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A transcendental approach
to injectivity theorem for log canonical pairs

SHIN-ICHI MATSUMURA

Abstract. We study a transcendental approach to the cohomology groups of
adjoint bundles of log canonical pairs, aiming to establish an analytic theory for
log canonical singularities. As a result, in the case of purely log terminal pairs,
we give an analytic proof for the injectivity theorem originally proved by Hodge
theory. Our method is based on the theory of harmonic integrals and the L2-
method for the @-equation, and it enables us to generalize the injectivity theorem
to the complex analytic setting.

Mathematics Subject Classification (2010): 32J25 (primary); 14F17, 51H30
(secondary).

1. Introduction

The following result is a generalization of Kollár’s injectivity theorem [21] to log
canonical pairs (lc, for short), whose proof heavily depends on Hodge theory (see
[1, 2, 8, 11 Section 6, 13, 15]). In [7], Enoki gave an analytic proof for Kollár’s
injectivity theorem (the special case of D = 0 in Theorem 1.1) under the weaker
assumption that F is a semi-positive line bundle on a compact Kähler manifold X .
Therefore, in the same direction as Enoki, it is natural to ask whether we can give
an analytic proof for Theorem 1.1 in the complex analytic setting. This question
(Conjecture 1.2) was posed in [17]. In this paper, we affirmatively solve Conjecture
1.2 in the case of purely log terminal pairs (plt, for short), by developing an analytic
approach to lc singularities instead of Hodge theory, which depends on the theory
of harmonic integrals and the L2-method for the @-equation.

Theorem 1.1. Let D be a simple normal crossing divisor on a smooth projective
variety X and F be a semi-ample line bundle on X . Let s be a (holomorphic)
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section of a positive multiple Fm such that the zero locus s�1(0) contains no lc
centers of the lc pair (X, D). Then, the multiplication map induced by the tensor
product with s,

Hq(X, KX ⌦ D ⌦ F)
⌦s
�! Hq(X, KX ⌦ D ⌦ Fm+1)

is injective for every q. Here KX denotes the canonical bundle of X .

Conjecture 1.2 ([17, Conjecture 2.21], cf. [14, Problem 1.8]). Let D be a simple
normal crossing divisor on a compact Kähler manifold X and F be a semi-positive
line bundle on X (that is, it admits a smooth Hermitian metric with semi-positive
curvature). Let s be a section of a positive multiple Fm such that the zero locus
s�1(0) contains no lc centers of the lc pair (X, D). Then we obtain the same con-
clusion as in Theorem 1.1.

For a simple normal crossing divisor D on a complex manifold X with the irre-
ducible decomposition D =

P
i2I Di , an irreducible component of Di1 \ · · · \

Dik (6= �) is called an lc center of the pair (X, D). Note that we interchangeably
use the words “(Cartier) divisors”, “(holomorphic) line bundles”, and “invertible
sheaves” throughout this paper.

The following theorem, which is one of the main results of this paper, gives an
affirmative answer for Conjecture 1.2 in the case of plt pairs.

Theorem 1.3 (Main theorem). Let D be a simple normal crossing divisor on a
compact Kähler manifold X . Let F (respectively M) be a (holomorphic) line bun-
dle on X with a smooth Hermitian metric hF (respectively hM) such that

p
�12hM (M) � 0 and

p
�1
�
2hF (F) � t2hM (M)

�
� 0 for some t > 0.

We assume that the pair (X, D) is a plt pair. Let s be a section of M such that the
zero locus s�1(0) contains no lc centers of the lc pair (X, D). Then, the multipli-
cation map induced by the tensor product with s,

Hq(X, KX ⌦ D ⌦ F)
⌦s
�! Hq(X, KX ⌦ D ⌦ F ⌦ M)

is injective for every q.

Corollary 1.4. Under the same situation as in Conjecture 1.2, we assume that the
pair (X, D) is a plt pair. Then, the same conclusion as in Conjecture 1.2 holds. In
particular, Conjecture 1.2 is affirmatively solved for a plt pair (X, D).

Theorem 1.3 can be reduced to the following theorem. In this reduction step, we
use the assumption that (X, D) is a plt pair. However, we emphasize that we do
not need this assumption in Theorem 1.5. The proof of Theorem 1.5 provides an
analytic method to study lc singularities. (See [3, 20] for another approach.)
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Theorem 1.5 (Key result). Let D be a simple normal crossing divisor on a com-
pact Kähler manifold X . Let F (respectively M) be a (holomorphic) line bundle
on X with a smooth Hermitian metric hF (respectively hM) satisfying the same
assumptions as in Theorem 1.3. We consider the map

8D : Hq(X, KX ⌦ F) �! Hq(X, KX ⌦ D ⌦ F)

induced by the natural inclusion OX ,! OX (D). Then, the multiplication map on
the image Im8D induced by the tensor product with s

Im8D
⌦s

�����! Hq(X, KX ⌦ D ⌦ F ⌦ M)

is injective for every q.
The main idea of the proof of Theorem 1.5 is as follows: when we study kawamata
log terminal singularities (klt, for short), multiplier ideal sheaves (which can be
seen as a “non-klt” ideal) play an important role. Since multiplier ideals can be
analytically described by the L2-integrability of holomorphic functions, we can
obtain various injectivity theorems for klt singularities by using the L2-method (for
example see [12, 14, 18, 19, 25–30]). However we can not (at least directly) apply
the L2-method for lc pairs since lc singularities are worse than klt singularities.
This is one of the difficulties of Conjecture 1.2. To overcome this difficulty, in the
proof of Theorem 1.3, we approximate lc singularities with klt singularities and we
carefully estimate the order of divergence of suitable L2-norms (that is, how far
from klt singularities). In this step, we need a refinement (Theorem 1.6) of the hard
Lefschetz theorem with multiplier ideals proved in [6], which is independently of
interest.
Theorem 1.6. Let ! be a Kähler form on a compact Kähler manifold X and (G, h)
be a singular Hermitian line bundle with semi-positive curvature. Assume that the
singular Hermitian metric h is smooth on a non-empty Zariski open set in X . Then,
for a harmonic G-valued (n, q)-form u 2 Hn,q

h,!(G) with respect to h and !, we
have

⇤u 2 H0
�
X,�

n�q
X ⌦ G ⌦ I(h)

�
,

where ⇤ is the Hodge star operator with respect to !.
This paper is organized as follows: in Section 2, we summarize the fundamental
results needed later. We give a proof of Theorem 1.6 (respectively Theorem 1.5,
Theorem 1.3) in Subsection 3.1 (respectively Subsection 3.2, Subsection 3.3). In
Subsection 3.4, we discuss open problems related to the contents of this paper.

Conjecture 1.2 was recently proved in the two-dimensional case using Theo-
rem 1.3 after this paper had been accepted (see [24]).

ACKNOWLEDGEMENTS. The author wishes to thank Professor Junyan Cao for
stimulating discussions, and he wishes to thank Professor Osamu Fujino for useful
comments. He also thanks to Professors Chunle Huang, Kefeng Liu, XueyuanWan,
and Xiaokui Yang for sending him their preprint related to this paper.
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2. Preliminaries

2.1. Singularities of pairs and multiplier ideal sheaves

We treat only log smooth pairs in this paper, and thus we shortly recall the notion
of singularities for log smooth pairs (see [22] for more details).

