0 in Rn

}
=⇒ inf

B1

u ≥ c

∫
Rn

u(x)

1 + |x|n+2s
dx,

and

Lu ≤ 0 in B2 =⇒ sup
B1

u ≤ C

∫
Rn

|u(x)|
1 + |x|n+2s

dx.

Both of them fail, in general, for kernels not satisfying (K≍).
In a sense, the lack of two-sided pointwise bounds as in (K≍) makes the possible anisotropy of the

kernel more severe. Namely, the operators we consider might still exhibit anisotropy after averaging
out the kernels over points close by (oscillating long jumps). This phenomenon leads to a failure of
the Harnack inequality

Lu = 0 in B2

u ≥ 0 in Rn

}
=⇒ sup

B1

u ≤ C inf
B1

u.

The failure of the Harnack inequality implies that also the boundary Harnack principle ceases to hold.
The only result in this direction that holds true for general stable operators is a weak Harnack

inequality. This is a key ingredient in our proofs, as explained below.

Strategy of the proof. Even though the boundary Harnack inequality fails for general stable operators,
here we establish a particular version of the boundary Harnack principle, which holds for monotone
solutions outside convex cones (see Theorem 4.6). This turns out to be sufficient in order to classify
blow-ups and holds true for kernels satisfying (Kp

≤) with p > n
2s . Its proof makes heavy use of the

following weak Harnack inequality (see Lemma 2.9)( ∫
B1

uq
)1/q

≤ C inf
B1

u, where q <
n

n− 2s
,

and local boundedness estimate (see Lemma 2.10)

sup
B1

u ≤ C

( ∫
B2

u

)
+ C sup

R≥2

( ∫
BR

|u|p′
)1/p′

R2s−ε
,

which remain true for L-harmonic functions that are globally nonnegative, if (G≥) and (Kp
≤) are

satisfied. To deduce our new boundary Harnack type principle, we establish a growth control on
the solution at infinity with the help of the weak Harnack inequality and a barrier argument (see
Lemma 4.4). This allows us to estimate the second term in the local boundedness estimate. The
restriction p > n

2s comes from the (sharp) condition on q = p′ in the weak Harnack inequality.

On the other hand, in order to obtain the C1,γ-regularity of the free boundary near regular points,
we establish that the free boundary is Lipschitz with a Lipschitz constant depending on the closeness of
the solution to the blow-up (see the assumption of the quantitative estimate Theorem 1.1). Moreover,
this way, the Lipschitz constant can be made arbitrarily small and it turns out that the free boundary
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is flat Lipschitz. This information is sufficient for blow-up arguments to work, which yield pointwise
boundary regularity estimates as in Lemma 5.7 (see [37, Proposition 5.4]). This way, one can obtain
C1,γ-regularity of the free boundary for general kernels, avoiding a boundary Harnack principle.

Solution concepts. Finally, let us point out that throughout the paper we will work with weak or
distributional solutions, but will never use viscosity solutions. The reason for this is that most known
results for viscosity solutions are developed for kernels satisfying (K≍) (see, e.g., [19]), and thus do
not apply in our setting.

This choice calls for some technical results such as Lemmas 2.5, 2.7, 2.8, and 3.3, which are elemen-
tary in nature, but might still be of interest to some readers.

1.4. Acknowledgments. The authors were supported by the European Research Council (ERC)
under the Grant Agreement No 801867, and by the AEI project PID2021-125021NA-I00 (Spain). In
addition, the first author was supported by the AGAUR project 2021 SGR 00087 (Catalunya), the
AEI grant RED2022-134784-T funded by MCIN/AEI/10.13039/501100011033 (Spain), and the AEI
Maŕıa de Maeztu Program for Centers and Units of Excellence in R&D (CEX2020-001084-M).

1.5. Outline. This article is structured as follows: In Section 2, we prove several auxiliary results
on general elliptic stable operators and introduce solution concepts. In Section 3, we establish semi-
convexity and C1,τ -regularity for solutions to the obstacle problem, proving Proposition 3.7. The
proof of the classification of blow-ups (see Theorem 1.2) is given in Section 4. Section 5 is dedicated
to the proof of the quantitative estimate (see Theorem 1.1) from which we deduce our main result,
Theorem 1.3.

2. Preliminaries

The goal of this section is to establish several auxiliary results that will be used in the course of this
article. We start by discussing in more detail the kernelsK considered in this article and establish some
helpful properties that follow from the assumptions (Kp

≤) and (G≥). Second, we introduce appropriate
weak and distributional solution concepts.

The following function space captures some information on the growth of functions at infinity. For
α ∈ (0, s) and 1 ≤ q ≤ ∞, we introduce

Lq
s+α(Rn) =

u ∈ Lq
loc(R

n) : ∥u∥Lq
s+α(Rn) := sup

R≥1

( ∫
BR

|u|q dx
)1/q

Rs+α
<∞

 .

2.1. Properties of kernels. In this section, we collect several preliminary results on kernels K
satisfying the assumptions (Kp

≤), resp. (G≤), and (G≥). We denote q = p′ = p
p−1 .

Lemma 2.1 (see Proposition 2.2.1 in [19]). The following are equivalent:

(i) (G≥) and (G≤) hold true.
(ii) There exist 0 < c1 ≤ c2 such that

c1|ξ|2s ≤ AK(ξ) ≤ c2|ξ|2s,

where AK denotes the Fourier symbol of K, given by

AK(ξ) =
1

2

∫
Rn

(
1− cos(y · ξ)

)
K(y) dy.
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Let us remark that the condition (Kp
≤) can equivalently be rewritten as follows:

R
n
(
1− 1

p

)(∫
Rn\BR

Kp(y) dy

)1/p

≤ ΛR−2s. (2.1)

Next, we introduce the tail, with respect to K. This object stores the information on a function u
at infinity with respect to the ball Br(x0) for some r > 0 and x0 ∈ Rn:

TailK(u; r, x0) := r2s
∫
Rn\Br(x0)

|u(y)|K(y) dy.

In case x0 = 0, we will simply write TailK(u; r, x0) = TailK(u; r). We have the following estimate:

Lemma 2.2. Assume (Kp
≤) for some 1 ≤ p ≤ ∞. Then, for any 0 < ε < 2s and u : Rn → R

TailK(u; r) = r2s
∫
Rn\Br

|u(y)|K(y) dy ≤ cr2s−ε sup
R≥r

( ∫
BR

|u|q
)1/q

R2s−ε
, (2.2)

where c = c(n, s, ε,Λ) > 0. Thus, TailK(u; r) <∞ whenever u ∈ Lq
s+α(Rn) for some α ∈ (0, s).

Proof. We compute using (2.1)

TailK(u; r) = r2s
∞∑
k=0

∫
B

2k+1r
\B

2kr

|u(y)|K(y) dy

≤ cr2s
∞∑
k=0

( ∫
B

2k+1r

|u(y)|q dy

)1/q

(2k+1r)
n
(
1− 1

p

)(∫
Rn\B

2kr

Kp(y) dy

)1/p

≤ cr2s
∞∑
k=0

( ∫
B

2k+1r

|u(y)|q dy

)1/q

(2k+1r)−2s

≤ cr2s
∞∑
k=0

(2kr)−ε sup
k


( ∫

B
2kr

|u(y)|q dy
)1/q

(2kr)2s−ε


≤ cr2s−ε sup

R≥r

( ∫
BR

|u|q dx
)1/q

R2s−ε
.

□

The following lemma, distills a useful property out of (G≥) and (G≤). In fact, it allows us to locate
the mass of K on the sphere, thereby giving us some important information if we want to give a
pointwise bound on Lu(x0) for some x0 ∈ Rn.

Lemma 2.3. Assume (G≥) and (G≤). Let K be homogeneous. Then, there exists δ0 > 0 depending
only on λ,Λ such that for any e ∈ Sn−1:∫

{e·θ≥δ0}
K(θ) dθ ≥ λ/2.

In particular, for any r > 0, we obtain∫
{

y
|y| ·e≥δ0

}
∩(B2r\Br)

K(y) dy ≥ cr−2s
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for some c > 0 depending only on n, s, λ,Λ.

Proof. We compute∫
{|e·θ|≥δ0}

K(θ) dθ ≥
∫
{|e·θ|≥δ0}

|e · θ|2K(θ) dθ

=

∫
Sn−1

|e · θ|2K(θ) dθ −
∫
{|e·θ|≤δ0}

|e · θ|2K(θ) dθ

≥ λ− δ20Λ

and deduce the desired result upon choosing δ0 <
√
λ/(2Λ) and using that K is symmetric. □

2.2. Solution concepts. Throughout this article, we will deal with distributional and weak solutions,
which we introduce in the sequel.

First, we define the bilnear form associated with L as follows

EK(u, v) :=

∫
Rn

∫
Rn

(u(x)− u(y))(v(x)− v(y))K(x− y) dy dx,

and observe that EK(u, u) <∞, whenever u ∈ Hs(Rn), due to Lemma 2.1.

Definition 2.4. Let Ω ⊂ Rn be an open domain. Let f ∈ L∞(Ω). We say that u is a weak subsolution
to Lu ≤ f in Ω if u ∈ L2(Ω) and

EK(u, ϕ) ≤
∫
Rn

fϕdx ∀ϕ ∈ Hs(Rn) with compact supp(ϕ) ⊂ Ω, and ϕ ≥ 0, (2.3)

and it holds

EK
Rn,Ω(u, u) :=

∫∫
(Rn×Rn)\(Ωc×Ωc)

(u(x)− u(y))2K(x− y) dy dx <∞. (2.4)

We say that u is a weak supersolution to Lu ≥ f in Ω if u satisfies (2.4) and (2.3) holds true for any
ϕ ∈ Hs(Rn) with compact supp(ϕ) ⊂ Ω and ϕ ≤ 0. We say that u is a weak solution to Lu = f in Ω
if u is a weak subsolution and a weak supersolution.

The following lemma recalls a basic fact about weak solutions. We provide a short proof since we
were not able to find a reference in the literature for general kernels satisfying only (G≥) and (G≤).

Lemma 2.5. Assume (G≥) and (G≤). Let Ω ⊂ Rn be an open, bounded domain. Assume that
u ∈ L2(Ω) is a weak solution to Lu = 0 in Ω. Let δ ≥ 0. Then uδ := max{u, δ} satisfies Luδ ≤ 0 in
Ω in the weak sense.

Proof. The proof is standard. First, we observe that it suffices to consider the case δ = 0 since EK(u−
δ, ϕ) = EK(u, ϕ). The idea is to approximate F (x) = x+ by smooth, convex, non-decreasing functions
Fk : R → [0,∞) satisfying Fk(x) = F ′

k(x) = 0 for x ≤ 0, Fk → F uniformly, and supk ∥F ′
k∥∞ ≤ C <∞.

Then, upon the observation (see for instance [29, Lemma 2.3]) that by convexity of Fk for any a, b ∈ R
and ϕ1, ϕ2 ≥ 0 it holds

(Fk(a)− Fk(b))(ϕ1 − ϕ2) ≤ (a− b)(ϕ1F
′
k(a)− ϕ2F

′
k(b)),

we obtain for any ϕ ∈ Hs(Rn) with ϕ ≡ 0 in Rn \ Ω and ϕ ≥ 0:

EK(Fk(u), ϕ) ≤ EK(u, F ′
k(ϕ)) ≤ 0.

The second inequality follows from the fact that u satisfies Lu ≤ 0 in Ω in the weak sense, using
F ′
k(ϕ) ∈ Hs(Rn) as a test function. Finally, we observe that

Fk(u) → u+ in L2(Ω)
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by dominated convergence, using |Fk(u)| ≤ Cu+. Moreover, C−1Fk(u) is a normal contraction of u+,
which yields that

sup
k

∫∫
(Rn×Rn)\(Ωc×Ωc)

(Fk(u)(x)− Fk(u)(y))
2K(x− y) dy dx

≤ C2

∫∫
(Rn×Rn)\(Ωc×Ωc)

(u+(x)− u+(y))
2K(x− y) dy dx <∞.

Thus, by weak compactness of the separable Hilbert space(
{u ∈ L2(Ω) : EK

Rn,Ω(u, u) <∞}, ∥ · ∥L2(Ω) + (EK
Rn,Ω(·, ·))1/2

)
,

we obtain that for any ϕ ∈ Hs(Rn) with supp(ϕ) ⊂ Ω it holds (up to a subsequence)

0 ≥ EK(Fk(u), ϕ) → EK(u+, ϕ), as k → ∞,

which implies the desired result. □

Next, we introduce the notion of distributional solutions:

Definition 2.6. Let Ω ⊂ Rn be an open domain and ε ∈ (0, 2s). Let f ∈ L1
loc(Ω). We say that

u ∈ L∞
2s−ε(Rn) is a distributional subsolution to Lu ≤ f in Ω if∫

Rn

(Lη)u ≤
∫
Rn

ηf ∀η ∈ C∞
c (Rn) with compact supp(η) ⊂ Ω, and η ≥ 0. (2.5)

We say that u is a distributional supersolution to Lu ≥ f in Ω if u satisfies (2.5) η ∈ C∞
c (Rn) with

compact supp(η) ⊂ Ω and η ≤ 0. We say that u is a weak solution to Lu = f in Ω if u is a distributional
subsolution and supersolution.

We prove the following lemma, which says that distributional supersolutions can be treated just as
classical supersolutions at a point x0, if the supersolution can be touched from below by a C2 function.
Note that such property is trivial for viscosity solutions.

