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Euler characteristics and q-difference equations

JULIEN ROQUES AND JACQUES SAULOY

Abstract. This paper is concerned with linear q-difference equations. Our main
result is an explicit formula for the Euler characteristic of the sheaf of analytic
solutions attached to any linear algebraic q-difference equation. This formula
involves certain invariants attached to the so-called intermediate singularities. As
an application, we interpret the index of rigidity recently introduced by Sakai and
Yamaguchi in cohomological terms.

Mathematics Subject Classification (2010): 39A06 (primary); 39A13, 39A45
(secondary).

1. Introduction

This work grew out of an attempt by the first author to find a cohomological inter-
pretation of the index of rigidity for q-difference equations defined by Sakai and
Yamaguchi in [15, Section 3]; and of an attempt by the second author to understand
the role of the so-called “intermediate singularities” (those other than 0,1, see
further below) in the global behaviour of rational q-difference equations. Only the
former problem will be tackled here, we intend to pursue the latter one in a future
work.

The approach developed in the present paper relies on a sheaf FA of analytic
solutions attached to any q-difference system

Y (qz) = A(z)Y (z) (1.1)

with q 2 C⇥, |q| 6= 1, and A(z) 2 GLn(C(z)). This is a sheaf over the Riemann
surface Eanq = C⇥/qZ. It turns out that FA is a locally freeOEanq -module of rank n
and, hence, defines a vector bundle over Eanq . One of our main results is an explicit
formula for the Euler characteristic �(FA) of FA: we prove that it is the sum of
local invariants of (1.1) attached to the intermediate singularities; see Theorem 3.21.
By intermediate singularities, we mean the poles of A or A�1 on P1(C) \ {0,1}.
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When it is applied to the “internal End” of (1.1), this formula essentially gives
Sakai and Yamaguchi’s index of rigidity attached to (1.1); see Paragraph 3.5. This
is parallel to Katz’s [7, Theorem 1.1.2].

This paper also includes a cohomological study of natural extensions of FA to
“completions” of Eanq . We refer to Paragraphs 4 and 5 for the details.

Let us now explain the origin of our approach. The celebrated formula of
Grothendieck-Ogg-Shafarevitch [14] was transposed by Deligne to the case of dif-
ferential equations (see “théorème de comparaison” in [3]), then used by Bertrand
in [1,2]. This is the same formula that Katz uses in his study of rigidity. A long time
ago, Bertrand asked one of us if it could be transposed to q-difference equations.
Our answer, which roughly follows the lines of [3, Chapter 6], is contained in the
present paper.

2. General notation and basic definitions

2.1. Sheaves and rings of functions

Consider a Riemann surface X . We letOX (respectivelyMX ) be the sheaf of holo-
morphic (respectively meromorphic) functions over X . We will use the shorthand
notationO(X) := OX (X) (respectivelyM(X) :=MX (X)) for the corresponding
ring (respectively field) of global sections. As usual, the stalk of OX (respectively
MX ) at x 2 X will be denoted by OX,x (respectivelyMX,x ). We will let ux be a
local coordinate centered at x 2 X . Hence, ux is a uniformizer of the discrete valu-
ation ringOX,x . We denote by vx :MX,x ! Z[ {+1} the corresponding ux -adic
valuation (it depends on x only, not on a particular choice of the local coordinate
ux ).

We will denote by
P1(C)an = C [ {1}

the complex projective line, endowed with its structure of Riemann surface. We
will use the following classical notations for the stalks ofOP1(C)an andMP1(C)an at
0 and1:

C{z} := OP1(C)an,0, C({z}) :=MP1(C)an,0,

C{1/z} := OP1(C)an,1, C({1/z}) :=MP1(C)an,1.

2.2. The q-dilatation operator �q and the complex torus Eanq

In the whole paper, q is a nonzero complex number such that |q| > 1. We let �q
be the q-dilatation operator acting on a function f (z) of the complex variable z as
follows:

�q f (z) := f (qz).
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We can and will identify the fieldM(C⇥)�q of �q -invariant meromorphic functions
over C⇥ with the fieldM(Eanq ) of meromorphic functions over the complex torus

Eanq := C⇥/qZ,

i.e.,
M(C⇥)�q =M

�
Eanq

�
.

Wewill denote by ⇡ : C⇥ ! Eanq the canonical covering and will use the following
notations :

a := ⇡(a), [a; q] := ⇡�1(⇡(a)) = aqZ.

2.3. q-difference systems

Until the end of the paper, we consider

A 2 GLn(C(z)).

The associated q-difference system is:

�q X = AX. (2.1)

2.3.1. Intermediate singularities

The singular locus of equation (2.1) is defined as:

Sing(A) := {poles of A on C⇥} [ {poles of A�1 on C⇥}

= {poles of A on C⇥} [ {zeroes of det A on C⇥}.
(2.2)

Thus, if U ⇢ C⇥ is an open subset which does not meet Sing(A), then A is regular
on U , meaning that it is holomorphic over U as well as its inverse A�1.
Remark 2.1. In what follows, the relative positions of the elements of Sing(A)will
be of particular importance. More precisely, we will have to be careful when there
are �, µ 2 Sing(A) such that � 6= µ but �/µ 2 qZ. This is the reason why we
consider the poles of A and A�1 instead of just considering their q-orbits (i.e., their
images by ⇡).

2.3.2. Gauge transform

Let (K ,�) be a difference field extension of (C(z), �q). This means that K is a
field extension of C(x) endowed with a field automorphism � : K ! K extending
�q : C(z) ! C(z). The gauge transform F[A] of A by F 2 GLn(K ) is:

F[A] := (�F)AF�1 2 GLn(K ).

Let us consider A, B 2 GLn(C(z)). We say that A and B are (K ,�)-equivalent if
there exists F 2 GLn(K ) such that B = F[A]. If A and B are (K ,�)-equivalent
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for (K ,�) = (C(z), �q) (respectively (C({z}), �q), (C({1/z}), �q)), we say that
A and B are rationally equivalent (respectively analytically equivalent at 0, ana-
lytically equivalent at 1). Note that if A and B are analytically equivalent at 0
(respectively 1) and if F 2 GLn(C({z})) (respectively F 2 GLn(C({1/z}))) is
such that B = F[A] then one has automatically F 2 GLn(M(C)) (respectively
F 2 GLn(M(C⇥ [ {1}))) (indeed, this meromorphic continuation property of F
follows from the functional equation �F = BFA�1 and the fact that |q| 6= 0, 1).

2.3.3. Solutions

Let (R,�) be a difference algebra over the difference field (C(z), �q). This means
that R is a C(z)-algebra endowed with a ring automorphism � : R ! R such that,
for all a 2 C(z) and r 2 R, �(ar) = �q(a)�(r). The solutions of (2.1) in (R,�)
form the C-vector space:

Sol(A, R) :=
�
X 2 Rn | �X = AX

 
,

where we consistently identify Rn with the space of column vectors Matn,1(R). A
fundamental matricial solution of (2.1) in R is a matrix X 2 GLn(R) such that
�X = AX .

In what follows, we will frequently consider Sol(A, R) for R a C(z)-algebra
of meromorphic functions stable by �q ; it will be implicit that � = �q for such a R.

3. Euler characteristics of some sheaves of modules over Eanq

We recall that, until the end of the paper, we consider

A 2 GLn(C(z)).