Definition 2.1. Let (X, D) be a log smooth pair (that is, a pair of a smooth variety
X and an effective Q-divisor D on X with simple normal crossing support). Let
D =

P
bi Di be the irreducible decomposition.

• The pair (X, D) is plt if and only if bDc is a sum of disjoint prime divisors;
• The pair (X, D) is lc if and only if bi  1 for every i .

Here bDc denotes the divisor defined by the round-downs of the coefficients of D.

We give the definition and an example of multiplier ideal sheaves (see [5] for sin-
gular Hermitian metrics and curvatures).

Definition 2.2 (Multiplier ideal sheaves). Let G be a (holomorphic) line bundle
on a complex manifold X and h be a singular Hermitian metric on G such thatp

�12h(G) � � for some smooth (1, 1)-form � on X . Then the multiplier ideal
sheaf I(h) of h is defined to be

I(h)(B) :=
�
f 2 OX (B)

�
� | f |e�' 2 L2loc(B)

 

for every open set B ⇢ X , where ' is a local weight of h.

Example 2.3. For an effective divisor D on a complex manifold X , let g be a
smooth Hermitian metric on the line bundle D and t be the natural section of the
effective divisor D. Then the singular Hermitian metric hD on the line bundle D
can be defined by

' :=
1
2
log

�
|t |2g

�
and hD := ge�2' =

1
|t |2

,

where |t |g is the point-wise norm of t with respect to g (see Subsection 2.2). Note
that the singular Hermitian metric hD does not depend on the choice of g. Then it
is easy to see that I(hD) = OX (�bDc) when the support of D is normal crossing.

2.2. L2-spaces and differential operators

From now on, throughout Section 2, let X be a (not necessarily compact) complex
manifold of dimension n and G be a (holomorphic) line bundle on X . Further let
! be a positive (1, 1)-form on X and h be a singular Hermitian metric on G. We
always assume that the curvature

p
�12h(G) of h satisfies

p
�12h(G) � � for

some smooth (1, 1)-form � .
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For G-valued (p, q)-forms u and v, the notation hu, vih,! denotes the point-
wise inner product with respect to h and !, and hhu, viih,! denotes the inner product
defined by

hhu, viih,! :=
Z

X
hu, vih,! dV!,

where dV! is the volume form defined by dV! := !n/n!. The L2-space of G-
valued (p, q)-forms with respect to h and ! is defined by

L p,q(2) (G)h,! := L p,q(2) (X,G)h,!

:= {u | u is a G-valued (p, q)-form with kukh,! < 1}.

Then the maximal closed extension of the @-operator determines a densely defined
closed operator @ : L p,q(2) (G)h,! ! L p,q+1

(2) (G)h,! with the domain

Dom @ :=
�
u 2 L p,q(2) (G)h,! | @u 2 L p,q+1

(2) (G)h,!
 
.

Strictly speaking, the closed operator @ depends on h and ! since the domain and
the range depend on them, but we often omit the subscript (for example, we simply
write @h,! as @). In general, we have the orthogonal decomposition

Ln,q(2) (G)h,! = Im @ �Hn,q
h,!(G) � Im @

⇤
h,!,

where @
⇤
h,! is the Hilbert space adjoint of @ , the subspace Im @ (respectively Im @

⇤
h,!)

is the range of @ (respectively @
⇤
h,!), and the subspace H

n,q
h,!(G) is the set of har-

monic forms with respect to h and !, that is,

Hn,q
h,!(G) :=

�
u 2 Ln,q(2) (G)h,! | @u = 0 and @

⇤
h,!u = 0

 
.

For example, see [5, (1.2) Theorem] for the above orthogonal decomposition.
When h is smooth on X , the Chern connection D = D(G,h) can be determined

by the holomorphic structure of G and the smooth Hermitian metric h, which can
be written as D = D0

h + @ with the (1, 0)-connection D0
h and the @-operator. The

maximal closed extension of the (1, 0)-connection D0
h is also a densely defined

closed operator D0
h : L p,q(2) (G)h,! ! L p+1,q(2) (G)h,!, whose domain is

Dom D0
h :=

�
u 2 L p,q(2) (G)h,! | D0

hu 2 L p+1,q(2) (G)h,!
 
.

We consider the Hodge star operator ⇤ with respect to !

⇤ = ⇤! : C p,q
1 (G) ! Cn�q,n�p

1 (G),

where C p,q
1 (G) is the set of smooth G-valued (p, q)-forms on X . By the definition,

we have hu, vih,! dV! = u^H⇤v and ⇤⇤u = (�1)deg uu, where H is a local func-
tion representing h. In this paper, the notations D0⇤

h,! and @
⇤
h,! denote the Hilbert
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space adjoint of D0
h and @ . If ! is complete, the Hilbert space adjoint coincides

with the maximal closed extension of the formal adjoint (for example, see [4, (8.2)
Lemma]). In particular, when ! is complete, we have

D0⇤
h,! = � ⇤ @ ⇤ and @

⇤
h,! = � ⇤ D0

h,! ⇤ .

The following proposition is obtained from the Bochner-Kodaira-Nakano identity
and the density lemma (for example see [6] and [4, (1.2) Theorem]).

Proposition 2.4. Under the same situation as in the first part of Subsection 2.2, we
assume that ! is a complete Kähler form and h is smooth on X . Then we have the
following identity:

h
@, @

⇤
h,!

i
=
⇥
D0
h, D

0⇤
h,!
⇤
+
hp

�12h(G),3!

i
,

where 3! is the adjoint operator of the wedge product ! ^ •, and [•, •] is the
graded bracket defined by [A, B] = A � (�1)deg A deg B B.

Moreover, for every u 2 Dom @ \ Dom @
⇤
h,! ⇢ L p,q(2) (G)h,!, we have

�
�@u

�
�2
h,! +

�
�@

⇤
h,!u

�
�2
h,! =

�
�D0

hu
�
�2
h,! +

�
�D0⇤

h,!u
�
�2
h,! +

DDp
�12h(G)3!u, u

EE

h,!
.

For the proof of our results, it is important to use special characteristics of canonical
bundles (differential (n, q)-forms). By the following lemma, we can compare the
norms of (n, q)-forms and (p, 0)-forms with respect to different positive (1, 1)-
forms. Lemma 2.5 is obtained from straightforward computations, and thus we
omit the proof.

Lemma 2.5. Let ! and e! be positive (1, 1)-forms such that !  e!. Then we have
the following:

• There exists C > 0 such that |a ^ b|!  C|a|!|b|! for differential forms a, b;
• The inequality |a|2e!  |a|2! holds for a differential form a;
• The inequality |a|2e! dVe!  |a|2! dV! holds for an (n, q)-form a;
• The inequality |a|2e! dVe! � |a|2! dV! holds for a (p, 0)-form a;
• The equality |a|2e! dVe! = |a|2! dV! holds for an (n, 0)-form a.

