
Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)
Vol. XIX (2019), 155-167

On Hurwitz-Severi numbers

YURII BURMAN AND BORIS SHAPIRO

Abstract. For a point p 2 CP2 and a triple (g, d, `) of non-negative integers
we define a Hurwitz-Severi number Hg,d,` as the number of generic irreducible
plane curves of genus g and degree d + ` having an `-fold node at p and at most
ordinary nodes as singularities at the other points, such that the projection of the
curve from p has a prescribed set of local and remote tangents and lines passing
through nodes. In the cases d+` � g+2 and d+2` � g+2 > d+` we express
the above Hurwitz–Severi numbers via appropriate ordinary Hurwitz numbers.
The remaining case d + 2` < g + 2 is still widely open.

Mathematics Subject Classification (2010): 14H50 (primary); 14H51 (sec-
ondary).

1. Introduction and main results

In what follows we will always work over the field C of complex numbers, and by
a genus g of a (singular) curve C we mean its geometric genus, i.e. the genus of its
normalisation.

Fix a point p 2 CP2 and denote by Wg,d,` the set consisting of all reduced
irreducible plane curves of degree d+`, genus g, having an `-fold node at the point
p (i.e. ` smooth local branches intersecting transversally at p; ` = 0 means that p
does not belong to the curve). All the singularities outside p (if any) are ordinary
nodes. The setWg,d,` is nonempty if and only if
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, (1.1)

see [12].
Wg,d,` is usually referred to as the (open, generalized) Severi variety, the

classical case corresponding to ` = 0. The study of this variety was initiated
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by F. Severi [14] back in the 1920s. In a number of celebrated papers (see, e.g.,
[6, 7, 12, 13]) it was proved that Wg,d,` is an irreducible algebraic variety of di-
mension 3d + 2` + g � 1. Degrees of the Severi varieties are also well-studied;
see [3].

A Hurwitz-Severi number Hg,d,`, which we define below, seems to be as natu-
ral a characteristic ofWg,d,` as its degree, but at the moment we do not know how
to calculate it for all triples (g, d, `).

The setWg,d,` is acted upon by the group G ⇢ PGL(3, C) of projective trans-
formations of CP2 preserving p and each line passing through p. Obviously, G
is a 3-dimensional Lie group that acts locally freely onWg,d,`. (In fact, unions of
lines passing through p are the only curves having positive-dimensional stabilizers
under this action.) Denote the orbit space of this action by fWg,d,` :=Wg,d,`/G; it
is smooth almost everywhere and its dimension equals 3d + 2`+ g � 4.

Let us denote by C a normalisation of a given plane curve C and by
 : C ! C , the normalisation map. For a curve C 2 Wg,d,`, one defines the
associated meromorphic function of degree d

↵C := ⇡p �  : C ! p? ' CP1

obtained by composing the normalisation map with the standard projection
⇡p : CP2 \ p ! p? from the point p to the pencil p? ' CP1 of lines pass-
ing through p.

For a generic C 2Wg,d,`, there are ` distinct lines tangent to C at p (local tan-
gents), and 2d+2g�2 distinct lines passing through p and tangent to C elsewhere
(remote tangents). Additionally, the curve C has
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✓
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ordinary nodes (outside p), see, e.g., [11]. A line passing through p and a remote
node will be called node-detecting.

For any set X, denote by X (m) its m-th symmetric power, i.e. the quotient of
the Cartesian product X⇥ X⇥ · · ·⇥ X of m copies of X by the natural action of the
symmetric group Sm permuting the copies. In the case when X is a smooth com-
plex curve, X (m) is naturally interpreted as the set of effective divisors of degree
m on X . Below we will denote elements of X (m) as divisors z1 + · · · + zm , where
z1, . . . , zm 2 X are not necessarily distinct. Them-th symmetric power (CP1)(m) is
identified with CPm by means of the standard map sending the divisor
[z1:w1]+· · ·+[zm :wm] to [a0: . . . :am], where

Pm
k=0 aktksm�k :=

Qm
k=1(t zk�swk).

