OBSTACLE PROBLEMS FOR NONLOCAL OPERATORS
WITH SINGULAR KERNELS

XAVIER ROS-OTON AND MARVIN WEIDNER

ABSTRACT. In this paper we establish optimal regularity estimates and smoothness of free boundaries
for nonlocal obstacle problems governed by a very general class of integro-differential operators with
possibly singular kernels. More precisely, in contrast to all previous known results, we are able to
treat nonlocal operators whose kernels are not necessarily pointwise comparable to the one of the
fractional Laplacian. Such operators might be very anisotropic in the sense that they “do not see”
certain directions at all, or might have substantial oscillatory behavior, causing the nonlocal Harnack
inequality to fail.

1. INTRODUCTION
The goal of this article is to study the regularity theory for nonlocal obstacle problems
min{Lu,u — ¢} =0 in R", (1.1)

where ¢ : R” — R is a smooth obstacle and L is an integro-differential operator of the form

Lu(zx) = p.v. / (u(z) — u(z +y))K(y)dy. (1.2)
The operator L is governed by its jumping kernel K : R™ — [0, co] which is assumed to be symmetric,
ie. K(y) = K(—y), and homogeneous of degree —n — 2s, where s € (0,1), i.e.

K(y) = [yl K (y/ly]). (1.3)

Due to the homogeneity of K, the operator L is a stable operator of order 2s, whose anisotropy is
governed by the action of K on the unit sphere S*~ 1.

1.1. Background. Obstacle problems of the type — arise naturally in probability and math-
ematical finance (optimal stopping for Lévy processes, pricing of options), as well as in models of
interacting energies in physical, biological, and material sciences; see [19, Chapter 4] for a brief de-
scription of these models.

The regularity theory for obstacle problems for integro-differential operators was first
developed in [43] 2, [7] for the fractional Laplacian. The main results of Caffarelli-Salsa-Silvestre may
be summarized as follows: When L = (—A)?®, it holds:

(1) Solutions u to (1.1)) are C™*. This regularity is optimal.
(2) The free boundary d{u > ¢} splits into regular and degenerate points.
(2a) Regular points x( are those for which the following holds:

sup (u—¢) =< r'™?,

Br(z0)
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and in addition
(u—¢)(xo+71T) ros0

)l—i-s
lu — @l oo (B, (20)) *

for some e e S"L.

(x-e

Moreover, the set of regular points is an open subset of the free boundary, and near those
points the free boundary is C7.
(2b) Degenerate points z( are those for which the following holds:

0< sup (u—¢) SrT  for some a > 0.
By (o)

The case of the fractional Laplacian (—A)® is quite special, because one can use the extension

problem for this operator, making the obstacle problem for the fractional Laplacian equivalent to
a (weighted) thin obstacle problem in R?fl. The identification with a local problem gives access
to various tools, such as monotonicity formulas, which are known to be very useful in the proof of
regularity results, such as (1) and (2). We refer to [23], [35], [32], [28], [24], [22], [17], [12], [11], [L6],
[34], [41], [18], and [20] for further results on the obstacle problem for the fractional Laplacian and
variants thereof, including higher regularity of free boundaries, and fine structure results for degenerate
points.

The analysis of becomes significantly more delicate in case L is anisotropic, in the sense that it
can neither be reduced to the fractional Laplacian nor be related to an equivalent local problem. This
requires the application of new tools in order to study the regularity theory for . Recently, in [6]
and [21], new techniques have been developed to prove (1) and (2) for solutions to obstacle problems
governed by nonlocal operators L with kernels K that are pointwise comparable to the one of
the fractional Laplacian, i.e.,

0<A<K@O) <A VoeS L (K-)
We refer to [5], [1], [39], and [40], for further results on obstacle problems ((1.1]) for nonlocal operators

satisfying .

Let us point out that, despite the significant recent advances in the theory, so far nothing is known
about the regularity of solutions or free boundaries for the nonlocal obstacle problem if i
violated. Some important examples of nonlocal operators of the form — whose kernels are not
pointwise comparable to the one of the fractional Laplacian are:

Liu(z) = p.v./c (u(z) — u(z +y)) ’y‘iz?s, C double-cone with vertex at 0,
Lou(z) = p.v. /n (u(x) — u(z + y))w dy, with a € LP(S"1)\ L>®(S" 1),

Lau(z) = (=03,z,)"u(@) + - + (=03 ) u(2).
Note that the corresponding jumping kernels

Kl(e) = ﬂc(e), KQ(Q) = a(@), K3 := 5iel + 5ie2 + -+ 5ien

clearly violate since they are either not fully supported, or possess singularities on S*~!. More-
over, in the absence of , jumping kernels can exhibit oscillatory behavior leading to the failure
of the Harnack inequality; see [3], [4].

The purpose of this article is precisely to investigate the nonlocal obstacle problem for operators
that violate , and to establish for the first time optimal Cl*-regularity estimates for solutions
(1), as well as the regularity of the free boundary near regular points (2) in such general setting.
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More precisely, we will consider general stable operators of the type (1.2)-(1.3]); see [306], 19]. The
ellipticity conditions then become

inf le- 02K (0)d6 > X > 0, (G>)

eeS"—1 Jgn—1
K| L1 gn—1y < A (G<)

These conditions are satisfied for any K|sn—1 € L*(S*71)\ {0}. In fact, in some of our results we could
even allow K to be a purely singular measure as in L3 above; however for simplicity of notation we
assume that K is absolutely continuous.
Note that and are natural conditions in the sense that they are equivalent to the com-
parability of the Fourier symbols of L and (—A)?; see Lemma below.
In some of our results, we need a slightly stronger assumption on K, namely
K ()l Legn-1) < A (K%)

with p > 1.

1.2. Main results. Our first main result is the following quantitative estimate which states that
closeness of the solution to a blow-up of the form (x - e)fs implies local smoothness of the free

boundary and local C'*-estimates of the solution. This result holds for any stable operator L:

Theorem 1.1 (Flatness implies C'7). Let s € (0,1) and L be a general stable operator of the form

(11.2)-(1.3)-(G>)-(G<)). Let o € (0, min{s,1 — s}) and kg > 0. Then, there are e > 0, 6 > 0, depending

only on n, s, A\, \, a, kg, such that the following holds true:

Let u € Cloo’i (R™) be such that
(1) min{Lu — f,u} = 0 in By in the distributional sense, with |V f| <1,

(i) D?u > —Id in By with 0 € 0{u > 0},

(iil) |Vulpoo(py) < BT for all R > 1,

(iv) |lu—kK(z- 6)}~_+S||CO,1(31) < ¢ for some Kk > kg and e € S"1.

Then, the free boundary 0{u > 0} is a CYV-graph in Bs, and moreover u € C'*%(Bs) with
[Vullgs(sy) < C-

The constants C' and v > 0 depend only on n, s, A\, A, o, kg.

This type of “flatness implies C17” results are one of the crucial ingredients in the regularity theory
for free boundary problems.

In case of obstacle problems, the second key ingredient is a classification of blow-ups at non-
degenerate points. In [6], the classification of blow-ups was established for nonlocal operators whose
kernels satisfy . One of the main ingredients in their proof is a boundary Harnack principle.
Unfortunately, even the interior Harnack inequality fails for general stable operators not satisfying
, and therefore new ideas are required in order to classify blow-ups in our context.

Here, we extend for the first time the results of [6] to operators with kernels not satisfying (K],
and more precisely, we assume K € LP(S"~!) for some p > 55- Notice that this is completely new
even for the case p = oo, since we do not assume any uniformly positive lower bound as in (K.)).

Theorem 1.2 (Classification of blow-ups). Let s € (0,1) and L be any stable operator of the form

(11.2)-(1.3) satisfying K # 0 and

K e LP(S™h) for some p > 22
s

Let o € (0, min{s,1 — s}), and up € C'Ocl(]R”) be such that:

lo
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e ug >0 and D?*ug > 0 in R™ with 0 € d{ug > 0}.
e wug solves in the distributional sense

L(Vup) =0 and L(Dpup) >0 in{up >0} VheR",

where Dyu(x) = w

e ug has controlled growth at infinity, i.e.,
[Vuolloo(pry < R*T® forall R>1.

Then,

ug = K(x - e)fs

for some k>0 and e € S"7L.

By combining the previous two results, we establish the optimal regularity of solutions (1) and the
regularity of free boundaries near regular points (2) for solutions to nonlocal obstacle problems
with kernels satisfying K € LP(S"~!) for p > 55 As said before, this is the first regularity result
for the nonlocal obstacle problem with kernels that are not pointwise comparable to the one of the
fractional Laplacian, and it is new even for p = oco.

Theorem 1.3. Let s € (0,1) and let L be any operator of the form (1.2)-(1.3)) satisfying (G>)) and
(KZ) for some p > 5=, and let a € (0, min{s, 1 — s}).

Let ¢ € C2°(R™) with & > max{2s — 1,0} and let u be any weak solution to the obstacle problem
min{Lu,u — ¢} =0 inR"

Denote Co := [|¢[|c2.e(mn). Then, we have:
(i) u € CT5(R™), with

lullcr4smny < CCo,

where C > 0 depends only on n, s, A, A.
(i) For any free boundary point o € {u > ¢} there exist ¢z, > 0, e € S"~1 such that

u(z) — ¢(x) = o (2 — o) - e)fs’ < CColw — mo|"™*** Va € Bi(xo),

where C' > 0 depends only on n, s, \, A, a.

iii) Moreover, if cz, > 0, then the free boundary 0{u > ¢} is a C1V-graph in a neighborhood of x,
0
where v > 0 depends only on n,s, A\, A, .

The optimal regularity of solutions and the study of the free boundary remain open in case K merely
satisfies and (G<), but not K € LP(S"!) with p > 7. However, thanks to the
only missing point in the regularity theory for general stable operators is the classification of blow-ups
(i.e., to prove for p = 1). We believe that an entirely new approach is required in order
to tackle this problem (see for a more detailed discussion).

1.3. Difficulties and strategy of proof. The analysis of obstacle problems for nonlocal operators
with kernels not satisfying (K~|) comes with two main difficulties:
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Lack of full support. First, although L is non-degenerate due to , the kernel K might not be fully
supported. As a consequence, it is not possible to establish locally uniform lower bounds on L applied
to bump functions, since the bump might not be seen by the operator from all points. Such estimates
are used several times in [6], in particular in order to perform barrier arguments. Here, we circumvent
this issue by suitably adjusting the shape of the bump functions, depending on the geometry of the
problem (see for instance the proof of [Theorem 4.6|), together with a quantification of the directions
in which the kernel is possibly degenerate (see [Lemma 2.3]).

Failure of the Harnack inequality. Second, and more importantly, a key tool in [6] is the Harnack
inequality, and more precisely the two “half Harnacks”:

Lu>0 in Bs . > u(x)
vw>0 in R" Bv=c on L [z[nt2s T,

and

Lu<0 in By — supu < C M )
By R”1+|x’n+s

Both of them fail, in general, for kernels not satisfying (K-|).

In a sense, the lack of two-sided pointwise bounds as makes the possible anisotropy of the
kernel more severe. Namely, the operators we consider might still exhibit anisotropy after averaging
out the kernels over points close by (oscillating long jumps). This phenomenon leads to a failure of
the Harnack inequality

== supu < C'inf u.

Lu=0 in BQ}
By B

v>0 in R"

The failure of the Harnack inequality implies that also the boundary Harnack principle ceases to hold.
The only result in this direction that holds true for general stable operators is a weak Harnack
inequality. This is a key ingredient in our proofs, as explained below.

Strategy of the proof. Even though the boundary Harnack inequality fails for general stable operators,
here we establish a particular version of the boundary Harnack principle, which holds for monotone
solutions outside convex cones (see [Theorem 4.6)). This turns out to be sufficient in order to classify

blow-ups and holds true for kernels satisfying (KZ| with p > 35+ Its proof makes heavy use of the
following weak Harnack inequality (see [Lemma 2.9))

1/q n
( ][ uq> < Cinfu, where ¢ < ,
By B1 n — 25

and local boundedness estimate (see [Lemma 2.10))
N1/
(fi 1)
supu < C f u | + Csup ,
By

B R>2 RZs—e

which remain true for L-harmonic functions that are globally nonnegative, if and are
satisfied. To deduce our new boundary Harnack type principle, we establish a growth control on
the solution at infinity with the help of the weak Harnack inequality and a barrier argument (see
Lemma 4.4). This allows us to estimate the second term in the local boundedness estimate. The
restriction p > g- comes from the (sharp) condition on ¢ = p’ in the weak Harnack inequality.

