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Gevrey regularity and analyticity for Camassa-Holm type systems

WEI LUO AND ZHAOYANG YIN

Abstract. In this paper we mainly investigate the Cauchy problem of Camassa-
Holm type systems. By constructing a new auxiliary function, we present a gen-
eralized Ovsyannikov theorem. By using this theorem and the basic properties of
Sobolev-Gevrey spaces, we prove the Gevrey regularity and analyticity of these
systems. Moreover, we obtain a lower bound of the lifespan and the continuity of
the data-to-solution map.

Mathematics Subject Classification (2010): 35Q53 (primary); 35B30, 35B44,
35C07, 35G25 (secondary).

1. Introduction

In this paper we mainly consider the Cauchy problem of Camassa-Holm type sys-
tems which can be rewritten in the following abstract form:

⇢ du
dt = F(t, u(t))
u|t=0 = u0.

(1.1)

In the following, we will prove the well-posedness of (1.1) in Sobolev-Gevrey
spaces under some suitable conditions on the function F . The most important and
famous equation in (1.1) is the Camassa-Holm equation (CH):

(
mt + 2mxu + mux = 0, m = u � uxx
m|t=0 = m0,

(CH)

or equivalently
(
ut = �u@x � @x (1� @xx )

�1
h
u2 + 1

2 (ux )
2
i

u|t=0 = u0.
(CH)
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The Camassa-Holm equation was derived as a model for shallow water waves [6,
17]. It has been investigated extensively because of its great physical significance
in the past two decades. The CH equation has a bi-Hamiltonian structure [8, 24]
and is completely integrable [6, 9]. The solitary wave solutions of the CH equation
were considered in [6,7], where the authors showed that the CH equation possesses
peakon solutions of the form Ce�|x�Ct |. It is worth mentioning that the peakons
are solitons and their shape is alike that of the travelling water waves of greatest
height, arising as solutions to the free-boundary problem for incompressible Euler
equations over a flat bed (these being the governing equations for water waves), cf.
the discussions in [11, 15, 16, 47]. Constantin and Strauss verified that the peakon
solutions of the CH equation are orbitally stable in [19].

The local well-posedness for the CH equation was studied in [12, 13, 21, 42].
Concretely, for initial profile u0 2 Hs(R) with s > 3

2 , it was shown in [12, 13, 42]
that the CH equation has a unique solution in C([0, T ); Hs(R)). Moveover, the
local well-posedness for the CH equation in Besov spaces C([0, T ); Bsp,r (R)) with
s > max(32 , 1 + 1

p ) was proved in [21]. The global existence of strong solutions
was established in [10, 12, 13] under some sign conditions and it was shown in
[10, 12–14] that the solutions will blow up in finite time when the slope of initial
data was bounded by a negative quantity. The global weak solutions for the CH
equation were studied in [18] and [48]. The global conservative and dissipative
solutions of CH equation were presented in [4] and [5], respectively. The analyticity
for the solutions of CH equation were investigated in [3] and [32].

A natural idea is to extend such study to the multi-component generalized sys-
tems. One of the most popular generalized systems is the following integrable two-
component Camassa-Holm shallow water system [20]:

8
><

>:

mt + umx + 2uxm + k⇢⇢x = 0, m = u � uxx
⇢t + (u⇢)x = 0
m|t=0 = m0, ⇢|t=0 = ⇢0,

(2CH)

or equivalently

8
>><

>>:

ut = �u@x � @x (1� @xx )
�1

h
u2 + 1

2 (ux )
2 + k

2⇢
2
i

⇢t = �(u⇢)x

u|t=0 = u0, ⇢|t=0 = ⇢0,

(2CH)

where k = ±1. Local well-posedness for (2CH) with the initial data in Sobolev
spaces and in Besov spaces was established in [20,22,30]. The blow-up phenomena
and global existence of strong solutions to (2CH) in Sobolev spaces were obtained
in [22, 25, 30]. The existence of global weak solutions for (2CH) with k = 1 was
investigated in [27].
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Another one is the modified two-component Camassa-Holm system (M2CH) [31]:

8
><

>:

mt + umx + 2uxm + k⇢⇢x = 0, m = u � uxx
⇢t + (u⇢)x = 0, ⇢ = (1� @2x )(⇢ � ⇢0)

m|t=0 = u0, ⇢|t=0 = ⇢0,

(M2CH)

or equivalently

8
>><

>>:

ut = �u@x � @x (1� @xx )
�1

h
u2 + 1

2 (ux )
2 + k

2�
2 � k

2�
2
x

i

�t = �u�x � (1� @xx )
�1�(ux�x )x + ux�

�

u|t=0 = u0, � |t=0 = �0,

(M2CH)

where k = ±1 and ⇢0 is a constant. Local well-posedness for (M2CH) with the
initial data in Sobolev spaces and in Besov spaces was established in [26] and [50]
respectively. The blow-up phenomena of strong solutions to (M2CH) were pre-
sented in [26]. The existence of global weak solutions for (M2CH) with k = 1 was
investigated in [28]. The global conservative and dissipative solutions of (M2CH)
equation were studied in [43] and [44], respectively. The analyticity of the solutions
for (M2CH) was proved in [49].

