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Weakly hyperbolic systems by symmetrization

FERRUCCIO COLOMBINI, TATSUO NISHITANI AND JEFFREY RAUCH

Abstract. We prove Gevrey well posedness of the Cauchy problem for gen-
eral linear systems whose principal symbol is hyperbolic and coefficients are
sufficiently Gevrey regular in x and either Lipschitzian or Hölderian in time.
Such results date to the seminal paper of Bronshtein. Our proof is by an energy
method using a pseudodifferential symmetrizer. The construction of the sym-
metrizer is based on a Lyapunov function for ordinary differential equations. The
method yields new estimates and existence uniformly for spectral truncations and
parabolic regularizations.

Mathematics Subject Classification (2010): 35L45 (primary); 35L40 (sec-
ondary).

1. Introduction

Consider the Cauchy problem for first order systems,

Lu = @t u �
dX

j=1
A j (t, x)@x j u + B(t, x)u = f, u(0, ·) = g . (1.1)

The coefficients A j and B take values in the m ⇥ m complex matrices.
Definition 1.1. The principal symbol is

⌧ I � A(t, x, ⇠) with A(t, x, ⇠) :=
dX

j=1
A j (t, x) ⇠ j .

The characteristic polynomial is det(⌧ I � A(t, x, ⇠)). The operator is hyperbolic,
assumed throughout, when

for all t, x, ⇠ 2 R ⇥ Rd ⇥ Rd , Spectrum A(t, x, ⇠) ⇢ R . (1.2)

The authors thank the Centro di Ricerca Matematica Ennio De Giorgi, Laboratorio Fibonacci
of the CNRS, and the Dipartimento di Matematica Università di Pisa for their hospitality and
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Hyperbolicity (1.2) is a necessary condition for the Cauchy problem (1.1) to be well
posed for non analytic data (see [15] for Gevrey data and history). It is not sufficient
for well posedness for C1 data. For most non strictly hyperbolic scalar operators,
most lower order terms lead to initial value problems that are ill posed in the C1

category. The generic ill posedness holds even if the coefficients are real analytic
functions or even constant.

For hyperbolic operators with real analytic coefficients, [8,22] showed that for
Gevrey initial data, Gs with 1 < s < s0, there are Gevrey solutions. No condi-
tion of E. Levi-type is needed. It came as a surprise to many, including us, when
Bronshtein [2] proved that the Cauchy problem for linear hyperbolic partial differ-
ential operators, even those with coefficients that are only finitely smooth in time
and Gevrey in x , is well posed for Gevrey data. Bronshtein, Ohya-Tarama [19],
and Kajitani [13, 14] used parametric constructions either by studying the resol-
vent close the imaginary axis or by Fourier integral operator constructions. The
papers [3, 4, 16, 17] use energy methods of increasing complexity. In this paper
we introduce a new energy method that we think is simpler and more natural. Our
estimates are proved in spite of ignoring the detailed behavior of the eigenvalue
crossings.

Well posedness for Gevrey data for hyperbolic systems is often treated by mul-
tiplying the system by the cofactor system to reduce to scalar operators. That ap-
proach at least two weaknesses. First applying the cofactor matrix requires that the
coefficients have a number of derivatives in time roughly equal to the size of the
matrix. Second, this destroys the details of the system structure. For example if a
system is merely two copies of a strictly hyperbolic system, the cofactor approach
immediately replaces the problem with a scalar problem with double roots, which
is much more sensitive to perturbations.

We prove Gevrey a priori estimates for first order hyperbolic systems by con-
structing a pseudodifferential symmetrizer. The symmetrizer is motivated by a spe-
cial Lyapunov function for asymptotically stable first order systems of linear ordi-
nary differential equations. The proof not only gives a priori estimates, but also
quantifies some effects coming from the block structure of the system.

This paper discusses only the existence and uniqueness of solutions. The
method of [5] gives the natural precise estimate for the influence domain. This
allows one to eliminate our hypothesis that the coefficients are independent of x
outside a compact subset of space.

In Hypothesis 2.8, we associate, to our systems, an index ✓ (0  ✓  m � 1).
The value of ✓ measures roughly whether the Taylor polynomial of degree N =
max{2✓,m} of the symbol can be uniformly block diagonalized with blocks of size
✓ + 1. It is always satisfied with ✓ = m � 1.

The uniformly Gevrey s functions on Rd (see definition (2.3)) are denoted
Gs(Rd) and those of compact support by Gs0(Rd). In the results below, the Gevrey
index s0 is usually cruder, that is smaller, than the sharp results of [3,4,21] valid for
coefficients only depending on time. An exception is the case of uniformly diago-
nalisable systems. The Gevrey index in Theorems 1.3 and 1.5 cannot be improved
for those systems. The result for Lipschitz coefficients in time is the following.
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Hypothesis 1.2. The coefficients A j and B are independent of x for x outside a
fixed compact inRd . The source terms satisfy g2Gs0(Rd), and f2L1loc(R;Gs0(Rd)).

Theorem 1.3. Suppose Hypotheses 2.8 is satisfied. Define

s0 := max
⇢
2+ 6✓
1+ 6✓

,
3+ 4✓
2+ 4✓

�
.

For some 1 < s  s0 suppose that Hypothesis 1.2 is satisfied and that A j (t, x)
(respectively B(t, x)) are Lipschitz (respectively continuous) in time uniformly on
compact sets with values in Gs(Rd). Then there is a T0 > 0 and a unique local
solution u 2 C([0, T0] ;Gs0(Rd)) to the Cauchy problem (1.1).

Remark 1.4. The proof shows that for all constants c > 0 and T > 0 the interval
of existence can be chosen uniformly for data satisfying

Z
|ĝ(⇠)|2ech⇠i1/s d⇠ +

Z T

0

✓Z
| f̂ (t, ⇠)|2ech⇠i1/s d⇠

◆1/2
dt < 1 .

An analogous remark applies to Theorem 1.5.

The next result concerns coefficients that are Hölder continuous in time.

Theorem 1.5. Suppose that 0 <  < 1 and that Hypothesis 2.8 holds. Define

s0 := min
⇢
1+  + (2+ )✓

1+ (2+ )✓
, max

⇢
2+ 6✓
1+ 6✓

,
3+ 4✓
2+ 4✓

��
.

For some 1 < s  s0 suppose that Hypothesis 1.2 is satisfied and that A j (t, x) (re-
spectively B(t, x)) are  Hölder continuous (respectively continuous) in time uni-
formly on compact sets with values in Gs(Rd). Then the conclusion of Theorem 1.3
holds.

The idea of the symmetrization is straightforward. We multiply by a positive Her-
mitian pseudodifferential operator to derive estimates. The change of variables
v = eahDi⇢ t u replaces the operator L with L � ahDi⇢ . Choosing a � 1 and
0 < ⇢ < 1 appropriately, the matrix

M(t, x, ⇠) = A(t, x, ⇠) + B(t, x) � ah⇠i⇢

has spectrum with real part  �h⇠i⇢ for all t, x, ⇠ . For the ordinary differential
equation X 0 = MX with M evaluated at a fixed t, x, ⇠ , the positive definite matrix

R(t, x, ⇠) :=
Z 1

0

�
eMs

�⇤eMs ds
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defines a strict Lyapunov function, that is RM + M⇤R < 0. Our symmetrizer is
based on R(t, x, D). This multiplier method has other advantages. For example, it
yields uniform estimates in h for the filtered operators

@t + �(hD)

 
X

j
A j@ j + B

!

�(hD) with � 2S(Rd), �(0)=1, and 0 < h⌧1.

We use these to prove existence. The filtered operators are related to the spectral
method analysed in [6]. Similar uniform estimates are valid for the parabolic regu-
larizations,

@t +
X

j
A j@ j + B � ✏ 1 .

These requires a little work whose details are omitted for sake of brevity. Parabolic
regularizations represent dissipative effects neglected in hyperbolic model equa-
tions in sciences.

2. Three important preliminary results

2.1. Hyperbolicity and spectral bounds

Hypothesis 2.1. Suppose � ⇢ Rd is open, and that A(t, x) 2 C0
�
R ;Cm+1(�)

�

is an m ⇥ m matrix valued function. Assume that

Spectrum A(t, x) ⇢ R for all (t, x) 2 R ⇥ � . (2.1)

Define

H(t, x, y, s) :=
X

|↵|m

s|↵|

↵!
y↵ @↵

x A(t, x) .

The values H(t, x, y, is) for y 6= 0 and s real give an extension of A to complex ar-
guments t and x+isy. The Taylor polynomial H appears in the Gevrey conjugation
Proposition 2.6. The next proposition gives spectral bounds on H .

Proposition 2.2. If Hypothesis 2.1 holds then for any T > 0 and compact set K ⇢
� there exist � > 0 and C > 0 so that for all x 2 K , |t |  T , |y|  1 and |s|  �,

⇣ is an eigenvalue of H(t, x, y, is) =) |Im ⇣ |  C|s| .

The long proof of this result is presented in Section 7.
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2.2. Gevrey conjugation

Denote
h⇠i` :=

q
`2 + |⇠ |2 = `

q
1 + |⇠/`|2 (2.2)

where ` � 1 is a positive parameter that will be chosen large. Denote h⇠i1 = h⇠i
and note that h⇠i  h⇠i`  ` h⇠i.
Definition 2.3. If 1 < s < 1, the function a(x) 2 C1(Rd) belongs to Gs(Rd) if
there exist C > 0 and A > 0 such that

�
�@↵
x a(x)

�
�  CA|↵||↵|!s for all x 2 Rd , for all ↵ 2 Nd .

Denote Gs0(Rd) := Gs(Rd) \ C1
0 (Rd).

Definition 2.4. For 0 < �  ⇢  1, the family a(x, ⇠ ; `) 2 C1(Rd ⇥Rd) indexed
by ` belongs to S̃m⇢,� if for all ↵, � 2 Nd there is a constant C↵� independent of
` � 1, x, ⇠ such that

�
�@�
x @↵

⇠ a(x, ⇠ ; `)
�
�  C↵� h⇠im�⇢|↵|+�|�|

` .

Denote S̃m := S̃m1,0.

Definition 2.5. For 1 < s, and m 2 R, the family a(x, ⇠ ; `) 2 C1(Rd ⇥ Rd)

belongs to S̃m(s) if there exist constants C > 0 and A > 0 independent of ` � 1, x, ⇠
such that for all ↵, � 2 Nd ,

�
�@�
x @↵

⇠ a(x, ⇠ ; `)
�
�  C A|↵+�| |↵ + �|!s h⇠im�|↵|

` .

We often write a(x, ⇠) for a(x, ⇠ ; `) dropping the `. If a(x, ⇠) is the symbol of a
differential operator of order m with coefficients a↵(x) 2 Gs(Rd) then a(x, ⇠) 2
S̃m(s) because |@�

⇠ ⇠↵|  CA|�||�|!h⇠i|↵|�|�|
` and |@�

x a↵(x)|  C↵A
|�|
↵ |�|!s for any

� 2 Nd .

Proposition 2.6. Suppose 1/2  ⇢ < 1 and s = 1/⇢, and let a(x, ⇠) be m ⇥ m
matrix valued with entries in S̃1(s) and @↵

x a(x, ⇠) = 0 outside |x |  R for some
R > 0 if |↵| > 0. Then the operator b(x, D) = e⌧ hDi⇢` a(x, D)e�⌧ hDi⇢` is for small
|⌧ |, a pseudodifferential operator with symbol given by

b(x, ⇠) =
X

|↵|k

1
↵!