On the other hand, in order to obtain the C"V-regularity of the free boundary near regular points,
we establish that the free boundary is Lipschitz with a Lipschitz constant depending on the closeness of
the solution to the blow-up (see the assumption of the quantitative estimate . Moreover,
this way, the Lipschitz constant can be made arbitrarily small and it turns out that the free boundary
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is flat Lipschitz. This information is sufficient for blow-up arguments to work, which yield pointwise
boundary regularity estimates as in (see [37, Proposition 5.4]). This way, one can obtain
Cl7-regularity of the free boundary for general kernels, avoiding a boundary Harnack principle.

Solution concepts. Finally, let us point out that throughout the paper we will work with weak or
distributional solutions, but will never use viscosity solutions. The reason for this is that most known
results for viscosity solutions are developed for kernels satisfying (see, e.g., [19]), and thus do
not apply in our setting.

This choice calls for some technical results such as Lemmas and which are elemen-
tary in nature, but might still be of interest to some readers.

1.4. Acknowledgments. The authors were supported by the European Research Council (ERC)
under the Grant Agreement No 801867, and by the AEI project PID2021-125021NA-I00 (Spain). In
addition, the first author was supported by the AGAUR project 2021 SGR 00087 (Catalunya), the
AFEI grant RED2022-134784-T funded by MCIN/AEI/10.13039/501100011033 (Spain), and the AEI
Maria de Maeztu Program for Centers and Units of Excellence in R&D (CEX2020-001084-M).

1.5. Outline. This article is structured as follows: In Section [2, we prove several auxiliary results
on general elliptic stable operators and introduce solution concepts. In Section [3] we establish semi-
convexity and C'7-regularity for solutions to the obstacle problem, proving [Proposition 3.70 The
proof of the classification of blow-ups (see [Theorem 1.2) is given in Section [l Section [fis dedicated
to the proof of the quantitative estimate (see [Theorem 1.1)) from which we deduce our main result,
[Theorem 1.3l

2. PRELIMINARIES

The goal of this section is to establish several auxiliary results that will be used in the course of this
article. We start by discussing in more detail the kernels K considered in this article and establish some
helpful properties that follow from the assumptions and . Second, we introduce appropriate
weak and distributional solution concepts.

The following function space captures some information on the growth of functions at infinity. For
a € (0,s) and 1 < g < oo, we introduce

( fBR |ul? d:v) v
Rst+a

loc <0

L0 (R = {we LL (R : ullys, (an) = sup
R>1

2.1. Properties of kernels. In this section, we collect several preliminary results on kernels K

satisfying the assumptions (KZ|), resp. (G<), and (G>)). We denote ¢ = p' = }%.
Lemma 2.1 (see Proposition 2.2.1 in [19]). The following are equivalent:

(i) (G>) and hold true.

(ii) There exist 0 < ¢1 < ca such that

< Ag(€) < eaé]™,

where A denotes the Fourier symbol of K, given by

1

Ax©) =5 [ (1= costy- ) K.
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Let us remark that the condition 1) can equivalently be rewritten as follows:

1/p
73 (/ KP(y) dy) < AR %, (2.1)
R™\Bg

Next, we introduce the tail, with respect to K. This object stores the information on a function u
at infinity with respect to the ball B, (x¢) for some r > 0 and z¢ € R™

Tailge (s 1, ) = 125 / [u(y)| K () dy.
R"\Br(zo)

In case xp = 0, we will simply write Tailg (u; 7, o) = Tailx (u; 7). We have the following estimate:

Lemma 2.2. Assume (KZ|) for some 1 <p < oo. Then, for any 0 < e < 2s and u: R" — R

1/q
g, lul?
Tailg (u;r) = 7’25/ lu(y)| K (y) dy < er?*7¢ sup M
R

"\B R>r R?s=¢ ’ 22)

where ¢ = c(n, s,e,A) > 0. Thus, Tailg (u;r) < oo whenever u € L1, (R") for some o € (0, s).

Proof. We compute using (2.1))

o0

Talic(wir) =Y [ u(y)|K () dy

k=0 2k+1r\B2k'r
00 1/q L 1/p
<er®y (J[ U(y)\qdy> @1y (1-3) (/ K”(y) dy)
k=0 B2k+lr Rn\BQkT
0 1/q
<er®y (J[ U(y)\qdy> (272
k=0 \ 7 Bak+1,
1/q
& (5, lut)l?dy)

< er®s (2k7”)_E sup
kzo i (ri)Zst

< er®s

1/
( JFBR ‘U|qu) !
—€&
Zlg; R2s—¢ :

g

The following lemma, distills a useful property out of (G>|) and (G<|). In fact, it allows us to locate
the mass of K on the sphere, thereby giving us some important information if we want to give a
pointwise bound on Lu(zg) for some zp € R™.

Lemma 2.3. Assume (G>|) and (G<|)). Let K be homogeneous. Then, there exists 6o > 0 depending
only on \, A such that for any e € S"71:

/ K(0)do > A2,
{e-:60>d0}
In particular, for any r > 0, we obtain

(y)dy > er

/ K
{‘%‘-6250}0(327'\BT)
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for some ¢ > 0 depending only on n, s, \, A.
Proof. We compute

/ K(6)do > / e - 02K (0) o
{le-0|>d0} {le-0|>60}

_ / e+ 012K (0) o — e+ 02K (0) o
st {le-61<do}
>\ —52A
and deduce the desired result upon choosing dp < /A/(2A) and using that K is symmetric. O

2.2. Solution concepts. Throughout this article, we will deal with distributional and weak solutions,
which we introduce in the sequel.
First, we define the bilnear form associated with L as follows

e (u,v) = / / (u(z) = u(y))(v(z) - v(y)) K(z - y) dy dz,
and observe that £ (u,u) < oo, whenever u € H*(R"™), due to

Definition 2.4. Let 2 C R™ be an open domain. Let f € L*>(€2). We say that u is a weak subsolution
to Lu < f in Q if u € L*(Q) and

EX-(u,¢) < | fodx Vo€ H*(R™) with compact supp(¢) C Q, and ¢ >0, (2.3)
Rn
and it holds
e o) = [ (u(w) — u(y)2K (@ — y) dydo < o. (2.4)
(R xR™)\(2xQ°)

We say that u is a weak supersolution to Lu > f in  if u satisfies (2.4) and (2.3 holds true for any
¢ € H%(R™) with compact supp(¢) C 2 and ¢ < 0. We say that u is a weak solution to Lu = f in
if u is a weak subsolution and a weak supersolution.

The following lemma recalls a basic fact about weak solutions. We provide a short proof since we
were not able to find a reference in the literature for general kernels satisfying only (G>)) and (G<).

Lemma 2.5. Assume (G>) and (G<|). Let Q@ C R™ be an open, bounded domain. Assume that
u € L?() is a weak solution to Lu = 0 in 2. Let 6 > 0. Then us := max{u,d} satisfies Lus < 0 in
Q in the weak sense.

Proof. The proof is standard. First, we observe that it suffices to consider the case § = 0 since 5 (u —
5,¢) = EX(u, ¢). The idea is to approximate F(x) = x, by smooth, convex, non-decreasing functions
F, : R — [0, 00) satisfying Fj,(z) = F}(x) = 0 for z < 0, F, — F uniformly, and sup, ||F}||c < C < cc.
Then, upon the observation (see for instance [29, Lemma 2.3]) that by convexity of Fj, for any a,b € R
and ¢1, ¢ > 0 it holds

(Fi(a) — Fis(0)) (1 — ¢2) < (a — b)(1Fy(a) — g2 F (b)),
we obtain for any ¢ € H*(R") with ¢ =0 in R” \ Q and ¢ > 0:
EX (Fi(u), ¢) < £ (u, Fy(¢)) < 0.

The second inequality follows from the fact that u satisfies Lu < 0 in €2 in the weak sense, using
F/(¢) € H(R™) as a test function. Finally, we observe that

Fi(u) — uy in L3(Q)
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by dominated convergence, using |Fj(u)| < Cuy. Moreover, C~!F},(u) is a normal contraction of u,
which yields that

2
[ B B ) ) dy

<] (14 (2) — w4 () K — y) dy o < oo,
R7 xR™)\(QcxQe)
Thus, by weak compactness of the separable Hilbert space
(tu e 12() : € alw ) < 00}, |-z + (Efalo D7),
we obtain that for any ¢ € H*(R™) with supp(¢) C € it holds (up to a subsequence)
0> EX(F(u), ¢) = EX(uy, d), ask — oo,
which implies the desired result. O

Next, we introduce the notion of distributional solutions:

Definition 2.6. Let @ C R™ be an open domain and € € (0,2s). Let f € L} (). We say that
uwe L __(R™) is a distributional subsolution to Lu < f in Q if

/ (Ln)u < / nf Vne CF(R"™) with compact supp(n) C @, andn>0. (2.5)

We say that u is a distributional supersolution to Lu > f in Q if u satisfies (2.5) n € C2°(R™) with
compact supp(n) C Q and n < 0. We say that u is a weak solution to Lu = f in Q if u is a distributional
subsolution and supersolution.

We prove the following lemma, which says that distributional supersolutions can be treated just as
classical supersolutions at a point o, if the supersolution can be touched from below by a C? function.
Note that such property is trivial for viscosity solutions.

Lemma 2.7. Assume (G>)) and (G<)). Let C > 0 and € € (0,2s), and assume that v € L§S__(R™) is
locally uniformly Holder continuous, i.e. Sup, cgn [u]CT(Bl(IO)) < oo for some T € (0,1), and satisfies
in the distributional sense for some C' > 0

Lu>-C in Bj.
Moreover, assume that there exists a function ¢ € LSS _(R™) that is C? around 0, and such that
u(0) = ¢(0), and u > ¢ in R™. Then, Lu(0) > —C in the classical sense.

Proof. First, we prove that for any ® € L3 _(R") that is C? around 0 and also satisfies
SUp, crn [P ]CT(Bl(xU)) < oo, and ®(0) = u(0), ¢ < w, it holds

L3(0) > —C. (2.6)

By contradiction, assume that there exist such ® and r > 0 such that L® < —C —r in B,. Note that
for the last property, we used that L® is Holder continuous in By /o due to the regularity of ® and [19,
Lemma 2.2.5 (ii), Remark 2.2.6]. Let § > 0 and observe that for ws =« — ® — § and 6 > 0 it holds:

Lws > r in B, in the distributional sense.

Let now ¢ € C2°(B;) be nonnegative and define v € H*(R") to be the unique weak solution (see [19)
Theorem 2.2.19], [15]) to

Lv =1 in B,,
v =0 inR"\B,.
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Note that v € C257*(B,) for some a € (0,1), and hence is a strong solution. Indeed, v € C*(R™)

loc

by boundary regularity theory (see [19, Proposition 2.5.10]), and thus, by interior regularity theory,

we have v € C257%(B,) (see [19, Proposition 2.4.4]). Moreover, by the maximum principle (see [19,

Lemma 2.3.3]), it holds v > 0 in R™. Therefore,
(ws, ) = (ws, Lv) > r||v]|L1(p,) = 0.

Note that v is an admissible test function by classical density results. Since @ > 0, it follows that

ws > 0 a.e. in B,. This is a contradiction, since ws(0) = —J and ws is continuous at 0. We have
shown (2.6]).

Let us now turn to the actual proof of the lemma. Let ¢ be as in the assumption. First of all, note
that u(0) — u(x) < ¢(0) — ¢(x) for any = € R™. Therefore, Lu(0) < L¢(0) < oo, and Lu(0) can be

evaluated in a pointwise way, however note that it could be Lu(0) = —oo. It remains to show that
Lu(0) > —C'. To see this, let us define for § > 0 small enough
¢ in B57
¢s = m
u in R"\ Bs.