Recently Geng and Xue proposed a new three-component Camassa-Holm sys-
tem with N-peakon solutions [29]:

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

ut = �vax + uxb + 3
2ubx � 3

2u(axcx � ac)

vt = 2vbx + vxb,

wt = �vcx + wxb + 3
2wbx + 3

2w(axcx � ac)

u = a � axx , w = c � cxx
v = 1

2 (bxx � 4b + axxcx � cxxax + 3axc � 3acx )

u|t=0 = u0, v|t=0 = v0, w|t=0 = w0.

(3CH)

It is based on the following spectral problem

�x = U�, � =

0

@
�1
�2
�3

1

A , U =

0

@
0 1 0

1+ �v 0 u
�w 0 0

1

A , (1.2)
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where u, v, w are three potentials and � is a constant spectral parameter. It was
shown in [29] that the N-peakon solitons of the system (1.1) have the form

a(t, x) =
NX

i=0
ai (t)e�|x�xi (t)|, (1.3)

b(t, x) =
NX

i=0
bi (t)e�2|x�xi (t)|,

c(t, x) =
NX

i=0
ci (t)e�|x�xi (t)|,

where ai , bi , ci and xi evolve according to a dynamical system. Moreover, the
author derived infinitely many conservation laws of the system (1.1). In [34, 35],
the authors proved the local well-posedness and global existence of strong solution
to (3CH) under some sign conditions. The existence of global weak solutions for
(3CH) was investigated in [36].

Many researchers have studied the analyticity of solutions to Camassa-Holm
type systems, cf. [3, 32] and [49]. However, to our best knowledge, the Gevrey
regularity of solutions to the Camassa-Holm equation is still an open problem. Our
motivation is to solve this problem. To begin with, we introduce an abstract Cauchy-
Kovalevsky theorem which is very crucial to study the analyticity:
Theorem 1.1 ([1, 37, 39]). Let {X�}0<�<1 be a scale of decreasing Banach spaces,
namely, for any �0 < � we have X� ⇢ X�0 and k · k�0  k · k� , and let T, R > 0,
� � 1. For given u0 2 X1, assume that the function F satisfies the following
conditions:

(1) If for 0 < �0 < � < 1 the function t 7! u(t) is holomorphic in |t | < T and
continuous on |t | < T with values in Xs and

sup
|t |<T

ku(t)k� < R,

then t 7! F(t, u(t)) is a holomorphic function on |t | < T with values in X�0;
(2) For any 0 < �0 < � < 1 and any u, v 2 B(u0, R) ⇢ X� , there exists a positive

constant L depending on u0 and R such that

sup
|t |<T

kF(t, u) � F(t, v)k�0 
L

� � �0
ku � vk�;

(3) For any 0 < � < 1, there exists a positive constant M depending on u0 and R
such that

sup
|t |<T

kF(t, u0)k� 
M
1� �

.

Then there exists a T0 2 (0, T ) and a unique solution to the Cauchy problem
(1.1), which for every � 2 (0, 1) is holomorphic in |t | < T0(1 � �) with values
in X� .
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Theorem 1.1 was first proposed by Ovsyannikov in [39–41]. However, the original
Ovsyannikov theorem becomes invalid for the Gevrey class, because this kind of
spaces do not satisfy the condition (2) of the Ovsyannikov theorem. More precisely,
in Section 2, for the Gevrey class, we see that

sup
|t |<T

kF(t, u) � F(t, v)k�0 
L

(� � �0)�
ku � vk�, (1.4)

with � � 1. If � > 1, the inequality (1.4) is weaker than the condition (2) because
it is nonlinear decay. Thus, we need a new framework which is associated with
the properties of the Gevrey class. In this paper, we modify the proof of [39] and
establish a new auxiliary function, then obtain a generalized Ovsyannikov theorem.
By using this theorem, we obtain both the Gevrey regularity and analyticity of the
solutions to Camassa-Holm type systems. Moreover, by taking advantage of the
idea in [3], we prove that the continuity of the data-to-solution map.

The paper is organized as follows. In Section 2 we recall some properties
about Sobolev-Gevrey spaces. In Section 3, we prove a generalized Ovsyannikov
theorem. In Section 4, we prove the analyticity and Gevrey regularity of the so-
lutions to the above Camassa-Holm type systems. In Section 5, we show that the
data-to-solution map is continuous from the data space to the solution space.

ACKNOWLEDGEMENTS. The authors thank the referee for valuable comments and
suggestions.