D↵
x a(x, ⇠)

�
⌧r⇠ h⇠i⇢`

�↵
+ R(x, ⇠) and Dx j := �i

@

@x j
,

with R(x, ⇠) 2 S̃max {⇢�k(1�⇢) ,�1+⇢}.

For completeness a proof is given in Section 6.
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If a were real analytic in x then the sum on the right would be
X

|↵|k

@↵
x a
↵!

(�iy)↵ = a(x � iy , ⇠) + O
�
|y|k+1

�
, y = ⌧r⇠ h⇠i⇢` .

When |⇠ | ! 1, then y tends to zero because ⇢ < 1. Therefore, this is a very small
displacement in the complex direction. In [8, 22] the coefficients were analytic and
one could make such complex displacements. For our problems, the coefficients are
not analytic and the replacement for complex displacement is to put complex argu-
ments into Taylor polynomials. An alternative method is to take an almost analytic
extension of a that satisfies the Cauchy-Riemann equations with error O(|y|1) at
y = 0.

Corollary 2.7. If a(x, ⇠) 2 S̃0(s) then e
⌧ hDi⇢` a(x, D)e�⌧ hDi⇢` 2 Op S̃0 for small |⌧ |.

Proof. Choose k so that ⇢ � k (1 � ⇢)  0. Then D↵
x a (x, ⇠) (⌧r⇠ h⇠i⇢` )↵ 2

S̃�(1�⇢)|↵| ⇢ S̃0 for a 2 S̃0. The assertion follows from Proposition 2.6.

2.3. The block size barometer ✓

We introduce an integer valued parameter ✓ (0  ✓  m � 1) that measures the ex-
tent to which the principal symbol can be block diagonalized by matrices bounded
with bounded inverse. For example in the strictly hyperbolic case, blocks of size 1
are attainable. The easy case of the Kreiss Matrix Theorem1 asserts that block size
one is equivalent to ei A(t,x,⇠) 2 L1(Rd

⇠ ) locally uniformly in t, x . By convention ✓

is one smaller than the block size. Block size m and therefore ✓ = m � 1 is always
possible. The definition of ✓ is not directly given in these terms. The relation to
block size is discussed in the examples.

Assume that A j (t, x) 2 C0(R ;C1(Rd)) and (1.2) is satisfied. Proposition 2.2
implies that for any T > 0 and compact set K ⇢ Rd there exist � > 0 and c > 0
such that if ⇣ is an eigenvalue of

X

|↵+�|m

(is)|↵+�|

↵!�!
@↵
x @

�
⇠ A(t, x, ⇠) y↵⌘� (2.3)

then |Im ⇣ |  c |s| for any |(y, ⌘)|  1, x 2 K , |⇠ |  1, |t |  T . Define

Hr (t, x, ⇠ ; ✏) :=
X

|↵|r

✏|↵|

↵!
D↵
x A(t, x, ⇠) ⇠↵.

Choosing (y, ⌘) = (⇠, 0) in (2.3) we see that there is ✏0 > 0, c > 0 such that

⇣ is an eigenvalue ofHm(t, x, ⇠ ; ✏) =) |Im ⇣ |  c |✏| (2.4)

for any x 2 K , |⇠ |  1, |✏|  ✏0, |t |  T . Introduce ✓ defined as follows.

1 eit A bounded forward and backward in time, see [20].
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Hypothesis 2.8. Assume the system is ✓-regular with integer 0  ✓  m � 1 in
the sense that for any T > 0 and any compact K ⇢ Rd there exist C > 0 and c > 0
and ✏0 > 0 such that with N = max{2✓,m}

✏✓

C ecs✏

�
�eisHN (t,x,⇠ ;✏)

�
� 

C ecs✏

✏✓
, (2.5)

for all s � 0, 0 < ✏  ✏0, |⇠ | = 1, x 2 K , |t |  T .
A system that is ✓-regular is �-regular for all ✓ < �  m � 1.

Denote

HN (⇢, `, ⌧, t, x, ⇠) :=
X

|↵|N

1
↵!

D↵
x A(t, x, ⇠)

�
⌧r⇠ h⇠i⇢`

�↵
.

The definition ofHN implies that

HN (⇢, `, ⌧, t, x, ⇠) = h⇠i` HN

⇣
t , x , ⇠/h⇠i` ; ⌧⇢h⇠i⇢�1

`

⌘
.

Choosing sh⇠i`, ⌧⇢h⇠i⇢�1
` (⌧ > 0), ⇠/h⇠i` for s, ✏, ⇠ in (2.5) yields

⌧ ✓

C h⇠i✓(1�⇢)
` ecs⌧ h⇠i⇢`


�
�eisHN (`,⌧,t,x,⇠)

�
� 

C h⇠i✓(1�⇢)
` ecs⌧ h⇠i⇢`

⌧ ✓
(2.6)

for |t |  T , ` � `0 where ⌧, `0 are constrained to satisfy

0 < ⌧`
⇢�1
0  ✏0 . (2.7)

Example 2.9. Estimate (2.5) always holds with ✓ = m � 1. Indeed write HN =
Hm+LN where kLNk  C✏m+1. Take an orthogonal matrix T such that THmT�1

is upper triangular. Let S = diag(1, ✏, . . . , ✏m�1) then STHm(ST )�1 =
diag(�1, . . . , �m) + K with kKk  C✏. From (2.4) we have |Im� j |  c1|✏|.
This proves that |Re i STHm(ST )�1X, X)|  C|✏||X |2 for any X 2 Cd . There-
fore e�cs✏  k(ST )eisHN (ST )�1k  ecs✏ for 0  ✏  ✏0 with some c > 0, ✏0 > 0
because kST LN (ST )�1k  C✏. Since kS�1k  C✏�(m�1) and kSk  C this
implies the desired bounds,

✏m�1e�cs✏/C 
�
�eisHN

�
�  C✏�(m�1)ecs✏ .

Example 2.10. If A(t, x, ⇠) is uniformly diagonalizable then (2.5) holds with ✓ =
0. Indeed, choose T = T (t, x, ⇠) with uniform bounds of kTk and kT�1k inde-
pendent of (t, x, ⇠) such that T�1A(t, x, ⇠)T = diag{i� j } is diagonal with real � j .
Then

T�1eisHm T =eisT
�1HmT , and T�1HmT = diag{i� j } + A1, with kA1k  C✏.

This implies the desired bounds,

e�cs✏/C  keisHmk  C ecs✏ .
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Example 2.11. Suppose that there exists T = T (t, x, ⇠ ; ✏) with bounds on kTk
and kT�1k independent of (t, x, ⇠ ; ✏) such that T�1HmT is a direct sum �A j
where the size of A j is at most µ. Then (2.5) holds with ✓ = µ � 1. This
follows by arguments as in Example 2.9. Our results take account of this purely
system behavior. Roots of high multiplicity but small blocks behave according
to the size of the blocks and not the multiplicity. In particular if each A j (t, x)
is block diagonal with r blocks a jk(t, x) of the same size ` ⇥ ` (m = `r) and
ak(t, x, ⇠) =

Pd
j=1 a jk(t, x)⇠ j has a same eigenvalue ⌧ of multiplicity ` at (t, x, ⇠)

(⇠ 6= 0) then Theorem 1.3 holds with s0 = (4` � 1)/(4` � 2) (one can choose
✓ = ` � 1) while previous results assert no more than s0 = `r/(`r � 1) which
clearly is smaller than (4` � 1)/(4` � 2) if r � 4.

Example 2.12. Suppose that there is r 2 N such that for any (t, x, ⇠, ✏) we can
find c(t, x, ⇠, ✏) 2 C such that

Rank
⇣
Hm(t, x, ⇠, ✏) � c(t, x, ⇠, ✏)I

⌘
 r .

Then hypothesis (2.5) holds with ✓ = r .

3. The symmetrizer construction

3.1. Lyapunov function for linear ODE

Suppose that M is a matrix whose eigenvalues all lie in the open left half plane
{Re z < 0}. The solutions X (t) of the ordinary differential equation X 0 = M X
tend exponentially to zero as t % 1. Lyapunov proved that there are positive defi-
nite symmetric matrices R so that the scalar product (RX, X) is strictly decreasing
on orbits. For differential equations the quantity (R · , ·) is called a Lyapunov func-
tion. In the partial differential equations context, R is often called a symmetrizer.

There is a remarkable explicit choice

R =
Z 1

0

�
esM

�⇤ esM ds . (3.1)

For that R,

RM + M⇤R =
Z 1

0
esM

⇤
esMM ds +

Z 1

0
M⇤esM

⇤
esM ds

=
Z 1

0
esM

⇤ d
ds

⇣
esM

⌘
ds +

Z 1

0

d
ds

⇣
esM

⇤
⌘
esM ds

=
Z 1

0

d
ds

⇣
esM

⇤
esM

⌘
ds = �I.
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Therefore

d
dt
�
RX (t), X (t)

�
=
�
RX 0(t), X (t)

�
+
�
RX (t), X 0(t)

�

=
�
RMX (t), X (t)

�
+
�
RX (t),MX (t)

�

=
⇣�
RM + M⇤R

�
X (t) , X (t)

⌘
= �

�
X (t), X (t)

�
,

proving that (R · , ·) is a strict Lyapunov function.
The last identity is easily understood. With X (t) = etM X (0), the definition of

R yields for s > 0,

�
RX (0), X (0)

�
=
Z 1

0
kX (t)k2 dt and

�
RX (s), X (s)

�
=
Z 1

s
kX (t)k2 dt .

Differentiating the last with respect to s yields the formula for (RX, X)0.
For applications to partial differential equations one has matrices M that de-

pend smoothly on parameters and it is important that the symmetrizers also depend
smoothly. The standard constructions of Lyapunov functions depending either on
Schur’s unitary upper triangularization or Jordan’s canonical upper triangularization
do not have smooth dependence. Formula (3.1) in contrast does depend smoothly
on parameters. It pays no attention to the spectral details of M . Where eigenvalues
cross and the associated spectral projections usually misbehave, the formula for R
does not.

The inequality RM+M⇤R < 0 is important. It implies a negativity of symbols
that translates, using the sharp Gårding inequality, to a negativity of operators.

3.2. The symmetrizer R and its derivatives

Assume (2.5) and hence (2.6). Define

M(a, `, ⌧, ⇢, t, x, ⇠) := i HN (`, ⌧, t, x, ⇠) � a h⇠i⇢`

with
0 < ⇢ < 1  min{a, `} . (3.2)

Proposition 2.2 implies that there is an a0 � 1, c > 0 so that

SpectrumM ⇢
n
z : Re z  c(a0 � a) h⇠i⇢`

o
.

We suppose that
a � a0 + 1 . (3.3)

The parameters ⌧, a, T are constrained to satisfy

c1  c ⌧  T, and 2 c T  a (3.4)
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for some T > c1 > 0 . For ease of reading, the `, ⌧, a, ⇢ dependence of M and R
is often omitted. Introduce the candidate symmetrizer

R(a, `, ⌧, ⇢, t, x, ⇠) := a
Z 1

0
h⇠i⇢`

�
esM(t,x,⇠)

�⇤�esM(t,x,⇠)
�
ds.

