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On the boundedness of slc surfaces of general type

CHRISTOPHER D. HACON AND SÁNDOR J KOVÁCS

Abstract. The purpose of this note is to give a new proof of Alexeev’s bound-
edness result for stable surfaces which is independent of the base field and to
highlight some important consequences of this result.

Mathematics Subject Classification (2010): 74K20 (primary); 74B20 (sec-
ondary).

Let k be an algebraically closed field, an slcmodel (X, B) is a projective semi-log
canonical pair such that KX + B is ample (see Definition 1.3 below). The main
result of this paper is the following.

Theorem 1 (Alexeev). Fix a constant � > 0 and a DCC set C ⇢ [0, 1] \ Q.
Then there exists an integer r > 0 such that for any algebraically closed field k
and any two dimensional slcmodel (X, B) defined over k with coeff(B) ✓ C and
(KX + B)2 = �, r(KX + B) is very ample.

Remark. This result was originally proved by Alexeev in a series of papers, [2–4]
and [5]. The results there are stated for surfaces defined over a fixed algebraically
closed field (of any characteristc) however, as pointed out to us by Alexeev, they
actually hold independently of the field. We believe that this was known to some
experts, however there are some subtleties in Alexeev’s arguments that make the
proof of the results over an arbitrary field not entirely routine. In this paper we pro-
pose an alternative proof which we believe simplifies and makes Alexeev’s original
approach more transparent. The main differences are: A substantial simplification
of the arguments needed from [3]; the use of recent effective Matsusaka results
of [17] and [7] (instead of the original papers of Matsusaka and Kollár); and the
use of ultraproducts (cf. [16] and [6]) to simplify some of the arguments of [4]. Of
course the entire paper is heavily influenced by [4].
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The following result, which is of independent interest, is a key step in the proof of
Theorem 1. This was also proved by Alexeev, but we provide an independent proof.
Theorem 2 (Alexeev). Fix a DCC set C. Let V = {(KX + B)2} where (X, B)
is a two dimensional slcmodel defined over k, an algebraically closed field, with
coeff(B) ✓ C. Then V is also a DCC set. In particular, there exists a number
� > 0, depending only on C, such that if 0 < v 2 V, then v � �.
Corollary 3. Fix constants ",� > 0 and a DCC set C ⇢ [0, 1]\Q. Then the set of
all two dimensional "-log canonical pairs (X, B) defined over k with coeff(B) ✓ C,
KX + B nef and big and (KX + B)2  � is degree bounded, i.e., there exists a
constant d > 0 such that for any pair (X, B) as above there is a very ample divisor
H on X such that H2  d and Bred · H  d.

We have the following interesting applications which should allow the construction
of moduli spaces of (semi-log-canonical) canonically polarized surfaces for p � 0.

Theorem 4. Fix a constant � 2 Q and a DCC set C ⇢ [0, 1]\Q. Then there exists
a number p0 > 0 such that if L is an algebraically closed field of characteristic p >
p0, (X, B) a pair defined over L such that dim X = 3, f : X ! S = Spec L[[t]]
a projective morphism with connected fibers such that, with ⌘ 2 S denoting the
generic point of S, coeff(B⌘) ✓ C, (X⌘, B⌘) is semi-log canonical, and KX⌘+B⌘ is
ample with (KX⌘ + B⌘)2 = �, then there exist a separable finite morphism S0 ! S,
a projective morphism f 0 : X 0 ! S0, and a pair (X 0, B0) such that (X 0

s, B0
s) is semi-

log canonical and KX 0
s + B0

s is ample for all s 2 S0, and (X 0
⌘0, B0

⌘0) is isomorphic
to (X⌘, B⌘) ⇥⌘ ⌘

0 where ⌘0 2 S0 denotes the generic point.

Theorem 4 will follow as Corollary 2.12 to the somewhat more technical Theo-
rem 2.11 which we only state later. It also implies Corollary 2.13, a variant of the
above statement.

Finally, using Theorem 4 we will we prove another variant:
Theorem 5. Fix a constant � 2 Q and a DCC set C ⇢ [0, 1] \ Q. For each m > 0
let Lm be an algebraically closed field of characteristic pm > 0 such that lim pm =
1 and let k = [Lm]. Further let (Xm, Bm) be a pair defined over Lm such that
dim Xm = 3, and let fm : Xm ! Sm be a projective morphism with connected
fibers to a smooth curve. Assume that for each m 2 Z with ⌘ 2 Sm denoting the
generic point of Sm , coeff(Bm,⌘) ✓ C, (Xm,⌘, Bm,⌘) is semi-log canonical, and
KXm,⌘ + Bm,⌘ is ample with (KXm,⌘ + Bm,⌘)

2 = �.
Then for all but finitely many m’s there exist a separable finite morphism �m :

S0
m ! Sm , a projective morphism X 0

m ! S0
m , and a pair (X 0

m, B0
m) such that

(X 0
m,s, B0

m,s) is semi-log canonical and KX 0
m,s + B0

m,s is ample for all s 2 S0
m , and

(X 0
m,s, B0

m,s) is isomorphic to (Xm,�m(s), Bm,�m(s)) for general s 2 S0
m .

As an ancillary result we establish an important connection between bounding the
degree of a projective variety and bounding the degree of its defining polynomials.



ON THE BOUNDEDNESS OF SLC SURFACES OF GENERAL TYPE 193

This is, of course, related to the fascinating Eisenbud-Goto conjecture [8], but we
only need a much weaker statement. It turns out that the proof is not complicated
at all, but still the statement might be of some independent interest.

Theorem 6 (Theorem 1.8). There exists a function � : N ⇥ N ! N, such that
if d, q, n 2 N, L is a field and X ✓ Pn is a projective variety over L such that
dim X = q and deg X  d, then I (X) ✓ L[x0, . . . , xn] can be generated by
homogenous polynomials of degree at most �(d, q).

ACKNOWLEDGEMENTS. The authors are grateful to Valery Alexeev for useful
comments and especially for explaining why the results of [4] hold independently
of the field and to Zsolt Patakfalvi and the anonymous referee for helpful remarks.

1. Preliminaries

1.1. Definitions

We follow the definitions of [13] (in particular for discrepancies, terminal, klt and
lc pairs). A pair (X, B) consists of a demi-normal variety X (see Definition 1.3)
and an effective Q-divisor B on X such that none of the irreducible components
of B is contained in Sing X . The set of coefficients appearing in the irreducible
decomposition B =

Pr
i=1 bi Bi is denoted by coeff(B) = {bi |i = 1, . . . , r} and

we let Bred =
Pr

i=1 Bi . Recall that a pair (X, B) is "-klt (respectively "-lc) if X is
normal and a(X, B) > " � 1 (respectively a(X, B) � " � 1) where a(X, B) is the
total discrepancy of (X, B), in particular bi < 1� " (respectively bi  1� ").

We say that C ⇢ R is a DCC set if given any non-increasing sequence (ai )i2N
of elements of C then (ai )i2N is constant for all i � 0. The typical example is
I = {1 � 1

m |m 2 N}. We let I+ = {0} [ {i =
Pl

p=1 i p|i1, . . . , il 2 I } and
D(I ) = {a = m�1+ f

m , m 2 N, f 2 I+ \ [0, 1]}. It is well known that I is a
DCC set if and only if and only if D(I ) is a DCC set. Recall the following (see,
e.g., [4, 2.7]).

Lemma 1.1 (Shokurov’s log adjunction formula). Let (X,S+B) be a log canon-
ical surface pair where B =

P
bi Bi and S is a prime divisor with normalization

⌫ : S⌫ ! S, then

(KX + S + B)|S⌫ = KS⌫ + DiffS⌫ (B) = KS⌫ + Diff(0)S⌫ + B|S⌫

where the coefficients of DiffS⌫ (B) are 1 or of the form (n�1+
P
aibi )/n 2 [0, 1]

for some n, ai 2 N. In particular, coeff(DiffS⌫ (B)) ✓ D(I ) if coeff(B) ✓ I .
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For later use we recall the following elementary observation.

Lemma 1.2. Let (X, S + B) be a log canonical surface pair where S is a prime
divisor with normalization ⌫ : S⌫ ! S. Then for any 1 � � � 0 we have

(KX + S + �B)|S⌫ � KS⌫ + �DiffS⌫ (B).

Proof. Let B =
P
bi Bi . It suffices to show that (n � 1 + �

P
aibi )/n � �(n �

1+
P
aibi )/n.

For a, b 2 R set a _ b = max{a, b} and a ^ b = min{a, b}. Similarly,
for A =

P
ai Ai and A0 =

P
a0
i Ai R-divisors set A _ A0 =

P
(ai _ a0

i )Ai and
A ^ A0 =

P
(ai ^ a0

i )Ai . A pair (X, B) is a simple normal crossings pair or an
snc pair if X is smooth and the support of B consists of smooth divisors meeting
transversely.