Lemma 2.7. Assume (G≥) and (G≤). Let C > 0 and ε ∈ (0, 2s), and assume that u ∈ L∞
2s−ε(Rn) is

locally uniformly Hölder continuous, i.e. supx0∈Rn [u]Cτ (B1(x0)) < ∞ for some τ ∈ (0, 1), and satisfies
in the distributional sense for some C > 0

Lu ≥ −C in B1.

Moreover, assume that there exists a function ϕ ∈ L∞
2s−ε(Rn) that is C2 around 0, and such that

u(0) = ϕ(0), and u ≥ ϕ in Rn. Then, Lu(0) ≥ −C in the classical sense.

Proof. First, we prove that for any Φ ∈ L∞
2s−ε(Rn) that is C2 around 0 and also satisfies

supx0∈Rn [Φ]Cτ (B1(x0)) <∞, and Φ(0) = u(0), Φ ≤ u, it holds

LΦ(0) ≥ −C. (2.6)

By contradiction, assume that there exist such Φ and r > 0 such that LΦ ≤ −C − r in Br. Note that
for the last property, we used that LΦ is Hölder continuous in B1/2 due to the regularity of Φ and [19,
Lemma 2.2.5 (ii), Remark 2.2.6]. Let δ > 0 and observe that for wδ = u− Φ− δ and δ > 0 it holds:

Lwδ ≥ r in Br in the distributional sense.

Let now ψ ∈ C∞
c (Br) be nonnegative and define v ∈ Hs(Rn) to be the unique weak solution (see [19,

Theorem 2.2.19], [15]) to {
Lv = ψ in Br,

v = 0 in Rn \Br.
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Note that v ∈ C2s+α
loc (Br) for some α ∈ (0, 1), and hence is a strong solution. Indeed, v ∈ Cα(Rn)

by boundary regularity theory (see [19, Proposition 2.5.10]), and thus, by interior regularity theory,
we have v ∈ C2s+α

loc (Br) (see [19, Proposition 2.4.4]). Moreover, by the maximum principle (see [19,
Lemma 2.3.3]), it holds v ≥ 0 in Rn. Therefore,

(wδ, ψ) = (wδ, Lv) ≥ r∥v∥L1(Br) ≥ 0.

Note that v is an admissible test function by classical density results. Since ψ ≥ 0, it follows that
wδ ≥ 0 a.e. in Br. This is a contradiction, since wδ(0) = −δ and wδ is continuous at 0. We have
shown (2.6).

Let us now turn to the actual proof of the lemma. Let ϕ be as in the assumption. First of all, note
that u(0) − u(x) ≤ ϕ(0) − ϕ(x) for any x ∈ Rn. Therefore, Lu(0) ≤ Lϕ(0) < ∞, and Lu(0) can be
evaluated in a pointwise way, however note that it could be Lu(0) = −∞. It remains to show that
Lu(0) ≥ −C. To see this, let us define for δ > 0 small enough

ϕδ =

{
ϕ in Bδ,

u in Rn \Bδ.

Note that ϕδ ↗ u, as δ → 0, and therefore, by monotone convergence, it holds L(ϕδ − u)(0) ↘ 0.
Moreover, note that (2.6) also holds true for ϕδ since it can be approximated by functions Φ ∈
L∞
2s−ε(Rn) that are C2 around 0 and satisfy supx0∈Rn [Φ]Cτ (B1(x0)) < ∞, and Φ(0) = u(0), Φ ≤ u. In

fact, given any γ ∈ (0, δ), we can find such Φ satisfying |LΦ(0) − Lϕ(0)| < γ by choosing Φ = ϕ in
Bδ−γ ∪ (Rn \Bδ) and doing a Cτ -interpolation between u, ϕ on Bδ \Bδ−γ and using (G≤).
Thus, it follows from an application of (2.6) to ϕδ

0 = lim
δ→0

L(ϕδ − u)(0) ≥ lim inf
δ→0

Lϕδ(0)− Lu(0) ≥ −C − Lu(0),

which implies the desired result. □

The following lemma relates pointwise supersolutions to distributional supersolutions:

Lemma 2.8. Assume (G≥) and (G≤). Let C > 0 and ε ∈ (0, 2s), and assume that u ∈ L∞
2s−ε(Rn)

satisfies in the pointwise sense

Lu ≥ −C in B1.

Then, Lu ≥ −C in B1 also in the distributional sense.

Note that in the situation of the above lemma, it could be that Lu = +∞ for some points in B1,
since u is not assumed to be smooth.

Proof. The proof follows from the observation that for any η ∈ C∞
c (Rn) with η ≥ 0 it holds

−C
∫
Rn

η dx ≤
∫
Rn

η(Lu) dx =

∫
Rn

(Lη)u dx.

Here, we used the integration by parts formula, which can be shown in the same way as in [19, Lemma
2.2.23]. □

2.3. Weak Harnack inequality and local boundedness. Under a pointwise comparability con-
dition on K, it is well-known that solutions to Lu = 0 in Ω satisfy a Harnack inequality. In our more
general framework, we cannot expect a Harnack inequality to hold true. However, we can establish
a weak Harnack inequality, and a local boundedness estimate including a nonlocal tail term for weak
super-/ subsolutions.

First, we prove a weak Harnack inequality for nonnegative weak supersolutions:
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Lemma 2.9 (weak Harnack inequality). Assume (G≥), (G≤), and 2s < n. Let u be a globally non-
negative, weak supersolution to Lu ≥ 0 in B2. Then, for any R ∈ (0, 1) and 0 < q < n

n−2s :( ∫
BR

uq dx

)1/q

≤ c inf
BR

u, (wHI)

where c > 0 is a constant depending only on n, s, λ,Λ, q, which explodes as q → n
n−2s .

Proof. First, by [27, Theorem 1.6], there exist ε ∈ (0, 1) and c > 0, depending only on n, s, λ,Λ, such
that ( ∫

BR

uε dx

)1/ε

≤ c inf
BR

u. (2.7)

Note that [27] assumes u to be globally bounded instead of just (2.4). However, this issue can be
circumvented by a standard truncation argument, using that ũ = u1B2 is still a weak supersolution
to Lũ ≥ 0 in B3/2, since −L(u1Rn\B2

) ≥ 0 in B3/2.
Moreover, we claim that, using a Moser iteration scheme for small positive exponents, one can prove
that ( ∫

BR/2

uq dx

)1/q

≤ c

( ∫
BR

uε dx

)1/ε

, (2.8)

where c > 0 depends only on n, s, λ,Λ, ε. To prove (2.8), we will follow the arguments in the proof of
[30, Theorem 4.2], which are established for kernels satisfying (G≤) and a Sobolev embedding, i.e.,

∥v2∥
L

n
n−2s (Rn)

≤ c

∫
Rn

∫
Rn

(v(x)− v(y))2K(x− y) dy dx ∀v ∈ L
2n

n−2s (Rn). (2.9)

Note that (2.9) is satisfied in our setting. Indeed, by Fourier transform, we can rewrite∫
Rn

∫
Rn

(v(x)− v(y))2K(x− y) dy dx =

∫
Rn

|Fv(ξ)|2AK(ξ) dξ ≥ c

∫
Rn

|Fv(ξ)|2|ξ|2s dξ,

where AK denotes the Fourier symbol of L and we used Lemma 2.1. Therefore, (2.9) follows from the
classical fractional Sobolev embedding, i.e.

∥v2∥
L

n
n−2s (Rn)

≤ c[v]2Hs(Rn) = c

∫
Rn

|Fv(ξ)|2|ξ|2s dξ ≤ c

∫
Rn

∫
Rn

(v(x)− v(y))2K(x− y) dy dx.

We are now in the position to apply the considerations in [30] to our setting. By following the
arguments in [30, Proof of Theorem 4.2] (and translating them to elliptic equations), we obtain

∥u∥Lpκ(Br) ≤
(
cρ−2s

)1/p ∥u∥Lp(Br+ρ)

for any 0 < ρ ≤ r ≤ r + ρ ≤ R and ε < p < q/κ, where c > 0 depends on n, s, λ,Λ, 1− q
κ . Moreover,

note that in the elliptic case we have κ = n
n−2s . From here, (2.8) follows by a standard iteration

argument upon determining M ∈ N to be the unique number such that
q

κ
κ−M ≤ ε <

q

κ
κ−M+1, (2.10)

and choosing pi =
q
κκ

−i, ρi = 2−i−1R, rM = R, and ri−1 = ri − ρi for any 0 ≤ i ≤ M . In fact, we
obtain

∥u∥Lq(BR/2) ≤ ∥u∥Lp0κ(Br0 )
≤ (22sc)

κ
q

∑M
j=1 κ

j

2
2sκ
q

∑M
j=1 jκ

j

R
− 2sκ

q

∑M
j=1 κ

j

∥u∥
L

q
κκ−M

(BR)

≤ R
−nκ

q
(κM−1)∥u∥

L
q
κκ−M

(BR)
,
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where we used that

−2sκ

q

M∑
j=1

κj = −2sκ

q

(
1− κM+1

1− κ
− 1

)
= −2sκ

q

κ

κ− 1
(κM − 1) = −nκ

q
(κM − 1).

By (2.10), this yields( ∫
BR/2

uq dx

)1/q

≤ c

( ∫
BR

u
q
κ
κ−M

dx

)κ
q
κM

≤ c

( ∫
BR

uε dx

)1/ε

,

as desired. By combination of (2.8) with (2.7), we conclude the proof. □

Next, we also have the following local boundedness estimate for weak subsolutions:

Lemma 2.10 (local boundedness). Assume (G≥) and (Kp
≤) for some 1 ≤ p ≤ ∞, and 2s < n. Let u

be a weak subsolution to Lu ≤ 0 in B2. Then, for any R ∈ (0, 1) and any ε ∈ (0, 2s)

sup
BR/2

u ≤ c

( ∫
BR

|u|2
)1/2

+ cR2s−ε sup
R̄≥R

( ∫
BR̄

|u|q
)1/q

R̄2s−ε
, (2.11)

where c > 0 depends only on n, s, λ,Λ, q. Moreover, if u ∈ Lq
2s−ε(Rn) and u ≥ 0 in BR, then

sup
BR/2

u ≤ c

( ∫
BR

u

)
+ cR2s−ε sup

R̄≥R

( ∫
BR̄

|u|q
)1/q

R̄2s−ε
, (2.12)

where c > 0 depends only on n, s, λ,Λ, q.

Proof. We follow the arguments in the proofs of [31, Theorem 3.6, resp. Theorem 6.1] after translating
them to the elliptic setting. In fact, for any 0 < k < l and R/2 ≤ r ≤ R and 0 < ρ ≤ r ≤ r + ρ ≤ R,
we obtain

∥(u− l)2+∥L1(Br) ≤ c(l − k)−
4s
n ρ−2s

(
1 +

supx∈Br+
ρ
2

TailK(u; ρ/2, x)

l − k

)
∥(u− k)2+∥

1+ 2s
n

L1(Br+ρ)
.

This result holds true for kernels satisfying (G≤) and the Sobolev inequality (2.9). Note that (2.9)
holds true in our case by the same argument, as in the proof of Lemma 2.9.
Next, let us apply Lemma 2.2 to obtain:

sup
x∈Br+

ρ
2

TailK(u; ρ/2, x) ≤ c sup
x∈Br+

ρ
2

ρ2s−ε sup
R̄≥ρ/2

( ∫
BR̄(x) |u|

q dx
)1/q

R̄2s−ε


≤ c

(
R

ρ

)n
q

sup
R̄≥R

( ∫
BR̄

|u|q dx
)1/q

R̄2s−ε
.

From here, the proof follows by a standard iteration argument upon defining li =M(1− 2−i), l0 = 0,
and ρi = 2−i−1R, ri+1 = ri − ρi+1, r0 = R, and Ai = ∥(u− li)

2
+∥L1(Bri )

, where

M = sup
R̄≥R

( ∫
BR̄

|u|q dx
)1/q

R̄2s−ε
+ CR−n

2A
1/2
0
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for a large enough constant C > 0, depending only on n, s, λ,Λ, q. In fact, the aforementioned estimates
and choices yield for some γ > 1 depending only on n, s, q:

Ai ≤
c22siR−2s

(li − li−1)
4s
n

1 + 2in
supR̄≥R

( ∫
BR̄

|u|q dx
)1/q

R̄2s−ε

li − li−1

A
1+ 2s

n
i−1 ≤ c2γiR−2s

M
4s
n

A
1+ 2s

n
i−1 ,

and, upon choosing C > 0 large enough:

A0 ≤ C− 1
2RnM2 ≤

(
cR−2s

M
4s
n

)− n
2s

(2γ)−(
n
2s)

2

,

By [26, Lemma 7.1], it holds Ai ↘ 0, which implies that supBR/2
u ≤M , and yields (2.11).

To prove (2.12), we observe that by assumption, the right hand side in (2.11) is finite. Therefore, the
desired result follows by standard covering and interpolation arguments based on [25, Lemma 1.1] (see
e.g. [31, Proof of Theorem 6.2] or [13, Proof of Theorem 6.9]). □

3. Basic properties of solutions

The main result of this article (see Theorem 1.3), is formulated for weak solutions to the obstacle
problem

min{Lu, u− ϕ} = 0 in Rn,

where ϕ ∈ C2,ε
c (Rn) for some ε > max{2s− 1, 0}. As explained before, we note that the consideration

of weak solutions to the nonlocal obstacle problem is in contrast to [6], [19], and [21], where viscosity
solutions were analyzed. Thus, we need some preliminary results on weak solutions, which we provide
below.