2.3. De Rham-Weil isomorphisms

In this subsection, we explain facts on the De Rham-Weil isomorphism from the
@-cohomology to the Čech cohomology. The contents in this subsection may be
known for specialists, but we will summarize them for the reader’s convenience.
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Let ! be a Kähler form on a compact Kähler manifold X and h be a singular
Hermitian metric on a (holomorphic) line bundle G such that

p
�12h(G) � �!.

Further let Z be a proper subvariety on X and let e! be a Kähler form on the Zariski
open set Y := X \ Z with the following properties:

(B) e! � ! on Y = X \ Z ;
(C) For every point p in X , there exists a “bounded” function8 on an open neigh-

borhood of p in X such that e! =
p

�1@@8.

As explained in Subsection 2.2, for the L2-space of G-valued (n, q)-forms on Y
with respect to h and e!

Ln,q(2) (G)h,e! :=Ln,q(2) (Y,G)h,e! :=
�
u|u is a G-valued (n, q)-form withkukh,e! <1

 
,

we have the orthogonal decomposition

Ln,q(2) (G)h,e! = Im @ �Hn,q
h,e!(G) � Im @

⇤
h,e!.

The following proposition is proved by the observation on the De Rham-Weil iso-
morphism (for example see [25, Proposition 5.8] for the precise proof.)

Proposition 2.6 (cf. [25, Proposition 5.8]). Consider the same situation as above.
That is, we consider a Kähler form ! on a compact Kähler manifold X , a singular
Hermitian metric h on a (holomorphic) line bundle G such that

p
�12h(G) � �!,

and a Kähler form e! on a Zariski open set Y with properties (B), (C). Then the
ranges Im @ and Im @

⇤
h,e! are closed subspaces in Ln,q(2) (G)h,e!. In particular, we

have the orthogonal decomposition

Ln,q(2) (G)h,e! = Im @ �Hn,q
h,e!(G) � Im @

⇤
h,e!.

We fix a finite open cover U := {Bi }i2I of X by sufficiently small Stein open sets
Bi . We consider the set of q-cochains Cq(U , KX ⌦ G ⌦ I(h)) with coefficients in
KX ⌦ G ⌦ I(h) calculated by U and the coboundary operator

� : Cq(U , KX ⌦ G ⌦ I(h)) ! Cq+1(U , KX ⌦ G ⌦ I(h)).

Then we have the isomorphism

Ker �
Im �

of Cq(U , KX ⌦ G ⌦ I(h)) ⇠= Ȟq(X, KX ⌦ G ⌦ I(h)),

since the open cover U is a Stein cover. By using suitable local solutions of the
@-equation, we can construct the De Rham-Weil isomorphism

fh,e! :
Ker @
Im @

of Ln,q(2) (G)h,e!
⇠=

����!
Ker �
Im �

of Cq(U , KX ⌦ G ⌦ I(h)).

Then, by the construction of fh,e! (for example see [25, Proposition 5.5]), we can
easily check the following proposition:
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Proposition 2.7. Consider the same situation as in Proposition 2.6.

(1) The following diagram is commutative:

Ȟq(X, KX ⌦ G ⌦ I(h)) Ȟq(X, KX ⌦ G ⌦ I(h))

Ker @
Im @

of Ln,q(2) (G)h,!

⇠= fh,!

OO

j1
//

Ker @
Im @

of Ln,q(2) (G)h,e!,

⇠= fh,e!

OOOO

where j1 is the map induced by the natural map L
n,q
(2) (G)h,! ! Ln,q(2) (G)h,e!;

(2) Let h0 be a singular Hermitian metric on G such that
p

�12h0(G) � �! and
h0 � h. Then the following diagram is commutative:

Ȟq(X, KX ⌦ G ⌦ I(h0))
j

// Ȟq(X, KX ⌦ G ⌦ I(h))

Ker @
Im @

of Ln,q(2) (G)h0,e!

⇠= fh0,!

OO

j2
//

Ker @
Im @

of Ln,q(2) (G)h,e!,

⇠= fh,e!

OOOO

where j2 is the map induced by the natural map L
n,q
(2) (G)h0,e! ! Ln,q(2) (G)h,e!

and j is the map induced by I(h0) ,! I(h).

Remark 2.8. By property (B) and the third claim of Lemma 2.5, we have kukh,e! 
kukh,! for an arbitrary G-valued (n, q)-form u. Therefore the natural map j1 is
well-defined. In the same way, we can easily check that j2 is well-defined from
kukh,e!  kukh0,e!.

2.4. Weak convergence in Hilbert spaces

In this subsection, we summarize Lemma 2.9 and Lemma 2.10. See [18, Section 2]
for the proof.

Lemma 2.9. Let L be a closed subspace in a Hilbert space H. Then L is closed
with respect to the weak topology of H, that is, if a sequence {wk}1k=1 in L weakly
converges to w, then the weak limit w belongs to L .

Lemma 2.10. Let ' : H1 ! H2 be a bounded operator (continuous linear map)
between Hilbert spacesH1 andH2. If {wk}1k=1 weakly converges to w inH1, then
{'(wk)}1k=1 weakly converges to '(w) inH2.
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3. Proof of the main results

3.1. Proof of Theorem 1.6

In this subsection, we prove Theorem 1.6. To this end, we first show the following
proposition.
Proposition 3.1. Let ! be a Kähler form on a compact Kähler manifold X and
(G, h) be a singular Hermitian line bundle with semi-positive curvature. Let e! be
a Kähler form on a non-empty Zariski open set Y with the following properties:
(B) e! � ! on Y ;
(C) For every point p 2 X , there exists a bounded function 8 on an open neigh-

borhood of p in X such that e! =
p

�1@@8.
Then, we have hhu, wiih,! = 0 for any u 2 Hn,q

h,!(G) and w 2 Ln,q(2) (G)h,! such that
w 2 Im @ ⇢ Ln,q(2) (G)h,e!.

Proof. Note that we have w 2 Ker @ ⇢ Ln,q(2) (G)h,! by the assumption w 2 Im @ ⇢

Ln,q(2) (G)h,e!. It follows that @w = 0 on X from @w = 0 on Y and kwkh,! < 1
(see [4, (7.3) Lemma, Chapter VIII]). By applying Proposition 2.6 for !, we obtain
the orthogonal decomposition

Ln,q(2) (G)h,! � Ker @ = Im @ �Hn,q
h,!(G).

By this orthogonal decomposition, w can be decomposed as follows:

w = w1 + w2 for some w1 2 Im @ and w2 2 Hn,q
h,!(G) in Ln,q(2) (G)h,!.

We will show that w2 is actually zero by the assumption w 2 Im @ ⇢ Ln,q(2) (G)h,e!.
Then we obtain the conclusion hhu, wiih,! = 0 since we have

hhu, wiih,! = hhu, w2iih,! = 0 by u 2 Hn,q
h,!(G) and w1 2 Im @ ⇢ Ln,q(2) (G)h,!.

To prove that w2 = 0, we consider the following composite map:

� : Hn,q
h,!(G) �!

Ker @
Im @

of Ln,q(2) (G)h,!
j1�!
Ker @
Im @

of Ln,q(2) (G)h,e!,

where j1 is the map induced by the natural map L
n,q
(2) (G)h,! ! Ln,q(2) (G)h,e!. The

map � is a (well-defined) isomorphism by Proposition 2.6 and Proposition 2.7. It
follows that

w1 2
⇣
Im @ in Ln,q(2) (G)h,!