We need lower bounds on R so that it yields good estimates and need to verify
that R defines a classical symbol. Interestingly, we do not need that R is a Gevrey
symbol.

The parameters `, ⇢, a are constrained by

1  a  `1�⇢ . (3.5)

Since kesMk = e�ash⇠i⇢` keisHN k, (3.4) implies

⌧ ✓ h⇠i�✓(1�⇢)
` e�c1ash⇠i⇢` /C 

�
�esM

�
�  C⌧�✓ h⇠i✓(1�⇢)

` e�c2ash⇠i⇢`

with c1, c2 > 0 and C > 0 independent of `, ⌧, a, t, x, ⇠, s. This yields

(Rv, v) = a
Z 1

0
h⇠i⇢h

�
�esMv

�
�2 ds

� C�2⌧ 2✓kvk2h⇠i�2✓(1�⇢)
`

Z 1

0
ah⇠i⇢` e

�2c1ash⇠i⇢` ds

� c0 ⌧ 2✓ h⇠i�2✓(1�⇢)
` kvk2 .

This is equivalent to the important lower bound

R � c0 ⌧ 2✓ h⇠i�2✓(1�⇢)
` . (3.6)

Theorem 3.1. Assume (2.5), (3.4) with K = Rd and 0  ✓  m � 1. Denote ⌫ :=
✓(1�⇢). Suppose that A(t, x, ⇠) is Lipschitz in time uniformly on compact sets with
values in the S̃1(Rd⇥Rd). Then R(t, x, ⇠) (resp. @t R) is bounded in time uniformly
on compacts with values in S̃2⌫⇢�⌫,1�⇢+⌫(Rd ⇥ Rd) (resp. S̃1�⇢+3⌫

⇢�⌫,1�⇢+⌫(Rd ⇥ Rd)).
That is for all ↵,� one has

�
�@�
x @↵

⇠ R(t, x, ⇠)
�
�  C↵� a�|↵+�| h⇠i2⌫+(1�⇢+⌫)|�|�(⇢�⌫)|↵|

` ,
�
�@�
x @↵

⇠ @t R(t, x, ⇠)
�
�  C↵� a�|↵+�|�1 h⇠i1�⇢+3⌫+(1�⇢+⌫)|�|�(⇢�⌫)|↵|

`

(3.7)

with C↵� independent of a, ⇢, `, ⌧, t, x, ⇠ .

Remark 3.2. The estimate for @
�
x @↵

⇠ @t R is exactly the same as the estimate for a
derivative @

�
x @↵

⇠ R with |� | = |�| + 1. The time derivative is like an extra space
derivative.



WEAKLY HYPERBOLIC SYSTEMS BY SYMMETRIZATION 227

Proof. Denote

X (s; t, x, ⇠) := esM(t,x,⇠)v and X↵
�(s; t, x, ⇠) := @�

x @↵
⇠ X (s; t, x, ⇠) .

Step I. Estimates for X↵
�
. We prove, by induction on |↵ + �|, that

�
�X↵

�(s)
�
�  C↵�

�
s + h⇠i�1`

�|↵| �1+ sh⇠i`
�|�|

h⇠i⌫(|↵+�|+1)
` e�cash⇠i⇢` . (3.8)

The constraint (3.5) implies that

ah⇠i⇢�1
`  1 , that is 1  a�1h⇠i1�⇢

` . (3.9)

The identity h⇠i` = `h⇠/`i from (2.2) implies
�
�@↵

⇠ h⇠is`
�
� . h⇠is�|↵|

` so @↵
⇠ h⇠i` = ` `�|↵| (@/@⇣ )↵h⇣ i

�
�
⇣=⇠/`

.

Introduce
E(s) := h⇠i⌫` e

�cs ah⇠i⇢`

so that |X | . E(s) and E(s)E(s̃) = h⇠i⌫`E(s + s̃). The desired estimate (3.8) is
equivalent to

�
�X↵

�(s)
�
�  C↵�

�
s + h⇠i�1`

�|↵| �1+ sh⇠i`
�|�|

h⇠i⌫|↵+�|
` E(s) . (3.10)

The constraints (3.4) and (3.9) imply
�
�
�M(↵)

(�)

�
�
�  C↵�h⇠i1�|↵|

` . (3.11)

For |↵| = 1 differentiate the equation for X to find,

Ẋ↵ = MX↵ + M(↵)X with X↵(0) = 0 . (3.12)

Then (3.11) and Duhamel’s representation yield

|X↵(s)| =

�
�
�
�

Z s

0
e(s�s̃)MM(↵)X ds̃

�
�
�
� .

Z s

0
E(s � s̃) E(s̃) ds̃

= s h⇠i⌫` E(s) 
�
s + h⇠i�1`

�
h⇠i⌫` E(s).

Similarly for |�| = 1, one has Ẋ� = MX� + M(�)X with X�(0) = 0 so

|X� | 
Z s

0
E(s � s̃)h⇠i`E(s̃)ds̃  sh⇠i`h⇠i⌫`E(s)  (1+ sh⇠i`)h⇠i⌫`E(s).

This proves (3.10) for |↵ + �| = 1.
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Assume k � 1 and that (3.10) holds for |↵ + �|  k. It suffices to prove (3.10)
X�

� with |� + �| = k + 1. Differentiation of the equation for X yields

Ẋ↵
� = M X↵

� +
X

↵1+↵2=↵ ,�1+�2=�
↵1+�1 6=0

C↵1,�1 M
(↵1)
(�1)

X↵2
�2

with X↵
�(0) = 0 . (3.13)

Duhamel’s formula yields

�
�X↵

�(s)
�
� .

X

↵1+�1 6=0

Z s

0

�
�
�e(s�s̃)M M(↵1)

(�1)
X↵2

�2

�
�
� ds̃ .

The inductive hypothesis estimates the right hand side by

.
X

↵1+�1 6=0

Z s

0
E(s � s̃)h⇠i1�|↵1|

` (s̃ + h⇠i�1` )|↵2|(1+ s̃h⇠i`)
|�2|

· h⇠i⌫|↵2+�2|
` E(s̃)ds̃

.
X

↵1+�1 6=0
s h⇠i1�|↵1|

` (s + h⇠i�1` )|↵2| (1+ sh⇠i`)
|�2|h⇠i⌫(|↵2+�2|+1)

` E(s) .

(3.14)

If |�1| � 1 so that |�2| < |�|, then

s h⇠i` h⇠i⌫(|↵2+�2|+1)
` (1+ sh⇠i`)

|�2|  h⇠i⌫|↵+�|
` (1+ sh⇠i`)

|�|

and the right-hand side of (3.14) is bounded by (3.10). If |�1| = 0 so that �2 = �
and |↵1| � 1, one has

s h⇠i1�|↵1|
`

�
s + h⇠i�1`

�|↵2| h⇠i⌫(|↵2+�|+1)
`

 h⇠i�⌫(|↵1|�1)
` h⇠i⌫|↵+�|

` s h⇠i�(|↵1|�1)
`

�
s + h⇠i�1`

�|↵2|

 h⇠i⌫|↵+�|
`

�
s + h⇠i�1`

�|↵|

(3.15)

implying the same conclusion. This completes the inductive proof of (3.10).

Step II. Estimates for @t X↵
�
. Differentiating the equation Ẋ = MX with respect to

t or with respect to x are entirely parallel. With the exception that one can only take
one temporal derivative because M is only Lipschitz continuous in t . The result is
a bound for Ẋ↵

� that is the same as the bound for X with one more x derivative, that
is �

�Ẋ↵
�

�
� .

�
s + h⇠i�1`

�|↵|�1+ sh⇠i`
�|�|+1

h⇠i⌫(|↵+�|+1)
` E(s) . (3.16)
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Step III. Estimates for @
�
x @↵

⇠
R. Begin with the estimate from Leibniz’ rule,

|@�
x @↵

⇠ R| .
X

�1+�2=�
↵1+↵2+↵3=↵

Z 1

0
a
�
�
�
�
h⇠i⇢`

�(↵1)�esM
⇤�(↵2)

(�1)

�
esM

�(↵3)
(�2)

�
�
� ds . (3.17)

Thanks to (3.8), the integrand in (3.17) is less than or equal to

ah⇠i⇢�|↵1|
`

�
s + h⇠i�1`

�|↵2+↵3|(1+ sh⇠i`)
|�1+�2|

· h⇠i⌫(|�+↵�↵1|+2)
` e�cash⇠i⇢` e�cash⇠i⇢` .

The pair of estimates

s + h⇠i�1` =
�
ash⇠i⇢` + ah⇠i�1+⇢

`

�
a�1h⇠i�⇢

` 
�
ash⇠i⇢` + 1

�
a�1h⇠i�⇢

` ,

1+ sh⇠i` = ash⇠i⇢`
�
a�1h⇠i1�⇢

`

�
+ 1 

�
ash⇠i⇢` + 1

�
a�1h⇠i1�⇢

` ,

yield

�
�@�
x @↵

⇠ R
�
� . a�|�+↵| h⇠iq`

Z 1

0
a
�
1+ ash⇠i⇢`

�|�+↵|
h⇠i⇢` e

�2cash⇠i⇢` ds ,

with

q :=(1�⇢)|�|�⇢|↵| + ⌫(|� + ↵| + 2) = 2⌫ + (1� ⇢ + ⌫)|�| � (⇢ � ⌫)|↵| .

Use (1+ ash⇠i⇢` )|�+↵| e�cash⇠i⇢` . 1 to find

�
�@�
x @↵

⇠ R
�
� . a�|�+↵| h⇠iq`

Z 1

0
a h⇠i⇢` e

�cash⇠i⇢` ds . a�|�+↵| h⇠iq` .

This is the first estimate of (3.7).

Step IV. Estimates for @t R↵
�
. As in Remark 3.2, the estimate for the time derivative

is the same as taking one additional space derivative. The details are left to the
reader.

This completes the proof of Theorem 3.1.

4. Theorem 1.3, examples and proof

We begin with some examples illustrating the conclusion.
Example 4.1. If A(t, x, ⇠) =

Pd
j=1 A j (t, x)⇠ j is uniformly diagonalizable then

one can take ✓ = 0 so that Theorem 1.3 holds with 1 < s  2. In [13] Kajitani has
proved that the Cauchy problem for uniformly diagonalizable system is well posed
in G2(Rd) when the coefficients are smooth enough in time.
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Example 4.2. We can always take ✓ = m�1 and Theorem 1.3 holds with 1 < s 
(4m � 1)/(4m � 2).

Example 4.3. If (2.5) holds with ✓ = µ � 1, 2  µ  m � 1, then one can choose
1 < s  (4µ � 1)/(4µ � 2) in Theorem 1.3.

Proof of Theorem 1.3.

Step I. Compact support in x . Choose R > 0 so that the support of f , g, and
rt,x A j ,rt,x B are all contained in {|x |  R}. Denote by cmax an upper bound for
the propagation speed for the constant coefficient hyperbolic operator L on |x | � R.

Finite speed for that constant coefficient operator implies that u vanishes for
|x | � R + cmaxt with t � 0.

