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Comparison of the real and the complex Green functions, and sharp
estimates of the Kobayashi distance

NIKOLAI NIKOLOV AND PASCAL J. THOMAS

Abstract. We extend the upper estimates obtained by M. Carlehed [2] and
B.-Y. Chen [3] about the ratio of the classical and pluricomplex Green functions
to the case of C2-smooth locally C-convexifiable domains of finite type. We also
give some lower estimates. In order to obtain these results, and because it is
of independent interest, we refine and unify some classical estimates about the
Kobayashi distance and the Lempert function in such domains.

Mathematics Subject Classification (2010): 32F45 (primary); 32U45 (sec-
ondary).

1. Introduction and results

1.1. Green functions

Two kinds of Green functions can be defined on a domain D ⇢ Cn ⇠= R2n , with
n � 2: the usual one, related to harmonic (or subharmonic) functions when D is
seen as subdomain of R2n , and the pluricomplex Green function (see, e.g., [10]),
related to plurisubharmonic functions.

The pluricomplex Green function originated with the work of Lempert [11,13],
Lelong [12], among others, and is the subject of many recent works, see for instance
[7, 20].

Let GD stand for the usualGreen function at a polew in D ⇢ Rm , withm � 3,
given by

GD(z, w) = sup
�
u(z) : u 2 SH�(D), u = | · �w|�m+2 + O(1)

 
.

Let gD stand for the pluricomplex Green function at a pole w in D ⇢ Cn , n � 2,
given by

gD(z, w) = sup
�
u(z) : u 2 PSH�(D), u = log | · �w| + O(1)

 
.
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Here SH�(D) and PSH�(D) stand for negative subharmonic, respectively plurisub-
harmonic, functions on D.

Note that for n = 1 the second extremal problem also gives the usual Green
functions for the Laplacian on R2.

The respective behavior of those two functions were compared by M. Carlehed
[2] and B.-Y. Chen [3]. In the present paper, we extend their results to a wider class
of domains, and give some improved estimates for various holomorphic invariants
such as the Kobayashi distance in that class of domains.

We would like to thank the referee for his very careful reading of our manu-
script and several useful suggestions.

1.2. Domains in Cn

In order to state the results, we need to define some geometric properties of a do-
main in Cn . From now on, we assume that n � 2. As usual, we say that @D, or D,
is Ck-smooth if D = {⇢ < 0}, where ⇢ is a defining function of class Ck on D such
that r⇢ does not vanish on @D. A C2-smooth domain is strictly pseudoconvex if
the complex Hessian of ⇢ restricted to the complex tangent space at every point of
@D is positive definite.

A domain D is C-convex if any non-empty intersection of D with a complex
line is connected and simply connected. If D is bounded and C1-smooth, this is
equivalent to being lineally convex, that is to say, for any z /2 D, there exists a
complex hyperplane H through z such that D \ H = ;. For more on those two
notions, see, e.g., [1, 8].

A domain D is C-convexifiable if D is biholomorphic to a C-convex domain.
A domain D is locally (C-)convexifiable, if for any a 2 @D, there exist a

neighborhoodU of a and a holomorphic embedding8 : U ! Cn such that8(D\
U) is a (C-)convex, domain.

It is well-known that any strictly pseudoconvex domain is locally convexifi-
able.

The type of a smooth boundary point a of a domain D is the supremum over
the orders of contact of the one-dimensional analytic varieties through a with @D
(possibly 1). The type of a smooth domain D is defined as the supremum over
the types of all boundary points of D. For instance, the bounded domains of type 2
are exactly the strictly pseudoconvex domains. Also, the types of the pseudoconvex
domains are even numbers or 1. If the domain is C-convex, the type does not
change considering complex lines instead of varieties (see, e.g., [18, Proposition 6]).

1.3. Notations and auxiliary quantities

We will systematically use the following notations: A & B means that there is a
constant C > 0 such that A � CB; A ⇣ B means that A & B and B & A; and
A ⇠ B means that A/B ! 1. What the constants depend on, and in which sense
the limit is taken, will be made clear from context.
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The Green functions we consider take negative values and, when @D is smooth
enough, tend to 0 at the boundary. A typical negative plurisubharmonic function is
log | f |, where f is a holomorphic function bounded by 1; so it will be convenient to
consider egD . Consideration of the Poincaré distance p in the unit discD, p(w, z) =

tanh�1
�
�
� z�w
1�z̄w

�
�
�, makes it expedient to consider tanh�1 egD .

We give a unified convention.
Definition 1.1. Given any continuous function f : D ! (�1, 0), we write

f ⇤ := e f , so f ⇤ : D ! (0, 1), (1.1)

f̃ := tanh�1 f ⇤ = tanh�1 e f =
1
2
log

1+ e f

1� e f
, so f̃ : D ! (0,1). (1.2)

Conversely, f ⇤ = tanh f̃ = e2 f̃ �1
e2 f̃ +1

, and f = log f ⇤.
Elementary calculations give:

Lemma 1.2.

(i) Suppose that f ! 0�, or equivalently f ⇤ ! 1�, or equivalently f̃ ! 1.
Then 1 � f ⇤ ⇠ � f, f̃ ⇠ �1

2 log(� f ), and f ⇠ �2e�2 f̃ ; in particular if
f̃ = log t , then f ⇠ � 2

t2 .
(ii) Suppose that f ! �1, or equivalently f ⇤ ! 0+, or equivalently f̃ ! 0+.

