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Stability of sin-cones and cosh-cylinders

KLAUS KRÖNCKE

Abstract. This work concerns stability and instability of Einstein warped prod-
ucts with an Einsteinian fiber of codimension 1. We study the cases where the
scalar curvature of the warped product and of the fiber are either both positive or
both negative to complement the results in [21]. Up to a small gap in the case
of sin-cones, the stability properties of such warped products are now completely
determined by spectral properties of the Laplacian and the Einstein operator of
the fiber. For cosh-cylinders, we are furthermore able to prove a convergence re-
sult for the Ricci flow starting in a small neighbourhood. As an interesting class
of examples, we determine the stability properties of sin-cones over symmetric
spaces of compact type.

Mathematics Subject Classification (2010): 53C25 (primary); 58J05, 53C44
(secondary).

1. Introduction

A Riemannian manifold (M, g) is called Einstein, if the Ricci tensor of the metric
satisfies the equation Ricg = � · g for some constant � 2 R. Einstein manifolds are
of great interest in differential geometry (see [4,16,22] for extensive information) as
well as in theoretical physics (see, e.g., [12, 13]). They are the critical points of the
Einstein-Hilbert action g !

R
M scalg dVg under volume constraint and stationary

points of Hamilton’s Ricci flow ġ(t) = �2Ricg(t) on the space of metrics modulo
rescalings.

In both contexts, there are corresponding notions of stability which are closely
related to each other (see, e.g., [6]). We are working with the notion of (linear)
stability which is used in the context of Ricci flow: Let ĝ be an Einstein metric
with Einstein constant � and the vector field V = V (g, ĝ) depending on the metrics
g and ĝ be defined by V k = gi j (0ki j � 0̂ki j ). Then, ĝ is a stationary point of the
�-Ricci-de-Turck flow

ġ(t) = �2Ricg(t) + 2�g(t) + LV (g(t),ĝ)g(t) (1.1)
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and its linearization at ĝ is given by

d
dt

�
�
�
�
t=0

⇥
�2Ricĝ+th + 2�(g + th) + LV (g+th,ĝ)(g + th)

⇤

= � r⇤rh + 2R̊h =: �1Eh,
(1.2)

where R̊hi j = Rikl j hkl . We call the elliptic operator 1E defined on the right hand
side the Einstein operator. The Einstein operator is closely related to the Lichnerow-
icz Laplacian, which is given by1Lh = 1Eh +Ric � h + h �Ric. Let S2M be the
bundle of symmetric 2-tensors. We call an Einstein manifold strictly stable if there
exists a constant C > 0 such that

Z

M
h1Eh, hi dV � C khk2L2 (1.3)

for all compactly supported h 2 C1(S2M) satisfying
R
M trh dV = 0 and �h = 0

where �h is the divergence of h. We call (M, g) stable, if (1.3) holds withC = 0 and
unstable, if it is not stable. Here, the conditions

R
M trh dV = 0 and �h = 0 refer

to volume-preserving perturbations orthogonal to the orbit of the diffeomorphism
group acting on g.

This (linear) stability problem was initiated by Koiso [17] studied extensively
by various authors, see, e.g., [4, 8, 19] and references therein. To give some exam-
ples, we mention that the round sphere, the hyperbolic space and their quotients are
strictly stable. The flat euclidean space and CPn are stable but not strictly stable.
Ricci-flat manifolds with special holonomy are stable. Any product of positive Ein-
stein metrics is unstable. An open problem in this context is the question, whether
there exists an unstable compact Einstein metric of nonpositive scalar curvature [7].
In the complete noncompact case, unstable Einstein metrics of nonpositive scalar
curvature are known [13,27].

To prove (dynamical) stability of Einstein metrics under Ricci flow, linear sta-
bility appears to be a nessecary condition. Such problems have been considered in
the compact case, e.g., in [15, 18, 20, 24] (see also references therein) and in the
noncompact case in [1, 9, 25, 26].

The study of stability of Einstein warped products was initiated in [14], where
instability of some Ricci-flat cones was proven. (In-)Stability of compact Einstein
warped products was also recently considered in [2]. In [21], a systematic methol-
ogy was developed to characterize stability and instability of Einstein warped prod-
ucts by properties of the fiber (if it is Einstein and of codimension 1). The machinery
was applied to Ricci-flat, hyperbolic and exponential cones. The aim of the present
paper is to close a gap and to determine the stability of the remaining examples
of Einstein warped products with Einsteinian fiber of codimension 1. The possible
warping functions are collected in the table below. Without loss of generality, we
have determined the absolute values of the nonvanishing Einstein constants.
The cases below the diagonal have been considered in [20]. In this paper, we con-
sider the cases of the diagonal. The manifolds are called sin-cones if f (r) = sin(r)
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Table 1.1. Warping functions for n + 1-dimensional Einstein warped products.

g̃ = dr2 + f (r)2g Ricg = (n� 1)g Ricg = 0 Ricg = �(n� 1)g
Ricg̃ = n · g̃ f (r) = sin(r)
Ricg̃ = 0 f (r) = r f (r) = 1
Ricg̃ = �n · g̃ f (r) = sinh(r) f (r) = er f (r) = cosh(r)

and cylinders if f (r) = 1. In the case f (r) = cosh(r), we call them cosh-cylinders.
The case f (r) = 1 is easy and will be discussed in Remark 2.1. The sin-cones also
appears in string theory [5,11] and stability properties of them may be also of great
interest in physical contexts.

Theorem 1.1. Let (Mn, g) be a complete Einstein manifold of scalar curvature
�n(n � 1). Then the cosh-cylinder

� eM, g̃
�

=
⇣
R ⇥ M, dr2 + cosh2(r)g

⌘
(1.4)

is stable if and only if specL2(1E |T T ) � �n and strictly stable if and only if
specL2(1E |T T ) > �n.

If (M, g) is complete and of bounded curvature then the same holds for (M̃, g̃). In
this case, we are able to prove a stability assertion under the adapted Ricci flow

ġ(t) = �2Ricg(t) � 2ng(t). (1.5)

Theorem 1.2. Let (M, g) be a complete Einstein manifold of scalar curvature
�n(n � 1) such that

�
�Rg

�
�
L1(g) < 1, i(M) > 0, specL2(1E |T T ) > �n. (1.6)

Then the manifold ( eM, g̃) from above is stable under the Ricci flow (1.5) in the
following sense: For any K > 0, there exists an ✏(K , n) > 0 such that the Ricci
flow g̃(t) starting at a metric g̃(0) satisfying

kg̃(0) � g̃kL2(g̃)  K , kg̃(0) � g̃kL1(g̃)  ✏ (1.7)

exists for all time and there exists a family of diffeomorphisms 't , t � 0 such that
�
�'⇤

t g̃(t) � g̃
�
�
Ck(g̃)  C(k) · e�↵t (1.8)

for some constants C(k),↵ > 0 and all t � 0.

Since negative Kähler-Einstein manifolds and Einstein manifolds of nonpositive
sectional curvature are stable [7, 17], one gets
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Corollary 1.3. Let (Mn, g) be a negative Einstein manifold of bounded curvature
and positive injectivity radius which is either Kähler or of nonpositive sectional
curvature. Then its cosh-cylinder is stable under the Ricci flow in the above sense.

For sin-cones, we prove the following

Theorem 1.4. Let (Mn, g) be a closed Einstein manifold of scalar curvature n(n�
1). Then the sin-cone

� eM, g̃
�

=
⇣
(0,⇡) ⇥ M, dr2 + sin2(r)g

⌘
(1.9)

is (strictly) stable if (M, g) satisfies spec(1E |T T )�0 (respectively spec(1E |T T )>
0) and if all nonzero eigenvalues of the Laplacian on M satisfy the bound � �
2n � 1. On the other hand ( eM, g̃) is unstable if spec(1E |T T ) ⇤ 0 or if there exists
a Laplacian eigenvalue on M satisfying the bounds

n < � < 2n �
n
2

 r

1+
8
n

� 1

!

. (1.10)

Remark 1.5. Note that �1 > �n
2

⇣q
1+ 8

n � 1
⌘

> �2 for all n 2 N and

�n
2

⇣q
1+ 8

n � 1
⌘

! �2 as n ! 1. Thus, the theorem leaves a rather unsat-
isfactory gap where it is not clear whether the sin-cone is stable or not. We are still
able to handle most known interesting examples, including all symmetric spaces of
compact type (see Section 6). We are not sure how optimal the bound � � 2n�1 in
the stability assertion is. However, it is the optimal lower bound of the form 2n� c,
c 2 R that we can prove with our methods. It should also be noted that under the
above assumptions, all nonzero eigenvalues on M satisfy � � n and equality only
holds for the standard sphere which is known to be strictly stable.

Since 2n� n
2

⇣q
1+ 8

n �1
⌘

> 2(n�1) and any Kähler-Einstein Fano manifold
with a holomorphic vector field admits 2(n � 1) as a Laplacian eigenvalue, we get

Corollary 1.6. The sin-cone over every Kähler-Einstein Fano manifold with a
holomorphic vector field is unstable. In particular, the sin-cone over CPn is un-
stable for n > 1.

In the proof of Theorem 1.1, one direction is much easier to show than the other
one. If the condition on the Einstein operator of the fiber is not satisfied, one is
able to construct a test section h̃ 2 C1

cs (S2 eM) violating the stability condition. It is
much harder to prove the converse direction. Here, we decompose the action of1E
on symmetric 2-tensors into four different components and by tedious calculations,
we prove positivity of1E on each of them. The strategy is the same as in the proofs
of the main results in [21].
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The assertion of Theorem 1.2 is a conseqence of the fact that under the as-
sumptions of the theorem, (M̃, g̃) is a complete strictly stable Einstein manifold of
bounded curvature and positive injectivity radius. The proof is very similar to the
proof of stability of hyperbolic space under Ricci flow [26].