2. Preliminaries

Firstly, we introduce the Sobolev-Gevrey spaces and recall some basic properties.
Definition 2.1 ([23]). Let s be a real number and �, � > 0. A function f 2
G�

�,s(Rd) if and only if f 2 C1(Rd) and satisfies

k f kG�
�,s(Rd ) =

✓Z

Rd
(1+ |⇠ |2)se2�|⇠ |

1
� |bf (⇠)|2d⇠

◆ 1
2

< 1.

Remark 2.2. Defining the Fourier multiplier e�(�1)
1
2� as

e�(�1)
1
2� f = F�1(e�|⇠ |

1
� bf ),

we have that k f kG�
�,s(Rd ) = ke�(�1)

1
2� f kHs(Rd ). For 0 < � < 1, it is called the

ultra-analytic function space. When � = 1, it is the usual analytic function space
and � is called the radius of analyticity. As � > 1, it is the Gevrey class function
space.



1066 WEI LUO AND ZHAOYANG YIN

Proposition 2.3. Let 0 < �0 < �, 0 < � 0 < � and s0 < s. From Definition 2.1, one
can check that G�

�,s(Rd) ,! G�0

�,s(Rd), G�
� 0,s(Rd) ,! G�

�,s(Rd) and G�
�,s(Rd) ,!

G�
�,s0(Rd).

Proposition 2.4. Let s be a real number and � > 0. Assume that 0 < �0 < �. Then
we have

k@x f kG�0
�,s(R) 

e�� ��

(� � �0)�
k f kG�

�,s(R).

Proof. Since d@x f = i⇠ bf , it follows that

k@x f k2G�0
�,s(R)

=
Z

R
(1+ |⇠ |2)se2�

0|⇠ |
1
� |⇠ |2|bf (⇠)|2d⇠ (2.1)

=
1

(� � �0)2�

Z

R
(1+ |⇠ |2)se2�|⇠ |

1
� e�2[(���0)� |⇠ |]

1
�
(� � �0)2� |⇠ |2|bf (⇠)|2d⇠


k f k2G�

�,s(R)

(� � �0)2�
sup
⇠2R

⇢
e�2[(���0)� |⇠ |]

1
�
(� � �0)2� |⇠ |2

�
.

Let z = [(� � �0)� |⇠ |]
1
� � 0 and consider the function g(z) = e�2zz2� . By

directly calculating, we have limz!0 g(z) = 0, limz!+1 g(z) = 0 and g0(z) =
�2e�2zz2� + 2�e�2zz2��1. By solving g0(z) = 0, we obtain that z = � , which
implies that g(z)  g(� ) = e�2� � 2� . Then, we deduce from (2.1) that

k@x f kG�0
�,s(R) 

e�� ��k f kG�
�,s(R)

(� � �0)�
.

Proposition 2.5 (Product acts on Sobolev-Gevrey spaces with d=1). Let s> 1
2 ,

� � 1 and � > 0. Then, G�
�,s(R) is a Banach algebra. Moreover, there exists a

constant Cs such that

k f gkG�
�,s(R)  Csk f kG�

�,s(R)kgkG�
�,s(R).

Proof. Since � � 1, it follows that |x + y|
1
�  |x |

1
� + |y|

1
� . Then the proof is

similar to the case � = 1 (for more details, one can refer to [3]).

Proposition 2.6. Let s > 1
2 , � � 1 and � > 0. There exists a constant Cs such that

k f gkG�
�,s�1(R)  Csk f kG�

�,s�1(R)kgkG�
�,s(R).
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Proof. By virtue of the definition of the Gevrey norm, we have

k f gk2G�
�,s�1(R)

 k(e�(�1)
1
2� f ) · (e�(�1)

1
2� g)k2Hs�1(R)

. (2.2)

Using the fact that kabkHs�1(R)  CskakHs�1(R)kbkHs(R) if s > 1
2 , we get

�
�
�
�

✓
e�(�1)

1
2� f

◆
·

✓
e�(�1)

1
2� g

◆��
�
�

2

Hs�1(R)

Cske�(�1)
1
2� f k2Hs�1(R)

ke�(�1)
1
2� gk2Hs(R) (2.3)

=Csk f k2G�
�,s�1(R)

kgk2G�
�,s(R)

.

Hereafter, we use the notations P1
.
= (1� @xx )

�1, P2
.
= (4� @xx )

�1, P3
.
= @x and

Pi j
.
= Pi Pj with 1  i, j  3. Using the Plancherel identity, we have the following

proposition:

Proposition 2.7. If s 2 R, �, � > 0 and f 2 G�
�,s(R), then

kP1 f kG�
�,s(R) = k f kG�

�,s�2(R)  k f kG�
�,s(R), (2.4)

kP2 f kG�
�,s(R) 

1
4
k f kG�

�,s(R), kP13 f kG�
�,s(R)  k f kG�

�,s�1(R), (2.5)

kP13 f kG�
�,s(R) 

1
2
k f kG�

�,s(R), kP23 f kG�
�,s(R) 

1
4
k f kG�

�,s(R). (2.6)

Notation. Since all function spaces in the following sections are over R, for sim-
plicity, we drop R in the notation of function spaces if there is no ambiguity.