⌘
⇢
⇣
Im @ in Ln,q(2) (G)h,e!

⌘

from the third claim of Lemma 2.5 and property (B) of e!. Hence w2 = w � w1
also belongs to Im @ ⇢ Ln,q(2) (G)h,e! by the assumption w 2 Im @ ⇢ Ln,q(2) (G)h,e!. In
particular, this implies that �(w2) = 0. We obtain w2 = 0 since the map � is an
isomorphism.

In the remander of this subsection, we prove Theorem 1.6.
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Proof of Theorem 1.6. Let Y be a non-empty Zariski open set in X such that h is
smooth on Y . We first take a complete Kähler form e! on Y with the following
properties:

• e! is a complete Kähler form on Y ;
• e! � ! on Y ;
• For every point p 2 X , there exists a bounded function 8 on an open neighbor-
hood of p in X such that ! =

p
�1@@8.

See [12, Section 3] for the construction of e!. For the Kähler form !� on Y defined
by

!� := ! + �e! for � > 0,

it is easy to check the following properties:

(A) !� is a complete Kähler form on Y for every � > 0;
(B) !�2 � !�1 � ! on Y for �2 � �1 > 0;
(C) For every point p 2 X , there exists a bounded function 8� on an open neigh-

borhood of p in X such that !� =
p

�1@@8� .

Note that we can apply Proposition 2.4 for !� thanks to property (A). In the proof
of Theorem 1.6, we will omit the subscription h of the norm, the L2-space, and so
on. For example, we will use the notation

k • k! := k • kh,!, k • k!� := k • kh,!� , and L
n,q
(2) (G)!� := Ln,q(2) (G)h,!� .

It follows that

kuk!�  kuk! < 1 (3.1)

from Lemma 2.5 and property (B). In particular u belongs to Ln,q(2) (G)!� for every
� > 0. By the orthogonal decomposition (see Proposition 3.1)

Ln,q(2) (G)!� = Im @ �Hn,q
!�

(G) � Im @
⇤
!�

,

the G-valued (n, q)-form u can be decomposed as follows:

u = w� + u� for some w� 2 Im @ and u� 2 Hn,q
!�

(G) in Ln,q(2) (G)!� .

The strategy of the proof is the following: in the first step, we check that u� weakly
converges to some u0 in suitable L2-spaces. In the second step, we show that the
limit u0 actually coincides with u by Proposition 3.1. In the third step, we prove
that ⇤�u� 2 H0(X,�

n�q
X ⌦G⌦I(h)) by the theory of harmonic integrals and ⇤�u�

converges to ⇤u0 = ⇤u, where ⇤� (respectively ⇤) is the Hodge star operator with
respect to !� (respectively !).

We first check that u� has a a suitable weak limit by the following proposition.
Since we use Cantor’s diagonal argument in the proof of Proposition 3.2, we need
to handle only a countable sequence {�0}�0>0.
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Proposition 3.2. For a countable sequence {�0}�0>0 converging to zero, there exist
a subsequence {�⌫}1⌫=1 of {�}�>0 and u0 2 Ln,q(2) (G)! with the following properties:

• For every �0 > 0, as �⌫ goes to 0,

u�⌫ converges to u0 with respect to the weak topology in L
n,q
(2) (G)!�0

;

• ku0k!  kuk!.

Proof. For a given �0 > 0, the sequence {u�}�0��>0 is bounded in L
n,q
(2) (G)!�0

. In-
deed, for �0 � � > 0, we obtain

ku�k!�0
 ku�k!�  kuk!�  kuk! < 1. (3.2)

The first inequality follows from Lemma 2.5 and !�0 � !� , the second inequality
follows since u� is the orthogonal projection of u in L

n,q
(2) (G)!� , and the third in-

equality follows from inequality (3.1). Hence there exists a subsequence {�⌫}1⌫=1
of {�}�>0 such that u�⌫ weakly converges to some u0,�0 in Ln,q(2) (G)!�0

, which may
depend on �0. We can choose a suitable subsequence independent of �0 by Can-
tor’s diagonal argument, and thus we can assume that this subsequence {�⌫}1⌫=1 is
independent of �0.

Now we show that the weak limit u0,�0 is also independent of �0. For any
�1 � �2, the natural inclusion Ln,q(2) (G)!�2

! Ln,q(2) (G)!�1
is a bounded opera-

tor (continuous linear map) by Lemma 2.5 and !�1 � !�2 . By Lemma 2.10,
we can see that u�⌫ weakly converges to u0,�2 not only in L

n,q
(2) (G)!�2

but also in
Ln,q(2) (G)!�1

. Therefore it follows that u0,�1 = u0,�2 since u�⌫ weakly converges to
u0,�1 in L

n,q
(2) (G)!�1

and the weak limit is uniquely determined.
Finally we estimate the L2-norm of the weak limit u0. Fatou’s lemma yields

ku0k2! =
Z

Y
|u0|2! dV!  lim inf

�0!0

Z

Y
|u0|2!�0

dV!�0
= lim inf

�0!0
ku0k2!�0

.

On the other hand, it is easy to see that

ku0k!�0
 lim inf

�⌫!0
ku�⌫k!�0

 lim inf
�⌫!0

ku�⌫k!�⌫
 kuk! < 1.

The first inequality follows from lower semi-continuity with respect to the weak
convergence, the second inequality follows from Lemma 2.5 and !�⌫  !�0 , the
third inequality follows from inequality (3.2). Therefore we obtain the desired in-
equality ku0k!  kuk!.

For simplicity, we use the same notation {u�}�>0 for the subsequence {u�⌫ }�⌫>0
chosen in Proposition 3.2. The following proposition is obtained from Proposi-
tion 3.1.
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Proposition 3.3. The weak limit u0 coincides with u.

Proof. We fix �0 > 0 in the proof of Proposition 3.3. By Lemma 2.5, we can see
that

Im @ in Ln,q(2) (G)!� ⇢ Im @ in Ln,q(2) (G)!�0

for an arbitrary � with �0 � � > 0. Hence, it follows that

u � u� = w� 2 Im @ in Ln,q(2) (G)!�0

from the construction of u� and w� . The subspace Im @ is closed not only with
respect to the L2-topology but also with respect to the weak topology (see Proposi-
tion 2.6 and Lemma 2.9). By taking the weak limit, we can conclude that

w0 := u � u0 = w- lim
�!0

w� 2 Im @ in Ln,q(2) (G)!�0
.

Since the Kähler form!�0 on Y satisfies properties (B) and (C), we have hhu, w0ii! =
0 by Proposition 3.1, where w0 is the weak limit of w� = u � u� . Hence we obtain
ku0k2! = kuk2! + kw0k2!. This is a contradiction to the inequality ku0k!  kuk!

in Proposition 3.2 if w0 is not zero. Therefore w0 is actually zero. We obtain the
desired conclusion u = u0.

From now on, we consider the Hodge star operator ⇤� with respect to !� and
the G-valued (n�q, 0)-form ⇤�u� . Note that ⇤�u� is a G-valued (n�q, 0)-form on
Y (not X) since the Kähler form !� is defined only on Y . However, by the following
proposition, we can regard ⇤�u� as a holomorphic G-valued (n � q, 0)-form on X .

