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The rectified n-harmonic map flow
with applications to homotopy classes

MIN-CHUN HONG

Abstract. We introduce a rectified n-harmonic map flow from an n-dimensional
closed Riemannian manifold to another closed Riemannian manifold. We prove
existence of a global solution, which is regular except for a finite number of
points, of the rectified n-harmonic map flow and establish an energy identity for
the flow at each singular time. Finally, we present two applications of the recti-
fied n-harmonic map flow to minimizing the n-energy functional and the Dirichlet
energy functional in a homotopy class.

Mathematics Subject Classification (2010): 35K92 (primary); 53C43 (sec-
ondary).

1. Introduction

Let (M, g) be an n-dimensional compact Riemannian manifold without boundary,
and let (N , h) be another m-dimensional compact Riemannian manifold without
boundary (isometrically embedded into RL ). The n-energy functional En(u;M) of
a map u : (M, g) ! (N , h) is defined by

En(u;M) =
1
n

Z

M
|ru|n dv.

A map u from M to N is said to be an n-harmonic map if u is a critical point of the
n-energy functional; i.e., it satisfies

div
h
|ru|n�2ru

i
+ |ru|n�2A(u)(ru,ru) = 0 in M, (1.1)

where A is the second fundamental form of N .
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When n = 2, an n-harmonic map is a harmonic map. The fundamental ques-
tion on harmonic maps, asked by Eells and Sampson [9] (see also [10]), is whether
a given smooth map u0 can be deformed to a harmonic map in its homotopy class
[u0]. Eells and Sampson [9] answered the question for the case that the sectional
curvature of N is non-positive by introducing the heat flow for harmonic maps. In
order to solve the Eells-Sampson question, it is very important to establish global
existence of the harmonic map flow. When n = 2, Struwe [27] proved the existence
of a unique global weak solution to the harmonic map flow for an arbitrary closed
target manifold, which is smooth except for a finite set of singularities, where the
flow blows up through a finite number of harmonic maps on S2 (called bubbles).
Chang, Ding and Ye [1] constructed an example that the harmonic map flow blows
up at finite time. Ding and Tian [8] established the energy identity of the harmonic
map flow at each blow-up time. Qing and Tian [23] proved that as t ! 1, there
is no neck between a limit map u1 and bubbles. Therefore, a given map u0 can be
deformed into a splitting sum of finite harmonic maps.

When n > 2, Chen and Struwe [4] showed global existence of a weak solution
of the harmonic map flow, in which the weak solution is partially regular and has a
complicated singular set. In general, it is difficult to apply the harmonic map flow to
investigate the Eells-Sampson question. Motivated by the Eells-Simpson question,
it is interesting to ask whether a given map u0 2 C1(M, N ) can be deformed to an
n-harmonic map in the homotopy class [u0]. Related to this question, Hungerbuhler
[19] investigated the n-harmonic map flow in the following equation:

@u
@t

= div
h
|ru|n�2ru

i
+ |ru|n�2A(u)(ru,ru), (1.2)

with initial value u0, and generalized the result of Struwe [27] to prove that there
exists a global weak solution u : M ⇥ [0,+1) ! N of the n-harmonic map
flow (1.2) such that u 2 C1,↵(M ⇥ (0,+1)\{6k ⇥ Tk}Lk=1) for a finite number
of singular times {Tk}Lk=1 and a finite number of singular closed sets 6k ⇢ M
for k = 1, . . . , L with an integer L , depending only M and u0. Chen, Cheung,
Choi, Law [2] constructed an example to show that the n-harmonic map flow (1.2)
blows up at finite time for n = 3. However, it has been an open question whether
the singular set 6k of the n-harmonic map flow at each singular time Tk is finite.
Without the finiteness of the singular set 6k , it is difficult to control the loss of the
energy at the singular time Tk . In order to overcome this difficulty, we introduce a
rectified n-harmonic map flow in the following equation:

⇣
1� a + a|ru|n�2

⌘ @u
@t

= div
h
|ru|n�2ru

i
+ |ru|n�2A(u)(ru,ru), (1.3)

with initial value u(0) = u0 with a constant a 2 [0, 1]. In particular, when a = 0,
the flow (1.3) is the standard n-harmonic map flow. When a = 1, the flow (1.3) is
an evolution equation involving the normalized n-Laplacian (e.g., [5]).
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In this paper, we assume that n > 2. We firstly prove:

Theorem 1.1. For each a 2 (0, 1], there exists a global weak solution u : M ⇥
[0,+1) ! N of (1.3) with initial value u0 2 W 1,n(M) in which there are finite
times {Tk}Lk=1 and finitely many singular points {x j,k}lkj=1 such that u is regular in
M ⇥ (0,+1)\{{x j,k}lkj=1 ⇥ Tk}Lk=1 in the following sense:

u 2 C0,↵loc

✓
M ⇥ (0,+1)

/nn
x1,k · · · , xlk ,k

o
⇥ Tk

oL

k=1

◆
,

ru 2 L1
loc

✓
M ⇥ (0,+1)

/nn
x1,k · · · , xlk ,k

o
⇥ Tk

oL

k=1

◆
.

As t ! Tk , u(x, t) strongly converges to u(x, Tk) in W 1,n+1
loc (M\{x1,k · · · , xlk ,k}).

Theorem 1.1 generalized the result of Struwe [27]. For the proof of Theorem 1.1,
one of key ideas is to obtain an "-regularity estimate by improving the delicate
proof of Hungerbuhler in [19] for the case of a = 0 based on a variant of Moser’s
iteration. Since the term |ru|n�2@t u in the flow (1.3) causes an extra difficulty, we
have to carry out much more complicated analysis to obtain the boundedness of
|ru| (see Lemma 2.4).
Remark 1.2. It will be very interesting if some can prove that the solution of the
flow (1.3) in Theorem 1.1 is C1,↵ away from singularities.

Secondly, we generalize the result of Ding-Tian [8] from two-dimensional case
to n-dimensional cases and prove:

Theorem 1.3. For each a 2 (0, 1], let u : M ⇥ [0,+1) ! N be a solution of
(1.3) with initial value u0 in Theorem 1.1. Let Tk be the above singular time. Then,
there are a finite number of n-harmonic maps {!i,k}

mk
i=1 (also called bubbles) on S

n

such that

lim
t%Tk

En(u(t);M) = En(u(·, Tk);M) +
mkX

i=1
En(!i,k, Sn).

For the proof of the energy identity, Wang and Wei [30] proved an energy identity
for a sequence of approximate n-harmonic maps by reducing multiple bubbles to a
single bubble. In order to make proofs more clear, we give a detailed procedure of
bubble-neck decomposition based on the method of Ding-Tian [8] and then prove
the energy identity.

Next, we will present some applications of the rectified n-flow to the problem
of minimizing the n-energy functional in a homotopy class [u0]. When n = 2,
Lemaire [20] and Schoen-Yau [26] established existence results of harmonic maps
by minimizing the Dirichet energy in a homotopy class under the topological con-
dition ⇡2(N ) = 0. In [24], Sacks and Uhlenbeck established many existence re-
sults of minimizing harmonic maps in their homotopy classes by introducing the
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‘Sacks-Uhlenbeck functional’. Recently, the author and Yin [18] introduced the
Sacks-Uhlenbeck flow on Riemannian surfaces to provide a new proof of the energy
identity of a minimizing sequence in a homotopy class [u0]. A similar approach on
the Yang-Mills ↵-flow on 4-manifolds has been obtained by the author, Tian and
Yin [16]. Expanding the idea in [18] with applications of a rectified n-flow, we
prove:

Theorem 1.4. For a homotopy class [u0], let {uk}1k=1 be a minimizing sequence of
En in the homotopy class [u0] and u the weak limit in W 1,n(M, N ). Then, there is
a finite set 6 of singular points in M so that as k ! 1, uk converges strongly to
u in W 1,n

loc (M\6, N ) and there are a finite number of n-harmonic maps {!i }li=1 on
Sn�1 such that

lim
k!1

En(uk;M) = En(u1;M) +
lX

i=1
En
�
!i , Sn�1

�
.

If ⇡n(N ) = 0, the singular set 6 is empty and there is a minimizing map of the
n-energy functional in the homotopy class [u0].

We would like to point out that Duzaar and Kuwert [7] studied the decomposition
of a minimizing sequences of the n-energy functional in a homotopy class [u0] with
N = Sl , which could be used to prove an energy identity for the minimizing se-
quence of En . Our proof is completely different from one in [7]. By a modification
of the rectified n-harmonic flow, we follow the idea of the ↵-flow [18] to obtain a
new minimizing sequence {ũk}1k=1, having the same weak limit u of the minimizing
sequence {uk}1k=1 in the same homotopy class.

Furthermore, in order to prove the existence of a harmonic map in a given ho-
motopy class [u0], it is a nature way to minimize the Dirichlet functional E(u;M)=
1
2
R
M |ru|2 dv in the homotopy class. Indeed, there were successful results for

n = 2, which were mentioned above [20, 26] and [24]. In higher dimensions, it is
very challenging to minimize the Dirichlet functional in a homotopy class. White
[31] showed that if d is the greatest integer strictly less than p, a homotopy equiv-
alence is well defined for neighboring maps after restriction to the d-skeleton of M
and there exists a minimizer of the p-energy Ep(u;M) = 1

p
R
M |ru|pdv with pre-

scribed d-homotopy type. White [31] raised an open problem about the partial reg-
ularity of the minimum solution of the p-energy with prescribed d-homotopy type.
In particular, even for p = 2, the partial regularity theory of Schoen-Uhlenbeck [24]
(also Giaquinta-Giusti [12]) on an energy minimizing map u inW 1,2(M, N ) cannot
be applied since the Sobolev spaceW 1,2(M, N ) cannot be approximated by smooth
maps and a minimizing map of the Dirichlet in W 1,2(M, N ) is not in the homotopy
class.

Let {uk}1k=1 be a minimizing sequence of the p-energy Ep in the homotopy
class [u0] for 2  p  n and let u 2 W 1,p(M, N ) be the weak limit of {uk}1k=1.
Related to the above White problem, it is a very interesting problem whether the
limit map u is a weakly p-harmonic map and partially regular. Motivated by recent
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results of [13] and [17], we partially answer the question by applying a modified
n-flow and prove:

Theorem 1.5. Let p be a number with 2  p  n. Assume that N is a homoge-
nous Riemannian manifold without boundary. For a given homotopy class [u0],
let {ui }1i=1 be a minimizing sequence of the p-energy Ep(u;M) in the homotopy
class [u0]. Then, there is a subsequence of {ui }1i=1 such that ui weakly converges
to a weak p-harmonic map u. Moreover, u belongs to C1,↵(M\6, N ) for a closed
singular set 6 ⇢ M and Hn�p(6) < 1, where Hn�p denotes the Hausdorff
measure.

