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Unknotting submanifolds of the 3-sphere by twistings

MAKOTO OZAWA

Abstract. By the Fox’s re-embedding theorem, any compact submanifold of the
3-sphere can be re-embedded in the 3-sphere so that it is unknotted. It is unknown
whether the Fox’s re-embedding can be replaced with twistings. In this paper, we
will show that any closed 2-manifold embedded in the 3-sphere can be unknotted
by twistings. In spite of this phenomenon, we show that there exists a compact 3-
submanifold of the 3-sphere which cannot be unknotted by twistings. This shows
that the Fox’s re-embedding cannot always be replaced with twistings.

Mathematics Subject Classification (2010): 57Q35 (primary); 57N35 (sec-
ondary).

1. Introduction

Throughout this paper, we will work in the piecewise linear category. We assume
that a surface is a compact, connected 2-manifold and that a 2-manifold is possibly
disconnected.

Definition 1.1. Let X be a compact submanifold of the 3-sphere S3. Take a loop C
in S3� X which is the trivial knot in S3. Then C bounds a disk D in S3, which may
intersect X in its interior. Cut open S3 along by D, rotate one copy of D by ±2⇡ ,
and glue again two copies of D. Then we obtain another submanifold X 0 of S3 and
call this operation a twisting along C , which is denoted by (S3, X)

C
�! (S3, X 0).

We note that X 0 is homeomorphic to X , but the exterior of X , say Y , is usu-
ally not homeomorphic to one of X 0, say Y 0. We also denote this deformation by
(S3,Y )

C
�! (S3,Y 0).

Remark 1.2. A twisting along C is not a homeomorphism of S3, but it gives a
homeomorphism of S3 � C . We note that a twisting along C is also obtained by
±1-Dehn surgery along C .
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Definition 1.3. Let X be a compact submanifold of S3 which has n connected com-
ponents X1, . . . , Xn .

We say that X = X1 [ · · · [ Xn is completely splittable in S3 if there exist
n � 1 mutually disjoint 2-spheres S1, . . . , Sn�1 in S3 � X such that if we cut open
S3 along S1 [ · · · [ Sn�1 and glue 2(n � 1) 3-balls along their boundaries, then we
obtain n pairs of the 3-sphere and the submanifold (S3, X1), . . . , (S3, Xn).

For a connected component Xi of X , we say that a pair (S3, Xi ) is unknotted
in S3 if the exterior E(Xi ) = S3 � int N (Xi ) consists of handlebodies. We say
that X is unknotted if X is completely splittable and for every pair (S3, Xi ), Xi is
unknotted in S3.

Remark 1.4. We remark that by the Fox’s re-embedding theorem [2], any compact
submanifold M of S3 can be re-embedded in S3 so that M is unknotted.

The following is the main subject of this paper.

Problem 1.5. Can any Fox’s re-embedding be replaced with twistings?

It is well-known that Problem 1.5 is true for any closed 1-manifold and for
any closed 2-manifold which bounds handlebodies. In this paper, we will show
that any closed 2-manifold embedded in the 3-sphere can be unknotted by twistings
(Theorem 2.3). In spite of this phenomenon, we show that there exists a compact
3-submanifold of the 3-sphere which cannot be unknotted by twistings (Corollary
2.11). This shows that the Fox’s re-embedding cannot always be replaced with
twistings.

ACKNOWLEDGEMENTS. The author would like to thank Kouki Taniyama, Ryo
Nikkuni and Yukihiro Tsutsumi for helpful comments.

2. Main results

Definition 2.1. Let F be a closed 2-manifold and ↵ be a loop, namely, a simple
closed curve in F . We say that ↵ is inessential in F if it bounds a disk in F .
Otherwise, ↵ is essential. We define the breadth b(F) of F as the maximal number
of mutually disjoint and mutually non-parallel essential loops in F .

Let F be a closed 2-manifold embedded in S3 with b(F) > 0. We say that F is
compressible in S3 if there exists a disk D embedded in S3 such that D \ F = @D
and @D is essential in F . Such a disk is called a compressing disk for F . Then by
cutting F along @D, and pasting two parallel copies of D to its boundaries, we ob-
tain another closed 2-manifold F 0 with b(F 0) < b(F). Such an operation is called
a compression along D. Conversely, if F 0 is obtained from F by a compression
along D, then there exists a dual arc ↵ with respect to D, that is, ↵ intersects D in
one point and ↵ \ F 0 = @↵ such that F can be recovered from F 0 by tubing along
↵. See Figure 2.1.
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Figure 2.1. Compression along D.

