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Non-secant defectivity via osculating projections

ALEX MASSARENTI AND RICK RISCHTER

Abstract. We introduce a method to produce bounds for the non secant defectiv-
ity of an arbitrary irreducible projective variety, once we know how its osculating
spaces behave in families and when the linear projections from them are generi-
cally finite.
Then we analyze the relative dimension of osculating projections of Grassman-
nians, and as an application of our techniques we prove that asymptotically the
Grassmannian G(r, n), parametrizing r-planes in Pn , is not h-defective for h 
( n+1r+1 )blog2(r)c. This bound improves the previous one h  n�r

3 + 1, due to
H. Abo, G. Ottaviani and C. Peterson, for any r � 4.

Mathematics Subject Classification (2010): 14N05 (primary); 14N15, 14M15
(secondary).

1. Introduction

The h-secant variety Sech(X), of an irreducible, non-degenerate n-dimensional va-
riety X ⇢ PN , is the Zariski closure of the union of the linear spaces spanned by
collections of h points on X . Secant varieties are central objects in both classical
algebraic geometry [20,63], and applied mathematics [41–43,46].

The expected dimension of Sech(X) is

expdim(Sech(X)) := min{nh + h � 1, N }.

However, the actual dimension of Sech(X)might be smaller than the expected one.
Indeed, if the expected dimension is nh+h�1 this happens when through a general
point of PN there are infinitely many (h � 1)-planes h-secant to X . According to a
definition by F. Zak [63] we will say that X is h-defective if

dim(Sech(X)) < expdim(Sech(X)).
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In this paper we introduce a method to produce bounds for the non secant defec-
tivity of an arbitrary irreducible projective variety, based on the behavior of its os-
culating spaces and of the corresponding osculating projections. Then, with these
techniques, we study the dimension of secant varieties of the GrassmannianG(r, n)
parametrizing r-planes in Pn . Grassmannians together with Veronese and Segre va-
rieties form the triad of varieties parametrizing rank one tensors. Hence, a general
point of their h-secant variety corresponds to a tensor of a given rank depending
on h. For this reason, secant varieties of Grassmannians, Veroneses and Segres are
particularly interesting in problems of tensor decomposition [25,26,34,41, 47, 48].

Furthermore, secant varieties have been widely used to construct and study
moduli spaces for all possible additive decompositions of a general tensor into a
given number of rank one tensors [13,31,32, 44, 45, 52, 58].

The problem of determining the actual dimension of secant varieties, and its
relation with the dimension of certain linear systems of hypersurfaces with double
points, have a very long history in algebraic geometry, and can be traced back to
the Italian school [55,57, 60].

Since then the geometry of secant varieties has been studied and used by many
authors in various contexts [20,24,39,54], and the problem of secant defectivity has
been widely studied for Veroneses, Segres and Grassmannians [1–4, 8, 12, 15, 17–
19,40].

Despite the long history of this subject, only in 1995 J. Alexander and A. Hir-
showitz [4] classified secant defective Veronese varieties. Indeed, they proved that,
except for the double Veronese embedding which is almost always defective, the
degree d Veronese embedding of Pn is not h-defective, with the following excep-
tions:

(d, n, h) 2 {(4, 2, 5), (4, 3, 9), (3, 4, 7), (4, 4, 14)}.
Later on, K. Baur, J. Draisma, W. A. de Graaf proposed a conjecture on secant
defectivity of Grassmannians in the spirit of Alexander-Hirshowitz result [11].

It is well-known that the secant variety Sech(G(1, n)), that is the locus of skew-
symmetric matrices of rank at most 2h, is almost always defective. Therefore,
throughout the paper we assume r � 2. Only four defective cases are known then,
and we have the following conjecture.
Conjecture ([11, Conjecture 4.1]). If r � 2 then G(r, n) is not h-defective with
the following exceptions:

(r, n, h) 2 {(2, 7, 3), (3, 8, 3), (3, 8, 4), (2, 9, 4)}.

In [18] M. V. Catalisano, A. V. Geramita, and A. Gimigliano gave explicit bounds
on (r, n, h) for G(r, n) not to be h-defective. Later, in [3] H. Abo, G. Ottaviani,
and C. Peterson, improved these bounds, and showed that the conjecture is true for
h  6. Finally, in [15] A. Boralevi further improved this result by proving the
conjecture for h  12.

To the best of our knowledge, the best asymptotic bound for Sech(G(r, n)) to
have expected dimension was obtained by H. Abo, G. Ottaviani, and C. Peterson
using monomial techniques.
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Theorem ([3, Theorem 3.3]). If r � 2 and

h 
n � r
3

+ 1

then Sech(G(r, n)) has the expected dimension.

Our starting point, in order to study the dimension of Sech(G(r, n)), is a result
due to L. Chiantini and C. Ciliberto [20, Proposition 3.5] relating secant defectivity
with the dimension of the general fiber of a general tangential projection. Given
x1, . . . , xh 2 X ⇢ PN general points, we may consider a general h-tangential
projection of X

⌧X,h : X ⇢ PN 99K PNh

that is the linear projection with center
⌦
Tx1X, . . . , Txh X

↵
. Then, by [20, Proposi-

tion 3.5] if ⌧X,h is generically finite then X is not (h + 1)-defective.
Our approach consists in considering linear projections from higher order os-

culating spaces. If p 2 X ⇢ PN is a smooth point, the m-osculating space Tmp X of
X at p is essentially the linear subspace of PN generated by the partial derivatives
of order less or equal thanm of a local parametrization of X at p, see Definition 3.1.

Given p1, . . . , pl 2 X general points, we denote by

5
T k1,...,klp1,...,pl

: X ⇢ PN 99K PNk1,...,kl

the corresponding (k1+ · · ·+ kl)-osculating projection, that is the linear projection
with center hT k1p1 X, . . . , T klpl Xi.

When X = G(r, n) we manage to control the dimension of the general fiber
of osculating projections from the span of a certain number of general osculating
spaces. Indeed, in Corollary 4.5 we prove that, under suitable numerical hypothesis,
such an osculating projection is birational.

Then, in Section 5 we construct flat degenerations of general tangential pro-
jections to linear projections which factor through suitable osculating projections.
Since, by Proposition 5.7, the dimension of the general fiber can only increase un-
der specialization, the birationality of a certain osculating projection yields that the
general tangential projection degenerating to it is generically finite.

However, we are not able to check if the degree of the map is preserved, that
is if the general tangential projection is birational as well. In order to do this, one
needs to achieve a good control on the indeterminacy locus of the relevant tangential
projection.

On the other hand, by [20, Proposition 3.5] knowing that a general tangen-
tial projection is generically finite is enough to conclude that, under the numerical
hypothesis ensuring the birationality of the corresponding general osculating pro-
jection, G(r, n) is not defective. As a direct consequence of our main results in
Theorem 6.3 we get the following.
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Theorem. Assume that r � 2, set

↵ :=

�
n + 1
r + 1

⌫

and write r = 2�1 + · · · + 2�s + ", with �1 > �2 > · · · > �s � 1, " 2 {0, 1}. If
either

• h  (↵ � 1)(↵�1�1 + · · · + ↵�s�1) + 1, or
• n � r2 + 3r + 1 and h  ↵�1 + · · · + ↵�s + 1

then G(r, n) is not h-defective.

Note that the bounds in our main result give that asymptotically the Grassmannian
G(r, n) is not (n+1r+1 )

blog2(r)c-defective, while [3, Theorem 3.3] yields thatG(r, n) is
not n3 -defective. In Section 6.1 we show that Theorem 6.3 improves [3, Theorem
3.3] for any r � 4. However, H. Abo, G. Ottaviani, and C. Peterson in [3] gave a
much better bound, going with n2, in the case r = 2.

We would like to mention that, as remarked by C. Ciliberto and F. Russo in
[24], the idea that the behavior of osculating projections reflects the geometry of
the variety itself was already present in the work of G. Castelnuovo [16, pages 186-
188].

Finally, we would like to stress that the machinery introduced in this paper
could be used to produce bounds, for the non secant defectivity of an arbitrary
irreducible projective variety, once we know how its osculating spaces behave in
families and when the projections from them are generically finite. Indeed, in [6]
we apply these techniques to Segre-Veronese varieties.

The paper is organized as follows. In Section 2 we recall some notions on
secant varieties and tangential projections. In Section 3 we compute explicitly the
osculating spaces of Grassmannians, and in Section 4 we study the relative dimen-
sion of general osculating projections. In Section 5, in order to extend our results on
osculating projections to tangential projections, we investigate how rational maps
degenerate in a 1-dimensional family. Finally, in Section 6 we take advantage of
these techniques to prove our main result on the dimension of secant varieties of
Grassmannians.

ACKNOWLEDGEMENTS. We would like to thank Ciro Ciliberto for his useful com-
ments, particularly about Section 5.1. We would also like to thank Ada Boralevi,
Luca Chiantini and Giorgio Ottaviani for helpful discussions. Finally, we thank
Carolina Araujo and Letterio Gatto for carefully reading and helping us improving
a preliminary version of the paper. Finally, we thank the anonymous referee who
helped us to improve this paper.
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2. Secant varieties

Throughout the paper we work over the field of complex numbers. In this section
we recall the notions of secant varieties, secant defectivity and secant defect. We
refer to [53] for a nice and comprehensive survey on the subject.

