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Formality of 7-dimensional 3-Sasakian manifolds

MARISA FERNÁNDEZ, STEFAN IVANOV AND VICENTE MUÑOZ

Abstract. We prove that any simply connected compact 3-Sasakian manifold,
of dimension seven, is formal if and only if its second Betti number is b2 < 2.
Using this result, we show a compact simply connected 7-manifold which carries
a Sasaki-Einstein structure but does not admit any 3-Sasakian one.

Mathematics Subject Classification (2010): 53C25 (primary); 55S30, 55P62
(secondary).

1. Introduction

A Riemannian manifold (N , g), of dimension 2n + 1, is Sasakian if its metric cone
(N ⇥ R+, gc = t2g + dt2) is Kähler. If in addition the metric g is Einstein, then
(N , g) is said to be a Sasaki-Einstein manifold. In this case, the cone metric gc is
Ricci flat. Sasakian geometry is the odd-dimensional counterpart to Kähler geome-
try. Indeed, just as Kähler geometry is the intersection of complex, symplectic and
Riemannian geometry, Sasakian geometry is the intersection of normal, contact and
Riemannian geometry.

Sasakian structures can be also defined in terms of strongly pseudo convex CR-
structures, namely a strongly pseudo convex CR-structure is Sasakian exactly when
the Webster torsion vanishes (see, e.g., [12]).

One of the results of Deligne, Griffiths, Morgan and Sullivan states that any
compact Kähler manifold is formal [11]. However, the first and third authors in [3]
have proved that the formality is not an obstruction to the existence of Sasakian
structures even on simply connected manifolds. Indeed, examples of 7-dimensional
simply connected compact non-formal Sasakian manifolds, with second Betti num-
ber b2(N ) � 2, are constructed in [3]. (Note that any 7-dimensional simply con-
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nected compact manifold with b2  1 is formal, see Section 2 for details.) Nev-
ertheless, in [3] it is also proved that all higher Massey products are trivial on any
compact Sasakian manifold.

We remind that a 3-Sasakian manifold is a Riemannian manifold (N , g), of
dimension 4n+3, such that its cone (N⇥R+, gc = t2g + dt2) is hyperkähler, and
so the holonomy group of gc is a subgroup of Sp(n+1). Thus 3-Sasakian manifolds
are automatically Sasaki-Einstein with positive scalar curvature [22]. Consequently,
a complete 3-Sasakian manifold is compact with finite fundamental group due to
the Myers’ theorem. The hyperkähler structure on the cone induces a 3-Sasakian
structure on the base of the cone. In particular, the triple of complex structures gives
rise to a triple of Reeb vector fields (⇠1, ⇠2, ⇠3) whose Lie brackets give a copy of
the Lie algebra su(2).

A 3-Sasakian manifold (N , g) is said to be regular if the vector fields
⇠i (i = 1, 2, 3) are complete and the corresponding 3-dimensional foliation is regu-
lar, so that the space of leaves is a smooth 4n-dimensional manifold M . Ishihara and
Konishi in [20] noticed that the induced metric on the latter is quaternionic Kähler
with positive scalar curvature. Conversely, starting with a quaternionic Kähler man-
ifold M of positive scalar curvature, the manifold M can be recovered as the total
space of a bundle naturally associated to M .

The above situation has been generalized to the orbifold category by Boyer,
Galicki and Mann in [7] (see also [6]). In fact, if the 3-Sasakian manifold is com-
pact, then the Reeb vector fields ⇠i are complete, the corresponding 3-dimensional
foliation has compact leaves and the space of leaves is a compact quaternionic
Kähler manifold or orbifold. We recall that a 4n-dimensional (n > 1) Rieman-
nian manifold/orbifold is quaternionic Kähler if it has holonomy group contained
in Sp(n)Sp(1), and a 4-dimensional quaternionic Kähler manifold/orbifold is a self-
dual Einstein Riemannian manifold/orbifold.

The 3-Sasakian structures can be considered also from a sub-Riemannian point
of view [27] by using quaternionic contact structures [2]. A 3-Sasakian manifold
is precisely a quaternionic contact manifold with vanishing Biquard torsion and
positive (quaternionic) scalar curvature [21].