3. A generalized Ovsyannikov theorem

In order to study the Gevrey regularity of (1.1), we need the following generalized
Ovsyannikov theorem.

Theorem 3.1. Let {X�}0<�<1 be a scale of decreasing Banach spaces, namely, for
any �0 < � we have X� ⇢ X�0 and k · k�0  k · k� . Consider the Cauchy problem

⇢ du
dt = F(t, u(t))
u|t=0 = u0.

(3.1)
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Let T, R > 0, � � 1. For given u0 2 X1, assume that F satisfies the following
conditions:

(1) If for 0 < �0 < � < 1, the function t 7! u(t) is holomorphic in |t | < T and
continuous on |t | < T with values in Xs and

sup
|t |<T

ku(t)k� < R,

then t 7! F(t, u(t)) is a holomorphic function on |t | < T with values in X�0;
(2) For any 0 < �0 < � < 1 and any u, v 2 B(u0, R) ⇢ X� , there exists a positive

constant L depending on u0 and R such that

sup
|t |<T

kF(t, u) � F(t, v)k�0 
L

(� � �0)�
ku � vk�;

(3) For any 0 < � < 1, there exists a positive constant M depending on u0 and R
such that

sup
|t |<T

kF(t, u0)k� 
M

(1� �)�
.

Then there exists a T0 2 (0, T ) and a unique solution u(t) to the Cauchy problem
(3.1), which for every � 2 (0, 1) is holomorphic in |t | < T0(1��)�

2� �1 with values in
X� .

Remark 3.2. In fact, T0 = min
� 1
22�+4L , (2� �1)R

(2� �1)22�+3LR+M

 
, which gives a lower

bound of the lifespan.

Remark 3.3. If � = 1, Theorem 3.1 is reduced to the so-called abstract Cauchy-
Kovalevsky theorem. The original result was first proposed by Ovsyannikov in
[39–41]. Later, Nirenberg [37], Nishida [38], Treves [45, 46], and Baouendi and
Goulaouic [1, 2] developed a lot of different versions of this theorem.

The proof of Theorem 3.1 is based on the fixed point argument in some suitable
Banach space. Now we introduce a new Banach space.

Definition 3.4. Let � � 1. For any a > 0 we denote by Ea the space of functions
u(t) which for every 0 < � < 1 and |t | < a(1��)�

2� �1 , are holomorphic and continuous
functions of t with values in X� such that

kukEa = sup
|t |< a(1��)�

2� �1 ,0<�<1

✓
ku(t)k�(1� �)�

s

1�
|t |

a(1� �)�

◆
< +1. (3.2)

Proposition 3.5. Let � � 1. For any a > 0, the function space Ea is a Banach
space equipped with the norm k · kEa .
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Proof. Suppose that (un)n�1 is a Cauchy sequence in Ea , that is

kun � umkEa ! 0, as n,m ! 1.

By virtue of the definition of Ea , we deduce that for any 0 < � < 1,

sup
|t |< a(1��)�

2� �1

kun � umk� ! 0, as n,m ! 1.

Since X� is a Banach space, it follows that there exists a u� 2 X� such that

sup
|t |< a(1��)�

2� �1

kun � u�k� ! 0, as n ! 1.

Nowwe claim that u� is independent on �. Indeed, if �1 6= �2, with loss of generality
supposing that �1 < �2, and we obtain that,

kun � u�2k�1  kun � u�2k�2 ! 0, as n ! 1,

which leads to u�1 = u�2 . Thus, for any 0 < � < 1, we have u = u� 2 X� . Since
(un)n�1 is a Cauchy sequence in Ea , for any " > 0, there exists a N1 = N1(")
such that if n,m � N1, kun � umkEa  "

2 . Note that kun � uk�
n!1
���! 0 for

any 0 < � < 1. For any " > 0, there exists a N2(�) such that if n � N2(�),
kun � uk�  "

2 . Defining that N = N (�, ") = max{N1, N2(�)} + 1 for any " > 0
and 0 < � < 1, we deduce that for any n � N1

kun � uk�(1� �)�

s

1�
|t |

a(1� �)�

kun � uNkEa + kuN � uk�(1� �)�

s

1�
|t |

a(1� �)�

kun � uNkEa + kuN � uk� 
"

2
+

"

2
= ".

Since N1 is independent on �, it follows from the above inequality that kun �

ukEa
n!1
���! 0.

The following lemmas are crucial to prove Theorem 3.1.

Lemma 3.6. Let � � 1. For every 0 < � < 1 and 0  t < a(1��)�

2� �1 we have

1� � >

✓
1
2

◆1+ 1
�

(
(1� �)� �

t
a

� 1
�

+


(1� �)� + (2�+1 � 1)

t
a

� 1
�

)

.
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Proof. Since t < a(1��)�

2� �1 , it follows that

2(1� �)� > (1� �)� + (2� � 1)
t
a

=
1
2


(1� �)� �

t
a

�
+
1
2


(1� �)� + (2�+1 � 1)

t
a

�
.