To prove Theorem 1.5, we employ a perturbation of the p-energy functional and
its gradient flow in a homotopy class. This kind of perturbation of the Dirichlet
functional was used by Uhlenbeck in [29] to reprove the Eells-Sampson result, by
Giaquinta, the author and Yin [13] for proving partial regularity of minimizers of
the relaxed functional of harmonic maps and also by the author and Yin [18] for
proving partial regularity of minimizers of the relaxed functional of bi-harmonic
maps.

The paper is organised as follows. In Section 2, we establish some basic esti-
mates and global existence of weak solutions to the rectified n-flow. In Section 3,
we prove the energy identity at a singular time and finish a proof of Theorem 1.3. In
Section 4, we prove Theorem 1.4. In Section 5, we finish a proof of Theorem 1.5.

2. Some estimates and global existence

In local coordinates, the Riemannian metric g on M can be represented by

g = gi j dxi ⌦ dx j ,

with a positive definitive symmetric n ⇥ n matrix (gi j ). The volume element dv of
(M; g) is defined by

dv =
p

|g|dx with |g| = det (gi j ).

Note that (N , h) is a m-dimensional compact Riemannian manifold without bound-
ary, isometrically embedded into RL . For a map u : M ! N , the gradient norm
|ru| is given by

|ru(x)|2 =
X

i, j,↵
gi j (x)

@u↵

@xi
@u↵

@x j
,

where (gi j ) = (gi j )�1 is the inverse matrix of (gi j ). A C1,↵-map u from M to N is
called an n-harmonic map if it satisfies

1
p

|g|
@

@xi


|ru|n�2gi j

p
|g|

@

@x j
u
�

+ |ru|n�2A(u)(ru,ru) = 0 in M, (2.1)

where A is the second fundamental form of N .
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In order to show existence of the rectified n-flow (1.3), we consider an approx-
imate n-functional

En,"(u) =
Z

M

✓
"

2
|ru|2 +

1
n
|ru|n

◆
dv (2.2)

for a constant " > 0. The Euler-Lagrange equation for the functional (2.2) is

1
p

|g|
@

@xi

⇣
"+|ru|n�2

⌘
gi j
p

|g|
@

@x j
u
�
+
⇣
"+|ru|n�2

⌘
A(u)(ru,ru)=0. (2.3)

For each " > 0 and a 2 [0, 1], the rectified gradient flow for the functional (2.2) is

⇣
1� a + " + a|ru|n�2

⌘ @u
@t

=
1

p
|g|

@

@xi

⇣
" + |ru|n�2

⌘
gi j
p

|g|
@

@x j
u
�
+
⇣
"+|ru|n�2

⌘
A(u)(ru,ru)

(2.4)

with initial value u(0) = u0 in M . Multiplying @t u to both sides of (2.4), we have
the following energy identity:

Lemma 2.1. Assume that " > 0 and a 2 [0, 1]. Let u(t) be a smooth solution to
the flow (2.4) in M ⇥ [0, T ) with initial value u(0) = u0. Then for each s with
0 < s < T , we have

Z

M

"

2
|ru(s)|2+

1
n
|ru(s)|n dv+

Z s

0

Z

M

⇣
1�a+" + a|ru|n�2

⌘ ��
�
�
@u
@t

�
�
�
�

2
dv dt

=
Z

M

"

2
|ru0|2 +

1
n
|ru0|n dv.

(2.5)

Moreover, we have the following local energy’s inequality for a > 0:

Lemma 2.2 (Local energy inequality). Assume that " > 0 and a 2 (0, 1]. Let
u(t) be a smooth solution to the flow (2.4) in M⇥[0, T ]with initial value u(0) = u0
and set e"(u) = "

2 |ru|
2 + 1

n |ru|
n . For any x0 with B2R(x0) ⇢ M and for any two

s, ⌧ 2 [0, T ) with s < ⌧ , we have
Z

BR(x0)
e"(u)(·, ⌧ ) dv +

Z ⌧

s

Z

M
(1� a + " + a|ru|n�2)|@t u|2 dv dt


Z

B2R(x0)
e"(u)(·, s) dv + C(a)

(⌧ � s)
R2

Z

M
e"(u0) dv ,

(2.6)
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and
Z

BR(x0)
e"(u)(·, s) dv �

Z

B2R(x0)
e"(u)(·, ⌧ ) dv

 C(a)
Z ⌧

s

Z

M
(1� a + " + a|ru|n�2)|@t u|2 dv dt

+C(a)
✓

(⌧ �s)
R2

Z

M
e"(u0) dv

Z ⌧

s

Z

M
(1�a+"+|ru|n�2)|@t u|2 dv dt

◆1/2
,

(2.7)

where C(a) is a constant depending on a > 0.

Proof. Let ' be a cut-off function with support in B2R(x0) and ' ⌘ 1 on BR(x0)
with |r'|  C/R. Then

d
dt

Z

M
'2e"(u)dv =

Z

M
'2
⌧⇣

" + |ru|n�2
⌘

ru,r
@u
@t

�
dv

= �
Z

M
'2
⇣
1� a + " + a|ru|n�2

⌘ ��
�
�
@u
@t

�
�
�
�

2
dv

+
Z

M
'
⇣
" + |ru|n�2

⌘
ru#r'#

@u
@t

dv.

(2.6) follows from integrating in t over [s, ⌧ ] and using Young’s inequality. Simi-
larly, we have (2.7).

We would like to point out that Lemma 2.2 does not hold for a = 0.

Lemma 2.3. Assume that " > 0 and a 2 [0, 1]. Let u : M ! N be a smooth
solution to the flow equation (2.4) in M ⇥ [0, T ]. There is a small constant "0 > 0
such that if the inequality

sup
0tT

Z

B2R0 (x0)
|ru|n dv dt < "0

holds for some positive R0, then we have
Z T

0

Z

BR0 (x0)
|ru|n+2 + |r2u|2

⇣
" + |ru|n�2

⌘
dv dt

 C
⇣
1+ T + T R�2

0

⌘ ⇥
E"(u0) + Rn0

⇤
,

(2.8)

where the constant C does not depend on ", a and u.

Proof. In a neighborhood of each point x0 2 M , we can choose an orthonormal
frame {ei }ni . We denote by ri the first covariant derivative with respect to ei and by
r2j i u the second covariant derivatives of u and so on.
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Let � be a cut-off function with support in B2R0(x0) such that � = 1 in
BR0(x0), |r�|  CR�1

0 and |�|  1 in B2R0(x0). Multiplying (2.4) by �n1u,
we have

I1 =:
Z

B2R0 (x0)

⇣
1� a + " + a|ru|n�2

⌘
h@t u,1ui�n dv

=
Z

B2R0 (x0)

D
rk

⇣⇣
" + |ru|n�2

⌘
rku

⌘
,1u

E
�n dv

+
Z

B2R0 (x0)

D⇣
" + |ru|n�2

⌘
A(u)(ru,ru),1u

E
�n dv

=: I2 + I3.

(2.9)

In order to prove (2.8), I1, I2 are main terms and I3 can be estimated easily by

|I3| 
1
4

Z

B2R0 (x0)

⇣
" + |ru|n�2

⌘ ��
�r2u

�
�
�
2
�n dv

+ C
Z

B2R0 (x0)

⇣
" + |ru|n�2

⌘
|ru|4�n dv

(2.10)

due to the fact that |A(u)(ru,ru)|  C|ru|2.
To estimate the term I1 of (2.9), it follows from integrating by parts and using

Young’s inequality that

I1 =
Z

B2R0 (x0)

D⇣
1� a + " + a|ru|n�2

⌘
@t u,1u

E
�n dv

= �
d
dt

Z

B2R0 (x0)

✓
1� a + "

2
|ru|2 +

a
n
|ru|n

◆
�n dv

� a
Z

B2R0 (x0)
rk

⇣
|ru|n�2

⌘
@t u · rku�n dv

� n
Z

B2R0 (x0)

⇣
1� a + " + a|ru|n�2

⌘
@t u · rku�n�1rk� dv

 �
d
dt

Z

B2R0 (x0)

✓
1� a + "

2
|ru|2 +

a
n
|ru|n

◆
�n dv

+ C
Z

B2R0 (x0)

⇣
1� a + " + a|ru|n�2

⌘
|@t u|2�n dv

+
n � 2
4

Z

B2R0 (x0)
|ru|n�2|r(|ru|)|2�n dv

+ C
Z

B2R0 (x0)

⇣
1� a + " + a|ru|n�2

⌘
|ru|2|r�|2�n�2 dv.

(2.11)
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To estimate the first term I2 of the right-hand side of (2.9), it follows from the
well-known Ricci identity that

rkrl

⇣
(" + |ru|n�2)ru

⌘
= rlrk

⇣
(" + |ru|n�2)ru

⌘

+ RM#
⇣⇣

" + |ru|n�2
⌘

ru
⌘

with the Riemannian curvature RM . Then, integrations by parts twice yield that

I2 =
Z

B2R0 (x0)

D
rk

⇣⇣
" + |ru|n�2

⌘
rku

⌘
,1u

E
�n dv

=
Z

B2R0 (x0)

D
rl

⇣⇣
" + |ru|n�2

⌘
rku

⌘
,rkrlu

E
�n dv

�
Z

B2R0 (x0)

D
rk

⇣⇣
" + |ru|n�2

⌘
rku

⌘
,rlu

E
rl�

n dv

+
Z

B2R0 (x0)

D
rl

⇣⇣
" + |ru|n�2

⌘
rku

⌘
,rlu

E
rk�

n dv

+
Z

B2R0 (x0)

D
RM#

⇣⇣
" + |ru|n�2

⌘
rku

⌘
,rlu

E
�n dv

�
3
4

Z

B2R0 (x0)

⇣
" + |ru|n�2

⌘ ��
�r2u

�
�
�
2
�n dv

+
n � 2
2

Z

B2R0 (x0)

⇣
" + |ru|n�2

⌘
|r|ru||2 �n dv

� C
Z

B2R0 (x0)

⇣
" + |ru|n�2

⌘
|ru|2�n�2

⇣
�2 + |r�|2

⌘
dv.