Important results on the topology of a compact 3-Sasakian manifold were
proved by Galicki and Salamon in [17]. There it is proved that the odd Betti num-
bers b2i+1 of such a manifold, of dimension 4n + 3, are all zero for 0  i  n.
Moreover, for regular compact 3-Sasakian manifolds many topological properties
are known (see [5, Proposition 13.5.6 and Theorem 13.5.7]). For example, such
a manifold is simply connected unless N = RP4n+3. Also, using the results of
Lebrun and Salamon [23] about the topology of positive quaternionic Kähler man-
ifolds, Boyer and Galicki in [5] show interesting relations among the Betti num-
bers of regular compact 3-Sasakian manifolds; in particular b2  1. Neverthe-
less, in [8] it is proved that there exist many 3-Sasakian manifolds, of dimension
7, with arbitrary second Betti number. The first goal of this note is to prove the
following.
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Theorem 1.1. Let (N , g) be a simply connected compact 3-Sasakian manifold, of
dimension 7. Then, N is formal if and only if its second Betti number b2(N )  1.

The second goal is to show that the formality allows one to distinguish 7-dimensional
Sasaki-Einstein manifolds which admit 3-Sasakian structures from those which do
not. In fact, in Theorem 3.4, we construct an example of a 7-dimensional regu-
lar simply connected Sasaki-Einstein manifold, with second Betti number b2 � 2,
which is formal. Thus, Theorem 1.1 implies that such a manifold does not admit
any 3-Sasakian structure. Our example is the total space of an S1-bundle over a
positive Kähler Einstein 6-manifold which is the blow-up of the complex projective
space CP3 at four points.

ACKNOWLEDGEMENTS. We would like to thank V. Apostolov for explaining to us
the criterion for the existence of a Kähler Einstein metric on Fano manifolds.

2. Minimal models and formal manifolds

In this section, we recall concepts about minimal models and formality from [11,
13,14].

Let (A, dA) be a differential graded commutative algebra over the real num-
bers R (in the sequel, we shall say just a differential algebra), that is, A is a graded
commutative algebra over R equipped with a differential dA which is a deriva-
tion, i.e. dA(a · b) = (dAa) · b + (�1)|a|a · (dAb), where |a| is the degree of a.
Given a differential algebra (A, dA), we denote its cohomology by H⇤(A). The
cohomology of a differential graded algebra H⇤(A) is naturally a DGA with the
product inherited from that on A and with the differential being identically zero.
The DGA (A, dA) is connected if H0(A) = R, and A is 1-connected if, in addi-
tion, H1(A) = 0. Henceforth we shall assume that all our DGAs are connected.
In our context, the main example of DGA is the de Rham complex (�⇤(M), d) of
a connected differentiable manifold M , where d is the exterior derivative of M .

Morphisms between differential algebras are required to be degree preserving
algebra maps which commute with the differentials. A morphism f : (A, dA) !
(B, dB) is a quasi-isomorphism if the map induced in cohomology f ⇤ : H⇤(A) !
H⇤(B) is an isomorphism.

A differential algebra (A, dA) is said to be minimal if:

(1) A is free as an algebra, that is, A is the free algebra
V
V over a graded vector

space V =
L

V i ;
(2) There exists a collection of generators {a⌧ , ⌧ 2 I }, for some well ordered index

set I , such that |aµ|  |a⌧ | if µ < ⌧ and each dAa⌧ is expressed in terms of
preceding aµ (µ < ⌧ ). This implies that dAa⌧ does not have a linear part.
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We shall say that (M, dM) is a minimal model of the differential algebra (A, dA)
if (M, dM) is a minimal DGA and there exists a morphism of differential graded
algebras

⇢ : (M, dM) �! (A, dA)

inducing an isomorphism ⇢⇤ : H⇤(M) �! H⇤(A) in cohomology. In [19],
Halperin proved that any connected differential algebra (A, dA) has a minimal
model unique up to isomorphism. For 1-connected differential algebras, a simi-
lar result was proved by Deligne, Griffiths, Morgan and Sullivan [11,18].

Aminimal model of a connected differentiable manifold M is a minimal model
(
V
V, d) for the de Rham complex (�⇤(M), d) of differential forms on M . If M

is a simply connected manifold, then the dual of the real homotopy vector space
⇡i (M) ⌦ R is isomorphic to V i for any i . This relation also holds when i > 1 and
M is nilpotent, that is, the fundamental group ⇡1(M) is nilpotent and its action on
⇡ j (M) is nilpotent for all j > 1 (see [11]).