Step II. First a priori estimate. In this section standard notation for the Weyl
calculus of pseudodifferential operators from [7] is used. Consider (1.1). Set v =
ehDi⇢` (T�at)u with small T to be chosen below. Define

Ã := ehDi⇢` (T�at)Ae�hDi⇢` (T�at) and B̃ := ehDi⇢` (T�at)Be�hDi⇢` (T�at)

and f̃ := ehDi⇢` (T�at) f . Compute

d
dt

⇣
R ehDi⇢` (T�at)u, ehDi⇢` (T�at)u

⌘
= (@t R v, v)

+
�
R(i Ã + B̃ � ahDi⇢` )v, v

�

+
�
Rv, (i Ã + B̃ � ahDi⇢` )v

�

+
�
R f̃ , v

�
+
�
Rv, f̃

�
.

(4.1)

For any 0 < c1 < T , one has c1  T � at  T for 0  t  (T � c1)/a. If T > 0
is small, Proposition 2.6 implies that Ã = HN + K with

K 2 S̃max {⇢�N (1�⇢) ,�1+⇢} . (4.2)

Corollary 2.7 implies B̃ 2 S̃0.
Since i Ã � ahDi⇢` = M + i K the right-hand side of (4.1) is equal to

(@t R v, v) +
�
(RM + M⇤R)v, v

�
+ (R f̃ , v)

+
�
(R(i K + B̃) + (i K + B̃)⇤R)v, v

�
+ (Rv, f̃ ).

Recall that M 2 S̃1 and R satisfies (3.7). Therefore

R#M + M⇤#R = RM + M⇤R + K1 = � ah⇠i⇢` + K1
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where aK1 2 S̃1�⇢+3⌫
⇢�⌫ , 1�⇢+⌫ with bound independent of a which is large (see, e.g., [7,

Proposition 18.5.7]). Choose a1 � a0 so that if a > a1 one has Ca�1  3a/4.
Then,

�a
�
hDi⇢`u, u

�
+ Re (K1u, u)  �a

�
�hDi⇢/2

` u
�
�2 + Ca�1

�
�
�hDi(1�⇢+3⌫)/2

` u
�
�
�
2

 �(a/4)
�
�
�hDi⇢/2

` u
�
�
�
2

provided

⇢ � 1� ⇢ + 3⌫ , equivalently ⇢ � (1+ 3✓)/(2+ 3✓). (4.3)

Note that a @t R 2 S̃1�⇢+3⌫
⇢�⌫ , 1�⇢+⌫ with a-independent bound so

Re
�
@t Ru, u

�
 Ca�1

�
�
�hDi⇢/2

` u
�
�
�
2

if 2⇢ � 1+ 3⌫, that is ⇢ � (1+ 3✓)/(2+ 3✓).
Using (4.2), R 2 S̃2⌫⇢�⌫,1�⇢+⌫ , and B̃ 2 S̃0 yield the pair of estimates

�
��(RB̃ + B̃⇤R)v, v

���  C
�
�hDi⌫`v

�
�2  C`�(⇢�2⌫)

�
�
�hDi⇢/2

` v
�
�
�
2
,

�
��i(RK � K ⇤R)v, v

���  C
�
�
�hDi⌫+⇢/2�N (1�⇢)/2

` v
�
�
�
2

 C 0
�
�
�hDi⇢/2

` v
�
�
�
2

because 2⌫ + ⇢ � N (1� ⇢) = (2✓ � N )(1� ⇢) + ⇢  ⇢ and 1� ⇢ + ⌫  ⇢ � ⌫
when 2⇢ � 1+ 3⌫. In addition,
�
�(R f̃ v, v)

�
�+

�
�(Rv, f̃ )

�
�  2

�
�hDi�3⌫` Rv

�
�
�
�hDi3⌫` f̃

�
�  C

�
�hDi�⌫

` v
�
�
�
�hDi3⌫` f̃

�
�.

Thus there exist c,C > 0 so that

d
dt

(R v, v) + ca
�
�
�hDi⇢/2

` v
�
�
�
2

 CkhDi�⌫
` vk

�
�hDi3⌫` f̃

�
� . (4.4)

The definition of R together with (3.6) and (3.4) show that if T1 < T and 0  t 
T1/a, then R = R⇤ � c h⇠i�2⌫` .

Introduce the metric

G := a�2
⇣
h⇠i2(1�⇢+⌫)

` |dx |2 + h⇠i�2(⇢�⌫)
` |d⇠ |2

⌘
. (4.5)

ThenG/G�=a�4h⇠i2(1�2⇢+2⌫)
` .Use theWeyl calculus with H=a2h⇠i2⇢�1�4⌫

` (R�

c h⇠i�2⌫` ) 2 S((G/G� )�1/2,G) satisfying H � 0. The sharp Gårding inequality [7,
Theorem 18.6.7] yields

(Hv, v) � �Ckvk2.
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Write
H = a2h⇠i⇢�1/2�2⌫

` #
�
R � c h⇠i�2⌫`

�
# h⇠i⇢�1/2�2⌫

` + K

where K 2 S(1,G). Introduce u := hDi⇢�1/2�2⌫
` v to find

(Hv, v) = a2
�
(R � c hDi�2⌫` )u, u

�
+ (Kv, v)

� �Ckvk2 = �C
�
�
�hDi�⇢+1/2+2⌫

` u
�
�
�
2
.

Since |(Kv, v)|  Ckvk2 = CkhDi�⇢+1/2+2⌫
` uk2 it follows that

(Ru, u) � c
�
�hDi�⌫

` u
�
�2 � �Ca�2

�
�
�hDi�⇢+1/2+2⌫

` u
�
�
�
2
. (4.6)

If �⌫ � 2⌫ + 1/2� ⇢, that is

⇢ �
1+ 6✓
2+ 6✓

then there exist constants c0 > 0 and `0 > 0, so that for ` � `0 one has

(Ru, u) � c0
�
�hDi�⌫

` u
�
�2 .

Integrating (4.4) yields

�
�hDi�⌫

` v(t)
�
�2  c

�
�hDi⌫`v(0)

�
�2 + 2CM

Z t

0

�
�
�hDi3⌫

` {̃
�
�
� d⌧ ,

whereM := sup0⌧t khDi�⌫
` v(⌧ )k. Therefore

✓
M� C

Z t

0

�
�
�hDi3⌫

` {̃
�
�
� d⌧

◆2


✓
p
ckhDi⌫`v(0)k + C

Z t

0

�
�
�hDi3⌫` f̃

�
�
� d⌧

◆2

which gives

�
�hDi�⌫

` v(t)
�
�  2

p
c
�
�hDi⌫`v(0)

�
�+ 2C

Z t

0

�
�
�hDi3⌫` f̃

�
�
� d⌧.

This proves the following important a priori estimate.

Proposition 4.4. If ⇢ � (1 + 6✓)/(2 + 6✓) then there exist T > 0 and a > 0 and
`0 > 0 such that for any T1 < T one can find C > 0 such that for all u so that
ehDi⇢` (T�at)@

�
t,xu 2 L1([0, T ]; H3⌫(Rd)) for |� |  1, one has

khDi�⌫
` ehDi⇢` (T�at)uk  CkhDi⌫`e

T hDi⇢` u(0)k + C
Z t

0
khDi3⌫` ehDi⇢` (T�a⌧ )Luk d⌧

for 0  t  T1/a and ` � `0, where ⌫ = ✓(1� ⇢).



WEAKLY HYPERBOLIC SYSTEMS BY SYMMETRIZATION 233

Step III. Second a priori estimate. For some values of ⇢ and ✓ , one can improve
the estimate for the left hand side khDi�⌫

` ehDi⇢` (T�at)uk in Proposition 4.4. Recall
that @t u = i A(t, x, D)u + B(t, x)u + f and v = ehDi⇢` (T�at)u. Then,

d
dt
�
�ehDi⇢` (T�at)u

�
�2=�2a

�
�hDi⇢/2

` v
�
�2

+
�
(i Ã+ B̃)v, v

�
+
�
v,(i Ã + B̃)v

�
+
�
f̃ , v

�
+
�
v, f̃

�
.

(4.7)

Since i Ã+ B̃ 2 S̃1 one has |((i Ã+ B̃) v, v) + (v, (i Ã+ B̃) v)|  CkhDi1/2` vk2 so

kv(t)k2  kv(0)k2 + C
Z t

0

�
�
�hDi1/2` v

�
�
�
2
ds + 2

Z t

0
kvkk f̃ kd⌧.

Replacing v by hDi(⇢�1)/2
` v yields

�
�
�hDi(⇢�1)/2

` v(t)
�
�
�
2


�
�
�hDi(⇢�1)/2

` v(0)
�
�
�
2

+ C
Z t

0

�
�
�hDi⇢/2

` v
�
�
�
2
d⌧ + 2

Z t

0

�
�
�hDi(⇢�1)/2

` v
�
�
�k f̃ k2d⌧.

On the other hand, the reasoning leading to (4.4) yields

d
dt
�
R v, v

�
+ ca

�
�
�hDi⇢/2

` v
�
�
�
2

 C
�
�
�hDi(⇢�1)/2

` v
�
�
�
�
�
�hDi2⌫�(⇢�1)/2

` f̃
�
�
� .

If

(⇢ � 1)/2 � �⇢ + 1/2+ 2⌫ , equivalently, ⇢ � (2+ 4✓)/(3+ 4✓) (4.8)

then we can control (Rv, v) taking (4.6) into account. Since (2 + 4✓)/(3 + 4✓) �
(1+ 3✓)/(2+ 3✓) and 2⌫ � (⇢ � 1)/2 � 0 if (4.8) is verified then

�
�
�hDi(⇢�1)/2

` v(t)
�
�
�
2

 c
�
�hDi⌫`v(0)

�
�2 + 2CM

Z t

0

�
�
�hDi2⌫�(⇢�1)/2

` {̃
�
�
�
�
�
� d⌧

whereM := sup0⌧t khDi(⇢�1)/2
` v(⌧ )k. Repeating the same arguments prov-

ing Proposition 4.4 yields the following alternative a priori estimate.

Proposition 4.5. If ⇢ � (2 + 4✓)/(3 + 4✓), then there exist T > 0, a > 0,
and `0 > 0, so that for any T1 < T there is C > 0 such that for all u so that
ehDi⇢` (T�at)@

�
t,xu 2 L1([0, T ] ; H2⌫�(⇢�1)/2(Rd)) for |� |  1, one has

�
�
�hDi(⇢�1)/2

` ehDi⇢` (T�at)u
�
�
�  C

�
�
�hDi⌫`e

T hDi⇢` u(0)
�
�
�

+ C
Z t

0

�
�
�hDi2⌫�(⇢�1)/2

` ehDi⇢` (T�a⌧ )Lu
�
�
� d⌧

for 0  t  T1/a and ` � `0, where ⌫ = ✓(⇢ � 1).
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Step IV. Uniform estimates for regularized equations. Choose �(x) 2 C1
0 (Rd)

that is equal to 1 on a neighborhood of x = 0 and such that |�(x)|  1. Consider
the regularized operator

Lh := @t � �(hD)
�
i A(t, x, D) + B(t, x)

�
�(hD) := @t � i Ah � Bh .

Denote

L̃h := ehDi⇢` (T�at)Lhe�hDi⇢` (T�at) := @t � i Ãh � B̃h , and L̃0 := L̃ .

Denote �h(D) := �(hD) so

Ãh = ehDi⇢` (T�at) �h A �h e�hDi⇢` (T�at) = �h Ã �h ,

B̃h = ehDi⇢` (T�at) �h B �h e�hDi⇢` (T�at) = �h B̃ �h .

Note that �h(⇠) 2 S̃0 uniformly in 0 < h  `�1 because h⇠i`  C|⇠ | on the
support of r⇠�(h⇠).