(2.12)

Substituting (2.10)-(2.12) into (2.9) and using Young’s inequality, we obtain

d
dt

Z

B2R0 (x0)

✓
1� a + "

2
|ru|2 +

a
n
|ru|n

◆
�n dv

+
1
2

Z

B2R0 (x0)

⇣
" + |ru|n�2

⌘ ��
�r2u

�
�
�
2
�n dv

 C
Z

B2R0 (x0)
|ru|2

⇣
"|ru|2 + |ru|n

⌘
�n dv

+ C
Z

B2R0 (x0)
(1+ |ru|n)�n�2

⇣
�2 + |r�|2

⌘
dv

+ C
Z

B2R0 (x0)

⇣
1� a + " + a|ru|n�2

⌘
|@t u|2�n dv.

(2.13)
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The main term in the right hand of (2.13) is the term involving |ru|n+2�n and other
lower order terms can be treated by the Young inequality. By applying the Hölder
and Sobolev inequalities, we have

Z T

0

Z

B2R0 (x0)
|ru|n+2�n dv dt



 

sup
0tT

Z

B2R0 (x0)
|ru|n dv

! 2
n Z T

0

 Z

B2R0 (x0)
|ru|

n2
n�2�

n2
n�2 dv

! n�2
n

dt

 C"
2
n
0

Z T

0

Z

B2R0 (x0)

�
�
�r
⇣
|ru|n/2�n/2

⌘��
�
2
dv dt

 C"
2
n
0

Z T

0

Z

B2R0 (x0)

 �
�
�r2u

�
�
�
2
|ru|n�2�n +

1
R20

|ru|n
!

dv dt.

Integrating (2.13) in t over [0, T ], choosing "0 sufficiently small and Lemma 2.1,
we have

Z T

0

Z

BR0 (x0)
|ru|n+2 +

�
�
�r2u

�
�
�
2 ⇣

" + |ru|n�2
⌘
dv dt

 C
Z

B2R0 (x0)

✓
1� a + "

2
|ru|2 +

a
n
|ru|n

◆
(x, 0) dv

+ C

 

1+
1
R20

!Z T

0

⇥
E"

�
u; B2R0(x0)

�
+ Rn0

⇤
dt

 C

 

1+ T +
T
R20

!
⇥
E"(u0) + Rn0

⇤
.

This proves the claim.

For R > 0 and z0 = (x0, t0) 2 M ⇥ (0,1), we denote

PR(z0) =
n
z = (x, t) : |x � x0| < R, t0 � R2 < t  t0

o
.

Lemma 2.4. Assume that " > 0 and a 2 [0, 1]. Let u be a smooth solution to
the flow equation (2.4) with smooth initial value u0. For any � � 1, there exists
a positive constant "1 depending on � such that if for some R0 with 0 < R0 <

min{"1,
t1/20
2 } the inequality

sup
t0�4R20tt0

Z

B2R0 (x0)
|ru|n dv < "1,
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holds, then we have
Z t0

t0�R20

Z

BR0 (x0)
|ru|n+2+� +

�
�
�r2u

�
�
�
2 ⇣

" + |ru|n�2+�
⌘
dv dt

 CRn0 + C
Z t0

t0�4R20

Z

B2R0 (x0)

⇣
1+ R�2

0

⌘
|ru|n+� dv dt,

(2.14)

where the constant C does not depend on ", u and a, but on �.

Proof. The proof for the case of a = 0 is due to Hungerbuhler in [19]. However,
we must prove it for a 2 (0, 1].

In a neighborhood of each point x0 2 M , we still denote by ri the first
covariant derivative with respect to ei and by r2i j u the second covariant deriva-
tives of u and so on. Let � = �(x, t) be a cut-off function with support in
BR0(x0) ⇥ [t0 � 4R20, t0 + 4R20] such that � = 1 in BR0(x0) ⇥ [t0 � R20, t0],
|r�|  C/R0, |@t�|  1

R20
and |�|  1 in BR0(x0) ⇥ [t0 � 4R20, t0].

Multiplying (2.4) by �n|ru|�@t u and integrating by parts, we have
Z

P2R0 (x0,t0)

⇣
1� a + " + a|ru|n�2

⌘
|ru|� |@t u|2�n dv dt

= �
Z

P2R0 (x0,t0)

D⇣
" + |ru|n�2

⌘
rku, |ru|�rk(@t u)

E
�n dv dt

�
Z

P2R0 (x0,t0)

D⇣
" + |ru|n�2

⌘
rku,�|ru|��1rk(|ru|)@t u

E
�n dv dt

�
Z

P2R0 (x0,t0)

D⇣
" + |ru|n�2

⌘
rku, |ru|�@t u

E
rk�

n dv dt

+
Z

P2R0 (x0,t0)

D⇣
" + |ru|n�2

⌘
A(u)(ru,ru), |ru|�@t u

E
�n dv dt

 �
Z

BR0 (x0,t0)

✓
"

2+ �
|ru|2+� +

1
n + �

|ru|n+�

◆
�n(·, t0) dv

+
Z

P2R0 (x0,t0)

✓
"

2+ �
|ru|2+� +

1
n + �

|ru|n+�

◆
n�n�1@t� dv dt

+
a
2

Z

P2R0 (x0,t0)

⇣
" + |ru|n�2

⌘
|ru|� |@t u|2�n dv dt

+
�2

2a

Z

P2R0 (x0,t0)

⇣
" + |ru|n�2

⌘
|ru|��2|rkurk(|ru|)|2)�n dv dt

+ C
Z

P2R0 (x0,t0)

⇣
"+|ru|n�2

⌘
|ru|�+1�n�1(�|ru|+|r�|)|@t u| dv dt

(2.15)
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Multiplying a to both sides of (2.15) yields that

a2
Z

P2R0 (x0,t0)

⇣
" + |ru|n�2

⌘
|ru|� |@t u|2�n dv dt

 �2
Z

P2R0 (x0,t0)

⇣
" + |ru|n�2

⌘
|ru|��2|rkurk(|ru|)|2 dv dt

+
Ca
2+ �

Z

P2R0 (x0,t0)

⇣
" + |ru|n�2

⌘
|ru|�+2�n�1|@t�| dv dt

+ Ca
Z

P2R0 (x0,t0)

⇣
"+|ru|n�2

⌘
|ru|��n�1

⇣
�|ru|2+|ru||r�|

⌘
|@t u|dvdt.

(2.16)

Then using Young’s inequality and (2.16), we have

� a(n � 2)
Z

P2R0 (x0,t0)

D
|ru|n�3rl(|ru|)@t u, |ru|�rlu

E
�n dv dt

(n � 2)
Z

P2R0 (x0,t0)
|ru|n�2+�

 
a2|@t u|2

2�
+

�

2
|rl(|ru|)rlu|2

|ru|2

!

�n dv dt

 �(n � 2)
Z

P2R0 (x0,t0)

⇣
" + |ru|n�2

⌘
|ru|��2|rl(|ru|)rlu|2�n dv dt

+
Ca

�(2+ �)

Z

P2R0 (x0,t0)

⇣
" + |ru|n�2

⌘
|ru|�+2�n�1|@t�| dv dt

+C
a
�

Z

P2R0 (x0,t0)

⇣
"+|ru|n�2

⌘
|ru|�+1�n�1[(�|ru|+|r�|)|@t u|] dv dt.

(2.17)

Multiplying (2.4) by �nr · (|ru|�ru) and integrating by parts, we have

I4=:
Z

P2R0 (x0,t0)

D⇣
1�a+"+a|ru|n�2

⌘
@t u,rl

�
|ru|�rlu

�E
�n dv dt

=
Z

P2R0 (x0,t0)

D
rk

⇣⇣
"+|ru|n�2

⌘
rku

⌘
,rl

�
|ru|�rlu

�E
�n dv dt

+
Z

P2R0 (x0,t0)

D⇣
"+|ru|n�2

⌘
A(u)(ru,ru),rl

�
|ru|�rlu

�E
�n dv dt

=
Z

P2R0 (x0,t0)

D
rk

⇣⇣
" + |ru|n�2

⌘
rku

⌘
,rl

�
|ru|�rlu

�E
�n dv dt

�
Z

P2R0 (x0,t0)

D
rl

h⇣
"+|ru|n�2

⌘
A(u)(ru,ru)

i
,|ru|�rlu

E
�n dv dt

�
Z

P2R0 (x0,t0)

D⇣
"+|ru|n�2

⌘
A(u)(ru,ru), |ru|�rlu

E
rl(�

n) dv dt.

=: I5 + I6 + I7.

(2.18)
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In (2.18), I4, I5 are main terms, , I7 will be cancelled later and I6 is a easy term.
To estimate the term I4, it follows from integrating by parts that

I4 = �a(n � 2)
Z

P2R0 (x0,t0)

D
|ru|n�3rl(|ru|)@t u, |ru|�rlu

E
�n dv dt

�
Z

P2R0 (x0,t0)

D⇣
1� a + " + a|ru|n�2

⌘
rl(@t u), |ru|�rlu

E
�n dv dt

�
Z

P2R0 (x0,t0)

D⇣
1� a + " + a|ru|n�2

⌘
@t u, |ru|�rlu

E
rl(�

n) dv dt

=: I4.1 + I4.2 + I4.3.

(2.19)

Note that I4.1 is the exact term of the left-hand side of (2.17). In order to estimate
I4.1, it follows from using equation (2.4) that

a|@t u|  C
⇣
|r2u| + |ru|2

⌘
.

Combining this with (2.17) and using Young’s inequality, we estimate I4.1 to have

I4.1�(n � 2)
Z

P2R0 (x0,t0)

⇣
"+|ru|n�2

⌘
|ru|��2|rl(|ru|)rlu|2�n dv dt

+
Ca

�(2+ �)

Z

P2R0 (x0,t0)

⇣
" + |ru|n�2

⌘
|ru|�+2�n�1|@t�| dv dt

+ C
1
�2

Z

P2R0 (x0,t0)

⇣
" + |ru|n�2

⌘
|ru|�+2�n�2|r�|2 dv dt

+
Z

P2R0 (x0,t0)

⇣
" + |ru|n�2

⌘
|ru|�

✓
1
4

�
�
�r2u

�
�
�
2
+ C|ru|4

◆
�n dv dt.

(2.20)

To estimate I4.2, we have

I4.2=�
Z

P2R0 (x0,t0)

D⇣
1� a + " + a|ru|n�2

⌘
rl(@t u), |ru|�rlu

E
�n dv dt

= �
Z

B2R0 (x0,t0)

✓
1� a + "

2+ �
|ru|2+� +

a
n + �

|ru|n+�

◆
�n(·, t0) dv

+
Z

P2R0 (x0,t0)

✓
1� a + "

2+ �
|ru|2+� +

a
n + �

|ru|n+�

◆
@t�

n dv dt.