Then f̃ ⇠ f ⇤ and f = log f̃ + O(1).

1.4. The ratio of the Green functions

Our first main result is the extension to the case of locally C-convexifiable domains
of a theorem proved in the case of locally convexifiable domains [3, Theorem 1].

Theorem 1.3. Let D ⇢ Cn be a bounded, smooth, locally C-convexifiable domain
of type 2m. Then there exists C > 0 such that

gD(z, w)

GD(z, w)
 C|z � w|2(n�2m), z, w 2 D, z 6= w.

For z 2 D, let �D(z) := min {|z � w| : w /2 D} (the distance to the boundary). Any
bounded, C1,1-smooth domain D is of positive reach, that is to say, there exists
�0 > 0 such that for any z 2 D with �D(z) < �0, there exists a unique point
⇡(z) 2 @D such that |z � ⇡(z)| = �D(z).

Recall the following estimate of GD,when D is bounded, C1,1-smooth domain
in Rm, m � 3 (see, e.g., [21, (7)]):

c1GD(z, w)  �min
⇢

1
|z � w|m�2 ,

�D(z)�D(w)

|z � w|m

�
 c2GD(z, w), (1.3)

where c1, c2 > 0 are constants, and z, w 2 D.
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The proof of Theorem 1.3 will rely on the second inequality in (1.3), and the
following precise estimate of the pluricomplex Green function gD which is sensitive
in both extreme cases: gD ! 0 and gD ! �1.

Theorem 1.4. Let D be as in Theorem 1.3. Then there exists C > 0 such that for
any z, w 2 D,

g̃D(z, w) � m log
✓
1+ C

|z � w|

�D(z)1/2m

◆✓
1+ C

|z � w|

�D(w)1/2m

◆
. (1.4)

In the more general case of a bounded, smooth, pseudoconvex domain of finite type,
a weaker estimate is proved by G. Herbort [7, Theorem 1.1].

The proof of Theorem 1.4 will be based on the respective local estimates, cov-
ering the cases where either the pole or the argument tends to a boundary point.

Theorem 1.5. Let D ⇢ Cn be a bounded domain, which is smooth and locally C-
convexifiable near point a 2 @D of type 2m. Then there exist a neighborhood U of
a and C > 0 such that

g̃D(z, w) � m log
✓
1+ C

|z � w|

�D(w)1/2m

◆
, z 2 D, w 2 D \U, (1.5)

g̃D(z, w) � m log
✓
1+ C

|z � w|

�D(z)1/2m

◆
, z 2 D \U, w 2 D. (1.6)

In the particular case when D is locally convexifiable, similar but weaker estimates
than those in the above two theorems are contained in [3].

1.5. Other holomorphic invariants

We will use other holomorphically contractive functions, with notation sometimes
slightly different from those of the standard reference [10], to stay in line with
the convention from Definition 1.1. In particular, note that the Kobayashi pseudo-
distance in a domain D will be called k̃D , while kD := log tanh k̃D 2 (�1, 0).
This is because our main focus is on (negative-valued) Green functions.

Let D ⇢ Cn , and z, w 2 D.
The Lempert function is given by

l̃D(z, w) := inf
�
p(⇣,!) : ⇣,! 2 D, 9' 2 O(D, D) : '(⇣ ) = z,'(!) = w

 
.

With the notation convention from Definition 1.1, this means that

l⇤D(z, w) := inf
⇢��
�
�
⇣ � !

1� ⇣̄!

�
�
�
� : ⇣,! 2 D, 9' 2 O(D, D) : '(⇣ ) = z,'(!) = w

�
,

and that lD(z, w) = log l⇤D(z, w) 2 (�1, 0), a quantity that is easier to compare
with the Green function.
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The Kobayashi-Royden (pseudo)metric applied to a vector X 2 Cn is given by

D(z; X) := inf
�
� > 0 : 9' 2 O(D, D) : '(0) = z, �'0(0) = X

 
.

The Kobayashi (pseudo)distance is the largest pseudodistance dominated by the
Lempert function. It is also given by

k̃D(z, w) := inf
�

Z 1

0
D(� (t); � 0(t))dt,

where the infimum is taken over all C1-smooth curves � : [0, 1] ! D with � (0) =

z and � (1) = w. Then kD(z, w) = log tanh
⇣
k̃D(z, w)

⌘
.

We have that
kD  lD, gD  lD. (1.7)

Lempert’s celebrated theorem [13] implies that in the case of a convex domain,
those are all equalities. This extends to the case of bounded, C2-smooth, C-convex
domains [9]. No inequality holds in general between k̃D and g̃D; and while k̃D is
symmetric in its arguments, g̃D is not always so, but we will see that under our
hypotheses, they exhibit similar behavior.

1.6. Lower estimates of the Kobayashi distance

Theorem 1.6. Let D be as in Theorem 1.3. Then there exists C > 0 such that for
any z, w 2 D,

k̃D(z, w) � m log
✓
1+ C

|z � w|

�D(z)1/2m

◆✓
1+ C

|z � w|

�D(w)1/2m

◆
. (1.8)

This will follow from the corresponding local sharp result.

Theorem 1.7. Let D⇢Cn be a domain, which is smooth and locallyC-convexifiable
near a point a2@D of type 2m. Then there exist a neighborhoodU of a and C > 0
such that for any z 2 D \U , w 2 D,

k̃D(z, w) � m log
✓
1+ C

|z � w|

�D(z)1/2m

◆
. (1.9)

1.7. Upper bounds for the Lempert function and sharpness of the results

The next propositions (inspired by the examples in [2, page 404] and [3, page 35])
and (1.7) show that the exponents in all the above theorems are optimal.

