Morrey potentials from Campanato classes

Liguang Liu and Jie Xiao

$$
\begin{aligned}
& \text { Abstract. This paper shows that under } \\
& \left\{\begin{array}{l}
0<\beta, \kappa \leq n ; \\
-\infty<\lambda \leq n ; \\
1 \leq p, q<\infty ; \\
p^{-1}(n-\beta)<\alpha<\min \left\{n, 1+p^{-1} \kappa\right\} ; \\
\lambda=p^{-1} q(\kappa-\alpha p)+n-\beta< \begin{cases}\kappa+\varepsilon \forall \varepsilon>0 & \text { as } \alpha^{-1} \kappa \leq p<\infty \\
\kappa+\varepsilon \forall \varepsilon>0 & \text { as } 1<p<\alpha^{-1} \kappa \\
\kappa+\frac{(n-\kappa)(n-\alpha-\beta)}{n-\alpha} & \text { as } 1=p<\alpha^{-1} \kappa,\end{cases}
\end{array}\right.
\end{aligned}
$$

if μ is a nonnegative Radon measure of finite β-variation on \mathbb{R}^{n} then the Morrey potential class $I_{\alpha} L^{p, \kappa}$ embeds continuously into the Campanato class $\mathcal{L}_{\mu}^{q, \lambda}$, and its converse also holds with μ being admissible.

Mathematics Subject Classification (2010): 31C15 (primary); 42B35, 46E35 (secondary).

1. Introduction

Our starting point is the following classical result on Morrey's inequality under $p \in$ (n, ∞), Poincaré's inequality under $p=n$, and Sobolev's (or Galiardo-NirenbergSobolev's) inequality under $p \in[1, n)$ which plays an important role in analysis, geometry, mathematical physics, partial differential equations, and other related fields; see, e.g., $[9,14,15,19]$.
Theorem 1.1. Let $u \in C_{c}^{1}\left(\mathbb{R}^{n}\right)$, i.e., u is C^{1}-smooth with compact support in \mathbb{R}^{n}.
Then

$$
\|\mid \nabla u\|_{L^{p}} \gtrsim\left\{\begin{array}{l}
\|u\|_{C^{1-\frac{n}{p}}} \approx\|u\|_{\mathcal{L}^{q, \lambda}} \text { as }(p, q) \in(n, \infty) \times[1, \infty) \text { and } \lambda=q\left(\frac{n}{p}-1\right) ; \\
\|u\|_{\mathrm{BMO}} \approx\|u\|_{\mathcal{L}^{q, \lambda}} \text { as }(p, q) \in\{n\} \times[1, \infty) \quad \text { and } \lambda=q\left(\frac{n}{p}-1\right) ; \\
\|u\|_{L^{\frac{p n}{n-p}}} \gtrsim\|u\|_{\mathcal{L}^{q, \lambda}} \text { as }(p, q) \in[1, n) \times\left[1, \frac{p n}{n-p}\right] \text { and } \lambda=q\left(\frac{n}{p}-1\right) .
\end{array}\right.
$$

L. Liu was supported by the National Natural Science Foundation of China (Nos. 11471042 \& 11571039); J. Xiao was supported by NSERC of Canada (FOAPAL \# 202979463102000).

Received November 11, 2016; accepted May 30, 2017.
Published online July 2018.

Here and henceforth, $A \approx B$ means $A \gtrsim B \gtrsim A$; while $A \gtrsim B$ means $A \geq c B$ for a constant $c>0$, and

$$
\left\{\begin{array}{l}
\|f\|_{C^{1-\frac{n}{p}}}=\sup _{x \neq y \text { in } \mathbb{R}^{n}}|f(x)-f(y) \| x-y|^{\frac{n}{p}-1} \\
\|f\|_{\mathrm{BMO}}=\sup _{(x, r) \in \mathbb{R}^{n} \times(0, \infty)} v(B(x, r))^{-1} \int_{B(x, r)}\left|f-f_{B(x, r)}\right| d \nu \\
\|f\|_{L^{\frac{p n}{n-p}}}=\left(\int_{\mathbb{R}^{n}}|f|^{\frac{p n}{n-p}} d \nu\right)^{\frac{n-p}{p n}} ; \\
\|f\|_{\mathcal{L}^{q, \lambda}}=\sup _{(x, r) \in \mathbb{R}^{n} \times(0, \infty)}\left(r^{\lambda-n} \int_{B(x, r)}\left|f-f_{B(x, r)}\right|^{q} d \nu\right)^{1 / q},
\end{array}\right.
$$

express the Hölder norm; the John-Nirenberg BMO-norm (cf. [10]); the Lebesgue norm; the Campanato norm (cf. [7]), respectively, where $d v$ is the n-dimensional Lebesgue measure on the Euclidean space \mathbb{R}^{n} and

$$
f_{B(x, r)}=v(B(x, r))^{-1} \int_{B(x, r)} f d v
$$

is the v-integral mean value of f over $B(x, r)$, the x-centred Euclidean ball with radius r.

Upon utilizing the following formula (cf. [14, page 58])

$$
u=\frac{\Gamma\left(\frac{n+1}{2}\right)}{(n-1) \pi^{\frac{n+1}{2}}} I_{1} *\left(\sum_{j=1}^{n} R_{j} D_{j} u\right) \quad \text { for all } \quad u \in C_{c}^{1}\left(\mathbb{R}^{n}\right)
$$

where $\Gamma(\cdot)$ is the standard gamma function, I_{1} is the first-order form of the $(0, n) \ni$ α-order Riesz integral

$$
I_{\alpha} g(x)=\left(I_{\alpha} * g\right)(x)=\int_{\mathbb{R}^{n}} g(y)|y-z|^{\alpha-n} d \nu(y)
$$

(whose $I_{2} g$ is the Newtonian potential of g generated by the convolution of g with the fundamental gravitation potential in Newton's law of universal gravitation, see Adams [2]);

$$
R_{j}(f)=\lim _{\epsilon \rightarrow 0} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\pi^{\frac{n+1}{2}}} \int_{\mathbb{R}^{n} \backslash B(0, \epsilon)} y_{j}|y|^{-n-1} f(x-y) d v(y)
$$

is the $\{1, \ldots, n\} \ni j$-th Riesz transform of f (where the vector-valued operator $\left(R_{1}, \ldots, R_{n}\right)$ is bounded on the Lebesgue $(1, \infty) \ni p$-space L^{p} on \mathbb{R}^{n}, see, e.g., $[8,23])$, and D_{j} is the partial derivative with respect to x_{j}, Theorem 1.1 may be regarded as a consequence of the case $(\alpha=1, \kappa=n)$ of the next result due to Xiao for $\infty>p>\kappa / \alpha(c f$. [24, Theorem 1]); Adams for $p=\kappa / \alpha(c f$. [1, Remark 4.1]); and Adams for $1<p<\kappa / \alpha(c f$. [4, Theorem 3.2]), respectively.