Let X ⇢ PN be an irreducible non-degenerate variety of dimension n and let

0h(X) ⇢ X ⇥ · · · ⇥ X ⇥ G(h � 1, N )

where h  N , be the closure of the graph of the rational map

↵ : X ⇥ · · · ⇥ X 99K G(h � 1, N ),

mapping h general points to their linear span hx1, . . . , xhi. Observe that 0h(X) is
irreducible and reduced of dimension hn. Let ⇡2 : 0h(X) ! G(h � 1, N ) be the
natural projection. We denote

Sh(X) := ⇡2(0h(X)) ⇢ G(h � 1, N ).

Again Sh(X) is irreducible and reduced of dimension hn. Finally, let

Ih = {(x,3) | x 2 3} ⇢ PN ⇥ G(h � 1, N )

with natural projections ⇡h and  h onto the factors. Furthermore, observe that
 h : Ih ! G(h � 1, N ) is a Ph�1-bundle on G(h � 1, N ).

Definition 2.1. Let X ⇢ PN be an irreducible non-degenerate variety. The abstract
h-secant variety is the irreducible variety

Sech(X) := ( h)
�1(Sh(X)) ⇢ Ih .

The h-secant variety is

Sech(X) := ⇡h(Sech(X)) ⇢ PN .

It immediately follows that Sech(X) is a (hn + h � 1)-dimensional variety with a
Ph�1-bundle structure over Sh(X). We say that X is h-defective if

dimSech(X) < min{dimSech(X), N }.

The number

�h(X) = min
�
dimSech(X), N

 
� dimSech(X)

is called the h-defect of X . We say that X is h-defective if �h(X) > 0.
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Now, let x1, . . . , xh 2 X ⇢ PN be general points, and let Txi X be the tangent space
of X at xi . We will call the linear projection

⌧X,h : X ✓ PN 99K PNh ,

where Nh = N � dim(
⌦
Tx1X, . . . , Txh X

↵
) � 1, with center

⌦
Tx1X, . . . , Txh X

↵
a

general h-tangential projection of X . Finally, let Xh = ⌧X,h(X). We will need the
first part of the following result due to L. Chiantini and C. Ciliberto.

Proposition 2.2 ([20, Proposition 3.5]). Let X ⇢ PN be a irreducible, non-dege-
nerate, projective variety of dimension n, then the following facts hold:

• If dim(Xh) = dim(X), that is ⌧X,h : X 99K Xh is generically finite, then X is
not (h + 1)-defective;

• If N � dim(
⌦
Tx1X, . . . , Txh X

↵
) � 1 � n and dim(Xh) < dim(X), that is ⌧X,h :

X 99K Xh has positive dimensional general fibers, then X is (h + 1)-defective.

3. Osculating spaces of Grassmannians

Let X ⇢ PN be an integral projective variety of dimension n, let p 2 X be a smooth
point, and

� : U ✓ Cn �! CN

(t1, . . . , tn) 7�! �(t1, . . . , tn)

with �(0) = p, be a local parametrization of X in a neighborhood of p 2 X .
For any m � 0 let Om

p X be the affine subspace of CN passing through p 2 X ,
and whose direction is given by the subspace generated by the vectors �I (0), where
I = (i1, . . . , in) is a multi-index such that |I |  m and

�I =
@ |I |�

@t i11 . . . @t inn
. (3.1)

Definition 3.1. The m-osculating space Tmp X of X at p is the projective closure in
PN of the affine subspace Om

p X ✓ CN .

For instance, T 0p X = {p}, and T 1p X is the usual tangent space of X at p. When no
confusion arises we will write Tmp instead of Tmp X .

Osculating spaces can be defined intrinsically. Let L be an invertible sheaf on
X and V = H0(X,L), and 1 ⇢ X ⇥ X the diagonal. The rank

�n+m
m
�
locally free

sheaf
Jm(L) = ⇡1⇤

⇣
⇡⇤
2 (L) ⌦OX⇥X/Im+1

1

⌘

is called the m-jet bundle of L. Note that the fiber of Jm(L) at p 2 X is

Jm(L)p ⇠= H0
⇣
X,L⌦OX/mm+1

p

⌘
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and the quotient map

jm,p : V ! H0
⇣
X,L⌦OX/mm+1

p

⌘

is nothing but the evaluation of the global sections and their derivatives of order at
most m at the point p 2 X . Let

jm : V ⌦OX ! Jm(L)

be the corresponding vector bundle map. Then, there exists an open subsetUm ✓ X
where jm is of maximal rank rm 

�n+m
m
�
.

The linear space P( jm,p(V )) = Tmp X ✓ P(V ) is the m-osculating space of X
at p 2 X . The integer rm is called the general m-osculating dimension of L on X .

Note that while the dimension of the tangent space at a smooth point is always
equal to the dimension of the variety, higher order osculating spaces can be strictly
smaller than expected even at a general point. In general, we have

dim(Tmp X) = min
⇢✓

n + m
n

◆
� 1� �m,p, N

�
(3.2)

where �m,p is the number of independent differential equations of order less or equal
than m satisfied by X at p.

Projective varieties having general m-osculating dimension smaller than ex-
pected were introduced and studied in [14, 56, 59, 61, 62], and more recently in
[9, 10, 27–30,33,37,38, 49, 51].

Examples of algebraic surfaces with defective higher order osculating spaces
are rational normal scrolls and developable surfaces, that is cones or tangent devel-
opables of curves. As an example, which will be useful later on in the paper, we
consider tangent developables of rational normal curves.

Proposition 3.2. Let Cn ✓ Pn be a rational normal curve of degree n in Pn , and
let Yn ✓ Pn be its tangent developable. Then

dim
�
Tmp Yn

�
= min{m + 1, n}

for p 2 Yn general, and m � 1.

Proof. We may work on an affine chart. Then Yn is the surface parametrized by

� : A2 �! An

(t, u) 7! (t + u, t2 + 2tu, . . . , tn + ntn�1u).

Note that
@m�

@tm�k@uk
= 0
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for any k � 2. Furthermore, we have

@m�

@tm
�

@m�

@tm�1@u
= u

@m+1�

@tm@u

for any m � 1.
Therefore, for any m � 1 we get just two non-zero partial derivatives of order

m, and one partial derivative is given in terms of smaller order partial derivatives.
Furthermore, in the notation of (3.2) we have �m,p = m(m+1)

2 � 1 for any 1  m 
n � 1, where p 2 Yn is a general point.

From now on we will assume that n � 2r + 1.We will denote by e0, . . . , en 2
Cn+1 both the vectors of the canonical basis of Cn+1 and the corresponding points
in Pn = P(Cn+1).

Throughout the paper we will always view G(r, n) as a projective variety in
its Plücker embedding, that is the morphism induced by the determinant of the
universal quotient bundleQG(r,n) on G(r, n):

'r,n : G(r, n) �! PN := P(
Vr+1Cn+1)

hv0, . . . , vr i 7�! [v0 ^ · · · ^ vr ]

where N =
�n+1
r+1
�
� 1. Now, let

3 := {I ⇢ {0, . . . , n}, |I | = r + 1} .

For each I = {i0, . . . , ir } 2 3, with i0 < i1 < · · · < ir , let eI 2 G(r, n) be the
point corresponding to ei0 ^ · · · ^ eir 2

Vr+1Cn+1. We will denote by pI the
Plücker on on PN .

Furthermore, we define a distance on 3 as

d(I, J ) = |I | � |I \ J | = |J | � |I \ J |

for each I, J 2 3. Note that, with respect to this distance, the diameter of 3 is
r + 1.

In the following we give an explicit description of osculating spaces of Grass-
mannians at fundamental points.

Proposition 3.3. For any s � 0 we have

T seI (G(r, n)) = heJ | d(I, J )  si = {pJ = 0 | d(I, J ) > s} ✓ PN .

In particular, T seI (G(r, n)) = PN for any s � r + 1.

Proof. We may assume that I = {0, . . . , r} and consider the usual parametrization
of G(r, n):

� : C(r+1)(n�r) ! G(r, n)
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given by

A = (ai j ) =

0

B
@

1 . . . 0 a0,r+1 . . . a0n
...

. . .
...

...
. . .

...
0 . . . 1 ar,r+1 . . . arn

1

C
A 7! (det(AJ ))J23

where AJ is the (r + 1) ⇥ (r + 1) matrix obtained from A considering just the
columns indexed by J .

Note that each variable appears in degree at most one in the coordinates of �.
Therefore, deriving two times with respect to the same variable always gives zero.

Thus, in order to describe the osculating spaces we may take into account just
partial derivatives with respect to different variables. Moreover, since the degree of
det(AJ ) with respect to ai, j is at most r+1 all partial derivatives of order greater or
equal than r+2 are zero. Hence, it is enough to prove the proposition for s  r+1.