Note that ¢5  u, as 6 — 0, and therefore, by monotone convergence, it holds L(¢s — u)(0) N\, 0.
Moreover, note that also holds true for ¢g since it can be approximated by functions ¢ €
L3 __(R™) that are C? around 0 and satisfy sup,,cgn [@lom(By (20)) < 00, and @(0) = u(0), ® < w. In
fact, given any v € (0,9), we can find such ® satisfying |L®(0) — L¢(0)| < v by choosing & = ¢ in
Bs_, U (R"™\ Bs) and doing a C7-interpolation between u, ¢ on Bs \ Bs_, and using .

Thus, it follows from an application of to ¢s

0 = lim L(¢s — u)(0) > liminf Lps(0) — Lu(0) > —C — Lu(0),
0—0 0—0
which implies the desired result. O

The following lemma relates pointwise supersolutions to distributional supersolutions:

Lemma 2.8. Assume (G>)) and (G<)). Let C > 0 and € € (0,2s), and assume that u € LSS__(R™)
satisfies in the pointwise sense

Lu>-C in Bj.
Then, Lu > —C' in By also in the distributional sense.

Note that in the situation of the above lemma, it could be that Lu = 400 for some points in B,
since u is not assumed to be smooth.

Proof. The proof follows from the observation that for any n € C2°(R") with > 0 it holds

—C | ndx< /nn(Lu) dz = /n(Ln)udx.

R"l
Here, we used the integration by parts formula, which can be shown in the same way as in [19, Lemma
2.2.23]. O

2.3. Weak Harnack inequality and local boundedness. Under a pointwise comparability con-
dition on K, it is well-known that solutions to Lu = 0 in €2 satisfy a Harnack inequality. In our more
general framework, we cannot expect a Harnack inequality to hold true. However, we can establish
a weak Harnack inequality, and a local boundedness estimate including a nonlocal tail term for weak
super-/ subsolutions.

First, we prove a weak Harnack inequality for nonnegative weak supersolutions:
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Lemma 2.9 (weak Harnack inequality). Assume (G>)), , and 2s < n. Let u be a globally non-
negative, weak supersolution to Lu > 0 in Bs. Then, for any R € (0,1)

1/q
< ][ u? d:v) < cinfu, (wHI)
Bgr Br

where ¢ > 0 is a constant depending only on n, s, \, A, q, which explodes as ¢ —

n
n—2s"

Proof. First, by [27, Theorem 1.6], there exist ¢ € (0,1) and ¢ > 0, depending only on n, s, A, A, such

that
1/e
( f u® dm) < cinfu. (2.7)
Br Br

Note that [27] assumes u to be globally bounded instead of just . However, this issue can be
circumvented by a standard truncation argument, using that @ = ulp, is still a weak supersolution
to Lu > 0 in Bgy, since —L(ulgn\p,) > 0 in Bg,.

Moreover, we claim that, using a Moser iteration scheme for small positive exponents, one can prove

that
1/q 1/e
][ u?dz <c ( ][ u® dx> , (2.8)
Bry2 Br

where ¢ > 0 depends only on n, s, A\, A,e. To prove ([2.8]), we will follow the arguments in the proof of
[30, Theorem 4.2], which are established for kernels satisfying (G<|) and a Sobolev embedding, i.e.,

10ty € [ [ 00 =0 @R - pdyde e LTERY. (29)

Note that (| . is satisfied in our setting. Indeed, by Fourier transform, we can rewrite

L[ @ =@ —payae = [ 1F@R (s = e [ PP s

where Ag denotes the Fourier symbol of L and we used Therefore, (2.9)) follows from the
classical fractional Sobolev embedding, i.e.

1921 e gy <l = ¢ [ IF0©@PIE g < [ (0la) = o)K@ =) dy e

We are now in the position to apply the considerations in [30] to our setting. By following the
arguments in [30, Proof of Theorem 4.2] (and translating them to elliptic equations), we obtain

_9s\ 1
el oy < (c072) " Jull oo,

forany 0 < p<r<r+p<Rande<p< q/k, where ¢ > 0 depends on n, s, \,A,1 — %. Moreover,
note that in the elliptic case we have k = —"5-. From here, (2.8) follows by a standard iteration
argument upon determining M € N to be the unique number such that

4 -M <e< g/fMH, (2.10)
K K

and choosing p; = %lﬁ:_i, pi =27 'R, ryr = R, and 751 = r; — p; for any 0 < i < M. In fact, we
obtain

M J 251{ M j o _2sk M
Il o) < Il oo s,y < (2%€)3 A Rl PO,

— s (M)
<R ¢ HuHL%“fM(BR)’
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where we used that

M
7257“2,4:7257“ oA W Z L (M 1) = M 1y,
¢ = q L=x

By ([2.10)), this yields

1/q £ M 1/e
q,—M q
][ udx §c<][ ur’ d:c) §c<][ uedx> )
Bry2 Br Br

as desired. By combination of (2.8) with , we conclude the proof. O

Next, we also have the following local boundedness estimate for weak subsolutions:

Lemma 2.10 (local boundedness). Assume (G>)) and || for some 1 < p < oo, and 2s < n. Let u
be a weak subsolution to Lu < 0 in By. Then, for any R € (0,1) and any € € (0,2s)

1/q
1/2 ( {5 ‘u\q)
sup u < c ( ][ |u]2> + cR*7¢ sup #, (2.11)
Bpr/2 Br R>R R

where ¢ > 0 depends only on n, s, \,\,q. Moreover, if u € L __(R™) and u > 0 in Bg, then

2s—¢

( fBR ‘U‘q) v

sup u < ¢ <][ u) + ¢R*7¢ sup e
Br/2 Br R>R R

where ¢ > 0 depends only on n,s, A\, A, q.

(2.12)

Proof. We follow the arguments in the proofs of [31, Theorem 3.6, resp. Theorem 6.1] after translating
them to the elliptic setting. In fact, for any 0 < k <land R/2<r < Rand 0<p<r<r+p <R,
we obtain
Sup{EGB P Ta‘llK (u’ p/27 x) 2s
_4s _ r+5 1+£2
[(u =03 i,y < cll—k) 7w p™> (1 + : - [ (u — k)i”[/l(%r+p).

This result holds true for kernels satisfying (G<|) and the Sobolev inequality (2.9). Note that (2.9)
holds true in our case by the same argument, as in the proof of

Next, let us apply to obtain:

2s—¢

1/q
5 |ul?dz
. Bg(z)
sup Tailg(u;p/2,2) <c sup |p sup = —
z€B :cGBT_F% R>p/2 REsTe

r+§

1/q
2 (f, lulede
<ec <R> ¢ sup ( Bg ) .

p R>R R2s—¢

From here, the proof follows by a standard iteration argument upon defining I; = M (1-279),1p =0,
and p; = 277 R, rip1 =i — piy1, 7o = R, and A; = ||[(u — 153 || 11 (p,. ), Where

1/q
(f, lul? az)
M = sup =—
R>R R2s—¢

+CR :A)?



OBSTACLE PROBLEMS FOR NONLOCAL OPERATORS WITH SINGULAR KERNELS 13

for a large enough constant C' > 0, depending only on n, s, A, A, ¢. In fact, the aforementioned estimates
and choices yield for some v > 1 depending only on n, s, g:

a 1/q
2251 R—2s SUPR>R —< fBRJ? dx) 1425 2VR7% gy
; s—e - -
A< ——— | 1+2"—= L A< A,

(li - li_l)W li =l M

and, upon choosing C' > 0 large enough:

4s
n

—2s8\ T 2s n
Ag < CTIR"M? < (CR ) T3

By [26, Lemma 7.1], it holds A; , 0, which implies that supg, < M, and yields (2.11)).
To prove (2.12)), we observe that by assumption, the right hand side in (2.11)) is finite. Therefore, the

desired result follows by standard covering and interpolation arguments based on [25, Lemma 1.1] (see
e.g. [31, Proof of Theorem 6.2] or [13, Proof of Theorem 6.9]). O

3. BASIC PROPERTIES OF SOLUTIONS

The main result of this article (see |[Theorem 1.3)), is formulated for weak solutions to the obstacle
problem

min{Lu,u — ¢} =0 in R",
where ¢ € C? “(R™) for some & > max{2s —1,0}. As explained before, we note that the consideration
of weak solutions to the nonlocal obstacle problem is in contrast to [6], [19], and [21], where viscosity
solutions were analyzed. Thus, we need some preliminary results on weak solutions, which we provide

below.
Let us define

Hi(R") :={ve H°(R"):v>¢ inR"},
the solution space associated to the obstacle problem.
Definition 3.1. We say that u is a weak solution to the obstacle problem
min{Lu,u — ¢} in R",
if u € Hj(R"), and
EX(u,v —u) >0 Vo € Hi(R™). (3.1)

Remark 3.2. One can prove that a unique weak solution u € H ;(R") to the obstacle problem exists.
Moreover, the unique weak solution u solves in the weak sense (see [Definition 2.4)):

Lu=0 in{u> ¢},

Lu>0 in R".

This was proved for L = (—A)® in [43] and for more general nonlocal operators comparable to the
fractional p-Laplacian in [33]. The proof in our setting goes by the same arguments, as in [33].

An important characterization of weak solutions to the obstacle problem is that they are the least
weak supersolution above the obstacle, in the following sense:
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Lemma 3.3. Assume and . Letu € H;(]R”) be a weak solution to the obstacle problem
min{Lu,u — ¢} =0 in R".
Let v € H*(R™) be a weak supersolution to
Lv>0 inR"
Moreover, assume that min{u,v} € H3(R"). Then, u <v a.e. in R™.
Proof. Since u is a weak solution to the obstacle problem, and min{u,v} € H ;(R”), it holds
EX (u, min{u, v} —u) > 0.
Moreover, since v is a weak supersolution and v — min{u,v} € H*(R") is nonnegative, it holds
EX (v, [u — min{u, v}]g) > 0,

where, for R > 0, we chose g € C2°(Bry1) with ¢ = 1 in Bg and [[¢r||c1rny) < 2. By taking the
limit R — oo, an application of dominated convergence theorem, and adding the two previous lines,
we obtain

EX(u — v, min{u, v} —u) >0,
which implies that [{u > v}| = 0, as desired. O
Let us close this section by the definition of distributional solutions to the obstacle problem.

Definition 3.4. Let f € L} (R™). We say that u € L3S__(R") for some € € (0,2s) is a distributional
solution to

min{Lu — f,u} =0 in R",

if v > 0 and solves
Lu=f in{u> 0},

Lu>f inR"
in the distributional sense, according to

3.1. Semiconvexity. Having at hand the characterization of a solution to the obstacle problem as
the smallest supersolution lying above the obstacle (see [Lemma 3.3), we are now able to prove the
semiconvexity and Lipschitz regularity of weak solutions.

Lemma 3.5. Assume and . Let u € H;(]R”) be a weak solution to the obstacle problem
min{Lu,u — ¢} =0 in R"™
Then, the following hold true:
(i) w is Lipschitz continuous with
[ullcormny < l|@llco.r@mny-
(ii) w is semiconvex with

0% u > —llllcrimny in R™ Ve € S" L
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Proof. The proof goes along the lines of the proof in [6, Lemma 2.1]. The conclusion differs only
slightly, since we work with weak solutions, instead of viscosity solutions. Indeed, to prove (i), we
observe that

vl(az) = ||¢||Loo(Rn) and Ug(x) = u(x + h) + H(ﬁ”co,l(Rn)’h‘, h e ]Rn,
are weak supersolutions to Lv; > 0 in R™ by , and satisfy v; > ¢. Moreover, we have

min{u,v;} € H3(R"). Thus, implies that u < v; a.e., which proves (i).
To prove (ii), one proceeds similar to the proof of (i), defining
o) = u(z + h) —;—u(w —h)

+ gl ey R,

Let us mention two direct consequences of
Remark 3.6. Let u be a weak solution to min{Lu,u — ¢} = 0 in R™.

(i) Then, we are able to evaluate Lu in a pointwise way and we have the bound 0 < Lu < C for
some C' > 0 depending only on n, s, A, A, ||§|c1.1rny (see also .