(2.21)

Note that the term I4.3 will be cancelled.
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To estimate the term I5 of (2.18), integrating by parts twice and using the Ricci
formula yield that

I5 =
Z

P2R0 (x0,t0)

D
rk

⇣⇣
" + |ru|n�2

⌘
rku

⌘
,rl

�
|ru|�rlu

�E
�n dv dt

=
Z

P2R0 (x0,t0)

D
rl

⇣⇣
" + |ru|n�2

⌘
rku

⌘
,rk

�
|ru|�rlu

�E
�n dv dt

+
Z

P2R0 (x0,t0)

D
rl

⇣⇣
" + |ru|n�2

⌘
rku

⌘
, |ru|�rlu

E
rk�

n dv dt

�
Z

P2R0 (x0,t0)

D
rk

⇣⇣
" + |ru|n�2

⌘
rku

⌘
, |ru|�rlu

E
rl�

n dv dt

+
Z

P2R0 (x0,t0)

D
RM#

⇣⇣
" + |ru|n�2

⌘
rku

⌘
, |ru|�rlu

E
�n dv dt

=: I5.1 + I5.2 + I5.3 + I5.4.

(2.22)

In (2.22), I5.1, I5.2, I5.3 are main terms to be estimated and I5.4 is easily estimated
by

|I5.4|  C
Z

P2R0 (x0,t0)

⇣
" + |ru|n�2

⌘
|ru|2+��n dv dt. (2.23)

To estimate I5.1, a direct calculation gives

I5.1=
Z

P2R0 (x0,t0)

D
rl

⇣⇣
" + |ru|n�2

⌘
rku

⌘
,rk

�
|ru|�rlu

�E
�n dv dt

=
Z

P2R0 (x0,t0)

⇣
" + |ru|n�2

⌘
|ru|�

�
�
�r2u

�
�
�
2
�n dv dt

+ (n � 2+ �)

Z

P2R0 (x0,t0)

⇣
" + |ru|n�2

⌘
|ru|� |r(|ru|)|2�n dv dt

+�(n � 2)
Z

P2R0 (x0,t0)

⇣
"+|ru|n�2

⌘
|ru|��2|rl(|ru|)rlu|2�n dv dt.

(2.24)

To estimate I5.2 , we have

|I5.2| 

�
�
�
�
�

Z

P2R0 (x0,t0)

D
rl

⇣
|ru|n�2

⌘
rku, |ru|�rlu

E
rk�

n dv dt

�
�
�
�
�

+
1
2

�
�
�
�
�

Z

P2R0 (x0,t0)

⇣
" + |ru|n�2

⌘
|ru|�rk |ru|2rk�

n dv dt

�
�
�
�
�


n � 2+ �

2

Z

P2R0 (x0,t0)

⇣
" + |ru|n�2

⌘
|ru|� |r(|ru|)|2�n dv dt

+
C

n � 2+ �

Z

P2R0 (x0,t0)

⇣
" + |ru|n�2

⌘
|ru|�+2�n�2|r�|2 dv dt.

(2.25)
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To estimate I5.3, it follows from using equation (2.4) that

I5.3 = �
Z

P2R0 (x0,t0)

D⇣
1� a + " + a|ru|n�2

⌘
@t u, |ru|�rlu

E
rl�

n dv dt

+
Z

P2R0 (x0,t0)

D⇣
"+|ru|n�2

⌘
A(u)(ru,ru), |ru|�rlu

E
rl(�

n) dv dt

= I4.3 � I7.

(2.26)

This means that these terms I5.3, I4.3, I7 can be cancelled together.
For I6, we have

|I6| 
1
4

Z

P2R0 (x0,t0)

⇣
" + |ru|n�2

⌘
|ru|�

�
�
�r2u

�
�
�
2
�n dv

+ C
Z

P2R0 (x0,t0)

⇣
" + |ru|n�2

⌘
|ru|4+��n dv.

(2.27)

Substituting (2.19)-(2.27) into (2.18), we have

1
2

Z

P2R0 (x0,t0)

⇣
" + |ru|n�2

⌘
|ru|�

�
�
�r2u

�
�
�
2
�n dv dt

+
(n � 2+ �)

2

Z

P2R0 (x0,t0)

⇣
" + |ru|n�2

⌘
|ru|� |r(|ru|)|2�n dv dt

+
Z

B2R0 (x0)

✓
1� a + "

2+ �
|ru|2+� +

a
n + �

|ru|n+�

◆
�n(·, t0) dv

 C
Z

P2R0 (x0,t0)

✓
1� a + "

2+ �
|ru|2+� +

a
n + �

|ru|n+�

◆
�n�1|@t�| dv dt

+ C
1
�

Z

P2R0 (x0,t0)

⇣
" + |ru|n�2

⌘
|ru|�+2�n�2|r�|2 dv dt

+ C
Z

P2R0 (x0,t0)

⇣
" + |ru|n�2

⌘ ⇣
|ru|2+� + |ru|4+�

⌘
�n dv dt.

(2.28)
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On the other hand, by using the Hölder and Sobolev inequalities, we have
Z t0

t0�4R0

Z

B2R0 (x0)
|ru|n+2+��n dv dt


Z t0

t0�4R20

 Z

B2R0 (x0)
|ru|n dv

! 2
n
 Z

B2R0 (x0)
|ru|

n(n+�)
n�2 �

n2
n�2 dv

! n�2
n

dt

 C"
2
n
1

Z t0

t0�4R20

Z

B2R20
(x0)

�
�
�r
⇣
|ru|

n+�
2 �n/2

⌘��
�
2
dv dt

 C"
2
n
1

Z t0

t0�4R20

Z

B2R20
(x0)

✓
(n + �)2

�
�
�r2u

�
�
�
2
|ru|n�2+��n

+ |ru|n+� |r�|2�n�1
◆
dv dt.

(2.29)

Choosing "1 (depending on � here) sufficiently small yields
Z t0

t0�4R0

Z

B2R0 (x0)

⇣
|ru|n+2+� +

⇣
" + |ru|n�2

⌘
|ru|� |r2u|2

⌘
�ndv dt

 C
Z

P2R0 (x0,t0)

⇣
1+ |r�|2 + |@t�|

⌘
|ru|n+� dv dt.

This proves our claim.

Since the constant "1 depends on � in Lemma 2.4, we have to get an improved
estimate to obtain the gradient estimate in the following:

Lemma 2.5. Assume that " > 0 and a 2 [0, 1]. Let u be a smooth solution to the
flow equation (2.4). There exists a positive constant "0 < i(M) such that if for

some R0 with 0 < R0 < min{"0,
t1/20
2 } the inequality

sup
t0�4R20t<t0

Z

B2R0 (x0)
|ru|n dv < "0

holds, we have
sup

PR0 (x0,t0)
|ru|n  C(R0),

where C(R0) is a constant independent on ", a.

Proof. Let � = �(x, t) be a cut-off function with support in BR(x0)⇥[t0�R20, t0+
R20] such that � = 1 in BR(x0) ⇥ [t0 � ⇢2, t0 + ⇢2], |r�|  C

R�⇢ , |@t�|  1
(R�⇢)2

and |�|  1 in BR(x0) ⇥ [t0 � R2, t0 + R2]. For this new cut-off function �, the
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same proof of (2.28) gives
1
2

Z

PR(x0,t0)

⇣
" + |ru|n�2

⌘
|ru|�

�
�
�r2u

�
�
�
2
�n dv dt

+
(n � 2+ �)

2

Z

PR(x0,t0)

⇣
" + |ru|n�2

⌘
|ru|� |r(|ru|)|2�n dv dt

+ sup
t0�R2st0

Z

BR(x0)

✓
1� a + "

2+ �
|ru|2+� +

a
n + �

|ru|n+�

◆
�n(·, s) dv

 C
Z

PR(x0,t0)

✓
1� a + "

2+ �
|ru|2+� +

a
n + �

|ru|n+�

◆
�n�1|@t�| dv dt

+ C
1
�

Z

PR(x0,t0)

⇣
" + |ru|n�2

⌘
|ru|�+2�n�2|r�|2 dv dt

+ C
Z

PR(x0,t0)

⇣
" + |ru|n�2

⌘ ⇣
|ru|2+� + |ru|4+�

⌘
�n dv dt.

(2.30)

Multiplying (2.30) by �, we have

�2
Z

PR(x0,t0)

⇣
" + |ru|n�2

⌘
|ru|� |r(|ru|)|2�n dv dt

+ sup
t0�R2st0

Z

BR(x0)
(1� a + ")

⇣
|ru|2+� + a|ru|n+�

⌘
�n(·, s) dv

 C
Z

PR(x0,t0)

⇣
|ru|2+� + |ru|n+�

⌘
�n�2

⇣
|@t�| + |r�|2

⌘
dv dt

+ C�

Z

PR(x0,t0)

⇣
" + |ru|n�2

⌘ ⇣
|ru|2+� + |ru|4+�

⌘
�n dv dt.

(2.31)

Using Hölder’s and Sobolev’s inequalities with (2.31), we have
Z t0

t0�⇢2

Z

B⇢(x0)
|ru|(n+�)(1+ 2

n
�+2
�+n ) dv dt


Z t0

t0�⇢2

✓Z

BR(x0)
|ru|�+2�n dv

◆ 2
n
✓Z

BR(x0)
|ru|

n(n+�)
n�2 �

n2
n�2 dv

◆ n�2
n
dt

C sup
t0�R2tt0

✓Z

BR(x0)
|ru|�+2�n dv

◆2
n
Z t0

t0�R2

Z

BR(x0)

�
�
�r
⇣
|ru|

n+�
2 �n/2

⌘��
�
2
dvdt

 C
✓Z

PR(x0,t0)

⇣
|ru|2+� + |ru|n+�

⌘
�n�2

⇣
|@t�| + |r�|2

⌘
dv dt

+�

Z

PR(x0,t0)

⇣
"+|ru|n�2

⌘⇣
|ru|2+� + |ru|4+�

⌘
�n dv dt

◆1+ 2
n � (a)

,

(2.32)

where the index � (a) = 1 if 0  a  1
2 and � (a) = �+2

�+n if
1
2  a  1.

Next, we follow [19] to process a Moser’s iteration (e.g., see [14]).
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Set R = Rk = R0(1 + 2�k), ⇢ = Rk+1 = R0(1 + 2�1�k), � = �k =
✓k(d0 � 2n) + n � 2 and ✓ = 1+ 2/n with d0 > 2n.

dk =n + �k+2=✓k(d0 � 2n) + 2n, dk+1=(n + �k)

✓
1+

2
n

�k + 2
�k + n

◆
= ✓dk � 4.