Theorem 1.2. Let $L^{p, \kappa}$ be the $(0, \infty) \times(-\infty, \infty) \ni(p, \kappa)$-Morrey space of all v-measurable functions f on \mathbb{R}^{n} with

$$
\|f\|_{L^{p, k}}=\sup _{(x, r) \in \mathbb{R}^{n} \times(0, \infty)}\left(r^{\kappa-n} \int_{B(x, r)}|f|^{p} d v\right)^{\frac{1}{p}}<\infty
$$

If

$$
\left\{\begin{array}{l}
1<p<\infty \\
1 \leq q<\infty \\
0<\kappa \leq n \\
q\left(\frac{\kappa}{p}-\alpha\right) \leq \kappa \\
0<\alpha<\min \left\{n, 1+\frac{\kappa}{p}\right\}
\end{array}\right.
$$

then

Of course, the above linkage from the space $\mathcal{L}^{q, \lambda}$ to the three space: $C^{\alpha-\frac{n}{p}}$, BMO and $L^{\frac{p \kappa}{\kappa-\alpha p}, \kappa}$ is known (cf., e.g., [18,22,24]). Recently, in [12] (cf. [3,5,6,25] for some relevant information) we established such a fundamental restriction principle that if $L_{\mu}^{q, \lambda}$ stands for the (q, λ)-Morrey space (based on a given nonnegative Radon measure μ on \mathbb{R}^{n}) comprising all μ-measurable functions f on \mathbb{R}^{n} with

$$
\|f\|_{L_{\mu}^{q, \lambda}}=\sup _{(x, r) \in \mathbb{R}^{n} \times(0, \infty)}\left(r^{\lambda-n} \int_{B(x, r)}|f|^{q} d \mu\right)^{1 / q}<\infty
$$

then $I_{\alpha}: L^{p, \kappa} \rightarrow L_{\mu}^{q, \lambda}$ is continuous when and only when μ is of finite β-variation on \mathbb{R}^{n}, i.e.,

$$
\left|\|\mu \mid\|_{\beta}=\sup _{(x, r) \in \mathbb{R}^{n} \times(0, \infty)} \mu(B(x, r)) r^{-\beta}<\infty\right.
$$

under

$$
\left\{\begin{array}{l}
0<\alpha<n \\
0<\lambda \leq \kappa \leq n \\
1<p<\frac{\kappa}{\alpha} \\
n-\alpha p<\beta \leq n \\
0<q=\frac{p(\beta+\lambda-n)}{\kappa-\alpha p}
\end{array}\right.
$$

and we left the corresponding restriction problem for $\infty>p \geq \kappa / \alpha$ open. Yet, through introducing the μ-based Campanato space $\mathcal{L}_{\mu}^{q, \lambda}$ (under $(q, \lambda) \in(0, \infty) \times$ $(-\infty, \infty)$) of all μ-measurable functions f on \mathbb{R}^{n} with

$$
\|f\|_{\mathcal{L}_{\mu}^{q, \lambda}}=\sup _{(x, r) \in \mathbb{R}^{n} \times(0, \infty)}\left(r^{\lambda-n} \int_{B(x, r)}\left|f(y)-f_{B(x, r), \mu}\right|^{q} d \mu(y)\right)^{\frac{1}{q}}<\infty
$$

where

$$
f_{B(x, r), \mu}=\frac{1}{\mu(B(x, r))} \int_{B(x, r)} f d \mu
$$

and observing Nakai's classification of $\mathcal{L}_{\mu}^{q, \lambda}$ as seen below (cf.[17]), if μ is Ahlfors β-regular for some $\beta \in(0, n]$, namely,

$$
\mu(B(x, r)) \approx r^{\beta} \quad \text { for all } \quad(x, r) \in \mathbb{R}^{n} \times(0, \infty)
$$

and $(q, \lambda) \in[1, \infty) \times(0, n]$, then:

- As $\beta+\lambda>n, \mathcal{L}_{\mu}^{q, \lambda}$ contains $L_{\mu}^{q, \lambda}$;
- As $\beta+\lambda=n$, the space $\mathcal{L}_{\mu}^{q, \lambda}$ is just the μ-based space of functions with bounded variation, denoted by BMO_{μ}, which consists of all μ-measurable functions f in \mathbb{R}^{n}, obeying

$$
\|f\|_{\mathrm{BMO}_{\mu}}=\sup _{(x, r) \in \mathbb{R}^{n} \times(0, \infty)} r^{-\beta} \int_{B(x, r)}\left|f(y)-f_{B(x, r), \mu}\right| d \mu(y)<\infty
$$

- As $n-q<\beta+\lambda<n$, the space $\mathcal{L}_{\mu}^{q, \lambda}$ coincides with $\mathcal{C}^{(n-\lambda-\beta) / q}$.

We recognize that it is possible to settle the previously-mentioned open problem. Below is a natural outcome (unifying and improving both (\dagger) and ($\dagger \dagger)$) which is regarded as a principle of taking the Morrey potential space $I_{\alpha} L^{p, \kappa}$ from the Campanato space $\mathcal{L}_{\mu}^{q, \lambda}$, thereby generalizing and improving Theorems 1.2 and 1.1.