(3.3)

Using the fact that (x+y)p  2p�1(x p+y p)with p = � , x = (12 [(1��)� � t
a ])

1
� >

0 and y = (12 [(1� �)� + (2�+1 � 1) ta ])
1
� > 0, we deduce that

1
2


(1� �)� �

t
a

�
+
1
2


(1� �)� + (2�+1 � 1)

t
a

�
= x� + y� �

(x + y)�

2��1 . (3.4)

Plugging (3.4) into (3.3) yields that

1�� >
x+y
2

=

✓
1
2

◆1+ 1
�
⇢

(1� �)� �
t
a

� 1
�

+


(1��)� + (2�+1� 1)

t
a

�1
�
�
. (3.5)

Lemma 3.7. Let � � 1. For every a > 0, u 2 Ea , 0 < � < 1 and 0  t < a(1��)�

2� �1
we have

Z t

0

ku(⌧ )k�(⌧ )

(�(⌧ ) � �)�
d⌧ 

a22�+3kukEa
(1� �)�

s
a(1� �)�

a(1� �)� � t
,

where �(⌧ ) = 1
2 (1+�)+ (12 )

2+ 1
�

⇢
[(1��)� � t

a ]
1
� � [(1��)� + (2�+1�1) ta ]

1
�

�
2

(�, 1).

Proof. By virtue of the definition of Ea , we obtain
Z t

0

ku(⌧ )k�(⌧ )

(�(⌧ ) � �)�
d⌧  kukEa

Z t

0

1

(�(⌧ ) � �)� (1� �(⌧ ))�
q
1� ⌧

a(1��(⌧ ))�

d⌧. (3.6)

Taking advantage of Lemma 3.6, we have

�(⌧ ) � � =
1
2
(1� �) +

✓
1
2

◆2+ 1
�
⇢ h

(1� �)� �
⌧

a

i 1
�

�
h
(1� �)� + (2�+1 � 1)

⌧

a

i 1
�

�
(3.7)

�

✓
1
2

◆1+ 1
� h

(1� �)� �
⌧

a

i 1
�

,
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and

1� �(⌧ )

=
1
2
(1� �) �

✓
1
2

◆2+ 1
�
⇢h

(1� �)� �
⌧

a

i 1
�
�

h
(1� �)� + (2�+1 � 1)

⌧

a

i 1
�

�
(3.8)

�

✓
1
2

◆1+ 1
� h

(1� �)� + (2�+1 � 1)
⌧

a

i 1
�

,

which leads to
�
1� �(⌧ )

��
�

✓
1
2

◆�+1 h
(1� �)� �

⌧

a

i
+

⌧

a
, (3.9)

or equivalently

a
�
1� �(⌧ )

��
� ⌧ �

✓
1
2

◆�+1 ⇥
a(1� �)� � ⌧

⇤
. (3.10)

Plugging (3.7)-(3.10) into (3.6) yields that
Z t

0

ku(⌧ )k�(⌧ )

(�(⌧ ) � �)�
d⌧

kukEa
Z t

0

a2

[a(1� �)� � ⌧ ]
3
2 [a(1� �)� + (2�+1 � 1)⌧ ]

1
2
d⌧

=
a22(�+1)

(1� �)�
kukEa

Z t
a(1��)�

0

1

(1� ✓)
3
2 (1+ (2�+1 � 1)✓)

1
2
d✓


a22(�+1)

(1� �)�
kukEa

Z t
a(1��)�

0

1

(1� ✓)
3
2
d✓


a22�+3kukEa

(1� �)�

s
a(1� �)�

a(1� �)� � t
.

(3.11)

Proof of Theorem 3.1. We only consider the case t � 0. For any t < a(1��)�

2� �1 with
a > 0 and u(t) 2 B(u0, R) ⇢ Ea , we define that

G(u(t)) .
= u0 +

Z t

0
F(⌧, u(⌧ ))d⌧. (3.12)

Since (3.1) is equivalent to

u(t) = u0 +
Z t

0
F(⌧, u(⌧ ))d⌧, (3.13)

it follows that our initial value problem (3.1) can be reduced to find the fixed point
of the operator G.
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Step 1. If u(t) 2 Ea , by virtue of Definition 3.4, we have u(t) is a holomorphic and
continuous function of t with values in X� for any 0 < � < 1. The condition (1) of
F implies that F(t, u(t)) is a holomorphic function of t with values in X� for any
0 < � < 1, which leads to G(u(t)) is a holomorphic and continuous function of t
with values in X� for any 0 < � < 1. In addition, if ku � u0kEa  R, we deduce
from Lemma 3.7 and conditions (2)-(3) that

kG(u(t)) � u0k� 
Z t

0
kF(⌧, u(⌧ ))k�d⌧


Z t

0
kF(⌧, u(⌧ )) � F(⌧, u0)k�d⌧ +

Z t

0
kF(⌧, u0)k�d⌧


Z t

0

Lku � u0k�(⌧ )