(ii) Moreover, due to [19, Lemma 2.2.27) u € HZ(R") N L*>(R") is a distributional solution to
min{Lu,u — ¢} = 0 in R™ in the sense of [19, Definition 2.2.20].

3.2. C'7 regularity of solutions. The following lemma is a technical ingredient in some of the
proofs in this article, such as the classification of blow-ups. However, we believe it to be of independent
interest: It states that any solution to the obstacle problem is C17 when K satisfies (G>]) and (G<)).

Proposition 3.7. Let s € (0,1) and L be a general stable operator of the form (1.2)-(1.3)-(G>)-(G<)) .

Let ¢ € CCI’I(R") and u be any weak solution to the obstacle problem
min{Lu,u — ¢} =0 in R".
Then, u € CH7(R™) and
[ullgrr@ny < Clldllcrgny,
where C'> 0 and 7 € (0,1) depend only on n, s, \, A.
We will actually prove the following:

Proposition 3.8. Assume and (G<)). Let K be homogeneous. Let o € (0,s). Let u € C%'(R™)
be such that for some K > 0:
u >0 in Ba,
D*u > —KId in B,
L(Dpu) > —K in {u > 0} N By in the distributional sense Yh € R",

|Vu| < K(1+ |z]*T¥) in R™

Then, there exist ¢ > 0 and T € (0,1) depending only on n,s,a, \, A such that
lullcre (s, ) < K.

Recall that we denote Dpu = % for any h € R™.

Before we prove [Proposition 3.8 let us first state the following auxiliary result, which is reminiscent
of [6, Lemma 2.1].




16 XAVIER ROS-OTON AND MARVIN WEIDNER

Lemma 3.9. Assume (G>|) and (G<|). Let K be homogeneous. Then, there exist T € (0,1) and § > 0,
depending only on n, s, \, A, such that the following holds true:
Let u € C%Y(R™) with u(0) = 0 be such that

u>0 in By,
D*u> —6Id in By,
L(Dpu) > =06 in {u > 0} N By in distribution Vh € R",
[Vullpos(Bry < BT VR > 1.
Then, there exists ¢ > 0 depending only on n, s, A\, A such that
|[Vu(z)| < 2|z|” Vo e R™.

The proof is very similar to the one in [0, Proposition 2.2]. However, due to the more general class
of kernels satisfying only (G>)) and (G<|), some of the arguments need to be adapted to our situation.
In particular, the set C, needs to be defined appropriately.

Proof of[Lemma_3.9. We set
0(r) = sup(r’) "7 sup |Vul,

/
r'>r -/

and observe that 6(r) < 1 for any r > 1 by assumption. Our goal is to show that 0(r) < 2 for r € (0, 1).
By contradiction, we assume that 6(r) > 2 for some r € (0,1), which implies that there is v’ € (r,1)
such that

(r')"Tsup |[Vu| > (1 —¢)0(r) > (1 —¢)0(r') > %’
B,

where we will choose € > 0 small enough, later. Next, we set

o u(r'x)
u(x) - 9(7”’)(7“’)1'”7
which satisfies

U > 0 in B1/6>

D?a > —(1")}7761d > —6Id  in By s,

L(—=Dpu) < (r)*71776 <4 in {u > 0} N Bs. (3.2)
Moreover, by definition of 8, r':
1—e< sup sup(—Dju), sup sup(—Dju) < (R+1/4)" VR>1.
|h|<1/4 Bi |h|<1/4 Br
In particular,
1l coa(p,,,) <27 (3.3)

Next, we take n € 062(83/2) with n=11in By and n <1 in Bg/y. Then

142 < sup sup(—Dja + 3en).
hI<1/4 B

We fix hg € By/4 and zg € Bgjy such that
to = max(—Dp,u+ 3en) > 1 + ¢,

3/2

—Dpyu(wg) + 3en(xo) = to,
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and denote v := —Dj u. Then it holds, if 7 € (0,1) is small enough
v+ 3en < v(xo) + 3en(wo) =ty in By)g,
supv < (4+1/4)7 < 1+¢e <typ,
By

and therefore
v+ 3en <ty in Bs.

Moreover, xg € {u > 0} since otherwise u(zg) — u(xg — ho) < 0.
By the same argument as in [6], using D?a > —6Id, @ > 0, and @(0) = 0, we obtain for x € B%flz

S|z
u t— —_— 0,1).
u(x) — <x + m) 2 € (0,1)
Combining this with (| ., we obtain for any t € (0,

o a (:v+t‘fc—|) —a(z+ho) gl S|zt
v(x —— |
- |hol 2[hol = |[hol x| [hol| ~ 2]|ho|
Let us estimate v(x) even further by making the following observation: For any p € (0,1), there

exists o € (0,1) such that for any z € C, := {z € R": ik |h P> w}, there exists t € (0, |ho|) such that

t =z ho

T

t x _ ho
[hol |z] kol

projection of u’ﬁ*& onto {a‘%| : a € R}. Therefore,

< (1 — o). In fact, ¢t can be chosen in such a way that WW becomes the orthogonal

t x h(]

[hol [z |hol

Lol e HM

v(x) <27
= 2Jho] =

Moreover, we have
1—2e <w(zg) <1+e¢,
and therefore
—cely — x0l? Yy € Ba(xg),
v(zo) —v(y) = { —(ly — 2ol +2)7 +1—2¢ Vy € R"\ Bi(o),
—(27(1 — o) + BM) 4+ 1 —2¢ Wy € C, N (Ban (o) \ Bar(o)),
where M > 0 will be chosen large enough, later in the proof. Consequently,

Lv(xg) > —cs/ ly — xo\QK(y — o) dy

Bs

[ ol + 2 = 1+ 22 Ky — o)y
R"\B1

36M
+/ [ <27(1—0')+)+1—2€]K(y_$0)dy
Coun(Bans (20)\ Bas (20)) 2

=5+ I+ Is.

Clearly, by ., it holds I1 > —ce - 0, as e - 0 and Is — 0, as 7 — 0 and € — 0. Finally, let us
explain how to estimate 3. By [Lemma 2.3] m there exists v € (0, 1), depending only on n, s, A, A, such

that
/ K(0)do > ¢ (3.4)
{0esn—1:6. |h >V}
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for some ¢ > 0 depending only on n, s, A\, A. Moreover, let us now choose M > 0 so large such that for
any xo € Bg/y it holds

(l‘o + C,,) n (BQM(JJ()) \ BM(Jio)) C CV/Q N (BQM(J'()) \ BM(l’o)) (3.5)

Note that M can be chosen as a uniform constant, depending only on n. Thus, choosing u = §

and 7,6, so small that [— (27(1 - %) + 30MY 41— 2¢] > % for any @ € Ban(wo) \ Bu(2o), we can
estimate, using (3.4) and (3.5

v

Bzt [ K(y—so)dy > | K(y— o) dy > 2 M2,
4 Cy 2N(Ban (z0)\ B (z0)) 4 (xo+Cv)N(Banr (x0)\Bar (o)) 4

We have shown that there exists ¢ > 0 depending only on n, s, A, A such that Lv(xzg) > ¢ once €, 7,4
are chosen small enough. This is a contradiction for § > 0 small enough, since by (3.2)

¢ < Lv(zg) < 0.

Note that we have ¢ < Lv(xg) in the classical sense, since xg is a local maximum of the function
v + 3em, and this function has a finite tail due to the growth control that we assume on v. Therefore,
v + 3en can be touched from above by a C2-function, and we deduce that ¢ < Lv(xq) by application

of using that Ln(z) is also defined in a pointwise sense.
O

Proof of |Proposition 3.8 and|Proposition 3.7 The proof of [Proposition 3.8|is a standard consequence
of which is applied after a rescaling and truncation argument. Moreover, we need to apply
the interior regularity estimates in [I9, Theorem 2.4.3] to Djpu. Note that [I9, Theorem 2.4.3] remains
true under and (G<)). For more details on this proof, we refer to [6]. O

4. CLASSIFICATION OF BLOW-UPS
The goal of this section is to prove about the classification of blow-ups.

Remark 4.1. By interior estimates (see [19, Theorem 2.4.3]), in the situation of [Theorem 1.2 we
have Vug € C257¢({up > 0}) N LE ,(R™). Therefore, L(Vug) = 0 also holds true in the weak sense in

{up > 0} N B for any R > 0 by [19, Lemma 2.2.27].

The proof in [6] and [19] is heavily based on the boundary Harnack principle in C! (or more general)
domains, since it yields the uniqueness of positive solutions to Lu = 0 in cones. However, since the
full Harnack inequality fails in our setting due to the generality of the kernels under consideration, we
need to come up with another argument. It turns out that a boundary Harnack principle can still be
established for positive and monotone solutions outside a convex cone (see [Theorem 4.6)). In order to
prove this result, we rely on the weak Harnack inequality (see and a local boundedness
estimate (see , which remain true in our setup. The main challenge is to establish a
certain control on the growth of the solutions in order to get rid of the nonlocal contributions in the
local boundedness estimate (see [Proposition 4.2)).

4.1. L? growth control. A central ingredient in the proof of a boundary Harnack principle in convex
cones is the following L — Li-estimate which differs from (2.12)) in that it only contains local quantities
on both sides:

Proposition 4.2. Assume (G>)) and 1) for some p > 3=, and 2s <n. Let K be homogeneous. Let
¥ C R" be a closed, convex cone with non-empty interior, and vertex at 0. Let w € C(R™) N LYY, (R™)
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for some o € (0,5), and e € S"! with e € ¥ be such that in the distributional sense:
Lu=0 mR"\X%,

u=0 1,
u>0 mR"\X,
Ocu >0 in R™

Then, there exists a constant ¢ > 0, depending only on n, s, A\, A, e, >, q, such that for any r € (0,1):

1/q 1/q
( / u) g||uHLOO(BT>Sc< / u) | (4.1)
B B

To prove [Proposition 4.2 we establish growth control on the L%-norms (see [Lemma 4.4})). The main
auxiliary result for this is the following consequence of the weak Harnack inequality and a barrier
argument:

Lemma 4.3. Assume (G>|) and (G<|). Let K be homogeneous and 2s < n. Let ¥ C R™ be a closed,

convex cone with non-empty interior, and vertex at 0. Let u,e be as in |Proposition 4.2 and assume

that for some 0 < ¢ < —2%
1/q
<][ uq> > 1.
B1

n—2s
Then there exist € € (0, s), depending only on n, s, \, A, and ¢ > 0, depending only onn,s,\,A,e, ¥, q,
such that

u>cd*™° in (R™\ )N By,
where d = dy, = dist(-, ).

Proof. First, note that we can find a set D C R™ with ¥ U (R"\ B3) ¢ D C ¥ U (R"\ Bz) and
satisfying the exterior ball condition. Consequently, there are ¢ € (0,s) and p > 0 such that the
function dp = dist(-, D) satisfies

L(d%™*) < -1<0< Lu in (R"\ D)N{dp < p}.

For a reference, see [19, Lemma B.1.4], which implies that the above estimate holds true for any
domain D satisfying the exterior ball condition and any kernel satisfying (G<|) and (G>)). Moreover,
it holds

u>0=ds"° inD.

1/q
Finally, by assumption, there exist zg € B1, k € N, ¢ > 0 independent of u such that ( fB « (0) uq) >
-
c2=kn/a Moreover, since e ¢ %, it is possible to find ¢ > 0 such that for z = zy + te € R" it holds

dy(z) > 1 and by d.u > 0, it holds
1/q
<][ uq> > 2 kn/a,
B27k (Z)

Therefore, by the weak Harnack inequality (see [Lemma 2.9)), we have for any ball Bj(z) with
32719(2,) C Bl/Q(LU) C (Rn \ Z) N {dz > ,0}

1/q
inf > c2 k4 f ud > 27 2kn/q,
Bya(@) B, 1 (2)
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Note that the weak Harnack inequality is applicable since u is also a weak solution in {ds, > p} by
interior regularity estimates (see [19, Theorem 2.4.3, Lemma 2.2.27]).