Definition 1.3. A scheme X is called demi-normal if it is seminormal, S2 and G1
or equivalently if it is S2 and its codimension 1 points are either regular points or
nodes (cf. [13, 5.1, 10.14]). Let X be a demi-normal scheme with normalization
⇡ : eX ! X and conductors D ⇢ X and eD ⇢ eX . Let B ⇢ X be an effective Q-
divisor whose support does not contain any irreducible component of D and eB ⇢ eX
the divisorial part of ⇡�1(B).

The pair (X, B) is called semi-log canonical or slc if X is demi-normal, KX+B
is Q-Cartier and (eX , eB + eD) is log canonical. An slcmodel (or semi log canonical
model) is a projective pair (X, B) which is slc and such that KX + B is ample.

Let ⇡ : X ! U be a projective morphism of normal varieties, then by def-
inition ⇡⇤OX (D) = ⇡⇤OX (bDc). Given an R-divisor D on a normal projective
variety X , the volume of D is defined as

vol(D) = lim
m!1

h0(OX (bmDc))

mn/n!
.

If D is nef, then vol(D) = Ddim X . Note that vol(�D) = �dim Xvol(D) for any
� > 0. It is easy to see that if f : X ! Y is a morphism of normal projective
varieties, then vol(D)  vol( f⇤D) and if E is an R-Cartier divisor on Y such that
D � f ⇤E � 0 is f -excepional, then vol(E) = vol(D).

Let X be a quasi-projective variety then a b-divisor B over X is given by a
collection of divisors BX 0 on X 0 for any birational morphism X 0 ! X with the
property that if X 00 ! X is another birational morphism and ⌫ is a valuation corre-
sponding to a divisor on X 0 and X 00, then mult⌫(BX 0) = mult⌫(BX 00). In other words
a b-divisor over X is defined by its multiplicity along any divisor over X . Similarly
one defines R-b-divisors etc.
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Let (X, B) be a pair. Then typical examples of R-b-divisors are as follows.

(1) The discrepancy b-divisor, A = AB is defined by the equation

KX 0 = ⌫⇤(KX + B) + AB,X 0

for any birational morphism ⌫ : X 0 ! X ;
(2) The b-divisor L = LB is defined by the equation

KX 0 + LB,X 0 = ⌫⇤(KX + B) + EB,X 0

where LB,X 0 and EB,X 0 are effective with no common components, for any
birational morphism ⌫ : X 0 ! X ;

(3) The b-divisorM = MB is defined by multE (M) = multE (B) if E is a divisor
on X and multE (M) = 1 otherwise.

We have (cf. [9, 5.3]):

Proposition 1.4. Let (X, B) be a projective snc pair , f : Y ! X a log resolution
of (X, B), and g : X ! Z a birational projective morphism such that (Z , g⇤B) is
also an snc pair . Then

(1) vol(KX + B) = vol(KY + 0) for any R-divisor 0 such that 0 � LB,Y � 0 is
f -exceptional;

(2) vol(KX + B) = vol(KX +2) where 2 = B ^ Lg⇤B,X .

Definition 1.5. We say that a set of varietiesX is degree bounded if there exists a
constant m > 0 such that for each X 2 X there is a very ample divisor H on X
with Hdim(X) < m. A set of pairs P is degree bounded if there exists an integer
m > 0 such that for each (X, B) 2 P there is a very ample divisor H on X with
Hdim(X) < m and Hdim(X)�1 · Bred < m. A set of pairs B is log birationally
degree bounded if there exists a degree bounded set of pairs P such that for any
(X, B) 2 B there exists a pair (Z , D) 2 X and a birational map f : Z 99K X such
that Dred contains the strict transform of Bred and all f -exceptional divisors.

1.2. Ultraproducts

We briefly recall a few results about ultrafilters and ultraproducts that will be needed
in what follows. The interested reader may consult [16] and [6] for more back-
ground.

We fix U a non-principal ultrafilter on N for the sequel. So U is a non-empty
collection of infinite subsets of N such that

(1) If A ⇢ B ⇢ N and A 2 U, then B 2 U ;
(2) If A, B 2 U, then A \ B 2 U ;
(3) For any A ⇢ N, either A or N \ A are inU.
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We say that a property P(m) holds for almost all m2N if {m2N|P(m) holds}2U.
Let (Am)m2N be a sequence of rings then the ultraproduct [Am] is defined by
[Am] :=

�Q
m2N Am

�
/ ⇠ where ⇠ is the equivalence relation defined by

(am) ⇠ (bm) iff am = bm for almost all m 2 N. [am] 2 [Am] denotes the equiv-
alence class corresponding to the sequence (am)m2N. Note that am only needs to
be defined for almost all m 2 N. If, for almost all m 2 N, the Am are reduced
(respectively fields), then so is [Am]. Given a sequence of homomorphisms of rings
fm : Am ! Bm then [ fm] : [Am] ! [Bm] is a homomorphism of rings defined by
[ fm]([am]) = [ fm(am)].

Suppose now that Lm is a sequence of fields and k = [Lm]. For any fixed
integer n > 0, we define the ring of internal polynomials

k[x1, . . . , xn]int = [Lm[x1, . . . , xn]] .

Note that the name is misleading as the elements of k[x1, . . . , xn]int are not neces-
sarily polynomials. There exists a natural embedding

k[x1, . . . , xn] ,! k[x1, . . . , xn]int

whose image is the set of elements g = [gm] 2 k[x1, . . . , xn]int of bounded degree
(i.e., such that there exists an integer d with deg(gm)  d for almost all m 2 N).
For an ideal a ✓ k[x1, . . . , xn] we put aint := a · k[x1, . . . , xn]int.

We have the following:

Theorem 1.6 ([18, Theorem 1.1]). The extension k[x1, . . . ,xn] ,! k[x1, . . . , xn]int
is faithfully flat. In particular, for an ideal a✓k[x1, . . . , xn], aint\k[x1, . . . , xn]=a.

This theorem implies that the ideals of k[x1, . . . , xn]int generated in bounded degree
are in a one-to-one correspondence with the ideals of k[x1, . . . , xn], and hence they
are all of the form [am] for a sequence of ideals am ✓ Lm[x1, . . . , xn], which are
all generated in bounded degree.

Given the fields Lm for m 2 N and assuming the above constructions, the
symbol [Xm] stands for equivalence classes of sequences of schemes Xm of finite
type over Lm with respect to the equivalence relation: [Xm] ⇠ [Ym] iff Xm = Ym
for almost all m 2 N. This [Xm] is called an internal scheme over k. An internal
morphism [ fm] is defined by (the equivalence class of) a sequence of morphisms
fm : Xm ! Ym where as usual [ fm] ⇠ [gm] iff fm = gm for almost all m 2 N.
Similarly, an internal coherent sheaf on an internal scheme [Xm], denoted by the
symbol [Fm], is defined as an equivalence class of sequences of coherent sheaves
Fm on Xm by the usual equivalence relation, [Fm] ⇠ [Gm] iff Fm ' Gm for
almost all m 2 N, where Fm and Gm are coherent sheaves on Xm for almost all
m 2 N.
Claim 1.7. There exists a functor int : X 7! X int from separated schemes of finite
type over k to internal schemes.
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Construction. First assume that X is affine and define int as follows: let
X ,! AN

k be a closed embedding defined by the ideal a ⇢ k[x1, . . . , xN ]. As ob-
served above aint = [am] for an appropriate sequence of ideals, and then we define
Xm inAN

Lm by the ideal am (it is enough to do this for almost allm 2 N). Nowwe set
X int := [Xm]. A similar construction applies to morphisms (for details see [6,
pages 1468-1469]) which implies that the above defined X int is independent of the
embedding we chose at the beginning and hence the construction is functorial. By
patching on an open cover of X we obtain X int in the general case and similarly the
same for morphisms.

Similarly to the functor X 7! X int one may also define a functor F 7! Fint
from coherent sheaves on X to internal coherent sheaves on X int. The construction
is relatively straightforward; for details and basic properties see [6, pages 1471-
1472].

Notice that since the construction of the functor X 7! X int is based on the
defining ideal sheaf of X and hence for a divisor D ⇢ X , the internal subscheme
Dint⇢ X int is a divisor with corresponding divisorial sheafOX int(Dint)' [OXm(Dm)].
In other words, for a divisor, the corresponding internal divisor may be obtained
either as an internal scheme or an internal coherent sheaf. By [6, 3.5(i)] Cartier
divisors correspond to Cartier divisors. An internal pair (X, D) consists of an
internal scheme X and an internal Q-divisor D ⇢ X . For a pair (X, D) over k, we
will use the notation (X, D)int := (X int, Dint).

Next, we establish the important connection between bounding the degree of a
projective variety and bounding the degree of its defining polynomials promised in
the introduction.