Proposition 1.8. Let D ⇢ Cn be a domain, which is smooth and C-convex near a
point a 2 @D of type 2m. Denote by na the inner normal half-line to @D at a. If
a is of type 2m, there exist a unit vector X 2 TC

a @D and C > 0 such that for all
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z 2 na , close enough to a, and all w 2 D such that z�w
|z�w| = X and C |z�w|

�D(z)1/2m < 1,
then

l⇤D(z, w)  C
|z � w|

�D(z)1/2m
.

If a is of infinite type, the last inequality holds for any m 2 N with C = Cm .

We then have the following result characterizing the type of a point.

Corollary 1.9. Let D ⇢ Cn be a domain, which is smooth and locally
C-convexifiable near a point a 2 @D. Then any of the inequalities (1.5), (1.6)
and (1.9) holds if and only if a is of type at most 2m.

The next results are related to the converse of Theorem 1.4.

Proposition 1.10. Let D ⇢ Cn be a bounded, smooth, locally C-convexifiable do-
main. If D is of type 2m, there exist sequences (z j ), (w j ) ⇢ D and c > 0 such that
|z j � w j | ! 0 and

gD(z j , w j )

GD(z j , w j )
� c|z j � w j |2(n�2m), j 2 N.

If D is of infinite type, the last inequality holds for any m 2 N with (z j ), (w j ) and
c depending on m.

Theorem 1.3 and Proposition 1.10 imply the following characterizations of the
type of a domain.

Corollary 1.11. Let D ⇢ Cn be a bounded, smooth, locally C-convexifiable do-
main. Then:

(i) there exists C > 0 such that

gD(z, w)

GD(z, w)
 C|z � w|2(n�2m), z, w 2 D, z 6= w.

If and only if D is of type at most 2m;
(ii) the ratio gD/GD is bounded from above if and only if D is of type at most n.

If m = 1, the condition about C-convexity is superfluous.

Proposition 1.12. Let D ⇢ Cn be a bounded, C2-smooth domain. Then there exists
C > 0 such that

gD(z, w)

GD(z, w)
 C|z � w|2n�4, z, w 2 D, z 6= w, (1.10)

if and only if D is strictly pseudoconvex.
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In dimension 2, this proposition says that the ratio gD/GD is bounded from
above if only if D is strictly pseudoconvex. By Corollary 1.11, this is not true if
n � 4.

Proposition 1.13. Let D ⇢ C3 be a bounded, C3-smooth domain. Then the ratio
gD/GD is bounded from above if only if D is strictly pseudoconvex.

It is natural to ask which upper bounds can be given for the functions gD and
kD , and indeed, many results for kD have been given in that direction, see for in-
stance [14]. To get estimates from above, using (1.7), it will be enough to bound
l̃D(z, w).

Proposition 1.14. Let D ⇢ Cn be a bounded, C2-smooth, locally C-convexifiable
domain. Then there exists C > 0 such that

l̃D(z, w)  log
✓
1+ C

|z � w|

�D(z)1/2�D(w)1/2

◆
, z, w 2 D. (1.11)

This proposition shows that the factor m in Theorems 1.4–1.7 is sharp. On the other
hand, these theorems show that the exponent 1/2 in Proposition 1.14 is optimal.

Proposition 1.14, (1.3), (1.7), and Lemma 1.2 also imply the following:

Corollary 1.15. Let D be as in Proposition 1.14. Then there exists C > 0 such
that

gD(z, w)

GD(z, w)
� C|z � w|2n�2, z, w 2 D, z 6= w. (1.12)

We already know from [16, Theorem 2] that if D is a bounded, C1+"-smooth domain
in Cn, then a weaker estimate than (1.11) holds:

l̃D(z, w)  log
C

�D(z)1/2�D(w)1/2
. (1.13)

It would be interesting to know if (1.11) and, hence, (1.12) remain true in this
general case.

The rest of the paper is organized as follows: Section 2 contains the proofs of
Propositions 1.8, 1.10, 1.12, 1.13, and 1.14, Section 3 – the proofs of Theorems
1.6 and 1.7, Section 4 – the proof of Theorem 1.5, and Section 5 – the proofs of
Theorem 1.3 and 1.4.

ACKNOWLEDGEMENTS. This paper was started while the first-named author was
an invited professor at the Paul Sabatier University, Toulouse in May-June 2016.
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2. Proofs of Propositions 1.8, 1.10, 1.12, 1.13, and 1.14

Proof of Proposition 1.8. By [18, Propositions 4 and 6], if a is of type at least 2m,
there exist a neighborhood U of a, a unit vector X 2 TC

a @D, and C > 0 such
that the distance �D(z; X) from z 2 D \ U \ na to @D in direction X verifies
�D(z; X) � C�D(z)1/2m . If a is of infinite type, the last holds for any m 2 N with
C = Cm . Let Dz,X := {z + t X : |t | < �D(z, X)}. Let w � z = �X . It remains to
observe that if r > 1 and r |�| < �D(z; X), then, recalling that 0 < l⇤D < 1 with the
notations from Definition 1.1,

l⇤D(z, z + �X)  l⇤Dz,X (z, z + �X) =
|�|

�D(z; X)

1
r

< 1.