Now we can use the above estimate and cover the whole domain (Bs \ ¥) N {dx > p} by appropriate
Harnack chains until we obtain that for some ¢ > 0, depending on n, s, A\, A, ¢, e, X, p, but not on wu, it
holds

u>c in ByN{dy > p}.
In particular, this implies
u>c> cd%sfe in {dp > p}.
Therefore, the comparison principle (see [19, Corollary 2.3.8]) yields
u > cd2DS_6 = cd%s_6 in By,
where we used that dp = dy. in B; by construction of D. This concludes the proof. O

The following lemma contains the growth control on the L4-norms.

Lemma 4.4. Assume (G>)) and (G<|). Let K be homogeneous and 2s < n. Let ¥ C R™ be a closed,
convex cone with non-empty interior, and vertex at 0. Let u,e be as in |Proposition 4.4 and assume

that for some 0 < ¢ < -2
1/q
<][ uq> <1.
B1

n—2s
Then, there ezist e € (0,s), depending only onn,s, A\, A, and ¢ > 0, depending only onn, s, \,A,e, %, q,

such that
1/q
<][ uq> < cR**7° VR >1.
Br

1/q
Remark 4.5. By scaling, ( fBr uq) < 1 implies

1/q
<][ uq> < c(R/r)*° YR>r. (4.2)
Br
Proof of[Lemma /.4 Let R > 1 and define

un(x) = u(Rz)

( fBR uq) 1/q"

/a
Clearly, ug satisfies the assumption of [Lemma 4.3 and in particular < 3[31 u%) = 1, which implies
that

ug > cd%™¢ in (R"\ 2)N By.

Consequently, for every z € (R \ X) N By, using dx(Rz) < Rdx(z) for R > 1:

1/q 1/q
u(Rx) > cde () < ][ uq> > cR°™%d% ¢ (Rx) (][ uq) .
Br Br
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By assumption there exists zg € (R™\ ) N By N{ds > 1/100} such that u(xo) < ¢ for some constant
c¢=c(n,X) > 0. Let us choose z = xo/R € Bj, note that dsx(Rx) > 1/100, and deduce

1/q
<f uq> < cRQS_au(:UO) < cR*7E.
Br

This proves the desired result. O

As a consequence of the L4-growth control, we can prove [Proposition 4.2

Proof of [Proposition 4.2 The first estimate is trivial. To prove the second estimate, we rescale

1/
Lemma 4.4} obtaining (4.2)), which we apply to u/ ( fBr uq> q. This yields for any R > r:

()" <o) e
r257¢ sup W <c ( ]{9 ,- qu> Uq, (4.3)

R>r R28—5

and therefore

which is finite since u € L3, (R™), by assumption.
Next, we claim that

"
" ()"
[l () < € (]{3 uq) + e Csup ~——t L (4.4)
2r

R>r R2s—€

This estimate will follow from the local boundedness estimate (see , however note that we
cannot apply it directly, since a priori it is not clear that u is a weak subsolution in B,.. To circumvent
this issue, let us take § > 0 and define us = max{u,d}. Clearly, by interior regularity estimates (see
[19, Theorem 2.4.3, Lemma 2.2.27]), u € CZ(By N (R™\ X)) is a weak solution to Lu = 0 in  for
any Q € By N (R™\ X). Therefore, us is a weak subsolution to Lus < 0 in Q due to By
continuity of w in By N(R™\ X), it follows in particular that us is a weak subsolution in a neighborhood
of {u >} N By. Since us =0 in {u < d} N By, us is a weak subsolution to Lus < 0 in B;. Moreover,
note that us € L3__(R™) due to (4.3). Thus, by (2.12) in [Lemma 2.10}

2s5—¢
1/q
q Ha 2 (fBRug)
| 700 < ug|| 00 <ec ][ u) 4+ cer* fsup ——4t—
il < sl < (o sup

1/q
1/q ( 15, uq)
<c < ][ uq> +er®f sup ~——L— 4 ¢f,
Bar >

which proves (4.4]) upon taking the limit 6 — 0.
Therefore, by a combination of (4.4) and (4.3)):

1/
1/q (fBRuq) ! 1/q
ity < £ ) verreap < o(f )

as desired. O
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4.2. A boundary Harnack principle in convex cones. The main auxiliary result in the proof of
the classification of blow-ups (see [Theorem 1.2)) is the following boundary Harnack principle in convex

cones:

Theorem 4.6. Assume (G>|) and 1) for some p > 5=, and 2s < n. Let K be homogeneous. Let

¥ C R" be a closed, convex cone with non-empty interior, and vertex at0. Let u,v € C(R™)NLY ,(R™)
for some a € (0, s) be distributional solutions to

Lu=0=Lv inR"\X,
u=0=v inX,
u,v >0 inR"\X.

Moreover, assume that there exist e,e’ € S*™ 1 with e, e’ € ¥ such that

O, Ot > 0.

and assume that v and v are normalized

() ==

Then, there exists a constant ¢ > 0, depending only on n, s, \,\,e,e’', 2, q, such that
clu<v<eu in Bys.
The main scheme of the proof follows the one in [3§].

Proof of [Theorem 4.6 By assumption, the following normalization condition is satisfied.
1/q 1/q
() an(f )" .
B1 B

u<C, v<C in By (4.6)
This is an immediate consequence of [Proposition 4.2| (resp. of (4.1))) and (4.5)), which yield that

1/q
supu < C ][ ul < C.
B34 B34

Moreover, using (4.5]), we can deduce from
u>c>0, v>¢>0 in (B1\X)N{ds > p}, (4.7)

First, we claim

where p > 0 is a constant, which we are allowed to (and will) choose small enough in the sequel. Note
that the constants ¢, C' > 0 might depend on n,s, X\, A, e, e, X, p, but not on u,v.
Having at hand and (4.7), we can follow the strategy of the proof of the boundary Harnack
principle in [38] (resp. in [19, Theorem 4.3.2]):
We define { € C2°(By)3) with 0 < ¢ <1 and { =1 in B;jy. Moreover, we fix 4 = 1/100 and take
n € C®°((B3jasp \ Byja—p) N{d > p}) with 0 <np < 1andn=1in (Bs/squ/2 \ Baja_ps2) N{d > p}.
With these definitions at hand, we introduce

w:=ulpg,, + Ci(§—1)+ Con.

Our goal is to prove that w < cv in R™ by using the comparison principle for distributional solutions.
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First, if C1 > 0 is large enough, we get by :
w0 in R\ (Byg Usupp(n)),
and for Cy > 0 large enough we get
Lw = Lu— L(u]an\B3/4) + ChLE + Cyly
<C+C10—=Cac<—1 in (R"\ X) N Bys.

Let us explain how to obtain the latter estimate. The following

1/q
(fi )
Llulgnp,,) < Csup >—p5 2 —

can be established using the Li-growth control (see [Lemma 4.4)), and the normalization
condition (4.5). Moreover, the estimate L& < C follows from 1) To prove that Ln < —c in

(R™\ ¥) N By/3, we argue as follows: For any z € (R" \ ¥) N By/3, it holds

Ln(Z)Z—/ n(y)K(Z—y)dyS—/ K(z —y)dy,
n (B3/44u/2\Bs/a—/2){ds>p}

since supp(n) N By/s = 0. We need to argue that the right hand side is bounded by a constant
depending only on n, s, A, A. In fact, by there exists dp > 0 depending only on A, A such
that for any e € S*~!

S C in 32/3 (48)

—/ K(z—y)dy < —c
(33/4+u/2\B3/47#/2)ﬁ{ﬁ-6>50}

for a uniform constant ¢ > 0, depending only on n, s, A\, A, but not on z. Moreover, since X is convex, it
must be contained in a half-space. Consequently, there exists e € S*~! such that {z-e > 0} C R"\ &,
and therefore, for p > 0 small enough, depending on dg, it holds

)
(BS/4+u/2 \B3/4—u/2) N {y : 2yl e 50} - (33/4+u/2 \ 33/4—u/2) N{y :ds(y) > p}

Therefore, we have

Ln(2)

IN

- / K(z—y)dy
(B344u/2\B3/a—p 2){ds>p}

_—/ K(z—y)dy < —c,
(33/4+u/2\33/4—u/2)ﬂ{ﬁ'6>50}

as desired.
All in all, we obtain

Lw<—-1<0=Lv in (R"\X)N Bys.
Moreover, by and we have
w < C3v in supp(n).
Next, by construction
w<0=v in 2.

Therefore, by the comparison principle (see [19, Corollary 2.3.8]),
w < Csv in R™
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Now we are in the position to conclude the proof. In fact, since w = w in Bj o, the aforementioned
estimate implies

u é CgU in B1/2.
By changing the roles of u, v, we deduce the desired result. g

The main ingredient in the proof of is the following result about the global compara-
bility of positive solution in closed, convex cones, reminiscent of [6, Theorem 3.1]:

Corollary 4.7. Assume (G>| and 1’ for some p > 3=, and 2s < n. Let K be homogeneous. Let

¥ C R" be a closed, convex cone with non-empty interior, and vertex at0. Let u,v € C(R™)NLY,(R™)
for some a € (0,s) be distributional solutions to

Lu=0=Lv inR"\X%,
u=0=v in,
u,v >0 inR"\X.

Moreover, assume that there exist e, e’ € S*™ 1 with e, e’ € ¥ such that
O, Ot > 0.
Then, there exists A > 0 such that
A lu<v < Au  in R™.
The proof of follows directly from by a scaling argument:

Proof of [Corollary 4.7. We define for R > 2:
u(Rx) v(Rx)

( o uq) 1/q’ ( f? Uq) 1/q°

1/q 1/q
and observe that by construction ( fBl u‘}% dx) = ( fBl v% dx) = 1. Therefore, by application
of we obtain

up(z) := vr(z) =

c_luR <wvgp <cur in BI/2

for some ¢ > 0, depending on n, s, \, A, e, €', X, g, but not on u, v, R. In particular, we have

o ue) e u()

( fBR uq>1/q - ( fBR Uq)l/q = C( ]fBR uq>1/q

1/q
which, upon fixing an arbitrary point € By \ ¥, implies that the quotient ( f B uq> / ( f B Uq>
is uniformly positive and uniformly bounded as R — oo. Thus, we obtain

Yz € BR/27

1/q

A u(z) < v(x) < Au(z) Vz € Bpr/a

for some A > 0, independent of R, which implies the desired result upon taking the limit R — co. [
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4.3. Proof of Before we prove the classification of blow-ups we consider

the special case that {ugp = 0} is a closed convex cone with non-empty interior:

Lemma 4.8. The statement of|Theorem 1.4 holds true in case {ug = 0} = X is a closed, convex cone
with non-empty interior, and vertex at 0.

Before we start the proof, let us observe that since by assumption K € LP(S"~!), there exists A > 0
such that K satisfies (KZ)). Moreover, since K # 0, there is 0 < A < A such that K satisfies (G>]).

Proof. Note that in case n = 1, the desired result follows directly from [19, Theorem 1.10.15]. Thus,
we can assume from now on that n > 2 and therefore 2s < n.

Since X C R"™ is a closed convex cone with non-empty interior and vertex at 0, there exist n linearly
independent vectors ey, ..., e, € S*~! such that —e; € 3, while e; € ¥. We claim that the linear space
satisfies

n

dim{ZAiaein : ()\1,-~-7>\n) ER”} <1. (4.9)
i=1

Let us take any 1 < i,j < n with i # j and assume that 9.,ug # 0 # 0,;uo (otherwise, (4.9) follows).

Note that (4.9) holds true if we can show that there is M > 0 such that

Oe;ug = MOe;up  in R". (4.10)
First, we observe that it holds in the distributional sense
LOc,up = LOe;ug =0 in R \ X,
Oe;ug = O;up =0 in 3,
Oe;u0, Oe;ug >0 in R™\ 3,
Oe; (0e;u0), Oc; (Oe;u0) > 0 in R™,

where the third property holds true by the weak Harnack inequality (see|[Lemma 2.9) since Oc,uq, O;uo >

0 (by convexity and —e;, —e; € X)), and O, ug # 0 # O.;up. Note that [Lemma 2.9is applicable due to
The fourth property follows from the convexity of ug. Moreover, note that 9e,uo, Oe;uo

are continuous due to [Proposition 3.8 Therefore, is applicable to Jeuo, Oe,uo, Which
implies that there is A > 0 such that

A_laeiuo < Oe;up < Adeyup  in R™.