Using (2.32), we have
Z

Pk+1

⇣
1+ |ru|dk+1

⌘
dv dt  C2k✓

✓Z

Pk

⇣
1+ |ru|dk

⌘
dv dt

◆✓

,

where we denote Pk = PRk (x0, t0) and use the fact that 1+ 2
n  2.

Set

Ik =

✓Z

Pk

⇣
1+ |ru|dk

⌘
dv dt

◆ 1
✓k

.

Applying an iteration, we have

Ik+1  C
1

✓k+1 2
k
✓k Ik  C

P1
k=1

1
✓k+1 2

P1
k=1

k
✓k I0  C̃ I0.

Therefore, noting dk = ✓k(d0 � 2n) + 2n for all k � 1, we have
 Z

PR0
|ru|✓

k+1(d0�2n) dv dt

! 1
✓k+1(d0�2n)



✓
C
Z

Pk+1

⇣
1+ |ru|dk+1

⌘
dv dt

◆ 1
✓k+1(d0�2n)

 C
1

✓k+1(d0�2n) (C̃ I0)
1

(d0�2n)  C(R0).

This implies that |ru| is bounded in PR0 .

Lemma 2.6. Assume that " > 0 and a 2 [0, 1]. Let u : M ! N be a smooth
solution to the flow equation (2.4). There is a small constant "0 > 0 such that if the
inequality

sup
t0�T 0t<t0

Z

B2R0 (x0)
|ru|n dv dt < "0,

holds for some positive R0, then kukC0,↵ (PR0((x0, t0))) is uniformly bounded in ".

Proof. Using the above Lemma 2.5 , |ru| is bounded by a constant C . By a similar
proof of the local energy inequality, we have

Z

PR(z0)

⇣
" + |ru|n�2

⌘ ��
�
�
@u
@t

�
�
�
�

2
dv dt

 C sup
t0�R2tt0

E"(u(t); B2R(x0))  CRn.
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Set uz0,R =
R
PR(z0) u(x, t) dz. By a variant of the Sobolev-Poincare inequality, we

have
Z

PR(z0)
|u � uz0,R|2 dv dt  C


R2
Z

PR(z0)
|ru|2 dv dt + R4

Z

PR(z0)
|@t u|2 dv dt

�

 CRn+4

for all R  R0/2. This implies that u(x, t) is Hölder continuous near (x0, t0).

Theorem 2.7. Let a 2 [0, 1]. For any u0 2 W 1,n(M, N ), there exists a local
solution u : M ⇥ [0, T0] ! N of the flow equation (1.3) with initial value u0 for a
constant T0 satisfying

Z T0

0

Z

M

⇣
|ru|n+2 + |r2u|2|ru|n�2

⌘
dv dt

 CEn(u0) + C
⇣
1+ T0R�2

0

⌘
En(u0).

(2.33)

Proof. Since u0 2 W 1,n(M, N ) can be approximated by maps in C1(M, N ), we
assume that u0 is smooth without loss of generality. For " > 0 and a 2 [0, 1],
let ua," be a solution of that equation (2.4) with smooth initial value u0. Note that
equation (2.4) is equivalent to

@u�
a,"

@t
=

1
�
1�a+"+a|rua,"|n�2

�
1

p
|g|

@

@xi

⇥

⇣
"+|rua,"|n�2

⌘
gi j
p

|g|
@

@x j
u�
a,"

�

+

�
" + |rua,"|n�2

�
A�(ua,")(rua,",rua,")�

1� a + " + a|rua,"|n�2
�

:=
X

i,k,↵
b↵�
i j a

(rua,")
@2u↵

a,"
@xi@x j

+ f (ua,",rua,"),

(2.34)

where

b↵�
i j a

(rua,")

=
" + |rua,"|n�2�

1� a + " + a|rua,"|n�2
�

 

gi j�↵� +
(n � 2)|rua,"|n�4@xi u↵

a,"@x j u
�
a,"

" + |rua,"|n�2

!

.

For a fixed parameter ", (2.34) is a parabolic system, so there is a local smooth
solution ua," to the rectified gradient flow (2.4) with smooth initial value u0 in
[0, Ta,") for a maximal existence time Ta,".
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For a fixed " > 0, there is a constant T̃ > 0, depending on the bound of u0 and
its higher derivatives, such that T̃  Ta," for all a 2 [0, 1]. In order to prove the
local existence of (1.3), we need to show that there is a uniform constant T0 > 0,
depending only on En(u0), such that Ta," � T0 for all " > 0 and a 2 [0, 1]. Since
Ta," is the maximal existence time of the smooth solution u" of the flow (2.4), it
follows from using the same in [19, proof of Theorem 1 (Section 2.5)] that there is
a constant T0 > 0, depending only on En(u0), "0 and R0, such that for t  T0, we
have

Z

BR0 (x0)
e"(ua,")(·, t) dv 

Z

B2R0 (x0)
e"(u0) dv

+
Ct
Rn0

✓Z

M
e"(u0) dv

◆1� 1
n

< "0.

(2.35)

If T̃  T0, then it follows from using Lemma 2.5 that rua," is bounded in M ⇥
[0, T̃ ] by the norm kru0kLn(M) and hence f (ua,",rua,") is bounded. By the PDE
theory, rua,"(x, t) is continuous in a 2 [0, 1] for any t  T̃ < T". For any �̃ > 0,
there is a ⌘ > 0 such that for any two a, a0 2 [0, 1] with |a � a0| < ⌘, we have

�
�
�b↵�
i j a

(rua,")(x, t) � b↵�
i j a0

(rua0,")(x, t)
�
�
�  �̃.

We assume that rua0,"(x, t) is Hölder continuous in M ⇥ [ T̃4 , T̃ ], with its Hölder
norm depending only on the bound of rua0,"(x, t). In fact, this is known for a0 = 0
(see [19]). Noticing

@u�
a,"

@t
� b↵�

i j a0
(rua0,")

@2u↵
a,"

@xi@x j

=
⇣
b↵�
i j a

(rua,") � b↵�
i j a0

(rua0,")
⌘ @2u↵

a,"
@xi@x j

+ f (ua,",rua,"),

we apply the L p-estimate to obtain that

Z

PR/2(x,T̃ )

�
�
�
�
@ua,"
@t

�
�
�
�

p
dvdt +

Z

PR/2(x,T̃ )

�
�r2ua,"

�
�pdvdt

 C �̃

Z

PR(x,T̃ )

�
�r2ua,"

�
�pdvdt

+ C
Z

PR(x,T̃ )
(| f (ua,",rua,")|p + |ua,"|p) dvdt.

(2.36)
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By a covering argument on M and choosing �̃ sufficiently small with C �̃ < 1
4 , we

have
Z

M⇥[ 12 T̃ ,T̃ ]

�
�
�
�
@ua,"
@t

�
�
�
�

p
dxdt +

1
2

Z

M⇥[ 12 T̃ ,T̃ ]

�
�r2ua,"

�
�pdvdt

C
Z

M⇥[ 14 T̃ , 12 T̃ ]

⇣
| f (ua,",rua,")|p+|ua,"|p + |r2ua,"|p

⌘
dvdt  C(T̃ ).

(2.37)

By the Sobolev imbedding theorem of parabolic version, rua," is also Hölder con-
tinuous, depending on C(T̃ ), uniformly for all a 2 [0, 1] and therefore ua," is
smooth across to T̃ � T0 for all a 2 [0, 1]. Therefore, for each fixed " > 0, there is
a smooth solution of the flow (2.4) in [0, T0] satisfying

Z T0

0

Z

M
|rua,"|n+2 +

�
�
�r2ua,"

�
�
�
2 ⇣

" + |rua,"|n�2
⌘
dv dt

 CEn,"(u0) + C
⇣
1+ T0R�2

0

⌘
En,"(u0).

(2.38)

As " ! 0, ua," converges to a map u, which is a solution of the flow equation (1.3)
satisfying (2.33) using Lemmas 2.3-2.5.

Using the above results, we can prove Theorem 1.1.

Proof of Theorem 1.1 . By Theorem 2.7, there is a local solution to the flow equa-
tion (1.3) satisfying (2.33). Then, the solution can be extended to M ⇥ [0, T1) for a
maximal time T1 such that as t ! T1, there is a singular set

6T1 =
\

R>0

(

x 2 M : lim sup
t!T1

En
⇣
u(x, t); BR

�
x j
�⌘

� "0

)

for a constant "0 > 0. For a > 0, we have a nice local energy inequality in Lemma
2.2. Next, we use a similar argument in [27] to prove the finiteness of the singular
set 6T1 . Let {x j }lj=1 be any finite subset of 6T1 satisfying

lim sup
t!T1

En
⇣
u(x, t); BR

�
x j
�⌘

� "0, 8R > 0, 1  j  l.

We choose R > 0 such that B2R(x j ) are disjoint. By using Lemma 2.2, we obtain

l"0 
lX

j=1
lim sup
t!T1

En
⇣
u(x, t); BR

�
x j
�⌘


lX

j=1


En
⇣
u(x, s); B2R

�
x j
�⌘

+ C(a)
(T1 � s)
R2

En(u0;M)

�

 En
⇣
u(x, t); BR

�
x j
�⌘

+
l"0
2
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for any s 2 [T1� "0R2
2C(a)En(u0) , T1). This implies that l  2En(u0)

"0
, so the singular set

6T1 is finite. Thus, we continue the above procedure at the initial time T1 to prove
existence of a solution of the flow (1.3) in [T1, T2) for a second singular time T2.
By induction, we complete the proof.

3. Energy identity and neck-bubble decompositions

In this section, let u(x, t) be a solution of the rectified n-flow (1.3) in M ⇥ [0, T1)
in Theorem 1.1. Consider now a sequence of {u(x, ti )} as ti ! T1  1. Then they
have uniformly bounded energy; i.e., En(u(ti );M)  En(u0;M). As ti ! T1,
u(x, ti ) converges to a map uT1 strongly in W

1,n+1
loc (M\{x1, · · · , xl}) with finite

integer l. At each singularity x j , there is a R0 > 0 such that there is no other
singularity inside BR0(x j ). Moreover, there is a constant "0 > 0 such that each
singular point x j for j = 1, . . . , l is characterized by the condition

lim sup
i!1

En
⇣
ui ; BR

�
x j
�⌘

� "0,

for any R 2 (0, R0]. Then there is a 2 > 0 such that as ti ! T1
|ru(x, ti )|ndv ! 2�x j + |ruT1 |

ndv, (3.1)

where �x j denotes the Dirac mass at the singularity x j .
In order to establish the energy identity of the sequence {u(x, ti )}1i=1, we need

to get the neck-bubble decomposition. We recall the removable singularity theorem
of n-harmonic maps [6] and the gap theorem: there is a constant "g > 0 such that
if u is a n-harmonic map on Sn satisfying

R
Sn |ru|n < "g, then u is a constant on

Sn . For completeness, we give a detailed proof on constructing the bubble-neck
decomposition by following the idea of Ding-Tian [8] (also [22]).
Step 1. To find a maximal (top) bubble at the level one (first re-scaling).