Theorem 1.3. Let μ be a non-negative Radon measure on \mathbb{R}^{n} and

$$
\left\{\begin{array}{l}
0<\beta, \kappa \leq n ; \\
-\infty<\lambda \leq n \\
1 \leq p, q<\infty ; \\
p^{-1}(n-\beta)<\alpha<\min \left\{n, 1+p^{-1} \kappa\right\} ; \\
\lambda=p^{-1} q(\kappa-\alpha p)+n-\beta< \begin{cases}\kappa+\varepsilon \forall \varepsilon>0 & \text { as } \alpha^{-1} \kappa \leq p<\infty \\
\kappa+\varepsilon \forall \varepsilon>0 & \text { as } 1<p<\alpha^{-1} \kappa \\
\kappa+\frac{(n-\kappa)(n-\alpha-\beta)}{n-\alpha} & \text { as } 1=p<\alpha^{-1} \kappa\end{cases}
\end{array}\right.
$$

The following facts hold:
(i) If $\left|\|\mu \mid\|_{\beta}<\infty\right.$, then $I_{\alpha}: L^{p, \kappa} \rightarrow \mathcal{L}_{\mu}^{q, \lambda}$ is continuous;
(ii) Conversely, if $I_{\alpha}: L^{p, \kappa} \rightarrow \mathcal{L}_{\mu}^{q, \lambda}$ is continuous, then $\|\mu\|_{\beta}<\infty$ under one more condition that μ is admissible, namely $\mu\left(B_{1}\right) \approx \mu\left(B_{2}\right)$ for any two balls $B_{1}, B_{2} \subset \mathbb{R}^{n}$ with the same radius $r>0$ and their Euclidean distance $\operatorname{dist}\left(B_{1}, B_{2}\right)=2 r$.

In accordance with [14, Theorem 1.94] saying that if

$$
q>n \quad \& \quad \mu(B(x, r)) \lesssim\left\{\begin{array}{l}
\left(\ln r^{-1}\right)^{-q\left(1-n^{-1}\right)} \text { as } r \in\left(0,2^{-1}\right) \\
r^{q} \text { as } r \in\left[2^{-1}, \infty\right),
\end{array}\right.
$$

then

$$
\left(\int_{\mathbb{R}^{n}}|u|^{q} d \mu\right)^{1 / q} \lesssim\||\nabla u|\|_{L^{n}} \quad \text { for all } \quad u \in C_{c}^{1}\left(\mathbb{R}^{n}\right)
$$

we see that the extra hypothesis in Theorem 1.3(ii) that μ is admissible is natural. Evidently, any Ahlfors β-regular measure and any translation invariant Radon measure are admissible. Moreover, any doubling Radon measure is admissible, in fact if μ is a doubling measure on \mathbb{R}^{n}, i.e., $\mu(2 B) \lesssim \mu(B)$ for any ball B and its double size $2 B$, then choosing $B_{1}=B(x, r)$, and $B_{2}=B(y, r)$ and dist $\left(B_{1}, B_{2}\right)=2 r$ gives

$$
|x-y|=4 r \text { and } \mu\left(B_{1}\right) \leq \mu(B(y, 8 r)) \lesssim \mu\left(B_{2}\right)
$$

and hence $\mu\left(B_{1}\right) \approx \mu\left(B_{2}\right)$, as required.
In order to provide a simpler and better application of the case $\alpha=1$ of $(\dagger \dagger \dagger)$ in Theorem 1.3 to the regularity of a solution to the p-Laplace equation with a Radon measure-valued being on right hand side, for an open set Ω of \mathbb{R}^{n}, denote by $W^{1, p}(\Omega)$ the space of functions f such that

$$
\|f\|_{W^{1, p}(\Omega)}=\|f\|_{L^{p}(\Omega)}+\|\nabla f\|_{L^{p}(\Omega)}=\left(\int_{\Omega}|f|^{p} d \nu\right)^{\frac{1}{p}}+\left(\int_{\Omega}|\nabla f|^{p} d \nu\right)^{\frac{1}{p}}<\infty
$$

The symbol $W_{\text {loc }}^{1, p}(\Omega)$ stands for the collection of v-measurable functions f on \mathbb{R}^{n} such that $f \in W^{1, p}\left(\Omega_{1}\right)$ for any open bounded set $\Omega_{1} \subseteq \Omega$. And, the symbol $C_{0}^{\infty}(\Omega)$ represents the collection of functions with infinite differentiability and compact support in Ω.

Corollary 1.4. Let

$$
\left\{\begin{array}{l}
0<\tau<1<n \\
1<p, q<\infty \\
\max \{0, n-p\}<\beta \leq n \\
\lambda=n-\beta-q \tau \leq \kappa=p(1-\tau)<n
\end{array}\right.
$$

Suppose that the Radon measure μ is supported in a bounded open set $\Omega \subset \mathbb{R}^{n}$ and $u \in W_{\text {loc }}^{1, p}(\Omega)$ is a weak solution of the μ-based p-Laplace equation $-\Delta_{p} u=\mu$ in the sense of:

$$
\int_{\Omega}|\nabla u|^{p-2} \nabla u \cdot \nabla \phi d v=\int_{\Omega} \phi d \mu \quad \text { for all } \quad \phi \in C_{0}^{\infty}(\Omega) .
$$

If $\left|\|\mu \mid\|_{\beta}<\infty \text { and } u\right|_{\mathbb{R}^{n} \backslash \Omega}=0$, then $u \in \mathcal{L}_{\mu}^{q, \lambda}$.
The rest of this paper is organized as follows: Section 2 comprises four technical lemmas; Section 3 is devoted to verifying Theorem 1.3 and its Corollary 1.4.

2. Four Lemmas

We now state and prove the four of rementioned technical lemmas.
Lemma 2.1. Let $(q, \lambda) \in[1, \infty) \times(-\infty, n]$ and μ be a nonnegative Radon measure on \mathbb{R}^{n}. Then

$$
2^{-1}\|f\|_{\mathcal{L}_{\mu}^{q, \lambda}} \leq \sup _{(x, r) \in \mathbb{R}^{n} \times(0, \infty)} \inf _{c \in \mathbb{R}}\left(r^{\lambda-n} \int_{B(x, r)}|f(y)-c|^{q} d \mu(y)\right)^{1 / q} \leq\|f\|_{\mathcal{L}_{\mu}^{q, \lambda}}
$$