We now define three natural maps:

RT :Wg,d,` !
�
p?�(2d+2g�2)

,

LT :Wg,d,` !
�
p?�(`),

ND :Wg,d,` !
�
p?�(#nodes),
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where RT sends C 2 Wg,d,` to the divisor of its remote tangents, LT sends
C 2 Wg,d,` to the divisor of its local tangents, and ND sends C 2 Wg,d,` to the
divisor of its node-detecting lines. Observe also that RT (C) coincides, for any
C 2 Wg,d,`, with the divisor of the critical values of the meromorphic function ↵C .

RT , LT and ND are obviously preserved by the action of the group G and,
therefore, can be considered as maps defined on fWg,d,`.

The triple of maps

Brg,d,` := (RT ,LT ,ND) : fWg,d,` ! Pg,d,`

where
Pg,d,` :=

�
p?�(2d+2g�2)

⇥
�
p?�(`) ⇥

�
p?�(#nodes),

is called the branching morphism.
Definition 1.1.
(1) A triple (g, d, `) is called bendable if dimfWg,d,` � 2d + 2g � 2+ `. This is

equivalent to d + ` � g + 2 and means that dimfWg,d,` is larger than or equal
to the sum of the number of the branch points of ↵C plus the number of the
local tangents. A triple (g, d, `) is called strongly bendable if dimfWg,d,` =
2d+2g�2+`+#nodes, i.e. Brg,d,` is a map between spaces of equal dimension;

(2) A triple (g, d, `) is called semi-bendable if dimfWg,d,` < 2d + 2g � 2 + `,
but dimfWg,d,` � 2d + 2g � 2. This is equivalent to d + ` < g + 2  d + 2`
and means that dimfWg,d,` is larger than or equal to the number of the branch
points of ↵C ;

(3) Otherwise, a triple (g, d, `) is called unbendable. It means that dimfWg,d,` <
2d + 2g � 2 or, equivalently, that d + 2` < g + 2.

An easy calculation shows that for all triples (g, d, `), one has

dimfWg,d,`=3d+2`+g�4=2d+2g�2+`+#nodes�
(d�2)(d+2`�3)

2
2d + 2g � 2+ `+ #nodes = dimPg,d,`.

(1.2)

The strongly bendable cases (where the equality takes place) are given by all triples
(g, 2, `) with g  ` (cf. (1.1)) and two exceptional triples: (0, 3, 0) and (1, 3, 0).

In view of (1.2), to get combinatorially meaningful quantities, we need to make
the image space smaller so that its dimension would be equal to that of fWg,d,`.
Definition 1.2.
(1) Given a bendable triple (g, d, `), let ā = a1+· · ·+a2d+2g�2, b̄ = b1+· · ·+b`,

and x̄ = x1 + · · · + xm be generic divisors on p? of degrees 2d + 2g � 2, `,
and m := dimfWg,d,` � (2d + 2g + ` � 2) = d + ` � g � 2, respectively.
Then the Hurwitz-Severi number Hg,d,` is defined as the number of G-orbits
O 2 fWg,d,` such that RT (O) = ā, LT (O) = b̄, and ND(O) � x̄ (i.e. all
the lines x1, . . . , xm are node-detecting for any C 2 O, but C may have other
node-detecting lines as well);
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(2) Given a semi-bendable triple (g, d, `), let ā = a1 + · · · + a2d+2g�2 and b̄ =
b1 + · · · + bm be generic divisors on p? of degrees 2d + 2g � 2 and m :=
dimfWg,d,`� (2d+2g�2) = d+2`� g�2, respectively. Then the Hurwitz-
Severi number Hg,d,` is defined as the number of G-orbits O 2 fWg,d,` such
thatRT (O) = ā and LT (O) � b̄ (i.e. all lines b1, . . . , bm are local tangents
for any C 2 O, but C may have other local tangents as well);

(3) Given an unbendable triple (g, d, `), let ā = a1+· · ·+am be a generic divisor
on p? of degree m := dimfWg,d,`. Then the Hurwitz-Severi number Hg,d,` is
defined as the number of orbitsO 2 fWg,d,` such thatRT (O) � ā (i.e. all the
lines a1, . . . , am are remote tangents for any C 2 O).