3.1. Some sheaves of functions and of solutions

3.1.1. Some sheaves of functions

Note that �q operates on the direct image sheaves ⇡⇤OC⇥ and ⇡⇤MC⇥ and that we
have the following obvious identifications for the fixed subsheaves:

(⇡⇤OC⇥)�q = OEanq , (⇡⇤MC⇥)�q =MEanq .

We shall now introduce various subsheaves of ⇡⇤MC⇥ .We will denote by D(0,r)⇢
C the open disk with center 0 and radius r and by D(0, r)c its complement inC. Let
V be an open subset ofEanq and letU := ⇡�1(V ), so that ⇡⇤MC⇥(V ) =MC⇥(U).
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We define the subsheavesA(0),A(1),A,A0 of ⇡⇤MC⇥ by:

A(0)(V ) :=
�
f 2MC⇥(U) | f
is holomorphic over U \ D(0, r) for some r > 0

 
,

(3.1)

A(1)(V ) :=
�
f 2MC⇥(U) | f
is holomorphic over U \ D(0, R)c for some R > 0

 
,

(3.2)

A(V ) :=
�
f 2MC⇥(U) | f is holomorphic over U

 

(thusA = ⇡⇤OC⇥),
(3.3)

A0(V ) :=
�
f 2MC⇥(U) | f has at worst
a finite number of poles in any q-spiral [a; q]⇢U

 
.

(3.4)

It is easily seen thatA ⇢ A(0) \A(1) ⇢ A0.

3.1.2. Some sheaves of solutions

To any subsheaf B of ⇡⇤MC⇥ , we shall associate a sheaf of solutions Sol(A,B)
on Eanq for which the sections over an open subset V ⇢ Eanq are the solutions
X 2 B(V )n of (2.1), i.e.,

Sol(A,B)(V ) =
�
X 2 B(V )n | �q X = AX

 
.

Taking successively for B the sheavesA,A0,A(0),A(1), we obtain the sheaves of
solutions on Eanq respectively denoted by

FA=Sol(A,A), F 0
A=Sol

�
A,A0�, F (0)

A =Sol
�
A,A(0)�, F (1)

A = Sol
�
A,A(1)

�
.

We check easily that FA ⇢ F (0)
A \ F (1)

A = F 0
A. In the course of what follows,

we shall find out that all these sheaves are locally free of rank n overOEanq , whence
define holomorphic vector bundles over Eanq .
Remark 3.1. Taking B := ⇡⇤MC⇥ yields the sheaf Sol(A,⇡⇤MC⇥) of all mero-
morphic solutions, plainly a (⇡⇤MC⇥)�q = MEanq -module. It was proved by
Praagman in [12] that this is a freeMEanq -module of rank n. Said otherwise, there
exists a fundamental matricial solution X 2 GLn(M(C⇥)) of (2.1). The proof
relies on the fact that it is a meromorphic vector bundle on the compact Riemann
surface Eanq and that such a bundle is free.
The proof of the following is immediate:

Lemma 3.2. Let F2GLn(C(z)) (respectively F2GLn(M(C)), F2GLn(M(C⇥[
{1}))) such that B := F[A] 2 GLn(C(z)). Then the automorphism X 7! FX of
(⇡⇤MC⇥)n induces identifications:

FF 0
A = F 0

B

⇣
respectively FF (0)

A = F (0)
B , FF (1)

A = F (1)
B

⌘
.
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Remark 3.3. Note however that it is not generally true that FFA = FB . For
instance, take A := 1 and F := 1/(z � 1) so that B := F[A] = z�1

qz�1 . Then, FB is
isomorphic toOEanq (�[1]), whereas FA = OEanq .

3.2. Reminders on the Euler characteristic

The Euler characteristic �(F ) of a sheaf F of C-vector spaces over a topological
space X is defined as

�(F ) :=
X

i�0
(�1)i dimC Hi (X,F ),

whenever this makes sense, i.e., whenever all cohomology spaces Hi (X,F ) are
finite dimensional and almost all of them vanish. For coherent sheaves over a com-
pact Riemann surface, these conditions are satisfied and only the first two terms
H0(X,F ) and H1(X,F ) do not vanish. So, in this case, we have

�(F ) = dimC H0(X,F ) � dimC H1(X,F ).

Because of the long exact sequence of cohomology associated to an exact sequence

0 ! F 0 ! F ! F 00 ! 0,

one has additivity:
�(F ) = �

�
F 0� + �

�
F 00�.

It follows that, if F is a successive extension of F1, . . . ,Fn , then

�(F ) = �(F1) + · · · + �(Fn).

For line bundles (i.e., locally free rank one sheaves), the value of �(F ) can be
computed using Riemann-Roch formula.

For skyscraper sheaves (over a curve, this is the same as torsion sheaves), the
cohomology spaces Hi (X,F ) are trivial for i � 1 and �(F ) = dimC H0(X,F )=P

x2X dimCFx , this sum actually involving only a finite number of non zero terms.
These are the only facts we shall need.

Since they are not so easy to find in this compact form in the litterature, here
are some references. The basic theory is in Serre’s famous [16] and (for the an-
alytic viewpoint) in [5]. However in another celebrated article, Serre shows that,
for compact Riemann surfaces, the analytic and algebraic point of view are equiva-
lent [17]. So one is entitled to refer to the following more modern and more detailed
books [6, 10, 11].
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3.3. Euler characteristics of the sheavesF (0)
A andF (1)

A

The aim of this section is to compute the Euler characteristics of the sheaves F (0)
A

and F (1)
A . We start with the following lemma.

Lemma 3.4. The sheaves F (0)
A and F (1)

A are locally freeOEanq -modules of rank n.

Proof. Let
�
D(0, r), r > 0, any punctured disk on which A is regular. Let V be

a trivializing open subset of Eanq for the covering ⇡ so that ⇡�1(V ) is the disjoint
union of the qkW , for k 2 Z, where ⇡|W is a homeomorphism onto V . Up to

shrinking V , we can assume that W ⇢
�
D(0, r). Let V 0 ⇢ V be any open subset

and set W 0 = ⇡�1(V 0) \ W so that ⇡�1(V 0) is the disjoint union of the qkW 0 for
k 2 Z. Then any X 2 OC⇥(W 0)n extends successively holomorphically to q�1W 0,
q�2W 0, . . . through (2.1) used as a recursive definition X (z) := A(z)�1X (qz); and
meromorphically to qW 0, q2W 0, . . . through (2.1) used as a recursive definition
X (qz) := A(z)X (z). Thus, X extends uniquely to an element of F (0)

A (V 0). This
continuation procedure shows that (OC⇥)n|W = (OEanq )n|V is isomorphic to (F (0)

A )|V .
The proof at1 is similar.

The sheavesF (0)
A andF (1)

A being locally free (and, hence, coherent), they have
finite dimensional cohomology spaces concentrated in degree 0 and 1 (see Section
3.2). In particular, their Euler characteristics are well-defined.

Proposition 3.5. The Euler characteristics of the sheavesF (0)
A andF (1)

A are given
by the following formulas:

�
⇣
F (0)
A

⌘
= v0(det A) and �

⇣
F (1)
A

⌘
= v1(det A), (3.5)

where we recall that v0 : C({z}) ! Z [ {+1} is the z-adic valuation and v1 :
C({1/z}) ! Z [ {+1} is the z�1-adic valuation.

The proofs at 0 and1 are entirely similar, so we shall concentrate on the first case,
which occupies this whole section.