Proof of Proposition 1.10. Let D be of type 2m.Choose a point a 2 @D of type 2m.
There exist a neighborhood U0 of a and a holomorphic embedding 8 : U0 ! Cn

such that� := 8(D\U0) is aC-convex domain. Set u0 = 8(u). Since |z0 �w0| ⇣
|z � w| and ��(u0) ⇣ �D(u) for u, z, w 2 U1 b U , and l�(z0, w0) � lD(z, w), we
may assume that D is C-convex.

Let X be as in Proposition 1.8. Using, e.g., a smooth defining function of D
near a, one may find a neighborhoodU of a and C > 1 such that if z 2 D\U \na
andw = z+�X, C|�| < �D(z)1/2m, then �D(z) = |z�a| < C�D(w). ChangingU
and C (if necessary), we may apply Proposition 1.8 to find sequences (z j ), (w j ) !
a such that �D(z j ) ⇣ �D(w j ) ⇣ |z j � w j |2m and l̃D(z j , w j ) . 1.

This and the inequalities (1.3) and (1.7) imply the desired result in the finite
type case.

Let D be of infinite type. Since D is locally C-convexifiable, there exists a
point a 2 @D of infinite type. Then, for any m 2 N, we may proceed as above.

Proof of Proposition 1.12. Strict pseudoconvexity implies local convexifiability
and, hence, (1.10) by Theorem 1.3.

To prove the converse, we will proceed similarly to the proof of Proposi-
tion 1.10.

Assume that the ratio gD/GD is bounded from above, and a 2 @D is not a
strictly pseudoconvex point.

After an affine change of coordinates, we may suppose that a = 0 and that D
is defined near 0 by

Re
⇣
z1 + c1z22

⌘
+ c2|z2|2 + o

⇣
| Im(z1)| + |z2|2 + |z00|

⌘
< 0

where c2  0.
It follows by (1.3) that gD(z, w0) ! 0 as z ! @D and hence D is a pseudo-

convex domain. This implies that c2 = 0.
Let 8(z) = (z1 + c1z22, z2, z

00). Then G := 8(D) is given near 0 by

Re z1 + o
⇣
| Im(z1)| + |z2|2 + |z00|

⌘
< 0.
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Now it is easy to find sequences R� ⇥ {00} � (z j ) ! 0 and (� j ) ! 1 such
that G 3 w j = z j + � j�G(z j )1/2e2, and 2|z j � w j | < �G(z j ; e2), where e2 :=
(0, 1, 0, . . . , 0).

Since the order of contact of @G andCe2 at 0 is at least 2, |�G(z j )��G(w j )| =
O(|z j � w j |2), so

�G(z j )�G(w j )

|z j � w j |4
.

�G(z j )2

|z j � w j |4
+

�G(z j )
|z j � w j |2

! 0 and l⇤G(z j , w j ) <
1
2
.

If z̃ j = 8�1(z j ) and w̃ j = 8�1(w j ), then the inequalities gD  lD  lD\U and
(1.3) easily lead to the contradiction

gD(z̃ j , w̃ j )

GD(z̃ j , w̃ j )
|z̃ j � w̃ j |4�2n ! 1.

Proof of Proposition 1.13. As above, strict pseudoconvexity implies that

gD(z, w)

GD(z, w)
. |z � w|2 . 1, for z, w 2 D, z 6= w.

For the converse, assume that the ratio gD/GD is bounded from above, and a 2 @D
is not a strictly pseudoconvex point.

After biholomorphic changes of variables similar to that in the proof of Propo-
sition 1.12, we may suppose that D is defined near a = 0 by

Re
⇣
z1 + c3z32 + c4z22z2

⌘
+ o

⇣
| Im(z1)| + |z2|3 + |z3|

⌘
< 0.

Again by pseudoconvexity, c4 = 0. Let 9(z) = (z1 + c3z32, z2, z3) and Then E :=
9(D) is defined near 0 by

Re(z1) + o
⇣
| Im(z1)| + |z2|3 + |z3|

⌘
< 0.

We may proceed as at the end of the proof of Proposition 1.12 to get a contradic-
tion, finding sequences (z j ), (w j ) ! 0 and (� j ) ! 1 such that w j = z j +
� j�E (z j )1/3e2, l⇤E (z j , w j ) < 1

2 , and since the order of contact of @E at 0 and Ce2
is at least 3, |�E (z j ) � �E (w j )| = O(|z j � w j |3), so

�E (z j )�E (w j )

|z j � w j |6
! 0 and

gD(z j , w j )

GD(z j , w j )
! 1.
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Proof of Proposition 1.14. By (1.13), for a given "0 > 0, (1.11) follows for |z �
w| � "0. If min (�D(w), �D(z)) � "0, (1.11) also follows, trivially. So we may
assume, by symmetry of the function, that �D(z)  �D(w)  2"0.

For any a 2 @D, we may choose a bounded neighborhood U0 of a such that
D \ U0 is C-convexifiable and C2-smooth (see [17, Proposition 3.3]), and that the
projection ⇡ to @D is well defined on U0. Choose neighborhoods of a, U2 b U1,
such that D\U1 b D\U0, and "1 > 0 such that z 2 D\U1 and �D(z)  "1 imply
�D\U0(z) = �D(z). We can cover @D by a finite collection of the U2, and choose
"0 > 0 so that for any z, w such that �D(z)  �D(w)  2"0 and |z � w|  "0, then
z 2 U2, w 2 U1 (for some a 2 @D) and �D\U0(z) = �D(z), �D\U0(w) = �D(w).