Remark. One can define a branching morphism and a Hurwitz-like number not
only for Severi varieties, but also for many other natural families of plane algebraic
curves. Given a generic curve � in such a family, take the divisor of all lines passing
through a given point p 2 CP2 which are not in general position with respect to � .
Then one can either define a branching morphism by just mapping � to this divisor
or (as we did above) one can additionally split this divisor into several subdivisors
keeping track of different singularities of the intersection of � with a given line.
A Hurwitz-like number will be the number of preimages of a generic subspace of
appropriate dimension in the image space under the branching morphism.
Our main results are formulas for the Hurwitz–Severi numbers in the bendable and
the semi-bendable case. Consider the set of pairs (C,↵), where C is a connected
smooth curve of genus g and ↵ : C ! CP1 is the meromorphic function of degree
d with a prescribed set of simple critical values. Such pairs are considered up to
an isomorphism: (C,↵) ⇠ (C0,↵0) if there exists a holomorphic homeomorphism
� : C ! C0 such that ↵ = ↵0��. The number of the pairs is equal to hg,1d/d!, where
hg,1d is the ordinary Hurwitz number of genus g and 1d = (1, . . . , 1) is a trivial
partition of d; see [8] for the precise definition and an algorithm of computation of
the ordinary Hurwitz numbers. (Note also that the quotient hg,1d/d! is sometimes
denoted by hg,d in the literature: it is the number of ramified covers of CP1 by a
genus g curve with a fixed generic branch divisor.)

Theorem 1.3. Let (g, d, `) be a bendable triple. Then the Hurwitz-Severi number
Hg,d,` is equal to

�d
2
�d+`�g�2

d`hg,1d/d!.

Theorem 1.4. Let (g, d, `) be a semi-bendable triple. Then the Hurwitz-Severi
number Hg,d,` is equal to dd+2`�g�2�2g�d�`�1

g�3
�
hg,1d/d!.

Examples

(1) Projection of a smooth cubic from a point not lying on it. Here the triple
(g, d, `) = (1, 3, 0) is bendable. The ordinary Hurwitz number equals h1,13 =
240 by [8], so the Hurwitz-Severi number is H1,3,0 = 40; this result was ob-
tained earlier in [11];
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(2) Projection of a smooth cubic from a point lying on it. The triple (g, d, `) =
(1, 2, 1) is bendable. The ordinary Hurwitz number equals h1,12 = 1 by [8], so
the Hurwitz-Severi number equals H1,3,0 = 1; this can be checked by a direct
computation;

(3) Projection of a nodal cubic from an outside point corresponds to a bendable
triple (g, d, `) = (0, 3, 0). Here h0,13 = 24 by [8], implying H0,3,0 = 12.
This answer can be checked directly using a computer algebra system;

(4) Projection of a nodal cubic from its smooth point corresponds to (g, d, `) =
(0, 2, 1). The ordinary Hurwitz number equals h0,12 = 1, so the Hurwitz-
Severi number equals H0,2,1 = 1, which is easily checked by hand;

(5) Projection of a smooth quartic from its point corresponds to (g, d, `)=(3,3,1),
a semi-bendable triple. The ordinary Hurwitz number computed using the stan-
dard formulas of [8] equals h3,13 = 19680, so the Hurwitz-Severi number
equals H3,3,1 = 3280;

(6) Projection of a smooth quartic from an outside point corresponds to (g, d, `) =
(3, 4, 0). This is an unbendable triple not covered by Theorems 1.3 and 1.4.
This case was investigated by R. Vakil in [15] using different techniques. His
answer is H3,4,0 = 3762⇥ 120.

Theorems 1.3 and 1.4 give a complete description of the Hurwitz–Severi numbers in
the bendable and the semi-bendable case. Unlike them, the unbendable case seems
to require completely new ideas. The only result in the unbendable case known to
the authors at the time of writing is [15].
Remark. Let u be a generic point in the image of the map Brg,d,`. By Theorems
1.3 and 1.4, the number of preimages Br�1g,d,`(u) 2 fWg,d,` is the same for all u.
This allows us to formulate.
Conjecture 1.5. For any triple (g, d, `) the map Brg,d,` is a branched covering of
fWg,d,` onto its image.