The proof of Theorem 1.4 is somewhat more involved than the one of Theo-
rem 1.1. If the Einstein operator of the fiber restricted to T T -tensors has a negative
eigenvalue, one can similarly construct a destabilizing perturbation on the cone as
above. However, if the eigenvalue condition

n < � < 2n �
n
2

 r

1+
8
n

� 1

!

(1.11)

holds on the fiber, one has to argue differently. We then construct an eigenfunction
of the Laplacian on the sin-cone whose eigenvalue is below 2n. This eigenfunction
is shown to be in the closure of C1

cs (M̃) under the H3-norm. From a sequence of
approximating functions, we are then able to construct destabilizing perturbations
(we use the divergence-free part of the corresponding conformal perturbations). To
prove the stability assertion, we use the same decomposition of symmetric 2-tensors
as above. In this case we need the additional condition on the Laplacian spectrum
given in the theorem to ensure that the Einstein operator is positive on all parts of
the decomposition.

This paper is organized as follows. In Section 2, we recall the decomposition
of the space C1

cs (S2 eM) with respect to which the quadratic form h 7! (1Eh, h)L2
has a block diagonal form and we recall how it acts on the blocks. In the next
sections, we prove the Theorems 1.1, 1.2 and 1.4, respectively. Finally, in Section
6, we use Theorem 1.4 to determine the stability of sin-cones over symmetric spaces
of compact type.

To finish the introduction, we fix some notation and conventions. The Riemann
curvature tensor is defined by the sign convention such that Ri jkl = g(r@ir@ j @k �
r@ jr@i @k, @l). The Ricci curvature and the scalar curvature of a metric g are denoted
by Ricg, scalg, respectively. The rough Laplacian acting on smooth sections of a
vector bundle is 1 = r⇤r = �gi jr2i j . The symmetric tensor product is h � k =
h ⌦ k + k ⌦ h. The divergence of a symmetric 2-tensor and of a one-form are
given by �h j = �gikri hk j and �! = �gi jri! j , respectively. The formal adjoint
�⇤ : C1(T ⇤M) ! C1(S2M) is (�⇤!)i j = 1

2 (ri! j +r j!i ). The space of smooth
and compactly supported sections of a vector bundle E is denoted by C1

cs (E). For
notational convenience, we usually denote tensors and differential operators on the
warped product manifold by a tilde.

2. The Einstein operator on warped products

In this section, we recall some formulas we developed in [21, Section 2]. Let (M, g)
be an Einstein manifold, I ⇢ R some open interval and M̃ = I ⇥ M with an
Einstein metric of the form g̃ = dr2 + f (r)2g for some positive function f : I !
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R. Let W =
�
! 2 �1(M) | �! = 0

 
be the space of divergence-free one-forms

and T T =
�
h 2 C1(S2M) | �h = 0, trh = 0

 
the space of transverse traceless

tensors (which are usually called T T -tensors). If M is compact, we can expand any
h̃ 2 C1

sc (S2 eM) with compact support as

h̃ =
1X

i=1
'i f 2hi +

1X

i=1
�ivi g̃ +

1X

i=1
 

(1)
i f 2�⇤!i +

1X

i=1
 

(2)
i · dr � f !i

+
1X

i=1
�

(1)
i f 2

⇣
nr2vi +1vi · g

⌘
+

1X

i=1
�

(2)
i · dr � rvi

+
1X

i=1
�

(3)
i · vi

⇣
f 2g � ndr ⌦ dr

⌘
,

(2.1)

where 'i ,�i , 
( j)
i ,�

( j)
i 2 C1

cs (I ). Furthermore, vi ,!i , hi are smooth orthonor-
mal bases of the spaces L2(M), L2(W ) and L2(T T ) which are eigentensors of the
Laplacian on functions, the connection Laplacian on W and the Einstein opera-
tor on T T , respectively. Let 0 = �0 < �1  �2  . . ., µ1  µ2  . . . and
1  2  . . . be the corresponding eigenvalues so that 1vi = �ivi , 1!i = µi!i
and 1Ehi = i hi . Let the functions 'i ,�i , 

( j)
i ,�

( j)
i 2 C1

cs (I ) and

h̃(1)
1,i = 'i f 2 · hi , h̃(1)

2,i = �ivi g̃, h̃(1)
3,i =  

(1)
i f 2�⇤!i ,

h̃(2)
3,i =  

(2)
i · dr � f !i , h̃(1)

4,i = �
(1)
i f 2

�
nr2vi +1vi · g

�
,

h̃(2)
4,i = �

(2)
i · dr � frvi , h̃(3)

4,i = �
(3)
i · vi

�
f 2g � ndr ⌦ dr

�
.

(2.2)

The L2-norms of these tensors are
�
�
�h̃(1)
1,i

�
�
�
2

L2(g̃)
=

Z

I
'2i f

ndr,
�
�
�h̃(1)
2,i

�
�
�
2

L2(g̃)
= (n + 1)

Z

I
�2i f

ndr,
�
�
�h̃(1)
3,i

�
�
�
2

L2(g̃)
=
1
2

✓
µi �

scalg
n

◆Z

I

⇣
 

(1)
i

⌘2
f ndr,

�
�
�h̃(2)
3,i

�
�
�
2

L2(g̃)
= 2

Z

I

⇣
 

(2)
i

⌘2
f ndr,

�
�
�h̃(1)
4,i

�
�
�
2

L2(g̃)
= n�i

⇥
(n�1)�i�scalg

⇤ Z

I

⇣
�

(1)
i

⌘2
f ndr,

�
�
�h̃(2)
4,i

�
�
�
2

L2(g̃)
= 2�i

Z

I

⇣
�

(2)
i

⌘2
f ndr,

�
�
�h̃(3)
4,i

�
�
�
2

L2(g̃)
= (n + 1)n

Z

I

⇣
�

(3)
i

⌘2
f ndr,

(2.3)
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and if �il · � jm · �kn = 0, ⇣
h̃(k)
i, j , h̃

(n)
l,m

⌘

L2(g̃)
= 0. (2.4)

The Einstein operator acts as
⇣
1̃E h̃(1)

1,i ,h̃
(1)
1,i

⌘

L2(g̃)
=
Z

I
('0
i )
2 f ndr+i

Z

I
'2i f

n�2dr,
⇣
1̃E h̃(1)

2,i ,h̃
(1)
2,i

⌘

L2(g̃)
=(n+1)

Z

I
(�0

i )
2 f ndr

+(n+1)�i
Z

I
�2i f

n�2dr�2scalg̃
Z

I
�2i f

ndr,

⇣
1̃E h̃(1)

3,i ,h̃
(1)
3,i

⌘

L2(g̃)
=
1
2

✓
µi�

scalg
n

◆Z

I

✓⇣
 

(1)
i

⌘0
◆2

f ndr

+
1
2

✓
µi�

scalg
n

◆2Z

I

⇣
 

(1)
i

⌘2
f n�2dr,

⇣
1̃E h̃(2)

3,i ,h̃
(2)
3,i

⌘

L2(g̃)
=2µi

Z

I

⇣
 

(2)
i

⌘2
f n�2dr

+(2n+6)
Z

I

⇣
 

(2)
i

⌘2
( f 0)2 f n�2dr

+2
Z

I

✓⇣
 

(2)
i

⌘0
◆2

f ndr�4
Z

I

⇣
 

(2)
i

⌘2
f 00 f n�1dr,

⇣
1̃E h̃(1)

4,i ,h̃
(1)
4,i

⌘

L2(g̃)
=n�i

⇥
(n�1)�i�scalg

⇤Z

I

✓⇣
�

(1)
i

⌘0
◆2

f ndr (2.5)

+n�i
⇥
(n�1)�i�scalg

⇤
✓
�i�2

scalg
n

◆

·
Z

I

⇣
�

(1)
i

⌘2
f n�2dr,

⇣
1̃E h̃(2)

4,i ,h̃
(2)
4,i

⌘

L2(g̃)
=(2n+6)�i

Z

I

⇣
�

(2)
i

⌘2
( f 0)2 f n�2dr+2�i

Z

I

✓⇣
�

(2)
i

⌘0
◆2

f ndr

+2�i
✓
�i�

scalg
n

◆Z

I

⇣
�

(2)
i

⌘2
f n�2dr

�4�i
Z

I

⇣
�

(2)
i

⌘2
f 00 f n�1dr,

⇣
1̃E h̃(3)

4,i ,h̃
(3)
4,i

⌘

L2(g̃)
=n

✓
(n+1)�i�2

scalg
n

◆Z

I

⇣
�

(3)
i

⌘2
f n�2dr

�4n2
Z

I

⇣
�

(3)
i

⌘2
f 00 f n�1dr+(n+1)n

Z

I

✓⇣
�

(3)
i

⌘0
◆2

f ndr

+2n2(n+3)
Z

I

⇣
�

(3)
i

⌘2
( f 0)2 f n�2dr.
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Moreover,
⇣
1̃E h̃(k)

i, j , h̃
(n)
l,m

⌘

L2(g̃)
= 0, (2.6)

if i 6= l or j 6= m. The other off-diagonal terms are
⇣
1̃E h̃(1)

3,i , h̃
(2)
3,i

⌘

L2(g̃)
= �2

✓
µi �

scalg
n

◆Z

I
 

(1)
i ·  (2)

i f 0 f n�2dr,

⇣
1̃E h̃(1)

4,i , h̃
(2)
4,i

⌘

L2(g̃)
= �4

⇥
(n � 1)�� scalg

⇤
�

Z

I
�

(1)
i · � (2)

i f 0 f n�2dr,
⇣
1̃E h̃(1)

4,i , h̃
(3)
4,i

⌘

L2(g̃)
= 0,

⇣
1̃E h̃(2)

4,i , h̃
(3)
4,i

⌘

L2(g̃)
= 4(n + 1)�i

Z

I
�

(2)
i · � (3)

i f 0 f n�2dr.