Given z, w as above, l̃D(z, w)  l̃D\U0(z, w).
Then, by Lempert’s theorem, l̃D\U0 = k̃D\U0 , and by [14, Corollary 8],

k̃D\U0(z, w)  log
✓
1+ C

|z � w|

�D\U0(z)1/2�D\U0(w)1/2

◆

= log
✓
1+ C

|z � w|

�D(z)1/2�D(w)1/2

◆
.

3. Proofs of Theorems 1.6 and 1.7

Proof of Theorem 1.6. Under the hypotheses of Theorem 1.6, Theorem 1.7 and a
compactness argument show that there is �0 > 0 such that (1.9) holds uniformly for
z, w 2 D if �D(z) < 2�0. By symmetry, it is enough to consider three cases.

Case 1. �D(z) � �0, �D(w) � �0.
Then (1.8) follows from the inequality k̃D(z, w) & |z � w|, valid on any

bounded domain.

Case 2. �D(z) < �0, �D(w) � 2�0.
Then |z�w|

�D(z)1/2m & 1 & |z�w|
�D(w)1/2m

and (1.8) follows by (1.9) (with bigger C).

Case 3. �D(z) < �0, �D(w) < 2�0.
For any " > 0, choose a curve � whose Kobayashi-Royden length is bounded

by (1+ ")k̃D(z, w). Choose a point u 2 � such that |z� u| = |u� w| � 1
2 |z� w|.

Then the definition of the Kobayashi distance and (1.9) applied to (z, u) and (w, u)
imply that

(1+ ")k̃D(z, w) � k̃D(z, u) + k̃D(u, w)

� m log
✓
1+ C

|z � w|

2�D(z)1/2m

◆
+ m log

✓
1+ C

|z � w|

2�D(w)1/2m

◆
,

which, replacing C by C/2, finishes the proof.
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Proof of Theorem 1.7. There exist a neighborhood U0 of a and a holomorphic em-
bedding 8 : U0 ! Cn such that � := 8(D \ U0) is a C-convex domain. Let U1
and U2 be neighborhoods of a such that U1 b U2 b U0. Let z 2 D \U1.

Case 1. |z � w|2m  �D(z).
Since log(1+ x)  x, it is enough to prove that

k̃D(z, w) &
|z � w|

�D(z)1/2m
. (3.1)

Let k̃D(D \ U1, D \ U2) =: C1 > 0. We may assume that k̃D(z, w) < C1. Then
a curve connecting z and w of Kobayashi-Royden length < C1 must lie inside U2.
Since

D(u, X) & D\U0(u, X), u 2 U2, X 2 Cn

(see, e.g., [10, Proposition 7.2.9]), then k̃D(z, w) & k̃D\U0(z, w).
From now on, we estimate k̃D\U0(z, w). Call L the complex line through z0 :=

8(z) and w0 := 8(w). Let z0 2 L \ @� be such that |z0 � z0| = �L\�(z0). Let P
be the linear projection fromCn to L , parallel to the complex tangent hyperplane to
@� at z0. Then P(�) is a simply connected domain (see, e.g., [1, Theorem 2.3.6]),
and z0 2 @P(�). Therefore,

k̃D\U0(z, w) = k̃�(z0, w0) � k̃P(�)(z0, w0)

�
1
4
log

✓
1+

|z0 � w0|

�P(�)(z0)

◆
=
1
4
log

✓
1+

|z0 � w0|

�L\�(z0)

◆
,

(for the second inequality see, e.g., [19, Proposition 3(ii)]). By [18, Propositions 4
and 6], �L\�(z0) . ��(z0)1/2m ; since 8 is a biholomorphism in a neighborhood of
D \U2, we have |z0 � w0| ⇣ |z � w| and ��(z0) = �D\U0(z), so we finally obtain
(3.1) (the implicit constants are uniform over D by a compactness argument).
Case 2. |z � w|2m � �D(z).

We may assume that D \U0 is C2-smooth, and that the projection ⇡ to @D is
well defined on U0.

We will follow the proof of [6, Theorem 2.3]. We need to bound from below
the Kobayashi-Royden length of any path � such that � (0) = z and � (1) = w. If
� ([0, 1]) 6⇢ U1 (in particular if w /2 U1), let t⇤ := min{t 2 [0, 1] : � (t) /2 U1}. It
will be enough to bound below the length of � [0, t⇤], so we can reduce ourselves
to the case where w 2 U1.

Let 8 be a holomorphic embedding such that 8(D \U0) =: � is C-convex.
Applying a result of K. Diederich and J. E. Fornaess about supporting functions

[5] to �, reducing U1 as needed, we can find neighborhoods of a, U1 b U2 b U0
such that for any a0 2 U1, there exist S8(a0) holomorphic on Cn , and C,C 0 > 0
such that

� C 0|⇠ �8(a0)|  Re S8(a0)(⇠)  �C|⇠ �8(a0)|2m,

⇠ 2 8(U2), and S8(a0)(8(a0)) = 0.
(3.2)
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We define a function Pz holomorphic on U0 by

Pz(⇣ ) := eS8(⇡(z))(8(⇣ )). (3.3)

Since 8 is a uniformly bilipschitz diffeormorphism on U2 we have, for ⇣ 2 U2,

|1� Pz(⇣ )| . |⇣ � ⇡(z)| and 1� |Pz(⇣ )| & |⇣ � ⇡(z)|2m . (3.4)

This means in particular that [6, Lemma 2.2] can be applied, and it follows that
by [6, Theorem 2.1] that there is C1 > 0 such that for z 2 D \U1 and X 2 Cn ,

D\U0(z; X) � D(z; X) � (1� C1�D(z))D\U0(z; X).