Remark 2.2. We remark that if b(F) = 0, then F consists of only 2-spheres and
by the Alexander’s theorem [1], F is unknotted in S3. On the other hand, we remark
that if b(F) > 0, then by [2] or [4], F is compressible in S3.

Theorem 2.3. Any closed 2-manifold embedded in the 3-sphere can be unknotted
by twistings.

Proof. Let F be a closed 2-manifold consisting of n closed surfaces F1, . . . , Fn
embedded in S3. We will prove Theorem 2.3 by induction on the breadth b(F).

In the case of b(F) = 0, by Remark 2.2, F is unknotted.
Next suppose that when b(F) < b, Theorem 2.3 holds, and assume that

b(F) = b. Then by Remark 2.2, there exists a compressing disk D for F . Let
F 0 be the closed 2-manifold obtained from F by a compression along D. Then
there exists an arc ↵ such that ↵ intersects D in one point, ↵ \ F 0 = @↵, and F
can be obtained from F 0 by tubing along ↵. Since b(F 0) < b, by the hypothe-
sis inductive, F 0 can be unknotted by twistings. Thus there exists a sequence of
twistings

⇣
S3, F 0

⌘ C1�!
⇣
S3, F 0(1)

⌘ C2�! · · ·
Cm�!

⇣
S3, F 0(m)

⌘
,

where F 0(m) is unknotted. In each stage, we may assume that Ci \ ↵ = ; for
i = 1, . . . ,m. Therefore, this sequence extends to a sequence of twistings

⇣
S3, F

⌘ C1�!
⇣
S3, F (1)

⌘ C2�! · · ·
Cm�!

⇣
S3, F (m)

⌘
.

Let R be the closure of a connected component of S3�F 0 which contains ↵, and put
@R = F 0

1 [ · · · [ F 0
k , where F

0
1, . . . , F

0
k are connected components of F

0(m). Since
F 0(m) is unknotted, F 0

1 [ · · · [ F 0
k bounds k handlebodies V1, . . . , Vk in S

3 � int R,
and V1 [ · · · [ Vk is unknotted in S3, namely, V1 [ · · · [ Vk is ambient isotopic
to a regular neighborhood of a plane graph G on the 2-sphere S. Then by crossing
changes on ↵ and crossing changes between ↵ and Vi , ↵ can be unknotted, that is,
↵ is isotopic to an arc on S as shown in Figure 2.2. Since these crossing changes
are obtained by twistings, there is a sequence of twistings

⇣
S3, F 0(m)

⌘ Cm+1
�!

⇣
S3, F 0(m+1)

⌘ Cm+2
�! · · ·

Cm+l
�!

⇣
S3, F 0(m+l)

⌘
,



1148 MAKOTO OZAWA

F91

F91

V1

V1

Vk

Vk

F9k

F9k

R

R

Figure 2.2. Unknotting ↵ in R.

where F 0(m), F 0(m+1), . . . , F 0(m+l) are equivalent and Cm+i \ ↵ = ; for i =
1, . . . , l. Therefore, this sequence extends to a sequence of twistings

⇣
S3, F (m)

⌘ Cm+1
�!

⇣
S3, F (m+1)

⌘ Cm+2
�! · · ·

Cm+l
�!

⇣
S3, F (m+l)

⌘
.

Hence, by tubing F 0 along ↵, we obtain a sequence of twistings
⇣
S3, F

⌘ C1�!
⇣
S3, F (1)

⌘ C2�! · · ·
Cm�!

⇣
S3, F (m)

⌘

Cm+1
�!

⇣
S3, F (m+1)

⌘ Cm+2
�! · · ·

Cm+l
�!

⇣
S3, F (m+l)

⌘
,

where F (m+l) is unknotted.

Let T (n) denote the number of trees with n vertices. By the Waldhausen’s
theorem [16], any unknotted closed surface in S3 is unique up to isotopy, and we
note that any embedding of (n � 1) 2-spheres F in S3 corresponds to a tree with
n vertices by regarding each region of S3 � F as a vertex and each 2-sphere as an
edge. Therefore, by Theorem 2.3, we have the following.

Corollary 2.4. The number of equivalence classes of a closed 2-manifold having
n � 1 connected components by twistings is equal to T (n).