Let us define

Hs
ϕ(Rn) := {v ∈ Hs(Rn) : v ≥ ϕ in Rn} ,

the solution space associated to the obstacle problem.

Definition 3.1. We say that u is a weak solution to the obstacle problem

min{Lu, u− ϕ} in Rn,

if u ∈ Hs
ϕ(Rn), and

EK(u, v − u) ≥ 0 ∀v ∈ Hs
ϕ(Rn). (3.1)

Remark 3.2. One can prove that a unique weak solution u ∈ Hs
ϕ(Rn) to the obstacle problem exists.

Moreover, the unique weak solution u solves in the weak sense (see Definition 2.4):

Lu = 0 in {u > ϕ},
Lu ≥ 0 in Rn.

This was proved for L = (−∆)s in [43] and for more general nonlocal operators comparable to the
fractional p-Laplacian in [33]. The proof in our setting goes by the same arguments, as in [33].

An important characterization of weak solutions to the obstacle problem is that they are the least
weak supersolution above the obstacle, in the following sense:
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Lemma 3.3. Assume (G≥) and (G≤). Let u ∈ Hs
ϕ(Rn) be a weak solution to the obstacle problem

min{Lu, u− ϕ} = 0 in Rn.

Let v ∈ Hs(Rn) be a weak supersolution to

Lv ≥ 0 in Rn.

Moreover, assume that min{u, v} ∈ Hs
ϕ(Rn). Then, u ≤ v a.e. in Rn.

Proof. Since u is a weak solution to the obstacle problem, and min{u, v} ∈ Hs
ϕ(Rn), it holds

EK(u,min{u, v} − u) ≥ 0.

Moreover, since v is a weak supersolution and u−min{u, v} ∈ Hs(Rn) is nonnegative, it holds

EK(v, [u−min{u, v}]ψR) ≥ 0,

where, for R > 0, we chose ψR ∈ C∞
c (BR+1) with ψ ≡ 1 in BR and ∥ψR∥C1(Rn) ≤ 2. By taking the

limit R → ∞, an application of dominated convergence theorem, and adding the two previous lines,
we obtain

EK(u− v,min{u, v} − u) ≥ 0,

which implies that |{u > v}| = 0, as desired. □

Let us close this section by the definition of distributional solutions to the obstacle problem.

Definition 3.4. Let f ∈ L1
loc(Rn). We say that u ∈ L∞

2s−ε(Rn) for some ε ∈ (0, 2s) is a distributional
solution to

min{Lu− f, u} = 0 in Rn,

if u ≥ 0 and solves

Lu = f in {u > 0},
Lu ≥ f in Rn

in the distributional sense, according to Definition 2.6.

3.1. Semiconvexity. Having at hand the characterization of a solution to the obstacle problem as
the smallest supersolution lying above the obstacle (see Lemma 3.3), we are now able to prove the
semiconvexity and Lipschitz regularity of weak solutions.

Lemma 3.5. Assume (G≥) and (G≤). Let u ∈ Hs
ϕ(Rn) be a weak solution to the obstacle problem

min{Lu, u− ϕ} = 0 in Rn.

Then, the following hold true:

(i) u is Lipschitz continuous with

∥u∥C0,1(Rn) ≤ ∥ϕ∥C0,1(Rn).

(ii) u is semiconvex with

∂2eeu ≥ −∥ϕ∥C1,1(Rn) in Rn ∀e ∈ Sn−1.
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Proof. The proof goes along the lines of the proof in [6, Lemma 2.1]. The conclusion differs only
slightly, since we work with weak solutions, instead of viscosity solutions. Indeed, to prove (i), we
observe that

v1(x) = ∥ϕ∥L∞(Rn) and v2(x) = u(x+ h) + ∥ϕ∥C0,1(Rn)|h|, h ∈ Rn,

are weak supersolutions to Lvi ≥ 0 in Rn by Remark 3.2 , and satisfy vi ≥ ϕ. Moreover, we have
min{u, vi} ∈ Hs

ϕ(Rn). Thus, Lemma 3.3 implies that u ≤ vi a.e., which proves (i).

To prove (ii), one proceeds similar to the proof of (i), defining

v(x) =
u(x+ h) + u(x− h)

2
+ ∥ϕ∥C1,1(Rn)|h|2.

□

Let us mention two direct consequences of Lemma 3.5:

Remark 3.6. Let u be a weak solution to min{Lu, u− ϕ} = 0 in Rn.

(i) Then, we are able to evaluate Lu in a pointwise way and we have the bound 0 ≤ Lu ≤ C for
some C > 0 depending only on n, s, λ,Λ, ∥ϕ∥C1,1(Rn) (see also Lemma 2.7).

(ii) Moreover, due to [19, Lemma 2.2.27] u ∈ Hs
ϕ(Rn) ∩ L∞(Rn) is a distributional solution to

min{Lu, u− ϕ} = 0 in Rn in the sense of [19, Definition 2.2.20].

3.2. C1,τ regularity of solutions. The following lemma is a technical ingredient in some of the
proofs in this article, such as the classification of blow-ups. However, we believe it to be of independent
interest: It states that any solution to the obstacle problem is C1,τ when K satisfies (G≥) and (G≤).

Proposition 3.7. Let s ∈ (0, 1) and L be a general stable operator of the form (1.2)-(1.3)-(G≥)-(G≤).

Let ϕ ∈ C1,1
c (Rn) and u be any weak solution to the obstacle problem

min{Lu, u− ϕ} = 0 in Rn.

Then, u ∈ C1,τ (Rn) and

∥u∥C1+τ (Rn) ≤ C∥ϕ∥C1,1(Rn),

where C > 0 and τ ∈ (0, 1) depend only on n, s, λ,Λ.

We will actually prove the following:

Proposition 3.8. Assume (G≥) and (G≤). Let K be homogeneous. Let α ∈ (0, s). Let u ∈ C0,1(Rn)
be such that for some K > 0:

u ≥ 0 in B2,

D2u ≥ −KId in B2,

L(Dhu) ≥ −K in {u > 0} ∩B2 in the distributional sense ∀h ∈ Rn,

|∇u| ≤ K(1 + |x|s+α) in Rn.

Then, there exist c > 0 and τ ∈ (0, 1) depending only on n, s, α, λ,Λ such that

∥u∥C1,τ (B1/2)
≤ cK.

Recall that we denote Dhu = u(·+h)−u(·)
|h| for any h ∈ Rn.

Before we prove Proposition 3.8, let us first state the following auxiliary result, which is reminiscent
of [6, Lemma 2.1].
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Lemma 3.9. Assume (G≥) and (G≤). Let K be homogeneous. Then, there exist τ ∈ (0, 1) and δ > 0,
depending only on n, s, λ,Λ, such that the following holds true:
Let u ∈ C0,1(Rn) with u(0) = 0 be such that

u ≥ 0 in B1/δ,

D2u ≥ −δId in B1/δ,

L(Dhu) ≥ −δ in {u > 0} ∩B2 in distribution ∀h ∈ Rn,

∥∇u∥L∞(BR) ≤ Rτ ∀R ≥ 1.

Then, there exists c > 0 depending only on n, s, λ,Λ such that

|∇u(x)| ≤ 2|x|τ ∀x ∈ Rn.

The proof is very similar to the one in [6, Proposition 2.2]. However, due to the more general class
of kernels satisfying only (G≥) and (G≤), some of the arguments need to be adapted to our situation.
In particular, the set Cµ needs to be defined appropriately.

Proof of Lemma 3.9. We set

θ(r) = sup
r′≥r

(r′)−τ sup
Br′

|∇u|,

and observe that θ(r) ≤ 1 for any r ≥ 1 by assumption. Our goal is to show that θ(r) ≤ 2 for r ∈ (0, 1).
By contradiction, we assume that θ(r) > 2 for some r ∈ (0, 1), which implies that there is r′ ∈ (r, 1)
such that

(r′)−τ sup
Br′

|∇u| ≥ (1− ε)θ(r) ≥ (1− ε)θ(r′) ≥ 3

2
,

where we will choose ε > 0 small enough, later. Next, we set

ū(x) =
u(r′x)

θ(r′)(r′)1+τ
,

which satisfies

ū ≥ 0 in B1/δ,

D2ū ≥ −(r′)1−τδId ≥ −δId in B1/δ,

L(−Dh̄ū) ≤ (r′)2s−1−τδ ≤ δ in {ū > 0} ∩B2. (3.2)

Moreover, by definition of θ, r′:

1− ε ≤ sup
|h̄|≤1/4

sup
B1

(−Dh̄ū), sup
|h̄|≤1/4

sup
BR

(−Dh̄ū) ≤ (R+ 1/4)τ ∀R ≥ 1.

In particular,

∥ū∥C0,1(B7/4)
≤ 2τ . (3.3)

Next, we take η ∈ C2
c (B3/2) with η ≡ 1 in B1 and η ≤ 1 in B3/2. Then

1 + 2ε ≤ sup
|h̄|≤1/4

sup
B1

(−Dh̄ū+ 3εη).

We fix h0 ∈ B1/4 and x0 ∈ B3/2 such that

t0 := max
B3/2

(−Dh0 ū+ 3εη) ≥ 1 + ε,

−Dh0 ū(x0) + 3εη(x0) = t0,
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and denote v := −Dh0 ū. Then it holds, if τ ∈ (0, 1) is small enough

v + 3εη ≤ v(x0) + 3εη(x0) = t0 in B3/2,

sup
B4

v ≤ (4 + 1/4)τ ≤ 1 + ε ≤ t0,

and therefore

v + 3εη ≤ t0 in B2.

Moreover, x0 ∈ {ū > 0} since otherwise ū(x0)− ū(x0 − h0) ≤ 0.
By the same argument as in [6], using D2ū ≥ −δId, ū ≥ 0, and ū(0) = 0, we obtain for x ∈ B 1

δ
−1:

ū(x)− ū

(
x+ t

x

|x|

)
≤ δ|x|t

2
∀t ∈ (0, 1).

Combining this with (3.3), we obtain for any t ∈ (0, 1):

v(x) ≤
ū
(
x+ t x

|x|

)
− ū(x+ h0)

|h0|
+
δ|x|t
2|h0|

≤ 2τ
∣∣∣∣ t

|h0|
x

|x|
− h0

|h0|

∣∣∣∣+ δ|x|t
2|h0|

.

Let us estimate v(x) even further by making the following observation: For any µ ∈ (0, 1), there

exists σ ∈ (0, 1) such that for any x ∈ Cµ := {x ∈ Rn : x
|x| ·

h0
|h0| > µ}, there exists t ∈ (0, |h0|) such that∣∣∣ t

|h0|
x
|x| −

h0
|h0|

∣∣∣ ≤ (1 − σ). In fact, t can be chosen in such a way that t
|h0|

x
|x| becomes the orthogonal

projection of h0
|h0| onto {a x

|x| : a ∈ R}. Therefore,

v(x) ≤ 2τ
∣∣∣∣ t

|h0|
x

|x|
− h0

|h0|

∣∣∣∣+ δ|x|t
2|h0|

≤ 2τ (1− σ) +
δ|x|
2
.

Moreover, we have

1− 2ε ≤ v(x0) ≤ 1 + ε,

and therefore

v(x0)− v(y) ≥


−cε|y − x0|2 ∀y ∈ B2(x0),

−(|y − x0|+ 2)τ + 1− 2ε ∀y ∈ Rn \B1(x0),

−
(
2τ (1− σ) + 3δM

2

)
+ 1− 2ε ∀y ∈ Cµ ∩ (B2M (x0) \BM (x0)),

where M > 0 will be chosen large enough, later in the proof. Consequently,

Lv(x0) ≥ −cε
∫
B2

|y − x0|2K(y − x0) dy

−
∫
Rn\B1

[(|y − x0|+ 2)τ − 1 + 2ε]K(y − x0) dy

+

∫
Cµ∩(B2M (x0)\BM (x0))

[
−
(
2τ (1− σ) +

3δM

2

)
+ 1− 2ε

]
K(y − x0) dy

= I1 + I2 + I3.

Clearly, by (G≤), it holds I1 ≥ −cε → 0, as ε → 0 and I2 → 0, as τ → 0 and ε → 0. Finally, let us
explain how to estimate I3. By Lemma 2.3, there exists ν ∈ (0, 1), depending only on n, s, λ,Λ, such
that ∫

{θ∈Sn−1:θ· h0
|h0|

>ν}
K(θ) dθ ≥ c (3.4)
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for some c > 0 depending only on n, s, λ,Λ. Moreover, let us now choose M > 0 so large such that for
any x0 ∈ B3/2 it holds

(x0 + Cν) ∩ (B2M (x0) \BM (x0)) ⊂ Cν/2 ∩ (B2M (x0) \BM (x0)). (3.5)

Note that M can be chosen as a uniform constant, depending only on n. Thus, choosing µ = ν
2

and τ, δ, ε so small that
[
−
(
2τ (1− ν

2 ) +
3δM
2

)
+ 1− 2ε

]
≥ ν

4 for any x ∈ B2M (x0) \ BM (x0), we can
estimate, using (3.4) and (3.5):

I3 ≥
ν

4

∫
Cν/2∩(B2M (x0)\BM (x0))

K(y − x0) dy ≥ ν

4

∫
(x0+Cν)∩(B2M (x0)\BM (x0))

K(y − x0) dy ≥ c
ν

4
M−2s.

We have shown that there exists c > 0 depending only on n, s, λ,Λ such that Lv(x0) ≥ c once ε, τ, δ
are chosen small enough. This is a contradiction for δ > 0 small enough, since by (3.2)

c ≤ Lv(x0) ≤ δ.