Recall that Ã = HN + K with K in (4.2). Since HN 2 S̃1 it follows that

�(h⇠) # HN # �(h⇠) = �2(h⇠)HN + Kh
1

where Kh
1 2 S̃0, uniformly in 0 < h  `�1. It is clear that �h#B̃#�h 2 S̃0 and

�h#K#�h 2 S̃max{⇢�N (1�⇢) ,�1+⇢} uniformly in 0 < h  `�1.
From here on the pseudodifferential calculus is understood to be uniform in

0 < h  `�1. Denote Hh
N = �2(h⇠)HN so that

Hh
N (`, ⌧, t, x, ⇠) = �2h (h⇠) h⇠i` HN

⇣
t , x , ⇠/h⇠i` ; ⌧⇢h⇠i⇢�1

`

⌘
.

Inserting s�2h h⇠i` and ⌧⇢h⇠i⇢�1
` (⌧ > 0) and ⇠/h⇠i` for s, ✏, ⇠ in (2.5) yields

⌧ ✓

C h⇠i✓(1�⇢)
` ecs⌧�2h h⇠i⇢`


�
�eisH

h
N (`,⌧,t,x,⇠)

�
� 

C h⇠i✓(1�⇢)
` ecs⌧�2h h⇠i⇢`

⌧ ✓
.

Define
Mh := i Hh

N (`, ⌧, t, x, ⇠) � ah⇠i⇢` with ⌧ = T � at

and the corresponding symmetrizer

Rh(t, x, ⇠) := a
Z 1

0
h⇠i⇢`

�
esM

h(`,⌧,t,x,⇠)
�⇤ �esM

h(`,⌧,t,x,⇠)
�
ds .

Since kesMh
k = e�ash⇠i⇢` kesMh

k and 0  �2h  1 one has

⌧ ✓ h⇠i�✓(1�⇢)
` e�c1ash⇠i⇢` /C 

�
�esM

h��  C⌧�✓ h⇠i✓(1�⇢)
` e�c2ash⇠i⇢`
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with c1, c2 > 0 and C > 0 independent of 0 < h  `�1, ` and a. Since

|@↵
⇠ @�

x M
h|  C↵� h⇠i1�|↵|

`

uniformly in 0 < h  `�1, the estimates for Rh are the same as those for R, so one
has (3.7) with C↵� independent of 0 < h  `�1, `, x , ⇠ and a. Repeating the same
arguments proving Proposition 4.4 proves the following.

Proposition 4.6. If ⇢ � (1 + 6✓)/(2 + 6✓) then there exist T > 0 and a > 0 and
`0 > 0 such that for any T1 < T one can find C > 0 such that for all v so that
v 2 C1

�
[0, T ]; H3⌫(Rd)

�
, one has

�
�hDi�⌫

` (t)v
�
�  C

�
�hDi⌫`v(0)

�
�+ C

Z t

0

�
�hDi3⌫` L̃hv(⌧ )

�
� d⌧ (4.9)

for 0  t  T1/a and ` � `0 where C is independent of ` and 0 < h  `�1.

Step V. Construction of a solution. Next solve

L̃hvh =
�
@t � i Ãh � B̃h

�
vh = f̃ with vh(0) = g̃. (4.10)

Since i Ã + B̃ 2 C(R; S̃1) and �h 2 S�1 with h-dependent bound, it follows that
i Ãh + B̃h 2 C(R; S̃0) so it is bounded from Hk(Rd) to Hk(Rd) for any k 2 R.
Therefore for any g̃ 2 Hk(Rd) and f̃ 2 L1loc(R; Hk(Rd)) there exists a unique
solution vh 2 C1(R; Hk(Rd)) to the linear ordinary differential equation (4.10).

Assume

f̃ = ehDi⇢` (T�at) f 2 L1
�
[0, T 0]; H3⌫(Rd)

�
and g̃ = eT hDi⇢` g 2 H3⌫

�
Rd� .

Denote T 0 := T1/a and the corresponding solutions to (4.10) by vh 2 C1([0, T 0];
H3⌫(Rd)). Then (4.9) yields

�
�hDi�⌫

` vh(t)
�
�  C

�
�hDi⌫` g̃

�
�+ C

Z t

0

�
�hDi3⌫` f̃

�
� d⌧

for 0  t  T 0. Therefore {vh} is bounded in L1([0, T 0]; H�⌫). Since L1([0, T 0];
H�⌫(Rd)) is the dual of L1([0, T 0]; H⌫(Rd)), one can choose a subsequence (still
denoted by {vh}) weak⇤ convergent in L1([0, T 0]; H�⌫(Rd)) to v. It is easy to see
that �(hD)vh converges to v weakly in L1([0, T 0], H�⌫(Rd)). Since i Ã+ B̃ maps
L1([0, T 0], H�⌫(Rd)) into L1([0, T 0]; H�⌫�1) then �(hD)(i Ã + B̃)�(hD)vh

converges to (i Ã+ B̃)v weakly⇤ in L1([0, T 0]; H�⌫�1(Rd)). Since it is clear that

Z T 0

0

�
@tv

h,�
�
dt ! �

Z T 0

0
(v, @t�)dt
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for any � 2 C1
0 ((0, T 0)⇥Rd) it follows that v satisfies L̃v = f̃ and v(0) = g̃, that

is
ehDi⇢` (T�at)Le�hDi⇢` (T�at)v = f̃ = ehDi⇢` (T�at) f .

The equation L̃v = f̃ yields @tv 2 L1([0, T 0]; H�⌫�1(Rd)) which implies v 2
C([0, T 0]; H�⌫�1(Rd)). With u = e�hDi⇢` (T�at)v we conclude that

Lu = f for (t, x) 2 (0, T 0) ⇥ Rd , and u(0) = g .

This completes the proof of existence of a solution u with ehDi⇢` (T�at)u = v 2
L1([0, T 0], H�⌫(Rd)).
Step VI. Proof of uniqueness. Suppose that u is a solution with vanishing data
f, g. Define 0  t1  T0 so that u vanishes on [0, t1] ⇥ Rd but does not vanish on
[0, t1+✏)⇥Rd for any ✏ > 0. We need to show that t1 = T0. Suppose that t1 < T0.

Using Remark 1.4 applied to the adjoint operator with time reversed, choose
0 < t  T0 � t1 and C � 1 so that for F(t, x) compactly supported in x and
satisfying

Z T0

0

✓Z

Rd

�
�F̂(t, ⇠)

�
�2 eCh⇠i1/s d⇠

◆1/2
dt < 1 (4.11)

the adjoint problem

L⇤w = F on (t1, t1 + t) ⇥ Rd with w
�
�
t=t1+t

= 0

has a solution in C
�
[t1, t1 + t] ;Gs0(Rd)

�
.

Both u and w being compactly supported in x belong to H1((t1, t1 + t) ⇥ Rd)
so integration by parts shows that with integrals over (t1, t1 + t) ⇥ Rd ,

ZZ
(u, F) dxdt =

ZZ
(u, L⇤w) dxdt =

ZZ
(Lu, w) dxdt = 0 ,

where the initial conditions u(t1) = w(t1 + t) = 0 cancels the boundary contribu-
tions from t = t1, and t = t1 + t .

Since the set of F satisfying (4.11) is dense in L2([t1, t1 + t] ⇥ Rd) it follows
that u = 0 on [t1, t1 + t] ⇥ Rd . Therefore u vanishes on [0, t1 + t] ⇥ Rd violating
the choice of t1. Thus one must have t1 = T0 proving uniqueness.

Step VII. Proof of continuity in time. Compute @t u = e�hDi⇢` (T�at)(ahDi⇢` v +
@tv). Since ahDi⇢` v + @tv 2 L1([0, T 0]; H�⌫�1(Rd)) it follows that for any 0 <
c < T � T1

Z ⇣
|û(t, ⇠)|2 + |@t û(t, ⇠)|2

⌘
e2ch⇠i1/s d⇠ 2 L1([0, T 0]) .

This implies that u is continuous with values in Gs0(Rd).
This completes the proof of Theorem 1.3.
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5. Theorem 1.5, examples and proof

Begin with two examples that illustrate the conclusion of Theorem 1.5.

Example 5.1. If A(t, x, ⇠) is uniformly diagonalizable, Hypothesis 2.8 is satisfied
with ✓ = 0. Theorem 1.5 holds with 1 < s  1 +  . The examples of [21] show
that the G1+ regularity cannot be improved.

Example 5.2. If (2.5) holds with ✓ = µ � 1, 2  µ  m then the constraints on s
read

1 < s  min
n
(2µ � 1+ µ)/(2µ � 1+ (µ � 1)) , (4µ � 1)/(4µ � 2)

o
.

Proof of Theorem 1.5. We present only the a priori estimate. Existence and unique-
ness follow as in the preceding section. The proof follow the arguments in [9, 16].
By hypothesis,

|@↵
x (A j (t, x) � A j (⌧, x))|  CA|↵||↵|!s |t � ⌧ | for 0 <   1 .

Choose �(s) 2 C1
0 (R) such that �(s) = �(�s) with

R
�(s)ds = 1. Define, with

0 < � to be chosen later,

R̃(t, x, ⇠) := h⇠i�`

Z
R(⌧, x, ⇠) �

�
(t � ⌧ ) h⇠i�`

�
d⌧.

Since |@↵
⇠ �((t � ⌧ )h⇠i�`)|  C↵h⇠i�|↵|

` , Theorem 3.1 implies that R̃ 2 S
�
h⇠i2⌫` ,G

�

with G from (4.5) . It is clear that R̃ � c h⇠i�2⌫` .

Lemma 5.3. One has R(t) � R(⌧ ) 2 S
�
|t � ⌧ |h⇠i3⌫+1�⇢

` ,G
�
uniformly in t , ⌧ .

That is, for all ↵, �,

�
�@�
x @↵

⇠ (R(t) � R(⌧ ))
�
�  C↵�a�|↵+�||t � ⌧ |h⇠i3⌫+1�⇢

` h⇠i(1�⇢+⌫)|�|�(⇢�⌫)|↵|
` .

Idea of proof of Lemma. It suffices to repeat arguments similar to those proving
Theorem 3.1.

Since

R̃(t) � R(t) = h⇠i�`

Z �
R(⌧ ) � R(t)

�
�
�
(t � ⌧ ) h⇠i�`

�
d⌧,

Lemma 5.3 implies that

R̃(t) � R(t) 2 S
�
h⇠i3⌫+1�⇢��

` ,G
�
.
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Similarly,

@t R̃(t) = h⇠i2�`

Z
R(⌧, x, ⇠) � 0�(t � ⌧ )h⇠i�`

�
d⌧

= h⇠i2�`

Z �
R(⌧ ) � R(t)

�
� 0�(t � ⌧ )h⇠i�`

�
d⌧

implies that
@t R̃(t) 2 S

�
h⇠i3⌫+1�⇢+���

` , G
�
. (5.1)

Computing
d
dt

⇣
R̃ ehDi⇢` (T�at)u , ehDi⇢` (T�at)u

⌘

yields (4.1) with R replaced by R̃. It follows that

d
dt

⇣
R̃ ehDi⇢` (T�at)u, ehDi⇢` (T�at)u

⌘

=
�
@t R̃ v, v

�
+
�
(R̃M + M⇤ R̃)v, v

�
+
�
R̃ f̃ , v

�

+
�
(R̃(i K + B̃) + (i K + B̃)⇤ R̃)v, v

�
+
�
R̃v, f̃

�

where i Ã � ahDi⇢` = M + i K , and K verifies (4.2). In what follows we assume
(4.3) and hence max {⇢ � N (1� ⇢) , �1+ ⇢}  ⇢ � 2⌫. Thus

R̃#M + M⇤#R̃ = R̃M + M⇤ R̃ + K1 with aK1 2 S̃1�⇢+3⌫
⇢�⌫ , 1�⇢+⌫ .