3.3.1. Newton polygons and plan of the proof of Proposition 3.5

One classically associates to the q-difference system �q X = AX a Newton polygon
at 0 (for the sake of conciseness, this Newton polygon will be called the Newton
polygon of A at 0); see for instance [13]. This Newton polygon has a certain number
of slopes µ1 < · · · < µk in Q. These slopes come with certain multiplicities
r1, . . . , rk 2 N⇤ such that r1 + · · · + rk = n and riµi 2 Z for i 2 {1, . . . , k}.
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According to [13], A is analytically equivalent at 0 to (i.e. there exists F 2
GLn(M(C)) such that F[A] is equal to) a upper-triangular by block matrix

0

B
B
B
@

A1 . . . . . . . . .

0
. . . Ui, j

...

0 0
. . .

...
0 0 0 Ak

1

C
C
C
A

(3.6)

where each Ai 2 GLri (C(z)) has unique slope µi and where each Ui, j belongs to
Matri ,r j (C[z, z�1]). From Lemma 3.2, we see that �(F (0)

A ) = �(F (0)
A0 ). So, we can

and will assume for the proof of Proposition 3.5 that A is in the form (3.6).
The proof of Proposition 3.5 proceeds in three steps, corresponding to the fol-

lowing properties of the slopes of the Newton polygon of A at 0:

Step 1. first, reduction to the case of a pure isoclinic system, i.e., to the case A= A1.

Step 2. then, reduction to the case of a pure isoclinic system with integral slope,
i.e., to the case A = A1 and µ1 2 Z.

Step 3. last, proof in the case of pure isoclinic systems with integral slope.

We shall now outline the strategies of proof of these three steps, which rely on
well-known properties of q-difference equations proved in [13] for instance.

Step 1 is a direct consequence of the exactness of the functor A F (0)
A proved

in Lemma 3.7 below and of the additivity of the Euler characteristic.
Step 2 relies on the fact that, if A is pure isoclinic with slope µ = d/r , then

the change of variable (ramification) z = z0r , q = q 0r yields a q 0-difference system
with matrix A0(z0) := A(z) which is pure isoclinic with slope µ0 = rµ = d 2 Z.
Section 3.3.3 is then devoted to the study of the effect of this change of variable on
the Euler characteristic �(F (0)

A ).
Step 3 relies on the fact that we have an explicit description of the pure isoclinic

systems with integral slope. Namely, if A = A1 and µ := µ1 2 Z, then A is
rationally equivalent to zµC for some C 2 GLr (C). Section 3.3.4 is devoted to the
calculation of the Euler characteristic �(F (0)

A ) when A has this specific form.

Remark 3.6. Normal forms for pure isoclinic systems with non integral slopes
were obtained by van der Put and Reversat [18], but we will not used them, as
they are rather complicated and ramification gives us a shorter way to prove Propo-
sition 3.5.

These steps correspond to the following three sections.

3.3.2. Reduction to the case of a pure isoclinic system

A useful model when studying the linear properties of q-difference systems is the
following. Call q-difference module a pair (V,8), where V is a C(z)-vector space
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of finite rank and8 a �q -linear automorphism of V , i.e.,8 is a group automorphism
satisfying the following q-analogue of Leibniz relation:

8a 2 C(z) , 8x 2 V , 8(ax) = �q(a)8(x).

A morphism from the q-difference module (V,8) to the q-difference module
(W,9) is by definition a C(z)-linear map f : V ! W which moreover inter-
twines8 and 9, i.e., such that f � 8 = 9 � f . We thus obtain an Abelian C-linear
category, the category DiffMod of q-difference modules.

On the other hand, one can consider the category DiffSyst of q-difference
systems whose objects are the matrices A 2 GLn(C(z)) and whose morphisms
from an object A 2 GLn(C(z)) to an object B 2 GLp(C(z)) are the matrices
F 2 Matp,n(C(z)) such that (�q F)A = BF . In particular, isomorphisms are just
gauge transformations. This is also an Abelian C-linear category.

There is a close relationship between DiffMod and DiffSyst. Indeed, ev-
ery object of DiffMod is isomorphic to one of the form (C(z)n,8A) where A 2
GLn(C(z)) and 8A : C(z)n ! C(z)n , X 7! A�1�q(X): this is done by choosing
a basis B of V over C(z) and by considering the matrix A 2 GLn(C(z)) such that
B = 8(B)A. Thus, the functor from DiffSyst to DiffMod acting on the objects by
A  (C(z)n,8A) and on the morphisms by F  (C(z)n ! C(z)p, X 7! FX)
defines an equivalence of Abelian C-linear categories.

For details on what precedes, we refer to [13].
The following fact is stated without proof in [13] (and other places).

Lemma 3.7. The functor A  F (0)
A , from the Abelian category of q-difference

systems DiffSyst to the Abelian category of coherent sheaves over Eanq , is exact.

Proof. In the Abelian category of q-difference systems, an exact sequence

0 ! A0 ! A ! A00 ! 0

takes (up to isomorphism) the form:

A =

✓
A0 N
0 A00

◆
.

In the associated sequence

0 ! F (0)
A0 ! F (0)

A ! F (0)
A00 ! 0 (3.7)

the morphisms F (0)
A0 ! F (0)

A and F (0)
A ! F (0)

A00 take, over any fixed V ⇢ Eanq ,
the form X 0 7! (X 0, 0) and (X 0, X 00) 7! X 00 respectively. Then exactness of the
sequence (3.7) is obvious, except from right exactness F (0)

A ! F (0)
A00 ! 0 which

we now proceed to prove.
So let x 2 Eanq and let X 00 2 (F (0)

A00 )x , which we may represent by some
X 00 2 F (0)

A00 (V ) for some open neighborhood V ⇢ Eanq of x ; and we can as well
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assume that V is a trivializing neighborhood for the covering ⇡ so that ⇡�1(V ) is
the disjoint union of the qkU , for k 2 Z, where ⇡|U is a homeomorphism onto V .

Let
�
D(0, r), r > 0, a punctured disk centered at 0 on which A is regular, so the

same holds for A0, A00. We choose the above U such that U ⇢
�
D(0, r).

To lift X 00 to F (0)
A (V ), we have to find X 0 such that X := (X 0, X 00) is a solu-

tion of (2.1), which is equivalent (since we already know that �q X 00 = A00X 00) to
�q X 0 = A0X 0 + C , where C := NX 00. Moreover, we want X to be holomorphic

over
�
D(0, r 0) \ ⇡�1(V ), for some r 0 > 0. So we choose r 0  r such that X 00 is

holomorphic over
�
D(0, r 0) \ ⇡�1(V ) and proceed to solve the equation in X 0. Let

U 0 := qkU where k 2 Z is chosen in such a way that U 0 ⇢
�
D(0, r 0). We set the

value of X 0 on U 0 arbitrarily (we only require it to be holomorphic) and then use
the functional equation X 0 = A0�1(�q X 0 � C) to extend it successively to q�1U 0,
q�2U 0, . . . : all these are holomorphic; and the equation �q X 0 = A0X 0+C to extend
X 0 successively to qU 0, q2U 0, . . . : those ones are meromorphic. This X 0 and the
corresponding X have the expected properties.

In the Abelian category of q-difference systems DiffSyst, we have that A is
a successive extension of A1, . . . , Ak . We deduce from Lemma 3.7 that F (0)

A is a
successive extension of F (0)

A1 , . . . ,F (0)
Ak and hence that

�
⇣
F (0)
A

⌘
= �

⇣
F (0)
A1

⌘
+ · · · + �

⇣
F (0)
Ak

⌘
.