Theorem 1.8. There exists a function � : N ⇥ N ! N, such that if d, q, n 2 N,
L is a field and X ✓ Pn is a projective variety over L such that dim X = q
and deg X  d, then I (X) ✓ L[x0, . . . , xn] can be generated by homogenous
polynomials of degree at most �(d, q).

Proof. Note that if deg X  d, then there exists a linear subspace Pq+d�1 ' P ✓
Pn such that X ✓ P and hence we may assume that n  q+d�1. We utilize an idea
of Mumford: For any linear subspace T ✓ Pn of dimension n�q�2 let HT denote
the join of X and T , i.e., the union of lines determined by pairs of points given by
X ⇥ T . Alternatively, HT may be defined as follows: consider the projection map
⇡T : Pn 99K Pq+1 and let HT := ⇡�1

T ⇡T (X). Then deg HT  deg X  d and it is
easy to see (cf. proof of [15, Theorem 1, page 32]) that

X =
set-theoretically

\

T\X=;

HT .

It follows that there exists an ideal J ✓ L[x0, . . . , xn] that can be generated by
homogenous polynomials of degree at most d and such that

p
J = I (X). Then the

statement follows by [18, Theorem 2.10(ii)].
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Proposition 1.9. Fix d > 0 and let Lm be a sequence of fields. Let Xm be a se-
quence of projective varieties defined over Lm of bounded degree and dimension for
almost all m 2 N. Then there exists a projective variety X defined over k = [Lm]
such that X int = [Xm]. Furthermore, this X admits an embedding to a projec-
tive space over k such that its ideal sheaf is locally generated by polynomials of
bounded degree.

Proof. Since the Xm have bounded degree and dimension (for almost all m 2 N),
we may assume that there are fixed integers d, N > 0 such that for almost all
m 2 N, Xm is embedded in PN

Lm with degree  d. Let AN
k =: U ⇢ PN

k be
a standard open affine subset and let Uint = [Um] be the corresponding internal
scheme. Consider Xm \Um ✓ Um ' AN

Lm with defining ideal am . It follows from
Proposition 1.8 that the am are generated by polynomials of bounded degree and
then so is aint = [am] ✓ k[x1, . . . , xN ]int. Let a := aint \ k[x1, . . . , xN ] and
XU = Z(a)✓AN

k =U . By the construction we have that [Xm\Um]=(XU )int. Glue-
ing the various XU as before we obtain the required closed subscheme X✓PN

k .

Lemma 1.10. Let X ⇢ PN
k where k = [Lm] and L a semiample line bundle on X .

If X int = [Xm] and Lint = [Lm], then Lm is semiample for almost all m 2 N.

Proof. Since L is semiample, there is an integer r > 0 such that L ⌦r defines
a morphism � : X ! PM

k with �⇤OPMk
(1) ' L ⌦r . Since (PM

k )int = [PM
Lm ]

and (OPMk
(1))int = [OPMLm

(1)], it follows that L ⌦r
m = �⇤

m(OPMLm
(1)) for almost all

m 2 N (where (�)int = [�m]) by [6, 3.5(iii)]. ThusLm is semiample for almost all
m 2 N.

Lemma 1.11. Let (X, B) be a log canonical pair projective over k = k̄ = [Lm]
and let ⌫ : X 99K Y be a good minimal model (respectively log canonical model),
then (Xm, Bm) is a log canonical pair projective over Lm and ⌫m : Xm 99K Ym is
a good minimal model (respectively log canonical model) for (Xm, Bm) for almost
all m 2 N, where ⌫int = [⌫m], Yint = [Ym] and Bint = [Bm].

Proof. Since r(KX + B) is Cartier, so is r(KXm + Bm) for almost all m 2 N by [6,
3.5(i)]. Let µ : X 0 ! X be a log resolution of (X, B), then following [6, Proof of
4.1], µm : X 0

m ! Xm is a log resolution for almost all m 2 N and (KX 0/X )int =
[KX 0

m/Xm ]. Since the coefficients of AX 0 = KX 0 �µ⇤(KX + B) are� �1, the same
holds for the coefficients of AX 0

m = KX 0
m � µ⇤

m(KXm + Bm) for almost all m 2 N
(cf. [6, Section 3]). We only discuss the case of good minimal models (the other
case is very similar). By assumption KY + BY is semiample where BY = ⌫⇤B. By
Lemma 1.10, KYm + BYm is semiample for almost all m 2N. Let p : W ! X and
q : W!Y resolve ⌫, then p⇤(KX+B)�q⇤(KY +BY )where the inequality is strict
along ⌫-exceptional divisors on Y . But then, if pm : Wm ! Xm and qm : Wm !Ym
are the corresponding morphisms, we have p⇤

m(KXm + Bm) � q⇤
m(KYm + BYm )

where the inequality is strict along ⌫m-exceptional divisors on Ym .
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1.3. Effective Matsusaka and birational boundedness

We begin by recalling the following effective version of Matsusaka’s theorem and
a vanishing theorem due to di Cerbo, Fanelli and Terakawa.

Theorem 1.12. Let X be a smooth surface over a field of characteristic p > 0 and
D a big and nef Cartier divisor on X . Let q0 := (2vol(KX ) + 9)/(p � 1), then
Hi (OX (KX + qD)) = 0 for all i > 0 and q > q0.

Proof. See [17] and [7, 5.9].

Theorem 1.13. Let X be a smooth surface and D be a big and nef Cartier divisor.
Let l = D2 � 5 (respectively l = D2 � 9) with l � 0 then if |KX + D| has a base
point at x 2 X (respectively |KX + D| does not separate points x, y 2 X) then

(1) If X is not of general type nor quasi-elliptic of Kodaira dimension 1, then there
exists a curve C ⇢ X containing x (respectively containing one of the points
x, y) such that D · C < 2 (respectively D · C < 4);

(2) If X is of general type with D2 > vol(KX )+6 (respectively D2 > vol(KX )+9)
or is quasi-elliptic of Kodaira dimension 1 then there exists a curve C ⇢ X
containing x (respectively containing one of the points x, y) such that D ·C 
7 (respectively D · C  17).

Proof. See the main theorem of [17] and [7, 4.9, 4.11].

Corollary 1.14. Let X be a normal surface and D a nef and big Cartier divisor
such that D2 � vol(KX ), then |KX + qD| defines a birational morphism for any
q � 18.

Proof. Let µ : X 0 ! X be a resolution and D0 = µ⇤D. Pick a general point
x 2 X 0 (respectively general points x, y 2 X 0). If C is a curve on X 0 containing x
(respectively containing x or y), then qD0 · C � q � 18 and (qD0)2 = (qD)2 �
vol(KX ) + 10 � vol(KX 0) + 10. By Theorem 1.13, x is not a base point of |KX 0 +
qD0| and |KX 0 + qD0| separates x and y. Thus |KX + qD| defines a birational
morphism.

We will also need the following result which is analogous to [9, 3.1].

Theorem 1.15. Fix A 2 N, � > 0. Let (X, B) be a log canonical surface such
that the coefficients of B are � �, vol(q(KX + B))  A and |KX + q(KX + B)| is
birational for some q > 0, then (X, B) is log birationally degree bounded.

Proof. The proof follows [9, 3.1]. For the convenience of the reader we include a
sketch which highlights the main changes necessary to avoid the use of Kawamata-
Viehweg vanishing.

By a standard reduction (cf. [9, 3.1]) we may assume that X is smooth and
|KX + q(KX + B)| induces a morphism � : X ! Z , i.e., |KX + q(KX + B)| =
|M| + E where |M| is basepoint-free. Let H be a very ample Cartier divisor on Z
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so that M = �⇤H . It suffices to show that H2 and �⇤Bred · H are bounded from
above.

Clearly

H2 = M2 = vol(M)  vol(KX + q(KX + B))  (q + 1)2vol(KX + B)  22A.

Let D0 be the sum of the components of B that are not �-exceptional. Note that if
G 2 |M|, then there is an effective Q-divisor C = E + B � �D0 � 0 such that

�D0 + G + C ⇠Q (q + 1)(KX + B). (1.1)

Let ↵ = 2A + 10. Since B � 0 and q > 0,

vol(q(KX + B)) � vol(KX + B) � vol(KX )

and so ↵ � 2vol(KX ) + 10. Then

�⇤D0 · H=D0 · GD0 · 2↵G  4vol(KX + D0 + 2↵G)

4vol
✓✓
1+

✓
1
�
+2↵

◆
(q+1)

◆
(KX+B)

◆
16

✓
1+

1
�
+2↵

◆2
A.

(1.2)

Here the first (in)equality follows as G ⇠ M = �⇤H , the second is trivial, the third
by Lemma 1.16 below, the fourth by (1.1), and the fifth since 1+(1/�+2↵)(q+1)

q 
2(1+ 1/� + 2↵).