To prove (4.10)), let us define
K" :=sup{k > 0: Oe,up > KOe;up in R"}, w = (O, — K" Oe; )ug > 0,

and assume by contradiction that w # 0. Note that by definition of w, we have w = Oe, —x*e,uo, and
therefore
Lw=0 inR"\X,
w=0 1in X,
w>0 inR"\X,
Oc;—wre;w 2 0 in R™.

The first and second property follow by the assumptions on the blow-up ug. The third property follows
from the weak Harnack inequality since w > 0 by definition and w # 0. The fourth property follows
by convexity of ug.
We distinguish now between the following two cases:

. * *
either e; — k*e; € X, or e; —kK'e; € X.
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In case e; — k*e; € ¥ we can apply to w, e, up, which yields that there is B > 0 such
that

B lw < Oejuo < Bw in R"™
Therefore,
Oe,ug > (K* + B_l)('“)ejuo in R",

which contradicts the definition of k*. Consequently, we must have w = 0, which yields that O, ug =
#*0e,;ug and proves (4.10)), and therefore also (4.9).
On the other hand, in case e¢; — k*e; € X, let us show that it must be

{t(e; — K"ej) :t e R} C . (4.11)

In fact, if we had —(e; — k*ej) € X, then —t(e; — k¥ej) € ¥ and thus w(—t(e; — k*e;)) > 0 for every
t >0, while t(e;—r"e;) € ¥ and thus w(t(e; —x"e;)) = 0 for any ¢ > 0. This contradicts Oe, e, w > 0.
Therefore, we have +(e; — r*e;) € ¥, which yields .
By convexity of ug, implies that 0 = e, —x+e; U0 = e, uo— K" e, ug (see [0, Lemma 4.3]). However,
this in turn yields , and therefore also , as desired.

We have established , which proves that there exist 1 < k < n and k; > 0 such that for any
1 <4 < n with ¢ # k it holds O¢;—k;e,u0 = 0 in R", which implies that ug is invariant in n — 1
directions, i.e. that there exist e € S"! and ¢ € C(R) such that ug(z) = ¢(z - e). In particular,
Y ={e-z <0} since 0 € 9%.
Next, due to [19, Lemma B.1.5], we have (—A)%¢/(z-e) =0 in {z-e > 0} and it holds ¢'(z-€) =0
in {x - e < 0}. Moreover, ¢/(t) < C(1+ 7). Thus, we can apply [19, Theorem 1.10.15] and obtain
that ¢'(z - €) = a(z - €)% and therefore

up(r) = ¢w-e) = T

which proves the desired result in case ¥ = {ug = 0} is a closed convex cone in R" with non-empty
interior and vertex at 0. 0

(z-e)i®, for some a > 0,

Now, we are in the position to give the

Proof of [Theorem 1.3 First, let us assume that ug # 0, since otherwise there is nothing to prove. Let
us observe that {ug = 0} C R" is a convex set with 0 € d{uy = 0}.
By proceeding as in the proof of [19] Proposition 4.4.3], we can find a sequence R,,, /* co such that
uo(Rmx)
Rl Vuoll Lo By,

U () =
satisfies in the distributional sense
L(Dpuy) >0 in {u, >0} = R Hug > 0},
HVU’WHL‘X’(BR) < 2Rs+a VR > 1, HVumHLoo(Bl) =1.

Moreover, by convexity of u,,, and the C17-estimates from [Proposition 3.8 they converge locally
uniformly (up to a subsequence) to a function us, € C%(R") satisfying

Uso > 0, and D?us >0 in R",
L(Vus) =0, and L(Dpus) >0 in R"\ X in distributional sense,
Vool poo(Br) < 2R VR>1, |V e(sy) > 1,

where ¥ = N,, R, {ug = 0} denotes the limiting closed convex cone of the blow-down sequence. Note
that we used the stability of distributional solutions (see [19, Proposition 2.2.31]).



OBSTACLE PROBLEMS FOR NONLOCAL OPERATORS WITH SINGULAR KERNELS 27

In case X is a closed, convex cone with empty interior, we claim that in the distributional sense
L(Dpusx) =0 in R", Vh € R". (4.12)

From here, by the Liouville theorem with growth for distributional solutions (see [19, Corollary 2.4.13]),
it turns out that us = 0, which is a contradiction. Therefore, we can rule out that ¥ is a closed,
convex cone with empty interior.

Let us prove that holds true: First, note that there exists e € S"~! such that ¥ C {z € R" :
e -z = 0}. Moreover, observe that Dyus, € CEETI7¢(R™ \ ¥) by application of interior regularity
estimates (see [I9, Theorem 2.4.2]) to Vu, and using also the growth control on Vue. Therefore,
L(Dhuss) > 0 in a pointwise sense in R™ \ ¥. Next, let us introduce ¢(x) = exp(—|e - z|*~?) for
some 0 € (max{0,1 — 2s},1 — s). Then, according to [19, Lemma B.1.1 and Lemma B.1.2], we have
Lo > —C in R", and moreover L¢ = 400 in ¥ in a pointwise way. The proof carries over to our
more general class of operators since ¢ is one-dimensional (see the proof of [19, Lemma 2.5.2] and use
(G<])). Moreover, note that since us, € C%1(R"), the function ¢. = Dpus, + £¢ has a positive cusp
on {x - e =0} and hence also satisfies L¢. = +00 in ¥ in a pointwise sense. Thus

L¢. > —Ce inR" (4.13)

pointwise, and by [Lemma 2.8 (4.13)) also holds true in the distributional sense. Moreover, note that
since ¢ — Dpus in Li (R™), we have

loc
/ (Ln)pe dz — (Ln)Dpus dx
n Rn

by the same arguments as in the proof of [19, Proposition 2.2.31], and therefore we have in the
distributional sense

L(Dpus) >0 in R", Vh € R".

By taking —h instead of h, and employing the same arguments as before, we obtain that L(—D_pus) >
0 in R", which yields , as desired. Thus, as explained before, the case where X is a closed, convex
cone with empty interior cannot happen.

Alternatively, the limiting set 3 is a closed convex cone with non-empty interior and we have

Y = {uoo = 0} = N R, {ug = 0}. (4.14)
In that case, by we obtain
Uoo (T) = aco(7 - )15, for some as > 0.

In particular, ¥ = {z € R" : z-e < 0}. Thus, due to (4.14)), it must be {up =0} = {z € R" : z-e < 0},
so also {up = 0} is a closed convex cone with non-empty interior. An application of to ug
yields

up(z) = ag(z - €)™,  for some ag > 0,

which concludes the proof. O

4.4. Quantitative closeness to the blow-up. As a direct consequence of the classification of blow-
ups, we have the following quantitative estimate on closeness of a solution to the obstacle problem to
the blow-up. This result is a counterpart of [19, Proposition 4.4.14] (see also [21, Theorem 2.2]).

Corollary 4.9. Assume and for somep > 3-. Let K be homogeneous, o € (0, min{s, 1—s})
and let €9 > 0 and Ry > 1. Then, there is n > 0, depending only on n, s, \, A, a, gg, Ry, such that the
following holds true:

Let u € C¥Y(R™) such that
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(i) min{Lu — f,u} = 0 in R™ in the distributional sense, where |V f| <,
(i) w >0 and D?>u > —nld in R™ with 0 € 9{u > 0},
(iil) |Vulpoo(py) < R*T® for any R > 1.
Then, it holds

lu— k(- e)EjSHCOJ(BRO) < €0 (4.15)
for some e € S* ' and k > 0.

Proof. We assume by contradiction that there is no n > 0 for which the result holds. Then, there are
me — 0, Ly satisfying (G5), (KZ), fr, ux satistying (i), (ii),(iii) with = 7;, but violating for
any e € S~ ! and k > 0. By [Proposition 3.8 u, locally converges in C'7 to a limiting ug € C*7 up
to a subsequence. By the stability of distributional solutions (see [I9, Proposition 2.2.31]), there is L

satisfying (G>)), (KZ|) such that ug satisfies (i),(ii),(iii) with n = 0. Thus, by [Theorem 1.2} it must be

up(z) = k(z - €)1 for some k, e, a contradiction. O

5. REGULARITY OF THE FREE BOUNDARY

The main result of this article are the regularity of the free boundary near regular points and the
optimal C'*-regularity of solutions. They are summarized in which we will prove in this
section.

As we explained before, the main tool in the proof of once the classification of blow-ups
is established, is the quantitative estimate which we will prove first.

5.1. Lipschitz regularity. As a first step towards proving we establish Lipschitz reg-
ularity of the free boundary near regular points. In fact, we will prove slightly more, namely that the
free boundary is Lipschitz with an arbitrarily small constant. Let us give the following definition:

Definition 5.1 (Lipschitz domain). Let pg > 0. We say that a domain @ C R" is a Lipschitz domain
in B,, with constant less than d, if there are g : R ! 5 R, e € S ! such that

QN By =A{Zn > g(T1,T2, ..., Tn-1)} N By,
where T = Rz for some rotation R with Re = e,, and
lgllcor(s,,) < 6.

The following is the main result of this subsection. It states that the free boundary is a Lipschitz
domain with a small constant once the solution is close enough to the blow-up. Such result was already
known for operators whose kernel is comparable to the fractional Laplacian (see [19, Lemma 4.4.13
and Proposition 4.4.15]). In our case, the proof needs to be modified in order to deal with kernels
that are possibly degenerate in some directions.

Lemma 5.2. Assume and (G<). Let K be homogeneous and o € (0,min{s,1 — s}). For any
ko >0, po >0, and d < pg there are € > 0, Ry > 1 depending only on A\, A, n, s, d, pg, ko such that the
following holds true:
Let u € COY(R™) be such that
(i) min{Lu — f,u} = 0 in Bp,, in the distributional sense, where |V f| <,
(i) 0 € o{u > 0}, and D*u > —¢ld in Bg,,
(iil) |Vullpeo(py) < R*T® for any R > Ry,
(iv) [Ju— K(z - e)fSHCOJ(BRO) < ¢ for some Kk > ko and e € S"1L.
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Then, for any ¢’ € S*~! with e - e’ > §, it holds
Oou >0 in B, (5.1)

and {u > 0} N By, is Lipschitz with constant less than cd for some ¢ = ¢(n) > 0.
Moreover

e > ¢(0po)® in{xeR":x-e>dpo} N Br, C {u>0} (5.2)
for some ¢ > 0, depending only on kg, &,0.

Proof. We define ug(z) = k(x - €)™ and observe that for any ¢/ € S"71, we have dyug(z) = (1 +
s)k(e-€)(x -e)5.. Therefore, whenever § > 0 and e - e’ > ¢, it holds

Ogug > 0 in R", Derig > K0T in {z-e > 6}.
Let us choose e < %261, Then, since
|0t — Oerup| < € in Bp,, (5.3)
we obtain that w := ]IBRO O u satisfies
|Lw| <e+cRy™® in Bry/ \ £ in the distributional sense,

w=0 in EU(R"\ Bg,),

w > —e in Bpg,,

w > %(51“’ in {x-e>d} N Bg,,

where we set E = {u = 0}. The first property follows from (iii), (G<|) and and the stability
of distributional solutions (see [19, Proposition 2.2.31]) applied to Djpu. The second property follows

from [Proposition 3.8

Now we turn to the actual proof of . We claim that for any pg > 0 and 6 < pg, we can find
Ry > 1 and € > 0 such that w > 0 in B, where Ry, e depend only on A, A,n,s, d, pg, and Ko.
To prove the claim, we follow the proof of [19, Lemma 4.4.13]: First, we choose a radial bump function
Y € CP(By) with ¢ =11in By, 0 <% <1, and set for ¢ > 0

P(x) = —e —t + eb(x/po).

Let us assume that the claim is false. In that case, there exist z € By, \ E and t > 0 such that 1
touches w from below at z. Note that therefore, by [Lemma 2.7 it holds Lw(z) > —e in the pointwise
sense (Jyu is Holder-continuous by [Proposition 3.8). Clearly, we have the following estimate

Lw —)(2) 2 Luw(z) — | L(2)] = —& — cRG™ — cacpy ™.