Since obviously v0(det A) = v0(det A1)+· · ·+v0(det Ak), we see that we just have
to prove formula (3.5) in the case of a pure isoclinic system, i.e., for k = 1.

3.3.3. Reduction to the case of integral slopes

So, we assume that A is pure isoclinic, i.e., that A = A1 and we set µ := µ1 = d/r .
From [13] we know that the change of variable (ramification) z = z0r , q = q 0r

yields a q 0-difference system with matrix A0(z0) := A(z) which is pure isoclinic
with slope µ0 = rµ = d. For this system, formula (3.5) must be interpreted with
v0 meaning the z0-adic valuation, i.e. v0(det A0) = rv0(det A).

Let ⇢ : C⇥ ! C⇥, z0 7! z := z0r . This induces a commutative diagram:

C⇥

⇡ 0

✏✏

⇢
// C⇥

⇡

✏✏

Eanq 0
⇢

// Eanq ,

where ⇡ 0 : C⇥ ! Eanq 0 denotes the canonical projection.
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Lemma 3.8. With these notations, ⇢⇤F (0)
A = F (0)

A0 .

Proof. Let V ⇢ Eanq an arbitrary open subset, V 0 := ⇢�1(V ) its preimage in Eanq 0 ,
and U := ⇡�1(V ), U 0 := ⇡ 0�1(V 0) = ⇢�1(U) their respective preimages in C⇥.
Any solution of �qY = AY analytic over U near 0 gives rise, by the changes of
variables A0(z0) = A(z), Y 0(z0) = Y (z), to a solution of �q 0Y 0 = A0Y 0 analytic
over U 0 near 0. The maps F (0)

A (V ) ! F (0)
A0 (V 0) = ⇢⇤F

(0)
A0 (V ) thus defined make

up a morphism of sheaves of linear spaces F (0)
A ! ⇢⇤F

(0)
A0 , whence, by adjunc-

tion, a morphism of sheaves of linear spaces ⇢�1F (0)
A ! F (0)

A0 (the source here is
the topological inverse image sheaf) and then a morphism of sheaves of modules
⇢⇤F (0)

A ! F (0)
A0 . We now show that this is an isomorphism. It is enough to do so

by restriction to a basis of open subsets.
So let V ⇢ Eq be a trivializing open subset for the covering ⇢ and let W 0 ⇢

V 0 := ⇢�1(V ) such that W 0 ! V = ⇢(W 0) is a homeomorphism. Then a solution
of �q X = AX over ⇡�1(V ) gives rise to a solution X 0(z0) := X (z) of �q 0X 0 = A0X 0

over ⇡ 0�1(W 0). In this way, we get a C-linear isomorphism from ⇢�1F (0)
A (W 0) to

F (0)
A0 (W 0). The isomorphism of modules

⇢⇤F (0)
A

�
W 0� := ⇢�1F (0)

A
�
W 0� ⌦OEanq (V ) OEanq0

�
W 0� ' F (0)

A0

�
W 0�

follows, because hereOEanq0
(W 0) = OEanq (V ).

The following statement is obviously a particular case of much more general
facts, but, for lack of a convenient reference, we give a direct proof.

Lemma 3.9. Let p : X 0 ! X an isogeny of degree r between two complex tori and
let F a locally free sheaf on X . Then:

�(p⇤F ) = r�(F ).

Proof. Since the inverse image functor is exact and since � is additive for exact
sequences, the triangularisation of holomorphic vector bundles over compact Rie-
mann surfaces [5, corollary of Theorem 10, page 63] allow us to assume that F
has rank 1, F = OX (D) for some divisor D. But then p⇤F = OX 0(D0), where
D0 := p⇤D. Writing d := deg D, so that deg D0 = rd, we have, by Riemann-
Roch theorem for line bundles (with here g = 1), �(F ) = deg D = d and
�(p⇤F ) = deg D0 = rd.

Remark 3.10. For any finite morphism p : X 0 ! X and any coherent sheaf F 0

on X 0, we have equality of the cohomology groups: Hi (X 0,F 0) = Hi (X, p⇤F 0)
[4, page 63], thus in the case of our lemma �(p⇤ p⇤F ) = �(p⇤F ) = r �(F ).
However, even in the case of an etale covering, it is not true that p⇤ p⇤F ' Fr .
For instance, taking F := OX , we see that p⇤ p⇤OX is locally free of rank r but its
global sections has dimension 1: indeed, p⇤OX = OX 0 .
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Combining Lemmas 3.8 and 3.9, we get the equality:

�
⇣
F (0)
A0

⌘
= r�

⇣
F (0)
A

⌘
.

Since we found that v0(det A0) = rv0(det A), we see that it is enough to prove
formula (3.5) for A0, i.e. for a pure isoclinic system with integral slope.

3.3.4. Proof in the case of a pure system with integral slopes

So, we are now reduced to prove Proposition 3.5 in the case of a pure system with
integral slopes, i.e., in the case A = A1 and µ := µ1 2 Z. From [13], we know
that A is rationally equivalent to zµC for some C 2 GLr (C). On the one hand,
from Lemma 3.2, we get that �(F (0)

A ) = �(F (0)
zµC), and, on the other hand, we have

v0(det A) = v0(det zµC). So, we can and will assume that

A = zµC.

Then:
F (0)
A ' OEanq (µ) ⌦FC ,

and FC is a flat vector bundle of rank r . Again from general facts, it follows that
�(F (0)

A ) = rµ, but for the lack of convenient reference, we give a direct argument.

Lemma 3.11. We have �(F (0)
A ) = rµ.

Proof. We can assume that C is triangular (conjugacy by an element of GLn(C) is a
particular case of rational gauge equivalence), so thatF (0)

A is an iterated extension of
r sheaves of the form F (0)

czµ with c 2 C⇥. By additivity of the Euler characteristics,
we are drawn to prove that �(F (0)

czµ) = µ. But a nontrivial meromorphic section of
F (0)
czµ can be obtained as s := ✓q

µ�1(z)✓q(cz), where the theta function ✓q 2 O(C⇥)
satisfies �q✓q = z✓q and divC⇥(✓q) =

P
a2[�1;q][a] (see [13]), so that the degree

of the section s is µ, and we can apply Riemann-Roch theorem again.

Since det A = zrµ detC , we have v0(det A) = rµ and the expected formula
follows. This terminates the proof of Proposition 3.5.
Remark 3.12. A somewhat different proof is possible along the following lines.
Using the results of this section, one can prove (using the notations of Proposition
3.5) that:

detF (0)
A = F (0)

det A. (3.8)

Indeed, the equality is easy when A has integral slopes, using the existence of a
triangular form with diagonal terms czµ and Lemma 3.7; and one can reduce to this
case by extension of the base just as in 3.3.3. Once equality (3.8) is proved, the
theorem of Riemann-Roch for vector bundles over compact Riemann surfaces [5]
allows one to conclude immediately.
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3.4. Sheaves of solutions related to intermediate singularities

In this section, we intend to compute �(F 0
A) as a sum of local terms defined at 0,1

and at the “intermediate singularities”, i.e. points in Sing(A). The reason for using
F 0
A instead of FA is the fact, mentioned at the end of Subsection 3.1 (Lemma 3.2

and Remark 3.3), that the former is in some sense intrinsic (up to rational isomor-
phisms) while the latter is not. This is related to so-called “resonancies” and we
shall first show how to deal with them.