First note that u(x, ti ) ! uT1 regularly in BR0(x j ) away from x j , where uT1
is a map in W 1,n(M, N ). Since x j is a concentration point, we find such that as
ti ! T1,

max
x2BR0 (x

j ),T1��tti
|ru(x, t)|!1, ri,1=

1
maxx2BR0 (x j ), T1��tti |ru(x, t)|

!0

for a small � > 0. In the neighborhood of the singularity x j , we define the rescaled
map

ũi (x̃, t̃) := ui
⇣
x j + ri,1 x̃, ti + (ri,1)2 t̃

⌘
.

Then ũi (x, t) satisfies
⇣
(ri,1)n�2(1� a + ") + a|rũ|n�2

⌘ @ ũ
@ t̃

= div
⇣
|rũ|n�2rũ

⌘
+ |rũ|n�2A(ũ)(rũ,rũ),

(3.2)
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in BR0r�1(0) ⇥ [�1, 0] and

Z 0

�1

Z

BR0(ri,1)�1 (0)

⇣
rn�2i,1 (1� a + ") + a|rũ|n�2

⌘ ��
�
�
@ ũ
@ t̃

�
�
�
�

2
dṽ dt̃


Z ti

ti�(ri,1)2

Z

M

⇣
(1� a + ") + a|ru|n�2

⌘ ��
�
�
@u
@t

�
�
�
�

2
dv dt ! 0.

(3.3)

Therefore, there is a t̃ 2 (�1, 0) such that
Z

BR0(ri,1)�1 (0)

⇣
rn�2i,1 (1� a + ") + a|rũ|n�2

⌘ ��
�
�
@ ũ
@t

�
�
�
�

2
(·, t̃ ) dṽ ! 0. (3.4)

Using Lemma 2.2, it can be shown that as i ! 1,
�
�
�ru(x, ti + r2i,1 t̃i )

�
�
�
n
dv ! 2�x j +

�
�ruT1

�
�n dv. (3.5)

For simplicity, we set

ui (x) := u
⇣
x, ti + r2i,1 t̃i

⌘
for x 2 BR0

�
x j
�
, ũi (x̃) :=u

⇣
x j + ri,1 x̃, ti + r2i,1 t̃i

⌘
.

Since |rũi (x̃)|  1 for all x̃ 2 BR0r�1
i,1

(0), ũi sub-converges to an n-harmonic map

!1, j locally in C1,↵(Rn, N ) as i ! 1, and !1, j can be extended to an n-harmonic
map on Sn (see [6]) and is nontrivial due to (3.5). We call !1, j the first bubble at
the singularity x j , which satisfies

En
�
!1, j ; Rn�= lim

R!1
lim
i!1

En(ũi ; BR(0))= lim
R!1

lim
i!1

En
⇣
ui ;BRri,1

�
x j
�⌘

. (3.6)

Step 2. To find out new bubbles at the second level (second re-scaling).
Assume that for a fixed small constant " > 0 (to be chosen later), there exist

two positive constants �0 and R0 with R0ri,1 < 4�0 such that for all i sufficiently
large, we have Z

B2r\Br (x j )
|ru(ti )|ndV  ", (3.7)

for all r 2 (
Rri,1
2 , 2�), and for all R � R0 and �  �0.

By using Theorem 1.1, there are finitely many isolated singularities of u at
t = T1. Then for a small R0, it follows from and (3.6) that

lim
i!1

En
⇣
ui ; BR0

�
x j
�⌘

= En
⇣
uT1; BR0

�
x j
�⌘

+ En
�
!1, j ; Rn�

+ lim
R!1

lim
�!0

lim
i!1

En
⇣
ui ; B� \ BRri,1

�
x j
�⌘

.
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If (3.7) is true, it is done and we will prove that there is only single bubble !1, j
around x j .

If the assumption (3.7) is not true, then for any two constants R and � with
Rri,1 < 4�, �  �0 and R � R0, there is a number ri 2 (

Rri,1
2 , 2�) such that

lim
i!1

Z

B2ri \Bri (x
j )

|rui |n dV > ". (3.8)

Since there is a uniformly energy bound K = nEn(u0;M), i.e.,
R
M |rui |n dV 

K , and " is a fixed constant, we remark that there is no infinitely many number
of above ri 2 (0, �0) with disjoint annuluses B2ri \Bri (x j ) satisfying (3.8). If
lim infi!1 ri > 0, it can be ruled out by choosing �0 sufficiently small, so we
assume that limi!1 ri = 0. Similarly, if lim supi!1

ri
ri,1 < 1, it can be rule out

choosing R0 sufficiently large since ũi converges regularly to !1,1 locally in Rn .
Therefore, we can assume that limi!1

ri
ri,1 = 1 up to a subsequence. Since there

might be many different numbers ri 2 (
Rri,1
2 , 2�) satisfying (3.8), we must classify

these numbers. For any two numbers ri and r̃i in (
Rri,1
2 , 2�) satisfying (3.8), they

can be classified in different classes by the following properties:
lim
i!1

ri
r̃i

= +1 or lim
i!1

ri
r̃i

= 0; (3.9)

0 < lim inf
i!1

ri
r̃i

 lim sup
i!1

ri
r̃i

< 1. (3.10)

We say that {ri } and {r̃i } are in the same class if they satisfy (3.10). Otherwise, they
are in different classes if they satisfy (3.9).

It can be seen that the number of above different classes of {ri } satisfying (3.8)
must be finite. Let {r̃i } be any number satisfying (3.8) in the same class of {ri }.
Then there is an uniform positive integer N1 such that

1
N1

 lim inf
i!1

ri
r̃i

 lim sup
i!1

ri
r̃i

 N1. (3.11)

Otherwise, it will contradict with the fact that there is no infinitely number of above
ri 2 (0, �0) with disjoint annuluses B2ri \Bri (x j ) satisfying (3.8). Therefore, these
numbers r̃i can be ruled out by letting �0 sufficiently small and R0 sufficiently large.

We say that the class of {ri } is smaller than the class of {r̃i } if limi!1
ri
r̃i = 0,

so we can give an order for such equivalent classes by {r2,i }  {r3,i }  · · ·  {rL ,i }
for some positive integer L > 0 depending only on the energy bound K and ". Then
we can separate the neck region B� \ BRri,1(x j ) by the following finite sum:

En
⇣
ui ; B� \ BRr1,i

�
x j
�⌘

= En
⇣
ui ; B� \ BRrL ,i

�
x j
�⌘

+ En
⇣
ui ; BRrL ,i

�
x j
�
\ B�rL ,i

�
x j
�⌘

+En
⇣
ui ;B�rL ,i

�
x j
�
\BRrL�1,i

�
x j
�⌘

+En
⇣
ui ; BRrL�1,i

�
x j
�
\B�rL�1,i

�
x j
�⌘

+ · · ·

+ En
⇣
ui ; BRr2,i

�
x j
�
\ B�r2,i

�
x j
�⌘

+ En
⇣
ui ; B�r2,i

�
x j
�
\ BRr1,i

�
x j
�⌘

.
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For a sequence {r2,i } in the smallest class satisfying (3.8) with the fact that
limi!1

r2,i
r1,i = 1 and limi!1 r2,i = 0, set

ũ2,i (x̃) = ui
⇣
x j + r2,i x̃

⌘
.

Then we note that

lim
R!1

lim
�!0

lim
i!1

En
⇣
ui ; BRr2,i

�
x j
�
\ B�r2,i

�
x j
�⌘

= lim
R!1

lim
�!0

lim
i!1

En
�
ũ2,i ; BR(0) \ B�(0)

�
.

Passing to a subsequence, ũ2,i converges to a !2 locally in BR(0)\B�(0) away from
a finite concentration set of {ũ2,i }. As R ! 1 and � ! 0, !2 is an n-harmonic
map in Rn by removing singularities. If !2 is non-trivial on Rn , then !2 is a new
bubble, which is different from the bubble !1. The above bubble connection !2
might be trivial. In this case, there is at least a concentration point p 2 B2\B1
of {ũ2,i } due to (3.8). At each concentration point p of ũ2,i , we can repeat the
procedure in Step 1; i.e., at each concentration point p of ũ2,i in BR(0) \ B�(0) ,
there are sequences x pi ! p and �

p
i ! 0 such that

ũ2,i
�
x pi + �

p
i x
�

! !2,p,

where !2,p is a n-harmonic map on Rn . Note that ũ2,p,1 is also a bubble for the
sequence {ui (x j + ri,2x

p
i + ri,2�

p
i x)}.

Set x2,pi = x j + ri,2x
p
i . For each p 2 BR(0) \ B�(0), we have

�
�
�x j � x2,pi

�
�
�

r1i
=
ri,2
ri,1

�
�x pi

�
� ! 1 as i ! 1.

Therefore, the bubble !2,p at p 6= 0 is different from the bubble !1. We continue
the above procedure for possible new multiple bubbles at each blow-up point p
again. Since there is a uniform bound K for En(ui ;M) and each non-trivial bubble
on Sn costs at least "g of the energy by the gap theorem, the above process must
stop after finite steps.

Furthermore, we note

lim
R!1

lim
�!0

lim
i!1

En
⇣
ui ; B�r2,i

�
x j
�
\ BRr1,i

�
x j
�⌘

= lim
R!1

lim
�!0

lim
i!1

En

 

ũ2,i ; B�(0) \ B Rr1,i
r2,i

(0)

!

.

Since {r2,i } in the smallest class satisfying (3.8) with the fact that limi!1
r1,i
r2,i = 0

and limi!1 r2,i = 0, we can see that ui satisfies (3.7) on Br2,i �(0) \ BRr1,i (0).
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Otherwise, there is a number ri 2 (12 Rr1,i , 2�r2,i ) satisfying (3.8), ri must be be-
long to the class of {r1,i } or {r2,i }. In an equivalent class, it can be ruled out by R
sufficiently large or letting � sufficiently small.