Proof. Note that the second inequality follows from the definition of $\|\cdot\|_{\mathcal{L}_{\mu}^{q, \lambda}}$. To see the first inequality, for any $(x, r) \in \mathbb{R}^{n} \times(0, \infty)$ and $c \in \mathbb{R}$, the Minkowski inequality and the Hölder inequality imply

$$
\begin{aligned}
& \left(\int_{B(x, r)}\left|f(y)-f_{B(x, r), \mu}\right|^{q} d \mu(y)\right)^{1 / q} \\
\leq & \left(\int_{B(x, r)}|f(y)-c|^{q} d \mu(y)\right)^{1 / q}+(\mu(B(x, r)))^{1 / q}\left|c-f_{B(x, r), \mu}\right|
\end{aligned}
$$

and

$$
\begin{aligned}
& (\mu(B(x, r)))^{1 / q}\left|c-f_{B(x, r), \mu}\right| \\
= & (\mu(B(x, r)))^{1 / q}\left|\frac{1}{\mu(B(x, r))} \int_{B(x, r)}(f(y)-c) d \mu(y)\right| \\
\leq & \left(\int_{B(x, r)}|f(y)-c|^{q} d \mu(y)\right)^{1 / q},
\end{aligned}
$$

which leads to

$$
\begin{aligned}
\|f\|_{\mathcal{L}_{\mu}^{q, \lambda}} & =\sup _{(x, r) \in \mathbb{R}^{n} \times(0, \infty)}\left(r^{\lambda-n} \int_{B(x, r)}\left|f(y)-f_{B(x, r), \mu}\right|^{q} d \mu(y)\right)^{1 / q} \\
& \leq 2 \sup _{(x, r) \in \mathbb{R}^{n} \times(0, \infty)} \inf _{c \in \mathbb{R}}\left(r^{\lambda-n} \int_{B(x, r)}|f(y)-c|^{q} d \mu(y)\right)^{1 / q}
\end{aligned}
$$

This concludes the proof of Lemma 2.1.

Lemma 2.2. Let $(p, \alpha, \kappa) \in[1, \infty) \times(0, n) \times(0, n]$. The following facts hold:
(i) If $\max \{0, n-\alpha p\}<\beta \leq n$ and μ is a nonnegative Radon measure on \mathbb{R}^{n} with $\left\||\mu \||_{\beta}<\infty\right.$, then

$$
\begin{aligned}
& \int_{B(x, r)}\left|I_{\alpha}\left(f 1_{B(x, r)}\right)\right| d \mu \lesssim r^{\beta+\alpha-\kappa / p}\|\mid \mu\|\left\|_{\beta}\right\| f \|_{L^{p, \kappa}} \\
& \quad \text { for all }(x, r, f) \in \mathbb{R}^{n} \times(0, \infty) \times L^{p, \kappa} ;
\end{aligned}
$$

(ii) If $0<\kappa<\alpha p$, then
$\underset{z \in B(x, r)}{\operatorname{esssup}}\left|I_{\alpha}\left(f 1_{B(x, r)}\right)(z)\right| \lesssim r^{\alpha-\kappa / p}\|f\|_{L^{p, \kappa}}$ for all $(x, r, f) \in \mathbb{R}^{n} \times(0, \infty) \times L^{p, \kappa}$.
Proof. See [6, Theorem 3.1] and its argument.
Lemma 2.3. Let

$$
\left\{\begin{array}{l}
0<\alpha<n \\
1 \leq p, q<\infty \\
0<\kappa, \beta \leq n \\
\beta+\alpha p>n \\
p \geq \kappa / \alpha
\end{array}\right.
$$

If μ is a nonnegative Radon measure on \mathbb{R}^{n} with $\left|\|\mu \mid\|_{\beta}<\infty\right.$ and $f \in L^{p, \kappa}$ is supported on a ball $B(x, r)$, then

$$
\int_{B(x, r)}\left|I_{\alpha} f\right|^{q} d \mu \lesssim r^{\beta+(\alpha-\kappa / p) q}\left\|\left|\mu\left\|\left.\right|_{\beta}\right\| f \|_{L^{p, \kappa}}^{q} \text { for all }(x, r) \in \mathbb{R}^{n} \times(0, \infty)\right.\right.
$$

Proof. Denote by q^{\prime} the dual exponent of q, i.e., $1 / q+1 / q^{\prime}=1$ and $1^{\prime}=\infty$. Since $p \alpha \geq \kappa$ and $\beta+\alpha p>n$, there exists a pair $\left(\alpha_{1}, \alpha_{2}\right)$ such that

$$
\left\{\begin{array}{l}
\alpha_{1}, \alpha_{2} \in(0, n) \\
\alpha=\frac{\alpha_{1}}{q}+\frac{\alpha_{2}}{q^{\prime}} \\
\beta+\alpha_{1} p>n \\
\alpha_{2} p>\kappa
\end{array}\right.
$$

Indeed, if we choose $\epsilon>0$ small enough such that

$$
\epsilon<\min \left\{n-\alpha, \frac{\beta+\alpha p-n}{(q-1) p}\right\}
$$

and define

$$
\alpha_{2}=\alpha+\epsilon \quad \text { and } \quad \alpha_{1}=q\left(\alpha-\frac{\alpha_{2}}{q^{\prime}}\right)
$$

then it is easy to verify that the pair $\left(\alpha_{1}, \alpha_{2}\right)$ fulfills all above requirements. Applying the Hölder inequality, we see that for all $y \in B(x, r)$,

$$
\begin{aligned}
\left|I_{\alpha} f(y)\right| & \leq \int_{\mathbb{R}^{n}} \frac{|f(z)|}{|y-z|^{n-\alpha}} d \nu(z) \\
& \leq\left(\int_{\mathbb{R}^{n}} \frac{|f(z)|}{|y-z|^{n-\alpha_{1}}} d \nu(z)\right)^{1 / q}\left(\int_{\mathbb{R}^{n}} \frac{|f(z)|}{|y-z|^{n-\alpha_{2}}} d \nu(z)\right)^{1 / q^{\prime}} \\
& =\left(I_{\alpha_{1}}|f|(y)\right)^{1 / q}\left(I_{\alpha_{2}}|f|(y)\right)^{1 / q^{\prime}}
\end{aligned}
$$

which together with Lemma 2.2 yields

$$
\begin{aligned}
\int_{B(x, r)}\left|I_{\alpha} f\right|^{q} d \mu & \leq\left(\int_{B(x, r)} I_{\alpha_{1}}(|f|)(y) d \mu(y)\right)\left(\sup _{y \in B(x, r)} I_{\alpha_{2}}(|f|)(y)\right)^{q / q^{\prime}} \\
& \lesssim r^{\beta+\alpha_{1}-\kappa / p+\left(\alpha_{2}-\kappa / p\right) q / q^{\prime}}\left\|\left|\mu\left\|\left.\right|_{\beta}\right\| f \|_{L^{p, \kappa}}^{q}\right.\right. \\
& \approx r^{\beta+(\alpha-\kappa / p) q}\|\mid \mu\|\left\|_{\beta}\right\| f \|_{L^{p, \kappa}}^{q} .
\end{aligned}
$$

This ends the proof of Lemma 2.3.