We say that a differential algebra (A, dA) is a model of a differentiable mani-
fold M if (A, dA) and M have the same minimal model.

Recall that a minimal algebra (
V
V, d) is called formal if there exists a mor-

phism of differential algebras  : (
V
V, d) �! (H⇤(

V
V ), 0) inducing the iden-

tity map on cohomology. Also a differentiable manifold M is called formal if its
minimal model is formal. Many examples of formal manifolds are known: spheres,
projective spaces, compact Lie groups, homogeneous spaces, flag manifolds, and
all compact Kähler manifolds.

The formality of a minimal algebra is characterized as follows.

Proposition 2.1 ([11]). A minimal algebra (
V
V, d) is formal if and only if the

space V can be decomposed into a direct sum V = C � N with d(C) = 0, and d
injective on N , such that every closed element in the ideal I (N ) ⇢

V
V generated

by N is exact.

This characterization of formality can be weakened using the concept of s-formality
introduced in [14].

Definition 2.2. A minimal algebra (
V
V, d) is s-formal (s > 0) if for each i  s

the space V i of generators of degree i decomposes as a direct sum V i = Ci � Ni ,
where the spaces Ci and Ni satisfy the three following conditions:

(1) d(Ci ) = 0;
(2) The differential map d : Ni �!

V
V is injective;

(3) Any closed element in the ideal Is = I (
L

is
N i ), generated by the space

L

is
N i

in the free algebra
V

(
L

is
V i ), is exact in

V
V .



FORMALITY OF 3-SASAKIAN MANIFOLDS 301

A differentiable manifold M is s-formal if its minimal model is s-formal. Clearly,
if M is formal then M is s-formal for all s > 0. The main result of [14] shows that
sometimes the weaker condition of s-formality implies formality.

Theorem 2.3 ([14]). Let M be a connected and orientable compact differentiable
manifold of dimension 2n or (2n� 1). Then M is formal if and only if it is (n� 1)-
formal.

One can check that any simply connected compact manifold is 2-formal. Therefore,
Theorem 2.3 implies that any simply connected compact manifold of dimension not
more than 6 is formal. (This result was early proved by Neisendorfer and Miller
in [26].) For 7-dimensional compact manifolds, we have that M is formal if and
only if M is 3-formal. Moreover, if M is simply connected we have:

Lemma 2.4. Let M be a 7-dimensional simply connected compact manifold with
b2(M)  1. Then, M is 3-formal and so formal.

Proof. Let (
V
V, d) be the minimal model of M . Write V i = Ci � Ni , i  3.

Suppose that b2(M) = 1. Since M is simply connected, we get C1 = N1 = 0,
C2 = hai, N2 = 0 and V 3 = C3 � N3, where N3 has at most one element
x if a2 defines the zero class in the cohomology group H4(

V
V, d). If N3 = 0,

then M is clearly 3-formal. If N3 = hxi with dx = a2, then take z 2 I (N3) a
closed element in

V
V . As H⇤(

V
V ) = H⇤(M) has only cohomology in degrees

0, 2, 3, 4, 5, 7, it must be deg z = 5, 7. If deg z = 5 then z = a · x which is not
closed, and if deg z = 7 then z = a2 · x which is not closed either. Thus, according
to Definition 2.2, M is 3-formal, and by Theorem 2.3, M is formal.

Finally, in the case that b2(M) = 0, then Ci = Ni = 0, for i = 1, 2,
V 3 = C3 and N3 = 0. Hence, M is formal.

In order to detect non-formality, instead of computing the minimal model,
which usually is a lengthy process, one can use Massey products, which are known
to be obstructions to formality. The simplest type of Massey product is the triple
(also known as ordinary) Massey product, which we define next.

Let (A, dA) be a DGA (in particular, it can be the de Rham complex of dif-
ferential forms on a differentiable manifold). Suppose that there are cohomology
classes [ai ] 2 H pi (A), pi > 0, 1  i  3, such that a1 · a2 and a2 · a3 are exact.
Write a1 ·a2 = dAx and a2 ·a3 = dAy. The (triple)Massey product of the classes
[ai ] is defined to be

h[a1], [a2], [a3]i =
h
a1 · y + (�1)p1+1x · a3

i

2
H p1+p2+p3�1(A)

[a1] · H p2+p3�1(A) + [a3] · H p1+p2�1(A)
.