(�(⌧ ) � �)�
d⌧ +

tM
(1� �)�


a22�+3LR
(1� �)�

s
a(1� �)�

a(1� �)� � t
+

tM
(1� �)�

,

(3.14)

which implies that

kG(u(t)) � u0kEa  a22�+3LR +
aM
2� � 1

. (3.15)

By taking a  (2� �1)R
(2� �1)22�+3LR+M , we verify that Gu 2 B(u0, R) ⇢ Ea , which leads

to G maps B(u0, R) ⇢ Ea into itself.
Step 2. Assume that u(t), v(t) 2 B(u0, R) ⇢ Ea . Taking advantage of Lemma 3.7
and the condition (2), we infer that

kG(u(t)) � G(v(t))k� 
Z t

0
kF(⌧, u(⌧ )) � F(⌧, v(⌧ ))k�d⌧


Z t

0

Lku � vk�(⌧ )

(�(⌧ ) � �)�
d⌧ (3.16)


a22�+3Lku � vkEa

(1� �)�

s
a(1� �)�

a(1� �)� � t
,

which leads to

kG(u(t)) � G(v(t))kEa  a22�+3Lku � vkEa . (3.17)

By taking a  1
22�+4L , we obtain kG(u(t))�G(v(t))kEa  1

2ku�vkEa , and hence
G is a contraction map on B(u0, R) ⇢ Ea . From Step 1 and Step 2, we deduce
that if a  T0 = min{ 1

22�+4L , (2� �1)R
(2� �1)22�+3LR+M }, T has a unique fixed point in

B(u0, R) ⇢ Ea .
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4. Gevrey regularity and analyticity

In this section we investigate the Gevrey regularity and analyticity of solutions to the
Camassa-Holm type systems. By virtue of Remark 2.2, the case � > 1 corresponds
to the Gevrey regularity while � = 1 corresponds to the analyticity. Our main
results can be stated as follows.
Theorem 4.1. Let � � 1 and s > 3

2 . Assume that u0 2 G1�,s(R). Then for every
0 < � < 1, there exists a T0 > 0 such that the Camassa-Holm equation has a
unique solution u which is holomorphic in |t | < T0(1��)�

2� �1 with values in G�
�,s(R).

Moreover T0 ⇡ 1
ku0kG1�,s (R)

.

Proof. In order to use Theorem 3.1, we rewrite (CH) as follows:(
ut = F(u) .

= �uP3u � P13
⇥
u2 + 1

2 (P3u)
2⇤

u|t=0 = u0.
(4.1)

For a fixed � � 1 and s > 3
2 . By virtue of Proposition 2.3, we have {G�

�,s}0<�<1
is a scale of decreasing Banach spaces. Let Cs be the constant given in Proposition
2.5. By virtue of Propositions 2.4, 2.5 and 2.7, we deduce that for any 0 < �0 < �,

kF(u)kG�0
�,s


1
2
kP3(u2)kG�0

�,s
+
1
2
ku2kG�0

�,s
+
1
2
k(P3u)2kG�0

�,s�1

 Cs
e�� ��

2(� � �0)�
kuk2G�

�,s
+
Cs
2

kuk2G�
�,s

+
Cs
2

kP3uk2G�
�,s�1

(4.2)


Cs(e�� �� + 2)
2(� � �0)�

kuk2G�
�,s

,

which implies that F satisfies the condition (1) of Theorem 3.1. By the same token,
we obtain that kF(u0)kG�

�,s
 Cs(e�� �� +2)

2(1��)� ku0k2G1�,s
. Thus, we see that F satisfies

the condition (3) of Theorem 3.1 with M = Cs( e
�� ��

2 + 1)ku0k2G1�,s
. In order to

prove our desired result, it suffices to show that F satisfies the condition (2) of
Theorem 3.1. Assume that ku � u0kG�

�,s
 R and kv � u0kG�

�,s
 R. Applying

Propositions 2.4 and 2.7, we get
kF(u) � F(v)kG�0

�,s


e�� ��

2(���0)�

�
�u2� v2

�
�
G�

�,s
+

�
�P13(u2� v2)

�
�
G�0

�,s
+
1
2
�
�P13

⇥
(P3u)2�(P3v)2

⇤��
G�0

�,s


e�� ��

2(���0)�
ku2 � v2kG�

�,s
+
1
2
ku2 � v2kG�

�,s
+
1
2
k(P3u)2 � (P3v)2kG�

�,s�1
(4.3)


Cs(e�� �� + 2)

(� � �0)�
(ku0kG�

�,s
+ R)ku � vkG�

�,s


Cs(e�� �� + 2)

(� � �0)�
(ku0kG1�,s

+ R)ku � vkG�
�,s

.
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From the above inequality, we verify that F satisfies the condition (2) of Theo-
rem 3.1 with L = Cs(e�� �� + 2)(ku0kG1�,s

+ R).
Moreover, T0 = min

� 1
22�+4L , (2� �1)R

(2� �1)22�+3LR+M

 
. By setting R = ku0kG1�,s

,
we see that L = 2Cs(e�� �� + 2)ku0kG1�,s

and M  22�+3LR. Then, we have
T0 = 1

22�+5Cs(e�� �� +2)ku0kG1�,s
.