ACKNOWLEDGEMENTS. The authors are grateful to M. Feigin, A. Gorinov,
M. Kazarian, S. Lando, S. Lvovski, M. Shapiro, and I. Tyomkin for discussions.
The first-named author wishes to thank the Stockholm University for its warm hos-
pitality. The second-named author wants to thank the Department of Mathematics
of the Higher School of Economics in Moscow for the hospitality and the finan-
cial support of his visit in April 2014, when this project was initiated. The current
project is a continuation of the previous research, see [2] and [11], which was the
outcome of the previous visit by the second-named author to the HSE in 2013.

2. Proofs

The symmetric power C(k) of the curve C is the set of effective divisors D of degree
k on C. Let D = x1c1 + · · · + xmcm 2 C(k) where c1, . . . , cm 2 C are pairwise
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distinct, x1, . . . , xm 2 Z>0, and x1 + · · · + xm = k. Let U1, . . . ,Um ⇢ C be non-
overlapping open sets such that ci 2 Ui for all i = 1, . . . ,m; equip each Ui with a
complex coordinate zi with zi (ci ) = 0.

LetU be the image ofU1⇥ · · ·⇥Um under the standard projection Ck ! C(k)

and D̃ = p1 + · · · + pk 2 U (where p1, . . . , pk are not necessarily distinct).
Without loss of generality, it means that p1, . . . , pk1 2 U1, pk1+1, . . . , pk2 2 U2,
. . . , pkm�1+1, . . . , pk 2 Um for some 1  k1  · · ·  km�1  k. Now for
every i = 1, . . . ,m consider the principal part Fi of a meromorphic function
fi : Ui ! CP1 having a pole at pi with the degree not exceeding the multiplicity of
pi in the divisor D̃ and having no other poles in Ui . Set F = (F1, . . . , Fm). Using
the local coordinates zi , i = 1, . . . ,m, one observes that every Fi is the principal
part of the function fi where

f1(c) =
a1 + a2z1(c) + · · · + ak1z1(c)k1�1

(z1(c) � z1(p1)) . . . (z1(c) � z1(pk1))
...

...
...

...

fm(c) =
akm�1+1 + akm�1+2zm(c) + · · · + akzm(c)k�km�1�1
�
zm(c) � zm(pkm�1+1)

�
. . . (zm(c) � zm(pk))

.

So, the vectors F of the principal parts form a rank k vector bundle over C(k); the
coefficients a1, . . . , ak form a trivialisation of this bundle over the open set U . An
immediate comparison of the transition maps shows that this bundle is isomorphic
to the tangent bundle TC(k).

Given a 1-form ⌫ holomorphic in Ui and a point z 2 Ui , we define a linear
functional ⌫z on the space of the principal parts by the formula

⌫z(Fi ) = Resz Fi⌫.

For a divisor D = x1c1+· · ·+xmcm 2 C(k), define ⌫D :=
Pm

i=1 ⌫ci . It follows from
the above reasoning that ⌫D is a section of the complex cotangent bundle T ⇤C(k);
cf. the fiber bundle of principal parts introduced in [4].

There exists a natural map 8 : O(D) ! TDC(k) sending a memomorphic
function f 2 O(D) to the m-tuple F = (F1, . . . , Fm) of its principal parts at the
points c1, . . . , cm . By the Riemann-Roch theorem, F = 8( f ) for some f if and
only if ⌫D(F) = 0 for every holomorphic 1-form ⌫ on C. Fixing a basis ⌫1, . . . , ⌫g
of the space of holomorphic 1-forms on C, we can calculate the dimension h0(D) =
dimO(D) as k+1�dimh(⌫1)D, . . . , (⌫g)Di. For a meromorphic function ↵ : C !
CP1 denote by D↵ its divisor of poles.

To prove our main results, we need the following technical statement which is
apparently well-known to the specialists, but we could not find it explicitly in the
literature:

Proposition 2.1. Take a pair (C,↵), where C is a smooth curve of genus g and
↵ : C ! CP1 is a meromorphic function of degree d, and suppose that (C,↵) is
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generic among such pairs. Set D↵ := z1 + · · · + zd , where all zi are pairwise
distinct. If m � g + 2 � d and zd+1, . . . , zm are generic pairwise distinct points,
then the divisor z1 + · · · + zm is non-special.