Lemma 2.4. Let μ be a nonnegative Radon measure on \mathbb{R}^{n}. If μ is admissible and $f \in \mathcal{L}_{\mu}^{q, \lambda}$ with $(q, \lambda) \in[1, \infty) \times \mathbb{R}$, then

$$
\left(r^{\lambda-n} \int_{B_{1}}\left|f(x)-f_{B_{2}, \mu}\right|^{q} d \mu(x)\right)^{1 / q} \lesssim\|f\|_{\mathcal{L}_{\mu}^{q, \lambda}}
$$

holds for any two balls B_{1} and B_{2} with the same radius r and $\operatorname{dist}\left(B_{1}, B_{2}\right)=2 r$.
Proof. By the Minkowski inequality, we see

$$
\begin{aligned}
& \left(r^{\lambda-n} \int_{B_{1}}\left|f(x)-f_{B_{2}, \mu}\right|^{q} d \mu(x)\right)^{1 / q} \\
\leq & \left(r^{\lambda-n} \int_{B_{1}}\left|f(x)-f_{B_{1}, \mu}\right|^{q} d \mu(x)\right)^{1 / q}+\left(r^{\lambda-n} \mu\left(B_{1}\right)\right)^{1 / q}\left|f_{B_{1}, \mu}-f_{B_{2}, \mu}\right|
\end{aligned}
$$

Clearly, the first term in the right hand side of the above inequality is bounded by $\|f\|_{\mathcal{L}_{\mu}^{q, \lambda}}$. Thus, it suffices to consider the second term in the right hand side of the above inequality.

Since B_{1} and B_{2} have the same radius r and $\operatorname{dist}\left(B_{1}, B_{2}\right)=2 r$, we may choose B as the ball with the same center as that of B_{1} but of radius $5 r$, so that both
B_{1} and B_{2} are contained in B. Meanwhile, the fact that μ is admissible gives us that $\mu\left(B_{1}\right) \approx \mu\left(B_{2}\right)$. Applying these facts and the Hölder inequality, we deduce

$$
\begin{aligned}
& \left|f_{B_{1}, \mu}-f_{B_{2}, \mu}\right| \\
\leq & \left|f_{B_{1}, \mu}-f_{B, \mu}\right|+\left|f_{B, \mu}-f_{B_{2}, \mu}\right| \\
\leq & \frac{1}{\mu\left(B_{1}\right)} \int_{B_{1}}\left|f(x)-f_{B, \mu}\right| d \mu(x)+\frac{1}{\mu\left(B_{2}\right)} \int_{B_{2}}\left|f(x)-f_{B, \mu}\right| d \mu(x) \\
\leq & \left(\frac{1}{\mu\left(B_{1}\right)} \int_{B_{1}}\left|f(x)-f_{B, \mu}\right|^{q} d \mu(x)\right)^{1 / q}+\left(\frac{1}{\mu\left(B_{2}\right)} \int_{B_{2}}\left|f(x)-f_{B, \mu}\right|^{q} d \mu(x)\right)^{1 / q} \\
\leq & \left(\frac{1}{\mu\left(B_{1}\right)} \int_{B}\left|f(x)-f_{B, \mu}\right|^{q} d \mu(x)\right)^{1 / q}+\left(\frac{1}{\mu\left(B_{2}\right)} \int_{B}\left|f(x)-f_{B, \mu}\right|^{q} d \mu(x)\right)^{1 / q} \\
\approx & \left(\frac{1}{\mu\left(B_{1}\right)} \int_{B}\left|f(x)-f_{B, \mu}\right|^{q} d \mu(x)\right)^{1 / q},
\end{aligned}
$$

so that

$$
\left(r^{\lambda-n} \mu\left(B_{1}\right)\right)^{1 / q}\left|f_{B_{1}, \mu}-f_{B_{2}, \mu}\right| \lesssim\left(r^{\lambda-n} \int_{B}\left|f(x)-f_{B, \mu}\right|^{q} d \mu(x)\right)^{1 / q} \lesssim\|f\|_{\mathcal{L}_{\mu}^{q, \lambda}}
$$

as desired. This completes the argument for Lemma 2.4.

3. Proofs of Theorem 1.3 and Corollary 1.4

Proof of Theorem 1.3(i). Suppose that $(\dagger \dagger \dagger)$ holds. Assuming $\|\mid \mu\| \|_{\beta}<\infty$, we shall prove

$$
\left\|I_{\alpha} f\right\|_{\mathcal{L}_{\mu}^{q, \lambda}} \lesssim\|\mid \mu\|\left\|_{\beta}^{1 / q}\right\| f \|_{L^{p, \kappa}} \text { for all } f \in L^{p, \kappa}
$$

according to two cases as seen below.
Case $1 \leq p<\kappa / \alpha$. If $p>1$, then $\lambda \leq \kappa$, i.e.,

$$
\lambda=p^{-1} q(\kappa-\alpha p)+n-\beta<\kappa+\varepsilon \text { for all } \varepsilon>0
$$

and hence $(\dagger \dagger \dagger)$ indicates that [12, Theorem 1.1] and the Hölder inequality can be used to derive

$$
\left\|I_{\alpha} f\right\|_{\mathcal{L}_{\mu}^{q, \lambda}} \lesssim\left\|I_{\alpha} f\right\|_{L_{\mu}^{q, \lambda}} \lesssim\left\|\left|\mu\left\|\left.\right|_{\beta} ^{1 / q}\right\| f \|_{L^{p, \kappa}} \quad \forall f \in L^{p, \kappa}\right.\right.
$$