(2.7)

In other words, the quadratic from h̃ 7! (1̃E h̃, h̃)L2(g̃) is diagonal with respect to
the L2-orthogonal decomposition

C1
cs

⇣
S2M̃

⌘
⇢

1M

i=1
V1,i �

1M

i=0
V2,i �

1M

i=1
V3,i �

1M

i=0
V4,i , (2.8)

where
V1,i = C1

cs (I ) · f 2hi , V2,i = C1
cs (I ) · vi · g̃,

V3,i = C1
cs (I ) · f 2�⇤!i � C1

cs (I ) · dr � f !i ,

V4,i = C1
cs (I ) · f 2

⇣
nr2vi +1vi · g

⌘
� C1

cs (I )

· dr � frvi � C1
cs (I ) · vi

⇣
f 2g � ndr ⌦ dr

⌘
.

(2.9)

Thus to prove the Theorems 1.1 and 1.4, we consider the Einstein operator on each
of these subspaces separately.

In the case where M is complete and noncompact, one has to argue a little
bit carefully, which was slightly neglected in our previous paper [21]. One first
expands h̃ as

h̃ = f 2h(r) + v(r, x)g̃ + f 2�⇤!(r) + dr � f !̄(r)

+ f 2(ngr2v̂(r, x) +1g v̂(r, x)g)

+ dr � grv̄(r, x) + ṽ(r, x)
⇣
f 2g � ndr ⌦ dr

⌘
(2.10)

where h 2 T Tg and !, !̄ 2 W are depending on r and v, v̂, v̄, ṽ 2 C1(M̃). Be-
cause h̃ has compact support, each of the summands has also compact support. One
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can now let the Einstein operator act on the summands and compute the correspond-
ing L2-scalar products in terms of scalar products containing h,!, !̄, v, v̂, v̄, ṽ. By
suitable integration by parts one can always write them in such a way that there
is no differential operator acting on the right slot. Then one can expand the terms
of the above sum in a dirichlet eigenbasis for the Laplacian on M , the connection
Laplacian on W and 1E on T T of a suitable bounded domain � ⇢ M and one ob-
tains exactly the same formulas as in (2.5). The eigenvalues depend on the choice
of �, but they have lower bounds independent of �. These are given by the bot-
tom of the spectra of the appearing operators on the whole manifold. To compute
lower bounds for the expressions in (2.5), we just use the lower spectral bounds.
Therefore, the argumentations are the same in the compact and in the noncompact
case.

Remark 2.1. The easiest case to consider with these formulas is the pure product
metric g̃ = dr2 + g either on M̃ = S1 ⇥ M or M̃ = R ⇥ M in case when g̃ and g
are both assumed to be Ricci-flat. In this case (M̃, g̃) is stable if and only if (M, g)
is stable. Moreover, (M̃, g̃) is strictly stable if and only if (M, g) is strictly stable
and M̃ = S1 ⇥ M . Note that Ricci-flat product metrics on R ⇥ M can never be
strictly stable.

3. Proof of Theorem 1.1

Because all Einstein manifolds of dimension n  3 are of constant curvature, we
may assume that n � 4. At first, we prove the following

Lemma 3.1. We have

inf
'2C1

cs (R)

R
R
�
'0
�2 coshn dr

R
R '

2 coshn�2 dr
= n, inf

'2C1
cs (R)

R
R
�
'0
�2 coshn dr

R
R '

2 coshn dr
= n � 1, (3.1)

and the infima are not realized by functions in C1
cs (R) but by '(r) = cosh�n(r)

and '(r) = cosh�n+1(r), respectively. Furthermore,

inf
'2C1

cs (R)

R
R
�
'0
�2 coshn dr

R
R '

2 sinh2 coshn�2 dr
� n � 1. (3.2)

Proof. We substitute  (r) = '(r) coshn(r). Then,

Z

R
'2 coshn�2 dr =

Z

R
 2 cosh�n�2 dr, (3.3)
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and by integration by parts,
Z

R

�
'0�2 coshn dr =

Z

R

⇣
 0 cosh�n �n sinh cosh�n�1

⌘2
coshn dr

=
Z

R

�
 0�2 cosh�n dr + n2

Z

R
 2 sinh2 cosh�n�2 dr

� n
Z

R

�
 2

�0 sinh cosh�n�1 dr

=
Z

R

�
 0�2 cosh�n dr + n2

Z

R
 2 sinh2 cosh�n�2 dr

+ n
Z

R
 2

⇣
cosh�n �(n + 1) sinh2 cosh�n�2

⌘
dr

=
Z

R

�
 0�2 cosh�n dr + n

Z

R
 2 cosh�n�2 dr.

(3.4)

Thus,

inf
'2C1

cs (R)

R
R
�
'0
�2 coshn dr

R
R '

2 coshn�2 dr
= inf
 2C1

cs (R)

R
R( 0)2 cosh�n dr

R
R  

2 cosh�n�2 dr
+ n � n (3.5)

and it is immediate that this infimum is realized by  ⌘ 1. To prove the second
assertion, we generalize the substitution from above and set  (r) = '(r) coshp(r)
for some p 2 R. Then,

Z

R
'2 coshn dr =

Z

R
 2 coshn�2p dr. (3.6)

By a similar calculation as above, one gets
Z

R

�
'0�2 coshn dr =

Z

R

�
 0�2 coshn�2p dr + p

Z

R
 2 coshn�2p dr

+ p(n � p � 1)
Z

R
 2 sinh2 coshn�2p�2 dr.

(3.7)

The result now follows from setting p = n�1. The third statement is an immediate
consequence of the second.

Proof of Theorem 1.1. We proceed similarly as in [21] and study the Einstein oper-
ator as a quadratic form on the subspaces Vk,i . Let

h̃ = ' cosh2(r)hi 2 V1,i . (3.8)
Then by Lemma 3.1,

⇣
1̃E h̃, h̃

⌘

L2(g̃)
=

Z

R

�
'0�2 coshn dr + i

Z

R
'2 coshn�2 dr

� (n + i )

Z

R
'2 coshn�2 dr � 0

(3.9)

if and only if i � �n for all (Dirichlet) eigenvalues of the Einstein operator.
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If all i > �n, for all i , one proves strict stability as follows: Choose ✓ 2 (0, 1)
such that i � �✓ · n for all i . Then, by Lemma 3.1 again,
⇣
1̃E h̃, h̃

⌘

L2(g̃)
=
Z

R

�
'0�2 coshn dr+i

Z

R
'2 coshn�2dr

� (1�✓)
Z

R

�
'0�2 coshn dr+ (✓ ·n+i )

Z

R
'2 coshn�2dr

� (1�✓)(n�1)
Z

R
'2 coshn dr = (1�✓)(n�1)

�
�
�h̃

�
�
�
2

L2(g̃)
.

(3.10)

Remark 3.2. Note that if there exists an eigentensor h 2 C1(S2M) such that
1Eh = �nh, then cosh(r) · h 2 C1(S2M) is an element in the L2-kernel of 1̃E .
An example for this situation is provided by numerical analysis in [27]. There, the
family of AdS-Taub Bolt� metrics is discussed. It is a family of 4-dimensional
Einstein metrics depending on the parameter ` with Einstein constant �3/`2. Due
to rescaling, we look for a solution where �4/`2 is an eigenvalue of the Einstein
operator. Due to [27, Figure 1], there exists a parameter `0 > 0, for which this is the
case and so the Einstein-operator of its cosh-cylinder admits a nontrivial L2-kernel.

For
h̃ = 'vi g̃ 2 V2,i , (3.11)

we have
⇣
1̃E h̃, h̃

⌘

L2(g̃)
=(n + 1)

Z

R

�
'0�2 coshn dr + (n + 1)�i

Z

R
'2 coshn�2 dr

+ 2n(n + 1)
Z

R
'2 coshn dr � 2n

�
�
�h̃

�
�
�
2

L2(g̃)
,

(3.12)

so the Einstein operator is always positive on these spaces. Next, pick
h̃ = h̃1 + h̃2 = ' f 2�⇤!i +  · dr � f !i 2 V3,i . (3.13)

Then we have the scalar products
⇣
1̃E h̃1,h̃1

⌘

L2(g̃)
=
1
2
(µi+(n�1))

Z

R

�
'0�2coshndr

+
1
2
(µi+(n�1))2

Z

R
'2coshn�2dr,

⇣
1̃E h̃2,h̃2

⌘

L2(g̃)
=2µi

Z

R
 2coshn�2dr+(2n+6)

Z

R
 2sinh2coshn�2dr

+2
Z

R

�
 0�2coshndr�4

Z

R
 2coshndr,

=(2µi�4)
Z

R
 2coshn�2dr

+(2n+2)
Z

R
 2sinh2coshn�2dr+2

Z

R

�
 0�2coshndr,

⇣
1̃E h̃1,h̃2

⌘

L2(g̃)
=�2(µi+(n�1))

Z

R
' sinhcoshn�2dr,

(3.14)
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and the estimates

⇣
1̃E h̃1, h̃1

⌘

L2(g̃)
�
n � 1
2

(µi + (n � 1))
Z

R
'2 coshn dr

+
1
2
(µi + (n � 1))2

Z

R
'2 coshn�2 dr,

⇣
1̃E h̃2, h̃2

⌘

L2(g̃)
� 2(n � 1)

Z

R
 2 coshn dr

+ 2(µi � 2)
Z

R
 2 coshn�2 dr

+ (2n + 2)
Z

R
 2 sinh2 coshn�2 dr,

2
�
�
�
�
⇣
1̃E h̃1, h̃2

⌘

L2(g̃)

�
�
�
� 

1
2
(µi + (n � 1))2

Z

R
'2 coshn�2 dr

+ 8
Z

R
 2 sinh2 coshn�2 dr.