Lemma 1.16. Let X be a normal surface, M a Cartier divisor such that |M| is base
point free and the induced map � = �|M| : X ! Z is birational. Let L = 2↵M for
some integer ↵ � vol(KX ) + 10 and D be a sum of distinct prime divisors, then

D · L  4vol(KX + D + L).

Proof. By standard reductions, we may assume that (X, D) is an snc pair and the
components of D are disjoint and not �-exceptional (cf. [9, 3.2]). Now consider the
short exact sequence

0 ! OX (KX + mL) ! OX (KX + mL + D) ! OD(KD + mL|D) ! 0. (1.3)

Since R1�⇤OX (KX+mL) = 0 by the Grauert-Riemenschneider vanishing theorem
(see [13, 10.4] for a version that applies here) using the projection formula and Serre
vanishing, it follows that

H1(OX (KX+mL)) = H1(�⇤OX (KX+mL)) = H1(�⇤OX (KX )⌦OZ (mH)) = 0

for all m � 0 and hence

H0(OX (KX + mL + D)) ! H0(OD(KD + mL|D)) (1.4)

is surjective.
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Claim 1.17. It follows that h0(OX (KX + L)) > 0 and no component of D is con-
tained in the base locus of |KX + ↵M + D|.

Proof. Since ↵ � 2vol(KX ) + 10, by Theorem 1.12, H1(OX (KX + ↵M)) = 0 and
hence

H0(OX (KX+↵M + D))!H0(OD(KD + ↵M|D))=�H0(ODi (KDi + ↵M|Di ))

is surjective where D =
P

Di and each Di is a prime divisor. Since the components
of D are not � exceptional, M · Di > 0, H0(ODi (KDi + ↵M|Di )) 6= 0 for all i
and so a general element of H0(OX (KX + ↵M + D)) does not vanish along any
component of D.

The proof that h0(OX (KX + L)) > 0 is similar (and easier).

Now consider the following commutative diagram

OX (KX + mL + D) ����! OD(KD + mL|D)
?
?
y

?
?
y

OX ((2m � 1)(KX + L + D)) ����! OD((2m � 1)(KD + L|D))

where the vertical maps are induced by a general divisor in |(m � 1)(2KX + L +
2D)| = |2(m � 1)(KX + ↵M + D)|. Since no component of D is contained in the
support of this divisor (Claim 1.17), it follows that

h0(OX ((2m � 1)(KX + L + D)))

� h0(OX ((2m � 2)(KX + L + D) + KX + L))

= dim Im
h
H0(OX ((2m � 1)(KX + L + D)))

! H0(OD((2m � 1)(KD + L|D)))
i

� h0(OD(KD + mL|D)).

(1.5)

Let P(m) = h0(OX (m(KX+L+D))), then P(m) = m2vol(KX+L+D)+o(m2).
Since h0(OX (KX + L)) > 0 (see Claim 1.17), we have h0(OX ((2m � 2)(KX +
L + D) + KX + L)) � P(2m � 2) and hence by (1.5), we have

P(2m � 1) � P(2m � 2) � Q(m) := h0(OD(KD + mL|D))

= mL · D + o(m).
(1.6)

Comparing leading terms of P(m) and Q(m), it follows that

4vol(KX + L + D) � L · D.
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2. The proofs of the main results

2.1. Preliminary results

Lemma 2.1. Fix C ⇢ [0, 1] a DCC set, then there exists a constant V > 0 such
that if (X, B) is a klt surface such that ⇢(X) = 1, coeff(B) ⇢ C and KX +B ⇠Q 0,
then (�KX )2  V .

Proof. Suppose that (�KX )2 > V , then for any smooth point x 2 X there exists
a Q-divisor G ⇠Q �KX such that multx (G) > V 1/2 (cf. [14, 1.1.31 ]). Since
⇢(X) = 1, we may assume that all components of G contain a general point x 2 X
and in particular are not contained in the support of B. Let8 = (1��)B+�G such
that (X,8) is log canonical but not klt. Notice that 0 < � < 2/V 1/2 (cf. [14, 9.3.2]).
Perturbing G we may in fact assume that there is a unique non-klt center Z for
(X,8).

If Z is a divisor, then (since ⇢(X) = 1) we may assume that �G = Z . Re-
stricting to Z we have

0 ⌘ (KX + (1� �)B + �G)|Z = KZ + DiffZ ((1� �)B).

Since degDiffZ ((1� �)B) � 0 then deg(KZ ) 2 {0,�2}. If B 6= 0, then

2 = degDiffZ ((1� �)B)

(see Lemma 1.1) easily implies that � is bounded from below (cf. [10, 5.2]) and
hence (�KX )2 is bounded from above. If B = 0 then KX ⌘ 0 and the claim is
trivial.

Therefore we may assume that dim Z = 0. Let ⌫ : X 0 ! X be the extraction
of the corresponding curve E of discrepancy�1 so that KX 0 + E +80 = ⌫⇤(KX +
8) ⇠Q 0 where 80 = ⌫�1

⇤ 8. Write KX 0 + B0 + aE = ⌫⇤(KX + B) ⇠Q 0 where
a < 1. We run the first step of the KX 0 +80 ⌘ �E minimal model program. If the
induced rational map is a Mori fiber space X 0 ! W , then restricting to a general
fiber F we let 800 = 80|F , E 00 = E |F and B00 = B0|F , and if the induced rational
map is a divisorial contraction ⇡ : X 0 ! F , then we let 800, E 00 and B00 be the
pushforwards of 80, E and B0. We have that

KF +800 + E 00 ⌘ 0, KF + B00 + aE 00 ⌘ 0,

KF + B00 + E 00 ⌘ (1� a)E 00 is ample and since 800 � (1� �)B00, then

�B00 ⌘ (1� a)E 00 +800 � (1� �)B00 � 0.

It follows that B00 6= 0 and KF + (1� ⌘)B00 + E 00 ⌘ 0 for some 0 < ⌘ < �.
If dim F = 1, then since the coefficients of B00 are in the DCC set C, there

exists a constant � > 0 such that deg(⌘B00) = deg(KF + B00 + E 00) � �. But then,
since KF + B00 + aE 00 ⌘ 0, we have

2 � deg(B00) � �/⌘ > �/� � �V 1/2/2

and so V and hence (�KX )2 are bounded from above.
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If dim F = 2, let (KF + B00 + E 00)|E 00 = KE 00 + DiffE 00(B00). Since (F, E 00)
is purely log terminal, then E 00 is smooth and by adjunction the coefficients of
DiffE 00(B00) are in the DCC set D(C) and so

�2+ deg
�
DiffE 00(B00)

�
=

�
KF + B00 + E 00� · E 00 � � � 2 > 0

where � = min{
P
b0
i |b

0
i 2D(C ),

P
b0
i > 2}. Fix � such that KE 00+�DiffE 00(B00) ⌘

0, then as E 00 is rational,

� =
2

deg
�
DiffE 00(B00)

� 
2
�

< 1.

However, by Lemma 1.2, we have
�
KF+�B00+E 00�|E 00 � KE 00 + �DiffE 00

�
B00� ⌘ 0 ⌘

�
KF + (1� ⌘)B00 + E 00�|E 00

and so 1� � < 1� ⌘  �  2/� < 1. But then

0 < 1�
2
�

< � <
2

p
V

<
2

p
(�KX )2

,

which implies that (�KX )2 is bounded from above.

Remark 2.2. The following two auxilliary results, (2.3) and (2.4), were also proved
by Alexeev and Alexeev-Mori. In fact, an effective version of (2.4) is proven in [5,
4.6]. Here we provide independent proofs.

Lemma 2.3. Fix C ⇢ [0, 1] a DCC set, then there exists an " > 0 such that if
(X, B) is a projective klt surface such that ⇢(X) = 1, coeff(B) ⇢ C and KX +
B ⇠Q 0, then (X, B) is " Kawamata log terminal.

Proof. Suppose that the claim is false. Then there is a sequence of pairs (Xn, Bn)
as above with total discrepancy a(Xn, Bn) = "n � 1 such that "n is a decreasing
sequence with limit 0. LetC 0 = C [{1�"n}n2N thenC 0 is a DCC set. Suppose that
(Xn, Bn) does not contain a component of coefficient 1�"n . Let ⌫ : X 0 ! X = Xn
be a projective birational morphism extracting the corresponding divisor E so that
⇢(X 0/X) = 1 and the exceptional divisor is E . We may write KX 0 + B0 + eE =
⌫⇤(KX + B) where e = 1 � "n . Since ⇢(X 0) = 2 there is a second extremal ray
R2 (here R1 = [E]). Since (KX 0 + B0) · R2 = �eE · R2 < 0, it follows that R2
is KX 0 + B0 negative and hence it can be contracted. Let µ : X 0 ! X 00 be the
corresponding contraction. If dim X 00 = 1, then let F ' P1 be a general fiber. We
have

0 = deg
�
KX 0 + B0 + eE

�
|F = �2+

�
B0 + eE

�
· F = �2+

X
bi + e.