Since limi!1
ri,1
ri,2 = 0 and !1 is a bubble limiting map for the sequence

{ui (x1i + r1i x) = ũ2,i (
r1i
r2i
x)}, then p = 0 is also a concentration point of ũ2,i on

Rn . Therefore the bubble !2,0 must be the same bubble !1. Since the bubble !1 is
produced by ui on BRr1,i (x j ), we separate it from other bubbles without repeating.
Step 3. To find out all multiple bubbles.

Let ri,3 be in the second small class of numbers satisfying (3.8) with
limi!1

ri,3
ri,2 = 1 and limi!1 ri,3 = 0. Set

ũ3,i (x̃) = ui
⇣
x j + ri,3 x̃

⌘
.

Passing to a subsequence, ũ3,i converges locally to a !3 away from a finite con-
centration set of {ũ3,i } on Rn\{0}. Then we can repeat the argument of Steps 1-2.
All bubbles produced by ũ3,i , except for those concentrated in 0, are different from
Steps 1-2. By induction, we can find out all bubbles in all cases of the finite differ-
ent classes. Since there is at least one nontrivial bubble on each different classes,
the total number L of equivalent classes depends only on K and "g. By the gap
theorem of n-harmonic maps on Sn , the above process must stop after finite steps.

In summary, at each class level k, the blow-up happens, there are finitely many
blow-up points and bubbles onRn . At each level k and each bubble point pk,l , there
are sequences x̃ k,li ! pk,l and ri,k ! 0 with limi!1

ri,k
ri,k�1 = 1 such that passing

to a subsequence, ũi,k,l(x) = ui (xk,li + ri,k x) converges to !k,l , where !k,l is an
n-harmonic map in Rn , where xk,li = x j + ri,k x̃k,l .

In conclusion, there are finite numbers ri,k , finite points xk,li , positive constants
Rk,l , �k,l and a finite number of non-trivial n-harmonic maps !k,l on Rn such that

lim
ti!1

En(ui ; BR0(xk))

= En(uT1; BR0(xi )) +
LX

k=1

JkX

l=1
En(!k,l; Rn)

+
LX

k=1

JkX

l=1
lim

Rk,l!1
lim

�k,l!0
lim
i!1

En
⇣
ũk,l,i ; B�k,l\BRk,l ri,k

⇣
xk,li

⌘⌘
.

(3.12)

Moreover, at each neck region B�k,l\BRk,l r k↵ (x
k,l
i ) in (3.12), for all i sufficiently

large, we have Z

B2r\Br (xk,l↵ )
|rũk,l,i |ndV  ", (3.13)

for all r 2
� Rk,l r ki

4 , 2�k,l
�
, where " is a fixed constant to be chosen sufficiently small.
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Proof of Theorem 1.3. Wei-Wang [30] proved an energy identity of a sequence of
regular approximated n-harmonic maps ui inW 1,n(M, N )\C0(M, N ), whose ten-
sion fields hi are bounded in Ln/n�1(M). Let ui (x) = u(x, ti ) satisfy the equation
(1.3). In this case, hi := (1+ a|rui |n�2)@t ui , which is bounded in Ln/n�1(M). In
fact, using Hölder’s inequality, we have

Z

M

✓
|rui |n�2

�
�
�
�
@ui
@t

�
�
�
�

◆ n
n�1



✓Z

M
|rui |n

◆ n�2
2(n�1)

 Z
|rui |n�2

�
�
�
�
@ui
@t

�
�
�
�

2
! n
2(n�1)

C.

Under the condition (3.13), we apply [30, Theorem B] to prove

lim
Rk,l!1

lim
�k,l!0

lim
i!1

En
⇣
ũk,l,i ; B�k,l\BRk,l ri,k

⇣
xk,li

⌘⌘
= 0.

Therefore, the energy identity follows from (3.12).

4. Minimizing the n-energy functional in homotopy classes

In this section, we will present some applications of the related n-flow to the prob-
lem of minimizing the n-energy functional in a given homotopy class and give a
proof of Theorem 1.4. For a map u : M ! N , we recall the functional

En,"(u,M) =
Z

M
en,"(u) dv, (4.1)

where we set en,"(u) = "
2 |ru|

2 + 1
n |ru|

n + "
n+1 |ru|

n+1.
Let ui 2 C1(M, N ) be a minimizing sequence of the n-energy in a homotopy

class [u0]. Since a minimizing sequence ui does not satisfy any equation, we cannot
have a good tool to use. Following an idea of the ↵-harmonic map flow [18], we
introduce a modified gradient flow for the functional (4.1) in the following:

⇣
1� a + " + a|ru|n�2 + "|ru|n�1

⌘ @u
@t

=
1

p
|g|

@

@xi

⇣
" + |ru|n�2 + "|ru|n�1

⌘
gi j
p

|g|
@

@x j
u
�

+
⇣
" + |ru|n�2 + "|ru|n�1

⌘
A(u)(ru,ru),

(4.2)

with initial value u(0) for a small constant a > 0. Since the minimizing sequence
ui is smooth, there is a sequence "i with "i ! 0 such that

lim
i!1

En,"i (ui ,M) = lim
i!1

En(u"i ,M) = inf
u2[u0]

En(u,M). (4.3)
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Choosing u(0) = ui to be initial values, there is a sequence of " = "i ! 0 such
that the flow (4.2) has a unique global smooth solution u"i (x, t) on M⇥[0,1)with
u"i (0) = ui .

By (4.2), we have the energy identity

En,"i (u"i (s),M)+
Z s

0

Z

M

⇣
1�a+" + a|ru"k |

n�2 + "i |ru|n�1
⌘��
�
�
@u"i

@t

�
�
�
�

2
dv dt

= En,"i (ui ,M),

(4.4)

for each s > 0. Since ui is a minimizing sequence, it implies that

lim
i!1

Z

M

"i

n
|ru"i (s)|

n+1 dv = 0, (4.5)

lim
i!1

Z s

0

Z

M

⇣
1� a + " + a|ru"i |

n�2 + "|ru"i |
n�1

⌘ �
�@t u"i

�
�2 dvdt = 0. (4.6)

Moreover the sequence {u"i (s)}1i=1 for each s > 0 is also a minimizing sequence in
the homotopic class [u0].
Lemma 4.1. Let ⇢, R be two constants with ⇢ < R  2⇢. For any x0 with
B2⇢(x0) ⇢ M and for any two s, ⌧ 2 [0, T ), we have

Z

B⇢(x0)
en,"i (u"i (·, s)) dv �

Z

BR(x0)
en,"i (u"i )(·, ⌧ ) dv

 C
Z ⌧

s

Z

M

⇣
1+ a|ru"i |

n�2 + "i |ru|n�1
⌘

|@t u"i |
2 dv dt

+ C
✓

(⌧ � s)
(R � ⇢)2

Z

M
en,"i (ui ) dv

Z ⌧

s

Z

M

⇣
1+ a|ru"i |

n�2 + "i |ru"i |
n�1

⌘

|@t u"i |
2 dv dt

◆1/2
.

Proof. Let � be a cut-off function in BR(x0) such that � = 1 in B⇢ and |r�| 
C/(R � ⇢). The required result follows from multiplying (4.2) by �@t u"i .

We can repeat the same steps of Lemma 2.5 to obtain
Lemma 4.2. There exists a positive constant "0 < i(M) such that if for some R0
with 0 < R0 < min{"0,

t1/20
2 } the inequality

sup
t0�4R20t<t0

Z

B2R0 (x0)
|ru"i |

n dv < "0

holds, we have
kru"i kL1(BR0 (x0))  C(R0)

where C is a constant independent of " and depends on R0.
Now we complete the proof of Theorem 1.4.
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Proof of Theorem 1.4. For a minimizing sequence ui of the n-energy in the homo-
topy class, let u be the weak limit of {ui }1i=1 in W

1,n(M). Set

60 =
\

R>0

⇢
x0 2 � : BR(x0) ⇢ M, lim sup

i!1

Z

BR(x0)
|rui |n dx � "0

�
,

for a small constant "0 > 0. It is known that 60 is a set of finite points. For the
above sequence {u"i (s)}1i=1, we set

6s =
\

R>0

⇢
x0 2 � : BR(x0) ⇢ M, lim sup

i!1

Z

BR(x0)
|ru"i (·, s)|

n dx � "0

�
,

which is also finite. Applying (4.5)-(4.6) to Lemma 4.1, we obtain that 60 = 6s
for all s > 0 (see a similar argument to one in [16]). By using Lemmas 4.1-4.2,
|ru"i (x, s)|  C(R) on PR(x0, s) for each x0 2 M\6 with BR(x0) ⇢ M . By
this result, we know that u(x, t) is a weak solution to the flow (4.2). Since ui (x, t)
converges weakly to u(x, t) inW 1,2(M⇥[0, 1]), u(·, t) ⌘ u(·, 0) = u. Then u(x, t)
is an n-harmonic map from M to N independent of t 2 [0, 1]. By the regularity
result on n-harmonic maps (e.g., [21]), u is a C1,↵-map on M .

For any x0 2 M\6, there is a constant R > 0 such that BR(x0) ⇢ M\6. Note
that u"i (⌧ ) converges strongly to u in W 1,n(BR(x0)). As i ! 1, we apply Lemma
4.1 to obtain that

Z

B⇢(x0)

1
n
|ru|n  lim inf

i!1

Z

B⇢(x0)

1
n
|rui |n dv  lim sup

i!1

Z

B⇢(x0)
e"i (ui ) dv

 lim sup
i!1

Z

BR(x0)
en,"i (u"i )(·, ⌧ ) dv =

Z

BR(x0)

1
n
|ru|n dv

for any R with ⇢ < R. Letting R ! ⇢, we have
Z

B⇢(x0)

1
n
|ru|n = lim

i!1

Z

B⇢(x0)

1
n
|rui |n dv.