Example 2.5. We recall an example of closed surface H of genus 2 given by
Homma [4], see also [12, 4.1 Theorem] as shown in Figure 2.3. The surface H
separates S3 into two components W1 and W2, where W1 is homeomorphic to the
exterior of the 4-crossing Handcuff graph 41 in the table of [7], and W2 is a bound-
ary connected sum of two trefoil knot exteriors. It is remarkable that H is incom-
pressible in W1, whereas H has only one compressing disk D in W2 up to isotopy
by [13,15].
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Figure 2.3. The Homma’s closed surface.
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Figure 2.4. The 4-crossing Handcuff graph 41.

In spite of Theorem 2.3, there is a following phenomenon.

Theorem 2.6. The Homma’s surface H cannot be unknotted by twistings in W1.

Proof. Suppose that there exists a a sequence of twistings
⇣
S3,W2

⌘ C1�!
⇣
S3,W (1)

2

⌘ C2�! · · ·
Cn�!

⇣
S3,W (n)

2

⌘
,

where each Ci is contained in S3 � W (i�1)
2 and W (n)

2 is unknotted.
We regardW2 as E1[N (↵)[E2, where E1 and E2 are two trefoil knot exteriors

and N (↵) is a 1-handle along a dual arc ↵ with respect to D.

Lemma 2.7. For any twisting (S3,W2)
C

�! (S3,W 0
2), there exists a disk 1 in S3

with @1 = C such that 1 \ (E1 [ E2) = ;.

Proof. Since the exterior E(C) = S3 � int N (C) of C is the solid torus, both of
@E1 and @E2 are compressible in E(C) � int (E1 [ E2). Therefore, there exists a
compressing disk1 for @E(C) in E(C) such that1 \ (E1 [ E2) = ;. This disk1
can be extended to a disk bounded by C .
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By Lemma 2.7, we may assume that ↵ intersects 1 transversely and conclude
that any twisting along C takes effect only on ↵.

Let li be a loop in Ei , which is the trivial knot in S3, such that the solid torus
Vi is obtained from Ei by a twisting along li as shown in Figure 2.3. Put H2 =

V1 [ N (↵) [ V2. Thus we have (S3,W2)
l1[l2�! (S3, H2).

Lemma 2.8. For i = 1, 2, there exists a disk �i in S3 with @�i = li and �1 \ �2 = ;
such that �i \ 1 = ;.

Proof. By Lemma 2.7, the 3-submanifold N (1) [ E1 [ E2 is completely splittable
in S3. Therefore, there exists a disk �i (i = 1, 2) bounded by li such that �1\�2 = ;
and �i \ 1 = ;.

By Lemma 2.8, we have the following lemma.

Lemma 2.9. The following diagram is commutative.

�
S3,W2

� C
����!

�
S3,W 0

2
�

l1[l2
?
?
y l1[l2

?
?
y

�
S3, H2

� C
����!

�
S3, H 0

2
�

.

By the supposition and Lemma 2.9, we have the following commutative diagram:

�
S3,W2

� C1����!
⇣
S3,W (1)

2

⌘ C2����! · · ·
Cn����!

⇣
S3,W (n)

2

⌘

l1[l2
?
?
y l1[l2

?
?
y l1[l2

?
?
y

�
S3, H2

� C1����!
⇣
S3, H (1)

2

⌘ C2����! · · ·
Cn����!

⇣
S3, H (n)

2

⌘
.

Since W (n)
2 is unknotted in S3, H (n)

2 is also unknotted in S3. It follows from [11]
or [9] that the Handcuff graph corresponding to H (n)

2 is trivial. Thus, the Handcuff
graph 41 corresponding to H2 can be trivialized by crossing changes only on ↵.
However, it contradicts the following lemma.

Lemma 2.10. The Handcuff graph 41 cannot be trivialized by crossing changes
only on its cut edge.

Proof. Let K1[↵[K2 be the Handcuff graph 41, whose exterior is homeomorphic
to W1. We take a double branched cover of S3 along the trivial link K1 [ K2 as
follows. Let Di be a disk bounded by Ki which intersects ↵ in one point (i = 1, 2).
We cut open S3 along D1 [ D2 and take a copy of it. Those 3-manifolds are both
homeomorphic to S2 ⇥ I and whose boundary consists of 2-spheres D+

1 [ D�
1 ,

D+
2 [ D�

2 , D
0+
1 [ D0�

1 , D0+
2 [ D0�

2 . Then by gluing D
+
1 and D

0�
1 , D

�
1 and D

0+
1 ,

D+
2 and D

0�
2 , D

�
2 and D

0+
2 we obtain S2 ⇥ S1 and a knot ↵̃ obtained from ↵ and ↵0
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Figure 2.5. The double branched cover of S3 along K1 [ K2.

as shown in Figure 2.5. We note that [↵̃] = 3[� ] in H1(S2 ⇥ S1; Z) ⇠= Z, where �
is a generator of H1(S2 ⇥ S1; Z).