Therefore
Z 1

0
D(� (t), � 0(t))dt �

Z 1

0

�
1� C1�D(� (t))

�
D\U0

�
� (t), � 0(t)

�
dt. (3.5)

Let � := Pz � � . Then

D\U0
�
� (t), � 0(t)

�
� D

�
�(t), �0(t)

�
�

|�0(t)|
2(1� |�(t))|

.

On the other hand, by (3.4),

1� C1�D(� (t)) � 1� C1|� (t) � ⇡(z)|

� 1� C 0
1 (1� |Pz(� (t))|)1/2m = 1� C 0

1 (1� |�(t)|)1/2m .

Collecting the estimates, the right-hand side in (3.5) can be bounded below by

Z 1

0

1� C 0
1 (1� |�(t)|)1/2m

1� |�(t)|
|�0(t)|dt �

Z 1

0

1
1� |�(t)|

d
dt

|�(t)|dt + O(1)

= log
1� |�(1)|
1� |�(0)|

+ O(1)

= log
1� |Pz(w)|

1� |Pz(z)|
+ O(1).

By (3.4), 1� |Pz(z)| . |z � ⇡(z)| = �D(z), while

1� |Pz(w)| & |w � ⇡(z)|2m � (|w � z| � |z � ⇡(z)|)2m .

Since �D(z)  (C�1
0 |w � z|)2m < 1

2 |w � z| for C0 large enough, we have 1 �
|Pz(w)| & |w � z|2m and the estimate we wanted is proved.
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4. Proof of Theorem 1.5

Proof of Theorem 1.5, (1.5). Choose a bounded neighborhood U0 of a such that
D \U0 is C-convexifiable and C2-smooth.
Case 1. |z � w|  �D(w)1/2m .

We can choose a neighborhood U b U0 such that for any w 2 D \ U , then
z 2 D \U0 and �D\U0(w) = �D(w).

By Lemma 1.2(ii), we have to prove that

gD(z, w) � log
|z � w|

�D(w)1/2m
+ O(1).

We first reduce ourselves to the study of gD\U0 by a standard argument.

Lemma 4.1. Shrinking U (if necessary), there is C > 0 such that

gD(z, w) � gD\U0(z, w) � C, z 2 D \U0, w 2 D \U. (4.1)

Accepting this lemma, we apply Lempert’s theorem to D \ U0 and obtain
gD(z, w) � kD\U0(z, w) � Ca . By Theorem 1.7, k̃D\U0(z, w) satisfies (1.5) (by
shrinking U once more if needed), therefore

kD\U0(z, w) � log
|z � w|

�D(w)1/2m
+ O(1),

and we are done.

Proof of Lemma 4.1. The proof is similar to that of [4, Theorem 1].
Let  (z) = log |z�a|

diam D
and U1 b U0 ( D be a neighborhood of a such that

and infD\U0  > c := 1+ supD\@U1  . Fix w 2 D \U1 and set

d(w) = inf
z2D\@U1

gD\U0(z, w), u(z, w) = (c �  (z))d(w), z 2 D.

Since u(z, w)  gD\U0(z, w) for z 2 D \ @U1, and u(z, w) > 0 > gD\U0(z, w)
for z 2 N \ (D \U0), whereN is a neighborhood of @U0, the function

v(z, w) =

8
><

>:

gD\U0(z, w) w 2 D \U1
max{gD\U0(z, w), u(z, w)} w 2 D \U0 \U1
u(z, w) w 2 D \U0

is a plurisubharmonic function in z with logarithmic pole at w. Also v(z, w) <
cd(w), so gD(z, w) � v(z, w) � cd(w). Now (4.1) follows by taking U b U1 and
C := c infw2D\U d(w).
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Case 2. |z � w| � �D(w)1/2m .
By Lemma 1.2(i), we have to prove that

gD(z, w) & �
�D(w)

|z � w|2m
. (4.2)

By Theorem 1.7 and Lempert’s theorem,

gD\U0(z, w) & �
�D(w)

|z � w|2m
, z 2 D \U0, w 2 D \U. (4.3)

We will follow part of the proof of [3, Lemma 3]. The above inequality is analogous
to [3, page 29, inequality (5)].

Denote by B(w, r) the ball with center w and radius r. Set r0 := 1
4dist (U, D \

U0), � := min{r0, |z � w|}, so that

D \ B(w, �) ⇢ D \ B(w, 2r0) ⇢ D \U0.

Note that
�  |z � w| 

diam D
r0

�. (4.4)

Finally, let
b := � inf

�
gD\U0(⇣, w) : |⇣ � w| = �, ⇣ 2 D

 
.

Because of (4.3) and (4.4),

b .
�D(w)

�2m
.

�D(w)

|z � w|2m
. (4.5)

Let

v(⇣ ) := b
log |⇣�w|

2r0

log 2r0�
.

By construction, v(⇣ ) = 0 > gD\U0(⇣, w) when ⇣ 2 D \ @B(w, 2r0), and v(⇣ ) =
�b  gD\U0(⇣, w) when ⇣ 2 D \ @B(w, �).