Write
R̃(t)M(t) + M⇤(t)R̃(t)

= h⇠i�`

Z
R(⌧ )

�
M(t) � M(⌧ )

�
�
�
(t � ⌧ )h⇠i�`

�
d⌧

+ h⇠i�`

Z �
M⇤(t) � M⇤(⌧ )

�
R(⌧ )�

�
(t � ⌧ )h⇠i�`

�
d⌧

+ h⇠i�`

Z �
R(⌧ )M(⌧ ) + M⇤(⌧ )R(⌧ )

�
�
�
(t � ⌧ )h⇠i�`

�
d⌧.

(5.2)

Since R(⌧ )M(⌧ ) + M⇤(⌧ )R(⌧ ) = �ah⇠i⇢` , the last term on the right is equal to
�ah⇠i⇢` . Proposition 2.6 together with the Hölder continuity hypothesis imply that

�
�@�
x @↵

⇠ (M(t) � M(⌧ ))
�
�  C↵� |t � ⌧ |h⇠i1�|↵|

` .

The same estimate follows for the adjoint, |@�
x @↵

⇠ (M⇤(t) � M⇤(⌧ ))|. It follows that

h⇠i�`

Z
R(⌧ )

�
M(t) � M(⌧ )

�
�
�
(t � ⌧ )h⇠i�`

�
d⌧ 2 S̃2⌫+1��

⇢�⌫,1�⇢+⌫
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modulo a term in S̃⇢
⇢�⌫,1�⇢+⌫ . The same holds for the second term on the right hand

side of (5.2). Therefore,

R̃(t)M(t) + M⇤(t)R̃(t) = �ah⇠i⇢` + T1 + T2 (5.3)

where T1 2 S̃2⌫+1��
⇢�⌫,1�⇢+⌫ and T2 2 S̃⇢

⇢�⌫,1�⇢+⌫ .
For the terms

�
(R̃(i K + B̃) + (i K + B̃)⇤ R̃)v, v

�
and

�
R̃ f̃ , v

�
+
�
R̃v, f̃

�
,

use the same estimates as in Section 4. For the other terms use (5.1) and (5.3) to
find the pair of estimates

�
(R̃M + M⇤ R̃)v, v

�
 �(a/4)

�
�
�hDi⇢/2

` v
�
�
�
2
+ C

�
�
�hDi(2⌫+1��)/2

` v
�
�
�
2
,

�
�(@t R̃v, v)

�
�  C

�
�
�hDi(3⌫+1�⇢+(1�)�)/2

` v
�
�
�
2
.

If 2⌫ + 1 � �  ⇢ and 3⌫ + 1 � ⇢ + (1 � )�  ⇢ (which implies (4.3)), then
both terms are bounded by khDi⇢/2

` vk2 and can be absorbed in a Gronwall estimate.
With  and ⌫ fixed, the region in the �, ⇢ plane described by the two constraints is
bounded below by a pair of lines as in the figure.

d
(1 + n) /(1 + k) 

The minimal value of ⇢ satisfying the constraints occurs at � = (1+⌫)/(1+) and
yields

⇢ �
1+ (2+ )✓

1+  + (2+ )✓
.

The desired a priori estimate follows.

6. Proof of the conjugation Proposition 2.6

Lemma 6.1. Let a(x, ⇠) 2 S̃m(s) and assume @↵
x a(x, ⇠) = 0 outside |x |  R with

some R > 0 if |↵| > 0. Set

e⌧ hDi⇢` a(x, D) e�⌧ hDi⇢` = b(x, D)

where ⌧ 2 R, then b(x, ⇠) is given by

b(x, ⇠) =
Z
e�iy⌘ e⌧ h⇠+ ⌘

2 i⇢` �⌧ h⇠� ⌘
2 i⇢` a(x + y, ⇠) dyd⌘. (6.1)
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Proof. Write �(⇠) = ⌧ h⇠i⇢` and insert v = e��(D)u(y) =
R
eiy⇣��(⇣ )û(⇣ )d⇣ into

e�(D) a(x, D) v =
Z
ei(x⇠�z⇠+(z�y)⌘) e�(⇠) a

✓
z + y
2

, ⌘

◆
v(y) dyd⌘dzd⇠

to get

e�(D) a(x, D) e��(D)u =
Z
eix⇣ I (x, ⇣, µ) û(⇣ ) d⇣

where

I =
Z
ei(x⇠�z⇠+(z�y)⌘+y⇣�x⇣ ) e�(⇠) a

✓
z + y
2

, ⌘

◆
e��(⇣ ) dyd⌘dzd⇠.

The change of variables z̃ = (y + z)/2, ỹ = (y � z)/2 yields

I = 2n
Z
ei ỹ(⇠�2⌘+⇣ ) d ỹ

Z
e�i(z̃�x)(⇠�⇣ ) e�(⇠) a(z̃, ⌘) e��(⇣ ) d⌘dz̃d⇠

= 2n
Z
e�2i(z̃�x)(⌘�⇣ )e�(2⌘�⇣ ) a(z̃, ⌘, µ) e��(⇣ ) d⌘dz̃

=
Z
e�i z̃⌘ e�(

p
2⌘+⇣ )��(⇣ ) a

✓
x +

z̃
p
2
, ⇣ +

⌘
p
2

◆
d⌘dz̃

and then

e�(D) a(x, D) e��(D) u =
Z
ei(x�y)⇠ p(x, ⇠) u(y) dyd⇠ = Op0(p)u

with

p(x, ⇠) =
Z
e�iy⌘ e�(⇠+

p
2⌘)��(⇠) a

✓
x +

y
p
2
, ⇠ +

⌘
p
2

◆
dyd⌘. (6.2)

Here we remark Op0(p) = b(x, D) with b(x, ⇠) given by

b(x, ⇠) =
Z
eiz⇣ p

✓
x +

z
p
2
, ⇠ +

⇣
p
2

◆
dzd⇣. (6.3)

Indeed we see

b(x, D)u =
Z
ei(x�y)⇠ b

✓
x + y
2

, ⇠

◆
u(y) dyd⇠

=
Z
ei(x⇠�y⇠+z⇣ ) p

✓
x + y
2

+
z

p
2
, ⇠ +

⇣
p
2

◆
u(y) dyd⇠dzd⇣

=
Z
ei((x�y�z)⇠+z⇣ ) p

✓
x + y + z

2
, ⇣

◆
u(y) dyd⇠dzd⇣

=
Z
eiz⇣ p(x, ⇣ ) u(x � z) dzd⇣ = Op0(p)u.
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Insert (6.2) into (6.3) to get

b(x, ⇠) =
Z
ei(z⇣�y⌘) e�(

p
2⌘+⇠+ ⇣p

2
)��(⇠+ ⇣p

2
) a dyd⌘dzd⇣,

a = a
✓
x +

z + y
p
2

, ⇠ +
⌘ + ⇣
p
2

◆
.

The change of variables

z̃ =
z + y
p
2

, ỹ =
y � z
p
2

, ⇣̃ =
⇣ + ⌘
p
2

, ⌘̃ =
⌘ � ⇣
p
2

gives

b(x, ⇠) =
Z
e�i(z̃⌘̃+ỹ⇣̃ ) e�( 3⇣̃2 +⇠+ ⌘̃

2 )��(⇠+ ⇣̃
2� ⌘̃

2 ) a(x + z̃, ⇠ + ⇣̃ ) d ỹd⌘̃dz̃d ⇣̃

=
Z
e�i z̃⌘̃ e�(⇠+ ⌘̃

2 )��(⇠� ⌘̃
2 ) a(x + z̃, ⇠) dz̃d⌘̃,

proving (6.1).

Proof of Proposition 2.6. Insert

a(x + y, ⇠) =
X

|↵|k

1
↵!
D↵
x a(x, ⇠)(iy)↵

+
X

|↵|=k+1

k + 1
↵!

(iy)↵
Z 1

0
(1� ✓)k D↵

x a(x + ✓y, ⇠)d✓

into (6.1) to get

b(x, ⇠) =
X

|↵|k

1
↵!

Z
e�iy⌘e�(⇠+ ⌘

2 )��(⇠� ⌘
2 )D↵

x a(x, ⇠)(iy)↵dyd⌘

+
X

|↵|=k+1

k + 1
↵!

Z
e�iy⌘e�(⇠+ ⌘

2 )��(⇠� ⌘
2 )(iy)↵dyd⌘

·
Z 1

0
(1� ✓)k D↵

x a(x + ✓y, ⇠)d✓ .

(6.4)

Since e�iy⌘(iy)↵ = (�@⌘)
↵e�iy⌘ the first term on the right-hand side of (6.4) is

X

|↵|k

1
↵!

@↵
⌘ e

�(⇠+ ⌘
2 )��(⇠� ⌘

2 )
�
�
�
⌘=0

D↵
x a(x, ⇠). (6.5)
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Note that @↵
⌘ e

�(⇠+ ⌘
2 )��(⇠� ⌘

2 )
�
�
�
⌘=0

is a linear combination of

@
↵1
⇠ �(⇠) · · · @↵s

⇠ �(⇠) with
sX

j=1
↵ j = ↵ and |↵ j | � 1.

Divide the linear combination into two parts; the sum over
P

↵ j = 1 and |↵ j | = 1
and the remaining sum called r . If |↵ j | � 2 for some j then s  |↵| � 1 and hence
s⇢ � |↵|  �(1� ⇢)|↵| � ⇢  �2+ ⇢ so that

@
↵1
⇠ �(⇠) · · · @↵s

⇠ �(⇠) 2 S̃�2+⇢ .

Then (6.5) yields

X

|↵|k

1
↵!
D↵
x a(x, ⇠)(⌧r⇠ h⇠i⇢` )↵ + r , for r 2 S̃�1+⇢ .

Define

H↵(⇠, ⌘, µ) =
1
↵!

@↵
⌘ e

�(⇠+ ⌘
2 )��(⇠� ⌘

2 )

= 2�|↵|
X

�+�=↵

1
�!� !

@
�
⇠ e

�(⇠+ ⌘
2 ) (�@⇠ )

� e��(⇠� ⌘
2 )

where the second term on the right-hand side of (6.4) is, up to a multiplicative
constant,

X

|↵|=k+1

Z
e�iy⌘H↵(⇠, ⌘)dyd⌘

Z 1

0
(1� ✓)k D↵

x a(x + ✓y, ⇠)d✓

=
X

|↵|=k+1

ZZ 1

0
eix⌘(1� ✓)k H↵(⇠, ✓⌘)d⌘d✓

Z
e�iy⌘D↵

x a(y, ⇠)dy.