Note that we used (G<]) and the properties of 1 in order to estimate |Li(2)| < caepy®. On the
other hand, we have, using that (w — v¢)(z) =0, w > ¢, and ¢, < 0:

Lw—1¢)(z) = —/ (w— 1Y) (z)K (2 —x)dx

n

<_ /{ sy, 0BG =) da

—HO(SHS/ K(z —x)dz
2 {z-e>6}NBR,

KO ¢1+s
< ——=4§"T5C
2 )

IN
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where C' = C(ko, 5, \, A, s,n,p9) > 0. Let us explain how to prove the last estimate. First of all, due
to there exists dp > 0 depending only on n, s, A\, A such that for any r > 0

/ K(z—z)dz > er%.
{22200 0(Bar (2)\Bx(2))

Let us take any ¢ < pg. Clearly, there exists » > 0 depending only on pg, dp such that for any z € B,
it holds:

{ T e 50} N (Bor(2) \ Br(2)) C {2 e > 6} N (Bar(2) \ By(2)).

|2 — x|

Upon choosing Ry so large that Ba,(z) C Bg, (this choice only depends on pg), we obtain

—,1051"'5/ K(z—z)dz < _/%51+5/ K(z—x)dx
2 {28} B, 2 {E=gez00 Jn(Bar (\B:(2))

[z—]

< _@51+s7f2s7
2
as desired.
Having at hand the two-sided estimate for L(w — 1;)(z), we obtain a contradiction upon taking the
limit Ry — oo and € — 0. This implies , as claimed.
Thus, by , {u > 0} N B,, is a Lipschitz epigraph in direction e with Lipschitz constant bounded
by ¢d. Indeed, to see this, we can follow the proof of [19, Proposition 4.4.15] and obtain

u=0 inX_,
u >0 in2+,

where
Sy={z€B,:x=a0Ltr, TS, 176> t>0}

for any x¢ € B,, N 0{u > 0}. This implies that 0{u > 0} N B, satisfies the interior and exterior cone
condition with explicit cones ¥4, and therefore d{u > 0} N B,, is Lipschitz with constant bounded
by ¢d.

The last claim, namely (5.2)), follows from the observation that for z € {x € R" : x-e > dpp} N Bpg,
it holds

Deuo(x) = (1+ s)k(z - ) = ro(dpo)°.
Moreover, by choosing ¢ < % (dpo)® (making it smaller, if necessary) and (5.3), we obtain
deul) > ro(6p0)* — = = T (3po)",

as desired. O

5.2. Uniform non-degeneracy near the free boundary. We already know that the free boundary
is Lipschitz with a small enough constant. In order to prove the C!"7-regularity of the free boundary
(see , we are lacking control on the non-degeneracy of the solutions close to the free
boundary. This property is established in A key ingredient in its proof is the existence of
suitable barrier functions (see [37]):
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Lemma 5.3. Assume (G>)) and (G<|). Let K be homogeneous. Then, for every 6 € (0,s) there is
n > 0, depending only on n,s, A\, A, 0, such that the functions

®(z) = <e.x—n\x| [1— (‘f;"'-eﬂ)w,

+

2 s—0
(59
||
satisfy for some constant ¢ > 0, depending only on n,s, A\, A, 0,

L® < —cd’ in Cy, LY >cd 5 in C_y,
iiJ =0 inR™\C,, \J =0 inR™\C_y,
n X
Cin:{xGR t— e > *En

al 1‘<||>”

The barriers ®, ¥ have been introduced in [37]. Since the cones Ci, merely have a Lipschitz
boundary, one cannot expect the corresponding barriers to have homogeneity s, however, for any
6 € (0,1), one can find barriers with homogeneity s & 6 if the cones C+, are close enough to a half-
space, i.e. have a small enough Lipschitz constant.

In the sequel, we shortly explain how the proof of [I9, Lemma 4.1] can be adapted to general kernels

satisfying only (G>|) and (G<)).

Proof. We only explain how to prove the result for ®. By homogeneity, it is enough to prove that
L® < —c on points belonging to e + dC,, for some ¢ > 0. Given P € 9C,, we define

Pp,(z):=®(Pteta)=(1+e z—npp(x))i?,

where ¢p is a function satisfying ¢p(0) = 0, [Vop(z)| < C for any x € R*\ {—P —e}, |D?¢p(z)| < C
for any = € By s, [¢p(7)| < c|z| for |z| > 1/2. Moreover, note that

1®py — (1 +e)5 2B, ) — 0. (5-4)

Note that the proof is complete, once we show that L®p,(0) < —c. This property follows, once we
verify the following two properties:

L(®py)(0) = L((1+e)7)(0), asn 0, (5.5)
L((1+e)T)(0) < —¢, (5.6)
where ¢ = ¢(s,0,\,A) > 0. To prove (5.5)),

L(@r)(0) = L+ 00 = | [ 180 — (14 0) VK () ay

U(z) = (6 -+ x|

_l’_

where

<|[®p, —(1+ e')S+Jr6||02(31/2) /

ly[2K (y)dy + C/ Inop(y) " K (y) dy
B2 R™\

"\By /3
<Ny = U+ )y o, [ WPKGy+ O [ K () dy
By 2 R™M\ By /o
0
< C(10py — (1+ )5 2, + 1)
—0 asn—0,
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where we used (5.4), and in the last step we applied (G<|) and To prove ((5.6]), we use the

symmetry and homogeneity of K to compute
L((1+e)5)(0) < —e,
for some ¢ > 0, depending only on n, s, A\, A, following the arguments in [19, Lemma B.1.6]. a

We are now in the position to establish the non-degeneracy close to the free boundary.

Lemma 5.4. Assume and (G<]). Let K be homogeneous, a € (0, min{s, 1 — s}), and 6 € (0, ).
For any ko > 0 there is p > 1, depending only on n,s,a, A\, A, ko, 8, such that for any py > p, there
are € >0, Ry > 1, depending only on A\, A, n, s, po, ko, 0, such that the following holds true:

Let u € COY(R™) be such that

(1) min{Lu — f,u} = 0 in Bpg, in the distributional sense, where |V f| < ¢,
(i) 0 € O{u > 0}, and D*u > —¢ld in Bg,,

(iil) |Vullpeo(py) < R*T® for any R > Ry,

(iv) |lu—kK(z- e)}jSHCo,l(BRO) < ¢ for some Kk > kg and e € S"1.

Then, we have
deu > cd*t? in By, (5.7)

for some constant ¢ > 0, depending only on n, s, A\, A, kg, 0.

Proof. Let 6 € (0,1) be given and n be as in [Lemma 5.3] By [Lemma 5.2} for any pg > 0 and § < pp
there are ¢ < 1, Ry > 1, depending only on X\, A, n, s, po, ko, 8, such that for any ¢ € 0{u > 0} N B,

(xo +Cp) N Bsy, (xg) C{u>0}N By, . (5.8)

Moreover, it holds
Ocu >0 in By,
Ocu > c1(dpg)® in{z €R":x-e>dpg} N Bay, C {u>0}
for some ¢; > 0 depending only on rg. Moreover we observe that (iii) and (iv) imply
IVl oo By < CoR*T VR >1 (5.9)

for some Cy > 0, depending only on x,s. Next, we define v = ulp,, . We have for any xg € 9{v >
0} N By, /4, using (5.8), , as well as the previous three displays:

|LOev| < (e + Cipg~?) in (2o +Cy) N By,
861) Z 0 in B4p07
Ocv > c1(0po)® in{zeR":xz-e>dpo} N Bap,y,

where C; > 0 depends only on n, s, k, A\, A. Moreover, note that the PDE in the first property holds
true in the distributional sense, and by [Proposition 3.8 we know that d.v € C(B,,).

In particular, given any py > 1 we can make dpg so small (by choosing 6 = ¢p,, ! for some small enough
¢ > 0 depending on 7, A\, A) such that

Oo¥ > cg in (xg + Cﬂ) N (B4p0 \ Bpo),

co < / K(z—y)dy = —L(ﬂ{xeanezépo}m(&m\Bg,,o))(Z) Vz € (xo + Cy) N By,
{zeR™:z-e>8p0 }N(Bapg \ Bspg)
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where ¢y > 0 depends only on n, s, \, A, kg, n, and we used in order to establish the second
property. Now, we define

B D(x — o)
12( = zo) Lo (4,
and observe that by

- L(®(x — xo)]134po)
(= 20) | Lo (Bayy)
< ez — 203

< -1 in (x¢+Cy) N By,

W(.T) ILB4po (.’E) +Cs ﬂ{xER":z-ezépo}ﬂ(B4po \B3p() (.T),

L + C3L<H{:CER":x~eZ(5po}ﬂ(B4p0\ngo))

upon choosing C3 > 1 large enough depending only on n, s, A, A.

We define II(x) = cam(x)/(1+C3), and choose pg > 1 large enough (largeness depends on n, s, A\, A, ko, 1)
(and making ¢ < 1 smaller, if necessary) such that (¢ + Cipj~ %) < ¢2/(1 4+ Cs). Then, we have the
following properties:

Ll(z) < —ca /(1 4+ C3) < —(e + Cipy~ %) < Ldev(x) V€ (g + Cy) N By,

II(z) < o < Jev(2) Va € (o + Cy) N (Bapy \ Bpo),

II(z) = 0 = Ocv(x) Va € (zg + Cy) N (R™\ Buy,),

II(x) = 0 < Jev(x) Ve e [R"\ (zo+Cp)| \[{z €R" :x-e>dpo} N (Buayy \ B3po)l,
I(z) < ¢g < ev(x) Ve e [R"\ (xo+Cp)]N[{z € R™ 12 e > dpo} N (Bap, \ Bapy)l-

Altogether, we deduce from the comparison principle for continuous distributional solutions (see [19]
Corollary 2.3.8]) that

Oev(x) = (),
which in particular means that for any ¢ € (0,1) by the homogeneity of ®:
dov(xo + te) > ct*t?,

where ¢ > 0 depends on n, s, \, A, kg, 7, which implies ([5.7]). This concludes the proof. O
5.3. Proof of The goal of this section is to prove First, we establish

the following C*~?-estimate up to the boundary, which holds true for domains with sufficiently small
Lipschitz constants. This result is reminiscent of [37, Lemma 5.2].

Lemma 5.5. Assume (G>)) and (G<|). Let K be homogeneous. Let § € (0,s) and Ky > 0. Let
0 € (0,1) and Q C R™ be a Lipschitz domain in By with constant less than ¢. Let v € C(By) be a
distributional solution to

|Lv| < Ky in QN By,
v=0 n B\,
and assume that
vl Lo (BR) < KoR*% VR >1.
Then, there is 69 > 0, depending only on n, s, X\, A, 0, such that if § < éo:
[vllgs-o(B, ,5) < CKo,

where C > 0 depends only on n, s, A\, A, 0.
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Proof. First, let us consider u = v1p, and observe that (after a normalization) u satisfies
|Lu| <1 in QN By,
u=0 1in B\,
u=0 inR"\ Ba,
[l oo (rmy < 1.
We claim that for any zo € 9Q N By /5 it holds
lu(z)] < Clz — 20[*? in QN By y(zo). (5.10)

To prove ([5.10), let us take n € (0,1) as in and observe that by the assumption on €2, if
the Lipschitz constant is small enough, depending on 7, it holds

Bl/Q(x(]) N C Bl/Q(.'L'()) N (x() + C_n).
Moreover, let us define ¥ as the function in with 27 and set
II = CU(- = x0) + 1B, (20)\By s (x0)
where we choose C' > 0 large enough, such that
LI >d, /78 > 1 in Byj(zo) NG (5.11)

Note that by (G<| it is easily seen that LIIB2(xO)\Bl/2(xO) > —cin B1/4(:L‘0) for some constant ¢ > 0,

depending only on n, s, A\, A, and therefore one can find C' > 0 satisfying (5.11)).
Then, it holds

LI >12> Lu in Byy(zo) N Q.
Moreover, note that
U(z) > clz|*? Ve e C_y,
where ¢ > 0 depends on 7. Therefore, we have upon choosing C > 0 large enough:
II>1>wu in (Bl/Q(a:O) \B1/4(xo)) N Q.