Given J = { j0, . . . , jr } ⇢ {0, . . . , n}, k 2 {0, . . . , r}, and k0 2 {r + 1, . . . , n}
we have

@ det(AJ )
@ak,k0

=

(
0 if k0 /2 J
(�1)l+1+k0 det(AJ,k,k0) if k0 = jl

where AJ,k,k0 denotes the submatrix of AJ obtained deleting the line indexed by k
and the column indexed by k0. More generally, for any m � 1 and for any

J = { j0, . . . , jr } ⇢ {0, . . . , n},
K 0 = {k0

1, . . . , k
0
m} ⇢ {r + 1, . . . , n},

K = {k1, . . . , km} ⇢ {0, . . . , r}

we have

@m det(AJ )
@ak1,k0

1
. . . @akm ,k0

m

=

(
(±1) det

⇣
AJ,(k1,k0

1),...,(km ,k0
m)

⌘
if K 0 ⇢ J and |K |=|K 0|=m  d

0 otherwise

where d = d(J, {0, . . . , r}) = deg(det(AJ )). Therefore

@m det(AJ )
@ak1,k0

1
. . . @akm ,k0

m

(0) =

(
±1 if J = K 0S ({0, . . . , r}\K )

0 otherwise

and
@m�

@ak1,k0
1
. . . @akm ,k0

m

(0) = ±eK 0[({0,...,r}\K ).

Note that d
�
K 0 [ ({0, . . . , r} \ K ) , {0, . . . , r}

�
= m, and that any J with

d(J, {0, . . . , r}) = m may be written in the form K 0 [ ({0, . . . , r}\K ).



10 ALEX MASSARENTI AND RICK RISCHTER

Finally, we get that
⌧
@ |I |�

@ I ai, j
(0)

�
� |I | = m

�
= heJ | d(J, {0, . . . r}) = mi

which proves the statement.

Now, it is easy to compute the dimension of the osculating spaces of G(r, n).

Corollary 3.4. For any point p 2 G(r, n) we have

dim T spG(r, n) =
sX

l=1

✓
r + 1
l

◆✓
n � r
l

◆

for any 0  s  r , while T spG(r, n) = PN for any s � r + 1.

Proof. Since G(r, n) ⇢ PN is homogeneous under the action the algebraic sub-
group of PGL(N + 1) the statement follows, by standard combinatorial computa-
tions, from Proposition 3.3.

4. Osculating projections

In this section we study linear projections of Grassmannians from their osculating
spaces. In order to help the reader get acquainted with the ideas of the proofs, we
start by studying in detail projections from a single osculating space.

Let 0  s  r be an integer, and I 2 3. By Proposition 3.3 the projection of
G(r, n) from T seI is given by

5T seI
: G(r, n) 99K PNs

(pI )I23 7! (pJ )J23 | d(I,J )>s .

Moreover, given I 0 ={i 00, . . . , i
0
s} ⇢ I with |I 0| = s + 1 we can consider the linear

projection

⇡I 0 : Pn 99K Pn�s�1

(xi ) 7! (xi )i2{0,...,n}\I 0

which in turn induces the linear projection

5I 0 : G(r, n) 99K G(r, n � s � 1)
[V ] 7! [⇡I 0(V )]

(pI )I23 7! (pJ )J23 | J\I 0=;.
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Note that the fibers of 5I 0 are isomorphic to G(r, r + s + 1). More precisely, let
y 2 G(r, n� s� 1) be a point, and consider a general point x 2 5�1

I 0 (y) ⇢ G(r, n)
corresponding to an r-plane Vx ⇢ Pn . Then we have

5�1
I 0 (y) = G

⇣
r,
D
Vx , ei 00, . . . , ei 0s

E⌘
⇢ G(r, n).

On the other hand, a priori it is not at all clear what the fibers of 5T seI
are. In

general the image of 5T seI
is very singular, and its fibers may not be connected. In

what follows we study the general fiber of the map 5T seI
by factoring it through

several projections of type5I 0 .

Lemma 4.1. If s = 0, . . . , r and I 0 ⇢ I with |I 0| = s + 1, then the rational map
5I 0 factors through5T seI

. Moreover,5T reI
= 5I .

Proof. Since J \ I 0 = ; ) d(I, J ) > s then the center of5T seI
is contained in the

center of5I 0 . Furthermore, if s = r then J \ I = ; , d(I, J ) > r .

Now, we are ready to describe the fibers of5T seI
for 0  s  r .

Proposition 4.2. The rational map5T seI
is birational for every 0  s  r � 1, and

5T reI
: G(r, n) 99K G(r, n � r � 1)

is a fibration with fibers isomorphic to G(r, 2r + 1).

Proof. For the second part of the statement it is enough to observe that5T reI
= 5I .

Now, let us consider the first claim. Since 5T seI
factors through 5T s�1eI

it is enough
to prove that 5T r�1eI

is birational. By Lemma 4.1 for any I j = I \ {i j }, there exists
a rational map ⌧ j such that the following diagram is commutative

G(r, n)

G(r, n − r)

W ⊆ PNs

ΠIj

τj

Π
T r−1

eI

where W = 5T r�1eI
(G(r, n)). Now, let x 2 W be a general point, and F ⇢ G(r, n)

be the fiber of 5T r�1eI
over x . Set x j = ⌧ j (x) 2 G(r, n � r), and denote by Fj ⇢

G(r, n) the fiber of5I j over x j . Therefore

F ✓
r\

j=0
Fj . (4.1)
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Now, note that if y 2 F is a general point corresponding to an r-plane Vy ⇢ Pn we
have

Fj = G
�
r,
⌦
Vy, ei0, . . . ,cei j , . . . , eir

↵�

and hence
r\

j=0
Fj =

r\

j=0
G
�
r,
⌦
Vy, ei0, . . . ,cei j , . . . , eir

↵�
= G(r, Vy) = {y}.

The last equality and (4.1) force F = {y}, and since we are working in characteristic
zero5T r�1eI

is birational.

Our next aim is to study linear projections from the span of several osculating
spaces. In particular, we want to understand when such a projection is birational as
we did in Proposition 4.2 for the projection from a single osculating space.

Clearly, there are some natural numerical constraints regarding how many co-
ordinate points ofG(r, n) we may take into account, and the order of the osculating
spaces we want to project from.

First of all, by Proposition 4.2 the order of the osculating spaces cannot exceed
r � 1. Furthermore, since in order to carry out the computations, we need to con-
sider just coordinate points of G(r, n) corresponding to linearly independent linear
subspaces of dimension r + 1 in Cn+1 we can use at most

↵ :=

�
n + 1
r + 1

⌫

of them.
Now, let us consider the points eI1, . . . , eI↵ 2 G(r, n) where

I1 = {0, . . . , r}, . . . , I↵ = {(r + 1)(↵ � 1), . . . , (r + 1)↵ � 1} 2 3. (4.2)

Again by Proposition 3.3 the projection from the span of the osculating spaces of
G(r, n) of orders s1, . . . , sl at the points eI1, . . . , eIl is given by

5T s1,...,sleI1 ,...,eIl
: G(r, n) 99K PNs1,...,sl

(pI )I23 7! (pJ )J23 | d(I1,J )>s1,...,d(Il ,J )>sl

whenever {J 2 3 | d(I1, J )  s1 or . . . or d(Il , J )  sl} 6= 3, and l  ↵.
Furthermore, for any I 01 = {i10 , . . . , i

1
s1} ⇢ I1, . . . , I 0l = {i l0, . . . , i

l
sl } ⇢ Il we

consider the projection

⇡I 01,...,I
0
l
: Pn 99K Pn�l�

Pl
1 si

(xi )i=0,...,n 7! (xi )i2{0,...,n}\(I 01[···[I 0l )
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where l  ↵ and n � l �
Pl
1 si � r + 1. The map ⇡I 01,...,I 0l in turn induces the

projection

5I 01,...,I
0
l
: G(r, n) 99K G

⇣
r, n � l �

Pl
1 si
⌘

[V ] 7! [⇡I 01,...,I 0l (V )]

(pI )I23 7! (pJ )J23 | J\(I 01[···[I 0l )=;.

Lemma 4.3. Let I1, . . . , I↵ be as in (4.2), l, s1, . . . , sl be integers such that 0 
s j  r�1, and 0 < l  min{↵, n�r�1�

P
i si }. Then for any I

0
1={i10 , . . . , i

1
s1}⇢

I1, . . . , I 0l = {i l0, . . . , i
l
sl } ⇢ Il with |I 0j | = s j + 1 the rational maps 5T s1,...,sleI1 ,...,eIl

and

5I 01,...,I
0
l
are well-defined and the latter factors through the former.

Proof. Note that J \
�
I 01 [ · · · [ I 0l

�
= ; yields d(I1, J ) > s1, . . . , d(Il , J ) > sl .