Define E↵(⌘, ⇠) :=
R
e�iy⌘D↵

x a(y, ⇠)dy and

Rk :=
X

|↵|=k+1

ZZ 1

0
eix⌘ (1� ✓)k H↵(⇠, ✓⌘) E↵(⌘, ⇠) d⌘d✓ . (6.6)

Lemma 6.2. There is c > 0 such that for any � 2 Nn ,

�
�@�

⇠ E↵(⌘, ⇠)
�
�  C↵� h⇠i1�|�|

` e�ch⌘i⇢ .
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Proof. Integration by parts gives

⌘⌫@�
⇠ E↵(⌘, ⇠) =

Z
e�iy⌘ @�

⇠ D
↵+⌫
x a(y, ⇠) dy .

Then there exist constants A > 0 and C� such that
�
�@�

⇠ E↵(⌘, ⇠)
�
�  C�h⇠i1�|�|

` A|↵+⌫||↵ + ⌫|!sh⌘i�|⌫|  C↵�h⇠i1�|�|
` A|⌫||⌫|!sh⌘i�|⌫|.

Choose ⌫ minimizing A|⌫| |⌫|!s h⌘i�|⌫|, that is |⌫| ⇠ e�1A�1/sh⌘i1/s so that
A|⌫||⌫|!sh⌘i�|⌫| . e�s�1A�1/sh⌘i1/s = e�ch⌘i⇢ .

Returning to the proof of Proposition 2.6, note that H↵(⇠, ⌘) is a linear combi-
nation of terms

@
�1
⇠ �

⇣
⇠ +

⌘

2

⌘
· · · @�s

⇠ �
⇣
⇠ +

⌘

2

⌘
@

�1
⇠ �

⇣
⇠ �

⌘

2

⌘
· · · @�t

⇠ �
⇣
⇠ �

⌘

2

⌘
e�(⇠+ ⌘

2 )��(⇠� ⌘
2 )

:= k�1,...,�s ,�1,...,�t (⇠, ⌘) e�(⇠+ ⌘
2 )��(⇠� ⌘

2 )

where
P

� j = � and
P

� j = � with |� j | � 1 while |� j | � 1, � + � = ↵. Since
h⇠ ± ⌘/2ir`  Cr h⇠ir`h⌘i|r | one sees that

�
�@�

⇠ k�1,...,�s ,�1,...,�t (⇠, ⌘)
�
�  C� h⇠i�|↵|(1�⇢)�|�|

` h⌘i|↵|+|�|. (6.7)

For some 0 < ✓ < 1 one has

@↵
⇠

⇣
�
⇣
⇠+

⌘

2

⌘
��

⇣
⇠�

⌘

2

⌘⌘
=

nX

j=1

1
2
⌘ j

✓
@↵
⇠ @⇠ j�

✓
⇠+

✓⌘

2

◆
+@↵

⇠ @⇠ j�

✓
⇠�

✓⌘

2

◆◆
. (6.8)

Then h⇠ ± ✓⌘/2i⇢�1�|↵|
`  h⇠ ± ✓⌘/2i�|↵|

`  C↵h⇠i�|↵|
` h⌘i|↵| and

�
�
�@↵1

⇠

h
�
⇣
⇠ +

⌘

2

⌘
� �

⇣
⇠ �

⌘

2

⌘i
· · · @↵t

⇠

h
�
⇣
⇠ +

⌘

2

⌘
� �

⇣
⇠ �

⌘

2

⌘i��
�

 C↵ h⇠i�|↵|
` h⌘i2|↵| for ↵ = ↵1 + · · · + ↵t

yield �
�
�@�

⇠ e
�(⇠+ ⌘

2 )��(⇠� ⌘
2 )
�
�
�  C� h⇠i�|�|

` h⌘i2|�| e�(⇠+⌘/2)��(⇠�⌘/2) . (6.9)

Next prove that with some c1 > 0,
�
��(⇠ + ⌘/2) � �(⇠ � ⌘/2)

�
�  c1|⌧ | h⌘i⇢ .

Indeed if ` + |⇠ | � |⌘| then h⇠i` ⇡ h⇠ ± ✓⌘/2i` for |✓ |  1 hence (6.8) gives

|�(⇠ + ⌘/2) � �(⇠ � ⌘/2)|  C|⌧ | h⌘i h⇠ ± ✓⌘/2i⇢�1
`

 C 0 |⌧ | h⌘i h⇠i⇢�1
`  C 00 |⌧ | h⌘i⇢ .
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While if `+|⇠ |  |⌘| then h⇠ ± ⌘/2i`  Ch⌘i and the assertion is clear. From (6.7)
and (6.9) we have

|@�
⇠ H↵(⇠, ⌘)|  C↵� h⇠i�|↵|(1�⇢)

` h⇠i�|�|
` h⌘i|↵|+2|�| ec1|⌧ |h⌘i⇢ . (6.10)

From Lemma 6.2 and (6.10) one has
�
�@�

⇠ (H↵(⇠, ⌘)E↵(⌘, ⇠))
�
�  C↵� h⇠i1�|�|�|↵|(1�⇢)

` h⌘i|↵|+2|�| e�(c�c1|⌧ |)h⌘i⇢

where c > 0 is the constant in Lemma 6.2. If c � c1|⌧ | > 0 then
�
�@�
x @�

⇠ Rk(x, ⇠)
�
�  C�� h⇠i1�|�|�(k+1)(1�⇢)

` .

Since 1� (k + 1)(1� ⇢) = ⇢ � k(1� ⇢), the assertion follows.

7. Proof of the spectral bound, Proposition 2.2

7.1. Quantitative Nuij

The first step in the proof of Proposition 2.2 is to prove a quantitative version of
Nuij’s root splitter [18] due to Wakabayashi [23] (see also [5, Lemma 3.1]).

Lemma 7.1 (Nuij). A monic polynomial P(⇣ ) in ⇣ of degree m whose roots are
all real, defines for s 2 R, real �1(s) < �2(s) < · · · < �m(s) so that (1 +
sd/d⇣ )m P(⇣ ) =

Qm
j=1(⇣ � � j (s)). Then there exists c = c(m) > 0 so that for

s 2 R,
� j+1(s) � � j (s) � c |s|, j = 1, . . . ,m � 1.

Proof. Let P(⇣ ) =
Qm

j=1(⇣ � � j ) with �1  · · ·  �m and consider for l =
1, . . . ,m + 1, the successive Nuij splittings for s > 0 (the case s < 0 is similar),

(1+ sd/d⇣ )l�1P(⇣ ) =
mY

j=1

�
⇣ � �lj (s)

�
,

where �l1(s) < · · · < �ll�1(s)  �ll(s)  · · ·  �lm(s). Compute

hl(⇣, s) =
(1+ sd/d⇣ )l P(⇣ )

(1+ sd/d⇣ )l�1P(⇣ )
= 1+ s

mX

j=1

1
⇣ � �lj (s)

. (7.1)

Consider the passage from the roots of the denominator called mother roots to the
roots of the numerator called daughters. The derivative dhl/d⇣ is strictly negative
on each interval not including a mother root, and lim|⇣ |!1 h = 1. The graph of
h below has four mother roots where the dotted verticals cross the horizontal axis.
The mother roots toward the right may have high multiplicity.
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z

There is a simple daughter root to the left of the mother roots and a new simple
daughter root between each of the mother roots. Each multiple mother root becomes
a daughter root with multiplicity reduced by one and gives rise to a daughter root
to the left. Each simple mother root yields a daughter to left. The {�l+1k (s)} are all
real, separate the {�lk(s)}, and the first ones are simple. That is,

�l+11 (s)  �l1(s)  �l+12 (s)  �`
2(s)  · · ·  �l+1m (s)  �lm(s),

�l1(s) < �l2(s) < · · · < �ll�1(s) < �ll(s)  · · ·  �lm(s) .

We prove by induction on l � 2, that there exists cl > 0 such that

�lk(s) � �lk�1(s) � cl s for k = 2, . . . , l. (7.2)

The summands s/(⇣ ��lj (s)) in (7.1) are all negative to the left of the mother roots.
For l = 1 the first is equal to�1 when ⇣ = �11(s) � s. Therefore h1(�11� s, s) < 0.
The root �21(s) lies where the graph of h1 crosses the axis and therefore to the left
of �11 � s, so �21(s)  �11 � s.

From �22(s) � �11 it follows that �
2
2(s) � �21(s) � s. Therefore (7.2) holds with

c2 = 1 when l = 2.
Suppose (7.2) holds for 2  k  l. Prove the case l + 1. In (7.1) with

⇣ = �lk(s) � �s the last m � k + 1 terms are negative and the first k � 1 terms do
not exceed 1/(�lk(s) � �s � �lk�1(s)). Therefore by (7.2),

hl
⇣
�lk(s) � �s, s

⌘
 1+

s(k � 1)
�lk(s) � �s � �lk�1(s)

�
1
�

 1+
k � 1
cl � �

�
1
�
.

The right hand side vanishes when � =
�
k + cl �

p
(k + cl)2 � 4cl

�
/2 > 0. We

have hl(�lk(s) � �s, s)  0. Therefore �l+1k (s)  �lk(s) � �s. Define

cl+1 := min
2kl

⇣
k + cl �

p
(k + cl)2 � 4cl

⌘
/2 > 0 .
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Then

�l+1k+1(s) � �l+1k (s) = �l+1k+1(s) � �lk(s) + �lk(s) � �l+1k (s)

� �lk(s) � �l+1k (s) � cl+1 s

for k=1, . . . , l. This completes the inductive step, so yields (7.2) for l = m+1.

7.2. Three lemmas

This subsection presents three lemmas needed in the proof of Proposition 2.2. De-
fine

Q(⇣, t, x, y, s) := det
�
⇣ I � H(t, x, y, s)

�
.

Then Q(⇣, t, x, 0, s) = det (⇣ � A(t, x)) and for real t, x, y, s, it holds

q(⇣, t, x, y, s) = det(⇣ I � A(t, x + sy)) = det(⇣ I � H + Rm+1)

= Q(⇣, t, x, y, s) + R(⇣, t, x, y, s)

where R(⇣,t,x,y,s) is a polynomial in ⇣ of degreem�1 with coefficients O(|s|m+1).
The next lemma examines what happens when the Taylor expansion and root

splitter are applied simultaneously. Apply Nuij’s root splitter to obtain polynomials
with distinct roots denoted with a tilde,

q̃(⇣, t, x, y, s) := (1+ s@/@⇣ )mq(⇣, t, x, y, s)=
mY

j=1
(⇣ � �̃ j (t, x, y, s)),

Q̃(⇣, t, x, y, s) := (1+ s@/@⇣ )mQ(⇣, t, x, y, s)=
mY

j=1
(⇣ � 3̃ j (t, x, y, s)).

(7.3)

Lemma 7.2. If I ⇥ K ⇢ R ⇥ � is compact, there is s0 > 0 so that for (t, x, s) 2
I ⇥ K ⇥ [�s0, s0] and |y|  1, all roots ⇣ of Q̃ = 0 are real.

Proof. Wemay assume that x+sy 2 �when (t, x) 2 I⇥K with |y|  1 and |s| 
s0. The definitions (7.3) imply that q̃(⇣, t, x, y, s) � Q̃(⇣, t, x, y, s) = R̃ where
R̃(⇣, t, x, y, s) is a polynomial in ⇣ of degree m � 1 with coefficients O(|s|m+1)
uniformly in (t, x) 2 I ⇥ K and |y|  1. Lemma 7.1 implies

|�̃ j+1(t, x, y, s) � �̃ j (t, x, y, s)| � c(m)|s| .