Generic divisors are never special, but z1 + · · · + zm may be non-generic because
z1 + · · · + zm � D↵ for some ↵ of degree d.

Proof. Let ⌫1, . . . , ⌫g be a basis of holomorphic 1-forms on C. Since z1+· · ·+zd =
D↵ , one has h0(z1 + · · · + zd) � 2. If there exists  2 O(D↵) not proportional to
↵, then there exists their non-constant linear combination with no pole at zd . Since
a generic d-gonal curve C is not (d � 1)-gonal [5], this is impossible, and therefore
h0(z1 + · · · + zd) = 2.

We now prove by induction that if d+ s  g+1 and the points zd+1, . . . , zd+s
are in general position, then

dim
⌦
(⌫1)z1+···+zd+s , . . . , (⌫g)z1+···+zd+s

↵
= d + s � 1.

Assume that starting with some s the statement fails. It means that for zd+1, . . . ,
zd+s�1 in general position,

dim
⌦
(⌫1)z1+···+zd+s�1, . . . , (⌫g)z1+···+zd+s�1

↵
= d + s � 2,

but there exists a non-empty open set � ⇢ C such that if zd+s 2 �, then

dim
⌦
(⌫1)z1+···+zd+s , . . . , (⌫g)z1+···+zd+s

↵
= d + s � 2

as well. In other words, vector E⌫zd+s := ((⌫1)zd+s , . . . , (⌫g)zd+s ) is a linear combi-
nation of E⌫zi , i = 1, . . . , d + s � 1.

The idea of the proof is to add many points from� keeping the divisor special.
Let q be any integer, and zd+s, . . . , zd+s+q�1 2 �, then for j = d + s, . . . , d +
s + q � 1 every E⌫z j is a linear combination of E⌫zi , i = 1, . . . , d + s � 1. Therefore

dim
⌦
(⌫1)z1+···+zd+s+q�1, . . . , (⌫g)z1+···+zd+s+q�1

↵
= d + s � 2

for any q. Hence the divisor zd+s + · · · + zd+s+q�1 is special for any collection
zd+s, . . . , zd+s+q�1 2 �, implying that the set of special divisors of any degree
q > g on C contains an open subset �(q) ⇢ C(q). The latter claim is false since the
set of special divisors of any sufficiently large degree is nowhere dense.

Proof of Theorem 1.3. Take p = [0 : 1 : 0] and suppose without loss of gener-
ality that a curve C 2 Wg,d,` does not contain the point [1 : 0 : 0]. Then the
normalisation map  : C ! C is given by

(z) = [↵(z) : �(z) : 1],

where ↵,� : C ! CP1 are meromorphic functions of degrees d and d + `, respec-
tively, such that D� � D↵ . In other words, D��D↵ is an effective divisor on C. For
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such choice of p the action of the group G (the group of projective transformations
preserving p and every element of p?) on CP2 is given by the formulas

[x : y : 1] 7! [x : px + qy + r : 1] (2.1)

where q 6= 0 and p, r are arbitrary.
Take a generic divisor ā = a1+· · ·+a2d+2g�2 onCP1. As it was noted above,

there exist hg,1d/d! pairs (C,↵) such that ā is the divisor of the critical values of ↵.
For any �, one can take C := (C), with the map  : C ! CP2 as above. Then
RT (C) = ā regardless of the choice of �. Set D↵ := z1 + · · · + zd and notice that
for generic ā the points z1, . . . , zd 2 C are pairwise distinct (i.e. ↵ has only simple
poles).

Now take a generic divisor b̄ = b1 + · · · + b` on CP1 and choose points
zd+1, . . . , zd+` 2 C such that b̄ = ↵(zd+1) + · · · + ↵(zd+`). Since the degree of ↵
is d, there are d` ways to do this; the points zd+1, . . . , zd+` are pairwise distinct if
b̄ is in general position. For any such choice of D� = z1 + · · · + zd+` one has the
equality LT (C) = b̄ for the curve C = (C).