Proposition 3.4. The G-valued (n � q, 0)-form ⇤�u� can be extended to a holo-
morphic G-valued (n � q, 0)-form on X (that is, @ ⇤� u� = 0 on X). Moreover we
have

k ⇤� u�k!  kuk! < 1.

In particular, we have ⇤�u� 2 H0(X,�
n�q
X ⌦ G ⌦ I(h)).

Proof. Let ⇤�u� =
P

J f J dzJ be a local expression in terms of a local coordi-
nate (z1, z2, . . . , zn), where J is an ordered multi-index with degree (n � q). We
will show that every coefficient f J is holomorphic on Y and can be extended to a
holomorphic function on X .

Since !� is a complete Kähler form on Y , we can apply Proposition 2.4 to u� .
Proposition 2.4 yields

0 = k@u�k
2
!�

+ k@
⇤
�u�k

2
!�

= kD0⇤
� u�k

2
!�

+
DDp

�12h(G)3!�u�, u�

EE

!�

. (3.3)

The first equality follows since u� is harmonic with respect to !� . Here D0⇤
� denotes

the Hilbert space adjoint of the (1, 0)-part of the Chern connection Dh = D0
h + @

and 3!� denotes the adjoint operator of the wedge product !� ^ •.
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The second term of the right hand side is non-negative by the assumptionp
�12h(G) � 0, and thus the first term and the second term must be zero. In

particular we obtain |D0⇤
� u�|!� = 0. The Hilbert space adjoint coincides with the

formal adjoint since !� is complete (see, for example, [4, (3.2) Theorem in Chap-
ter VIII]). Hence we have D0⇤

� = � ⇤� @⇤� . It follows that 0 ⌘ |D0⇤
� u�|!� =

| � ⇤�@ ⇤� u�|!� = |@ ⇤� u�|!� since the Hodge star operator ⇤� preserves the point-
wise norm | • |!� . Therefore the G-valued (n � q, 0)-form ⇤�u� is @-closed on Y ,
that is, the coefficient f J is a holomorphic function on Y .

Now we show that the L2-norm of the coefficient f J with respect to h is uni-
formly bounded (that is,

R
| f J |2h dV! < C for some C > 0). The key point here is

the following inequality:

k ⇤� u�k!  k ⇤� u�k!� = ku�k!�  kuk! < 1. (3.4)

The first inequality follows from the fourth claim of Lemma 2.5 and !  !� , the
second inequality follows since ⇤� preserves the point-wise norm | • |!� , the third
inequality follows from inequality (3.2). On the other hand, there is a constant C 0

(independent of �) such that | f J |2h  C 0| ⇤� u�|2!. Indeed, by the first claim of
Lemma 2.5, we can easily check that

| f J |h inf
�
|dzJ ^ dz Ĵ ^ dz|!

�

�
� f J dzJ ^ dz Ĵ ^ dz

�
�
h,!

=
�
� ⇤� u� ^ dz Ĵ ^ dz

�
�
h,!

 C 00| ⇤� u�|! sup
�
|dz Ĵ ^ dz|!

�

for some positive constant C 00 (independent of �), where Ĵ is the complementary
index of J . By combining with inequality (3.4), we obtain

Z
| f J |2h dV!  C 0k ⇤� u�k

2
!  C 0kuk2!.

Therefore, by the Riemann extension theorem, the coefficient f J can be extended
as a holomorphic function.

We put f� := ⇤�u� and consider a local expression f� = ⇤�u� =
P

J f�,J dzJ
again. By the proof of Proposition 3.4, we can see that the L2-norm of the coef-
ficient f�,J is uniformly bounded with respect to �. Hence, by Montel’s theorem,
there exists a subsequence {�⌫}1⌫=1 of {�}�>0 such that f�⌫ = ⇤�⌫u�⌫ uniformly con-
verges to some f0, that is, the local sup-norm sup | f�⌫ ,J � f0,J | converges to zero,
where f0,J is the coefficient of f0 =

P
J f0,J dzJ . Then the L2-norm k f�⌫ � f0kh,!

also converges to zero (for example see [25, Lemma 5.2]). In particular, the limit
f0 satisfies f0 2 H0(X,�

n�q
X ⌦ G ⌦ I(h)). For simplicity we use the same nota-

tion { f�}�>0 for this subsequence. Then we show that u0 (which is the weak limit
obtained in Proposition 3.2) coincides with (�1)n+q ⇤ f0.
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Proposition 3.5. The weak limit u0 coincides with (�1)n+q ⇤ f0. In particular, we
can see that u = (�1)n+q ⇤ f0 by Proposition 3.3.

Proof. For a contradiction, we assume that u0 6= (�1)n+q ⇤ f0 in Ln,q(2) (G)!�0
.

Since the smooth G-valued (n, q)-forms with compact support in Y is dense in
Ln,q(2) (G)!�0

, there exists a smooth G-valued (n, q)-form ⌘ with compact support in
Y such that hhu0, ⌘ii!�0

6= hh(�1)n+q ⇤ f0, ⌘ii!�0
. Since u� weakly converges to u0 in

Ln,q(2) (G)!�0
, we have hhu0, ⌘ii!�0

= lim�!0 hhu�, ⌘ii!�0
. On the other hand, it follows

that ⇤� f� uniformly converges ⇤ f0 on every relatively compact set in Y since f�
uniformly converges f0 and !� uniformly converges ! on every relative compact
set in Y . Indeed, it is sufficient to consider (⇤� f� � ⇤ f�) since we have

⇤� f� � ⇤ f0 =
�
⇤� f� � ⇤ f�

�
+
�
⇤ f� � ⇤ f0

�
,

sup
X

�
� ⇤ f� � ⇤ f0

�
�
!

= sup
X

�
� f� � f0

�
�
!

! 0.

For a relatively compact set K in Y and a given point x 2 K , we take a local
coordinate (z1, z2, . . . , zn) centered at x 2 K such that

! =

p
�1
2

nX

i=1
dzi ^ dzi and e! =

p
�1
2

nX

i=1
�i dzi ^ dzi at x .

By K b Y , there exists a positive constant C such that 0  e!  C! on K . In
particular we have 0  �i  C . Note that the eigenvalues of !� with respect to !
are {(1+ ��i )}ni=1. When f� is locally written as f� =

P
J f�,J dzJ , we can easily

see that

| ⇤� f� � ⇤ f�|! =

�
�
�
�
�

X

J
f�,J (⇤�dzJ � ⇤dzJ )

�
�
�
�
�
!

=

�
�
�
�
�

X

J
f�,J sign(J Ĵ )

�
5i2 Ĵ (1+ ��i ) � 1

 
dz(1,2,...,n) ^ dz Ĵ

�
�
�
�
�
!