Note also that the I j ’s are disjoint since the I 0j ’s are. Furthermore, since
P

(si+1) =
l +

P
si  n � r � 1 and n � 2r + 1, there are at least r + 2 elements in

{0, . . . , n}\
�
I 01 [ · · · [ I 0l

�
. If k1, . . . , kr+2 are such elements, then

K j :=
�
k1, . . . , bk j , . . . , kr+2

 
2
�
J 2 3 | d(I j , J ) > s j , j = 1, . . . , l

 

for any j=1, . . . ,r+2 forces {J 23|d(I1, J )s1 or . . . or d(Il , J )sl} 6=3.

Now, we are ready to prove the main result of this section.

Proposition 4.4. Let I1, . . . , I↵ be as in (4.2), l, s1, . . . , sl be integers such that
0  s j  r � 1, and 0 < l  min{↵, n � r � 1 �

P
i si }. Then the projection

5T s1,...,sleI1 ,...,eIl
is birational.

Proof. For any collection of subsets I 0i ⇢ Ii with |I 0i | = si + 1 set I 0 =
S

i I
0
i . By

Lemma 4.3 there exists a rational map ⌧I 01,...,I 0l fitting in the following commutative
diagram

G(r, n)

G(r, n − l −
∑l

1 si)

W ⊆ PNs1,...sl

ΠI′1,...,I′
l

τI′1,...,I′
l

Π
T

s1,...,sl
eI1

,...,eIl

where W = 5T s1,...,sleI1 ,...,eIl
(G(r, n)). Now, let x 2 W be a general point, and F ⇢

G(r, n) be the fiber of5T s1,...,sleI1 ,...,eIl
over x . Set x 0 = ⌧I 01,...,I

0
l
(x) 2 G(r, n� l�

Pl
1 si ),

and denote by
FI 01,...,I 0l ⇢ G(r, n)
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the fiber of5I 01,...,I
0
l
over x 0. Therefore

F ✓
\

I 01,...,I
0
l

FI 01,...,I 0l (4.3)

where the intersection runs over all the collections of subsets I 0i ⇢ Ii with
|I 0i | = si + 1. Now, if y 2 F is a general point corresponding to an r-plane
Vy ⇢ Pn we have

FI 01,...,I 0l = G
�
r,
⌦
Vy, e j | j 2 I 0

↵�

and hence
\

I 01,...,I
0
l

FI 01,...,I 0l =
\

I 01,...,I
0
l

G
⇣
r,
⌦
Vy, e j | j 2 I 0

↵ ⌘
= G(r, Vy) = {y} (4.4)

where again the first intersection is taken over all the subsets I 0i ⇢ Ii with
|I 0i | = si + 1.

Finally, to conclude it is enough to observe that (4.3) and (4.4) yield F = {y},
and since we are working in characteristic zero5T s1,...,sleI1 ,...,eIl

is birational.

In what follows we just make Proposition 4.4 more explicit.

Corollary 4.5. Set ↵ :=
j
n+1
r+1

k
and let I1, . . . , I↵ be as in (4.2). Then5T r�1,...,r�1eI1 ,...,eI↵�1

is birational. Furthermore, if n � r2 + 3r + 1 then5T r�1,...,r�1eI1 ,...,eI↵
is birational.

Now, set r 0 := n � 2 � ↵r and r 00 := min{n � 3 � ↵(r � 1), r � 2}. If
2r + 1 < n < r2 + 3r + 1 then:

• It holds r � 1 � r 0 � 0 and5T r�1,...,r�1,r
0

eI1 ,...,eI↵�1 ,eI↵
is birational;

• It holds r 00 � 0 and5T r�2,...,r�2,r
00

eI1 ,...,eI↵�1 ,eI↵
is birational.

Proof. First we apply Proposition 4.4 with l = ↵� 1 and s1 = · · · = s↵�1 = r � 1.
In this case the constraint is ↵�1  n�r�1�(↵�1)(r�1), that is ↵  n�r�1

r +1.
Note that this is always the case since

↵ 
n + 1
r + 1


n � 1
r

=
n � r � 1

r
+ 1.

If l = ↵ and s1 = · · · = s↵ = r � 1 the constraint in Proposition 4.4 is ↵ 
n � r � 1 � ↵(r � 1), which is equivalent to ↵  n�r�1

r . Now, it is enough to
observe that

n + 1
r + 1


n � r � 1

r
() n � r2 + 3r + 1.

If n � r2+ 3r + 1, then the claim follows from the inequalities ↵  n+1
r+1  n�r�1

r .
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Now assume that n < r2+3r+1. First we check that r 0 = n�2�↵r  r�1,
that is ↵ � n�1�r

r . That follows from

↵ �
n + 1
r + 1

� 1 =
n � r
r + 1

�
n � r � 1

r
whenever n � 2r + 1. Next we check that r 0, r 00 � 0. If 2r + 1 < n < 3r + 2 then
↵ = 2, and r 0 = n � 2� 2r � 0. If n � 3r + 2 we have

↵ =

�
n + 1
r + 1

⌫

n + 1
r + 1


n � 2
r

and then r 0 = n � 2� ↵r � 0. Furthermore, note that

↵ =

�
n + 1
r + 1

⌫

n + 1
r + 1


n � 3
r � 1

and then r 00 = n � 3� ↵(r � 1) � 0.
Now, we apply Proposition 4.4 with l = ↵, s1 = · · · = s↵�1 = r � 1 and s↵ =

r 0. In this case the constraint in Proposition 4.4 is ↵  n�r�1�(↵�1)(r�1)�r 0

that is r 0  n � 2� ↵r .
Finally, if l = ↵, s1 = · · · = s↵�1 = r � 2 and s↵ = r 00, then the constraint in

Proposition 4.4 is ↵  n�r�1�(↵�1)(r�2)�r 00, that is r 00  n�3�↵(r�1).

5. Degenerating tangential projections to osculating projections

In this section we construct explicit degenerations of tangential projections to os-
culating projections. We begin by studying how the span of two osculating spaces
degenerates in a flat family of linear spaces parametrized by P1.

We recall that the Grassmannian G(r, n) is rationally connected by rational
normal curves of degree r + 1. Indeed, if p, q 2 G(r, n) are general points, cor-
responding to the r-planes Vp, Vq ✓ Pn , we may consider a rational normal scroll
X ✓ Pn of dimension r + 1 containing Vp and Vq . Then the r-planes of X cor-
respond to the points of a degree r + 1 rational normal curve in G(r, n) joining p
and q.

The first step consists in studying how the span of two osculating spaces at two
general points p, q 2 G(r, n) behaves when q approaches p along a degree r + 1
rational normal curve connecting p and q.
Proposition 5.1. Let p, q 2 G(r, n) ✓ PN be general points, k1, k2 � 0 integers
such that k1 + k2  r � 1, and � : P1 ! G(r, n) a degree r + 1 rational normal
curve with � (0) = p and � (1) = q. Let us consider the family of linear spaces

Tt =
D
T k1p , T k2� (t)

E
with t 2 P1\{0}

parametrized by P1\{0}, and let T0 be the flat limit of {Tt }t2P1\{0} inG(dim(Tt ), N ).
Then T0 ⇢ T k1+k2+1p .
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Proof. We may assume that p = eI1 and q = eI2 , see (4.2), and that � : P1 !
G(r, n) is the rational normal curve given by

� ([t : s]) = (se0 + ter+1) ^ · · · ^ (ser + te2r+1).

We can work on the affine chart s = 1 and set t = (t : 1). Consider the points

e0, . . . , en, et0 = e0 + ter+1, . . . , etr =er + te2r+1, etr+1=er+1, . . . , etn=en 2 Pn

and the corresponding points of PN

eI = ei0 ^ · · · ^ eir , e
t
I = eti0 ^ · · · ^ etir for I 2 3.

By Proposition 3.3 we have

Tt =
⌦
eI | d(I, I1)  k1; etI | d(I, I1)  k2

↵
for t 6= 0

and

T k1+k2+1p = heI | d(I, I1)  k1 + k2 + 1i = {pI = 0 | d(I, I1) > k1 + k2 + 1}.

Therefore, in order to prove that T0 ⇢ T k1+k2+1p it is enough to exhibit, for any
index I 2 3 with d(I, I1) > k1 + k2 + 1, a hyperplane HI ⇢ PN of type

pI + t

 
X

J23, J 6=I
f (t)I,J pJ

!

= 0

such that Tt ⇢ HI for t 6= 0, where f (t)I,J 2 C[t] are polynomials. Clearly, taking
the limit for t 7! 0, this will imply that T0 ✓ {pI = 0}.

In order to construct such a hyperplane we need to introduce some other defi-
nitions. We define

1(I, l) := {(I \ J ) [ (J + r + 1)| J ⇢ I \ I1, |J | = l} ⇢ 3

for any I 2 3, l � 0, where L + � := {i + �; i 2 L} is the translation of the set
L by the integer �. Note that 1(I, 0) = {I } and 1(I, l) = ; for l big enough. For
any l > 0 set

1(I,�l) := {J | I 2 1(J, l)} ⇢ 3;

s+I := max
l�0

{l |1(I, l) 6= ;} 2 {0, . . . , r + 1};

s�I := max
l�0

{l |1(I,�l) 6= ;} 2 {0, . . . , r + 1};

1(I )+ :=
[

0l
1(I, l) =

[

0ls+I

1(I, l);

1(I )� :=
[

0l
1(I,�l) =

[

0ls�I

1(I,�l).
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Note that 0  s�I  d(I, I1) and 0  s+I  r + 1� d(I, I1), and for any l we have

J 21(I, l))d(J, I )=|l| and d(J, I1) = d(I, I1)+l and d(J, I2)=d(I, I2)�l.