Moreover, by construction (and since By /s(wo) \ 2 C By \ Q)

II>0=u in (By(zo) \2)U(R"\ Ba(zo)),

O>1>u in Ba(zo) \ Byj2(zo)-
All in all, we can apply the comparison principle (see [19, Corollary 2.3.8]) and obtain

w<II inR™.

In particular, since II(z) = ®(x — o) < c|x — z0|*~? for any z € QN By /2(0), we obtain (after
repeating all the aforementioned arguments with —II), as desired.

Next, we observe that by interior estimates (see [19, Theorem 2.4.3]) combined with a standard
rescaling argument (see [19, Proof of Proposition 2.5.4]) it holds for any x € QN By

[ulcs=0(By(ay jo(x)) < Cda_s(x)(HUHLOO(Bd(m)(x)) +d ) <C

for some constant C' > 0, where we used (5.10)) in the last step. Combining this estimate with (5.10))
yields the desired result. O
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Remark 5.6. In the situation of [Theorem 1.1|it holds u € C1**=¢ for any & € (0, 1) if € > 0 is small
enough (depending on €). This follows by application of with v = Vu, which is possible
due to |Proposition 3.8|

Next, we observe that the pointwise boundary regularity estimate [37, Proposition 5.4] also holds
true in our setup. This is because its proof is merely based on blow-up arguments and the Liouville
theorem on a half-space, which remain true for general stable operators.

Lemma 5.7 (see Proposition 5.4 in [37]). Assume (G>)) and (G<|). Let K be homogeneous. Let
a € (0,s) and Co > 1. Let 6 € (0,1) and Q C R™ be a Lipschitz domain in By 5 with constant less
than 6.

Then, there is dg > 0 such that the following holds true for any § < do: If u,v € L3S, (R™) are
distributional solutions to

Lvi,Lvg <§ in Bl/5 N Q,
vi =v2 =0 in By;\Q,
01| Lo (B + 02l oo (Br) < CoR*T VR > 1,
and

vg >0 in By, C’algsupvggCO.
By

Then, there is K € R with |K| < C such that
lv1(z) — Kve(z)| < Cla|*T Vz € By,
where C' > 0 depends only on 8, Coy, cr, s, A, A\, n.

Proof. The proof goes exactly as in [37, Proposition 5.4].
Note that although the statement in [37] is written for a so-called improving Lipschitz domain €2, this
property is never used in the proof. Instead, it suffices for £ to be Lipschitz in a large enough ball
with a small enough Lipschitz constant. This can be achieved by proving the main estimate (5.14) in
[37] for 6 > 0 small enough (where § must be at least so small that [37, Lemma 5.3] is applicable).
As in [37] one proves (5.14) by contradiction, assuming that there are sequences €2; with Lipschitz
parameter 0; — 0 such that (5.14) fails. Then, clearly Q; (and therefore also j€;) converges to a
half-space, as j — oo, which allows to carry out the proof as in [37]. See also [44, Proposition 5.1] for
an analogous proof for flat Lipschitz domains in the parabolic setting

Moreover, the statement in [37] and all the aforementioned lemmas in [37] are written for equations
with an unbounded right hand side. In our setting, we only require the result with a bounded right
hand side, however the proofs remain unchanged.
Moreover, the result in [37] is stated for viscosity solutions to fully nonlinear problems, instead of
distributional solutions to a linear equation, and for kernels that are pointwise comparable to the
one of the fractional Laplacian, instead of kernels that merely satisfy and . However, note
that the proof of [37, Proposition 5.4] itself, but also of the auxiliary result [37, Lemma 5.3], can be
rewritten into the setup of our work without changing any of the arguments. In fact, the Liouville
theorem in a half-space (see [19, Theorem 2.6.2]) and the stability of distributional solutions (see [19,
Proposition 2.2.31]) also hold true in our setup. The same applies to the Holder regularity up to the
boundary in Lipschitz domains, [37, Lemma 5.2], which is reproved in this article (see[Lemma 5.5). O

Now, we are in the position to explain how [Lemma 5.2 and [Lemma 5.7] can be used to deduce
CY7-regularity of the free boundary:
The following proposition directly implies
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Proposition 5.8. Assume (G>)) and (G<)). Let K be homogeneous, a € (0, min{s, 1 —s}) and ko > 0.
Then, there are € > 0, Ry > 1, depending only on n, s, A\, A, o, kg, such that the following holds true:
Let u € C%Y(R™) be such that
(1) min{Lu — f,u} = 0 in Bpg, in the distributional sense, where |V f| < ¢,
(ii) D?u > —eld in Bg, with 0 € 9{u > 0},
(iil) |Vullpoo(py) < R*T® for any R > Ry,
v)

(i

Then, the free boundary O{u > 0} is a C17-graph in By /3 and moreover, we have

u—k(x-e 0,1 < e for some Kk > kg and e € S" .
1++s c (BRO)< f > d Snl

HVUHCS(Blm) <C, HVU/dSHCV({u>O}QBl/2) <C,
where C' > 0 depends only on n, s, A\, A\, a, kg, and v > 0 depends only on n,s, A\, A, kg.

Proof. We split the proof into several steps.

Step 1: Let kg > 0 be as in [Theorem 1.1} 6y > 0 be as in [Lemma 5.7 and §' > 0 be as in [Lemma 5.2
and p > 1 be as in[Lemma 5.4 Let us take § < min{do, p} and pyg > p. Moreover, recall (5.9). Then,
by [Cemma 5.2] we can find € > 0 so small and Ry > 1 so large that

{u>0}nB,, isLipschitz with constant less than d.

Moreover, by we can find € > 0 so small and Ry > 1 so large that (after a rotation)
Opu > cd*™ in B, (5.12)

for some 6 € (0, «). Finally, note that if we choose € < § and Ry > 1/6, then by assumption we have
in the distributional sense:

|L(Vu)| <4 in Bys N {u> 0}, (5.13)
Vu=0 1in By \ {u > 0}, (5.14)
[Vulpoo By < R VR > 1. (5.15)

In particular, we obtain
C’O_1 <supd,u < Cy
B
for some constant Cy > 0. Let us choose € > 0 so small and Ry > 1 so large that all of the previous

properties, i.e. (5.12), (5.13), (5.14), and (5.15) hold true. Then, we can apply and infer
that for any zo € 0{u > 0} N By 5 there exists K (zo) € R with [K(x0)| < C such that it holds

|0iu(z) — K (20)0pu(z)| < Clz — 20T Va € By. (5.16)

Step 2: First, we prove that d;u/d,u € L>({u > 0} N By). To see this, let € {u > 0} N By and
take zg € 0{u > 0} N By such that |z — xo| < 2d(z), where d := d,—py. Then, we obtain

Oiu(z) |0iu(z) — K (20)0pu(z)| |z — zo|st o
— < < < '
Opu(x) K(x0)| < Bru(a)] <c Ty S cd*(x), (5.17)
where we used and . Therefore,
Ou(a) () .
< _ < <
Soale)| S K@+ 5o — Klag)| < C+ed™ @) <c

as desired.

Step 3: We are now in the position to prove that dju/d,u € C**({u > 0} N B;). We take
z,y € {u > 0} N By and assume without loss of generality that d(y) < d(x). We distinguish between
two different cases.
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Case 1: First, we assume that d(y) < d(x) < 2|z — y|. In that case, given xg,yo € 0{u > 0} N B; such
that d(x) < 2|x — x¢| and d(y) < 2|y — yol|, we infer from ((5.17):

diu(x) () ‘ <

B o;u Oiu(x) Oiu(y)
Opu(z)  Ohu(y)

< e(d* (@) +d*(y)) < e —y[*7

+

(5.18)

Second, we assume that d(x) > 2|z — y|. In particular, this means that y € Bg)/2(x). Therefore,
by (b.16]), taking ¢ € 0{u > 0} N By with |z — x| < 2d(z), there exists K := K(z9) € R such that
|K| < C and

H@Zu - K@nu|\Lw(Bd<x>/2(w)) é Cd5+a($).
Therefore, using interior regularity estimates (see [19, Theorem 2.4.3]), we obtain
[Oiu — Kanu]Co‘*e(Bd(x)ﬂ(ac)) < cd*tO(x).

Indeed, proceeding as in the proof of [19, Proof of Proposition 2.6.4]
[[0iu — KOyu](z) — [0;u — KOnu](y)|

|J} _ y|a—6

< CW 0w — KanUHL"O(Bd(x)/z(Z))
105ull oo (Br) + |00l Lo (BR)
s+a R R 2s
a7 e) RZS;E)D Rs+a +d (x)vaHLoo(Bd(")/Q(m))

|:E 7y|a—9 s+a s+6 a—0
<e——F— < -
< ) < ol gl

where we made use of ((5.13) and (/5.15)).
By combination of the previous two estimates, using also (5.12) and that ||0,ul|cs-2(B1) < ¢ for

any € € (0,1) due to we obtain:
Jwu(z)  Ou(y)| |[0u — Kowul(xz)  [Ou — Koqul(y)
Ipu(z) N &m(y)‘ a ‘ Onu(z) N Inu(y) ‘
< 1 n 1
~ | Ohu(y)  Opu(z)
‘ [0;u — KOpul(z) + [0;u — KOpu

|[0iu — KOyul(x) — [O7u — KOpul(y)|

1®) \ Byulz) — Buuly)

Opu(z)Opu(x)
45+ (z) 0 d*e(z) :
< — yle— _|5—€
=@ ey N @y Y

< c\x - y‘afe + dfs+a729(x)’x o y|sf€
<clr —y|* + |z -y,

where we used in the last step that d(y) > d(x)/2, and also o — 20 > «/2 and we chose £ < a//4 so
that

A= @)e — | < dTFE (@) — gl < -yl < o -y

After combination with Step 2 and (5.18) we obtain that d;u/d,u € C*/*({u > 0} N By).
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Step 4: We have shown that for some v € (0,1):

From here, the same arguments as in [6] yield that the free boundary is C'7. In fact, the normal
vectors of the level set {u =t} are of the form
Oiu(x)

vi(z) = Onule) Vo € {u=t}.

o)\ 1/2

n— ;UL

<Zj1 <8iu(:c)) + 1)

Hence, by (B.19), [|v[lcvuetinp,) < C. Thus, the level sets {u = t} are uniformly C*7 in Bi.
Therefore, they converge (resp. their graphs converge) uniformly as ¢t N\, 0 to d{u > 0}, which implies
that d{u > 0} is a C*7-graph in Bj.

Next, we recall [I4, Corollary 1.3, using that v = s in the symmetric case]), which states that due to
the C''"V-regularity of the free boundary,

Hvu/dsHC’YO({u>0}ﬂB1/2) <C

for some 7p € (0,7] depending only on n, s, A\, A, v, and C' > 0, depending only on n, s, \, A, a,7y. Note
that for kernels satisfying the upper bound in (K.|), this result can be found in [19, Proposition 2.6.8].
Moreover, note that by [19, Proposition 2.5.4], we have

IVullcs(s,,,) < C

for some C' > 0, depending only on n,s, A\, A, a, k. Finally, observe that for the application of both
results, we used that Vu € C(B;) by [Proposition 3.8 (see also [19, Remark 2.5.5]). O

Proof of [Theorem 1.1} Let us apply [Proposition 5.8 with v(x) = R'*u(z/R) for some R > 0. Then,
it holds

min{Lv — f,v} =0 in Bg, where |Vf| < R7%,
Dy > —R*"! in Bp,
Vo[ oo mny < R,
lo = k(@ ) lleoa(pyy <.
Next, we choose R > Ry so large that R™* < Ry, R*™!' < Ry The desired result follows upon

application of [Proposition 5.8/ to v and rescaling back to . O

5.4. Proof of [Theorem 1.3] We finally give the:

Proof of [Theorem 1.3 Note that by u € CYY(R™). Let us now denote v = u — ¢. Then,
by [19, Lemma 2.2.27], v is also a distributional solution to min{Lv — f,v} = 0 in R". From here, the

proof of follows by combination of [Corollary 4.9] and [Proposition 5.8| just as in the proof
of |21}, Corollary 2.16] or [19, Proposition 4.5.2]. O
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