Theorem 4.2. Let � � 1 and s > 3
2 . Assume that u0 2 G1�,s(R) and ⇢0 2

G1�,s�1(R). Then for every 0 < � < 1, there exists a T0 > 0 such that the
two-component Camassa-Holm system has a unique solution (u, ⇢) which is holo-
morphic in |t | < T0(1��)�

2� �1 with values in G�
�,s(R) ⇥ G�

�,s�1(R). Moreover T0 ⇡
1

ku0kG1�,s (R)
+k⇢0kG1

�,s�1(R)
.

Proof. We only consider the case k = 1, and change the 2-component Camassa-
Holm (2CH) system into the following form

(
zt = F(z)
z|t=0 = z0,

(4.4)

where z = (u, ⇢)T, z0 = (u0, ⇢0)T and

F(z) =

✓
F1(z)
F2(z)

◆
=

✓
�P3

�u2
2
�
� P13

⇥
u2 + 1

2 (P3u)
2 + 1

2⇢
2⇤

�P3(u⇢)

◆
. (4.5)

For fixed � � 1 and s > 3
2 , we set X� = G�

�,s(R) ⇥ G�
�,s�1(R) and

kzk� = kukG�
�,s

+ k⇢kG�
�,s�1

.

Thanks to Proposition 2.3, we have {X�}0<�<1 is a scale of decreasing Banach
spaces. By the same token as in Theorrem 4.1, we deduce that

kF(z)k�0 
Cs(e�� �� + 5)
2(� � �0)�

kzk2�, kF(z0)k� 
Cs(e�� �� + 5)
2(1� �)�

kz0k21, (4.6)

kF(z1) � F(z2)k�0 
2Cs(e�� �� + 1)

(� � �0)�
(kz0k1 + R)kz1 � z2k�. (4.7)

Choosing the suitable constants L , R and M , we get T0 ⇡ 1
kz0k1 .

Remark 4.3. By the similar argument as in the proof of the above theorem, one
can obtain the Gevrey regularity and analyticity for the modified 2-component
Camassa-Holm system (M2CH).
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Theorem 4.4. Let � � 1 and s > 1
2 . Assume that (u0, v0, w0) 2 (G1�,s(R))3. Then

for every 0 < � < 1, there exists a T0 > 0 such that the three-component Camassa-
Holm system has a unique solution (u, v,w) which is holomorphic in |t | < T0(1��)�

2� �1
with values in (G�

�,s(R))3. Moreover, there exists two constant C1 and C2 such that
T0 = 1

C1(ku0kG1�,s
+kv0kG1�,s

+kw0kG1�,s
)2+C2(ku0kG1�,s

+kv0kG1�,s
+kw0kG1�,s

)
.

Proof. Since the proof of the theorem is similar to the proofs of Theorems (4.1)-
(4.2), we omit the details here. The main difference is that the system (3CH) has
both quadratic and cubic nonlinear terms. Thus, the lifespan satisfies

T0 ⇡
1

(ku0kG1�,s
+ kv0kG1�,s

+ kw0kG1�,s
)2 + ku0kG1�,s

+ kv0kG1�,s
+ kw0kG1�,s

.

5. Continuity of the data-to-solution map

In this section, we investigate the continuity of the data-to-solution map for initial
data and solutions in Theorems 4.1, 4.2 and 4.4. We only prove this property for
the three-component Camassa-Holm system (3CH) since it is more complex than
the other Camassa-Holm type systems.

Theorem 5.1. Let � � 1 and s > 1
2 . Assume that (u0, v0, w0) 2 (G1�,s(R))3.

Then the data-to-solution map (u0, v0, w0) 7! (u, v,w) of the three-component
Camassa-Holm system is continuous from (G1�,s(R))3 into the solutions space.

We first introduce a definition to explain what means the data-to-solution map
is continuous from (G1�,s(R))3 into the solutions space.