Now, we write the etI ’s with d(I, I1) < k2, in the basis eJ , J 2 3. For any I 2 3
we have

etI =eI +t
X

J21(I,1)
(sign(J )eJ )+. . .+tl

X

J21(I,l)
(sign(J )eJ ) + · · · + t s

+
I
X

J21(I,s+I )

(sign(J )eJ )

=
s+IX

l=0

 

tl
X

J21(I,l)
sign(J )eJ

!

=
X

J21(I )+

⇣
td(I,J ) sign(J )eJ

⌘

where sign(J ) = ±1. Note that sign(J ) depends on J but not on I , hence we may
replace eJ by sign(J )eJ , and write

etI =
X

J21(I )+
td(I,J )eJ .

Therefore, we have

Tt =

*

eI | d(I, I1)  k1;
X

J21(I )+

⇣
td(I,J )eJ

⌘
| d(I, I1)  k2

+

.

Next, we define

1 := {I | d(I, I1)  k1}
[

 
[

d(I,I1)k2

1(I )+
!

⇢ 3.

Let I 2 3 be an index with d(I, I1) > k1 + k2 + 1. If I /2 1 then Tt ⇢ {pI = 0}
for any t 6= 0 and we are done.

Now, assume that I 2 1. For any etK with non-zero Plücker coordinate pI we
have I 2 1(K )+, that is K 2 1(I )�. Now, we want to find a hyperplane HI of
type

FI =
X

J21(I )�
td(I,J )cJ pJ = 0 (5.1)

where cJ 2 C with cI 6= 0, and such that Tt ⇢ HI for t 6= 0. Note that then we can
divide the equation by cI , and get a hyperplane HI of the required type:

pI +
t
cI

0

@
X

J21(I )�, J 6=I
td(J,I )�1cJ pJ

1

A = 0.
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In the following we will write s�I = s for short. Since

�
�1(I )�

�
� =

sX

l=0
|1(I,�l)| = 1+ s +

✓
s
2

◆
+ · · · +

✓
s

s � 1

◆
+ 1 = 2s

in equation (5.1) there are 2s variables cJ . Now, we want to understand what con-
ditions we get by requiring Tt ✓ {FI = 0} for t 6= 0.

Given K 2 1(I )� we have s+K � d(I, K ) and

FI
�
etK
�

= F

0

@
X

L21(K )+

⇣
td(K ,L)eL

⌘
1

A = F

0

@
s+KX

l=0

 

tl
X

L21(K ,l)
eL

!1

A

= F

 
d(I,K )X

l=0

 

tl
X

L21(K ,l)
eL

!!

(5.1)
=

X

J21(I )�\1(K )+

td(I,K )�d(J,K )cJ
⇣
td(J,K )

⌘
= td(I,K )

2

4
X

J21(I )�\1(K )+

cJ

3

5

that is

FI (etK ) = 0 for all t 6= 0 ,
X

J21(I )�\1(K )+

cJ = 0.

Note that this is a linear condition on the coefficients cJ , with J 2 1(I )�. There-
fore,

Tt ⇢ {FI = 0} for t 6= 0

,

(
FI (eL) = 0 for all L 2 1(I )� \ B[I1, k1]
FI (etK ) = 0 8t 6= 0 for all K 2 1(I )� \ B[I1, k2]

,

8
<

:

cL = 0 for all L 2 1(I )� \ B[I1, k1]X

J21(I )�\1(K )+

cJ = 0 for all K 2 1(I )� \ B[I1, k2]

(5.2)

where B[J, u] := {K 2 3| d(J, K )  u}. The number of conditions on the cJ ’s,
J 2 1(I )� is then

c :=
�
�1(I )� \ B[I1, k1]

�
�+

�
�1(I )� \ B[I1, k2]

�
� .

The problem is now reduced to find a solution of the linear system given by the c
equations (5.2) in the 2s variables cJ ’s say J 2 1(I )� such that cI 6= 0. Therefore,
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it is enough to find s + 1 complex numbers cI = c0 6= 0, c1, . . . , cs satisfying the
following conditions
8
><

>:

c j = 0 for all j = s, . . . , d � k1
d(I,K )X

l=0

�
�1(I )� \1(K , l)

�
� cd(I,K )�l = 0 for all K 2 1(I )� \ B[I1, k2]

(5.3)

where d = d(I, I1) > k1 + k2 + 1. Note that (5.3) can be written as
8
><

>:

c j = 0 for all j = s, . . . , d � k1
jX

k=0

� j
j�k
�
ck = 0 for all l j = s, . . . , d � k2

that is
8
><

>:

cs = 0
...

cd�k1 = 0
8
>><

>>:

�s
0
�
cs +

�s
1
�
cs�1 + · · · +

� s
s�1
�
c1 +

�s
s
�
c0 = 0

...�d�k2
0
�
cd�k2 +

�d�k2
1
�
cd�k2�1 + · · · +

� d�k2
d�k2�1

�
c1 +

�d�k2
d�k2

�
c0 = 0.

(5.4)

Now, it is enough to show that the linear system (5.4) admits a solution with c0 6= 0.
If s < d � k2, the system (5.4) reduces to cs = · · · = cd�k1 = 0. In this case we
may take c0 = 1, c1 = . . . , cs = 0. Note that d � k1 > k2 + 1 � 1 and we can use
the hyperplane pI = 0.

From now on assume that s � d�k2. Since cs = · · · = cd�k1 = 0 wemay con-
sider the second set of conditions in (5.4) and translate the problem into checking
that the system (5.5) admits a solution involving the variables c0, c1, . . . , cd�k1+1
with c0 6= 0. Note that (5.4) takes the following form:
8
>><

>>:

� s
s�(d�k1+1)

�
cd�k1+1 +

� s
s�(d�k1)

�
cd�k1 + · · · +

� s
s�1
�
c1 +

�s
s
�
c0 = 0

...� d�k2
k1�1�k2

�
cd�k1+1 +

� d�k2
k1�k2

�
cd�k1 + · · · +

� d�k2
d�k2�1

�
c1 +

�d�k2
d�k2

�
c0 = 0.

(5.5)

Therefore, it is enough to check that the (s � d + k2 + 1) ⇥ (d � k1 + 1) matrix

M =

0

B
@

� s
s�(d�k1+1)

� � s
s�(d�k1)

�
· · ·

� s
s�1
�

...
...

...� d�k2
k1�1�k2

� � d�k2
k1�k2

�
· · ·

� d�k2
d�k2�1

�

1

C
A (5.6)
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has maximal rank. Note that s  d and d > k1 + k2 + 1 yield s � d + k2 + 1 <
d � k1 + 1. Then it is enough to show that the (s � d + k2 + 1) ⇥ (s � d + k2 + 1)
submatrix

M 0 =

0

B
@

� s
s�(s�d+k2+1)

� � s
s�(s�d+k2)

�
· · ·

� s
s�1
�

...
...

. . .
...� d�k2

d�k2�(s�d+k2+1)
� � d�k2

d�k2�(s�d+k2)
�

· · ·
� d�k2
d�k2�1

�

1

C
A

=

0

B
@

� s
s+1�d+k2

�
· · ·

�s
1
�

...
. . .

...� d�k2
s+1�d+k2

�
· · ·

�d�k2
1
�

1

C
A

has non-zero determinant. Since the determinant of M 0 is equal to the determinant
of the matrix of binomial coefficients

M 00 :=

✓✓
i
j

◆◆

d�k2is
1 js+1�d+k2

,

it is enough to observe that since d � k2 > k1+ 1 � 1 by [35, Corollary 2] we have
det(M 0) = det(M 00) 6= 0.

Essentially, Proposition 5.1 says that two general osculating spaces of G(r, n)
behave well under degenerations. We formalize this concept as follows.
Assumption 5.2. Let X ⇢ PN be an irreducible projective variety, p, q 2 X be
general points, and k1, k2 � 0 integers. We will assume that there exists a smooth
curve � : C ! X , with � (t0) = p and � (t1) = q such that the flat limit Tt0 in
G(dim(Tt ), N ) of the family of liner spaces

Tt =
D
T k1p , T k2� (t)

E
, t 2 C\{t0}

parametrized by C\{t0}, is contained in T k1+k2+1p .

For our applications to Grassmannians we will always choose C ⇠= P1. Moreover,
we would like to stress that there exist varieties, with small higher order osculating
spaces, not satisfying Assumption 5.2.
Example 5.3. Let us consider the tangent developable Yn ✓ Pn of a degree n ra-
tional normal curve Cn ✓ Pn as in Proposition 3.2.