Assume now that x̄ = x1 + · · · + xd+`�g�2 is a generic divisor on CP1. For
each i , take a pair of points ui 6= vi 2 C such that ↵(ui ) = ↵(vi ) = xi ; there are�d
2
�d+`�g�2

ways to do this. For i = 1, . . . , d + ` � g � 2, define the functionals
⇢i : O(z1 + · · · + zd+`) ! C by

⇢i (�) := �(ui ) � �(vi ).

Apparently, ⇢i (�) = 0 if and only if the line xi is node-detecting for the curve
C = (C).
Lemma 2.2. For a generic choice of ↵ and zd+1, . . . , zd+`,, the functionals ⇢i ,
i = 1, . . . , d + `� g � 2 are linearly independent.

Proof. By the Riemann-Roch theorem, h0(z1 + · · · + zd+`) � d + ` � g + 1.
Thus, for any k  d + ` � g � 2, there exists a function � 2 O(z1 + · · · + zd+`)
such that ⇢1(�) = · · · = ⇢k�1(�) = 0. If for generic ↵ and zd+1, . . . , zd+`, the
functional ⇢k is a linear combination of ⇢i , 1  i  k � 1, then there exists an
open subset � ⇢ CP1 with the following property: if ↵(u) = ↵(v) = x 2 �, then
�(u) = �(v).

In other words, �(z) is a function of ↵(z) for z 2 ↵�1(�). Therefore for any
z 2 ↵�1(�), the line ↵(z) 2 p? intersects the curve C at exactly one point. But
this is impossible for many reasons. For example, since ↵�1(�) ⇢ C is open, there
exists z⇤ 2 ↵�1(�) such that the intersection in question is transversal. Thus the
intersection index of the line ↵(z) with the curve C is 1, but the degree of C is
d > 1.

Now by Proposition 2.1, one has generically

h0(z1 + · · · + zd+`) = d + `� g + 1
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implying that the solutions of the equations ⇢1(�) = · · · = ⇢d+`�g�2(�) = 0 form
a 3-dimensional space. It follows from (2.1) that the group G acts transitively on
this space of solutions, so Theorem 1.3 follows.

Consider now a semi-bendable case. Here the dimension offWg,d,` is sufficient
to fix all the remote tangents to the curve but only g + 2 � d � ` out of its ` local
tangents. The proof of Theorem 1.4 is based on the following statement:

Proposition 2.3. Let (g, d, `) be a semi-bendable triple. Then for a generic pair
(C,↵), where C is a smooth curve and ↵ : C ! CP1 is a degree d meromorphic
function, and for a generic divisor D0 of degree d + 2`� g � 2 on C, the set

D :=
n
D 2 C(g+2�d�`) | h0(D↵ + D0 + D) � 3

o

is finite and contains
�2g�d�`�1

g�3
�
elements. Additionally, for any D 2 D, one has

h0(D↵ + D0 + D) = 3.

Proof. Choose D 2 D and � 2 O(D↵+D0+D) and define a plane curve CD,� :=
(C), where (z) := [↵(z) : �(z) : 1]. The group G acts on O(D↵ + D0 + D) by
(2.1). Thus G acts on the set of all CD,� with a fixed D.

Prove first that D is finite and that h0(D↵ + D0 + D) = 3 for any D 2 D.
Consider the orbit space eD := {(D,�) | D 2 D,� 2 O(D↵ + D0+ D)}/G and let
� := dim eD be its dimension. The pair (C,↵) is determined, up to a finite choice,
by the divisor of the critical values of ↵, which has degree 2d+2g�2; so the set of
all such pairs has dimension 2d + 2g � 2. The dimension of the set of all divisors
D0 is equal to deg D0 = d + 2` � g � 2. The choice of (D,�) 2 eD determines
a curve CD,� up to the action of G, that is, it determines a point in fWg,d,`. On
the other hand, for a given curve CD,� 2 Wg,d,`, one can uniquely restore the
divisor D on the normalisation C of CD,� noticing that its points are the poles of
� or, equivalently, the points of C sent by the normalisation map to the base point
p 2 CD,� . So, different choices of D 2 D and different orbits of the G-action
on O(D↵ + D0 + D) for a fixed D correspond to different points of fWg,d,`. This
implies the inequality

dimfWg,d,` � (2d + 2g � 2) + (d + 2`� g � 2) + �.