Let C j be the circle of radius c(m) |s| / 2 with center �̃ j (t, x, y, s) so that
|q̃(⇣, t, x, y, s)|�(c(m)/2)m |s|m if ⇣ 2C j . Since |q̃(⇣,t,x,y,s)�Q̃(⇣, t, x, y, s)|
C|s|m+1, Rouché’s theorem implies that there exists s1 > 0 such that there is ex-
actly one root of Q̃(⇣, t, x, y, s) inside C j for |s|  s1. Since Q̃(⇣, t, x, y, s) is a
real polynomial, the root must be real.
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Lemma 7.3. Suppose that Q̃(�̄, t̄, x̄, 0, 0) = det(�̄I � A(t̄, x̄)) = 0. Then there
exists � > 0 such that when |⇣ � �̄| < �, |t � t̄ | < �, |x � x̄ | < �, |y| < �, |s| < �,
one has Q̃(⇣, t, x, y, s) 6= 0 if Im ⇣  0 and Im s < 0 (or Im ⇣ � 0 and Im s > 0).

Proof. Define p(⇣, t, x) := det(⇣ � A(t, x)) =
Qm

j=1(⇣ � � j (t, x)). If Im ⇣ < 0,
Im s  0 then

Q̃(⇣, t, x, 0, s) = (1+ s@/@⇣ )m p(⇣, t, x) 6= 0.

Indeed,
(1+ s@/@⇣ )p(⇣, t, x)

p(⇣, t, x)
= 1+ s

mX

k=1
1/(⇣ � � j (t, x)) = 0

implies that
Pm

k=1 1/(⇣ �� j (t, x)) = �1/s so that Im
Pm

k=1 1/(⇣ �� j (t, x)) > 0
provided that Im� j (t, x) � 0 for all j , which is a contradiction.

That is (1 + s@/@⇣ )p(⇣, t, x) = 0 implies Im ⇣ � 0. It is enough to repeat
this argument. Since Q̃(�̄, t̄, x̄, 0, 0) = 0 and Q̃(⇣, t, x, 0, s) is a polynomial in s
of degree m with leading term msm , we can find �1 > 0 so that the roots s of

Q̃(⇣, t, x, y, s) = 0

with |s| < s0 are continuous in (⇣, t, x, y) for |⇣ ��̄| < �1, |t�t̄ | < �1, |x�x̄ | < �1,
|y| < �1.

Suppose that Q̃(⇣̂ , t̂, x̂, ŷ, ŝ) = 0 with Im ⇣̂  0, Im ŝ < 0, |ŝ|  s0, |⇣̂ � �̄| <

�1, |t̂ � t̄ | < �1, |x̂ � x̄ | < �1, |ŷ| < �1. Moving ⇣̂ a little bit if necessary, we may
assume that Im ⇣̂ < 0. Consider F(✓) = min|s(✓)|s0 Im s(✓)where the minimum is
taken over all roots s(✓) of Q̃(⇣̂ , t̂, x̂, ✓ ŷ, s) = 0 with |s(✓)|  s0. Since F(1) < 0,
F(0) � 0 there exist ✓̂ and s(✓̂) such that Im s(✓̂) = 0 which contradicts Lemma
7.2.

The proof for the case Im ⇣ � 0 and Im s > 0 is similar.

Lemma 7.4. Assume (2.1). Let (t̄, x̄) 2 R⇥� and let �̄ be an eigenvalue of A(t̄, x̄)
with multiplicity r so that det(�̄ � A(t̄, x̄)) = 0. Then there exists � > 0 so that for
all |� � �̄|  �, |t � t̄ | < �, |x � x̄ |  �, |y|  � and |s|  �,

|Q(� + is, t, x, y, is)| � |s|r . (7.4)

Proof. Define I := {i | 3̃i (t̄, x̄, 0, 0) = �̄} and I c := {i | 3̃i (t̄, x̄, 0, 0) 6= �̄}.
Then for |t � t̄ |  �, t 2 I , |x � x̄ |  �, |y|  �, |s| < �, one has

Q̃(⇣, t, x, y, is) =
Y

j2I

⇣
⇣ � 3̃ j (t, x, y, is)

⌘ Y

j2I c

⇣
⇣ � 3̃ j (t, x, y, is)

⌘

:= Q̃1(⇣, t, x, y, is) Q̃2(⇣, t, x, y, is) .
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Lemma 7.3 implies that ± Im 3̃ j (t, x, y, is) � 0 if ± s < 0 and j 2 I . This shows
that if M > 0, then

|Q̃1(� + iMs, t, x, y, is)| � 2�r/2
Y

j2I

⇣
|� � Re3̃ j | + M|s| + |Im3̃ j |

⌘

for small s 2 R. The right-hand side is bounded from below by

c(M|s|)k
X Y

jp2I, j1<···< jr�k

�
|� � Re3̃ j | + M|s| + |Im3̃ j |

�
(7.5)

for all 1  k  r . We prove that there are ck such that

Q(⇣, t, x, y, s) = Q̃(⇣, t, x, y, s) +
mX

l=1
cl(s@/@⇣ )l Q̃(⇣, t, x, y, s). (7.6)

The definition of Q̃ implies

(1� s@/@⇣ )m Q̃ = (1� s@/@⇣ )m(1+ s@/@⇣ )mQ =
�
1� s2@2/@⇣ 2

�mQ .

Repeating this argument yields
�
1+ s2l@2l/@⇣ 2l

�m
· · ·
�
1+ s2@2/@⇣ 2

��
1� s@/@⇣

�m Q̃=
�
1� s4l@4l/@⇣ 4l

�mQ

where the right-hand side coincides with Q if 4l � m + 1.
For |s|M  1, note that

�
�
�
�
(s@/@⇣ )k Q̃1

�
(� + iMs, t, x, y, is)

�
�
�

.
X

|s|k
Y

jp2I, j1<···< jr�k

⇣��
�� � Re 3̃ j

�
�
�+ M|s| +

�
�
�Im 3̃ j

�
�
�
⌘

. M�k
�
�
�Q̃1(� + iMs, t, x, y, is)

�
�
�

by (7.5) and �
�
�
�
(s@/@⇣ )k Q̃2

�
(� + iMs, t, x, y, is)

�
�
�  C|s|k .

Because M|s|  1, Leibniz’ rule yields
�
�(s@/@⇣ )l

�
Q̃1 Q̃2)(� + iMs, t, x, y, is)

�
�

. M�l
lX

j=0
(M|s|)l� j

�
�
�Q̃1(� + iMs, t, x, y, is)

�
�
�

. M�l
�
�
�Q̃1(� + iMs, t, x, y, is)

�
�
� .
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Therefore using (7.6), |Q(� + iMs, t, x, y, is)| is bounded from below by
�
�
�Q̃2(� + iMs, t, x, y, is)

�
�
�
n ��
�Q̃1(� + iMs, t, x, y, is)

�
�
�

� C
mX

l=1
M�l

�
�
�Q̃1(� + iMs, t, x, y, is)

�
�
�

·
�
�
�Q̃2(� + iMs, t, x, y, is)

�
�
�
�1 o

.

Choosing M > 0 large yields

|Q(� + iMs, t, x, y, is)| � c
�
�Q̃1(� + iMs, t, x, y, is)

�
� � cMr |s|r

because
�
�Q̃2(� + iMs, t, x, y, is)

�
� =

Y

j2I c

�
�� + iMs � 3̃ j (t, x, y, is)

�
� � c1 > 0.

Since

Q(� + is, t, x, y, is) = Q
⇣
� + i eM(eM�1s), t, x, eMy, i eM�1s

⌘
� |s|r

with eM := c1/r M , the desired conclusion follows.

7.3. Proof of Proposition 2.2

Proof. Suppose that (t̄, x̄) 2 {|t |  T } ⇥ K and �̄ j are the distinct eigenvalues of
A(t̄, x̄) = H(t̄, x̄, 0, 0), possibly with multiplicity greater than one. Then there is
� > 0 such that Lemma 7.4 holds for any j . Taking 0 < �1  � small one can
assume that |Re ⇣ � �̄µ| < � for some µ if Q(⇣, t, x, y, is) = 0 and |t � t̄ |  �1,
|x � x̄ |  �1, |y|  �1, |s| < �1.

Suppose that there were |t̂ � t̄ |  �1, |x̂ � x̄ |  �1, |ŷ|  �1, |ŝ| < �1 and ⇣ j
such that �

�Im ⇣ j (t̂, x̂, ŷ, ŝ)
�
� > |ŝ|.

Clearly ŷ 6= 0 and ŝ 6= 0. First suppose that Im ⇣ j (t̂, x̂, ŷ, ŝ) > |ŝ|. Introduce

3(✓) := max
n
Im ⇣ j (t̂, x̂, ✓ ŷ, ŝ) : |Re ⇣ j � �̄µ| < �

o
. (7.7)

Note that 3(0) = 0 and 3(1) > |ŝ|. Since 3(✓) is continuous there exist l and
✓̂ such that 3(✓̂) = |ŝ| so that ⇣l(t̂, x̂, ✓̂ ŷ, ŝ) = ↵ + i |ŝ| with ↵ 2 R and Q(↵ +
i |ŝ|, t̂, x̂, ✓̂ ŷ, i ŝ) = 0. This contradicts Lemma 7.4 if ŝ > 0.

If ŝ < 0 then H(t̂, x̂, ✓̂ ŷ, i ŝ) = H(t̂, x̂,�✓̂ ŷ,�i ŝ) yields

Q(↵ � i ŝ, t̂, x̂,�✓̂ ŷ,�i ŝ) = 0.

This contradicts Lemma 7.4.



250 FERRUCCIO COLOMBINI, TATSUO NISHITANI AND JEFFREY RAUCH

If Im ⇣ j (t̂, x̂, ŷ, ŝ) < �|ŝ| it is enough to consider the minimum in (7.7). Thus
we conclude that if Q(⇣, t, x, y, is) = 0 with |t � t̄ |  �1, |x � x̄ |  �1, |y|  �1,
|s| < �1 then |Im ⇣ |  |s|. Since {|t |  T } ⇥ K is compact there is �2 > 0 such
that |Im ⇣ |  |s| if Q(⇣, t, x, y, is) = 0 and |t � t̄ |  �2, |x � x̄ |  �2, |y|  �2,
|s| < �2. The identity

H(t, x, y, is) = H
⇣
t, x, �2y, i��1

2 s
⌘

yields the desired conclusion.

References

[1] M. D. BRONSHTEIN, Smoothness of roots of polynomials depending on parameters, (Rus-
sian) Sibirsk. Mat. Zh. 20 (1979), 493–501, English translation: Sb. Math. J. 20 (1980),
342–352.

[2] M. D. BRONSHTEIN, The Cauchy problem for hyperbolic operators with characteristics of
variable multiplicity, Tr. Mosk. Mat. Obs. 41 (1980), 83–99; English translation in Trans.
Moscow. Math. Soc. (1982), 87–103.

[3] F. COLOMBINI, E. DE GIORGI and S. SPAGNOLO, Sur les équations hyperboliques avec
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classe de Gevrey [coefficients Hölderiens en t], In: “Hyperbolic Equations and Related
Topics” (Katata/Kyoto, 1984), Boston, Academic Press, 273–306.

[20] J. RAUCH, “Hyperbolic Partial Differential Equations and Geometric Optics”, Graduate
Studies in Mathematics, Vol. 133, American Mathematical Society, 2012.
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