 �C 0
X

J
sup
K

| f�,J |
�
�dz(1,2,...,n) ^ dz Ĵ

�
�
!

for some constant C 0. The coefficient f�,J is a holomorphic function, and thus
the (local) sup-norm supK | f�,J | of f�,J can be bounded by the L2-norm. Further
the L2-norm of f�,J is uniformly bounded with respect to � (see Proposition 3.4).
Therefore (⇤� f� � ⇤ f�) uniformly converges to zero on K b Y . Hence, by the
definition of f� = ⇤�u� , we obtain

hh(�1)n+q ⇤ f0, ⌘ii!�0
= lim

�!0
hh(�1)n+q ⇤� f�, ⌘ii!�0

= lim
�!0

hh(�1)n+q ⇤� ⇤�u�, ⌘ii!�0
= lim

�!0
hhu�, ⌘ii!�0

.
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This is a contradiction to hhu0, ⌘ii!�0
6= hh(�1)n+q ⇤ f0, ⌘ii!�0

. Therefore we can
conclude that u0 = (�1)n+q ⇤ f0 in L

n,q
(2) (G)!�0

for every �0 > 0. Then, by Fatou’s
lemma, we can easily see that

ku0 � (�1)n+q ⇤ f0k!  lim inf
�0!0

ku0 � (�1)n+q ⇤ f0k!�0
= 0.

By f0 2 H0(X,�
n�q
X ⌦ G ⌦ I(h)), we obtain the desired conclusion

⇤u = (�1)n+q ⇤ ⇤ f0 = f0 2 H0
�
X,�

n�q
X ⌦ G ⌦ I(h)

�

in Proposition 1.6. This completes the proof.

3.2. Proof of Theorem 1.5

In this subsection, we prove Theorem 1.5.

Proof of Theorem 1.5. Let g be a smooth Hermitian metric on the line bundle D
and t be the natural section of the effective divisor D. Then we define the smooth
Hermitian metric g" on the line bundle D by

'" :=
1
2
log

�
|t |2g + "

�
and g" := ge�2'" = g ·

 
1

|t |2g + "

!

.

It is easy to see that

• g"2  g"1 for "1  "2;
• g" converges to g0 = hD in the point-wise sense as " tends to zero;

where hD is the singular metric defined by the effective divisor D (see Exam-
ple 2.3). We have I(g0) = I(hD) = OX (�D) since D is a simple normal crossing
divisor. Let ! be a Kähler form on X , and let hF and hM be smooth Hermitian
metrics satisfying the assumptions in Theorem 1.5. We often omit the subscripts !,
hF , and hM of the norm, the L2-space, and so on. For example, we use the notation

Ln,q(2) (D ⌦ F)g" := Ln,q(2) (D ⌦ F)g"hF ,! andHn,q
g0 (D ⌦ F) := Hn,q

g0hF ,!(D ⌦ F).

We first consider the following commutative diagram:

Hq(X, KX⌦D⌦F⌦I(g0))=Hq(X, KX ⌦ F)
8D

// Hq(X, KX ⌦ D ⌦ F)

Ker @
Im @

of Ln,q(2) (D ⌦ F)g0

⇠= f0

OO

Ker @
Im @

of Ln,q(2) (D ⌦ F)g"

⇠= f"

OOOO

Hn,q
g0 (D ⌦ F).

⇠= j

OO

�

33

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h
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Here f0 and f" are the De Rham-Weil isomorphisms given in Subsection 2.3 and
j (respectively �) is the map induced by the natural inclusion Hn,q

g0 (D ⌦ F) ,!
Ker @ ⇢ Ln,q(2) (D ⌦ F)g0 (respectivelyH

n,q
g0 (D ⌦ F) ,! Ker @ ⇢ Ln,q(2) (D ⌦ F)g" ).

For a cohomology class ↵ such that ↵ 2 Im8D ⇢ Hq(X, KX ⌦ D ⌦ F), we
assume that s↵ = 0 2 Hq(X, KX ⌦ D ⌦ F ⌦ M). Our goal is to show that the
cohomology class ↵ is actually zero under this assumption. By ↵ 2 Im8D , there
exists a cohomology class � 2 Hq(X, KX ⌦ F) such that 8D(�) = ↵. By the
above isomorphisms, the cohomology class � can be represented by the harmonic
form u1 2 Hn,q

g0 (D ⌦ F) (that is, � = {u1}). Since Hn,q
g0 (D ⌦ F) is a finite

dimensional vector space with the inner product hh•, •iig0 := hh•, •iig0hF ,!, we have
the orthogonal decomposition

Hn,q
g0 (D ⌦ F) = Ker� � (Ker�)?. (3.5)

From this orthogonal decomposition, the harmonic form u1 can be decomposed as
follows:

u1 = u2 + u for some u2 2 Ker� and u 2 (Ker�)?.

Then it is easy to see that 8D({u}) = 8D({u2 + u}) = 8D(�) = ↵. Note that
{u2 + u} is equal to �, but it is not necessarily equal to {u}. We can see that if we
can prove u = 0, we obtain ↵ = 0 (the desired conclusion of Theorem 1.5). Hence
our goal is to show u = 0.

By the assumption
p

�12hF (F) � 0, the line bundle G = D ⌦ F and the
singular Hermitian metric h = g0hF satisfy the assumptions in Theorem 1.6. By
applying Theorem 1.6 for u, we obtain

⇤u 2 H0
�
X,�

n�q
X ⌦ D ⌦ F ⌦ I(g0)

�
. (3.6)

In particular ⇤u is smooth on X . Although u is a priori D ⌦ F-valued (n, q)-form
on Y := X \ Supp D (not X), it follows that u = (�1)n+q ⇤ ⇤u is smooth on X
from (3.6).
Remark 3.6. (1) It seems to be difficult to show that u is smooth on X without
using Theorem 1.6, since g0 is a singular Hermitian metric and ! is not complete
on Y .

(2) Note that we have I(g0) = O(�D) since D is a simple normal crossing
divisor. Therefore ⇤u/t is a holomorphic F-valued (n � q, 0)-form. In particular
⇤u/t is still smooth on X , which plays a crucial role later.
By the standard De Rham-Weil isomorphism, we have

8D({su})=s↵=0 2 Hq(X, KX ⌦ D ⌦ F ⌦ M)⇠=
Ker @
Im @

of Cn,q
1 (D ⌦ F ⌦ M),

where Cn,q
1 (D ⌦ F ⌦ M) is the set of smooth D ⌦ F ⌦ M-valued (n, q)-forms on

X . Hence, by the assumption s↵ = 0, we can take a smooth D ⌦ F ⌦ M-valued
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(n, q � 1)-form v such that su = @v. Lebesgue’s dominated convergence theorem
yields

ksuk2g0 = lim
"!0

Z

Y
|su|2g"

dV! = lim
"!0

hhsu, suiig"
,

since |su|2g"
 |su|2g0 and |su|2g0 is integrable. Therefore, from Cauchy-Schwartz

inequality, we obtain

ksuk2g0 = lim
"!0

hhsu, suiig"
= lim

"!0
hhsu, @viig"

 lim
"!0

k@
⇤
g"
sukg"kvkg" . (3.7)

The strategy of the proof of Theorem 1.5 is as follows: we will show that kvkg" =
O(� log ") and k@

⇤
g"
sukg" = O("(� log ")). Then, from inequality (3.7), we obtain

ksuk2g0 = 0 (that is, su = 0). This completes the proof. We first check the following
lemma.