Then we construct a plurisubharmonic function u with logarithmic singularity
at w by setting

u(⇣ ) :=

8
><

>:

gD\U0(⇣, w), ⇣ 2 B(w, �)

max
�
v(⇣ ), gD\U0(⇣, w)

 
, ⇣ 2 B(w, 2r0) \ B(w, �)

v(⇣ ), ⇣ 2 D \ B(w, 2r0).

By definition of gD , gD � u � supD u. We have

sup
D
u  sup

D
v  b

log diam D
2r0

log 2r0�
 b

log diam D
2r0

log 2
.

�D(w)

|z � w|2m
,
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by (4.5). On the other hand, if � = |z � w|, then

u(z) = gD\U0(z, w) & �
�D(w)

|z � w|2m

by (4.3), while if � = r0 < |z � w|, then

u(z) � v(z) = b
log |z�w|

2r0
log 2

� �b.

Collecting the estimates, gD(z, w) & � �D(w)
|z�w|2m

.

Proof of Theorem 1.5, (1.6). We choose U1 small enough so that ⇡(z) is well de-
fined whenever z 2 U1.

Case 1. Suppose that z 2 U and |z � w| � �D(z)1/2m .
Shrinking U1, we may assume that |z � w| � 8�D(z).
We use the Diederich-Fornaess supporting functions [5] once again. We take

U1 b U2 b U0 as before. ReducingU1 if needed, for any a0 2 U1\@D, there exist
S8(a0) holomorphic on �, and C,C 0 > 0 such that (3.2) holds.

We set '̃z(⇣ ) := Re S8(⇡(z))(8(⇣ )) 2 PSH�(D\U0). Since8 is a uniformly
bilipschitz diffeormorphism on U2 we have, for ⇣ 2 U2,

�C 0|⇣ � a0|  '̃z(⇣ )  �C|⇣ � a0|2m and '̃z(⇡(z)) = 0. (4.6)

We need to extend '̃z to a global plurisubharmonic function on D. We proceed as
in [3, page 31]. Let ⌘ := supz2U1 sup⇣2@U2 '̃z(⇣ ) < 0. We set 'z := max('̃z, ⌘/2)
and extend it by ⌘/2 on the whole of D. Then 'z 2 PSH�(D) and satisfies the
analogue of (4.6).

By the same argument as at the beginning of Case 2 of the proof of (1.5), the
inequality we have to prove is the following analogue of (4.2):

gD(z, w) & �
�D(z)

|z � w|2m
.

Lemma 4.2. Let w0 := w + w�z
|w�z| , B1 := B(w0, 1+ |w � z|/2), B2 := B(w0, 1+

3|w � z|/4). Then there is c0 > 0 so that for any w, there exists ⇢w 2 C1(Cn \
{w}, R�) with logarithmic singularity at w, supported on B2, such that

@@̄⇢w(⇣ ) � �
c0

|w � z|2
�B2\B1(⇣ )@@̄

⇣
|⇣ |2

⌘
.

In particular, ⇢w 2 PSH
�
B1 [ (Cn \ B2)

�
.

This lemma is proved in [3, page 31].
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We construct a function 8 with logarithmic pole at w by setting

8(⇣ ) :=
c1

|z � w|2m

⇣
'z(⇣ ) + c2|⇣ � ⇡(z)|2m

⌘
+ ⇢w(⇣ ).

By (4.6) and because D is bounded, we can choose c2 > 0 such that 8 < 0 on D.
We want to choose c1 > 0 so that 8 2 PSH(D). We only need to check the

case where ⇣ 2 B2 \ B1. Then

|⇣ � ⇡(z)| � |⇣ � z| � �D(z) �
1
4
|z � w| � �D(z) �

1
8
|z � w|.

By the estimate on @@̄⇢w from Lemma 4.2, the fact that 'z 2 PSH(D), and stan-
dard computations,

@@̄8(⇣ ) �

✓
c1

|z � w|2m
c2c3|⇣ � ⇡(z)|2m�2 �

c0
|w � z|2

◆
@@̄|⇣ |2

�
⇣c1c2c3
82m�2 � c0

⌘ 1
|w � z|2

@@̄|⇣ |2,

where c3 > 0 is a constant. So we can choose c1 > 0 to make this form positive.
With these choices, 8(⇣ )  gD(⇣, w).

Since ⇢w(z) = 0, using (3.2) again,

8(z) =
c1

|z � w|2m

⇣
'z(z) + c2�D(z)2m

⌘
� �c1C 0 �D(z)

|z � w|2m
.

Case 2. Suppose that z 2 B(a, r1) and |z � w|  �D(z)1/2m .
Then |w � a|  r1 + r1/2m1 =: r2. Reducing r1 if needed, we have B(a, r2) b

U0, where U0 is a bounded neighborhood of a such that D \U0 is C-convexifiable
and C2-smooth. This implies that, by Lempert’s theorem and (1.5),

g̃U0\D(z, w) = g̃U0\D(w, z) � m log
✓
1+ C

|z � w|

�D(z)1/2m

◆
.

Since |z�w|
�D(z)1/2m  1, by Lemma 1.2(ii), this is equivalent to

gU0\D(z, w) � log
|z � w|

�D(z)1/2m
+ O(1).

By Lemma 4.1, the same estimate holds for gD(z, w), and we are done for this
case.
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5. Proofs of Theorems 1.3 and 1.4

Proof of Theorem 1.3. Let

1D(z, w) :=
|z � w|2

�D(z)1/2m�D(w)1/2m
.