Since bi 2 C, it is easy to see that e = 1 � "n is constant for n � 0 which is
impossible. Therefore, we may assume that X 0 ! X 00 is a birational contraction.
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Then KX 00 + B00 + eS = µ⇤(KX 0 + B0 + eE) ⇠Q 0. Replacing X by X 00 and B by
B00 + eS, we may assume that B contains a component S of coefficient e = 1� "n .

Write B = B0 + eS. We then have

"S2 = (1� e)S2 =
�
KX + B0 + S

�
· S = deg

�
KS + DiffS(B0)

�
� � � 2,

where � = min{
P
b0
i |b

0
i 2 D(C 0),

P
b0
i > 2} > 2. But then

(�KX )2 = B2 � (1� ")2S2 �
(1� ")2

"
(� � 2),

where limn!1(1� "n)
2(� � 2)/"n = +1 contradicting Lemma 2.1.

Lemma 2.4. Fix C ⇢ [0, 1] a DCC set, then there exists a constant � > 0 such that
if (X, B =

Pr
i=1 bi Bi ) is a klt surface such that KX + B is big, and bi 2 C, then

KX + (1� �)B is big.

Proof. If this were not the case, then there is a sequence of klt surfaces (Xn, Bn)
and a decreasing sequence of numbers �n > 0 such that lim �n = 0 and (KXn +
(1� �n)Bn) 2 {0, 1}. After running a (KXn + (1� �n)Bn)-minimal model program,
we may assume that KXn + (1� �n)Bn is nef. Now we run a KXn -minimal model
program. After finitely many divisorial contractions, we may assume that we have
a Mori fiber space f : X 0

n ! Zn . Since each divisorial contraction is automatically
KXn + (1��n)Bn-trivial (see [10, 5.1, 5.2]), we may assume that KX 0

n + (1��n)B0
n

is nef and f is KX 0
n + (1� �n)B0

n-trivial.
If dim Zn = 1, let Fn ' P1 be a general fiber. We have

0 =
�
KX 0

n + (1� �n)B0
n
�
· Fn = �2+ (1� �n)

X
nibi ,

where bi 2 C and ni 2 N. Note that (1� �n)B0
n · Fn 6= 0. Therefore 2/(1� �n) is a

decreasing sequence contained in the DCC set {
P
nibi |ni 2 N, bi 2 C }. Thus �n

is evenytually constant as required.
If dim Zn=0, then ⇢(X 0

n) = 1 and�KX 0
n is ample. Since KX 0

n+(1��n)B0
n⌘0

and the coefficients of (1��n)B0
n belong to a DCC set, say C 0, by Lemma 2.3 there

exists an " > 0 such that each (X 0
n, (1� �n)B0

n) is "-klt and so by Lemmas 2.6 and
2.5, there is an integer N > 0 such that NKX 0

n is Cartier. Now consider

N
�
� KX 0

n

�2
= �(1� �n)B0

n · NKX 0
n .

Since NKX 0
n is Cartier (and KX 0

n is a Weil divisor), by Lemma 2.1 N (�KX 0
n )
2 2

{1, . . . , NV } a finite set of positive integers. Therefore, after passing to a subse-
quence, we may assume that N (�KX 0

n )
2 is constant. But then N (�KX 0

n )
2/(1� �n)

cannot be an integer for n � 0 and this is a contradiction since B0
n · (�NKX 0

n ) 2
Z.



ON THE BOUNDEDNESS OF SLC SURFACES OF GENERAL TYPE 205

Lemma 2.5. Fix " > 0 then there exists a constant % = %(") such that if (X, B) is
a projective "-log canonical surface and �(KX + B) is nef, then rk Pic(X)  %. In
particular the number of exceptional divisors of negative discrepancy aE (X, B) <
0 is at most %.

Proof. Let f : X 0 ! X be a projective birational morphism such that KX 0 + B0 =
f ⇤(KX + B) where B0 � 0 and aE (X 0, B0) � 0 for any divisor E exceptional
over X 0 (in other words f extracts precisely the divisors of negative discrepancy
aE (X, B) < 0). Clearly �(KX 0 + B0) is nef, X 0 is smooth and coeff(B0) 2 (0, 1�
"]. By [4, Theorem 6.3] (see also [5, Theorem 1.8]) there exists a constant % =
%(") such that ⇢(X)  ⇢(X 0)  %. Finally the number of exceptional divisors of
negative discrepancy is just ⇢(X 0)�⇢(X)  ⇢(X 0)�1 and the lemma follows.

Lemma 2.6. Fix k 2 N and " > 0. There exists an integer N = N (k, ") such that
if (X, B) is an "-klt surface singularity such that the number of exceptional divisors
of discrepancy aE (X, B) < 0 is  k then NKX is Cartier and NG is Cartier for
any integral Weil divisor G contained in the support of B.

Proof. (See also [4] and [5]) Let ⌫ : X 0 ! X be a partial resolution extracting all
divisors of discrepancy aE (X, B) < 0, in particular X 0 has at most du Val singular-
ities which are not contained in the support of B0 where KX 0 + B0 = ⌫⇤(KX + B).
By the classification of klt singularities [1], the weights of each curve in the cor-
responding graph are bounded by 2/" (cf. [4, Proof of 7.5]) and so there are only
finitely many possibilities for the corresponding graph. Let G = KX or G be a
component of the support of B and G 0 its strict transform. Then we may write
⌫⇤G = G 0 +

P
ei Ei where the Ei are exceptional divisors and the denominators

of the ei divide t = |det(Ek · Ek0)|. But then t (G 0 +
P
ei Ei ) is integral. Since X 0

has only du Val singularities, t⌫⇤G is Cartier. By the Basepoint-free theorem tG is
Cartier (cf. the proof of [5, 4.7]).

2.2. Proof of Theorem 2

We follow some ideas from [5] and [4] applying techniques from [6]. We may
assume that C � {1� 1

a |a 2 N} [ {1}. Note that it suffices to prove the theorem for
log canonical pairs. To see this, consider an slc model (X, B) and its normalization
⌫ : [Xi ! X . Writing KXi + Bi = (⌫|Xi )

⇤(KX + B), we have log canonical
models (Xi , Bi ) such that coeff(Bi ) 2 C and (KX + B)2 =

P
(KXi + Bi )2. The

claim now follows easily since if D is a DCC set, then so is D0 = {
P
di |di 2 D }.

Suppose now, by way of contradiction, that (Xm, Bm) is a sequence of slc
surfaces defined over the algebraically closed field Lm of characteristic pm > 0,
such that coeff(Bm) ✓ C and

vol(KXm + Bm) > vol(KXm+1 + Bm+1). (2.1)

In particular we may fix a constant V > 0 such that vol(KXm + Bm)  V for all
m 2 N.
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Passing to a log resolution, we may assume that (Xm, Bm) is an snc pair. In
fact, given a birational morphism X 0

m ! Xm let B0
m be the strict transform of Bm

plus the exceptional divisor so that vol(KX 0
m + B0

m) = vol(KXm + Bm) (cf. Propo-
sition 1.4) and coeff(B0

m) ✓ C. Then we replace (Xm, Bm) by (X 0
m, B0

m). Since
(Xm, Bm) is a snc pair and bigness is an open condition, replacing the coefficients
that equal 1 by 1� 1

r for some r � 0, we may assume that (Xm, Bm) is klt.
Claim 2.7. [4, 7.6] We may assume that the pairs (Xm, Bm) are log birationally
bounded, i.e., there exists a constant d > 0 and birational maps fm : Xm 99K Zm
and very ample divisors Hm on Zm such that H2m  d and Hm ·BZm  d where BZm
is the sum of the strict transform of Bm and the Zm 99K Xm exceptional divisors.
By Lemma 2.4 it follows easily that there is a finite set of rational numbers C 0

depending only on C and divisors 0  Dm  Bm such that KXm + Dm is big and
coeff(Dm) ✓ C 0. By [4, 7.3] we may also assume that the number of components
of Bm is bounded by a constant (depending only on C ). Let µm : Xm ! X 0

m be
a minimal model for KXm + Dm and D0

m = (µm)⇤Dm  B0
m = (µm)⇤Bm . Note

that KX 0
m + D0

m is klt and big. Let f 0
m : X 0

m ! Zm be the be the corresponding log
canonical model for KXm + Dm and fm : Xm ! Zm the induced morphism. Since
the number of components of Dm is bounded, it follows easily that the number of
divisors E over Zm of discrepancy aE (Zm, ( fm)⇤Dm) < 0 is bounded from above.
By Lemma 2.6, there exists an integer N > 0 depending only on C and V such
that Gm = N (KZm + ( fm)⇤Dm) is ample and Cartier. By Corollary 1.14, |KXm +
q f ⇤

mGm | is birational for all q � 18 and hence so is |KXm + 18N (KXm + Dm)|.
Since Bm � Dm , it follows that |KXm + 18N (KXm + Bm)| is birational. Since
vol(18N (KXm + Bm))  (18N )2V , by Theorem 1.15 (with q = 18N ) it follows
that the pairs (Xm, Bm) are log birationally degree bounded.
Claim 2.8. We may assume that fm : Xm ! Zm is a morphism given by a finite
sequence of blow ups along smooth strata of (Zm, bBZm ) where bBZm = (BZm )red
and that (Zm, bBZm ) is an snc pair and is degree bounded.