Note that we have c ≤ Lv(x0) in the classical sense, since x0 is a local maximum of the function
v + 3εη, and this function has a finite tail due to the growth control that we assume on v. Therefore,
v + 3εη can be touched from above by a C2-function, and we deduce that c ≤ Lv(x0) by application
of Lemma 2.7, using that Lη(x0) is also defined in a pointwise sense.

□

Proof of Proposition 3.8 and Proposition 3.7. The proof of Proposition 3.8 is a standard consequence
of Lemma 3.9, which is applied after a rescaling and truncation argument. Moreover, we need to apply
the interior regularity estimates in [19, Theorem 2.4.3] to Dhu. Note that [19, Theorem 2.4.3] remains
true under (G≥) and (G≤). For more details on this proof, we refer to [6]. □

4. Classification of blow-ups

The goal of this section is to prove Theorem 1.2 about the classification of blow-ups.

Remark 4.1. By interior estimates (see [19, Theorem 2.4.3]), in the situation of Theorem 1.2 we
have ∇u0 ∈ C2s−ε

loc ({u0 > 0})∩L∞
s+α(Rn). Therefore, L(∇u0) = 0 also holds true in the weak sense in

{u0 > 0} ∩BR for any R > 0 by [19, Lemma 2.2.27].

The proof in [6] and [19] is heavily based on the boundary Harnack principle in C1 (or more general)
domains, since it yields the uniqueness of positive solutions to Lu = 0 in cones. However, since the
full Harnack inequality fails in our setting due to the generality of the kernels under consideration, we
need to come up with another argument. It turns out that a boundary Harnack principle can still be
established for positive and monotone solutions outside a convex cone (see Theorem 4.6). In order to
prove this result, we rely on the weak Harnack inequality (see Lemma 2.9) and a local boundedness
estimate (see Lemma 2.10), which remain true in our setup. The main challenge is to establish a
certain control on the growth of the solutions in order to get rid of the nonlocal contributions in the
local boundedness estimate (see Proposition 4.2).

4.1. Lq growth control. A central ingredient in the proof of a boundary Harnack principle in convex
cones is the following L∞−Lq-estimate which differs from (2.12) in that it only contains local quantities
on both sides:

Proposition 4.2. Assume (G≥) and (Kp
≤) for some p > n

2s , and 2s < n. Let K be homogeneous. Let

Σ ⊂ Rn be a closed, convex cone with non-empty interior, and vertex at 0. Let u ∈ C(Rn)∩L∞
s+α(Rn)
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for some α ∈ (0, s), and e ∈ Sn−1 with e ̸∈ Σ be such that in the distributional sense:

Lu = 0 in Rn \ Σ,
u = 0 in Σ,

u > 0 in Rn \ Σ,
∂eu ≥ 0 in Rn.

Then, there exists a constant c > 0, depending only on n, s, λ,Λ, e,Σ, q, such that for any r ∈ (0, 1):( ∫
Br

uq
)1/q

≤ ∥u∥L∞(Br) ≤ c

( ∫
Br

uq
)1/q

. (4.1)

To prove Proposition 4.2, we establish growth control on the Lq-norms (see Lemma 4.4). The main
auxiliary result for this is the following consequence of the weak Harnack inequality and a barrier
argument:

Lemma 4.3. Assume (G≥) and (G≤). Let K be homogeneous and 2s < n. Let Σ ⊂ Rn be a closed,
convex cone with non-empty interior, and vertex at 0. Let u, e be as in Proposition 4.2 and assume
that for some 0 < q < n

n−2s ( ∫
B1

uq
)1/q

≥ 1.

Then there exist ε ∈ (0, s), depending only on n, s, λ,Λ, and c > 0, depending only on n, s, λ,Λ, e,Σ, q,
such that

u ≥ cd2s−ε in (Rn \ Σ) ∩B1,

where d = dΣ = dist(·,Σ).

Proof. First, note that we can find a set D ⊂ Rn with Σ ∪ (Rn \ B3) ⊂ D ⊂ Σ ∪ (Rn \ B2) and
satisfying the exterior ball condition. Consequently, there are ε ∈ (0, s) and ρ > 0 such that the
function dD = dist(·, D) satisfies

L(d2s−ε
D ) ≤ −1 ≤ 0 ≤ Lu in (Rn \D) ∩ {dD < ρ}.

For a reference, see [19, Lemma B.1.4], which implies that the above estimate holds true for any
domain D satisfying the exterior ball condition and any kernel satisfying (G≤) and (G≥). Moreover,
it holds

u ≥ 0 = d2s−ε
D in D.

Finally, by assumption, there exist z0 ∈ B1, k ∈ N, c > 0 independent of u such that
( ∫

B
2−k (z0)

uq
)1/q

≥
c2−kn/q. Moreover, since e ̸∈ Σ, it is possible to find t > 0 such that for z = z0 + te ∈ Rn it holds
dΣ(z) ≥ 1 and by ∂eu ≥ 0, it holds ( ∫

B
2−k (z)

uq

)1/q

≥ c2−kn/q.

Therefore, by the weak Harnack inequality (see Lemma 2.9), we have for any ball B1/2(x) with
B2−k(z) ⊂ B1/2(x) ⊂ (Rn \ Σ) ∩ {dΣ ≥ ρ}

inf
B1/2(x)

u ≥ c2−kn/q

( ∫
B

2−k (z)
uq

)1/q

≥ c2−2kn/q.
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Note that the weak Harnack inequality is applicable since u is also a weak solution in {dΣ ≥ ρ} by
interior regularity estimates (see [19, Theorem 2.4.3, Lemma 2.2.27]).
Now we can use the above estimate and cover the whole domain (B3 \ Σ) ∩ {dΣ ≥ ρ} by appropriate
Harnack chains until we obtain that for some c > 0, depending on n, s, λ,Λ, q, e,Σ, ρ, but not on u, it
holds

u ≥ c in B3 ∩ {dΣ ≥ ρ}.

In particular, this implies

u ≥ c ≥ cd2s−ε
D in {dD ≥ ρ}.

Therefore, the comparison principle (see [19, Corollary 2.3.8]) yields

u ≥ cd2s−ε
D = cd2s−ε

Σ in B1,

where we used that dD = dΣ in B1 by construction of D. This concludes the proof. □

The following lemma contains the growth control on the Lq-norms.

Lemma 4.4. Assume (G≥) and (G≤). Let K be homogeneous and 2s < n. Let Σ ⊂ Rn be a closed,
convex cone with non-empty interior, and vertex at 0. Let u, e be as in Proposition 4.2 and assume
that for some 0 < q < n

n−2s ( ∫
B1

uq
)1/q

≤ 1.

Then, there exist ε ∈ (0, s), depending only on n, s, λ,Λ, and c > 0, depending only on n, s, λ,Λ, e,Σ, q,
such that ( ∫

BR

uq
)1/q

≤ cR2s−ε ∀R ≥ 1.

Remark 4.5. By scaling,
( ∫

Br
uq
)1/q

≤ 1 implies( ∫
BR

uq
)1/q

≤ c(R/r)2s−ε ∀R ≥ r. (4.2)

Proof of Lemma 4.4. Let R > 1 and define

uR(x) =
u(Rx)( ∫
BR

uq
)1/q .

Clearly, uR satisfies the assumption of Lemma 4.3, and in particular
( ∫

B1
uqR

)1/q
= 1, which implies

that

uR ≥ cd2s−ε
Σ in (Rn \ Σ) ∩B1.

Consequently, for every x ∈ (Rn \ Σ) ∩B1, using dΣ(Rx) ≤ RdΣ(x) for R ≥ 1:

u(Rx) ≥ cd2s−ε
Σ (x)

( ∫
BR

uq
)1/q

≥ cRε−2sd2s−ε
Σ (Rx)

( ∫
BR

uq
)1/q

.
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By assumption there exists x0 ∈ (Rn \Σ) ∩B1 ∩ {dΣ > 1/100} such that u(x0) ≤ c for some constant
c = c(n,Σ) > 0. Let us choose x = x0/R ∈ B1, note that dΣ(Rx) ≥ 1/100, and deduce( ∫

BR

uq
)1/q

≤ cR2s−εu(x0) ≤ cR2s−ε.

This proves the desired result. □

As a consequence of the Lq-growth control, we can prove Proposition 4.2.

Proof of Proposition 4.2. The first estimate is trivial. To prove the second estimate, we rescale

Lemma 4.4, obtaining (4.2), which we apply to u/
( ∫

Br
uq
)1/q

. This yields for any R ≥ r:( ∫
BR

uq
)1/q

≤ c

( ∫
Br

uq
)1/q

(R/r)2s−ε,

and therefore

r2s−ε sup
R≥r

( ∫
BR

uq
)1/q

R2s−ε
≤ c

( ∫
Br

uq
)1/q

, (4.3)

which is finite since u ∈ L∞
s+α(Rn), by assumption.

Next, we claim that

∥u∥L∞(Br) ≤ c

( ∫
B2r

uq
)1/q

+ cr2s−ε sup
R≥r

( ∫
BR

uq
)1/q

R2s−ε
. (4.4)

This estimate will follow from the local boundedness estimate (see Lemma 2.10), however note that we
cannot apply it directly, since a priori it is not clear that u is a weak subsolution in Br. To circumvent
this issue, let us take δ > 0 and define uδ = max{u, δ}. Clearly, by interior regularity estimates (see
[19, Theorem 2.4.3, Lemma 2.2.27]), u ∈ C2s

loc(B1 ∩ (Rn \ Σ)) is a weak solution to Lu = 0 in Ω for
any Ω ⋐ B1 ∩ (Rn \ Σ). Therefore, uδ is a weak subsolution to Luδ ≤ 0 in Ω due to Lemma 2.5. By
continuity of u in B1∩(Rn\Σ), it follows in particular that uδ is a weak subsolution in a neighborhood
of {u ≥ δ} ∩B1. Since uδ ≡ δ in {u < δ} ∩B1, uδ is a weak subsolution to Luδ ≤ 0 in B1. Moreover,
note that uδ ∈ L∞

2s−ε(Rn) due to (4.3). Thus, by (2.12) in Lemma 2.10:

∥u∥L∞(Br) ≤ ∥uδ∥L∞(Br) ≤ c

( ∫
B2r

uqδ

)1/q

+ cr2s−ε sup
R≥r

( ∫
BR

uqδ

)1/q
R2s−ε

≤ c

( ∫
B2r

uq
)1/q

+ cr2s−ε sup
R≥r

( ∫
BR

uq
)1/q

R2s−ε
+ cδ,

which proves (4.4) upon taking the limit δ → 0.
Therefore, by a combination of (4.4) and (4.3):

∥u∥L∞(Br) ≤ c

( ∫
B2r

uq
)1/q

+ cr2s−ε sup
R≥r

( ∫
BR

uq
)1/q

R2s−ε
≤ c

( ∫
Br

uq
)1/q

,

as desired. □
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4.2. A boundary Harnack principle in convex cones. The main auxiliary result in the proof of
the classification of blow-ups (see Theorem 1.2) is the following boundary Harnack principle in convex
cones:

Theorem 4.6. Assume (G≥) and (Kp
≤) for some p > n

2s , and 2s < n. Let K be homogeneous. Let

Σ ⊂ Rn be a closed, convex cone with non-empty interior, and vertex at 0. Let u, v ∈ C(Rn)∩L∞
s+α(Rn)

for some α ∈ (0, s) be distributional solutions to
Lu = 0 = Lv in Rn \ Σ,
u = 0 = v in Σ,

u, v > 0 in Rn \ Σ.

Moreover, assume that there exist e, e′ ∈ Sn−1 with e, e′ ̸∈ Σ such that

∂eu, ∂e′v ≥ 0.

and assume that u and v are normalized( ∫
B1

uq
)1/q

= 1 =

( ∫
B1

vq
)1/q

.

Then, there exists a constant c > 0, depending only on n, s, λ,Λ, e, e′,Σ, q, such that

c−1u ≤ v ≤ cu in B1/2.

The main scheme of the proof follows the one in [38].

Proof of Theorem 4.6. By assumption, the following normalization condition is satisfied.( ∫
B1

uq
)1/q

= 1 =

( ∫
B1

vq
)1/q

. (4.5)

First, we claim

u ≤ C, v ≤ C in B3/4. (4.6)

This is an immediate consequence of Proposition 4.2 (resp. of (4.1)) and (4.5), which yield that

sup
B3/4

u ≤ C

( ∫
B3/4

uq

)1/q

≤ C.

Moreover, using (4.5), we can deduce from Lemma 4.3

u ≥ c > 0, v ≥ c > 0 in (B1 \ Σ) ∩ {dΣ ≥ ρ}, (4.7)

where ρ > 0 is a constant, which we are allowed to (and will) choose small enough in the sequel. Note
that the constants c, C > 0 might depend on n, s, λ,Λ, e, e′,Σ, ρ, but not on u, v.
Having at hand (4.6) and (4.7), we can follow the strategy of the proof of the boundary Harnack
principle in [38] (resp. in [19, Theorem 4.3.2]):
We define ξ ∈ C∞

c (B2/3) with 0 ≤ ξ ≤ 1 and ξ ≡ 1 in B1/2. Moreover, we fix µ = 1/100 and take
η ∈ C∞((B3/4+µ \ B3/4−µ) ∩ {d > ρ}) with 0 ≤ η ≤ 1 and η ≡ 1 in (B3/4+µ/2 \ B3/4−µ/2) ∩ {d > ρ}.
With these definitions at hand, we introduce

w := u1B3/4
+ C1(ξ − 1) + C2η.