Note that a Massey product h[a1], [a2], [a3]i on (A, dA) is zero (or trivial) if and
only if there exist ex,ey 2 A such that a1 · a2 = dAex , a2 · a3 = dAey and 0 =
[a1 · ey + (�1)p1+1ex · a3] 2 H p1+p2+p3�1(A).

We will also use the following property.
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Lemma 2.5. Let M be a connected differentiable manifold. Then, Massey products
on M can be calculated by using any model of M .

Proof. It is enough to prove that if ' : (A, dA) ! (B, dB) is a quasi-isomorphism,
then '⇤(h[a1], [a2], [a3]i) = h[a0

1], [a
0
2], [a

0
3]i, for [a0

j ] = '⇤([a j ]). But this is
clear: take a1 · a2 = dAx , a2 · a3 = dAy and let

f =
h
a1 · y + (�1)p1+1x · a3

i
2

H p1+p2+p3�1(A)

[a1] · H p2+p3�1(A) + [a3] · H p1+p2�1(A)

be its Massey product h[a1], [a2], [a3]i. Then a0
j = '(a j ) satisfy a0

1 · a0
2 = dBx 0,

a0
2 · a0

3 = dBy0, where x 0 = '(x), y0 = '(y). Therefore

f 0 =
h
a0
1·y

0+(�1)p1+1x 0 ·a0
3

i
='⇤( f )2

H p1+p2+p3�1(B)

[a0
1] · H p2+p3�1(B) + [a0

3]·H p1+p2�1(B)

is the Massey product h[a0
1], [a

0
2], [a

0
3]i.

The existence of a non-zero Massey product is an obstruction to the formality.
We have the following result, initially proved in [11].

Lemma 2.6. If M has a non-trivial Massey product then M is non-formal.

Proof. Suppose that M is formal and let us see that all the Massey products are
trivial. Let a1, a2, a3 be cohomology classes on M with a1 · a2 = a2 · a3 = 0. By
Lemma 2.5, to compute the Massey we can use any model for M . By definition of
formality, (H⇤(M), 0) is a model for M . In this model we can use x = 0, y = 0
for a1 · a2 = dx , a2 · a3 = dy. So the Massey product is h[a1], [a2], [a3]i =
[a1 · y + (�1)p1+1x · a3] = 0.

Remark 2.7. Crowley and Nordström have introduced in [10] the Bianchi-Massey
tensor on a manifold M , and they prove that if M is a closed (n � 1)-connected
(4n�1)-manifold, with n � 2, then M is formal if and only if the Bianchi-Massey
tensor vanishes.

The concept of formality is also defined for CW-complexes which have a minimal
model (

V
V, d). Such a minimal model is constructed as the minimal model as-

sociated to the differential complex of piecewise-linear polynomial forms [18]. We
shall not need this in full generality, but we shall use the case when X is an orbifold.
Thus, since the proof of Theorem 2.3 given in [14] only uses that the cohomology
H⇤(M) is a Poincaré duality algebra, Theorem 2.3 also holds for compact con-
nected orientable orbifolds.



FORMALITY OF 3-SASAKIAN MANIFOLDS 303

3. Formality of 3-Sasakian manifolds

We recall the notion of 3-Sasakian manifolds following [4–6]. An odd dimensional
Riemannian manifold (N , g) is Sasakian if its cone (N ⇥ R+, gc = t2g + dt2) is
Kähler, that is the cone metric gc = t2g+dt2 admits a compatible integrable almost
complex structure J so that (N ⇥ R+, gc = t2g + dt2, J ) is a Kähler manifold.
In this case the Reeb vector field ⇠ = J@t is a Killing vector field of unit length.
The corresponding 1-form ⌘ defined by ⌘(X) = g(⇠, X), for any vector field X on
N , is a contact form. Let r be the Levi-Civita connection of g. The (1,1) tensor
�X = rX⇠ satisfies the identities