(3.15)

Becauseµi �n�1 (a Bochner-type argument shows that kr!k2L2(g) =2 kd!k2L2(g)+

(n � 1) k!k2L2(g) holds for any compactly supported divergence-free one-form !),

⇣
1̃E

⇣
h̃1+h̃2

⌘
, h̃1+h̃2

⌘

L2(g̃)
�
n � 1
2

(µi + (n � 1))
Z

R
'2 coshn dr

+ 2(n � 1)
Z

R
 2 coshn dr

+ 2(µi � 2)
Z

R
 2 coshn�2 dr (3.16)

+ (2n � 6)
Z

R
 2 sinh2 coshn�2 dr

�C(n)
✓�
�
�h̃1

�
�
�
2

L2(g̃)
+
�
�
�h̃2

�
�
�
2

L2(g̃)

◆
=C(n)

�
�
�h̃

�
�
�
2

L2(g̃)

for some constant C(n) depending only on the dimension. Finally, we consider the
spaces V4,i . Let

h̃ = h̃1 + h̃2 + h̃3 = ' f 2
⇣
nr2vi +1vi · g

⌘
+  · dr � rvi

+ � · vi
⇣
f 2g � ndr ⌦ dr

⌘
2 V4,i .

(3.17)
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We have the scalar products

⇣
1̃E h̃1,h̃1

⌘

L2(g̃)
=(n�1)n�i (�i+n)

Z

R

�
'0�2coshndr

+n(n�1)�i (�i+n)(�i+2(n�1))
Z

R
'2coshn�2dr,

⇣
1̃E h̃2,h̃2

⌘

L2(g̃)
=(2n+6)�i

Z

R
 2sinh2coshn�2dr+2�i

Z

R

�
 0�2coshndr

+2�i (�i+(n�1))
Z

R
 2coshn�2dr�4�i

Z

R
 2coshndr,

⇣
1̃E h̃3,h̃3

⌘

L2(g̃)
=n((n+1)�i+2(n�1))

Z

R
�2coshn�2dr

+(n+1)n
Z

R

�
� 0�2coshndr

+2n2(n+3)
Z

R
�2sinh2coshn�2dr�4n2

Z

R
'2coshndr,

(3.18)

and

⇣
1̃E h̃1, h̃2

⌘

L2(g̃)
= �4(n � 1)�i (�i + n)

Z

R
' sinh coshn�2 dr,

⇣
1̃E h̃2, h̃3

⌘

L2(g̃)
= 4(n + 1)�i

Z

R
 � sinh coshn�2 dr.

(3.19)

By Lemma 3.1, we have lower estimates

⇣
1̃E h̃1, h̃1

⌘

L2(g̃)
�(n�1)2n�(�+n)

Z

R
'2 sinh2 coshn�2 dr

+(n�1)n�i (�i+n)(�i+2(n�1))
Z

R
'2 coshn�2 dr,

⇣
1̃E h̃2, h̃2

⌘

L2(g̃)
�4n�i

Z

R
 2 sinh2 coshn�2 dr

+2�i (�i+2n�3)
Z

R
 2 coshn�2 dr,

⇣
1̃E h̃3, h̃3

⌘

L2(g̃)
�
�
n(n+1)�i+2n(n�1)+n2(n�3)

�Z

R
�2 coshn�2 dr

+2n2(n+1)
Z

R
�2 sinh2 coshn�2 dr,

(3.20)



1168 KLAUS KRÖNCKE

and for the off-diagonal terms, we use the Young inequality to show

2
�
�
�
�
⇣
1̃E h̃1, h̃2

⌘

L2(g̃)

�
�
�
�  n(n � 1)�i (�i + n)2

Z

R
'2 coshn�2 dr

+ ↵2
n � 1
n

�i

Z

R
 2 sinh2 coshn�2 dr

+ n(n � 1)2�i (�i + n)
Z

R
'2 sinh2 coshn�2 dr

+ (4� ↵)2
1
n
�i (�i + n)

Z

R
 2 coshn�2 dr,

2
�
�
�
�
⇣
1̃E h̃2, h̃3

⌘

L2(g̃)

�
�
�
�  �2

n + 1
n

�i

Z

R
 2 sinh2 coshn�2 dr

+ n(n + 1)�i
Z

R
�2 coshn�2 dr

+ (4� �)2
n + 1
2n2

�2i

Z

R
 2 coshn�2 dr

+ 2n2(n + 1)
Z

R
�2 sinh2 coshn�2 dr,

(3.21)

where ↵,� 2 (0, 4) are some constants which we will specify below. Now we get
⇣
1̃E

⇣
h̃1 + h̃2 + h̃3

⌘
, h̃1 + h̃2 + h̃3

⌘

L2(g̃)

�


4n � ↵2

n � 1
n

� �2
n + 1
n

�
�i

Z

R
 2 sinh2 coshn�2 dr

+


2�i (�i + n � 3) � (4� ↵)2

�i (�i + n)
n

�(4� �)2
n + 1
2n2

�2i

� Z

R
 2 coshn�2 dr.

(3.22)

Elementary calculations show that the right hand side of this inequality is nonneg-
ative if n � 5 and ↵ = � = 2 and if n = 4 and ↵ = 4�

p
2, � = 2. An analogous

argument as done for the spaces V1,i shows that the Einstein operator is strictly
stable on these subspaces, i.e.
⇣
1̃E

⇣
h̃1 + h̃2 + h̃3

⌘
, h̃1 + h̃2 + h̃3

⌘

L2(g̃)
� C(n)

�
�
�h̃1 + h̃2 + h̃3

�
�
�
2

L2(g̃)
, (3.23)

and so we are done with the proof of the theorem.

4. Stability under Ricci flow

This section is devoted to the proof of Theorem 1.2. The Einstein operator 1E
and all covariant derivatives, norms and scalar products are taken with respect to
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the background metric g̃. To avoid cumbersome notation, we drop the tilde in the
notation of tensors and differential operators on M̃ in this section.

Proof of Theorem 1.2. The proof follows along the lines of [26] (see also [9]) and
we sketch it here due to completeness. In order to prove convergence of the Ricci
flow modulo diffeomorphism it suffices to prove convergence of the �-Ricci-de-
Turk flow

@t g(t) = �2Ric(g(t)) + 2ng(t) + LV (g(t),g̃)(g(t)) on M ⇥ (0,1), (4.1)

where V (g(t), g̃) = gi j (0ki j � 0̃ki j ). It can be also written as

(@t +1E )h = R0[h] + rR1[h],

where g(t) = g̃ + h(t) and the nonlinear terms in h are schematically given by

R0[h] = g�1 ⇤ h ⇤ h ⇤ R + g�1 ⇤ g�1 ⇤ rh ⇤ rh,

R1[h] =
⇣
g�1 � g̃�1

⌘
rh,

(4.2)

see, e.g., [10, Section 2]. For ✏ > 0 and T > 0 there exists a � = �(✏, T ) > 0
such that for every g(0) with kg(0) � g̃kL1 < �, there exists a unique solution
g(t), t 2 [0, T ] of (4.1) starting in g(0) and satisfying kg(t) � g̃kL1 < ✏ for all
t 2 [0, T ]. This fact can be proven exactly as in [26, Theorem 2.4] and uniqueness
holds due to standard arguments, cf. [1, Section 2.3] and references therein.

Because specL2(1E ) � C > 0 is positive, one can split 1E as 1E = ↵01+
1̄E such that specL2(1̄E ) � C̄ > 0 if ↵0 > 0 is small enough. By standard
estimates and as long as we have the estimate kh(t)kL1  ✏0 = ✏0(K , g̃), one gets

@t khk2L2 = �2(1Eh, h)L2 + 2(R0[h] + rg0R1[h], h)L2

= �2↵0 krhk2L2 +
�
1̄Eh, h

�
L2

+ C khkL1 khk2L2 + C khkL1 krhk2L2  �2↵ khk2L2

(4.3)

which yields

kh(t)kL2  kh(0)kL2 · e�↵t  K · e�↵t . (4.4)

The solution of (4.1) can be constructed with the help Dirichlet exhaustions. The
above L2 a priori estimate is first developed for Dirichlet Ricci-de-Turck flows and
carries over to the limit flow. This works exactly as in [26, Theorem 3.1 and Corol-
lary 3.2] and [9, Proposition 4.1 and Corollary 4.2].

In addition, it follows from higher derivative estimates (see, e.g., [1, Corollary
2.3]) that we have krh(t)kL1  C(⌧ ) · ✏ for all t � ⌧ as long as kh(t)kL1 
✏. Now pick p(t) 2 M such that |h(t)|(p(t)) � 1

2 kh(t)kL1 . It is elementary
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that |h(t)|(q) � 1
4 kh(t)kL1 for all q 2 M such that d(p(t), q)  1

4 kh(t)kL1 ·

krh(t)k�1
L1 . Consequently,

kh(t)k2L2 �
1
16

kh(t)k2L1 · vol
✓
B
✓
p(t),

1
4

kh(t)kL1 · krh(t)k�1
L1

◆◆

� (C · ✏)�1 kh(t)k2L1

(4.5)

and the constant on the right-hand side is independent of t by the upper bound on
krh(t)kL1 and the lower bound on the injectivity radius. Therefore,

kh(t)kL1  C · K · ✏ · e�↵t (4.6)

as long as kh(t)kL1  ✏0. If we choose ✏ = ✏0/2 and T > 0 so large that
C · K · e�↵T  1/2, the flow satisfies kh(t)kL1  ✏0/2 for t � 0. In particular, it
exists for all time and satisfies

kg(t) � g̃kL1  C · e�↵t . (4.7)

By higher derivative estimates one gets

kg(t) � g̃kCk  C(k) · e�↵t (4.8)

which finishes the proof of the theorem.