But, if $p=1$, then

$$
\lambda=n-\beta+q(\kappa-\alpha)<\kappa+(n-\alpha)^{-1}(n-\kappa)(n-\alpha-\beta),
$$

and hence, it suffices to prove that for any given ball $B(x, r)$ there exists a constant c such that

$$
\left(r^{-\beta+q(\kappa-\alpha)} \int_{B(x, r)}\left|I_{\alpha} f(y)-c\right|^{q} d \mu(y)\right)^{1 / q} \lesssim\left\|\left|\mu\left\|\left.\right|_{\beta} ^{1 / q}\right\| f \|_{L^{1, \kappa}}\right.\right.
$$

To this end, we split $f=f_{1}+f_{2}$ through $f_{1}=f 1_{B(x, 4 r)}$ and $f_{2}=f 1_{\mathbb{R}^{n} \backslash B(x, 4 r)}$. In order to deal with f_{1}, we are partially motivated by the idea of proving [16, Lemma 9]. More precisely: for any $y \in B(x, r)$ we use Minkowski's inequality, [21, (2.4.6)] and $\beta>q(n-\alpha) \geq(n-\alpha)>0$ to obtain

$$
\begin{aligned}
& \left(\int_{B(x, r)}\left(I_{\alpha} f_{1}(y)\right)^{q} d \mu(y)\right)^{1 / q} \\
\leq & \int_{B(x, 4 r)}|f(z)|\left(\int_{B(z, 5 r)}|y-z|^{q(\alpha-n)} d \mu(y)\right)^{1 / q} d \nu(z) \\
\lesssim & \int_{B(x, 4 r)}|f(z)|\left(\int_{0}^{5 r}\left(\frac{\mu(B(z, t))}{t^{q(n-\alpha)}}\right) \frac{d t}{t}+\frac{\mu(B(z, 5 r))}{(5 r)^{q(n-\alpha)}}\right)^{1 / q} d \nu(z) \\
\lesssim & \int_{B(x, 4 r)}|f(z)|\left(\int _ { 0 } ^ { 5 r } \left|\left\|\mu \left|\left\|_{\beta} t^{\beta-q(n-\alpha)} \frac{d t}{t}+\left|\|\mu \mid\|_{\beta} r^{\beta-q(n-\alpha)}\right)^{1 / q} d \nu(z)\right.\right.\right.\right.\right. \\
\lesssim & \left|\|\mu \mid\|_{\beta}^{1 / q} r^{\frac{\beta}{q}+\alpha-\kappa}\|f\|_{L^{1, \kappa}},\right.
\end{aligned}
$$

thereby reaching

$$
\left(r^{-\beta+q(\kappa-\alpha)} \int_{B(x, r)}\left|I_{\alpha} f_{1}(y)\right|^{q} d \mu(y)\right)^{1 / q} \lesssim\left\|\left|\mu\left\|\left.\right|_{\beta} ^{1 / q}\right\| f \|_{L^{1, \kappa}}\right.\right.
$$

Next, choosing

$$
c=\frac{1}{\mu(B(x, r))} \int_{B(x, r)} I_{\alpha} f_{2} d \mu
$$

since $\alpha<1+\kappa / p=1+\kappa$ we find that the forthcoming control of $I_{\alpha} f_{2}$ in "case $\infty>p \geq \kappa / \alpha$ " actually shows

$$
\left(\int_{B(x, r)} \frac{\left|I_{\alpha} f_{2}(y)-c\right|^{q}}{r^{\beta-q(\kappa-\alpha)}} d \mu(y)\right)^{1 / q} \lesssim\left\|\left|\mu\left\|\left.\right|_{\beta} ^{1 / q}\right\| f \|_{L^{1, \kappa}}\right.\right.
$$

and so that (\ddagger) follows.
Case $\infty>p \geq \kappa / \alpha$. According to Lemma 2.1 and $\lambda \leq \kappa$, i.e.,

$$
\lambda=n-\beta+q(\kappa / p-\alpha)<\kappa+\varepsilon \text { for all } \varepsilon>0
$$

it is enough to prove that for an arbitrary ball $B(x, r)$ there exists a constant c such that

$$
\begin{equation*}
\left(r^{-\beta+q(\kappa / p-\alpha)} \int_{B(x, r)}\left|I_{\alpha} f(y)-c\right|^{q} d \mu(y)\right)^{1 / q} \lesssim\left\|\left|\mu\left\|\left.\right|_{\beta} ^{1 / q}\right\| f \|_{L^{p, \kappa}}\right.\right. \tag{市}
\end{equation*}
$$

To validate（† \ddagger ），we write

$$
\left\{\begin{aligned}
f & =f_{1}+f_{2} \\
f_{1} & =f 1_{B(x, 4 r)} \\
f_{2} & =f 1_{\mathbb{R}^{n} \backslash B(x, 4 r)}
\end{aligned}\right.
$$

Note that Lemma 2.3 gives us that

$$
\begin{align*}
\left(\int_{B(x, r)} \frac{\left|I_{\alpha} f_{1}(y)\right|^{q}}{r^{\beta-q(\kappa / p-\alpha)}} d \mu(y)\right)^{1 / q} & \lesssim\|\mid \mu\|\left\|_{\beta}^{1 / q}\right\| f_{1} \|_{L^{p, \kappa}} \tag{ま申ま}\\
& \lesssim\left\|\left|\mu\left\|\left.\right|_{\beta} ^{1 / q}\right\| f \|_{L^{p, \kappa}}\right.\right.
\end{align*}
$$

Again，selecting

$$
c=\frac{1}{\mu(B(x, r))} \int_{B(x, r)} I_{\alpha} f_{2} d \mu
$$

we utilize the mean value theorem to derive that if $y \in B(x, r)$ then

$$
\begin{aligned}
& \left|I_{\alpha} f_{2}(y)-c\right| \\
\leq & \frac{1}{\mu(B(x, r))} \int_{B(x, r)}\left|I_{\alpha} f_{2}(y)-I_{\alpha} f_{2}(z)\right| d \mu(z) \\
\leq & \left.\frac{1}{\mu(B(x, r))} \int_{B(x, r)} \int_{\mathbb{R}^{n} \backslash B(x, 4 r)}| | y-\left.w\right|^{\alpha-n}-|z-w|^{\alpha-n}| | f(w) \right\rvert\, d \nu(w) d \mu(z) \\
\leq & \frac{1}{\mu(B(x, r))} \int_{B(x, r)} \int_{\mathbb{R}^{n} \backslash B(x, 4 r)}|y-z| \sup _{\substack{\xi=\theta y+(1-\theta) z \\
\theta \in(0,1)}}|\xi-w|^{\alpha-n-1}|f(w)| d \nu(w) d \mu(z) \\
\approx & \frac{1}{\mu(B(x, r))} \int_{B(x, r)} \int_{\mathbb{R}^{n} \backslash B(x, 4 r)}|y-z||x-w|^{\alpha-n-1}|f(w)| d \nu(w) d \mu(z) \\
\lesssim & r \int_{\mathbb{R}^{n} \backslash B(x, 4 r)}|x-w|^{\alpha-n-1}|f(w)| d \nu(w) .
\end{aligned}
$$