This implies that ui converges strongly to u in W 1,n(B⇢(x0)) and hence strongly in
W 1,n
loc (M\6).
Next, we use a similar proof of Sacks-Uhlenbeck [24] to show that 60 =

6s = ; if ⇡n(N ) = 0. Let {u"i (s)}1i=1 be the above sequence. it is known that
u"i (s) converges to u strongly in W

1,n+1
loc (M\6s). Without loss of generality, we

assume that there is one singularity x1 in 6s . Let ⌘(r) be a smooth cutoff function
in R with the property that ⌘ ⌘ 1 for r � 1 and ⌘ ⌘ 0 for r  1/2. For some
⇢ > 0, we define a new sequence of maps vi : M ! N such that vi is the same as
ui outside B⇢(x1), and for x 2 B⇢(x1),

vi (x) = expu(x)
✓

⌘

✓
|x |
⇢

◆
exp�1

u(x) �u"i (x, s)
◆

,
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where exp is the exponential map on N . Note that vi ⌘ u on B⇢/2(x1) and vi ⌘
u"i (s) outside B⇢(x1) and that u"i (s) converges to u on B⇢(x1)\B⇢/2(x1) strongly in
W 1,n+1 and thus in C� for some � > 0. Hence for sufficiently large i , vi (B⇢(x1) \
B⇢/2(x1)) lies in a small neighborhood of u(x1), where exp�1

u(x) is a well defined

smooth map (if ⇢ is small). Since F(y) = expu(x)
⇣
⌘( |x |

⇢ ) exp�1
u(x) y

⌘
is a smooth

map from a neighborhood of u(x1) into itself, we have
Z

B⇢\B⇢/2(x1)
|r(vi � u)|n dv =

Z

B⇢\B⇢/2(x1)
|r(F � u"i (s) � F � u)|n dv

 C
Z

B⇢\B⇢/2(x1)
|r(u"i (s) � u)|n dv ! 0

as i ! 1. It implies that

kvi � ukW 1,n(M) ! 0 (4.7)

as i ! 1.
Since ⇡n(N ) is trivial, vi is in the same homotopy class as u"i (s). Since u"i (s)

is a minimizing sequence of En,"i and u"i (s) converges weakly to u in W 1,n , we
have

En(u)  lim sup
i!1

En,"i (u"i (s))  lim sup
i!1

En,"i (vi ) = En(u),

which implies that u"i (s) converges to u strongly inW 1,n(M, N ), which means that
there is no energy concentration; i.e., 60 = 6s = ;.

5. Minimizing the p-energy functional in homotopy classes

For a small " > 0, we introduce a perturbation of the p-energy functional by

Ep,"(u;M) =
Z

M

"

2
|ru|2 +

1
p

|ru|p +
"

n + 1
|ru|n+1dv. (5.1)

The Euler-Lagrange equation associated to this functional is

r ·
⇣
[" + |ru|p�2 + "|ru|n�1]ru

⌘

+
h
" + |ru|p�2 + "|ru|n�1

i
A(u)(ru,ru) = 0.

(5.2)

The gradient flow for the above equation is

@u
@t

= div
h⇣

" + |ru|p�2 + "|ru|n�1
⌘

ru
i

+
⇣
" + |ru|p�2 + "|ru|n�1

⌘
A(u)(ru,ru),

(5.3)
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with initial value u(0) = u0 in M . If the initial map u0 is smooth, there is a global
smooth solution to (5.3) by using proofs in [19] and [11].

Without loss of generality, we assume gi j = �i j . Then we have

Lemma 5.1. Let u be a solution of the equation (5.3). Then for all ⇢  R with
BR(x0) ⇢ �, we have

⇢ p�n
Z

B⇢(x0)


"

2
|ru|2 +

1
p
|ru|p +

1
n + 1

"|ru|n+1
�
dx

+
n(p � 2)
2p

Z R

⇢
r p�1�n

Z

Br
"|ru|2 dx dr

+
Z

BR\B⇢(x0)


1
2
|@r u|2 +

1
n + 1

"|ru|n�1|@r u|2
�
r p�n dx

= Rp�n
Z

BR(x0)


"

2
|ru|2 +

1
p
|ru|p +

1
n + 1

"|ru|n+1
�
dx

+
n + 1� p
n + 1

Z R

⇢

Z

Br (x0)
r p�1�n"|ru|n+1 dx dr

+
Z R

⇢

Z

Br
r p�1�n

⌧
@u
@t

, xiri u
�
dx dr.

Proof. Without loss of generality, we assume that x0 = 0. Multiplying (5.3) by
xiri u, we have

Z

Br

⌧
@u
@t

, xiri u
�
�
D
div

⇣⇣
" + |ru|p�2 + "|ru|n�1

⌘
ru
⌘

, xiri u
E
dx = 0.

Integration by parts yields that

Z

Br

⌧
@u
@t

, xiri u
�
dx �

1
r

Z

@Br

⇣
" + |ru|p�2 + "|ru|n�1

⌘
|xiri u|2 d!

= �
Z

Br

⇣
"|ru|2 + |ru|p + "|ru|n+1

⌘

+
1
2

⇣
" + |ru|p�2 + "|ru|n�1

⌘
xiri

⇣
|ru|2

⌘
dx

=
Z

Br

✓
(n � 2)"

2
|ru|2 +

(n � p)
p

|ru|p �
"

n + 1
|ru|n+1

◆
dx

� r
Z

@Br

✓
"

2
|ru|2 +

1
p
|ru|p +

"

n + 1
|ru|n+1

◆
d!.
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Multiplying by r p�1�n both sides of the above identity, we have

d
dr


r p�n

Z

Br

✓
"

2
|ru|2 +

1
p
|ru|p +

"

n + 1
|ru|n+1

◆
dx
�

�
n(p � 2)
2p

r p�1�n
Z

Br
"|ru|2 dx + r p�1�n

Z

Br

"(n + 1� p)
n + 1

|ru|n+1dx

= �r p�1�n
Z

Br

✓
(n � 2)"

2
|ru|2 +

(n � p)
p

|ru|p �
"

n + 1
|ru|n+1

◆
dx

+ r p�n
Z

@Br

✓
"

2
|ru|2 +

1
p
|ru|p +

"

n + 1
|ru|n+1

◆
d!

= r p�n
Z

@Br

⇣
" + |ru|p�2 + "|ru|n�1

⌘
|@r u|2 d! �

Z

Br
r p�1�n

⌧
@u
@t

, xiri u
�
dx .

Then integrating with respect to r from ⇢ to R yields the result.

Lemma 5.2. Let ui 2 C1(M, N ) be a minimizing sequence in the homotopy class
[u0]. Then there are a sequence of "i ! 0 and solutions u"i of equation (5.3) with
initial value ui such that u"i (t) for all t 2 [0,1) is also a minimizing sequence in
the same homotopy class. Moreover, there is a uniform t̃ 2 [1/2, 1] such that

lim
i!1

Z

M

"i

n + 1
|ru"i |

n+1(·, t̃) dv + lim
i!1

Z

M

�
�@t u"i (·, t̃)

�
�2 dv = 0.

Proof. Since the minimizing sequence ui is smooth, there is a sequence "i ! 0
such that

Ep,"i (ui )  Ep(u"i ) +
1
i
,

which implies

lim
i!1

Ep,"i (ui ) = lim
i!1

Ep(u"i ) = inf
v2[u0]

Ep(v). (5.4)

Then there is a unique solution u"i (x, t) to the flow (5.3) with initial value u"i (0) =
ui . Similar to Lemma 2.1, we have

E"i (u"i (·, ⌧ )) +
Z ⌧

0

Z

M

�
�@t u"i

�
�2 dvdt = E"i (u"i ).

This implies that u"i (x, ⌧ ) for ⌧ is a minimizing sequence of E in the homotopy
class [u0], which yields

lim
i!1

Z

M

"i

n + 1
|ru"i |

n+1(·, ⌧ ) dv +
Z ⌧

0

Z

M

�
�@t u"i

�
�2 dvdt = 0. (5.5)

Then there is a uniform t̃ 2 [1/2, 1] such that

lim
i!1

Z

M

�
�@t u"i (·, t̃)

�
�2 dv = 0.



THE RECTIFIED n-HARMONIC MAP FLOW 1281

Proof of Theorem 1.5. Let ui 2 C1(M, N ) be a minimizing sequence in a homo-
topy class and u its weak limit. If N is a homogeneous manifold, we claim that u is
a weak p-harmonic map from M and N .

Let X = (X1, · · · , XL) be a Killing vector on N ⇢ RL as in Hélein [15] and
u = (u1, · · · , uL) 2 N . Let ' be a cut-off function compactly supported in M .
Since u" is a solution of (5.3), we use 'X (u) as a testing vector to get
Z

M

D
rk('X (u")),

⇣
" + |ru"|

p�2 + " |ru"|
n�1

⌘
rku"

E
dv =�

Z

M
h'X (u"), @t u"i.

Since X is a Killing vector, it implies that
PL

l,m=1 rkum" rmXlrkul" = 0, so
Z

M

D
rk' X (u"),

⇣
" + |ru"|

p�2 + " |ru"|
n�1

⌘
rku"

E
dv

= �
Z

M
h'X (u"), @t u"i.

(5.6)

Let u be the weak limit of u"i in W 1,p(M ⇥ [0, 1]) by passing to a subsequence if
necessary. By a compact result in [3], |ru"i |

p�2ru"i converges weakly to
|ru|p�2ru in L p⇤ with 1

p + 1
p⇤ = 1. Since u"i converges to u strongly in L p

and X is a smooth vector on N , X (u"i ) converges to X (u) strongly in L p. Letting
"i go to zero in equation (5.6) and noting (5.5), we have

Z

M
rk'

D
X (u), |ru|p�2rku

E
dµ = 0,

which implies Z

M

D
rk('X (u)), |ru|p�2rku

E
dµ = 0

due to the fact that X is a Killing vector. Since N is a homogeneous space, we apply
the construction of a Killing field {X j } by Helein [15] and choose ' j to obtain that

X

j
' j X j (u)

is any compactly supported vector field (along u). This implies that u is a weak
p-harmonic map. We know that u is a weak solution to the p-harmonic map flow.
It follows from (5.5) that u is a map independent of t 2 [0, 1]. Since u"i (x, t)
converges weakly to u(x, t) in W 1,2(M ⇥ [0, 1]). Hence, u(·, t) ⌘ u(·, 0) is a
(weakly) p-harmonic map from M to N .

We define

6 =
\

R>0

(

x0 2 � : BR(x0) ⇢ M, lim sup
"i!0

1
Rn�p

Z

BR(x0)
|ru"i |

p dx � "0

)

,
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for a sufficiently small constant "0. Then, Hn�p(6) < +1. For any x0 /2 6 with
BR0(x0) ⇢ M\6, for each y 2 BR0/2(x0) and for each ⇢ 2 (0, R0/2), we have

⇢ p�n
Z

B⇢(y)
|ru|p dM  lim

"i!0
⇢ p�n

Z

B⇢(y)
|ru"i |

p dM < "0, (5.7)

for a sufficiently small constant "0 > 0. Since u is a weakly p-harmonic map
satisfying (5.7), it follows from a similar proof of stationary p-harmonic maps into
homogenous manifolds (see [28]) that u belongs to C1,↵loc (M\6).
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