Remark 4.1. The above proof works for any strictly stable negative Einstein met-
ric with bounded curvature and positive injectivity radius. Therefore, we can also
conclude that the asymptotically hyperbolic manifolds appearing in [23] are stable
under the Ricci flow.

5. Proof of Theorem 1.4

In this section (Mn, g) always denotes a compact Einstein manifolds of dimension
n � 4 and Einstein constant (n � 1). Moreover, (M̃, g̃) denotes its sin-cone, i.e.

⇣
M̃, g̃

⌘
=

⇣
(0,⇡) ⇥ M, dr2 + sin2(r)g

⌘
. (5.1)

The proof of Theorem 1.4 is more complicated than the one of Theorem 1.1. This
is basically due to positive Ricci curvature of sin-cones which implies that confor-
mal destabilizing perturbations of the metric are possible. On the other hand, the
spaces V4,i are also harder to understand since the Einstein operator is not in general
positive on these spaces (which contrasts the previous case). For these reasons we
have to extend the strategy. If the eigenvalue bound of the theorem is not satisfied,
we construct a destabilizing perturbation by an approximation argument. To prove
(strict) stability under the assumptions of the theorem, we basically follow the same
strategy as before.
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Lemma 5.1. We have

inf
'2C1

cs ((0,⇡))

R ⇡
0
�
'0
�2 sinn dr

R ⇡
0 '

2 sinn�2 dr
= inf
'2C1

cs ((0,⇡))

R ⇡
0
�
'0
�2 sinn dr

R ⇡
0 '

2 sinn dr
= 0. (5.2)

Proof. Pick for each ✏ > 0 a cutoff function '✏ 2 C1
cs (0,⇡) satisfying

'✏ ⌘ 0 on (0, ✏) [ (⇡ � ✏,⇡), '✏ ⌘ 1 on (2✏,⇡ � 2✏), |'0
✏ | 

2
✏
. (5.3)

Then we have
Z ⇡

0

�
'0
✏

�2 sinn dr =
Z 2✏

✏
('0
✏)
2 sinn dr +

Z ⇡�✏

⇡�2✏

�
'0
✏

�2 sinn dr

 8 · ✏�2
Z 2✏

✏
rndr


8

n + 1
· ✏n�1,

(5.4)

in particular the left hand side converges to zero as ✏ ! 0. On the other hand, if
p > 0,

Z ⇡

0
'2✏ sin

p dr !
Z ⇡

0
sinp dr = C(p) > 0 (5.5)

as ✏ ! 0 and this finishes the proof of the lemma.

We continue with a generalized version of the above estimate.

Lemma 5.2. For any � > 0, we have

inf
'2C1

cs ((0,⇡))

R ⇡
0
�
'0
�2 sinn dr + �

R ⇡
0 '

2 sinn�2 dr
R ⇡
0 '

2 sinn dr
= �+ µ, (5.6)

where µ = �n�1
2 +

q
(n�1)2
4 + �. Moreover, this infimum is realized by the function

'(r) = sinµ(r).

Proof. We substitute '̃ = sin�µ ' so that

�

Z ⇡

0
'2 sinn�2 dr =

Z ⇡

0
'̃2 sinn+2(µ�1) dr

Z ⇡

0
'2 sinn dr =

Z ⇡

0
'̃2 sinn+2µ dr

(5.7)
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and
�
'0�2 =

�
'̃0�2 sin2µ +µ2'̃2 cos2 sin2µ�2+µ

�
'̃2

�0 cos sin2µ�1 . (5.8)

Integration by parts now shows that
Z ⇡

0

�
'0�2 sinn dr =

Z ⇡

0

�
'̃0�2 sinn+2µ dr

� µ(n + µ � 1)
Z ⇡

0
'̃2 cos2 sinn+2(µ�1) dr

+ µ

Z ⇡

0
'̃2 sinn+2µ dr.

(5.9)

By the definition of µ, � = µ(n + µ � 1) and we obtain

R ⇡
0
�
'0
�2 sinn dr + �

R ⇡
0 '

2 sinn�2 dr
R ⇡
0 '

2 sinn dr
=

R ⇡
0
�
'̃0
�2 sinn+2µ dr

R ⇡
0 '̃

2 sinn+2µ dr
+ �+ µ. (5.10)

As in the proof of the previous lemma, we can construct a sequence of compactly
supported smooth functions such that the right hand side converges to �+ µ. This
finishes the proof of the lemma.

As a consequence, we can construct Dirichlet eigenfunctions on the cone.

Lemma 5.3. Let v 2 C1(M) be such that 1gv = �v for some � > 0. Then,

inf
'2C1

cs ((0,⇡))

�
�
�r̃(' · v)

�
�
�
2

L2(g̃)

k' · vk2L2(g̃)
= �+ µ (5.11)

where µ = �n�1
2 +

q
(n�1)2
4 + �. Moreover, this infimum is realized by '(r) =

sinµ(r). We have 1g̃(sinµ ·v) = (�+ µ) · sinµ ·v.

Proof. The first two assertions follow directly from Lemma 5.2. Writing the Lapla-
cian of the metric g̃ as 1g̃ = � sin�n @r (sinn @r ) + sin�21g, it can be straightfor-
wardly checked that 1g̃(sinµ ·v) = (�+ µ) · sinµ ·v.

Remark 5.4. Note that µ is a natural number if and only if � = k(k + n � 1)
for some k 2 N, i.e. � coincides with the k’th Laplacian eigenvalue of the unit
sphere. This is what one expects from to the construction of eigenfunctions on the
sphere [3, Chapter III, C.III].
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Lemma 5.5. Let �, µ and v 2 C1(M) be as in the previous lemma. Then there
exists a sequence 'i 2 C1

cs ((0,⇡)), i 2 N such that the sequence 'i · v 2 C1
cs (M̃)

converges in the H3(g̃)-norm to the function sinµ ·v 2 C1(M̃).

Proof. Let  2 C1((0,⇡)) and consider the function  sinµ v 2 C1(M̃). We
now compute its H3-norm. At first,

�
� sinµ v

�
�2
L2(g̃) =

Z ⇡

0
 2 sinn+2µ dr · kvk2L2(g) . (5.12)

Then we compute

d
�
 sinµ v

�
=  sinµ dv +

�
 0 sinµ v + µ cos sinµ�1 �dr,

�
�d( sinµ v)

�
�2
g̃ =  2 sin2(µ�1) |dv|2g +

�
 0 sin+µ cos

�2 sin2(µ�1) v2,
(5.13)

so that

�
�
�r̃( sinµ v)

�
�
�
2

L2(g̃)
=
Z ⇡

0
 2 sinn+2(µ�1) dr · krvk2L2(g)

+
Z ⇡

0
( 0 sin+µ cos)2 sinn+2(µ�1) dr · kvk2L2(g)

=
Z ⇡

0
 2 sinn+2(µ�1) dr · krvk2L2(g)

+
Z ⇡

0
( 0)2 sinn+2µ dr · kvk2L2(g)

�(n+µ�1)µ
Z ⇡

0
 2 cos2 sinn+2(µ�1) dr · kvk2L2(g)

+µ

Z ⇡

0
 2 sinn+2µ dr kvk2L2(g) .

(5.14)

For the Hessian, we get

r̃2
�
 sinµ v

�
= sinµ r2v+µ cos sinµ v ·g +

�
 sinµ

�00
v · dr ⌦ dr

+
⇣
µ sinµ�1+ 0 sinµ � cos sinµ�1

⌘
dr � dv,

�
�
�r̃2( sinµ v)

�
�
�
2

g̃
= 2

�
�
�r2v

�
�
�
2

g
sin2(µ�2) +nµ2 2 cos2 sin2(µ�2) v2

�2µ 2 cos sin2(µ�2) �v2 +
�
( sinµ)00

�2
v2

+2
⇣
µ sinµ�2+ 0 sinµ�1� cos sinµ�2

⌘2
|dv|2g,

(5.15)



1174 KLAUS KRÖNCKE

which yields

�
�
�r̃2( sinµ v)

�
�
�
2

L2(g̃)

=
Z ⇡

0
 2 sinn+2(µ�2) dr ·

�
�
�r2v

�
�
�
2

L2(g)

� 2µ
Z ⇡

0
 2 cos sinn+2(µ�2) � kvk2L2(g)

+ nµ2
Z ⇡

0
 2 cos2 sinn+2(µ�2) dr · kvk2L2(g)

+
Z ⇡

0

�
( sinµ)00

�2
v2 sinn dr · kvk2L2(g)

+ 2
Z ⇡

0

⇣
µ sinµ�2+ 0 sinµ�1� cos sinµ�2

⌘2
sinn dr · krvk2L2(g) .