Lemma 3.7. Let (z1, z2, . . . , zn) be the standard coordinate of Cn and B be an
open ball containing the origin. Then, for every 1  k  n, we have

Z

B

1
" + |z1z2 · · · zk |2

= O(� log ").

Proof. By the variable change zi = ri e
p

�1✓i , the problem can be reduced to show-
ing

Z

0r11

Z

0r21
. . .

Z

0rk1

r1r2 · · · rk
" + |r1r2 · · · rk |2

dr1dr2 · · · drk = O(� log ").

Further, by using the polar coordinate, we can obtain the conclusion from the fol-
lowing computation:

Z

0R1

R2k�1

" + R2k
dR =

1
2k

(log(" + 1) � log ").

By Lemma 3.7, we can easily obtain the following proposition. In the proof of
the following proposition, we essentially use the fact that v is smooth on X .

Proposition 3.8. kvkg" = O(� log ").

Proof. By the definition of g", we can see that

kvk2g"
=
Z

X
|v|2g

1
" + |t |2g

dV!  sup
X

|v|2g

Z

X

1
" + |t |2g

dV!.

It follows that supX |v|2g is finite since v and g are smooth on X . Since D = div t is
a simple normal crossing divisor, we can obtain the conclusion by Lemma 3.7.
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It remains to show that
�
�
�@

⇤
g"
su
�
�
�
g"

= O("(� log ")).

By applying Proposition 2.4 for su, g", and !, we obtain
�
�
�@

⇤
g"
su
�
�
�
2

g"

=
�
�
�D0⇤

g"
su
�
�
�
2

g"

+
DDp

�12g"hFhM (D ⌦ F ⌦ M)3su, su
EE

g"

, (3.8)

where D0⇤
g"
(respectively @

⇤
g"
) is the Hilbert space adjoint of the (1, 0)-part D0

g"
(re-

spectively the (0, 1)-part @) of the Chern connection Dg" = D0
g"

+ @ , and 3 is the
adjoint operator of the wedge product ! ^ •. Here we used that @su = s@u = 0.

We consider the first term kD0⇤
g"
sukg" of the right hand side of (3.8). It follows

that D0⇤
g"

= � ⇤ @⇤ since X is compact and ! is defined on X . We have @ ⇤ u = 0
by (3.6) (see Theorem 1.6), and thus we obtain

D0⇤
g"
su = � ⇤ @ ⇤ su = � ⇤ @s ⇤ u = � ⇤ s@ ⇤ u = 0. (3.9)

In particular we can see kD0⇤
g"
sukg" = 0.

The problem is the second term of the right hand side of (3.8). From simple
computations, we can obtain

p
�12g"(D) = "

1
|t |2g + "

p
�12g(D) + "

D0
gt ^ D0

gt
�
|t |2g + "

�2 ,

where D0
g is the (1, 0)-part of the Chern connection Dg. Now we compute the

negativity of the curvature
p

�12g"(D). By the above equality, we have
p

�12g"(D) � "
1

|t |2g + "

p
�12g(D).

On the other hand, there exists a positive constant C such that
p

�12g(D) � �C!
on X since X is compact and g is smooth on X . Therefore we have

p
�12g"(D) + A" � 0, where A" := "

C
|t |2g + "

! � 0.

Then we can see that
DDp

�12g"hFhM (D ⌦ F ⌦ M)3su, su
EE

g"


DD⇣p

�12g"hFhM (D ⌦ F ⌦ M) + A"

⌘
3su, su

EE

g"

 sup
X

|s|2hM
DD⇣p

�12g"hFhM (D ⌦ F ⌦ M) + A"

⌘
3u, u

EE

g"

 sup
X

|s|2hM
DD⇣p

�12g"hFhM (D ⌦ F ⌦ M) + A"

⌘
3u, u

EE

g0
.
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The first inequality is obtained from A" � 0, the second inequality is obtained fromp
�12g"(D) + A" � 0, and the third inequality is obtained from g"  g0. Further,

by the assumption
p

�12hF (F) � t
p

�12hM (M), we can see that

p
�12g"hFhM (D⌦F⌦M)+A" 

p
�12g"(D) + A" +

✓
1+

1
t

◆p
�12hF (F)



✓
1+

1
t

◆⇣p
�12g"(D)+A"+

p
�12hF (F)

⌘
.

Here we used
p

�12g"(D) + A" � 0 to obtain the second inequality. In summary,
we have

DDp
�12g"hFhM (D ⌦ F ⌦ M)3su, su

EE

g"

 sup
X

|s|2hM

✓
1+

1
t

◆ DD⇣p
�12g"(D) + A" +

p
�12hF (F)

⌘
3u, u

EE

g0
.

For the proof of Theorem 1.5, it is sufficient to estimate the order of the right hand
side.

Proposition 3.9 (cf. [30, Proposition 3.8]). Under the above situation, we have
DD⇣p

�12g"(D) +
p

�12hF (F)
⌘

3u, u
EE

g0
= 0.

Proof. For simplicity, we put

w :=
p

�12g"hF (D ⌦ F)3u =
⇣p

�12g"(D) +
p

�12hF (F)
⌘

3u.

Then it follows that w 2 Ln,q(2) (D ⌦ F)g0 since the metric g"hF is smooth on X
and u 2 Ln,q(2) (D ⌦ F)g0 . Indeed, there is a positive constant C such that �C! 
p

�12g"hF (D ⌦ F)  C!. Then we have |w|g0  Cq|u|g0 , and thus we can see
that w 2 Ln,q(2) (D⌦ F)g0 by u 2 Ln,q(2) (D⌦ F)g0 . Further, by u 2 Hn,q

g0 (D⌦ F) and
(3.9), we have @u = 0 and D0⇤

g"
u = 0. Therefore we obtain

@ @
⇤
g"
u =

p
�12g"hF (D ⌦ F)3u = w

from Proposition 2.4. In particular, we can see that w 2 Ker @ ⇢ Ln,q(2) (D ⌦ F)g0 .
By (3.5), we have the orthogonal decomposition

Ker @ = Im @ � Ker� � (Ker�)? in Ln,q(2) (D ⌦ F)g0,

and thus w can be decomposed as follows:

w = w1 + w2 + w3 for some w1 2 Im @, w2 2 Ker�, and w3 2 (Ker�)?.
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Since we have u 2 (Ker�)? by the construction of u, we obtain hhw, uiig0 =
hhw3, uiig0 . It is sufficient for the proof to show that w3 is zero. It follows that
@

⇤
g"
u 2 Ln,q(2) (D ⌦ F)g" since @

⇤
g"
u is smooth on X . (Note that we do not know

whether @⇤
g"
u 2 Ln,q(2) (D⌦ F)g0 .) By combining with @ @

⇤
g"
u = w, we can conclude

that
w2 + w3 = w � w1 2 Im @ ⇢ Ln,q(2) (D ⌦ F)g" ,

and thus we obtain w2+w3=w�w12Ker�. In particular we can see w3=0.

Finally we prove the following proposition.

Proposition 3.10. Under the above situation, we have

hhA"3u, uiig0 = O("(� log ")).