3.4.1. Resonancies

Definition 3.13. A singularity a 2 Sing(A) is called resonant1 if qka 2 Sing(A)
for some k 2 Z, k 6= 0. The system A is said to be nonresonant if it has no resonant
singularities, i.e. if Sing(A) \ qN⇤Sing(A) = ;.

Lemma 3.14. If A is nonresonant, then FA = F 0
A.

Proof. Let V be an open subset of Eanq , let U = ⇡�1(V ) and let X be a solution
of (2.1) meromorphic over U . Consider a 2 U . In order to prove the lemma, it is
sufficient to prove that X is either holomorphic over [a; q] or has infinitely many
poles over [a; q]. If a 62 qZSing(A), the relation X (qz) = A(z)X (z) and the fact
that A is regular over [a; q] imply that X either has no poles over [a; q] or has
infinitely many poles over [a; q]. It remains to consider the case a 2 qZSing(A).
Up to replacing a by aq j for some j 2 Z, we can assume that a 2 Sing(A). Then,
no qka with k 6= 0 belongs to Sing(A), so we deduce that the same dichotomy
as above holds separately over both half q-spirals aq�N and qN⇤ . In any case, the
conclusion follows.

Lemma 3.15. For every A 2 GLn(C(z)), there exists a rational gauge transforma-
tion F 2 GLn(C(z)) such that F[A] has all its singularities within the fundamental
annulus C(1, |q|):

8a 2 Sing(F[A]) , 1  |a| < |q| .

In particular, F[A] is nonresonant.

Proof. Note that A = uA0 where u 2 C(z)⇥ and A0 2 GLn(C(z)) \Matn(C[z]).
We may write in the same way F = f F0, and then clearly F[A] = f [u]F0[A0].
We shall deal separately with the scalar components f, u and with the polynomial
components F0, A0.

Write u = c
Q

(z � ai )ri , c 2 C⇥. Then, if for instance
�
�a j

�
� � |q|, the gauge

transform (z � a j )r j [u] has singularity a j replaced by a j/q, so, iterating, we can
move it to the fundamental annulus. The case where

�
�a j

�
� < 1 is tackled similarly.

In this way we get Sing f [u] ⇢ C(1, |q|).

1 The notion of resonancy comes from the local study of q-different systems, where one has
to get rid of resonant exponents (eigenvalues of the fuchsian components of the system), [13].
Be careful, there is a difference between a resonant singularity and a singularity with resonant
exponents. The two concepts have not much in common.
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Since A0 is polynomial, its singularities are the zeroes of det A0. So let a
such that det(A0(a)) = (det A0)(a) = 0 and let X0 2 Cn non trivial such that
A0(a)X0 = 0. Complete X0 to a basis of Cn , thus yielding P 2 GLn(C) such that
P has first column X0. Then the first column of P�1AP vanishes at a, so it is a
multiple of z�a inC[z]n . Now assume for instance that |a| � |q| and use the gauge
transformation S := Diag(z � a, 1, . . . , 1): we see that S[P�1AP] = (SP�1)[A]
has the same singularities as A except that one zero a of the determinant has been
replaced by a/q. Iterating, we may move it to the fundamental annulus. The case
where |a| < 1 is tackled similarly. In this way we get the wanted property.

Note that, writing B := F[A] we then have:
⇣
FF (0)

A = F (0)
B and FF 0

A = F 0
B

⌘
=) F (0)

A /F 0
A ' F (0)

B /F 0
B = F (0)

B /FB .

3.4.2. Computation of �(F 0
A) for a nonresonant system

The proof of the following result is left to the reader.

Lemma 3.16. Assume that A 2 GLn(C(z)) is nonresonant. Let V be an open
subset of Eanq , let U = ⇡�1(V ) and let X be a solution of (2.1) meromorphic over
U . If some element of q�Na is a pole of X then any element of q�Na is a pole of
X . Similarly, if some element of qZ>0a is a pole of X then any element of qZ>0a is
a pole of X .

Lemma 3.17. Assume that A 2 GLn(C(z)) is nonresonant. Consider a 2 C⇥ and
let x = ⇡(a). Let R := OC⇥,a = OEanq ,x (thus a discrete valuation ring). Then we
have isomorphisms of R-modules:

⇣
F (0)
A /FA

⌘

x
'

Rn

Rn \ A�1Rn
,

⇣
F (1)
A /FA

⌘

x
'

Rn

Rn \ ARn
·

Proof. If a 62 Sing(A), it follows from Lemma 3.16 that (F (0)
A )x = (FA)x and

hence
⇣
F (0)
A /FA

⌘

x
is trivial. Since A 2 GLn(R), the modules Rn/(Rn \ A�1Rn)

and Rn/(Rn \ ARn) are trivial as well, so the isomorphisms are valid.
We assume that a 2 Sing(A). Let U a connected neighborhood of a small

enough that ⇡ induces a homeomorphismU ! V := ⇡(U) and thatU\Sing(A) =
{a}. Then the restriction maps FA(V ) ! (FA)x and F (0)

A (V ) ! (F (0)
A )x are

bijective.
As we already saw in the proof of Lemma 3.4, a solution X 2 F (0)

A (V ) can be
taken arbitrarily inOC⇥(U)n and then uniquely extended to V using the functional
equation X (z) = A(z)�1X (qz). This yields an identification of (F (0)

A )x with Rn .
Under this identification, the condition that X belongs to FA(V ) is that all X (qkz),
k � 1 be holomorphic on U ; according to Lemma 3.16, it is enough to check it
for X (qz) = A(z)X (z), i.e. it is enough to require that AX 2 Rn , whence the
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identification of (FA)x with Rn \ A�1Rn and, in the end, of
⇣
F (0)
A /FA

⌘

x
with

Rn/(Rn \ A�1Rn).
The isomorphism at1 is proven in the same way.

Lemma 3.18. Let R a discrete valuation ring, u a uniformizer, K the fraction field
of R and A 2 GLn(K ). There exist P, Q 2 GLn(R) and D = Diag(ud1, . . . , udn )
for some integers d1  · · ·  dn such that A = PDQ. We have isomorphisms of
R-modules:

Rn

Rn \ ARn
'

Y

di>0

R
udi R

,
Rn

Rn \ A�1Rn
'

Y

di<0

R
u�di R

·

Proof. The given decomposition A = PDQ comes from the theorem of invariant
factors for finitely generated modules over principal ideal rings. We shall only
prove the second formula, the first one being similar (and simpler). Since P, Q 2
GLn(R), one has QRn = P�1Rn = Rn and:

Rn

Rn \ A�1Rn
=

Rn

Rn \ Q�1D�1P�1Rn
'

QRn

Q(Rn \ Q�1D�1P�1Rn)

=
QRn

QRn \ D�1P�1Rn
=

Rn

Rn \ D�1Rn
,

and Rn \ D�1Rn =
Qn

i=1(R \ u�di R). Last:

R \ uk R =

(
R if k  0,
uk R if k > 0.