(5.16)

Finally, the third derivative is

r̃3
�
 sinµ v

�

=  sinµ r3v + µ cos sinµ dv ⌦ g

+
�
 sinµ

�000
v · dr ⌦ dr ⌦ dr

+
�
µ +  0 sin� cos

�
cos sinµ ·S23(g ⌦ dv)

+
�
 sinµ

�00dv ⌦ dr ⌦ dr

� 2
�
µ sinµ�2+ 0 sinµ�1� cos sinµ�2 � cos ·dv ⌦ dr ⌦ dr

+
�
µ sinµ�1+ 0 sinµ � cos sinµ�1 �0

· (dr ⌦ dv ⌦ dr + dr ⌦ dr ⌦ dv)

�
�
µ sinµ�2+ 0 sinµ�1� cos sinµ�2 �

· cos(dr ⌦ dv ⌦ dr + dr ⌦ dr ⌦ dv)

+
h�
 sinµ

�0
� 2 sinµ�1 cos

i
dr ⌦ r2v

+ µ
h�
 cos sinµ �2 cos2 sinµ�1 �

i
v · dr ⌦ g

�  cos sinµ�1 S23
⇣
r2v ⌦ dr

⌘

�
h
µ cos2 sinµ�1�

�
 sinµ

�00 cos sin
i
v · S23(g ⌦ dr)

+
⇣
µ sinµ�1+ 0 sinµ � cos sinµ�1

⌘
S23

⇣
r2v ⌦ dr

⌘
,

(5.17)
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where S23 of a (0, 3)-tensor is S23(T )i jk = Ti jk + Tik j . A careful consideration of
all terms shows that the H3-norm can be written as
�
� sinµ v

�
�2
H3(g̃)

=
3X

l=0

1X

k=0

X

i+ j3
Ci jkl(µ, �, n)

Z ⇡

0

�
 (i)�2 sinn+2(µ� j) cosk dr

�
�
�rlv

�
�
�
2

L2(g)

(5.18)

and Ci jkl(µ, �, n) are some constants. For ✏ > 0, let  ✏ 2 C1
cs (0,⇡) a cutoff

function satisfying

 ✏ ⌘ 0 on (0, ✏) [ (⇡ � ✏,⇡),  ✏ ⌘ 1 on (2✏,⇡ � 2✏),

| (k)
✏ | 

C
✏k
for k 2 {1, 2, 3}

(5.19)

for some universal constant C > 0. For i > 0, we now have
Z ⇡

0

�
 (i)
✏

�2 sinn+2(µ� j) cosk dr =
Z 2✏

✏

�
 (i)
✏

�2 sinn+2(µ� j) cosk dr

+
Z ⇡�✏

⇡�2✏

�
 (i)
✏

�2 sinn+2(µ� j) cosk dr

 2C✏�2i
Z 2✏

✏
rn+2(µ� j)dr

 C(n, µ, j)✏n+1+2(µ�i� j)

 C(n, µ, j) · ✏,

(5.20)

where the last inequality holds because i + j  3, n � 4 and µ � 1 (the latter
holds because � � n for any positive eigenvalue on a positive Einstein manifold).
An analogous argumentation shows that
�
�
�
�

Z ⇡

0

�
 ✏

�2 sinn+2(µ� j) cosk dr�
Z ⇡

0
sinn+2(µ� j) cosk dr

�
�
�
�  C(n, µ, j) · ✏. (5.21)

Therefore we get
�
� ✏ sinµ v

�
�
H3(g̃) !

�
�sinµ v

�
�
H3(g̃) (5.22)

as ✏ ! 0. This proves the lemma.

Remark 5.6. With an accordingly modified sequence of cutoff functions, we would
not be able to prove convergence of this familiy of functions in any Hk-norm with
k > 3. Note in particular that elliptic regularity breaks down because sinµ v is an
eigenfunction of the Laplacian which is not contained in all Sobolev spaces.



1176 KLAUS KRÖNCKE

Lemma 5.7. Let (Mn, g) be an Einstein manifold and v2C1
cs (M) with

R
M v dV =

0. Then the tensor

T (v) :=

✓
1g �

scal
n

◆
v · g + r2v (5.23)

satisfies �T (v) = 0 and
R
M trv dV = 0. Moreover,

(1ET (v),T (v))L2 =

✓
((n�1)1�scal)

✓
1�

scal
n

◆✓
1� 2

scal
n

◆
v, v

◆

L2
. (5.24)

Proof. Checking the conditions �T (v) = 0 and
R
M trv dV = 0 is straightforward.

By [21, Lemma 2.4], we get

kT (v)k2L2 =n

 ✓
1�

scal
n

◆2
v, v

!

L2
+
�
�
�r2v

�
�
�
2

L2
� 2

✓✓
1�

scal
n

◆
1v, v

◆

L2

= n

 ✓
1�

scal
n

◆2
v, v

!

L2
�

✓✓
1�

scal
n

◆
1v, v

◆

L2

= ((n � 1)1� scal)
✓
1�

scal
n

)v, v

◆

L2
.

(5.25)

The last statement of the lemma follows now from the fact that1ET (v) = T ((1�
2scaln )v), see, e.g., [21, page 6].

Theorem 5.8. Let (Mn, g), n � 4 be a positive Einstein manifold normalized such
that Ricg = (n� 1)g. Suppose there exists an eigenvalue � 2 spec(M, g) such that

n < � < 2n � n
2
�q
1+ 8

n � 1
�
. Then the sin-cone over (M, g) is unstable.

Proof. Let us pick v 2 C1(M) with 1v = � · v and let ṽ = sinµ v with µ =

�n�1
2 +

q
(n�1)2
4 + �. From Lemma 5.3, we know that 1̃ṽ = (� + µ)ṽ =: �̃ṽ

and because of the assumptions on �, we have �̃ 2 (n + 1, 2n). Let now ṽi =
'i · v 2 C1

cs (M̃) where 'i is the sequence from Lemma 5.5. Since the integral of
v is vanishing, the integral of ṽi vanishes as well and due to Lemma 5.7, T (ṽi ) 2
C1
cs (S2M̃) satisfies

R
M̃ trT (ṽi )dVg̃ = 0 and �T (ṽi ) = 0. As ṽi ! v in H3(g̃),

�
1̃ET (ṽi ), T (ṽi )

�
L2(g̃) = n

�
r̃
�
1̃� 2n

�
ṽi , r̃

�
1̃� n � 1

�
ṽi
�
L2(g̃)

� n2
��
1̃� 2n

�
ṽi ,

�
1̃� n � 1

�
ṽi
�
L2(g̃)

! n
�
r̃
�
1̃� 2n

�
ṽ, r̃

�
1̃� n � 1

�
ṽ
�
L2(g̃)

� n2
��
1̃� 2n

�
ṽ,

�
1̃� n � 1

�
ṽ
�
L2(g̃)

= n
�
�̃� n � 1

��
�̃� 2n

��
�̃� n

�
kṽk2L2(g̃) < 0,

(5.26)
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where the last equality follows from integration by parts. Therefore, the left hand
side must be negative for sufficiently large i 2 N which proves the theorem.

Proposition 5.9. The operator 1̃E is nonnegative on the subspaces Vj,i , 1  j 
3, i � 1 if and only if 1E is nonnegative on T T -tensors and if all nonzero eigen-
values of 1g satisfy the bound � � 2n � n

2
�q
1+ 8

n � 1
�
. 1̃E is strictly positive

on these subspaces if and only if 1E is strictly positive on T T -tensors and the
eigenvalue bound holds with the strict inequality.

Proof. Let

h̃ = ' sin2(r)hi 2 V1,i . (5.27)

Then by Lemma 5.1,

�
1̃E h̃, h̃

�
L2(g̃) =

Z ⇡

0

�
'0�2 sinn dr + i

Z ⇡

0
'2 sinhn�2 dr

� i

Z ⇡

0
'2 sinn dr = i

�
�
�h̃

�
�
�
2

L2(g̃)
� 0

(5.28)

for all ' 2 C1
cs ((0,⇡)) if and only if i � 0. If all i > 0, we have strict stability

on these subspaces. For

h̃ = 'vi g̃ 2 V2,i , (5.29)

we have, by Lemma 5.2

�
1̃E h̃, h̃

�
L2(g̃) = (n + 1)

Z ⇡

0

�
'0�2 sinn dr + (n + 1)�i

Z ⇡

0
'2 sinn�2 dr

� 2n(n + 1)
Z ⇡

0
'2 sinn dr

�

0

@�i �
n � 1
2

+

s
(n � 1)2

4
+ �i � 2n

1

A
�
�
�h̃

�
�
�
2

L2(g̃)

(5.30)

and we obviously obtain strict stability under the condition

�i �
n � 1
2

+

s
(n � 1)2

4
+ �i > 2n (5.31)

for all i > 0. Next, pick

h̃ = h̃1 + h̃2 = ' f 2�⇤!i +  · dr � f !i 2 V3,i . (5.32)
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Then we have the scalar products

�
1̃E h̃1, h̃1

�
L2(g̃) =

1
2
(µi � (n � 1))

Z ⇡

0

�
'0�2 sinn dr

+
1
2
(µi � (n � 1))2

Z ⇡

0
'2 sinn�2 dr,

�
1̃E h̃2, h̃2

�
L2(g̃) = 2µi

Z ⇡

0
 2 sinn�2 dr

+ (2n + 6)
Z ⇡

0
 2 cos2 sinn�2 dr

+ 2
Z ⇡

0

�
 0�2 sinn dr + 4

Z ⇡

0
 2 sinn dr,

�
1̃E h̃1, h̃2

�
L2(g̃) = �2(µi � (n � 1))

Z ⇡

0
' cos sinn�2 dr

(5.33)

and the estimates
�
1̃E h̃1, h̃1

�
L2(g̃) �

1
2
(µi � (n � 1))2

Z ⇡

0
'2 sinn�2 dr,

�
1̃E h̃2, h̃2

�
L2(g̃) �(2n + 6)

Z ⇡

0
 2 cos2 sinn�2 dr + 4

Z ⇡

0
 2 sinn dr,

2
�
�
�
�
1̃E h̃1, h̃2

�
L2(g̃)

�
�
� 

1
3
(µi � (n � 1))2

Z ⇡

0
'2 coshn�2 dr

+ 12
Z ⇡

0
 2 sinh2 coshn�2 dr.