Note that two general points p = �(t1, u1) and q = �(t2, u2) in Yn can be
joined by a smooth rational curve. Indeed, we may consider the curve

⇠(t) = (t1 + t (t2 � t1) + u1 + t (u2 � u1), . . . , (t1 + t (t2 � t1))n

+ n(t1 + t (t2 � t1))n�1(u1 + t (u2 � u1))).
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Now, let � : C ! Yn be a smooth curve with � (t0) = p and � (t1) = q, and let
Tt0 be the flat limit of the family of liner spaces

Tt =
⌦
Tp, T� (t)

↵
with t 2 C\{t0}.

Now, one can prove that if n � 5 then TpYn\TqYn = ; by a straightforward compu-
tation, or alternatively by noticing that by [7] Yn is not 2-secant defective, and then
by Terracini’s lemma [53, Theorem 1.3.1] TpYn\TqYn = ;. Now, TpYn\TqYn = ;
implies that dim(Tt ) = 5 for any t 2 C . On the other hand, by Proposition 3.2 we
have dim(T 3p Yn) = 4. Hence, Tt0 * T 3p Yn as soon as n � 5.
Now we are ready to prove a stronger version of Proposition 5.1.

Proposition 5.4. Let p1, . . . , p↵ 2 G(r, n) ✓ PN be general points with ↵ =
bn+1r+1 c and k  (r � 1)/2 a non-negative integer, and � j : P1 ! G(r, n) a degree
r + 1 rational normal curve with � j (0) = p1 and � j (1) = p j , for every j =
2, . . . ,↵. Let us consider the family of linear spaces

Tt =
D
T kp1, T

k
�2(t), . . . , T

k
�↵(t)

E
for t 2 P1\{0}

parametrized by P1\{0}, and let T0 be the flat limit of {Tt }t2P1\{0} inG(dim(Tt ), N ).
Then T0 ⇢ T 2k+1p .

Proof. If ↵ = 2 it follows from the Proposition 5.1. Therefore, we may assume that
↵ � 3, p j = eI j (4.2) and that � j : P1 ! PN is the rational curve given by

� j ([t : s]) =
�
se0 + te(r+1)( j�1)

�
^ · · · ^

�
ser + te(r+1) j�1

�
.

We can work on the affine chart s = 1 and set t = (t : 1). Consider the points

e0, . . . , en, e
j,t
0 = e0 + te(r+1)( j�1), . . . , e

j,t
r = er + te(r+1) j�1, e

j,t
r+1

= er+1, . . . , e
j,t
n = en 2 Pn

and the corresponding points in PN

eI = ei0 ^ · · · ^ eir , e
j,t
I = e j,ti0 ^ · · · ^ e j,tir , I = {i0, . . . , ir } 2 3,

for j = 2, . . . ,↵. By Proposition 3.3 we have

Tt =
D
eI | d(I, I1)  k; e j,tI | d(I, I1)  k, j = 2, . . . ,↵

E
for t 6= 0

and

T 2k+1p0 = heI | d(I, I1)  2k + 1i = {pI = 0 | d(I, I1) > 2k + 1}.
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Therefore, as in Proposition 5.1, in order to prove that T0 ⇢ T 2k+1p it is enough to
exhibit, for any index I 2 3 with d(I, I1) > 2k + 1, a hyperplane HI ⇢ PN of
type

pI + t

 
X

J23, J 6=I
f (t)I,J pJ

!

= 0

such that Tt ⇢ HI for t 6= 0, where f (t)I,J 2 C[t] are polynomials. The first part
of the proof goes as in the proof of Proposition 5.1. Given I 2 3 we define

1(I, l) j := {(I \ J ) [ (J + ( j � 1)(r + 1))|J ⇢ I \ I1, |J | = l} ⇢ 3

for any I 2 3, l � 0, j = 2, . . . ,↵,where L+� := {i+�; i 2 L} is the translation
of the set L by the integer �. Note that 1(I, 0) j = {I } and 1(I, l) j = ; for l big
enough. For any l > 0 set

1(I,�l) j :=
�
J | I 2 1(J, l) j

 
⇢ 3;

s(I )+j := max
l�0

{1(I, l) j 6= ;} 2 {0, . . . , r + 1};

s(I )�j := max
l�0

{1(I,�l) j 6= ;} 2 {0, . . . , r + 1};

1(I )+j :=
[

0l
1(I, l) j =

[

0ls(I )+j

1(I, l) j ;

1(I )�j :=
[

0l
1(I,�l) j =

[

0ls(I )�j

1(I,�l) j .

Note that 0  s(I )�j  d(I, I1), 0  s(I )+j  r + 1 � d(I, I1), and for any l we
have

J 21(I, l) j )d(J, I ) = |l| and d(J, I1) = d(I, I1)+l and d(J, I j )=d(I, I j )�l.

Now, we write e j,tI and d(I, I1) < k, in the basis eJ with J 2 3. For any I 2 3 we
have

e j,tI =
X

J21(I )+j

⇣
td(I,J ) sign(J )eJ

⌘

where sign(J ) = ±1. Since sign(J ) does depend on J but not on I we can replace
eJ by sign(J )eJ . Then, we may write

etI =
X

J21(I )+j

⇣
td(I,J )eJ

⌘
,
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and

Tt =

*

eI | d(I, I1)  k;
X

J21(I )+j

⇣
td(I,J )eJ

⌘ �
� d(I, I1)  k, 2  j  ↵

+

.

Next, we define

1 := {I | d(I, I1)  k}
[

 
[

2 j↵

[

d(I,I1)k
1(I )+j

!

⇢ 3.

Let I 2 3 be an index with d(I, I1) =: D > 2k + 1. If I /2 1 then Tt ⇢
{pI = 0} for any t 6= 0 and we are done. Now, assume that I 2 1, and I 2
1(K1, l1)2

T
1(K2, l2)3 with

d(K1, I1), d(K2, I1)  k.

Consider the following sets

I 0 : = I \ I1
I 1 : = I \ (K1 + (r + 1)) ⇢ I2
I 2 : = I \ (K2 + 2(r + 1)) ⇢ I3
I 3 : = I \

�
I 0 [ I 1 [ I 2

�
.

Then |I 1| = l1 and |I 2| = l2. Set u := |I 3|, then

d(I, I1) = l1 + l2 + u  l1 + l2 + 2u = d(K1, I1) + d(K2, I1)  2k

contradicting d(I, I1) > 2k + 1. Therefore, there is a unique j such that

I 2
[

d(J,I1)k
1(J )+j .

Note that 1(I,�s(I )�j ) has only one element, say I
0. Then

k + 1� D + s(I )�j = k + 1� d(I, I1) + d(I, I 0) = k + 1� d(I1, I 0) > 0.

Now, consider the set of indexes

0 :={I }[1(I,�1) j[· · ·[1
⇣
I,�

⇣
k+1�D+s(I )�j

⌘⌘

j
=

k+1�D+s(I )�j[

l=0
1(I,�l) j ⇢3.

Our aim now is to find a hyperplane of the form

HI =

(
X

J20
td(I,J )cJ pJ = 0

)

(5.7)
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such that Tt ⇢ HI and cI 6= 0. First, we claim that

J 2 0 ) J /2
[

2i↵
i 6= j

[

d(I,I1)k
1(I )+i . (5.8)

Indeed, assume that J 2 1(I,�l) j \1(K ,m)i for some K 2 3 with

d(K , I1)  k and i 6= j with 0  l  k + 1� D + s(I )�j ,m � 0.

Since J 2 1(I,�l) j then

|J \ I j | = |I \ I j | � l � s(I )�j � l � D � (k + 1) > k.

On other hand, since J 2 1(K ,m)i with j 6= i we have

|J \ I j | = |K \ I j |  d(K , I1)  k.

A contradiction. Now, (5.8) yields that the hyperplane HI given by (5.7) is such
that
*

eI |d(I, I1)k;
X

J21(I )+i

td(I,J )c(I,J )eJ |d(I, I1)k, i=2, . . . ,↵, i 6= j

+

⇢HI , t 6=0.

Therefore

Tt ⇢ HI for t 6= 0 ()

*
X

J21(I )+j

td(I,J )eJ | d(I, I1)  k

+

⇢ HI for t 6= 0.

Now, arguing as in the proof of Proposition 5.1 we obtain

Tt ⇢ HI for t 6= 0 ()
X

J21(K )+j \0

cJ = 0 for all K 2 1(I )�j \ B[I1, k] (5.9)

and the problem is now reduced to find a solution of the linear system given by the
|1(I )�j \B[I1, k]| equations (5.9) in the |1(K )+j \0| variables cJ , J 2 1(K )+j \0,
such that cI 6= 0. We set cJ = cd(I,J ) and, as in the proof of Proposition 5.1, we
consider the linear system

k+1�D+s(I )�jX

l=0

✓
D � i

D � l � i

◆
cl = 0 for all i = D � s(I )�j , . . . , k (5.10)

with k + 2 � D + s(I )�j variables c0, . . . , ck+1�D+s(I )�j
and k + 1 � D + s(I )�j

equations, where D = d(I, I1). Finally, arguing exactly as in the last part of the
proof of Proposition 5.1 we have that (5.10) admits a solution with c0 6= 0.