Proof. Let ([Zm], [bBZm ]) be the internal pair associated to the sequence of pairs
(Zm, bBZm ) where bBZm = (BZm )red. Since Zm and bBZm are degree bounded, it
follows by Proposition 1.9 that there exists a pair (Z , bB) defined over k = [Lm]
such that (Z , bB)int = ([Zm], [bBZm ]). Let ⌫ : Z 0 ! Z be a log resolution of (Z , bB)

and bB0 = ⌫�1
⇤ B + Ex(⌫). If (Z 0, bB0)int = ([Z 0

m], [bB0
Z 0
m
]), then it is easy to see that

Z 0
m and bB0

Z 0
m
are degree bounded (for almost all m 2 N). Replacing (Xm, Bm) by

an appropriate birational model (X 0
m, B0

m), we may assume that f 0
m : X 0

m ! Z 0
m

is a morphism with ( f 0
m)⇤(B0

m)  bB0
Z 0
m
. Replacing (Xm, Bm) by (X 0

m, B0
m) and

Xm ! Zm by X 0
m ! Z 0

m we may assume that fm is a morphism, (Zm, BZm ) is an
snc pair and is degree bounded.

Let (Z , bB) be the projective pair (over k) defined above so that (Z , bB)int =
([Zm], [bBZm ]) where as above bB and bBZm denote the reduced divisors. Let X 00

m !
Zm be a finite sequence of strata such that every divisor E on Xm of discrepancy
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aE (Zm, BZm ) < 0 is a divisor on X 00
m . Let B00

m be the strict transform of Bm plus
the sum of all X 00

m ! Zm exceptional divisors which are not also X 00
m 99K Xm

exceptional, taken with coefficient 1 � 1/r for some r � 0. Then one can see
easily that vol(KXm + Bm) = vol(KX 00

m + B00
m) (cf. Proposition 1.4). Replacing

(Xm, Bm) by the pair (X 00
m, B00

m), we may therefore assume that each Xm is obtained
from Zm via a finite sequence of blow ups along smooth strata of (Zm, BZm ).

For almost all m 2 N, the strata of (Zm, bBZm ) are in one-to-one correspon-
dence with the strata of (Z , bB) (cf. [6, 3.8]). Therefore, we define (Xm, Bm)
by blowing up the corresponding strata on (Z , bB) and choosing the coefficients
of Bm to match those of Bm . Let ⌫ be any divisorial valuation over Z . Since the
coefficients belong to a DCC set, after passing to a subsequence, we may assume
that the sequenceMBm (⌫) is non decreasing and hence that limMBm (⌫) exists. No-
tice that if MBm (⌫) 6= 0, then ⌫ corresponds to either a component of bB or to a
divisor exceptional over Z . If moreover MBm (⌫) 62 {0, 1} then the corresponding
divisor is obtained by blowing up Z along some strata of bB. Therefore, there are
only countably many divisorial valuations ⌫ for which MBm (⌫) 6= MBk (⌫). By a
standard diagonalization argument, we may assume that after passing to a subse-
quence, there is a well defined b-divisor over Z defined by B(⌫) = limMBm (⌫) for
any valuation ⌫ over Z . Let8 := BZ . Let BmZ be the pushforward of B

m to Z , then
BZ = lim BmZ Since C satisfies the DCC, it follows that

BmZ  8 for almost all m 2 N. (2.2)

Claim 2.9. We may assume that

L8  B, (2.3)

where 8 = BZ .

Proof. We follow the proof of [9, 5.7] checking that our choices do not affect the
volume of KXm + Bm . Let (Z 0,B0) be the reduction of (Z ,B) defined in [9, 5.7], so
that if 80 = B0

Z 0 , then we have the inequality of b-divisors

L80  B0.

Recall that the reduction (Z 0,B0) is given by a finite sequence of cuts where a cut
is defined as follows: given a birational morphism of smooth projective varieties
µ : Z 0 ! Z and a subset 6 of the µ exceptional divisors, for every valuation
� 2 6, let 0� = (L8 ^ B)Y� , where Y� ! Z is the divisorial contraction of the
divisor over Z corresponding to � which defined in [9, 5.4] and 8 = BZ . Let 2 =
^�26(L0� )Z 0 , the minimum of the divisors (L0� )Z 0 . The cut of (Z ,B), associated
to Z 0 ! Z and 6, is the pair (Z 0,B0), where B0 = B^M2, so that B0

Z 0 = 2^BZ 0

and B0(⌫) = B(⌫) for any valuation ⌫ corresponding to an exceptional divisor over
Z 0. We may assume that Z 0 ! Z is given by a finite sequence of blow ups along
strata of bB and so we let Z 0

m ! Zm be obtained by the corresponding sequence
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of blow ups along strata of BZm for almost all m 2 N. After possibly blowing up
Xm and replacing Bm by its strict transform plus the exceptional divisor, we may
assume that Xm ! Z factors via a morphism Xm ! Z 0 and similarly we have
morphisms Xm ! Z 0

m for almost all m 2 N.
Now consider the divisors B0m on Xm defined by B0m = Bm ^ (M2m )Xm

where 2m = ^�26(L0m� )Z 0 , 0m� = (LBmZ )Y� ^ BY� where BmZ and B
m
Y� are the

pushforwards of Bm to Z and Y� . Then, as in the proof of [9, 5.7], we may assume
that B0 = limMB0m . Let B0

m be the divisors on Xm corresponding to B0m . We will
show that vol(KXm + Bm) = vol(KXm + B0

m). Assuming this, we may replace Bm
by B0

m and the claim follows.
We define 8m = BZm and

0m,� = (L8m )Ym,� ^ BYm,� ,

where BYm,� is the pushforward of Bm to Ym,� . Let 2m := ^�26(L0m,� )Z 0
m . It is

easy to see that the divisors BZm , BYm,� , 0m,� and 2m correspond to the divisors
BmZ , B

m
Y� , 0

m
� and 2m so that we have

B0
m = Bm ^ (M2m )Xm .

It then follows that

Bm ^ (L2m )Xm  B0
m = Bm ^ (M2m )Xm  Bm . (2.4)

Thus, by (2.4) and Proposition 1.4

vol(KXm + Bm) = vol
�
KXm + B0

m
�
.

Replacing Bm by B0
m the claim follows.

Claim 2.10. For almost all m 2 N we have vol(KZm + t8Zm ) = vol(KZ + t8) for
all t 2 [0, 1] \ Q.

Proof. There are finitely many birational morphisms { i : Z ! Wi }i2I such that
for any t 2 [0, 1], there exists an i 2 I such that i is a minimal model for KZ+t8.
Let [ i

m] : [Zm] ! [Wi
m] be the corresponding morphism of internal schemes. It is

easy to see that for almost all m 2 N this is a minimal model for KZm + t8Zm and
(KWi

m
+ t i

m,⇤8Zm )2 = (KWi + t ⇤8Z )2 (cf. Lemma 1.11). Therefore, the claim
follows.

Now we observe that

vol(KXm + Bm)  vol(KZm + BZm )  vol(KZm +8Zm ),

where the first inequality follows as BZm is the pushforward of Bm , and the second
as BZm  8Zm cf. (2.2).
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On the other hand, for any " > 0, the pair (Z , (1 � ")8) is klt with simple
normal crossings and hence there is a terminalization h : Y ! Z (given by a finite
sequence of blow ups along strata of (Z , (1� ")8)) so that (Y,9 := L(1�")8,Y ) is
terminal. We have that for some � > 0,

9  (1� �)L8,Y  L8,Y  BY , (2.5)

where the last inequality follows from (2.3). For almost all m 2 N we may consider
hm : Ym ! Zm given by the same sequence of blow ups along strata of (Zm,8Zm ).
Then, denoting byBYm and9m the divisors on Ym corresponding toBY and9, since
BY = limMBm ,Y , comparing coefficients of divisors on Y , by (2.5), for infinitely
many m 2 N we have 9  MBm ,Y and hence also 9m  MBm ,Ym . It follows that
then

vol(KZ + (1� ")8) = vol
�
KZm + (1� ")8Zm

�
= vol

�
KYm +9m

�

 vol
�
KYm +MBm ,Ym

�
= vol

�
KXm + Bm

�
,

(2.6)

where the first (in)equality follows from Claim 2.10, the second since (Ym,9m) is a
terminalization of (Zm, (1� ")8Zm ) (observe that9m = (L(1�")8Zm )Zm and apply
Proposition 1.4), the third since 9m  MBm ,Ym , and the fourth by Proposition 1.4.
Taking the limit as " ! 0, by (2.1) we obtain

vol(KZ +8)  lim vol
�
KXm + Bm

�
< vol

�
KXm + Bm

�
.