(5.34)

Sinceµi �n � 1(a Bochner-type argument shows that kr!k2L2(g)=2k�
⇤!k2L2(g)+

(n � 1) k!k2L2(g) holds for any compactly supported one-form !) and n � 4,

⇣
1̃E

⇣
h̃1 + h̃2

⌘
, h̃1 + h̃2

⌘

L2(g̃)

�
1
6
(µi � (n � 1))2

Z ⇡

0
'2 sinn�2 dr + 4

Z ⇡

0
 2 sinn dr

+ (2n � 6)
Z ⇡

0
 2 cos2 sinn�2 dr

�
1
6
(µi � (n � 1))2

Z ⇡

0
'2 sinn dr + 4

Z ⇡

0
 2 sinn dr

�C(n,min {µi | µi > n � 1})
✓�
�
�h̃1

�
�
�
2

L2(g̃)
+

�
�
�h̃2

�
�
�
2

L2(g̃)

◆

=C(n,min {µi | µi > n � 1})
�
�
�h̃

�
�
�
2

L2(g̃)
.

(5.35)
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Note that for the last inequality, one has to distinguish the cases µi > n � 1 and
µi = n � 1 but the inequality is true in either case.

Now it just remains to consider the spaces V4,i . However, it turns out that we
can prove nonnegativity of 1̃E under a lower eigenvalue bound which leaves an
unsatisfacory gap in the statement of Theorem 1.4. Let

h̃ = h̃1 + h̃2 + h̃3 = ' sin2
�
nr2vi +1vi · g

�
+  · dr � rvi

+ � · vi
�
sin2 g � ndr ⌦ dr

�
2 V4,i .

(5.36)

We have the scalar products
⇣
1̃E h̃1, h̃1

⌘

L2(g̃)
=(n � 1)n�i (�i � n)

Z ⇡

0

�
'0�2 sinn dr

+n(n � 1)�i (�i � n)(�i � 2(n � 1))
Z ⇡

0
'2 sinn�2 dr,

⇣
1̃E h̃2, h̃2

⌘

L2(g̃)
=(2n + 6)�i

Z ⇡

0
 2 cos2 sinn�2 dr+2�i

Z ⇡

0

�
 0�2 sinn dr

+2�i (�i � (n � 1))
Z ⇡

0
 2 sinn�2 dr

+4�i
Z ⇡

0
 2 sinn dr,

⇣
1̃E h̃3, h̃3

⌘

L2(g̃)
=n((n + 1)�i � 2(n � 1))

Z ⇡

0
�2 sinn�2 dr

+(n + 1)n
Z ⇡

0

�
� 0�2 sinn dr

+2n2(n + 3)
Z ⇡

0
�2 cos2 sinn�2 dr + 4n2

Z ⇡

0
'2 sinn dr

(5.37)

and
⇣
1̃E h̃1, h̃2

⌘

L2(g̃)
= �4(n � 1)�i (�i � n)

Z ⇡

0
' cos sinn�2 dr,

⇣
1̃E h̃2, h̃3

⌘

L2(g̃)
= 4(n + 1)�i

Z ⇡

0
 � cos sinn�2 dr.

(5.38)

These scalar products induces a quadratic form Q(�i ) : (C1
cs ((0,⇡)))�

3
! R

depending on the parameters �i and n. We say that Q(�i ) is strictly positive if

Q(�i )(', ,�) � C ·


�i (�i � n)

Z ⇡

0
'2 sinn dr + �i

Z ⇡

0
 2 sinn dr

+
Z ⇡

0
�2 sinn dr

� (5.39)

holds on all of (C1
cs ((0,⇡)))�

3 . Note that Q is strictly positive for �0 = 0.
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Proposition 5.10. If Q(�i ) is (strictly) positive for all �i > 0, then 1̃E is (strictly)
stable on the subspaces V4,i , i � 0. If Q is not positive semidefinite, (M̃, g̃) is
unstable.
Proof. The first assertion follows by definition. To prove the second assertion,
it suffices to show the following claim: If 1̃E is (strictly) positive on all h 2
C1
cs (S2M̃) with

R
M̃ trh dVg̃ = 0 and �̃h = 0 then it is also (strictly) positive on

all h 2 C1
cs (S2M̃) with trh = 0. As a consequence, stability of (M̃, g̃) implies that

Q is positive semidefinite. To prove the claim, we use the decomposition
n
h 2 C1

cs
�
M̃
�

| trh = 0
o

= W1 � W2 � T T, (5.40)

where
W1 =

n
nr̃2v + 1̃vg̃ | v 2 C1

cs
�
M̃
�o

,

W2 =
n
�̃⇤! | ! 2 �1cs

�
M̃
�
, �̃! = 0

o
,

(5.41)

and T T denotes the space of transverse traceless tensors. This decomposition is
L2-orthogonal and is preserved by the Einstein operator. For S(v) = nr̃2v + 1̃vg̃,
we have

�
1̃E S(v), S(v)

�
L2(g̃) = (n + 1)n

�
1̃
�
1̃� n � 1

��
1̃� 2n

�
v, v

�
L2(g̃). (5.42)

For a discussion of these facts, see, e.g., [21, pages 6-8].
We can split v as v = '0 + w where '0 = '0(r) and w satisfiesR

M w(r, x)dVg(x) = 0 for all r 2 (0,⇡). Furthemore, w can be splitted to
w =

P
i�1 'i · vi where 'i = 'i (r), vi 2 C1(M) and 1gvi = �i · vi . Here �i ,

i � 1 are the nonzero eigenvalues of 1g. Note that this splitting is L2-orthogonal
and is preserved by the Laplacian. Since (M̃, g̃) is stable, all nonzero eigenvalues
of (M, g) satisfy the bound �i � n�1

2 +
q

(n�1)2
4 + �i � 2n due to Theorem 5.8.

Because all 'ivi are compactly supported, we can expand them in a sum of eigen-
functions of the Dirichlet problem on (✏,⇡�✏)⇥M . Due to Lemma 5.2, all dirich-
let eigenvalues that are used for the expansion of 'ivi satisfy the bound �̃ � 2n.
Therefore,

�
1̃E S('ivi ), S('ivi )

�
L2(g̃) � 0, for all i � 1. (5.43)

Moreover, as '0 = '0(r), it can be naturally associated to a function  0 on the
sphere Sn+1 written as the sin-cone over Sn . Due to stability of the sphere,

�
1̃E S('0), S('0)

�
L2(g̃) =

�
1̄E S( 0), S( 0)

�
L2(grd )

� 0 (5.44)

where 1̄E denotes the Einstein operator of Sn+1 with the round metric grd . There-
fore, 1̃E is nonnegative on W1. Moreover, 1̃E is always nonnegative on W2: for
�̃⇤! 2 W2,

1̃E �̃
⇤! = �̃⇤

✓
r̃⇤r̃ �

scalg̃
n + 1

◆
! = 2�̃⇤�̃�̃⇤!, (5.45)
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where the first equality follows, e.g., from [21, page 6] and the second from a cal-
culation. As a consequence, since �̃⇤! is compactly supported,

�
1̃E �̃

⇤!, �̃⇤!
�
L2(g̃) = 2

�
�
��̃�̃⇤!

�
�
�
2

L2(g̃)
� 0. (5.46)

By assumption, 1̃E is nonegative on T T -tensors and we conclude that it must be
nonnegative on all tracefree tensors.

Theorem 5.11. The sin-cone ( eM, g̃) is (strictly) stable if and only if (M, g) is
(strictly) stable, all nonzero eigenvalues of the Laplacian on M satisfy the bound
�i > 2n � n

2
�q
1+ 8

n � 1
�
and the quadratic form Q(�i ) is (strictly) positive for

all �i > 0.

Proof. This follows from Theorem 5.8, Proposition 5.9 and Proposition 5.10.

Proposition 5.12. If �i � 2n � 1, the quadratic form Q(�i ) is strictly positive.

Proof. We define three quadratic forms Qi : (C1
cs ((0,⇡)))�

3
! R, i = 1, 2, 3

(respectively the associated symmetric bilinear forms) componentwise by

Q1((', 0, 0), (', 0, 0))=n(n�1)�i (�i�n)(�i�2(n�1))
Z ⇡

0
'2 sinn�2 dr,

Q1((0, , 0), (0, , 0))=[(2n + 6)�i + 2�i (�i � (n � 1)) � F � G]

·
Z ⇡

0
 2 cos2 sinn�2 dr,

Q1((', 0, 0), (0, , 0))=Q1((0, , 0), (', 0, 0))

= �2(n � 1)�i (�i � n)
Z ⇡

0
' cos sinn�2 dr,

Q2((0, , 0), (0, , 0))=F
Z ⇡

0
 2 cos2 sinn�2 dr,

Q2((0, 0,�), (0, 0,�))=n((n + 1)�i � 2(n � 1))
Z ⇡

0
�2 sinn�2 dr,

Q2((0, 0,�), (0, , 0))=Q2((0, , 0), (0, 0,�))

= (n + 1)�i
Z ⇡

0
 � cos sinn�2 dr,

Q3((0, , 0), (0, , 0))=G
Z ⇡

0
 2 sinn�2 dr,

Q3((0, 0,�), (0, 0,�))=2n2(n + 3)
Z ⇡

0
�2 cos2 sinn�2 dr,

Q3((0, 0,�), (0, , 0))=Q3((0, , 0), (0, 0,�))

= (n + 1)�i
Z ⇡

0
 � cos sinn�2 dr,

(5.47)
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and the other components are assumed to be zero. It is immediate that Q(�i ) �
Q1 + Q2 + Q3. Now let

F =
(n + 1)2�2i

n((n + 1)�i � 2(n � 1))
+ ✏, G =

(n + 1)2�2i
2n2(n + 3)

+ ✏, (5.48)

where ✏ > 0 is some small constant. By substituting 9 = cos · and choosing
an orthonormal basis of L2([0,⇡]) with respect to the scalar product (�, ) =R ⇡
0 � sin

n�2 dr , one can associate Q2 with the matrix

Q̃2 =

✓
F (n + 1)�i

(n + 1)�i n((n + 1)�i � 2(n � 1))

◆
, (5.49)

which is positive definite by the choice of F and because �i � n > 2(n�1)(n+1)�1
for any i > 0. Similarly, Q3 is associated with the matrix

Q̃3 =

✓
G (n + 1)�i

(n + 1)�i 2n2(n + 3)

◆
, (5.50)

which is positive definite and Q1 is associated with the matrix

Q̃1=
✓
n(n�1)�i (�i�n)(�i�2(n�1)) �2(n�1)�i (�i�n)

�2(n�1)�i (�i�n) (2n+6)�i+2�i (�i�(n�1))�F�G

◆
, (5.51)

which is positive if �i � 2n � 1.