Since dimfWg,d,` = 3d + 2` + g � 4 (see, e.g., [6]), one gets that � = 0. Thus,
D consists of a finite number of points, and for any such point D, the number of
G-orbits inO(D↵ + D0 + D) is finite, which means that h0(D↵ + D0 + D) = 3.

Count now the points D 2 D. Set D↵ := z1 + · · · + zd , D0 := zd+1 + · · · +
z2d+2`�g�2, D := z2d+2`�g�1 + · · · + zd+` and denote

D0 := D↵ + D0 + D � zd = z1 + · · · + zd�1 + zd+1 + · · · + zd+`.



164 YURII BURMAN AND BORIS SHAPIRO

As was shown above, h0(D↵ + D0 + D) � 3 if and only if

dimh(⌫1)D↵+D0+D, . . . , (⌫g)D↵+D0+Di  d + `� 2

or, equivalently, dimhE⌫z1, . . . , E⌫zd+`i  d+`�2. Since C is a generic d-gonal curve,
it is not (d�1)-gonal [5], implying that h0(D↵) = 2. Thus the vector E⌫zd is a linear
combination of E⌫z1, . . . , E⌫zd�1 (see the proof of Proposition 2.1 for notation), which
means that the last condition is equivalent to

dim
⌦
E⌫z1, . . . , E⌫zd�1, E⌫zd+1, . . . , E⌫zd+`

↵
 d + `� 2,

i.e. dimh(⌫1)D0, . . . , (⌫g)D0 i  d + `� 2.
For any k denote by Sk : Ck ! C(k) the natural projection; for any vector

X 2 Cm , denote by ◆X : Ck ! Cm+k the natural embedding (the coordinates
of X are written before the coordinates of the argument). Take any point Z =
(z1, . . . , zd�1, zd+1, . . . , z2d+2`�g�2) such that S2d+2`�g�3(Z) = D0 + D1 � zd
and consider the vector bundle E = ◆⇤Z S

⇤
d+`�1T

⇤C(d+`�1) of rank d + ` � 1
on Cg+2�d�`. (In other words, Z is an arbitrary ordering of z1, . . . , zd�1, zd+1,
. . . , z2d+2`�g�2.) The Riemann-Roch theorem implies that D 2 D if and only if
for any W 2 S�1

g+2�d�`(D1) one has

dim
⌦
◆⇤Z S

⇤
d+`�1(⌫1)D0(W ), . . . , ◆⇤Z S

⇤
d+`(⌫g)D0(W )

↵
 d + `� 2.

Now we are in a typical setting of the intersection theory: to describe the set of
points at the base of a vector bundle such that values of some given sections at
every such point span a subspace of the fiber having a given dimension (or smaller).
The set of points in question is the variety S�1

g+2�d�`(D); we proved that it has
the expected dimension 0. So by [9] its cardinality is determined by the Porteous
formula:

#S�1
g+2�d�`(D)Y =det

0

B
B
B
@

c1(E) c2(E) . . . cg+1�d�`(E) cg+3�d�`(E)
1 c1(E) . . . cg�d�`(E) cg+1�d�`(E)
0 1 . . . cg�1�d�`(E) cg�d�`(E)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . 1 c1(E)

1

C
C
C
A

, (2.2)

where Y 2 H2(g+2�d�`)(Cg+2�d�`) is the generator of the top-dimensional coho-
mology, i.e. the Poincaré dual of a point.

Set m := g+2�d�` for brevity, and denote byNk,m the lower right (k⇥k)-
minor of (2.2). In particular, #S�1

g+2�d�`(D)Y = Nm,m . Expanding the determinant
by its first column, one obtainsNm,m =

Pm
k=1(�1)k+1ck(E)Nm�k,m , implying

mX

k=0
Nk,m =

 
mX

k=0
(�1)kck(E)

!�1

. (2.3)
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Denote by x 2 H2(C(k)) the class dual to the fundamental homology class of the
diagonal {kz | z 2 C} ⇢ C(k). It follows from the general formula of [10] that
ck(T ⇤C(m)) =

�2g�2+k�m
k

�
xk . One has S⇤

mx = x1 + · · · + xm := X , where xi 2
H2(Cm) is the class dual to the fundamental class of the i-th copy of C in the product
C ⇥ · · · ⇥ C = Ck . Additionally, one has ◆⇤Z xi = xi�m 2 H2(Ck) if i > m and
◆⇤Z xi = 0 if i  m. Therefore ck(E) =

�g�3+m+k
k

�
Xk , implying that

mX

k=0
(�1)k

✓
g � 3+ m + k

k

◆
Xk = (1+ X)�(g�3+m).