Using (1.3), it is enough to show that gD(z, w) & �1D(z, w)�2m .
Theorem 1.4 implies that

g̃D(z, w) � log
�
1+ C 01D(z, w)

�m
.

If 1D(z, w) � 1, then gD(z, w) & �1D(z, w) by Lemma 1.2(i).
If 1D(z, w)  1, then Lemma 1.2(ii) implies that

gD(z, w) � log1D(z, w) + O(1) & �1D(z, w)�2m .

Proof of Theorem 1.4. We follow an argument in [2], as adapted in [3, Proof of
Proposition 2].

The hypotheses of Theorem 1.5 are met for any a 2 @D. By a compactness
argument, this implies that there is K b D such that for z 2 D \ K , w 2 D,

g̃D(z, w) � m log
✓
1+ C

|z � w|

�D(z)1/2m

◆
. (5.1)

But when z 2 K , the right-hand side of (5.1) is bounded above by C 0mC|z � w|,
while g̃D(z, w) � C 00|z� w|, so C can be chosen so that (5.1) holds for any z, w 2
D. In the same way, changing C again if needed, we have for any z, w 2 D,

g̃D(z, w) � m log
✓
1+ C

|z � w|

�D(w)1/2m

◆
. (5.2)

If |z � w|2m . max{�D(z), �D(w)}, then (1.4) follows from (5.1) and (5.2) by
modifying the constant C . Otherwise, by Lemma 1.2(i), (2) is equivalent to

gD(z, w) & �
�D(z)�D(w)

|z � w|4m
.

We may assume that 4max{�D(z), �D(w)}  |z � w|. If 2|⇣ � ⇡(z)| = |z � w|,
then

|⇣ � w| � |z � w| � |⇣ � ⇡(z)| � |z � ⇡(z)| �
|z � w|

4
.

Therefore, by (5.2), for those values of ⇣ , gD(⇣, w) & � �D(w)
|z�w|2m

. For those same ⇣ ,
the plurisubharmonic peak function 'z from the proof of Theorem 1.5, (1.6), Case
1, verifies

'z(⇣ )  �C|⇣ � ⇡(z)|2m = �C2�2m |z � w|2m,
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so,
gD(⇣, w) & �

�D(w)

|z � w|4m
'z(⇣ ), ⇣ 2 D \ @B(⇡(z), |z � w|/2).

This inequality is trivially true on @D, where gD(⇣, w) = 0, and since gD(·, w) is a
maximal plurisubharmonic function on D \ {w}, it has to hold on D \ B(⇡(z), |z�
w|/2), in particular at the point z, so

gD(z, w) & �
�D(w)

|z � w|4m
'z(z) & �

�D(w)�D(z)
|z � w|4m

.
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[9] D. JACQUET, C-convex domains with C2 boundary, Complex Var. Elliptic Equ. 51 (2006),

303–312.
[10] M. JARNICKI and P. PFLUG, “Invariant Distances and Metrics in Complex Analysis”, de

Gruyter Exp. Math. 9, de Gruyter, Berlin, New York, 1993.
[11] M. KLIMEK, Extremal plurisubharmonic functions and invariant pseudodistances, Bull.

Soc. Math. France 13 (1985), 123–142.
[12] P. LELONG, Fonction de Green pluricomplexe et lemmes de Schwarz dans les espaces de

Banach, J. Math. Pures Appl. 68 (1989), 319–347.
[13] L. LEMPERT, La métrique de Kobayashi et la représentation des domaines sur la boule,

Bull. Soc. Math. France 109 (1981), 427–474.
[14] N. NIKOLOV and L. ANDREEV, Estimates of the Kobayashi and quasi-hyperbolic dis-

tances, Ann. Mat. Pura Appl. 196 (2017), 43–50.
[15] N. NIKOLOV and P. PFLUG, On the derivatives of the Lempert functions, Ann. Mat. Pura

Appl. 187 (2008), 547–553.
[16] N. NIKOLOV, P. PFLUG and P. J. THOMAS, Upper bound for the Lempert function on

smooth domains, Math. Z. 266 (2010), 425–430.
[17] N. NIKOLOV, P. PFLUG and P. J. THOMAS, On different extremal bases for C-convex do-

mains, Proc. Amer. Math. Soc. 141 (2013), 3223–3230.
[18] N. NIKOLOV, P. PFLUG and W. ZWONEK, Estimates for invariant metrics on C-convex

domains, Trans. Amer. Math. Soc. 363 (2011), 6245–6256.
[19] N. NIKOLOV and M. TRYBU LA, The Kobayashi balls of (C-)convex domains, Monatsh.

Math. 177 (2015), 627–635.



COMPARISON OF THE REAL AND THE COMPLEX GREEN FUNCTIONS 1143

[20] A. RASHKOVSKII and P. J. THOMAS, Powers of ideals and convergence of Green functions
with colliding poles, Int. Math. Res. Not. IMRN 2014 (2014), 1253–1272.

[21] G. SWEERS, Positivity for a strongly coupled elliptic system by Green function estimates, J.
Geom. Anal. 4 (1994), 121–142.

Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Acad. G. Bonchev 8
1113 Sofia, Bulgaria
and
Faculty of Information Sciences
State University of Library Studies
and Information Technologies
Shipchenski prohod 69A
1574 Sofia, Bulgaria
nik@math.bas.bg
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