Remark 5.13. This is the optimal lower bound of the form 2n�c (with c a universal
constant) we can reach with these methods because for any c > 1, the determinant
of Q̃3 becomes negative for large n if we insert �i = 2n � c. It seems very likely
that there is a critical value �crit(n) 2 (2n� 2, 2n� 1) with the following property:
Q(�) is (strictly) positive for all � � �crit(n) (respectively � > �crit(n)) and not
positive for all � 2 (n, �crit(n)).

Proof of Theorem 1.4. This is now a consequence of Theorem 5.11 and Proposi-
tion 5.12.

6. Symmetric spaces of compact type

In this section, we study the stability of sin-cones over symmetric spaces of compact
type. Based on the results in [6], we are able to determine the stability properties of
every such cone.
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Theorem 6.1. Let M = G be a simple Lie group. Then the sin-cone over M is
strictly stable, if G is one of the following spaces:

Spin(n) (n � 6), E6, E7, E8, F4. (6.1)

On the other hand, the sin-cone over M is unstable, if G is one of the following
spaces:

SU(n + 1) (n � 3), Spin(5), Sp(n) (n � 3), G2. (6.2)

Proof. The proof is given by the table below based on the results of [6].

Table 6.1. Stability properties of sin-cones over simple Lie groups.

type G dimn(G) 3 stability cone stability
An SU(n + 1), n � 2 n2 � 1 2n(n+2)

(n+1)2 unstable unstable

Spin(5) 10 5
3 unstable unstable

Bn Spin(7) 21 21
10 s. stable s. stable

Spin(2n + 1), n � 4 2n(n + 1) 4n
2n�1 s. stable s. stable

Cn Sp(n), n � 3 n(2n + 1) 2n+1
n+1 unstable unstable

Dn Spin(2n), n � 3 n(2n + 1) 2n�1
n�1 s. stable s. stable

E6 E6 156 26
9 s. stable s. stable

E7 E7 266 19
6 s. stable s. stable

E8 E8 496 4 s. stable s. stable

F4 F4 52 8
3 s. stable s. stable

G2 G2 14 2 stable unstable

Here,3 := �1 ·(dim(G)�1)�1 is the first nonzero Laplacian eigenvalue normalized
by the Einstein constant. All data except the last column can be found in [6, Table
1]. The entries in the last column follow from Theorem 1.4.

Theorem 6.2. Let M = G/K be a simply-connected irreducible symmetric space
of compact type other than the standard sphere. Then the sin-cone over M is stable,
if G/K = SU(n)/SO(n), n � 3. The sin-cone is furthermore strictly stable if G/K
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is one of the real Grasmannians

SO(2m + 2n + 1)
SO(2m + 1) ⇥ SO(2n)

(n � 2,m � 1),

SO(8)
SO(5) ⇥ SO(3)

,
SO(2n)

SO(n) ⇥ SO(n)
(n � 4),

SO(2n + 2)
SO(n + 2) ⇥ SO(n)

(n � 4),

SO(2n)
SO(2n � m) ⇥ SO(m)

(n � 2 � m � 3),

(6.3)

or one of the following spaces:

E6/[Sp(4)/ {±I }], E6/SU(2) · SU(6), E7/[SU(8)/ {±I }],
E7/SO(12) · SU(2), E8/SO(16), E8/E7 · SU(2),
F4/Sp(3) · SU(2), G2/SO(4).

(6.4)

On the other hand, the sin-cone is unstable if G/K is CPn , n � 2, HPn , n � 2,
one of the (real, complex and quaternionic) Grasmannians

SO(5)
SO(3) ⇥ SO(2)

,
SO(2n + 2)

SO(2n) ⇥ SO(2)
(n � 3),

SO(2n + 3)
SO(2n + 1) ⇥ SO(2)

(n � 2),
U(m + n)

U(m) ⇥ U(n)
(m � n � 2),

Sp(m + n)
Sp(m) ⇥ Sp(n)

(m � n � 2)

(6.5)

or one of the following spaces:

SU(2n)/Sp(n) (n � 3), Sp(n)/U(n) (n � 3), SO(2n)/U(n) (n � 5),
E6/SO(10) · SO(2), E6/F4, E7/E6 · SO(2),
F4/Spin(9).

(6.6)

Proof. This proof is given by the Table 6.2.
Here, all data except the last column can be found in [6, Table 2]. The en-

tries in the last column follow from Theorem 1.4 except for the case SU(3)/SO(3),
where the condition �i � 2dim(G/K ) � 1 does not hold for the smallest nonzero
eigenvalue. However, in this case one can directly check that for all eigenvalues
bigger than the given one, the determinant of the matrix Q̃3 in (5.50) is positive.
Therefore, the quadratic form Q(�i ) is positive for all eigenvalues of SU(3)/SO(3)
and we can apply Theorem 5.11.
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Table 6.2. Stability properties of sin-cones over symmetric spaces of non-group type.

type G/K dimn(G/K ) 3 stability conestability
A I SU(n)/SO(n), n � 3 (n�1)(n+2)

2
2(n�1)(n+2)

n2 stable stable

A II
SU(4)/Sp(2) = S5 5 5

4 s. stable s. stable
SU(2n)/Sp(n), n � 3 (n � 1)(2n + 1) (2n+1)(n�1)

n2 unstable unstable

A III
U(n+1)

U(n)⇥U(1) = CPn 2n 2 stable unstable
U(m+n)

U(m)⇥U(n) , m � n � 2 2mn 2 stable unstable

B I

SO(5)
SO(3)⇥SO(2) 6 2 unstable unstable

SO(2n+3)
SO(2n+1)⇥SO(2) , n � 2 4n + 2 2 stable unstable

SO(7)
SO(4)⇥SO(3) 12 12

5 s. stable s. stable
SO(2n+3)

SO(3)⇥SO(2n) , n � 3 6n 4n+6
2n+1 s. stable s. stable

SO(2m+2n+1)
SO(2m+1)⇥SO(2n) , m, n � 2 2n(2m + 1) 4m+4n+2

2m+2n�1 s. stable s. stable
B II SO(2n+1)

SO(2n) = S2n , n � 1 2n 2n
2n�1 s. stable s. stable

C I Sp(n)/U(n), n � 3 n(n + 1) 2 unstable unstable

C II

Sp(2)
Sp(1)⇥Sp(1) = S4 4 4

3 s. stable s. stable
Sp(n+1)

Sp(n)⇥Sp(1) = HPn , n � 2 4n 2(n+1)
n+2 unstable unstable

Sp(m+n)
Sp(m)⇥Sp(n) , m � n � 2 4mn 2(m+n)

m+n+1 unstable unstable

D I

SO(8)
SO(5)⇥SO(3) 15 5

2 s. stable s. stable
SO(2n+2)

SO(2n)⇥SO(2) , n � 3 4n 2 stable unstable
SO(2n)

SO(n)⇥SO(n) , n � 4 n2 2n
n�1 s. stable s. stable

SO(2n+2)
SO(n+2)⇥SO(n) , n � 4 n(n + 2) 2n+2

n s. stable s. stable
SO(2n)

SO(2n�m)⇥SO(m) , n � 2 � m � 3 (2n � m)m 2n
n�1 s. stable s. stable

D II SO(2n+2)
SO(2n+1) = S2n+1, n � 3 2n + 1 2n+1

2n s. stable s. stable
D III SO(2n)/U(n), n � 5 n(n � 1) 2 stable unstable
E I E6/[Sp(4)/ {±I }] 42 28

9 s. stable s. stable
E II E6/SU(2) · SU(6) 40 3 s. stable s. stable
E III E6/SO(10) · SO(2) 32 2 stable unstable
E IV E6/F4 26 13

9 unstable unstable
E V E7/[SU(8)/ {±I }] 70 10

3 s. stable s. stable
E VI E7/SO(12) · SU(2) 64 28

9 s. stable s. stable
E VII E7/E6 · SO(2) 54 2 stable unstable
E VIII E8/SO(16) 128 62

15 s. stable s. stable
E IX E8/E7 · SU(2) 112 16

5 s. stable s. stable
F I F4/Sp(3) · SU(2) 28 26

9 s. stable s. stable
F II F4/Spin(9) 16 4

3 unstable unstable
G G2/SO(4) 8 7

3 s. stable s. stable
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[18] K. KRÖNCKE, Stability of Einstein metrics under Ricci flow, Comm. Anal. Geom., to ap-

pear.
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