�2 = �I d+⌘⌦⇠, g(�X,�Y ) = g(X,Y )�⌘(X)⌘(Y ), d⌘(X,Y ) = 2g(�X,Y ),

for vector fields X,Y .
A collection of three Sasakian structures on a (4n+3)-dimensional Riemannian

manifold satisfying quaternionic-like identities form a 3-Sasakian structure. More
precisely, a Riemannian manifold (N , g) of dimension 4n + 3 is called 3-Sasakian
if its cone (N ⇥ R+, gc = t2g + dt2) is hyperkähler, that is the metric gc =
t2g + dt2 admits three compatible integrable almost complex structure Js , s =
1, 2, 3, satisfying the quaternionic relations, i.e., J1 J2 = �J2 J1 = J3, such that
(N ⇥ R+, gc = t2g + dt2, J1, J2, J3) is a hyperkähler manifold. Equivalently,
the holonomy group of the cone metric gc is a subgroup of Sp(n + 1). In this case
the Reeb vector fields ⇠s = Js@t (s = 1, 2, 3) are Killing vector fields. The three
Reeb vector fields ⇠s , the three 1-forms ⌘s and the three (1, 1) tensors �s , where
s = 1, 2, 3, satisfy the relations

⌘i (⇠ j ) = g(⇠i , ⇠ j ) = �i j ,

�i ⇠ j = �� j ⇠i = ⇠k,

⌘i � � j = �⌘ j � �i = ⌘k,

�i � � j � ⌘ j ⌦ ⇠i = �� j � �i + ⌘i ⌦ ⇠ j = �k,

for any cyclic permutation (i, j, k) of (1, 2, 3).
The Reeb vector fields ⇠s satisfy the relations [⇠i , ⇠ j ] = 2⇠k thus spanning

an integrable 3-dimensional distribution on a 3-Sasakian manifold. In order to
prove Theorem 1.1, we use the two following results about the three dimensional
3-Sasakian foliation proved by Boyer and Galicki in [6].

Proposition 3.1 ([6]). Let (N , g) be a 3-Sasakian manifold such that the Reeb vec-
tor fields (⇠1, ⇠2, ⇠3) are complete. Denote by F the canonical three dimensional
foliation on N . Then:

i) The leaves of F are totally geodesic spherical space forms 0\S3 of constant
curvature one, where 0 ⇢ Sp(1) = SU(2) is a finite subgroup;

ii) The 3-Sasakian structure on M restricts to a 3-Sasakian structure on each leaf;
iii) The generic leaves are either SU(2) or SO(3).
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Theorem 3.2 ([6]). Let (N , g) be a 3-Sasakian manifold of dimension 4n+ 3 such
that the Reeb vector fields (⇠1, ⇠2, ⇠3) are complete. Then the space of leaves N/F3
has the structure of a quaternionic Kähler orbifold (O, gO) of dimension 4n such
that the natural projection ⇡ : N �! O is a principal V-bundle with group SU(2)
or SO(3), and ⇡ is a Riemannian orbifold submersion such that the scalar curvature
of gO is 16n(n + 2).

Proof of Theorem 1.1. Consider (N , g) a 7-dimensional simply connected compact
3-Sasakian manifold whose second Betti number is b2(N )  1. Then N is formal
since any simply connected compact manifold, of dimension 7, whose second Betti
number is b2  1 is formal [9] (see also Lemma 2.4). The converse is equivalent to
prove that if the compact 3-Sasakian manifold (N , g) has b2(N ) = k > 1, then N
is non-formal. To this end, we will show that N has a non-trivial Massey product.

Denote by F the canonical three dimensional foliation on N . Since N is com-
pact, the Reeb vector fields (⇠1, ⇠2, ⇠3) are complete. Then, by Proposition 3.1,
the leaves of F are quotients 0\S3, where 0 ⇢ Sp(1) = SU(2) is a finite sub-
group. Theorem 3.2 implies that there is an orbifold S3-bundle S3 �! N �! O,
whereO is a compact quaternionic Kähler orbifold of dimension 4, with Euler class
given by the integral cohomology class � 2 H4(O) of the quaternionic 4-form.
Note that O is simply connected because N is such (see [5, Theorem 4.3.18]).
So S3 �! N �! O is a rational fibration (that is, after rationalization of the
spaces, it becomes a fibration). Therefore [28], if (A, dA) is a model of O, then
(A⌦

V
(z), d), with |z| = 3, d|A = dA and dz = �, is a model of N .