Our goal is to prove that w ≤ cv in Rn by using the comparison principle for distributional solutions.
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First, if C1 > 0 is large enough, we get by (4.6):

w ≤ 0 ≤ v in Rn \ (B2/3 ∪ supp(η)),

and for C2 > 0 large enough we get

Lw = Lu− L(u1Rn\B3/4
) + C1Lξ + C2Lη

≤ C + C1C − C2c ≤ −1 in (Rn \ Σ) ∩B2/3.

Let us explain how to obtain the latter estimate. The following

L(u1Rn\B3/4
) ≤ C sup

R≥1

( ∫
BR

|u|q
)1/q

R2s−ε
≤ C in B2/3 (4.8)

can be established using Lemma 2.2, the Lq-growth control (see Lemma 4.4), and the normalization
condition (4.5). Moreover, the estimate Lξ ≤ C follows from (Kp

≤). To prove that Lη ≤ −c in

(Rn \ Σ) ∩B2/3, we argue as follows: For any z ∈ (Rn \ Σ) ∩B2/3, it holds

Lη(z) = −
∫
Rn

η(y)K(z − y) dy ≤ −
∫
(B3/4+µ/2\B3/4−µ/2)∩{dΣ>ρ}

K(z − y) dy,

since supp(η) ∩ B2/3 = ∅. We need to argue that the right hand side is bounded by a constant
depending only on n, s, λ,Λ. In fact, by Lemma 2.3, there exists δ0 > 0 depending only on λ,Λ such
that for any e ∈ Sn−1

−
∫
(B3/4+µ/2\B3/4−µ/2)∩

{
z−y
|z−y| ·e>δ0

}K(z − y) dy ≤ −c

for a uniform constant c > 0, depending only on n, s, λ,Λ, but not on z. Moreover, since Σ is convex, it
must be contained in a half-space. Consequently, there exists e ∈ Sn−1 such that {x · e > 0} ⊂ Rn \Σ,
and therefore, for ρ > 0 small enough, depending on δ0, it holds

(B3/4+µ/2 \B3/4−µ/2) ∩
{
y :

z − y

|z − y|
· e ≥ δ0

}
⊂ (B3/4+µ/2 \B3/4−µ/2) ∩ {y : dΣ(y) > ρ}.

Therefore, we have

Lη(z) ≤ −
∫
(B3/4+µ/2\B3/4−µ/2)∩{dΣ>ρ}

K(z − y) dy

≤ −
∫
(B3/4+µ/2\B3/4−µ/2)∩

{
z−y
|z−y| ·e>δ0

}K(z − y) dy ≤ −c,

as desired.
All in all, we obtain

Lw ≤ −1 ≤ 0 = Lv in (Rn \ Σ) ∩B2/3.

Moreover, by (4.6) and (4.7) we have

w ≤ C3v in supp(η).

Next, by construction

w ≤ 0 = v in Σ.

Therefore, by the comparison principle (see [19, Corollary 2.3.8]),

w ≤ C3v in Rn.
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Now we are in the position to conclude the proof. In fact, since w ≡ u in B1/2, the aforementioned
estimate implies

u ≤ C3v in B1/2.

By changing the roles of u, v, we deduce the desired result. □

The main ingredient in the proof of Theorem 1.2 is the following result about the global compara-
bility of positive solution in closed, convex cones, reminiscent of [6, Theorem 3.1]:

Corollary 4.7. Assume (G≥) and (Kp
≤) for some p > n

2s , and 2s < n. Let K be homogeneous. Let

Σ ⊂ Rn be a closed, convex cone with non-empty interior, and vertex at 0. Let u, v ∈ C(Rn)∩L∞
s+α(Rn)

for some α ∈ (0, s) be distributional solutions to
Lu = 0 = Lv in Rn \ Σ,
u = 0 = v in Σ,

u, v > 0 in Rn \ Σ.

Moreover, assume that there exist e, e′ ∈ Sn−1 with e, e′ ̸∈ Σ such that

∂eu, ∂e′v ≥ 0.

Then, there exists A > 0 such that

A−1u ≤ v ≤ Au in Rn.

The proof of Corollary 4.7 follows directly from Theorem 4.6 by a scaling argument:

Proof of Corollary 4.7. We define for R ≥ 2:

uR(x) :=
u(Rx)( ∫
BR

uq
)1/q , vR(x) :=

v(Rx)( ∫
BR

vq
)1/q ,

and observe that by construction
( ∫

B1
uqR dx

)1/q
=
( ∫

B1
vqR dx

)1/q
= 1. Therefore, by application

of Theorem 4.6, we obtain

c−1uR ≤ vR ≤ cuR in B1/2

for some c > 0, depending on n, s, λ,Λ, e, e′,Σ, q, but not on u, v,R. In particular, we have

c−1 u(x)( ∫
BR

uq
)1/q ≤ v(x)( ∫

BR
vq
)1/q ≤ c

u(x)( ∫
BR

uq
)1/q ∀x ∈ BR/2,

which, upon fixing an arbitrary point x ∈ B1\Σ, implies that the quotient
( ∫

BR
uq
)1/q

/
( ∫

BR
vq
)1/q

is uniformly positive and uniformly bounded as R→ ∞. Thus, we obtain

A−1u(x) ≤ v(x) ≤ Au(x) ∀x ∈ BR/2

for some A > 0, independent of R, which implies the desired result upon taking the limit R→ ∞. □
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4.3. Proof of Theorem 1.2. Before we prove the classification of blow-ups Theorem 1.2, we consider
the special case that {u0 = 0} is a closed convex cone with non-empty interior:

Lemma 4.8. The statement of Theorem 1.2 holds true in case {u0 = 0} = Σ is a closed, convex cone
with non-empty interior, and vertex at 0.

Before we start the proof, let us observe that since by assumption K ∈ Lp(Sn−1), there exists Λ > 0
such that K satisfies (Kp

≤). Moreover, since K ̸= 0, there is 0 < λ ≤ Λ such that K satisfies (G≥).

Proof. Note that in case n = 1, the desired result follows directly from [19, Theorem 1.10.15]. Thus,
we can assume from now on that n ≥ 2 and therefore 2s < n.
Since Σ ⊂ Rn is a closed convex cone with non-empty interior and vertex at 0, there exist n linearly
independent vectors e1, ..., en ∈ Sn−1 such that −ei ∈ Σ, while ei ̸∈ Σ. We claim that the linear space
satisfies

dim

{
n∑

i=1

λi∂eiu0 : (λ1, . . . , λn) ∈ Rn

}
≤ 1. (4.9)

Let us take any 1 ≤ i, j ≤ n with i ̸= j and assume that ∂eiu0 ̸≡ 0 ̸≡ ∂eju0 (otherwise, (4.9) follows).
Note that (4.9) holds true if we can show that there is M > 0 such that

∂eiu0 =M∂eju0 in Rn. (4.10)

First, we observe that it holds in the distributional sense
L∂eiu0 = L∂eju0 = 0 in Rn \ Σ,
∂eiu0 = ∂eju0 = 0 in Σ,

∂eiu0, ∂eju0 > 0 in Rn \ Σ,
∂ei(∂eiu0), ∂ej (∂eju0) ≥ 0 in Rn,

where the third property holds true by the weak Harnack inequality (see Lemma 2.9) since ∂eiu0, ∂eju0 ≥
0 (by convexity and −ei,−ej ∈ Σ), and ∂eiu0 ̸≡ 0 ̸≡ ∂eju0. Note that Lemma 2.9 is applicable due to
Remark 4.1. The fourth property follows from the convexity of u0. Moreover, note that ∂eiu0, ∂eju0
are continuous due to Proposition 3.8. Therefore, Corollary 4.7 is applicable to ∂eiu0, ∂eju0, which
implies that there is A > 0 such that

A−1∂eiu0 ≤ ∂eju0 ≤ A∂eiu0 in Rn.

To prove (4.10), let us define

κ∗ := sup{κ > 0 : ∂eiu0 ≥ κ∂eju0 in Rn}, w := (∂ei − κ∗∂ej )u0 ≥ 0,

and assume by contradiction that w ̸≡ 0. Note that by definition of w, we have w = ∂ei−κ∗eju0, and
therefore

Lw = 0 in Rn \ Σ,
w = 0 in Σ,

w > 0 in Rn \ Σ,
∂ei−κ∗ejw ≥ 0 in Rn.

The first and second property follow by the assumptions on the blow-up u0. The third property follows
from the weak Harnack inequality since w ≥ 0 by definition and w ̸≡ 0. The fourth property follows
by convexity of u0.
We distinguish now between the following two cases:

either ei − κ∗ej ̸∈ Σ, or ei − κ∗ej ∈ Σ.
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In case ei − κ∗ej ̸∈ Σ we can apply Corollary 4.7 to w, ∂eju0, which yields that there is B > 0 such
that

B−1w ≤ ∂eju0 ≤ Bw in Rn.

Therefore,

∂eiu0 ≥ (κ∗ +B−1)∂eju0 in Rn,

which contradicts the definition of κ∗. Consequently, we must have w ≡ 0, which yields that ∂eiu0 =
κ∗∂eju0 and proves (4.10), and therefore also (4.9).

On the other hand, in case ei − κ∗ej ∈ Σ, let us show that it must be

{t(ei − κ∗ej) : t ∈ R} ⊂ Σ. (4.11)

In fact, if we had −(ei − κ∗ej) ̸∈ Σ, then −t(ei − κ∗ej) ̸∈ Σ and thus w(−t(ei − κ∗ej)) > 0 for every
t > 0, while t(ei−κ∗ej) ∈ Σ and thus w(t(ei−κ∗ej)) = 0 for any t > 0. This contradicts ∂ei−κ∗ejw ≥ 0.
Therefore, we have ±(ei − κ∗ej) ∈ Σ, which yields (4.11).
By convexity of u0, (4.11) implies that 0 = ∂ei−κ∗eju0 = ∂eiu0−κ∗∂eju0 (see [6, Lemma 4.3]). However,
this in turn yields (4.10), and therefore also (4.9), as desired.

We have established (4.9), which proves that there exist 1 ≤ k ≤ n and κi ≥ 0 such that for any
1 ≤ i ≤ n with i ̸= k it holds ∂ei−κieku0 = 0 in Rn, which implies that u0 is invariant in n − 1
directions, i.e. that there exist e ∈ Sn−1 and ϕ ∈ C1(R) such that u0(x) = ϕ(x · e). In particular,
Σ = {e · x ≤ 0} since 0 ∈ ∂Σ.
Next, due to [19, Lemma B.1.5], we have (−∆)sRϕ

′(x · e) = 0 in {x · e > 0} and it holds ϕ′(x · e) = 0
in {x · e ≤ 0}. Moreover, ϕ′(t) ≤ C(1 + ts+α). Thus, we can apply [19, Theorem 1.10.15] and obtain
that ϕ′(x · e) = a(x · e)s+ and therefore

u0(x) = ϕ(x · e) = a

1 + s
(x · e)1+s

+ , for some a ≥ 0,

which proves the desired result in case Σ = {u0 = 0} is a closed convex cone in Rn with non-empty
interior and vertex at 0. □

Now, we are in the position to give the

Proof of Theorem 1.2. First, let us assume that u0 ̸≡ 0, since otherwise there is nothing to prove. Let
us observe that {u0 = 0} ⊂ Rn is a convex set with 0 ∈ ∂{u0 = 0}.

By proceeding as in the proof of [19, Proposition 4.4.3], we can find a sequence Rm ↗ ∞ such that

um(x) =
u0(Rmx)

Rm∥∇u0∥L∞(BRm )

satisfies in the distributional sense

L(Dhum) ≥ 0 in {um > 0} = R−1
m {u0 > 0},

∥∇um∥L∞(BR) ≤ 2Rs+α ∀R ≥ 1, ∥∇um∥L∞(B1) = 1.