NON-SECANT DEFECTIVITY VIA OSCULATING PROJECTIONS 25

We conclude this section with the definition of m-osculating regularity which
essentially will be a measure of how many general osculating spaces of order k we
can degenerate to an osculating space of order 2k + 1.
Definition 5.5. Let X ⇢ PN be an irreducible projective variety. We say that X
has m-osculating regularity if given p1, . . . , pm 2 X general points, and an integer
k � 0, there exist smooth curves � j : C ! X with � j (t0) = p1 and � j (t1) = p j
for j = 2, . . . ,m such that the family of linear spaces

Tt =
D
T kp1, T

k
�2(t), . . . , T

k
�m(t)

E
for t 2 C\{t0}

parametrized by C\{t0} has flat limit Tt0 contained in T 2k+1p .
Note that by Proposition 5.4 the Grassmannian G(r, n) has ↵-osculating regularity,
where ↵ = bn+1r+1 c.

5.1. Limit linear systems

Let X ⇢ PN be an irreducible rational variety of dimension n, p1, . . . , pm 2 X
general points. We reinterpret the notion ofm-osculating regularity in Definition 5.5
in terms of limit linear systems and collisions of fat points.

LetH ✓ |OPn (d)| be the sublinear system of |OPn (d)| inducing the birational
map iH : Pn 99K X ⇢ PN , and qi = i�1H (pi ).

Then X has m-osculating regularity if and only if there exists smooth curves
�i : C ! Pn , i = 2, . . . ,m, with �i (t0) = q1 and �i (t1) = qi for i = 1, . . . ,m,
such that the limit linear systemHt0 of the family of linear systemsHt given by the
hypersurfaces inH having at least multiplicity s+1 at q1, �2(t), . . . , �m(t) contains
the linear systemH2s+2

q1 of degree d hypersurfaces with multiplicity at least 2s + 2
at q1.

Indeed, if pi = iH(qi ) for i = 1, . . . ,m then the linear system of hyperplanes
in PN containing

Tt =
D
T sp1, T

s
iH(�2(t)), . . . , T

s
iH(�m(t))

E

corresponds to the linear systemHt . Similarly, the linear system of hyperplanes in
PN containing T 2s+1p1 corresponds to the linear systemH2s+2

q1 .
Therefore, the problem of computing the m-osculating regularity of a rational

variety can be translated in terms of limit linear systems in Pn given by colliding a
number of fat points. This is a very hard and widely studied subject [21–23,50].

5.2. Degenerating rational maps

In order to study the fibers of general tangential projections via osculating projec-
tions we need to understand how the fibers of rational maps behave under special-
ization. We refer to [36] for the general theory of rational maps relative to a base
scheme.
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Proposition 5.6. Let C be a smooth and irreducible curve, X ! C an integral
scheme flat over C , and � : X 99K PnC be a rational map of schemes over C . Let
d0=dim(�|Xt0(Xt0))with t02C . Then for t 2C general we have dim(�|Xt(Xt ))�d0.

In particular, if there exists t0 2 C such that �|Xt0 : Xt0 99K Pn is generically
finite, then for a general t 2 C the rational map �|Xt : Xt 99K Pn is generically
finite as well.

Proof. Let us consider the closure Y = �(X) ✓ PnC of the image of X through �.
By taking the restriction ⇡|Y : Y ! C of the projection ⇡ : PnC ! C we see that Y
is a scheme over C .

Note that since Y is an irreducible and reduced scheme over the curve C we
have that Y is flat over C . In particular, the dimension of the fibers ⇡�1

|Y (t) = Yt is
a constant d = dim(Yt ) for any t 2 C .

For t 2 C general the fiber ⇡�1
|Y (t) = Yt contains �|Xt (Xt ) as a dense subset.

Therefore, we have d = dim(�|Xt (Xt ))  dim(Xt ) for t 2 C general.
Then, since �|Xt0 (Xt0) ✓ Yt0 we have dim(�|Xt0 (Xt0))  d = dim(�|Xt (Xt ))

for t 2 C general.
Now, assume that dim(Xt0) = dim(�|Xt0 (Xt0))  d. Therefore, we get

dim
�
Xt0
�

 d  dim
�
Xt
�

= dim
�
Xt0
�

that yields d = dim(Xt0) = dim(Xt ) for any t 2 C . Hence, for a general t 2 C we
have

dim(Xt ) = dim(�|Xt (Xt ))

that is �|Xt : Xt 99K �|Xt (Xt ) ✓ Pn is generically finite.

Now, let C be a smooth and irreducible curve, X ⇢ PN an irreducible and
reduced projective variety, and f : 3 ! C a family of k-dimensional linear sub-
spaces of Pn parametrized by C .

Let us consider the invertible sheafOPn⇥C(1), and the sublinear system |H3|✓
|OPn⇥C(1)| given by the sections of OPn⇥C(1) vanishing on 3 ⇢ Pn ⇥ C . We
denote by ⇡3|X⇥C the restriction of the rational map ⇡3 : Pn ⇥C 99K Pn�k�1⇥C
of schemes over C induced by |H3|.

Furthermore, for any t 2 C we denote by 3t ⇠= Pk the fiber f �1(t), and by
⇡3t |X the restriction to X of the linear projection ⇡3t : Pn 99K Pn�k�1 with center
3t .

Proposition 5.7. Let d0 = dim(⇡3t0 |X (X)) for t0 2 C . Then

dim(⇡3t |X (X)) � d0

for t 2 C general.
Furthermore, if there exists t0 2 C such that ⇡3t0 |X : X 99K Pn�k�1 is gener-

ically finite then ⇡3t |X : X 99K Pn�k�1 is generically finite for t 2 C general.
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Proof. The rational map ⇡3|X⇥C : X ⇥ C 99K Pn�k�1 ⇥ C of schemes over C is
just the restriction of the relative linear projection ⇡3 : Pn ⇥ C 99K Pn�k�1 ⇥ C
with center 3.

Therefore, the restriction of ⇡3|X⇥C to the fiber Xt ⇠= X of X ⇥ C over t 2 C
induces the linear projection from the linear subspace 3t , that is

⇡3|Xt = ⇡3t |X

for any t 2 C . Now, to conclude it is enough to apply Proposition 5.6 with � =
⇡3|X⇥C .

Essentially, Propositions 5.6 and 5.7 say that the dimension of the general fiber
of the special map is greater or equal than the dimension of the general fiber of the
general map. Therefore, when the special map is generically finite the general one
is generically finite as well. We would like to stress that in this case, under suitable
assumptions, [5, Lemma 5.4] says that the degree of the map can only decrease
under specialization.

6. Non secant defectivity via osculating projections

In this section we use the techniques developed in Section 5 to study the dimen-
sion of secant varieties of Grassmannians. Our first step consists in reinterpreting
Proposition 2.2 in terms of osculating projections. In order to do this, we need to
describe how many tangent spaces we can take in such a way that the flat limit of
the span of them is contained in a higher order osculating space.

First, given an irreducible projective variety satisfying Assumption 5.2 and
havingm-osculating regularity, we introduce a function hm : N�0 ! N�0 counting
how many tangent spaces we can degenerate to a higher order osculating space.

Definition 6.1. Given an integer m � 2 we define a function

hm : N�0 ! N�0

as follows: hm(0) = 0. For any k � 1 write

k + 1 = 2�1 + 2�2 + · · · + 2�l + "

where �1 > �2 > · · · > �l � 1 and " 2 {0, 1}, and define

hm(k) := m�1�1 + m�2�1 + · · · + m�l�1.

In particular hm(2k) = hm(2k � 1) and h2(k) =
j
k+1
2

k
.
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Theorem 6.2. Let X ⇢ PN be an irreducible projective variety satisfying As-
sumption 5.2 and having m�osculating regularity. Assume that there exist inte-
gers l, k1, . . . , kl � 1 and general points p1, . . . , pl 2 X such that 5

T k1,...,klp1,...,pl
is

generically finite, and set

h :=
lX

j=1
hm(k j ).

Then X is not (h + 1)-defective.

Proof. Let us consider a general tangential projection5T where

T =

⌧
T 1p11

, . . . , T 1
phm (k1)
1

, . . . , T 1p1l
, . . . , T 1

phm (kl )
l

�

and p11 = p1, . . . , p1l = pl . Our argument consists in specializing the projection
5T several times in order to reach a generically finite projection. For seek of no-
tational simplicity along the proof we will assume l = 1. For the general case it is
enough to apply the same argument l times.

Let us begin with the case k1+1 = 2�. Then hm(k1) = m��1. Since X has m-
osculating regularity we can degenerate 5T , in a family parametrized by a smooth
curve, to a projection5U1 whose center U1 is contained in

V1 =

⌧
T 3p11

, T 3
pm+1
1

, . . . , T 3
pm

��1�m+1
1

�
.

Again, since X has m-osculating regularity we may specialize, in a family parame-
trized by a smooth curve, the projection 5V1 to a projection 5U2 whose center U2
is contained in

V2 =

⌧
T 7p11

, T 7
pm

2+1
1

, . . . , T 7
pm

��1�m2+1
1

�
.