Since the Hölder inequality and $\alpha<1+\kappa / p$ imply

$$
\begin{aligned}
& \int_{\mathbb{R}^{n} \backslash B(x, 4 r)}|x-w|^{\alpha-n-1}|f(w)| d \nu(w) \\
= & \sum_{k=2}^{\infty} \int_{2^{k} r \leq|x-w|<2^{k+1} r}|x-w|^{\alpha-n-1}|f(w)| d \nu(w) \\
\approx & \sum_{k=2}^{\infty}\left(2^{k} r\right)^{\alpha-n-1} \int_{2^{k} r \leq|x-w|<2^{k+1} r}|f(w)| d \nu(w) \\
\lesssim & \sum_{k=2}^{\infty}\left(2^{k} r\right)^{\alpha-1}\left(\left(2^{k} r\right)^{-n} \int_{2^{k} r \leq|x-w|<2^{k+1} r}|f(w)|^{p} d \nu(w)\right)^{1 / p} \\
\lesssim & \sum_{k=2}^{\infty}\left(2^{k} r\right)^{\alpha-1-\kappa / p}\|f\|_{L^{p, k}} \\
\lesssim & r^{\alpha-1-\kappa / p}\|f\|_{L^{p, k}},
\end{aligned}
$$

it follows that

$$
\left|I_{\alpha} f_{2}(y)-c\right| \lesssim r^{\alpha-\kappa / p}\|f\|_{L^{p, k}}
$$

and thus

$$
\left(\int_{B(x, r)} \frac{\left|I_{\alpha} f_{2}(y)-c\right|^{q}}{r^{\beta-q(\kappa / p-\alpha)}} d \mu(y)\right)^{1 / q} \lesssim \frac{\frac{\|f\|_{L^{p, \kappa}}}{\mu(B(x, r)))^{-1 / q}}}{r^{\beta / q-(\kappa / p-\alpha)-(\alpha-\kappa / p)}} \lesssim \frac{\|f\|_{L^{p, \kappa}}}{\|\mid \mu\| \|_{\beta}^{-1 / q}} .(\ddagger \ddagger \ddagger \ddagger)
$$

Combining ($\ddagger \ddagger \ddagger)$ and $(\ddagger \ddagger \ddagger \ddagger)$ yields $(\ddagger \ddagger)$. This concludes the proof of Theorem 1.3(i).

Proof of Theorem 1.3(ii). Assume that $I_{\alpha}: \quad L^{p, \kappa} \rightarrow \mathcal{L}_{\mu}^{q, \lambda}$ is continuous. This assumption gives

$$
\left\|I_{\alpha} f\right\|_{\mathcal{L}_{\mu}^{q, \lambda}} \lesssim\|f\|_{L^{p, \kappa}} \quad \text { for all } \quad f \in L^{p, \kappa}
$$

Moreover, suppose that μ is admissible. Given a ball $B(x, r)$ with $x \in \mathbb{R}^{n}$ and $r \in(0, \infty)$, let $\breve{\tilde{B}}=B(x, r)$ and $\tilde{B}=B(\tilde{x}, r)$ such that $|x-\tilde{x}|=4 r$. In other words, dist $(\breve{B}, \tilde{B})=2 r$. Next, we let x_{0} be the point on the line that connecting x and \tilde{x}, with $\left|x_{0}-x\right|=5 r$ and $\left|x_{0}-\tilde{x}\right|=9 r$. Denote by B_{0} the ball with center x_{0} and radius $\frac{r}{2}$. It is easy to verify that if $f_{0}=1_{B_{0}}$ then

$$
f_{0} \in L^{p, \kappa} \quad \text { with } \quad\left\|f_{0}\right\|_{L^{p, \kappa}} \lesssim r^{\kappa / p}
$$

Because μ is admissible, Lemma 2.4 yields

$$
\left(r^{\lambda-n} \int_{\breve{B}}\left|I_{\alpha} f_{0}(y)-\left(I_{\alpha} f_{0}\right)_{\tilde{B}, \mu}\right|^{q} d \mu(y)\right)^{1 / q} \lesssim\left\|I_{\alpha} f_{0}\right\|_{\mathcal{L}_{\mu}^{q, \lambda}} \lesssim\left\|f_{0}\right\|_{L^{p, \kappa}} \lesssim r^{\kappa / p}
$$

Note that for any $y \in \breve{B}$, with $z \in \tilde{B}$ and $w \in B_{0}$, we have

$$
|y-w| \leq|y-x|+\left|x-x_{0}\right|+\left|x_{0}-w\right|<r+5 r+\frac{r}{2}=\frac{13 r}{2}
$$

and

$$
|z-w| \geq\left|\tilde{x}-x_{0}\right|-|z-\tilde{x}|-\left|x_{0}-w\right|>9 r-r-\frac{r}{2}=\frac{15 r}{2}
$$

so that

$$
|y-w|^{\alpha-n}-|z-w|^{\alpha-n} \geq\left(\left(\frac{13}{2}\right)^{\alpha-n}-\left(\frac{15}{2}\right)^{\alpha-n}\right) r^{\alpha-n}
$$