Moreover, by convexity of um, and the C1,τ -estimates from Proposition 3.8, they converge locally
uniformly (up to a subsequence) to a function u∞ ∈ C0,1(Rn) satisfying

u∞ ≥ 0, and D2u∞ ≥ 0 in Rn,

L(∇u∞) = 0, and L(Dhu∞) ≥ 0 in Rn \ Σ in distributional sense,

∥∇u∞∥L∞(BR) ≤ 2Rs+α ∀R ≥ 1, ∥∇u∞∥L∞(B1) ≥ 1,

where Σ = ∩mR
−1
m {u0 = 0} denotes the limiting closed convex cone of the blow-down sequence. Note

that we used the stability of distributional solutions (see [19, Proposition 2.2.31]).
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In case Σ is a closed, convex cone with empty interior, we claim that in the distributional sense

L(Dhu∞) = 0 in Rn, ∀h ∈ Rn. (4.12)

From here, by the Liouville theorem with growth for distributional solutions (see [19, Corollary 2.4.13]),
it turns out that u∞ = 0, which is a contradiction. Therefore, we can rule out that Σ is a closed,
convex cone with empty interior.
Let us prove that (4.12) holds true: First, note that there exists e ∈ Sn−1 such that Σ ⊂ {x ∈ Rn :
e · x = 0}. Moreover, observe that Dhu∞ ∈ C2s+1−ε

loc (Rn \ Σ) by application of interior regularity
estimates (see [19, Theorem 2.4.2]) to ∇u∞, and using also the growth control on ∇u∞. Therefore,
L(Dhu∞) ≥ 0 in a pointwise sense in Rn \ Σ. Next, let us introduce ϕ(x) = exp(−|e · x|1−θ) for
some θ ∈ (max{0, 1 − 2s}, 1 − s). Then, according to [19, Lemma B.1.1 and Lemma B.1.2], we have
Lϕ ≥ −C in Rn, and moreover Lϕ = +∞ in Σ in a pointwise way. The proof carries over to our
more general class of operators since ϕ is one-dimensional (see the proof of [19, Lemma 2.5.2] and use
(G≤)). Moreover, note that since u∞ ∈ C0,1(Rn), the function ϕε = Dhu∞ + εϕ has a positive cusp
on {x · e = 0} and hence also satisfies Lϕε = +∞ in Σ in a pointwise sense. Thus

Lϕε ≥ −Cε in Rn (4.13)

pointwise, and by Lemma 2.8, (4.13) also holds true in the distributional sense. Moreover, note that
since ϕε → Dhu∞ in L1

loc(Rn), we have∫
Rn

(Lη)ϕε dx→
∫
Rn

(Lη)Dhu∞ dx

by the same arguments as in the proof of [19, Proposition 2.2.31], and therefore we have in the
distributional sense

L(Dhu∞) ≥ 0 in Rn, ∀h ∈ Rn.

By taking−h instead of h, and employing the same arguments as before, we obtain that L(−D−hu∞) ≥
0 in Rn, which yields (4.12), as desired. Thus, as explained before, the case where Σ is a closed, convex
cone with empty interior cannot happen.

Alternatively, the limiting set Σ is a closed convex cone with non-empty interior and we have

Σ = {u∞ = 0} = ∩mR
−1
m {u0 = 0}. (4.14)

In that case, by Lemma 4.8, we obtain

u∞(x) = a∞(x · e)1+s
+ , for some a∞ ≥ 0.

In particular, Σ = {x ∈ Rn : x ·e ≤ 0}. Thus, due to (4.14), it must be {u0 = 0} = {x ∈ Rn : x ·e ≤ 0},
so also {u0 = 0} is a closed convex cone with non-empty interior. An application of Lemma 4.8 to u0
yields

u0(x) = a0(x · e)1+s
+ , for some a0 ≥ 0,

which concludes the proof. □

4.4. Quantitative closeness to the blow-up. As a direct consequence of the classification of blow-
ups, we have the following quantitative estimate on closeness of a solution to the obstacle problem to
the blow-up. This result is a counterpart of [19, Proposition 4.4.14] (see also [21, Theorem 2.2]).

Corollary 4.9. Assume (G≥) and (Kp
≤) for some p > n

2s . Let K be homogeneous, α ∈ (0,min{s, 1−s})
and let ε0 > 0 and R0 > 1. Then, there is η > 0, depending only on n, s, λ,Λ, α, ε0, R0, such that the
following holds true:
Let u ∈ C0,1(Rn) such that
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(i) min{Lu− f, u} = 0 in Rn in the distributional sense, where |∇f | ≤ η,
(ii) u ≥ 0 and D2u ≥ −ηId in Rn with 0 ∈ ∂{u > 0},
(iii) ∥∇u∥L∞(BR) ≤ Rs+α for any R ≥ 1.

Then, it holds

∥u− κ(x · e)1+s
+ ∥C0,1(BR0

) ≤ ε0 (4.15)

for some e ∈ Sn−1 and κ ≥ 0.

Proof. We assume by contradiction that there is no η > 0 for which the result holds. Then, there are
ηk → 0, Lk satisfying (G≥), (K

p
≤), fk, uk satisfying (i),(ii),(iii) with η = ηk but violating (4.15) for

any e ∈ Sn−1 and κ ≥ 0. By Proposition 3.8, uk locally converges in C1,τ to a limiting u0 ∈ C1,τ up
to a subsequence. By the stability of distributional solutions (see [19, Proposition 2.2.31]), there is L
satisfying (G≥), (K

p
≤) such that u0 satisfies (i),(ii),(iii) with η = 0. Thus, by Theorem 1.2, it must be

u0(x) = κ(x · e)1+s
+ for some κ, e, a contradiction. □

5. Regularity of the free boundary

The main result of this article are the regularity of the free boundary near regular points and the
optimal C1,s-regularity of solutions. They are summarized in Theorem 1.3, which we will prove in this
section.
As we explained before, the main tool in the proof of Theorem 1.3, once the classification of blow-ups
is established, is the quantitative estimate Theorem 1.1, which we will prove first.

5.1. Lipschitz regularity. As a first step towards proving Theorem 1.1, we establish Lipschitz reg-
ularity of the free boundary near regular points. In fact, we will prove slightly more, namely that the
free boundary is Lipschitz with an arbitrarily small constant. Let us give the following definition:

Definition 5.1 (Lipschitz domain). Let ρ0 > 0. We say that a domain Ω ⊂ Rn is a Lipschitz domain
in Bρ0 with constant less than δ, if there are g : Rn−1 → R, e ∈ Sn−1 such that

Ω ∩Bρ0 = {x̄n > g(x̄1, x̄2, . . . , x̄n−1)} ∩Bρ0 ,

where x̄ = Rx for some rotation R with Re = en, and

∥g∥C0,1(Bρ0 )
≤ δ.

The following is the main result of this subsection. It states that the free boundary is a Lipschitz
domain with a small constant once the solution is close enough to the blow-up. Such result was already
known for operators whose kernel is comparable to the fractional Laplacian (see [19, Lemma 4.4.13
and Proposition 4.4.15]). In our case, the proof needs to be modified in order to deal with kernels
that are possibly degenerate in some directions.

Lemma 5.2. Assume (G≥) and (G≤). Let K be homogeneous and α ∈ (0,min{s, 1 − s}). For any
κ0 > 0, ρ0 > 0, and δ < ρ0 there are ε > 0, R0 > 1 depending only on λ,Λ, n, s, δ, ρ0, κ0 such that the
following holds true:
Let u ∈ C0,1(Rn) be such that

(i) min{Lu− f, u} = 0 in BR0, in the distributional sense, where |∇f | ≤ ε,
(ii) 0 ∈ ∂{u > 0}, and D2u ≥ −εId in BR0,
(iii) ∥∇u∥L∞(BR) ≤ Rs+α for any R ≥ R0,

(iv) ∥u− κ(x · e)1+s
+ ∥C0,1(BR0

) ≤ ε for some κ ≥ κ0 and e ∈ Sn−1.
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Then, for any e′ ∈ Sn−1 with e · e′ ≥ δ, it holds

∂e′u ≥ 0 in Bρ0 , (5.1)

and {u > 0} ∩Bρ0 is Lipschitz with constant less than cδ for some c = c(n) > 0.
Moreover

∂eu ≥ c(δρ0)
s in {x ∈ Rn : x · e ≥ δρ0} ∩BR0 ⊂ {u > 0} (5.2)

for some c > 0, depending only on κ0, ε, δ.

Proof. We define u0(x) = κ(x · e)1+s
+ and observe that for any e′ ∈ Sn−1, we have ∂e′u0(x) = (1 +

s)κ(e · e′)(x · e)s+. Therefore, whenever δ > 0 and e · e′ > δ, it holds

∂e′u0 ≥ 0 in Rn, ∂e′u0 ≥ κ0δ
1+s in {x · e ≥ δ}.

Let us choose ε ≤ κ0
2 δ

1+s. Then, since

|∂e′u− ∂e′u0| ≤ ε in BR0 , (5.3)

we obtain that w := 1BR0
∂e′u satisfies

|Lw| ≤ ε+ cRα−s
0 in BR0/2 \ E in the distributional sense,

w ≡ 0 in E ∪ (Rn \BR0),

w ≥ −ε in BR0 ,

w ≥ κ0
2
δ1+s in {x · e ≥ δ} ∩BR0 ,

where we set E = {u = 0}. The first property follows from (iii), (G≤) and Lemma 2.2, and the stability
of distributional solutions (see [19, Proposition 2.2.31]) applied to Dhu. The second property follows
from Proposition 3.8.

Now we turn to the actual proof of (5.1). We claim that for any ρ0 > 0 and δ < ρ0, we can find
R0 > 1 and ε > 0 such that w ≥ 0 in Bρ0 , where R0, ε depend only on λ,Λ, n, s, δ, ρ0, and κ0.
To prove the claim, we follow the proof of [19, Lemma 4.4.13]: First, we choose a radial bump function
ψ ∈ C∞

c (B2) with ψ ≡ 1 in B1, 0 ≤ ψ ≤ 1, and set for t > 0

ψt(x) = −ε− t+ εψ(x/ρ0).

Let us assume that the claim is false. In that case, there exist z ∈ Bρ0 \ E and t > 0 such that ψt

touches w from below at z. Note that therefore, by Lemma 2.7 it holds Lw(z) ≥ −ε in the pointwise
sense (∂e′u is Hölder-continuous by Proposition 3.8). Clearly, we have the following estimate

L(w − ψt)(z) ≥ Lw(z)− |Lψt(z)| ≥ −ε− cRα−s
0 − c2ερ

−2s
0 .

Note that we used (G≤) and the properties of ψ in order to estimate |Lψt(z)| ≤ c2ερ
−2s
0 . On the

other hand, we have, using that (w − ψt)(z) = 0, w ≥ ψt and ψt ≤ 0:

L(w − ψt)(z) = −
∫
Rn

(w − ψt)(x)K(z − x) dx

≤ −
∫
{x·e≥δ}∩BR0

(w − ψt)(x)K(z − x) dx

≤ −κ0
2
δ1+s

∫
{x·e≥δ}∩BR0

K(z − x) dx

≤ −κ0
2
δ1+sC,
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where C = C(κ0, δ, λ,Λ, s, n, ρ0) > 0. Let us explain how to prove the last estimate. First of all, due
to Lemma 2.3, there exists δ0 > 0 depending only on n, s, λ,Λ such that for any r > 0∫

{
z−x
|z−x| ·e≥δ0

}
∩(B2r(z)\Br(z))

K(z − x) dx ≥ cr−2s.

Let us take any δ ≤ ρ0. Clearly, there exists r > 0 depending only on ρ0, δ0 such that for any z ∈ Bρ0

it holds: {
z − x

|z − x|
· e ≥ δ0

}
∩ (B2r(z) \Br(z)) ⊂ {x · e ≥ δ} ∩ (B2r(z) \Br(z)).

Upon choosing R0 so large that B2r(z) ⊂ BR0 (this choice only depends on ρ0), we obtain

−κ0
2
δ1+s

∫
{x·e≥δ}∩BR0

K(z − x) dx ≤ −κ0
2
δ1+s

∫
{

z−x
|z−x| ·e≥δ0

}
∩(B2r(z)\Br(z))

K(z − x) dx

≤ −cκ0
2
δ1+sr−2s,

as desired.
Having at hand the two-sided estimate for L(w − ψt)(z), we obtain a contradiction upon taking the
limit R0 → ∞ and ε→ 0. This implies (5.1), as claimed.

Thus, by (5.1), {u > 0}∩Bρ0 is a Lipschitz epigraph in direction e with Lipschitz constant bounded
by cδ. Indeed, to see this, we can follow the proof of [19, Proposition 4.4.15] and obtain

u = 0 in Σ−,

u > 0 in Σ+,

where

Σ± = {x ∈ Bρ0 : x = x0 ± tτ, τ ∈ Sn−1, τ · e ≥ δ, t > 0}

for any x0 ∈ Bρ0 ∩ ∂{u > 0}. This implies that ∂{u > 0} ∩Bρ0 satisfies the interior and exterior cone
condition with explicit cones Σ±, and therefore ∂{u > 0} ∩ Bρ0 is Lipschitz with constant bounded
by cδ.

The last claim, namely (5.2), follows from the observation that for x ∈ {x ∈ Rn : x · e ≥ δρ0} ∩BR0

it holds

∂eu0(x) = (1 + s)κ(x · e)s+ ≥ κ0(δρ0)
s.

Moreover, by choosing ε < κ0
2 (δρ0)

s (making it smaller, if necessary) and (5.3), we obtain

∂eu(x) ≥ κ0(δρ0)
s − ε ≥ κ0

2
(δρ0)

s,

as desired. □

5.2. Uniform non-degeneracy near the free boundary. We already know that the free boundary
is Lipschitz with a small enough constant. In order to prove the C1,γ-regularity of the free boundary
(see Theorem 1.1), we are lacking control on the non-degeneracy of the solutions close to the free
boundary. This property is established in Lemma 5.4. A key ingredient in its proof is the existence of
suitable barrier functions (see [37]):
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Lemma 5.3. Assume (G≥) and (G≤). Let K be homogeneous. Then, for every θ ∈ (0, s) there is
η > 0, depending only on n, s, λ,Λ, θ, such that the functions

Φ(x) =

(
e · x− η|x|

[
1−

(
x

|x|
· e
)2
])s+θ

+

,

Ψ(x) =

(
e · x+ η|x|

[
1−

(
x

|x|
· e
)2
])s−θ

+

satisfy for some constant c > 0, depending only on n, s, λ,Λ, θ,{
LΦ ≤ −cdθ−s in Cη,
Φ = 0 in Rn \ Cη,

{
LΨ ≥ cd−θ−s in C−η,

Ψ = 0 in Rn \ C−η,

where

C±η =

{
x ∈ Rn :

x

|x|
· e > ±η

[
1−

(
x

|x|
· e
)2
]}

.