Thus, (2.3) implies that
Pm

k=0Nk,m =(1+ X)(g�3+m), givingNm,m =
�g�3+m

g�3
�
Xm .

Since Y = Xm/m!, one has #S�1
m (D) = m!

�g�3+m
g�3

�
. By dimensional reasons, in

generic situation all the elements D are sums of exactly m distinct points, meaning
that

#D =
1
m!
#S�1

m (D) =

✓
g � 3+ m
g � 3

◆
=

✓
2g � 1� d � `

g � 3

◆
.

Proof of Theorem 1.4. Similarly to the proof of Theorem 1.3, for a generic divisor
ā = a1 + · · · + a2d+2g�2, there are hg,1d/d! ways to choose a curve C of genus g
and a degree d meromorphic function ↵ : C ! CP1 such that ā is its divisor of
critical values.

Let D↵ be the pole divisor of ↵; choose d + 2`� g � 2 points

zd+1, . . . , z2d+2`�g�2 2 C

such that b̄ = ↵(zd+1) + · · · + ↵(z2d+2`�g�2). For generic b̄, there are dd+2`�g�2

ways to do that.
Similar to the proof of Proposition 2.3, denote D0 := zd+1+· · ·+ z2d+2`�g�2

for short, and denote by D ⇢ C(g+2�d�`) the set of effective divisors

D := z2d+2`�g�1 + · · · + zd+`

of degree g + 2 � d � ` such that h0(D↵ + D0 + D) � 3. By Proposition 2.3,
the set D is finite, and for any D 2 D, the space O(D↵ + D0 + D) has dimension
3 and contains exactly one orbit of the group G. Therefore the number of points
C 2 fWg,d,` withRT (C) = a and LT (C) � b is equal to

dd+2`�g�2hg,1d/d!#D = dd+2`�g�2
✓
2g � d � `� 1

g � 3

◆
hg,1d/d!.
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3. Final remarks

3.1. Our definition of the Hurwitz-Severi numbers given above can be easily ex-
tended from the class of Severi varietiesWg,d,` to a somewhat broader classWg,d,`,µ

which appeared earlier in several papers of J. Harris and Z. Ran. Namely, one can
additionally require that curves under consideration have a given set µ of tangency
multiplicities to a given line passing through the point p. One might expect Theo-
rems 1.3 and 1.4 to have straightforward analogs in this more general setup.

3.2. The problem of calculation of the Hurwitz-Severi numbers for the simplest
unbendable case g = (d � 1)(d � 2)/2, ` = 0, i.e. when a smooth plane curve of
degree d is projected from a point not lying on it, bears a strong resemblance with
the problem of calculation of Zeuten’s numbers, see [16]. Namely, in a special case,
Zeuten’s problem asks how many smooth plane curves of degree d are tangent to
a given set of d(d+3)

2 lines in general position. The Hurwitz-Severi number for the
case g = (d � 1)(d � 2)/2 and ` = 0 counts the number of G-orbits of smooth
curves of degree d which are tangent to a given set of d(d+3)

2 � 3 generic lines
passing through a given point p. To the best of our knowledge, both problems are
unsolved at present and apparently are quite difficult.

3.3. One possible approach to the calculation of Hurwitz numbers in the unstable
case (such as ((d � 1)(d � 2)/2, d, 0)) might be the use of tropical algebraic geom-
etry. For example, in [1] the authors studied tropical analogs of Zeuten’s numbers
and were able to recover some of the classical Zeuten numbers through their tropical
analogs.

3.4. It would be interesting to study possible relation of the above Hurwitz-Severi
numbers to the appropriate Gromov-Witten invariants of plane curves.
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