This in turn implies that for any $y \in \breve{B}$,

$$
\begin{aligned}
\left|I_{\alpha} f_{0}(y)-\left(I_{\alpha} f_{0}\right)_{\tilde{B}, \mu}\right| & =\left|\frac{1}{\mu(\tilde{B})} \int_{\tilde{B}}\left(I_{\alpha} f_{0}(y)-I_{\alpha} f_{0}(z)\right) d \mu(z)\right| \\
& =\left|\frac{1}{\mu(\tilde{B})} \int_{\tilde{B}}\left(\int_{B_{0}}\left(|y-w|^{\alpha-n}-|z-w|^{\alpha-n}\right) d v(w)\right) d \mu(z)\right| \\
& \geq \frac{1}{\mu(\tilde{B})} \int_{\tilde{B}}\left(\int_{B_{0}}\left(\left(\left(\frac{13}{2}\right)^{\alpha-n}-\left(\frac{15}{2}\right)^{\alpha-n}\right) r^{\alpha-n}\right) d v(w)\right) d \mu(z) \\
& =\left(\left(\frac{13}{2}\right)^{\alpha-n}-\left(\frac{15}{2}\right)^{\alpha-n}\right) r^{\alpha} .
\end{aligned}
$$

Consequently, we get

$$
r^{\kappa / p} \gtrsim\left(r^{\lambda-n} \int_{\tilde{B}}\left|I_{\alpha} f_{0}(y)-\left(I_{\alpha} f_{0}\right)_{\tilde{B}, \mu}\right|^{q} d \mu(y)\right)^{1 / q} \gtrsim r^{(\lambda+\alpha q-n) / q} \mu(\tilde{B})^{1 / q}
$$

whence reaching

$$
\mu(B(x, r))=\mu(\breve{B}) \lesssim r^{q \kappa / p-(\lambda+\alpha q-n)}=r^{\beta}
$$

via

$$
\lambda=n-\beta+q(\kappa / p-\alpha) .
$$

This validates $\left\|\|\mu\|_{\beta}<\infty\right.$. Whence completing the argument for Theorem1.3(ii).
Proof of Corollary 1.4. According to the argument for [11, Theorem 1.14] (see also [20, Theorem 5.8]), we have $|\nabla u| \in L^{p, \kappa}$. This, along with the representation formula for u in terms of $\left(R_{1}, \ldots, R_{n}\right)$ (which is bounded on $L^{p, p(1-\tau)}$ according to [13, Theorem 6.1(b)]) presented in Section 1 and Theorem 1.3 under ($\dagger \dagger \dagger \dagger$), implies $u \in \mathcal{L}_{\mu}^{q, \lambda}$.

References

[1] D. R. Adams, "Lectures on L^{p}-Potential Theory", University of Umea, Department of Mathematics, S-90187 Umea, Sweden.
[2] D. R. AdAms, Potential and capacity before and after Wiener, In: "Proceedings of the Norbert Wiener Centenary Congress", 1994 (East Lansing, MI, 1994), 63C83, Proc. Sympos. Appl. Math., Vol. 52, Amer. Math. Soc., Providence, RI, 1997.
[3] D. R. Adams, Traces of potentials arising from translation invariant operators, Ann. Sc. Norm. Sup. Pisa Cl. Sci. (3) 25 (1971), 203-217.
[4] D. R. ADAMs, A note on Riesz potentials, Duke Math. J. 42 (1975), 765-778.
[5] D. R. Adams and J. Xiao, Morrey potentials and harmonic maps, Comm. Math. Phys. 308 (2011), 439-456. Erratum: Comm. Math. Phys. 339 (2015), 769-771.
[6] D. R. Adams and J. Xiao, Restrictions of Riesz-Morrey potentials, Ark. Mat. 54 (2016), 201-231.
[7] S. Campanato, Proprietá di hölderianitá di alcune classi di funzioni, Ann. Sc. Norm. Sup. Pisa Cl. Sci. (3) 17 (1963), 175-188.
[8] J. Duoandikoetxea, "Fourier Analysis", Graduate Studies in Math. Amer. Math. Soc., Vol. 29, 2000.
[9] M. Giaquinta, "Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems", Annals of Mathematics Studies, Princeton Univ. Press, 1983.
[10] F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415-426.
[11] T. Kilpeläinen and X. Zhong, Removable set for continuous solutions of quasilinear elliptic equations, Proc. Amer. Math. Soc. 160 (2001), 1681-1688.
[12] L. Liu and J. Xiao, Restricting Riesz-Morrey-Hardy potentials, J. Differential Equations 262 (2017), 5468-5496.
[13] F. K. Ly, "Riesz Transforms, Function Spaces, and Weighted Estimates for Schrödinger Operators with Non-negative Potentials", PhD thesis, Macquarie University, 2012.
[14] J. MALÝ and W. P. Ziemer, "Fine Regularity of Solutions of Elliptic Partial Differential Equations", Mathematical Surveys and Monographs, Vol. 51, Amer. Math. Soc., 1997.
[15] C. B. Morrey, "Multiple Integrals in the Calculus of Variations", Springer, 1966.
[16] R. MOSER, An L^{p} regularity theory for harmonic maps, Trans. Amer. Math. Soc. 367 (2015), 1-30.
[17] E. Nakai, The Campanato, Morrey and Hölder spaces on spaces of homogeneous type, Studia Math. 176 (2006), 1-19.
[18] J. Peetre, On the theory of $\mathcal{L}_{p, \lambda}$ spaces, J. Funct. Anal. 4 (1969), 71-87.
[19] G. Pólya and G. SZEGÖ, "Isoperimetric Inequalities in Mathematical Physics", Princeton Univ. Press, Princeton, 1951.
[20] A. Tuhola-Kujanpää and H. Varpanen, The p-Laplacian with respect to measures, J. Math. Anal. Appl. 400 (2013), 86-95.
[21] B. O. Turesson, "Nonlinear Potential Theory and Weighted Sobolev Spaces", Lecture Notes in Math., Vol. 1736, Springer, 2000.
[22] J. Serrin, A remark on the Morrey potential, Contemp. Math. 426 (2007), 307-315.
[23] E. Stein, "Singular Integrals and Differentiability Properties of Functions", Princeton Univ. Press, 1970.
[24] J. XiaO, A new perspective on the Riesz potential, Adv. Nonlinear Anal. 6 (2017), 317-326.
[25] J. XIAO, A trace problem for associate Morrey potentials, Adv. Nonlinear Anal. DOI: 10.1515/anona-2016-0069.

Department of Mathematics
School of Information
Renmin University of China
Beijing 100872, China
liuliguang@ruc.edu.cn

Department of Mathematics and Statistics Memorial University
St. John's, NL A1C 5S7, Canada jxiao@mun.ca