The barriers Φ,Ψ have been introduced in [37]. Since the cones C±η merely have a Lipschitz
boundary, one cannot expect the corresponding barriers to have homogeneity s, however, for any
θ ∈ (0, 1), one can find barriers with homogeneity s ± θ if the cones C±η are close enough to a half-
space, i.e. have a small enough Lipschitz constant.
In the sequel, we shortly explain how the proof of [19, Lemma 4.1] can be adapted to general kernels
satisfying only (G≥) and (G≤).

Proof. We only explain how to prove the result for Φ. By homogeneity, it is enough to prove that
LΦ ≤ −c on points belonging to e+ ∂Cη for some c > 0. Given P ∈ ∂Cη, we define

ΦP,η(x) := Φ(P + e+ x) = (1 + e · x− ηϕP (x))
s+θ
+ ,

where ϕP is a function satisfying ϕP (0) = 0, |∇ϕP (x)| ≤ C for any x ∈ Rn \{−P − e}, |D2ϕP (x)| ≤ C
for any x ∈ B1/2, |ϕP (x)| ≤ c|x| for |x| ≥ 1/2. Moreover, note that

∥ΦP,η − (1 + e·)s+θ
+ ∥C2(B1/2)

→ 0. (5.4)

Note that the proof is complete, once we show that LΦP,η(0) ≤ −c. This property follows, once we
verify the following two properties:

L(ΦP,η)(0) → L((1 + e·)s+θ
+ )(0), as η ↘ 0, (5.5)

L((1 + e·)s+θ
+ )(0) ≤ −c, (5.6)

where c = c(s, θ, λ,Λ) > 0. To prove (5.5),

|L(ΦP,η)(0)− L((1 + e·)s+θ
+ )(0)| =

∣∣∣∣∫
Rn

[ΦP,η(y)− (1 + e · y)s+θ
+ ]K(y) dy

∣∣∣∣
≤ ∥ΦP,η − (1 + e·)s+θ

+ ∥C2(B1/2)

∫
B1/2

|y|2K(y)dy + C

∫
Rn\B1/2

|ηϕP (y)|s+θK(y) dy

≤ ∥ΦP,η − (1 + e·)s+θ
+ ∥C2(B1/2)

∫
B1/2

|y|2K(y)dy + Cηs+θ

∫
Rn\B1/2

|y|s+θK(y) dy

≤ C(∥ΦP,η − (1 + e·)s+θ
+ ∥C2(B1/2)

+ ηs+θ)

→ 0 as η → 0,
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where we used (5.4), and in the last step we applied (G≤) and Lemma 2.2. To prove (5.6), we use the
symmetry and homogeneity of K to compute

L((1 + e·)s+θ
+ )(0) ≤ −c,

for some c > 0, depending only on n, s, λ,Λ, following the arguments in [19, Lemma B.1.6]. □

We are now in the position to establish the non-degeneracy close to the free boundary.

Lemma 5.4. Assume (G≥) and (G≤). Let K be homogeneous, α ∈ (0,min{s, 1− s}), and θ ∈ (0, α).
For any κ0 > 0 there is ρ > 1, depending only on n, s, α, λ,Λ, κ0, θ, such that for any ρ0 > ρ, there
are ε > 0, R0 > 1, depending only on λ,Λ, n, s, ρ0, κ0, θ, such that the following holds true:
Let u ∈ C0,1(Rn) be such that

(i) min{Lu− f, u} = 0 in BR0 in the distributional sense, where |∇f | ≤ ε,
(ii) 0 ∈ ∂{u > 0}, and D2u ≥ −εId in BR0,
(iii) ∥∇u∥L∞(BR) ≤ Rs+α for any R ≥ R0,

(iv) ∥u− κ(x · e)1+s
+ ∥C0,1(BR0

) ≤ ε for some κ ≥ κ0 and e ∈ Sn−1.

Then, we have

∂eu ≥ cds+θ in Bρ0 (5.7)

for some constant c > 0, depending only on n, s, λ,Λ, κ0, θ.

Proof. Let θ ∈ (0, 1) be given and η be as in Lemma 5.3. By Lemma 5.2, for any ρ0 > 0 and δ < ρ0
there are ε < 1, R0 > 1, depending only on λ,Λ, n, s, ρ0, κ0, θ, such that for any x0 ∈ ∂{u > 0} ∩Bρ0

(x0 + Cη) ∩B2ρ0(x0) ⊂ {u > 0} ∩B4ρ0 . (5.8)

Moreover, it holds

∂eu ≥ 0 in B4ρ0 ,

∂eu ≥ c1(δρ0)
s in {x ∈ Rn : x · e ≥ δρ0} ∩B4ρ0 ⊂ {u > 0}

for some c1 > 0 depending only on κ0. Moreover we observe that (iii) and (iv) imply

∥∇u∥L∞(BR) ≤ C0R
s+α ∀R ≥ 1 (5.9)

for some C0 > 0, depending only on κ, s. Next, we define v = u1B4ρ0
. We have for any x0 ∈ ∂{v >

0} ∩Bρ0/4, using (5.8), (2.2), as well as the previous three displays:

|L∂ev| ≤ (ε+ C1ρ
α−s
0 ) in (x0 + Cη) ∩Bρ0 ,

∂ev ≥ 0 in B4ρ0 ,

∂ev ≥ c1(δρ0)
s in {x ∈ Rn : x · e ≥ δρ0} ∩B4ρ0 ,

where C1 > 0 depends only on n, s, κ, λ,Λ. Moreover, note that the PDE in the first property holds
true in the distributional sense, and by Proposition 3.8, we know that ∂ev ∈ C(Bρ0).

In particular, given any ρ0 > 1 we can make δρ0 so small (by choosing δ = cρ−1
0 for some small enough

c > 0 depending on η, λ,Λ) such that

∂ev ≥ c2 in (x0 + Cη) ∩ (B4ρ0 \Bρ0),

c2 ≤
∫
{x∈Rn:x·e≥δρ0}∩(B4ρ0\B3ρ0 )

K(z − y) dy = −L(1{x∈Rn:x·e≥δρ0}∩(B4ρ0\B3ρ0 )
)(z) ∀z ∈ (x0 + Cη) ∩Bρ0 ,
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where c2 > 0 depends only on n, s, λ,Λ, κ0, η, and we used Lemma 2.3 in order to establish the second
property. Now, we define

π(x) =
Φ(x− x0)

∥Φ(· − x0)∥L∞(B4ρ0 )
1B4ρ0

(x) + C31{x∈Rn:x·e≥δρ0}∩(B4ρ0\B3ρ0 )
(x),

and observe that by Lemma 5.3

Lπ =
L(Φ(x− x0)1B4ρ0

)

∥Φ(· − x0)∥L∞(B4ρ0 )
+ C3L(1{x∈Rn:x·e≥δρ0}∩(B4ρ0\B3ρ0 )

)

≤ c3 − c2C3

≤ −1 in (x0 + Cη) ∩Bρ0 ,

upon choosing C3 > 1 large enough depending only on n, s, λ,Λ.
We define Π(x) = c2π(x)/(1+C3), and choose ρ0 > 1 large enough (largeness depends on n, s, λ,Λ, κ0, η)
(and making ε < 1 smaller, if necessary) such that (ε + C1ρ

α−s
0 ) ≤ c2/(1 + C3). Then, we have the

following properties:

LΠ(x) ≤ −c2/(1 + C3) ≤ −(ε+ C1ρ
α−s
0 ) ≤ L∂ev(x) ∀x ∈ (x0 + Cη) ∩Bρ0 ,

Π(x) ≤ c2 ≤ ∂ev(x) ∀x ∈ (x0 + Cη) ∩ (B4ρ0 \Bρ0),

Π(x) = 0 = ∂ev(x) ∀x ∈ (x0 + Cη) ∩ (Rn \B4ρ0),

Π(x) = 0 ≤ ∂ev(x) ∀x ∈ [Rn \ (x0 + Cη)] \ [{x ∈ Rn : x · e ≥ δρ0} ∩ (B4ρ0 \B3ρ0)],

Π(x) ≤ c2 ≤ ∂ev(x) ∀x ∈ [Rn \ (x0 + Cη)] ∩ [{x ∈ Rn : x · e ≥ δρ0} ∩ (B4ρ0 \B3ρ0)].

Altogether, we deduce from the comparison principle for continuous distributional solutions (see [19,
Corollary 2.3.8]) that

∂ev(x) ≥ Π(x),

which in particular means that for any t ∈ (0, 1) by the homogeneity of Φ:

∂ev(x0 + te) ≥ cts+θ,

where c > 0 depends on n, s, λ, λ, κ0, η, which implies (5.7). This concludes the proof. □

5.3. Proof of Theorem 1.1. The goal of this section is to prove Theorem 1.1. First, we establish
the following Cs−θ-estimate up to the boundary, which holds true for domains with sufficiently small
Lipschitz constants. This result is reminiscent of [37, Lemma 5.2].

Lemma 5.5. Assume (G≥) and (G≤). Let K be homogeneous. Let θ ∈ (0, s) and K0 > 0. Let
δ ∈ (0, 1) and Ω ⊂ Rn be a Lipschitz domain in B1 with constant less than δ. Let v ∈ C(B1) be a
distributional solution to

|Lv| ≤ K0 in Ω ∩B1,

v = 0 in B1 \ Ω,

and assume that

∥v∥L∞(BR) ≤ K0R
2s−θ ∀R ≥ 1.

Then, there is δ0 > 0, depending only on n, s, λ,Λ, θ, such that if δ ≤ δ0:

∥v∥Cs−θ(B1/2)
≤ CK0,

where C > 0 depends only on n, s, λ,Λ, θ.
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Proof. First, let us consider u = v1B2 and observe that (after a normalization) u satisfies

|Lu| ≤ 1 in Ω ∩B1,

u = 0 in B1 \ Ω,
u = 0 in Rn \B2,

∥u∥L∞(Rn) ≤ 1.

We claim that for any x0 ∈ ∂Ω ∩B1/2 it holds

|u(x)| ≤ C|x− x0|s−θ in Ω ∩B1/4(x0). (5.10)

To prove (5.10), let us take η ∈ (0, 1) as in Lemma 5.3, and observe that by the assumption on Ω, if
the Lipschitz constant is small enough, depending on η, it holds

B1/2(x0) ∩ Ω ⊂ B1/2(x0) ∩ (x0 + C−η).

Moreover, let us define Ψ as the function in Lemma 5.3 with 2η and set

Π = CΨ(· − x0) + 1B2(x0)\B1/2(x0),

where we choose C > 0 large enough, such that

LΠ ≥ d−θ−s
x0+C−η

≥ 1 in B1/4(x0) ∩ Ω. (5.11)

Note that by (G≤) it is easily seen that L1B2(x0)\B1/2(x0) ≥ −c in B1/4(x0) for some constant c > 0,

depending only on n, s, λ,Λ, and therefore one can find C > 0 satisfying (5.11).
Then, it holds

LΠ ≥ 1 ≥ Lu in B1/4(x0) ∩ Ω.

Moreover, note that

Ψ(x) ≥ c|x|s−θ ∀x ∈ C−η,

where c > 0 depends on η. Therefore, we have upon choosing C > 0 large enough:

Π ≥ 1 ≥ u in (B1/2(x0) \B1/4(x0)) ∩ Ω.

Moreover, by construction (and since B1/2(x0) \ Ω ⊂ B1 \ Ω)

Π ≥ 0 = u in (B1/2(x0) \ Ω) ∪ (Rn \B2(x0)),

Π ≥ 1 ≥ u in B2(x0) \B1/2(x0).

All in all, we can apply the comparison principle (see [19, Corollary 2.3.8]) and obtain

u ≤ Π in Rn.

In particular, since Π(x) = Φ(x− x0) ≤ c|x− x0|s−θ for any x ∈ Ω∩B1/2(x0), we obtain (5.10) (after
repeating all the aforementioned arguments with −Π), as desired.
Next, we observe that by interior estimates (see [19, Theorem 2.4.3]) combined with a standard
rescaling argument (see [19, Proof of Proposition 2.5.4]) it holds for any x ∈ Ω ∩B1/2

[u]Cs−θ(Bd(x)/2(x))
≤ Cdθ−s(x)(∥u∥L∞(Bd(x)(x)) + ds−θ(x)) ≤ C

for some constant C > 0, where we used (5.10) in the last step. Combining this estimate with (5.10)
yields the desired result. □
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Remark 5.6. In the situation of Theorem 1.1 it holds u ∈ C1+s−ε̃ for any ε̃ ∈ (0, 1) if ε > 0 is small
enough (depending on ε̃). This follows by application of Lemma 5.5 with v = ∇u, which is possible
due to Proposition 3.8.

Next, we observe that the pointwise boundary regularity estimate [37, Proposition 5.4] also holds
true in our setup. This is because its proof is merely based on blow-up arguments and the Liouville
theorem on a half-space, which remain true for general stable operators.

Lemma 5.7 (see Proposition 5.4 in [37]). Assume (G≥) and (G≤). Let K be homogeneous. Let
α ∈ (0, s) and C0 ≥ 1. Let δ ∈ (0, 1) and Ω ⊂ Rn be a Lipschitz domain in B1/δ with constant less
than δ.