Combining this with the above equations and Claim 2.10, we have that

vol(KZ +8) < vol
�
KXm + Bm

�
 vol

�
KZm +8Zm

�
= vol(KZ +8) (2.7)

for infinitely many m. This is the required contradiction and it completes the proof
of Theorem 2.

2.3. Proof of Theorem 1

It suffices to show that for any sequence of projective log canonical surfaces
(Xm, Bm) with fixed volume (KXm + Bm)2 = v and coeff(Bm) ✓ C, there ex-
ists an integer r > 0 such that r(KX̄m + B̄m) is very ample where �m : Xm ! X̄m
is the log canonical model of (Xm, Bm) and B̄m = �m,⇤Bm . Arguing by contra-
diction (and passing to a subsequence), assume that m!(KX̄m + B̄m) is not very
ample for all m > 0. Following the notation in the above proof, let Z ! W be
the log canonical model of (Z ,8 = BZ ). Let [Zm] ! [Wm] be the corresponding
morphism of internal schemes, so that for almost all m 2 N we have morphisms
hm : Zm ! Wm which are log canonical models for (Zm,8Zm ). We have

vol
�
KXm + Bm

�
= vol

�
KZm +8Zm

�
� vol

�
KZm + BZm

�
� vol

�
KXm + Bm

�
,
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where the first (in)equality follows since all inequalities in (2.7) are actually equal-
ities, the second since 8Zm � BZm and the last as KZm + BZm is the pushforward
of KXm + Bm .

Since KZm + BZm is big and has a log canonical model, and 8Zm � BZm , it
follows by [11, 2.2.2] that Zm ! Wm is a log canonical model for (Zm, BZm ). In
particular, (hm)⇤BZm = (hm)⇤8Zm is rational and hence so is h⇤8. But then by
the result over the fixed field k (see [4, 9.2]), we know that there is an integer r
depending only on � = vol(KXm + Bm) and C such that r(KW + h⇤8) is Cartier
and very ample. But then r(KWm + hm,⇤8) is Cartier and very ample for infinitely
many m > 0. This is the required contradiction and the assertion of Theorem 1
follows.

2.4. Proof of Corollary 3

We may assume that 1 � " 2 C. It suffices to show that any sequence of "-log
canonical projective pairs (Xm, Bm) with dim Xm = 2, coeff(Bm) 2 C, KXm + Bm
nef and big and vol(KXm + Bm)  v is degree bounded.

Following the proof of Theorem 2, we may assume that (Z ,BZ ) is an snc
pair with coefficients  1� ". Replacing Z by an appropriate birational model, we
may in fact assume that (Z ,BZ ) is terminal and hence so are (Zm, BZm ). But then
vol(KXm + Bm) = vol(KZm + BZm ) for almost all m 2 N by Proposition 1.4 and so
we may assume that (Xm, Bm) = (Zm, BZm ). Notice that we have replaced Xm by
an appropriate birational model and Bm by its strict transform plus the exceptional
divisors with coefficient (1 � "), hence KXm + Bm may no longer be nef. Let
Bm be the divisors on Z corresponding to Bm on Xm . Since the support of Bm
has finitely many components and C is a DCC set, after passing to a subsequence,
we may assume that Bm  Bm+1  Bm+2  . . . lim Bi = B1. Let B1

m be the
corresponding divisors on Xm , so that B1

m � Bm . We claim that KZ +B1 is big. If
this were not the case, then Z would be covered by curves C with (KZ + B1) ·C 
0. But then, the same would be true for (Xm, Bm) as for almost all m 2 N we have

0 �
�
KZ + B1�

· C =
�
KXm + B1

m
�
· Cm �

�
KXm + Bm

�
· Cm,

where (C)int = [Cm]. This contradicts the fact that KXm + Bm is big. Since being
big is an open condition, it follows that KZ + (1� �)B1 is big for all 0 < � ⌧ 1
and we may assume that (1��)B1  Bm  B1. The set of all minimal/canonical
models Z ! W for pairs (Z ,G) with (1� �)B1  G  B1 is bounded. Arguing
as in the proof of Claim 2.10 the corresponding rational maps Zm ! Wm give
minimal/canonical models for (Xm, Bm) for almost all m 2 N. Corollary 3 follows
easily.

2.5. Proof of Theorems 4 and 5

In the sequel we will use the following notation: If fm : Xm ! Sm is a morphism
of schemes and s 2 Sm a point, then Xm,s denotes the fiber (Xm)s = f �1

m (s). More
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generally, if S0
m ! Sm is a morphism and s 2 S0

m a point, then Xm,s denotes the
fiber product Xm ⇥Sm {s}.

Theorem 2.11. Fix a constant � 2 Q, a DCC set C ⇢ [0, 1]\Q. For each m 2 Z,
let Lm be an algebraically closed field of char Lm = pm > 0 such that lim pm = 1.
Let k = [[Lm]], S a smooth 1-dimensional scheme defined over k, and Sint = [Sm]
the corresponding internal scheme. Further let (Xm, Bm) be a pair defined over
Lm such that dim Xm = 3, and let fm : Xm ! Sm be a projective morphism with
connected fibers. Assume that for each m 2 Z, coeff(Bm,⌘) ✓ C, (Xm,⌘, Bm,⌘) is
semi-log canonical, and KXm,⌘ + Bm,⌘ is ample with (KXm,⌘ + Bm,⌘)

2 = � where
⌘ denotes the generic point of Sm .

Then there exist a finite separable morphismS0!S,and a projective semistable
family of semi-log canonical models (X 0, B0) ! S0 such that considering the cor-
responding internal objects, for an infinite subset V ✓ Z and for each m 2 V there
exist an induced separable finite morphism �m : S0

m ! Sm , a projective morphism
X 0
m ! S0

m , and a pair (X 0
m, B0

m) such that KX 0
m,s + B0

m,s is ample, (X 0
m,s, B0

m,s)

is semi-log canonical (in particular reduced) for all s 2 S0
m , and (X 0

m,⌘0, B0
m,⌘0) is

isomorphic to (X⌘0, B⌘0) for where ⌘ 2 Sm and ⌘0 2 S0
m are the generic points.

Proof. Let Fm = K (Sm) be the field of rational functions of Sm , Fm its alge-
braic closure, and (Xm,⌘, Bm,⌘) the geometric general fiber of fm (obtained by the
base change Spec Fm ! Sm). Since coeff(Bm,⌘) ✓ C and vol(KXm,⌘

+ Bm,⌘) =
vol(KXm,⌘ + Bm,⌘) = �, by Theorem 1 there is a fixed integer r > 0 (independent
of m) such that r(KXm,⌘

+ Bm,⌘) is very ample.
As Xm,⌘ and the components of Bm,⌘ have bounded degree (cf. Theorem 1.15),

there exists, by Proposition 1.9, a pair (X�, B�) defined over F = [Fm] such that
(X�, B�)int = ([Xm,⌘], [(Bm,⌘)red]). Since r(KXm,⌘

+ Bm,⌘) is very ample and
hence in particular Cartier, it follows that coeff(Bm) ✓

� a
r
�
� 0  a  r

 
and so,

after passing to an infinite subset of Z, we may assume that actually B�
int = [Bm,⌘].

Let k = [Lm] and note that it is algebraically closed of char k = 0 by [16,
2.4.1, 2.4.2]. By definition Sint = [Sm], so K (S) = F = [Fm] by Theorem 1.6
and the construction of the functor Z 7! Zint. Since char k = 0, after a possi-
ble base change, resolving and taking the relative semi-log canonical model, one
obtains a semistable family of semi-log canonical models (X 0, B0) ! S0 with a
finite separable morphism S0 ! S. Considering the corresponding internal objects
X 0
int = [X 0

m], B0
int = [B0

m], and S0
int = [S0

m] proves Theorem 2.11.

Corollary 2.12 (Theorem 4). Fix a constant � 2 Q and a DCC setC ⇢ [0, 1]\Q.
Then there exists a number p0 > 0 such that if L is an algebraically closed field
of characteristic p > p0, (X, B) a pair defined over L such that dim X = 3,
f : X ! S = Spec L[[t]] a projective morphism with connected fibers such that,
coeff(Bm,⌘) ✓ C, (Xm,⌘, Bm,⌘) is semi-log canonical, and KXm,⌘ + Bm,⌘ is ample
with (KXm,⌘ + Bm,⌘)

2 = �, then there exist a separable finite morphism S0 ! S, a
projective morphism f 0 : X 0 ! S0, and a pair (X 0, B0) such that considering the
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corresponding internal objects for an infinite subset V ✓ Z and for each m 2 V ,
(X 0

m,s, B0
m,s) is semi-log canonical and KX 0

m,s + B0
m,s is ample for all s 2 S0, and

(X 0
m,⌘0, B0

m,⌘0) is isomorphic to (X⌘0, B⌘0) where ⌘ 2 Sm and ⌘0 2 S0
m are the

generic points.