Moreover, O is formal because it is a simply connected compact orbifold of
dimension 4 and Theorem 2.3 also holds for orbifolds. Thus, a model of O is
(H⇤(O), 0), where H⇤(O) is the cohomology algebra of O. Hence, a model of N
is the differential algebra (H⇤(O) ⌦

V
(z), d), with dz = � 2 H4(O), and

H1(O) = H3(O) = 0 , H2(O) = ha1, a2, · · · , aki, k � 2,

since b2(N ) = k � 2. Since H⇤(O) is a Poincaré duality algebra, the intersection
pairing is a non-degenerate quadractic form on H2(O). Therefore, we can take
a1, a2, . . . , ak an orthogonal basis of H2(O), that is ai · a j = 0 for i 6= j . The
cohomology of N is

H1(N ) = H3(N ) = H4(N ) = H6(N ) = 0 ,

H2(N ) = ha1, a2, · · · , aki,
H5(N ) = ha1 z, a2 z, · · · , ak zi.

Then a1 · a1 = � = dz. Thus the Massey product ha1, a1, ai i = ai z is defined for
any i 2 {1, 2, . . . , k} and, for i 6= 1, it is non-trivial.

A 7-dimensional formal Sasaki-Einstein manifold with b2 � 2

We show an example of a 7-dimensional simply connected, compact Sasaki-Ein-
stein manifold, with second Betti number b2 � 2, which is formal. Then, Theo-
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rem 1.1 implies that such a manifold does not carry 3-Sasakian structures. To this
end, we recall the following:

Theorem 3.3 ([25]). Let N be a simply connected compact Sasakian 7-dimen-
sional manifold. Then N is formal if and only if all triple Massey products are
trivial.

Next we consider M to be the blow up of the complex projective space CP3 at 4
points, that is,

M = CP3#CP3#CP3#CP3#CP3,

where CP3 is CP3 with the opposite of the standard orientation. The de Rham
cohomology of M is

• H0(M) = h1i;
• H1(M) = 0;
• H2(M) = hb, a1, a2, a3, a4i;
• H3(M) = 0;
• H4(M) = hb2, a21, a

2
2, a

2
3, a

2
4i;

• H5(M) = 0;
• H6(M) = hb3i;

where b is the integral cohomology class defined by the Kähler form ! on CP3.
Among these cohomology classes, the following relations are satisfied

b3 = �a31 = �a32 = �a33 = �a34, b · ai = 0 = ai · a j , 1  i  4, i 6= j.

Theorem 3.4. Let N be the total space of the circle bundle S1 �! N �! M ,
with Euler class `b �

P4
i=1 ai , where ` > 0 is a large integer. Then N is a simply

connected, compact Sasaki-Einstein manifold, with second Betti number b2 = 4,
which is formal. Therefore, N does not admit any 3-Sasakian structure.

Proof. First, note that we can assume that ` b�
P4

i=1 ai is the integral cohomology
class defined by the Kähler form on the complex manifold

M = CP3#CP3#CP3#CP3#CP3,

for ` large enough. Therefore there is a circle bundle N �! M with Euler class
equal to ` b �

P4
i=1 ai .

Clearly N is a 7-dimensional simply connected, compact manifold, with sec-
ond Betti number b2 = 4. Moreover, N is Sasaki-Einstein. Indeed, the manifold M ,
that is the blow up of the complex projective space at four points, is a toric symmet-
ric Fano manifold with vanishing Futaki invariant [16] and the existence of a Kähler
Einstein metric follows from [1] (see also [29]). An application of [15, Example 1]
gives the Sasaki-Einstein structure on N .
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Now, by Theorem 3.3, N is formal if and only if all the triple Massey products
on N are trivial. By Lemma 2.5, we know that Massey products on a manifold
can be computed by using any model for the manifold. Since M is a simply con-
nected compact manifold of dimension 6, M is formal. Thus, a model of M is
(H⇤(M), 0), where H⇤(M) is the cohomology algebra of M . Hence, a model of
N is the differential algebra (A, d), where A = H⇤(M) ⌦

V
(x), |x | = 1 and

dx = ` b � a1 � a2 � a3 � a4. Then,

H1(A, d) = H3(A, d) = H4(A, d) =, H6(A, d) = 0,
H2(A, d) = ha1, a2, a3, a4i,
H5(A, d) =

⌦�
`a21 + b2

�
x,

�
`a22 + b2

�
x,

�
`a23 + b2

�
x,

�
`a24 + b2

�
x
↵
.