Proceeding recursively in this way in last step we get a projection 5U��1 whose
center U��1 is contained in

V��1 = T 2
��1

p11
.

When k1 + 1 = 2� our hypothesis means that5
T k1
p11

is generically finite. Therefore,

5U��1 is generically finite, and applying Proposition 5.7 recursively to the special-
izations in between 5T and 5U��1 we conclude that 5T is generically finite as
well.

Now, more generally, let us assume that

k1 + 1 = 2�1 + · · · + 2�s + "

with " 2 {0, 1}, and �1 > �2 > · · · > �s � 1. Then

hm(k1) = m�1�1 + · · · + m�s�1.



NON-SECANT DEFECTIVITY VIA OSCULATING PROJECTIONS 29

By applying s times the argument for k1 + 1 = 2� in the first part of the proof we
may specialize5T to a projection5U whose center U is contained in

V =

*

T 2
�1�1

p11
, T 2

�2�1
pm

�1�1+1
1

, . . . , T 2
�s�1

pm
�1�1+···+m�s�1�1+1

1

+

.

Finally, we use Assumption 5.2 s � 1 times to specialize 5V to a projection 5U 0

whose center U 0 is contained in

V 0 = T 2
�1+···+2�s�1

p11
.

Note that T 2
�1+···+2�s�1

p11
= T k1

p11
if " = 0, and T 2

�1+···+2�s�1
p11

= T k1�1
p11

⇢ T k1
p11

if " = 1. In any case, since by hypothesis 5
T k1
p11

is generically finite, again by

applying Proposition 5.7 recursively to the specializations in between 5T and 5U 0

we conclude that5T is generically finite. Therefore, by Proposition 2.2 we get that
X is not (

Pl
j=1 hm(k j ) + 1)-defective.

Now, we are ready to prove our main result on non-defectivity of Grassmanni-
ans.

Theorem 6.3. Assume that r � 2, set

↵ :=

�
n + 1
r + 1

⌫

and let h↵ be as in Definition 6.1. If either of the following conditions holds

• n � r2 + 3r + 1 and h  ↵h↵(r � 1), or
• n < r2 + 3r + 1 and r is even, and h  (↵� 1)h↵(r � 1) + h↵(n� 2� ↵r), or
• n < r2 + 3r + 1 and r is odd, and h  (↵ � 1)h↵(r � 2) + h↵(min{n � 3 �
↵(r � 1), r � 2})

then G(r, n) is not (h + 1)-defective.

Proof. Since by Propositions 5.1 and 5.4 the Grassmannian G(r, n) satisfies As-
sumption 5.2 and has ↵�osculating regularity, it is enough to apply Corollary 4.5
together with Theorem 6.2.

Note that if we write

r = 2�1 + 2�2 + · · · + 2�s + " (6.1)

with �1 > �2 > · · · > �s � 1 and " 2 {0, 1}, then

h↵(r � 1) = ↵�1�1 + · · · + ↵�s�1.
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Therefore, the first bound in Theorem 6.3 gives

h  ↵�1 + · · · + ↵�s .

Furthermore, just considering the first summand in the second and third bound in
Theorem 6.3 we get that G(r, n) is not (h + 1)-defective for

h  (↵ � 1)
⇣
↵�1�1 + · · · + ↵�s�1

⌘
.

Finally, note that (6.1) yields �1 = blog2(r)c. Hence, asymptotically we have
h↵(r � 1) ⇠ ↵blog2(r)c�1, and by Theorem 6.3 G(r, n) is not (h + 1)-defective for

h  ↵blog2(r)c =

✓
n + 1
r + 1

◆blog2(r)c
.

Example 6.4. In order to help the reader in getting a concrete idea of the order of
growth of the bound in Theorem 6.3 for n � r2 + 3r + 1 we work out some cases
in the following table:

r r2 + 3r + 1 h

4 29
⇣
n+1
5

⌘2
+ 1

6 55
⇣
n+1
7

⌘2
+
⇣
n+1
7

⌘
+ 1

8 89
⇣
n+1
9

⌘3
+ 1

10 131
⇣
n+1
11

⌘3
+
⇣
n+1
11

⌘
+ 1

12 181
⇣
n+1
13

⌘3
+
⇣
n+1
13

⌘2
+ 1

14 239
⇣
n+1
15

⌘3
+
⇣
n+1
15

⌘2
+
⇣
n+1
15

⌘
+ 1

16 305
⇣
n+1
17

⌘4
+ 1

Thanks to Theorem 6.3 it is straightforward to get a linear bound going with n
2 .

Corollary 6.5. Assume that r � 2, and set

↵ :=

�
n + 1
r + 1

⌫
.

If either of the following holds

• n � r2 + 3r + 1 and h 
⌅ r
2
⇧
↵ + 1, or

• n < r2 + 3r + 1 and r is even, and h 
j
n+1
2

k
� r

2 , or

• n < r2 + 3r + 1 and r is odd, and h  min
n
r�1
2 ↵ + 1,

⌅n
2
⇧

� r�1
2

o

then G(r, n) is not h-defective.
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Proof. Since ↵�2 we have h↵(k)�h2(k)=
j
k+1
2

k
. In particular, h↵(r � 1) �

⌅ r
2
⇧

and h↵(r � 2) �
j
r�1
2

k
.

Now, it is enough to observe that

r
2
(↵ � 1) +

�
n � 2� ↵r + 1

2

⌫
+ 1 =

�
n + 1
2

⌫
�
r
2

for r even, and

r � 1
2

(↵ � 1) +

�
n � 3� ↵(r � 1) + 1

2

⌫
+ 1 =

jn
2

k
�
r � 1
2

for r odd, and to apply Theorem 6.3.

6.1. Comparison with Abo-Ottaviani-Peterson bound

Finally, we show that Corollary 6.5 strictly improves [3, Theorem 3.3] for r � 4,
whenever (r, n) /2 {(4, 10), (5, 11)}.

For r � 4, n � 2r + 1 we define the following functions of r and n:

a :=
jr
2

k�n + 1
r + 1

⌫
, a0 :=

�
n � 1
2

⌫
�
r
2
, a00 :=

jn
2

k
�
r + 1
2

, b :=

�
n � r
3

⌫
.

First we show that a > b. Indeed, if r > 2 is even then

a =
r
2

�
n + 1
r + 1

⌫
>
r
2

·
n � r
r + 1

>
n � r
3

�

�
n � r
3

⌫
= b

and if r > 5 is odd then

a =
r � 1
2

�
n + 1
r + 1

⌫
>
r � 1
2

·
n � r
r + 1

>
n � r
3

�

�
n � r
3

⌫
= b.

Furthermore, if r = 5 we write n = 6� + " with " 2 {�1, 0, 1, 2, 3, 4}. Then we
have

a = 2
�
6�+ " + 1

6

⌫
= 2� > 2�+

�
" � 5
3

⌫
=

�
6�+ " � 5

3

⌫
= b.

Now, we assume that n < r2 + 3r + 1 and we show that a0 > b if r is even
and (r, n) 6= (4, 10), and that a00 > b if r is odd and (n, r) 6= (5, 11). Note that
a0(4, 10) = a00(5, 11) = b(4, 10) = b(5, 11) = 2. If r is even

a0 =

�
n � 1
2

⌫
�
r
2

>
n � 1
2

� 1�
r
2

=
n � r � 3

2
>
n � r
3

= b
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whenever n > r + 9. Similarly, if r is odd and n > r + 9 we have

a00 =
jn
2

k
�
r + 1
2

>
n
2

� 1�
r + 1
2

=
n � r � 3

2
>
n � r
3

= b.

Now, if r > 8 then n � 2r + 1 ) n > r + 9. A finite number of cases are left,
namely

(r, n) 2
n
(r, n); r = 4, 5, 6, 7, 8 and r2 + 3r + 1 > r + 9 � n � 2r + 1

o
.

These cases can be easily checked one by one.
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[55] G. SCORZA, Determinazione delle varietà a tre dimensioni di Sr , r � 7, i cui S3 tangenti

si intersecano a due a due, Rend. Circ. Mat. Palermo (2) 25 (1908), 193–204.
[56] C. SEGRE, Su una classe di superfici degli iperspazi legate colle equazioni lineari alle

derivate parziali di 2� ordine, Atti R. Accad. Scienze Torino 42 (1907), 559–591.
[57] F. SEVERI, Intorno ai punti doppi impropri di una superficie generale dello spazio a quattro

dimensioni e ai suoi punti tripli apparenti, Rend. Circ. Mat. Palermo 15 (1901), 33–51.
[58] I. TAKAGI and F. ZUCCONI, Scorza quartics of trigonal spin curves and their varieties of

power sums, Math. Ann. 349 (2011), 623–645.
[59] A. TERRACINI, Sulle Vk che rappresentano piu di k(k�1)2 equazioni di Laplace linearmente

indipendenti, Rend. Circ. Mat. Palermo 33 (1912), 176–186.
[60] A. TERRACINI, Sulle Vk per cui la varietá degli Sh (h + 1)-seganti ha dimensione minore
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