Corollary 2.13. Fix constants � 2 Q, g 2 N and a DCC set C ⇢ [0, 1] \ Q.
Then there exists a number p0 > 0 such that if L is an algebraically closed field of
characteristic p > p0, (X, B) a pair defined over L such that dim X = 3, f : X !
S a projective morphism with connected fibers, where S is a smooth curve over L
whose geometric genus is at most g, such that, coeff(Bm,⌘) ✓ C, (Xm,⌘, Bm,⌘) is
log canonical, and KXm,⌘ + Bm,⌘ is ample with (KXm,⌘ + Bm,⌘)

2 = �, then there
exist a separable finite morphism S0 ! S, a projective morphism f 0 : X 0 ! S0,
and a pair (X 0, B0) such that considering the corresponding internal objects, for an
infinite subset V ✓ Z and for each m 2 V , (X 0

m,s, B0
m,s) is semi-log canonical and

KX 0
m,s + B0

m,s is ample for all s 2 S0, and (X 0
m,⌘0, B0

m,⌘0) is isomorphic to (X⌘0, B⌘0)

where ⌘ 2 Sm and ⌘0 2 S0
m are the generic points.

Remark 2.14. Note that the situation of Corollary 2.13 arises for instance if S is
the “reduction mod p” of a fixed curve defined in characteristic zero.

Proof of Corollaries 2.12 and 2.13. Let Lm be a sequence of algebraically closed
fields of characteristic pm > 0 such that lim pm = 1, (Xm, Bm) a sequence of
pairs and Xm ! Sm a sequence of morphisms defined over Lm , where either Sm =
Lm[[t]] for each m or Sm is a smooth curve over Lm whose geometric genus is at
most g for eachm. Suppose that the conclusion of the appropriate corollary fails for
each m. Let k := [Lm] and either let S := Spec k[[t]] or let S be the smooth curve
provided by Proposition 1.9 (cf. [6, 3.7]). With these definitions the assumptions of
Theorem 2.11 are satisfied and hence we obtain a contradiction.

Theorem 2.15 (Theorem 5). Fix a constant � 2 Q and a DCC set C ⇢ [0, 1]\Q.
For each m > 0 let Lm be an algebraically closed field of characteristic pm > 0
such that lim pm = 1 and let k = [Lm]. Further let (Xm, Bm) be a pair de-
fined over Lm such that dim Xm = 3, and let fm : Xm ! Sm be a projective
morphism with connected fibers to a smooth curve. Assume that for each m 2 Z,
coeff(Bm,⌘) ✓ C, (Xm,⌘, Bm,⌘) is semi-log canonical, and KXm,⌘ + Bm,⌘ is ample
with (KXm,⌘ + Bm,⌘)

2 = � where ⌘ is the generic point of Sm .
Then for all but finitely many m’s there exist a separable finite morphism �m :

S0
m ! Sm , a projective morphism X 0

m ! S0
m , and a pair (X 0

m, B0
m) such that

(X 0
m,s, B0

m,s) is semi-log canonical and KX 0
m,s + B0

m,s is ample for all s 2 S0
m , and

(X 0
m,s, B0

m,s) is isomorphic to (Xm,�m(s), Bm,�m(s)) for general s 2 S0
m .

Proof. Suppose that the conclusion of the theorem fails, i.e., that it fails for in-
finitely many primes pm . Passing to a subsequence, we may assume that the conclu-
sion fails for every prime pm and we aim to find a contradiction. Since the statement
is local over the base, we may assume that Sm = Spec(Rm) where Rm is a DVR
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with closed point sm . Let bSm be the formal neighborhood of sm 2 Sm and bXm be
the formal neighborhood of f �1

m (sm)⇢ Xm with induced morphism bfm :bXm ! bSm .
We have bSm = Lm[[t]] and arguing as in Corollary 2.12 there is a finite cover
bS0 ! bS = k[[t]] and a family of semi-log canonical models (bX 0, bB0) ! bS0 which
over the generic fiber is induced by ([bXm,⌘], [(bBm,⌘)red]). Since bS0 is a normal
complete 1-dimensional DVR, we may assume that bS0 ' k[[s]] and � : bS0 ! bS
is induced by the inclusion � ⇤ : k[[t]] ! k[[s]]. Let � ⇤(t) = sr g(s) where
g(s) 2 k[[s]] is a unit. Considering the corresponding internal objects bX 0

int = [bX 0
m],

bB0
int = [bB0

m] and bS0
int = [bSm], then bS0

m = Lm[[s]] ! bSm = Lm[[t]] where
t = sr g(s).

Claim 2.16. Let S0
m ! Sm be a finite cover ramified at sm to order r and s0m be the

corresponding closed point on S0
m . Then bS0

m is isomorphic to the completion of S0
m

along s0m .

Proof. Let � : eS0
m ! Sm be the morphism induced by the above finite cover

where eS0
m is the completion of S0

m along s0m , then eS0
m = Spec(Lm[[s]]) and � is

determined by � ⇤(t) = sr hm(s) where we view t 2 Rm a local parameter of
Sm at sm . Let gm(s) 2 Lm[[s]] be the elements corresponding to g(s) 2 k[[s]]
and ↵m(s),�m(s) 2 k[[s]] such that (↵m(s))r = hm(s) and (�m(s))r = gm(s),
then ↵m(s),�m(s) 2 k[[s]] are units. Let ⌧m : Lm[[s]] ! Lm[[s]] be a isomor-
phism such that ⌧m(↵m(s)) = �m(s), then ⌧m induces the required isomorphism
bS0
m ! eS0

m .

Consider now efm : eXm ! S0
m a log resolution of Xm ⇥Sm S0

m such that if eBm
is the strict transform of Bm plus the reduced exceptional divisor and the reduced
fiber (ef �1

m (s0m))red, then eBm has simple normal crossings support. Let beXm be the
completion of eXm along ef �1

m (s0m). Consider a common resolution ⇡m : Wm ! beXm
and %m : Wm ! bX 0

m . We write

⇡⇤
m

⇣
KbeXm

+ beBm
⌘

= %⇤
m

⇣
KbX 0

m
+ bB0

m + bX 0
m,s0m

⌘
+ Gm .

It is easy to see that ⇡m,⇤(Gm) � 0 and since %⇤
m(KbX 0

m
+ bB0

m) � ⇡⇤
m(KbeXm

+beBm) is
⇡m-nef, then by the negativity lemma, Gm � 0 (notice that restricting to the central
fiber and applying the usual negativity lemma, we obtain that Gm |(Wm)s0m

� 0, and
hence Gm � 0 as we are working over a formal neighborhood of s0m).

Claim 2.17. The ring
L

q�0
efm,⇤OeXm (q(KeXm + eBm)) is a finitely generated OS0

m -
algebra.

Proof. Since the statement is triviallly true over the open subset S0
m \ {s0m}, we

may localize S0
m at s0m . Since the natural functor from coherent sheaves over S0

m to
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coherent sheaves over bS0
m is exact, it suffices to check the analogous statement for

the ObS0
m
-algebra

M

q�0

bef m,⇤ObeXm

⇣
q
⇣
KbeXm

+ beBm
⌘⌘

.

By what we have observed above, this algebra is isomorphic to
M

q�0

bf 0
m,⇤ObX 0

m

⇣
q
⇣
KbX 0

m
+ bB0

m + bXm,s0m

⌘⌘
'

M

q�0

bf 0
m,⇤ObX 0

m

⇣
q
⇣
KbX 0

m
+ bB0

m

⌘⌘

which is finitely generated (since KbX 0
m

+ bB0
m is ample over bS0

m .

We now consider X 0
m = Proj(

L
q�0

efm,⇤OeXm (q(KeXm + eBm))). Note that the
special fiber X 0

m,s0m
is isomorphic to the special fiber of bX 0

m ! bS0
m and in particular

it is reduced. By construction X 0
m ! S0

m is a family of log canonical models and
these log canonical models determine semi-log canonical models over S0

m \ {s0m}
and over a formal neigborhood of s0m 2 S0

m . Since these semi-log canonical models
agree over the generic point of the formal neigborhood of s0m 2 S0

m , we obtain a
semi-log canonical model over the whole of S0

m (which is automatically projective
over S0

m since the relative log canonical divisor is relatively ample). This is the
required contradiction and the proof is complete.
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