We note that if a Massey product of three cohomology classes of H⇤(A, d) is de-
fined, then at most one of these cohomology classes has degree � 3 since dim N =
7. Thus, by dimension reasons, the unique possible non-trivial Massey products
are Massey products of the cohomology classes ai of degree 2. Clearly, for any
1  i  4, hai , ai , ai i = 0. Now we consider i and j such that 1  i, j  4 and
i 6= j . Then, ai · ai = a2i = �d(x · ai ) and ai · a j = 0. Thus, the triple Massey
product hai , ai , a j i is defined and

hai , ai , a j i = �x · ai · a j = 0,

since ai · a j = 0. Finally, if i, j, k 2 {1, 2, 3, 4} are such that i 6= j 6= k 6= i ,
then ai · a j = 0 = a j · ak . Hence, the Massey product hai , a j , aki is trivial again,
which completes the proof.

Finally, we show examples of 7-dimensional simply connected compact Sasa-
kian manifolds, with second Betti number b2 � 2, which are formal. For this, we
consider M to be the blow up of the complex projective space CP3 at k points, with
k � 2, that is

M = CP3#CP3#
k

z}|{
· · · #CP3,

whereCP3 isCP3 with the opposite of the standard orientation. (Note that the case
k = 4 was considered in Theorem 3.4.) Now, the de Rham cohomology of M is

• H0(M) = h1i;
• H1(M) = 0;
• H2(M) = hb, a1, a2, · · · , aki;
• H3(M) = 0;
• H4(M) = hb2, a21, a

2
2, · · · a

2
k i;

• H5(M) = 0;
• H6(M) = hb3i;
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where b is the integral cohomology class defined by the Kähler form ! on CP3.
Among these cohomology classes, the following relations are satisfied

b3 = �a3i , for 1  i  k, b · ai = 0 = ai · a j , for 1  i, jk and i 6= j.

Proposition 3.5. Let P be the total space of the circle bundle S1 �! P �! M ,
with Euler class `b �

Pk
i=1 ai , where ` > 0 is a large integer. Then P is a simply

connected, compact Sasakian manifold, with second Betti number b2 = k, which is
formal. Therefore, for k � 2, P does not admit any 3-Sasakian structure.

Proof. Since, for ` large enough, ` b �
Pk

i=1 ai is the integral cohomology class
defined by Kähler form on the complex manifold M = CP3#CP3# · · · #CP3, we
can consider the principal circle bundle S1 �! P �! M with Euler class equal
to ` b �

Pk
i=1 ai . Then P is a 7-dimensional simply connected, compact Sasakian

manifold, with second Betti number b2(P) = k.
By Theorem 3.3, P is formal if and only if all the triple Massey products on P

are trivial. Moreover, by Lemma 2.5, to calculate Massey products on a manifold
we can use any model for the manifold. Since M is a simply connected compact
manifold of dimension 6, M is formal. Thus, a model of M is (H⇤(M), 0), where
H⇤(M) is the cohomology algebra of M . Hence, a model of N is the differential
algebra (A, d), where A = H⇤(M) ⌦

V
(x), |x | = 1 and dx = ` b �

Pk
i=1 ai .

Then,
H1(A, d) = H3(A, d) = H4(A, d) = H6(A, d) = 0,
H2(A, d) = ha1, a2, · · · , ak�1, aki,
H5(A, d) =

⌦�
`a2i + b2

�
x, i = 1, 2, · · · , k

↵
.

Now a similar proof to that given in Theorem 3.4 allows one to show that all triple
Massey products on P are zero.

Remark 3.6. Note that the Kähler manifold M defined as the blow up of the com-
plex projective space CP3 at k points, with k � 2, is Kähler Einstein if k = 4.
For k  3, it happens that the automorphism group of M is not reductive, and the
very well known Matsushima criterion [24] implies that M does not admit Kähler
Einstein metrics. If k > 4, it is not clear (at least to the authors) whether the
manifold M , that is the blow up of CP3 at more than 4 points, admits a Kähler
Einstein metric. So we can only claim that, for k > 4, the total space P of the cir-
cle bundle over M is Sasakian and formal, hence N does not admit any 3-Sasakian
structure.
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