Proof. By Remark 3.6 (which is obtained from Theorem 1.6), we see that |u|g0 is a
bounded function on X . By the definition of A", we can easily see that

hhA"3u, uiig0 = "

Z

Y

Cq
|t |2g + "

|u|2g0 dV!  " sup
X

|u|2g0

Z

Y

Cq
|t |2g + "

dV!.

By Lemma 3.7, we obtain the conclusion.

Remark 3.11. The integral in Lemma 3.7 naturally appears when we prove Propo-
sition 3.8 and Proposition 3.10, but the reasons why the integral appears are differ-
ent. The integral in Proposition 3.8 comes from the definition of g". On the other
hand, the same integral comes from the curvature of g" when we prove Proposi-
tion 3.10.

By Proposition 3.8, Proposition 3.10, and inequality (3.7), we complete the proof
of Theorem 1.5.

3.3. Proof of Theorem 1.3

In this subsection, we show that Theorem 1.5 leads to Theorem 1.3. In particular,
Conjecture 1.2 is affirmatively solved for plt pairs (see Corollary 1.4). Corollary 1.4
is easily obtained from Theorem 1.3. Indeed, the Hermitian line bundle (M, hM) :=
(Fm, hmF ) satisfies the assumption

p
�12hF (F) � (1/m)

p
�12hM (M) in Theo-

rem 1.3.

Proof of Theorem 1.3. Let D =
P

i2I Di be the irreducible decomposition of D.
We remark that Di \ Dj = ; for i 6= j since (X, D) is a plt pair. For every i 2 I ,
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we consider the long exact sequence induced by the standard short exact sequence:

✏✏ ✏✏

Hq(X,OX (KX ⌦ F ⌦ D̂i ))

8Di
✏✏

⌦s
// Hq(X,OX (KX ⌦ F ⌦ D̂i ⌦ M))

✏✏

Hq(X,OX (KX ⌦ D ⌦ F))

ri
✏✏

⌦s
// Hq(X,OX (KX ⌦ D ⌦ F ⌦ M))

✏✏

Hq(Di ,ODi (KDi ⌦ F ⌦ D̂i ))

✏✏

fi :=⌦s|Di
// Hq(Di ,ODi (KDi ⌦ F ⌦ D̂i ⌦ M)).

✏✏

(3.10)

Here D̂i is the divisor defined by D̂i :=
P

k2I,k 6=i Dk and fi is the multiplication
map induced by the tensor product with the restriction s|Di of s to Di . Further
8Di is the map induced by the natural inclusion OX ,! OX (Di ) and ri is the
map induced by the restriction map OX ! ODi . Note that we used the adjunction
formulaODi (KX ⌦ Di ) = ODi (KDi ).
Remark 3.12. By the assumption Di \ Dj = ;, we actually have ODi (KDi ⌦
F ⌦ D̂i ) = ODi (KDi ⌦ F), but we used the notation ODi (KDi ⌦ F ⌦ D̂i ) for
Observation 3.15.
Let ↵ be a cohomology class in Hq(X,OX (KX ⌦ D ⌦ F)) such that

s↵ = 0 2 Hq(X,OX (KX ⌦ D ⌦ F ⌦ M)).

The above commutative diagram implies that fi (ri (↵)) = 0. Note that we have
ODi (KDi ⌦ F ⌦ D̂i ) = ODi (KDi ⌦ F) by the assumption Di \ Dj = ;. The
restriction ODi (F) is a semi-positive line bundle on Di since F is semi-positive,
and further the restriction s|Di is non-zero since the zero locus s�1(0) does not
contain Di by the assumption. In particular ODi (F) and s|Di satisfy the assump-
tions of Enoki’s injectivity theorem, and thus the multiplication map fi is injective.
Therefore we obtain ri (↵) = 0 for every i 2 I .

We have the following exact sequence:

· · · ! Hq(D, KX ⌦ F)
8D��! Hq(X, KX ⌦ D ⌦ F)

rD�! Hq(X,OD(KX ⌦ D ⌦ F)) ! · · · ,

where rD is the map induced by the restriction mapOX ! OD . On the other hand,
we have

Hq(D,OD(KX ⌦ D ⌦ F)) =
M

i2I
Hq(Di ,ODi (KDi ⌦ F))
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by the assumption Di \Dj = ;. Then we can easily check rD(↵) = 0 by the above
exact sequence since we have ri (↵) = 0 for every i 2 I . Therefore Theorem 1.5
leads to the desired conclusion ↵ = 0 of Theorem 1.3.

3.4. Open problems related to Conjecture 1.2

In this subsection, we give several open problems related to Conjecture 1.2.
We first consider a generalization of Theorem 1.6. For Conjecture 1.2, our

formulation of Theorem 1.6 is enough, but it is an interesting problem to remove
the technical assumption in Theorem 1.6. We remark that Problem 3.13 can be seen
as a refinement of [6, Theorem 0.1].
Problem 3.13. Consider the same situation as in Theorem 1.6. Can we remove the
assumption that h is smooth on a non-empty Zariski open set?
The following problemmay give a strategy to solve Conjecture 1.2. By Theorem 1.5
and the proof of Theorem 1.3, we can see that if Problem 3.14 is affirmatively
solved, we can prove Conjecture 3.14.
Problem 3.14. Let D be a simple normal crossing divisor on a compact Kähler
manifold X and F be a semi-positive line bundle on X . Let s be a (holomorphic)
section of OD(Fm) restricted to the (possibly non-irreducible) variety D. Then, is
the following multiplication map injective?

Hq(D,OD(KX ⌦ D ⌦ F))
⌦s
�! Hq�D,OD

�
KX ⌦ D ⌦ Fm+1��.

Finally, in order to clarify what is needed for Conjecture 1.2, we attempt to prove
Conjecture 1.2 by the induction on n = dim X .
Observation 3.15 (Observation for Conjecture 1.2). In the case D = 0, Conjec-
ture 1.2 is the same as Enoki’s injectivity theorem, and thus we may assume that
D 6= 0. When n is one, the conclusion of Conjecture 1.2 is obvious since D ⌦ F
is ample. Hence we may assume that Conjecture 1.2 holds for compact Kähler
manifolds of dimension (n � 1).

We consider the commutative diagram (3.10) in the proof of Theorem 1.3. We
remark that the pair (Di , D̂i ) is an lc pair. Since the zero locus s�1(0) contains no
lc centers of (X, D), we can show that the restriction s|Di contains no lc centers
of (Di , D̂i ). Further the restriction ODi (F) is a semi-positive line bundle on Di .
Therefore the multiplication map fi in (3.10) is injective by the induction hypothe-
sis.

For a cohomology class ↵ in Hq(X,OX (KX ⌦ D ⌦ F)) such that s↵ = 0 2
Hq(X,OX (KX ⌦ D ⌦ F ⌦ M)), we have fi (ri (↵)) = 0. Then it follows that
ri (↵) = 0 for every i 2 I since fi is injective. In the case of plt pairs, we have
Di \ Dj = ; for i 6= j . Then we can obtain rD(↵) = 0 from ri (↵) = 0 (see
the proof of Theorem 1.3). If we can show that rD(↵) = 0 in the case of lc pairs,
Conjecture 1.2 is affirmatively solved by Theorem 1.5. However we do not know
whether we can conclude rD(↵) = 0 from ri (↵) = 0 in this case.
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