Definition 5.2. Let � � 1 and s > 1
2 . We say that the data-to-solution map

(u0, v0, w0) 7! (u, v,w) of the three-component Camassa-Holm system is con-
tinuous if for a given (u1

0 , v1
0 , w1

0 ) 2 (G1�,s(R))3 there exists a

T = T (ku1
0 kG1�,s

, kv1
0 kG1�,s

, kw1
0 kG1�,s

) > 0

such that for any sequence (un0, v
n
0 , w

n
0) 2 (G1�,s(R))3 and kun0 � u1

0 kG1�,s
+ kvn0 �

v1
0 kG1�,s

+ kwn
0 � w1

0 kG1�,s

n!1
���! 0, the corresponding solution (un, vn, wn) of

(3CH) satisfies kun � u1kET + kvn � v1kET + kwn � w1kET
n!1
���! 0, where

kukET = sup
|t |< T (1��)�

2� �1 ,0<�<1

✓
ku(t)kG�

�,s
(1� �)�

s

1�
|t |

T (1� �)�

◆
. (5.1)
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Proof of Theorem 5.1. Without loss of generality, we may assume that t � 0. As
in the proof of Theorem 4.4, we use the same notation Un = (un, vn, wn)T, Un

0 =
(un0, v

n
0 , w

n
0)
T and kUnk� = kunkG�

�,s
+ kvnkG�

�,s
+ kwnkG�

�,s
. Define

T1 =
1

C1kU1
0 k21 + C2kU1

0 k1
, T n =

1
C1kUn

0 k21 + C2kUn
0 k1

, (5.2)

where C1 and C2 are uniform constant independent of n such that T n and T1

are the lifespan corresponding to kUn
0 k1 and kU1

0 k respectively. Since kUn
0 �

U1
0 k1

n!1
���! 0, it follows that there exists a constant N such that, if n � N we

have

kUn
0 k1  kU1

0 k1 + 1. (5.3)

By setting

T =
1

C1(kU1
0 k1 + 1)2 + C2(kU1

0 k1 + 1)
, (5.4)

we deduce from (5.2) that T < min{T n, T1} for any n � N . For any n � N , we
have

U1(t, x) = U1
0 (x) +

Z t

0
F(U1(t, x))d⌧, 0  t <

T (1� �)�

(2� � 1)
, (5.5)

Un(t, x) = Un
0 (x) +

Z t

0
F(Un(t, x))d⌧, 0  t <

T (1� �)�

(2� � 1)
, (5.6)

where F is associated with the system (3CH). From the above equations, we verify
that for any 0  t < T (1��)�

(2� �1) and 0 < � < 1

kUn(t) �U1(t)k�  kU1
0 �Un

0 k� +
Z t

0
kF(Un(⌧ )) � F(U1(⌧ ))k�d⌧. (5.7)

Define that �(⌧ ) = 1
2 (1+�)+

�1
2 )
2+ 1

�

n⇥
(1��)� � t

T
⇤ 1

� �
⇥
(1��)� +(2�+1�1) tT

⇤ 1
�

o
.

By virtue of Lemma 3.7, we see that � < �(⌧ ) < 1. From the condition (2) in
Theorem 3.1, we obtain kF(Un(⌧ )) � F(U1(⌧ ))k� 

LkUn(t)�U1(t)k�(⌧ )

(�(⌧ )��)� where
L = C1kU0k21 + C2kU0k1. Plugging it into (5.7) yields that

kUn(t) �U1(t)k�  kU1
0 �Un

0 k� + L
Z t

0

kUn(t) �U1(t)k�(⌧ )

(�(⌧ ) � �)�
d⌧. (5.8)

Applying Lemma 3.7 with a = T , we deduce that

kUn(t) �U1(t)k�  kU1
0 �Un

0 k�

+ L
T22�+3kUn �U1kET

(1� �)�

s
T (1� �)�

T (1� �)� � t
.

(5.9)
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Since 22�+3LT < 1
2 , it follows that

kUn(t) �U1(t)k�  kU1
0 �Un

0 k�

+
1

2(1� �)�
kUn �U1kET

s
T (1� �)�

T (1� �)� � t
,

(5.10)

which leads to

kUn(t) �U1(t)k�(1� �)�
r
1�

t
T (1� �)�

 kU1
0 �Un

0 k1 +
1
2
kUn �U1kET .

(5.11)
Note that the right hand side of the above inequality is independent of t and �. By
taking the supremum over 0 < � < 1, 0 < t < T (1��)�

2� �1 , we obtain that

kUn �U1kET  kU1
0 �Un

0 k1 +
1
2
kUn �U1kET , (5.12)

which implies that

kUn �U1kET  2kU1
0 �Un

0 k1. (5.13)

The above inequality holds true for any n � N and leads to our desired result.

Remark 5.3. In the period case, the Sobolev-Gevrey norm can be stated as follows

k f kG�
�,s(T) =

✓X

k2Z
(1+ |k|2)se2�|k|

1
� |bf (k)|2

◆ 1
2

= ke�(�1)
1
2� f kHs(T), (5.14)

and the similar propositions still hold true. Taking advantage of Theorem 3.1 and
by virtue of the same arguments as in Theorems 4.1 and 5.1, we get the Gevrey
regularity and analyticity for the periodic Camassa-Holm type systems.
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[45] F. TRÈVES, “Ovsyannikov Theorem and Hyperdifferential Operators”, Notas de Matemá-
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