Then, there is δ0 > 0 such that the following holds true for any δ < δ0: If u, v ∈ L∞
s+α(Rn) are

distributional solutions to

Lv1, Lv2 ≤ δ in B1/δ ∩ Ω,

v1 = v2 = 0 in B1/δ \ Ω,
∥v1∥L∞(BR) + ∥v2∥L∞(BR) ≤ C0R

s+α ∀R ≥ 1,

and

v2 ≥ 0 in B1, C−1
0 ≤ sup

B1

v2 ≤ C0.

Then, there is K ∈ R with |K| ≤ C such that

|v1(x)−Kv2(x)| ≤ C|x|s+α ∀x ∈ B1,

where C > 0 depends only on δ, C0, α, s,Λ, λ, n.

Proof. The proof goes exactly as in [37, Proposition 5.4].
Note that although the statement in [37] is written for a so-called improving Lipschitz domain Ω, this
property is never used in the proof. Instead, it suffices for Ω to be Lipschitz in a large enough ball
with a small enough Lipschitz constant. This can be achieved by proving the main estimate (5.14) in
[37] for δ > 0 small enough (where δ must be at least so small that [37, Lemma 5.3] is applicable).
As in [37] one proves (5.14) by contradiction, assuming that there are sequences Ωj with Lipschitz
parameter δj → 0 such that (5.14) fails. Then, clearly Ωj (and therefore also jΩj) converges to a
half-space, as j → ∞, which allows to carry out the proof as in [37]. See also [44, Proposition 5.1] for
an analogous proof for flat Lipschitz domains in the parabolic setting

Moreover, the statement in [37] and all the aforementioned lemmas in [37] are written for equations
with an unbounded right hand side. In our setting, we only require the result with a bounded right
hand side, however the proofs remain unchanged.
Moreover, the result in [37] is stated for viscosity solutions to fully nonlinear problems, instead of
distributional solutions to a linear equation, and for kernels that are pointwise comparable to the
one of the fractional Laplacian, instead of kernels that merely satisfy (G≥) and (G≤). However, note
that the proof of [37, Proposition 5.4] itself, but also of the auxiliary result [37, Lemma 5.3], can be
rewritten into the setup of our work without changing any of the arguments. In fact, the Liouville
theorem in a half-space (see [19, Theorem 2.6.2]) and the stability of distributional solutions (see [19,
Proposition 2.2.31]) also hold true in our setup. The same applies to the Hölder regularity up to the
boundary in Lipschitz domains, [37, Lemma 5.2], which is reproved in this article (see Lemma 5.5). □

Now, we are in the position to explain how Lemma 5.2 and Lemma 5.7 can be used to deduce
C1,γ-regularity of the free boundary:

The following proposition directly implies Theorem 1.1:
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Proposition 5.8. Assume (G≥) and (G≤). Let K be homogeneous, α ∈ (0,min{s, 1−s}) and κ0 > 0.
Then, there are ε > 0, R0 > 1, depending only on n, s, λ,Λ, α, κ0, such that the following holds true:
Let u ∈ C0,1(Rn) be such that

(i) min{Lu− f, u} = 0 in BR0 in the distributional sense, where |∇f | ≤ ε,
(ii) D2u ≥ −εId in BR0 with 0 ∈ ∂{u > 0},
(iii) ∥∇u∥L∞(BR) ≤ Rs+α for any R ≥ R0,

(iv) ∥u− κ(x · e)1+s
+ ∥C0,1(BR0

) ≤ ε for some κ ≥ κ0 and e ∈ Sn−1.

Then, the free boundary ∂{u > 0} is a C1,γ-graph in B1/2 and moreover, we have

∥∇u∥Cs(B1/2) ≤ C, ∥∇u/ds∥Cγ({u>0}∩B1/2) ≤ C,

where C > 0 depends only on n, s, λ,Λ, α, κ0, and γ > 0 depends only on n, s, λ,Λ, κ0.

Proof. We split the proof into several steps.
Step 1: Let κ0 > 0 be as in Theorem 1.1, δ0 > 0 be as in Lemma 5.7 and δ′ > 0 be as in Lemma 5.2
and ρ > 1 be as in Lemma 5.4. Let us take δ < min{δ0, ρ} and ρ0 > ρ. Moreover, recall (5.9). Then,
by Lemma 5.2, we can find ε > 0 so small and R0 > 1 so large that

{u > 0} ∩Bρ0 is Lipschitz with constant less than δ.

Moreover, by Lemma 5.4, we can find ε > 0 so small and R0 > 1 so large that (after a rotation)

∂nu ≥ cds+θ in Bρ0 (5.12)

for some θ ∈ (0, α). Finally, note that if we choose ε < δ and R0 > 1/δ, then by assumption we have
in the distributional sense:

|L(∇u)| ≤ δ in B1/δ ∩ {u > 0}, (5.13)

∇u = 0 in B1/δ \ {u > 0}, (5.14)

∥∇u∥L∞(BR) ≤ Rs+α ∀R ≥ 1. (5.15)

In particular, we obtain

C−1
0 ≤ sup

B1

∂nu ≤ C0

for some constant C0 > 0. Let us choose ε > 0 so small and R0 > 1 so large that all of the previous
properties, i.e. (5.12), (5.13), (5.14), and (5.15) hold true. Then, we can apply Lemma 5.7 and infer
that for any x0 ∈ ∂{u > 0} ∩B1/2 there exists K(x0) ∈ R with |K(x0)| ≤ C such that it holds

|∂iu(x)−K(x0)∂nu(x)| ≤ C|x− x0|s+α ∀x ∈ B1. (5.16)

Step 2: First, we prove that ∂iu/∂nu ∈ L∞({u > 0} ∩ B1). To see this, let x ∈ {u > 0} ∩ B1 and
take x0 ∈ ∂{u > 0} ∩B1 such that |x− x0| ≤ 2d(x), where d := d{u=0}. Then, we obtain∣∣∣∣ ∂iu(x)∂nu(x)

−K(x0)

∣∣∣∣ ≤ |∂iu(x)−K(x0)∂nu(x)|
|∂nu(x)|

≤ c
|x− x0|s+α

ds+θ(x)
≤ cdα−θ(x), (5.17)

where we used (5.16) and (5.12). Therefore,∣∣∣∣ ∂iu(x)∂nu(x)

∣∣∣∣ ≤ |K(x0)|+
∣∣∣∣ ∂iu(x)∂nu(x)

−K(x0)

∣∣∣∣ ≤ C + cdα−θ(x) ≤ c,

as desired.
Step 3: We are now in the position to prove that ∂iu/∂nu ∈ Cα/4({u > 0} ∩ B1). We take

x, y ∈ {u > 0} ∩ B1 and assume without loss of generality that d(y) ≤ d(x). We distinguish between
two different cases.



OBSTACLE PROBLEMS FOR NONLOCAL OPERATORS WITH SINGULAR KERNELS 37

Case 1: First, we assume that d(y) ≤ d(x) ≤ 2|x− y|. In that case, given x0, y0 ∈ ∂{u > 0} ∩B1 such
that d(x) ≤ 2|x− x0| and d(y) ≤ 2|y − y0|, we infer from (5.17):∣∣∣∣ ∂iu(x)∂nu(x)

− ∂iu(y)

∂nu(y)

∣∣∣∣ ≤ ∣∣∣∣ ∂iu(x)∂nu(x)
−K(x0)

∣∣∣∣+ ∣∣∣∣ ∂iu(y)∂nu(y)
−K(y0)

∣∣∣∣
≤ c(dα−θ(x) + dα−θ(y)) ≤ c|x− y|α−θ.

(5.18)

Second, we assume that d(x) ≥ 2|x − y|. In particular, this means that y ∈ Bd(x)/2(x). Therefore,
by (5.16), taking x0 ∈ ∂{u > 0} ∩ B1 with |x − x0| ≤ 2d(x), there exists K := K(x0) ∈ R such that
|K| ≤ C and

∥∂iu−K∂nu∥L∞(Bd(x)/2(x)) ≤ cds+α(x).

Therefore, using interior regularity estimates (see [19, Theorem 2.4.3]), we obtain

[∂iu−K∂nu]Cα−θ(Bd(x)/2(x))
≤ cds+θ(x).

Indeed, proceeding as in the proof of [19, Proof of Proposition 2.6.4]

|[∂iu−K∂nu](x)− [∂iu−K∂nu](y)|

≤ c
|x− y|α−θ

dα−θ(x)

(
∥∂iu−K∂nu∥L∞(Bd(x)/2(x))

+ ds+α(x) sup
R≥d(x)/2

∥∂iu∥L∞(BR) + ∥∂nu∥L∞(BR)

Rs+α
+ d2s(x)∥∇f∥L∞(Bd(x)/2(x))

)

≤ c
|x− y|α−θ

dα−θ(x)
ds+α(x) ≤ cds+θ(x)|x− y|α−θ,

where we made use of (5.13) and (5.15).
By combination of the previous two estimates, using also (5.12) and that ∥∂nu∥Cs−ε̃(B1) ≤ c for

any ε̃ ∈ (0, 1) due to Remark 5.6, we obtain:∣∣∣∣ ∂iu(x)∂nu(x)
− ∂iu(y)

∂nu(y)

∣∣∣∣ = ∣∣∣∣ [∂iu−K∂nu](x)

∂nu(x)
− [∂iu−K∂nu](y)

∂nu(y)

∣∣∣∣
≤
∣∣∣∣ 1

∂nu(y)
+

1

∂nu(x)

∣∣∣∣ |[∂iu−K∂nu](x)− [∂iu−K∂nu](y)|

+

∣∣∣∣ [∂iu−K∂nu](x) + [∂iu−K∂nu](y)

∂nu(x)∂nu(x)

∣∣∣∣ |∂nu(x)− ∂nu(y)|

≤ c
ds+θ(x)

ds+θ(x) + ds+θ(y)
|x− y|α−θ + c

ds+α(x)

ds+θ(x)ds+θ(y)
|x− y|s−ε̃

≤ c|x− y|α−θ + d−s+α−2θ(x)|x− y|s−ε̃

≤ c(|x− y|α−θ + |x− y|α/4),

where we used in the last step that d(y) ≥ d(x)/2, and also α − 2θ > α/2 and we chose ε̃ < α/4 so
that

d−s+α−2θ(x)|x− y|s−ε̃ ≤ d−s+α
2 (x)|x− y|s−ε̃ ≤ |x− y|

α
2
−ε̃ ≤ |x− y|α/4.

After combination with Step 2 and (5.18) we obtain that ∂iu/∂nu ∈ Cα/4({u > 0} ∩B1).
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Step 4: We have shown that for some γ ∈ (0, 1):

∥∂iu/∂nu∥Cγ({u>0}∩B1)
≤ C. (5.19)

From here, the same arguments as in [6] yield that the free boundary is C1,γ . In fact, the normal
vectors of the level set {u = t} are of the form

νi(x) =

∂iu(x)
∂nu(x)(∑n−1

j=1

(
∂ju(x)
∂nu(x)

)2
+ 1

)1/2
∀x ∈ {u = t}.

Hence, by (5.19), ∥ν∥Cγ({u=t}∩B1) ≤ C. Thus, the level sets {u = t} are uniformly C1,γ in B1.
Therefore, they converge (resp. their graphs converge) uniformly as t↘ 0 to ∂{u > 0}, which implies
that ∂{u > 0} is a C1,γ-graph in B1.
Next, we recall [14, Corollary 1.3, using that γ = s in the symmetric case]), which states that due to
the C1,γ-regularity of the free boundary,

∥∇u/ds∥Cγ0 ({u>0}∩B1/2) ≤ C

for some γ0 ∈ (0, γ] depending only on n, s, λ,Λ, γ, and C > 0, depending only on n, s, λ,Λ, α, γ. Note
that for kernels satisfying the upper bound in (K≍), this result can be found in [19, Proposition 2.6.8].
Moreover, note that by [19, Proposition 2.5.4], we have

∥∇u∥Cs(B1/2) ≤ C

for some C > 0, depending only on n, s, λ,Λ, α, κ0. Finally, observe that for the application of both
results, we used that ∇u ∈ C(B1) by Proposition 3.8 (see also [19, Remark 2.5.5]). □

Proof of Theorem 1.1. Let us apply Proposition 5.8 with v(x) = R1+su(x/R) for some R > 0. Then,
it holds

min{Lv − f̃ , v} = 0 in BR, where |∇f̃ | ≤ R−s,

D2v ≥ −Rs−1 in BR,

∥∇v∥L∞(Rn) ≤ Rs,

∥v − κ(x · e)1+s
+ ∥C0,1(BR) ≤ ε.

Next, we choose R ≥ R0 so large that R−s ≤ R0, R
s−1 ≤ R0 The desired result follows upon

application of Proposition 5.8 to v and rescaling back to u. □

5.4. Proof of Theorem 1.3. We finally give the:

Proof of Theorem 1.3. Note that by Lemma 3.5, u ∈ C0,1(Rn). Let us now denote v = u− ϕ. Then,
by [19, Lemma 2.2.27], v is also a distributional solution to min{Lv− f, v} = 0 in Rn. From here, the
proof of Theorem 1.3 follows by combination of Corollary 4.9 and Proposition 5.8 just as in the proof
of [21, Corollary 2.16] or [19, Proposition 4.5.2]. □
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