We introduce the following notations. Let a 2 C⇥ and x = ⇡(a). If a 2
Sing(A) and R := OEanq ,x , we write 1a(A) = 1x (A) the multiset of all the di
appearing as exponents of the diagonal part D of A in the two lemmas above, and
1+, respectively 1� the submultisets of positive, respectively negative exponents.
For a nonsingular a, we can consider that1a(A) consists in n times 0, and that1+,
1� are empty. To summarize:

Proposition 3.19. Assume that A 2 GLn(C(z)) is nonresonant. The coherent
sheavesF (0)

A /FA andF (1)
A /FA are supported at ⇡(Sing(A)). They are skyscraper

sheaves with stalks:
⇣
F (0)
A /FA

⌘

x
'

Y

d21�
x (A)

OEanq ,x

u�d
x OEanq ,x

,
⇣
F (1)
A /FA

⌘

x
'

Y

d21+
x (A)

OEanq ,x

udxOEanq ,x
·

Corollary 3.20. For a nonresonant A 2 GLn(C(z)), the Euler characteristic ofFA
is given by

� (FA)=v0(det A)�
X

x2⇡(Sing(A))

dimC
⇣
F (0)
A /FA

⌘

x
=v0(det A)+

X

a2Sing(A)

X

d21�
a (A)

d,
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and also by

�(FA)=v1(det A)�
X

x2⇡(Sing(A))

dimC
⇣
F (1)
A /FA

⌘

x
=v1(det A)�

X

a2Sing(A)

X

d21+
a (A)

d.

Proof. Since the cohomology in degree � 1 of skyscraper sheaves is trivial, we
obtain:

�
⇣
F (0)
A /FA

⌘
=

X

x2⇡(Sing(A))

dimC
⇣
F (0)
A /FA

⌘

x
.

Using the additivity of the Euler characteristic, we get:

� (FA) = �
⇣
F (0)
A

⌘
�

X

x2⇡(Sing(A))

dimC
⇣
F (0)
A /FA

⌘

x
.

But, we have already seen that �(F (0)
A ) = v0(det A). Moreover, Proposition 3.19

ensures that, for all x 2 ⇡(Sing(A)), dimC(F (0)
A /FA)x =

P
d21�

a (A)(�d). Whence
the first formula. The proof of the second formula is similar.

3.4.3. Computation of �(F 0
A) in the general case

We now release all resonancy conditions: we consider an arbitrary A 2 GLn(C(z)).
We introduce the following notations for every x 2 Eanq :

`�
x (A) := dimC

⇣
F (0)
A /F 0

A

⌘

x
,

`+
x (A) := dimC

⇣
F (1)
A /F 0

A

⌘

x
,

`x (A) := `�
x (A) + `+

x (A).

Note that the dimensions over C are as well lengths of OEanq ,x -modules. Also, if
x 62 ⇡(Sing(A)), we have `�

x (A) = `+
x (A) = `x (A) = 0.

Theorem 3.21.

(i) For an arbitrary A 2 GLn(C(z)):

�
�
F 0
A
�

= v0(det A) �
X

x2Eanq

`�
x (A),

�(F 0
A) = v1(det A) �

X

x2Eanq

`+
x (A),

2�
�
F 0
A
�

= v0(det A) + v1(det A) �
X

x2Eanq

`x (A);
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(ii) For a nonresonant A 2 GLn(C(z)):

�
�
FA

�
= �

�
F 0
A
�
,

`+
x (A) =

X

d21+
x (A)

d,

`�
x (A) =

X

d21�
x (A)

(�d).

Proof. We know form Lemma 3.15 that there exists F 2 GLn(C(z)) such that
B := F[A] is nonresonant. Since FF 0

A = FB and FF (0)
A = F (0)

B , we see that
F 0
A

⇠= FB andF (0)
A /F 0

A
⇠= F (0)

B /F 0
B . Therefore, using Proposition 3.20, we obtain:

�
�
F 0
A
�

= �
�
F 0
B
�

= v0(det B) �
X

x2Eanq

dimC
⇣
F (0)
B /FB

⌘

x

= v0(det A) �
X

x2Eanq

dimC
⇣
F (0)
A /FA

⌘

x
= v0(det A) �

X

x2Eanq

`�
x (A).

The proof of the second formula is similar and the third formula is an obvious
consequence of the first and second ones.

The last part of the result, about the nonresonant case, is a direct consequence
of the Paragraph 3.4.2.

3.4.4. Relation with “Riemann-Hilbert correspondence on the quantum torus”

In various talks, Kontsevich and Soibelman stated an equivalence of categories be-
tween rational q-difference systems and data made up of a coherent sheaf over
Eanq and two so-called “anti-Harder-Narasimhan filtrations” over this sheaf. They
consider this as an extension of the results in [13]. There seems to be no written
published version of this theory (of which we heard after submitting the present
work), but see for instance the videos [8, 9].

Although they give no indication of the construction of these data, it is clear
that their sheaf F should contain our sheaves F (0)

A and F (1)
A , that these are en-

dowed with their respective slope filtrations, and that the quotients F/F (0)
A and

F/F (1)
A should be torsion sheaves, thus skyscraper sheaves, and that they should

be concentrated at intermediate singularities.
From the above description ofF (0)

A /(F (0)
A \F (1)

A ) andF (1)
A /(F (0)

A \F (1)
A ), it

is clear, using standard isomorphism theorems of the form (M+N )/N ' M/(M \
N ), that the sheaf F := F (0)

A +F (1)
A would do the job.
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3.5. Application to a formula of Sakai and Yamaguchi

3.5.1. Euler characteristics and index of rigidity

Recall from [13] that the “internal End” of a q-difference system A 2 GLn(C(z))
is defined as:

B := End(A) := A_ ⌦ A 2 GLn2(C(z)),

where the “dual” A_ of A is the contragredient t A�1 and where ⌦ denotes the
Kronecker product. We intend here to compute �(F 0

B) and to compare it to the
rigidity index introduced by Sakai and Yamaguchi in [15, Section 3]. An important
preliminary fact is that, for any scalar f 2 C(z)⇥:

End( f A) = End(A).

Therefore, we may and will assume that A is polynomial and that its coefficients
have no common factor. From general linear algebra, det B=(det t A�1)n(det A)n=
1. Obviously, SingB = SingA (the inclusion might have been strict if the coeffi-
cients of A had a common factor); this singular set is the set of zeroes of det A over
C⇥. We write N the number of these zeroes, counted with multiplicities. Also,
from now on, we assume A (and therefore B) to be nonresonant.

Let a 2 SingA and A = PDQ the corresponding decomposition as in 3.4.2.
Then A_ = P_D_Q_ whence B = (P_ ⌦ P)(D_ ⌦D)(Q_ ⌦Q). Since P_ ⌦ P
and Q_ ⌦ Q are regular at a, we see that 1a(B) = 1a(A) � 1a(A), meaning that
if 1a(A) is the multiset d1  · · ·  dn , then 1a(B) is the multiset of all di � d j ,
i, j = 1, . . . , n. Thus, writing x := ⇡(a):

`±
x (B) =

X

1i< jn
(d j � di ) =

X

1i< jn
d j �

X

1i< jn
di

=
X

1 jn
( j � 1)d j �

X

1n
(n � i)di =

nX

i=1
(2i � 1� n)di .

We deduce:

nva(det A) �
1
2
`x (B) =

nX

i=1
(2n � 2i + 1)di

=
nX

i=1
(2i � 1)dn�i+1 = dn + 3dn�1 + · · · + (2n � 1)d1

= d1(1+ 3+ · · · + (2n � 1))
+ (d2 � d1)(1+ 3+ · · · + (2n � 3)) + · · ·

= n2d1 + (n � 1)2(d2 � d1) + · · · + 12(dn � dn�1),

that is e21 +· · ·+ e2p, where p := dn and e1, . . . , ep is the dual Young tableau of the
Young tableau d1, . . . , dn . Summing these equalities for all a 2 Sing(A), we get,
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with obvious notations:

�(F 0
B) =

X

a2Sing(A)

X
e2i (a) � nN .