Suppose that K1 [ ↵ [ K2 is unknotted by crossing changes on ↵. Then the
homology class [↵̃] in H1(S2 ⇥ S1; Z) does not change by the crossing changes,
and we have [↵̃] = 3[� ]. However, since K1 [↵ [ K2 is trivial, we have [↵̃] = [� ].
This is a contradiction.

By the Fox’s re-embedding theorem [2], there exists a re-embedding of W2 in
S3 such thatW2 is unknotted. However, this Fox’s re-embedding cannot be obtained
by twistings.

Corollary 2.11. There exists a 3-submanifold of S3 which cannot be unknotted by
twistings.

Proof. Take W2 as a 3-submanifold of S3.

3. Concluding remarks

We conclude with some remarks on topics related with subjects in this paper.

3.1. Fox’s re-embeddings and Dehn surgeries

We remark that by [8, Theorem 1.6], there exists a null-homologous link L in W1,
which is reflexive in S3, such that a handlebody can be obtained fromW1 by a 1/Z-
Dehn surgery along L , that is, [L] = 0 in H1(W1; Z) and there exists a surgery
slope 1/ni for each component Li of L such that a pair of S3 and a handlebody
is obtained from (S3,W1) by a Dehn surgery along L . Therefore, the Fox’s re-
embedding can be replaced with a Dehn surgery along a link. At the time of writing
of [8], it was unknown whether this Dehn surgery can be replaced with twistings.
Corollary 2.11 shows that it is not always true.

3.2. The number of equivalence classes by twistings

Corollay 2.11 and the Fox’s re-embedding theorem shows that there exists a com-
pact 3-submanifold W2 of S3 such that the number of equivalence classes of W2 by
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twistings is at least two. It can be observed that along the proofs of Theorem 2.6
and Lemma 2.10, W2 has infinitely many equivalence classes by twistings. To see
this, consider an embedding of W2 = E1 [ N (↵) [ E2 in S3, where ↵ goes through
E1 and E2 n times respectively. Thus, ↵ intersects Di in n points (i = 1, 2). Then
we have that [↵̃] = (2n + 1)[� ] in H1(S2 ⇥ S1; Z) and this homology class is
an invariant for crossing changes on ↵ and hence twistings on W2. Therefore, by
varying n, we obtain infinitely many equivalence classes of W2 by twistings.

3.3. Nugatory twistings on submanifolds

It is known as the Lin’s nugatory crossing conjecture in [6, Problem 1.58] that if an
oriented knot does not change by a crossing change, then the crossing is nugatory.
This conjecture holds on the trivial knot by [10], 2-bridge knots by [14] and fibered
knots by [5]. Analogously, we propose the “nugatory twisting conjecture” on sub-
manifolds of S3, that is, if a submanifold of S3 does not change by a twisting, then
the twisting is nugatory.

3.4. Uniqueness of embeddings of submanifolds

Any closed 1-manifold or closed orientable 2-manifold except for the 2-sphere has
infinitely many non-equivalent embeddings in S3, namely links or knotted surfaces.
However, it is well-known by [3] that any non-trivial knot exterior in S3 has only
one embedding in S3. We remark that any non-trivial knot exterior X satisfies the
following condition: any non-contractible loop l in S3 � X is non-trivial in S3, that
is, X does not admit a non-trivial twisting.

In the below-mentioned, if such a condition is not satisfied, then there are
infinitely many embeddings of a submanifold contrary to the case of non-trivial
knot exteriors. Let X be a 3-submanifold X of S3. Suppose that there exists a
non-contractible loop l in S3 � X which is trivial in S3. Then, the exterior E(l) =
S3 � int N (l) of l is a solid torus containing X . By re-embedding of E(l) in S3
so that it is knotted in S3, we obtain infinitely many embeddings of X in S3. More
generally, if X is contained in a submanifold Y so that Y�X is irreducible and Y has
infinitely many embeddings in S3, then one can obtain infinitely many embeddings
of X in S3.
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