This is the part of Sakai-Yamaguchi’s index of rigidity [15, Section 3] that depends
only on intermediate singularities a 2 Sing(A) ⇢ C⇥ and not on 0 and1.

3.5.2. Taking into account 0 and 1

We shall now introduce a topological space gEanq and a sheaf on it in order to take
into account 0 and1. We consider the set

gEanq = {0} t Eanq t {1}.

We endow this set with the following topology: a basis of open sets is given by the
open sets of Eanq , and by the subsets {0} and {1}, so that gEanq has three connected
components Eanq , {0} and {1}. For any A 2 GLn(C(z)), we let fF 0

A be the sheaf
on gEanq such that (fF 0

A)|Eanq = F 0
A and with stalks at 0 and 1 given by (fF 0

A)0 =

Sol(A,C({z})) and (fF 0
A)1 = Sol(A,C({z�1})). Then, we obviously have

�
⇣
fF 0
A

⌘
= �

⇣
F 0
A

⌘
+ dimC Sol(A,C({z})) + dimC Sol

⇣
A,C

⇣�
z�1

 ⌘⌘
.

We shall now apply this formula to the above B 2 GLn2(C(z)) when A is reg-
ular singular at 0 and 1, i.e., we assume that there exist A(0), A(1) 2 GLn(C),
F (0)(z) 2 GLn(C({z})) and F (1)(z) 2 GLn(C({z�1})) such that

F (0)(qz)A(0) = A(z)F (0)(z) and F (1)(qz)A(1) = A(z)F (1)(z).

We can and will assume that both A(0) and A(1) are nonresonant, i.e. that, for any
eigenvalue �, µ of A(0) (respectively A(1)), we have �/µ 62 qZ⇤ . Then, we have

dimC Sol(B,C({z})) = dimC Z
⇣
A(0)

⌘
and dimC Sol

⇣
B,C

⇣�
z�1

 ⌘⌘

= dimC Z
⇣
A(1)

⌘

where Z(·) denotes the centralizer in Matn(C). So,

�
⇣
fF 0
B

⌘
=

X

a2Sing(A)

X
e2i (a) + dimC Z

⇣
A(0)

⌘
+ dimC Z

⇣
A(1)

⌘
� nN .

This is Sakai-Yamaguchi’s index of rigidity [15, Section 3].
It would have been more natural to look for a connected topological space X

(instead of the non connected gEanq ) and for a sheaf F on X such that �(F) is the
index of rigidity of A. Unfortunately, we were not able to find such a topological
space. However, this led us to compute the Euler characteristics of natural “exten-
sions” of FA of independent interest; this is the content of the rest of the paper.
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4. A natural extension of F 0
A and its Euler characteristic

We consider the set
Eanq = {0} t Eanq t {1}.

We endow this set with the following topology: the open sets of Eanq are the open
subsets of Eanq , and the subsets {0} t Eq , Eq t {1} and Eanq .

We denote by$ : P1(C)an ! Eanq the natural continuous map.
Let V an open subset of Eanq and let U := $�1(V ). We consider the subsheaf

A0 of$ ⇤MP1(C)an given by

A0(V ) := A0
⇣
V \ Eanq

⌘
\MP1(C)an (U). (4.1)

Note that
A0

|Eanq = A0.

As in Paragraph 3.1.2, we associate to the sheaf A0 the sheaf of solutions on Eanq
denoted by F 0

A. The sections of this sheaf on an open subset V of Eanq are given by

F 0
A(V ) =

n
F 2 (A0(V ))n | 8z 2 $�1(V ), �q(F)(z) = A(z)F(z)

o
.

Note that ⇣
F 0
A

⌘

|Eanq
= F 0

A.

In order to compute the Euler characteristic of this sheaf, we will need the following
lemmas.

Lemma 4.1. Any sheaf of Abelian groups on the topological subspace {0} t Eanq
(respectively Eanq t {1}) of Eanq is acyclic.

Proof. Let F be a sheaf of Abelian groups on {0} t Eanq . Let 0 ! F ! I · be
an injective resolution of F . Taking the stalks at 0, we get the exact sequence
0 ! F0 ! I ·

0. Since {0} t Eanq is the only open subset of {0} t Eanq containing
0, we see that the stalks at 0 coincide with the global sections. So the sequence of
global sections obtained from 0 ! F ! I · is exact, whence the result.

Lemma 4.2. Let F be a sheaf of C-vector spaces on Eanq . Assume that H0({0} t

Eanq ,F ), H0(Eanq t {1},F ) and any Hk(Eanq ,F ) are finite dimensional. Then,
the Hk(Eanq ,F ) are finite dimensional and we have

�
�
Eanq ,F

�
= ��

�
Eanq ,F|Eanq

�
+ h0

�
{0} t Eanq ,F

�
+ h0

�
Eanq t {1},F

�
.
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Proof. The Mayer-Vietoris long exact sequence for F with respect the open cover-
ing {{0} t Eanq ,Eanq t {1}} of Eanq reads as follow:

· · · !Hk�1�Eanq ,F
�
!Hk�Eanq ,F

�
! Hk�{0} t Eanq ,F

�
� Hk�Eanq t {1},F

�

! Hk�Eanq ,F
�

! Hk+1�Eanq ,F
�

! · · ·

Using Lemma 4.1, we see that, for all k � 1, H j ({0}tEanq ,F )�H j (Eanq t{1},F )

is trivial for j 2 {k, k+1} and, hence, that Hk(Eanq ,F ) and Hk+1(Eanq ,F ) are iso-
morphic C-vector spaces. Moreover, the first terms of the Mayer-Vietoris sequence
above give the exact sequence:

0 ! H0
�
Eanq ,F

�
! H0

�
{0} t Eanq ,F

�
� H0

�
Eanq t {1},F

�

! H0
�
Eanq ,F

�
! H1

�
Eanq ,F

�
! 0.

So that,

h1
�
Eanq ,F

�

= h0
�
Eanq ,F

�
�

�
h0({0} t Eq ,F

�
+ h0

�
Eq t {1},F

��
+ h0

�
Eanq ,F

�

= h0
�
Eanq ,F

�
�

�
h0

�
{0} t Eanq ,F

�
+ h0

�
Eanq t {1},F

��
+ h0

�
Eanq ,F

�
.

Applying this lemma to F 0
A and using Theorem 3.21, we get the following

result:

Theorem 4.3. For an arbitrary A 2 GLn(C(z)):

�
�
F 0
A
�

= �v0(det A) +
X

x2Eanq

`�
x (A) + dimC Sol(A, R0) + dimC Sol(A, R1),

�
�
F 0
A
�

= �v1(det A) +
X

x2Eanq

`+
x (A) + dimC Sol(A, R0) + dimC Sol(A, R1),

2�
�
F 0
A
�

= �v0(det A) � v1(det A) +
X

x2Eanq

`x (A)

+ 2 dimC Sol(A, R0) + 2 dimC Sol(A, R1),

where R0 (respectively R1) is theC-vector space of meromorphic functions overC
(respectivelyC⇥t{1})with at most finitely many poles on any q-spiral [a;q]⇢C⇥.

5. Another natural extension of F 0
A

Let Ean0

q be a copy of Eanq . We consider the set

X = {0} t Eanq t {1} t Ean
0

q .
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We endow X with the following topology: the open subsets of X are of the form

• U t U 0 where U (respectively U 0) is a subset of Eanq (respectively Ean0

q ) such
that U 0 ⇢ U ;

• {0} t Eanq tU 0 where U 0 is an open subset of Ean0

q ;
• Eanq t {1} tU 0 where U 0 is an open subset of Ean0

q ;
• {0} t Eanq t {1} tU 0 where U 0 is an open subset of Ean0

q .

The reader will easily check that this defines a topology on X .
We let B be the sheaf on X whose sections on an open subset V of X are the

meromorphic functions f (z) on ⇡�1(V \Eanq ) (where ⇡ : C⇥ ! Eanq is the natural
projection) such that

• f (z) is meromorphic at 0 if 0 2 V ;
• f (z) is meromorphic at1 if1 2 V ;
• f (z) is meromorphic on ⇡ 0�1(V \ Ean0

q ) with at most finitely many poles on
any q-spiral [a; q] ⇢ ⇡ 0�1(V \ E0

q) (where ⇡ 0 : C⇥ ! Ean0

q is the natural
projection).

The restriction maps are the natural ones (restriction of functions).
The corresponding sheaf of solutions on X is given, for any open subset V of

X , by

H0
A(V ) =

n
F 2 (B(V ))n | 8z 2 ⇡�1�V \ Eanq

�
, �q(F)(z) = A(z)F(z)

o
.

This section is devoted to the proof of the following result.

Theorem 5.1. We have:

• For all k � 2, Hk(X,H0
A) = 0;

• dimC H1(X,H0
A) = 1;

• H0(X,H0
A) = Sol(A,C(z)).

In order to prove this result, we state and prove some lemmas.

5.1. Lemmas

We let Y be the topological subspace of X given by

Y = Eanq t Ean
0

q .

We denote by
i : Eanq ! Y and j : Ean

0

q ! Y
the natural (continuous) inclusions.

Let F be a sheaf of Abelian groups on Eanq . We set

eF = i⇤F .



EULER CHARACTERISTICS AND q-DIFFERENCE EQUATIONS 151

Lemma 5.2. Let F be a sheaf of Abelian groups on Eanq . We have, for all k � 0,

Hk�Y, eF
�

= Hk�Eanq ,F
�
.

Proof. This follows from the facts that the direct image functor i⇤ is exact (be care-
ful, since i is the inclusion of an open subset, the exactness of i⇤ is not a general fact
but is true in our special case) and sends flasque sheaves on flasque sheaves (this is
a general fact for direct images).

Lemma 5.3. Let F be a sheaf of Abelian groups on Y . Assume that i�1F is
acyclic. Then, for all k � 0, we have

Hk(Y,F ) ⇠= Hk�Ean
0

q , j�1F
�
.

Proof. We start with the exact sequence [6, II, Exercise 1.19]

0 ! i!i�1]i�1F = i!i�1F ! ]i�1F ! j⇤ j�1]i�1F ! 0, (5.1)

where i! is the extension by zero outside Eanq functor. Note that

Hk
⇣
Y, j⇤ j�1]i�1F

⌘
= Hk

⇣
Ean

0

q , j�1]i�1F
⌘

= Hk�Eanq , i�1F
�
.

(The first equality is general [6, III, Lemma 2.10] because Ean0

q is closed in Y ; the
second one follows from the fact that there is an obvious identification of the topo-
logical space Ean0

q with Eanq , and that j�1]i�1F corresponds to i�1F under this

identification.) Since i�1F is acyclic, we get that j⇤ j�1]i�1F is acyclic. Consid-
ering the long exact sequence of cohomology group obtained from (5.1), we obtain
that, for all k � 2,

Hk�Y, i!i�1F
�

= Hk
⇣
Y, ]i�1F

⌘
= 0

(the last equality follows from Lemma 5.2 and from the fact that i�1F is acyclic by
assumption) and we also obtain the exact sequence

0 ! H0(Y, i!i�1F ) ! H0
⇣
Y, ]i�1F

⌘
! H0

⇣
Y, j⇤ j�1]i�1F

⌘

! H1
�
Y, i!i�1F

�
! H1

⇣
Y, ]i�1F

⌘
! · · ·

But, we have

H0
⇣
Y, j⇤ j�1]i�1F

⌘
= H0

⇣
Ean

0

q , j�1]i�1F
⌘

= H0
⇣
Y, ]i�1F

⌘
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and the map H0(Y, ]i�1F) ! H0(Y, j⇤ j�1]i�1F) is actually the identity. More-
over, Lemma 5.2 ensures that H1(Y, ]i�1F) = H1(Eanq , i�1F ) = 0. It follows
that

H1
�
Y, i!i�1F

�
= 0.

Using the long exact sequence of cohomology groups obtained from the exact se-
quence

0 ! i!i�1F ! F ! j⇤ j�1F ! 0,
we get, for all k � 1,

Hk(Y,F ) = Hk�Y, j⇤ j�1F
�

= Hk�Ean
0

q , j�1F
�
.

This equality is obviously true for k = 0.

5.2. Proof of Theorem 5.1

In order to compute the cohomology of H0
A on X , we first use the Mayer-Vietoris

long exact sequence for the open covering {{0} t Eanq ,Eanq t {1} t Ean0

q } of X :

· · · ! Hk�1�Eanq ,H0
A
�

! Hk�X,H0
A
�

! Hk�{0} t Eanq ,H0
A
�
� Hk�Eanq t {1} t Ean

0

q ,H0
A
�

! Hk�Eanq ,H0
A
�

! Hk+1�X,H0
A
�

! · · ·

But, for k � 2, we have Hk�1(Eanq ,H0
A) = Hk(Eanq ,H0

A) = 0 (because the re-
striction ofH0

A to E
an
q is a meromorphic fiber bundle) and Hk({0} t Eanq ,H0

A) = 0
(follows from Lemma 4.1), so

Hk�X,H0
A
�

= Hk�Eanq t {1} t Ean
0

q ,H0
A
�
.

Now, we use the Mayer-Vietoris long exact sequence for the open covering {Eanq t

{1},Y } of Eanq t {1} t Ean0

q :

· · · ! Hk�1�Eanq ,H0
A
�

! Hk�Eanq t {1} t Ean
0

q ,H0
A
�

! Hk�Eanq t {1},H0
A
�
� Hk�Y,H0

A
�

! Hk�Eanq ,H0
A
�

! Hk+1�Eanq t {1} t Ean
0

q ,H0
A
�

! · · ·

Arguing as above, we get that, for k � 2,

Hk�Eanq t {1} t Ean
0

q ,H0
A
�

= Hk�Y,H0
A
�
.

But, i�1H0
A is acyclic (it is a meromorphic vector bundle on E

an
q ), so Lemma 5.3

ensures that, for i � 0,

Hk�Y,H0
A
�

= Hk�Ean
0

q , j�1H0
A
�
.
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Therefore, we have proved that, for k � 2,

Hk�X,H0
A
�

= Hk�Y,H0
A
�

= Hk�Ean
0

q , j�1H0
A
�

= 0. (5.2)

Moreover, the first terms of the first Mayer-Vietoris sequence above gives:

0 ! H0
�
X,H0

A
�

! H0
�
{0} t Eanq ,H0

A
�
� H0

�
Eanq t {1} t Ean

0

q ,H0
A
�

! H0
�
Eanq ,H0

A
�

! H1
�
X,H0

A
�

! · · ·

But H0({0} t Eanq ,H0
A) and H

0(Eanq t {1} t Ean0

q ,H0
A) are finite dimensional C-

vector spaces, whereas H0(Eanq ,H0
A) is infinite dimensional. Therefore, H

1(X,H0
A)

is infinite dimensional.
The last assertion of the theorem is obvious.
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