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A 0-convergence approach to large deviations

MAURO MARIANI

Abstract. A rigorous connection between large deviations theory and 0-con-
vergence is established. Applications include representations formulas for rate
functions, a contraction principle for measurable maps, a large deviations princi-
ple for coupled systems and a second order Sanov theorem.

Mathematics Subject Classification (2010): 60F10 (primary); 49N99 (sec-
ondary).

1. Introduction

Let X be a Polish space, that is a completely metrizable, separable topological
space. The space P(X) of Borel probability measures on X is a Polish space as
well, if equipped with the so-called narrow (otherwise called weak) topology. Such
a topology enjoys several characterizations, see [12, Theorem 3.1.5]. A sequence
(µn) in P(X) converges narrowly to µ iff limn µn(C)  µ(C) or limn µn(O) �
µ(O) for all C ⇢ X closed and O ⇢ X open, or equivalently iff the integrals of
bounded continuous functions converge.

A Large Deviations principle (LDP) for (µn) on X is then classically defined
as an exponential version of the inequalities on closed and open sets stated above
for the narrow convergence; and the Brycs-Varadhan theorem [5, Chapter 4.4] can
be regarded as a Large Deviations’ (LD) analog of the characterization of narrow
convergence by the convergence of integrals of continuous bounded functions.

In this paper, we further extend the analogies between narrow convergence and
LD to other characterizations. At least when X is compact, it is easy to see that
the narrow convergence µn ! µ is equivalent to the 0-convergence of the relative
entropy functional H(·|µn) to H(·|µ) and also to the 0-convergence of the maps
K 7! � logµn(K ) to K 7! � logµ(K ), where the compact subsets K of X are
equipped with the Hausdorff topology (which indeed coincides with the Kuratowski
topology on compact sets). In Section 3 we provide the LD analogs of these state-
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ments, proving in particular that LD is also a notion of convergence in a metric
spaceW(X), containing both probability measures and functionals. Thus conver-
gence of measures to measures inW(X) is equivalent to the narrow convergence,
convergence of functionals to functionals is equivalent to 0-convergence, and con-
vergence of measures to functionals is indeed LD, see Theorem 5.1 for a precise
statement. It is worth to remark that various approaches to LD are possible by the
means of variational analysis of the relative entropy functional [3], the one in this
paper being indeed inspired by the techniques in [6, 10].

In Section 4 we apply the results in Section 3 to get some general properties of
LDP. Proposition 4.1 gives some explicit representations of the LD rate function-
als, that generalize the so-called Laplace-Varadhan method for proving LDPs. In
Proposition 4.4 a version of a so-called contraction principle is provided for mea-
surable (not just continuous) contraction maps. In Theorem 4.6 we give sufficient
conditions to recover a LDP for a coupled system of metric random variables, from
the LDPs for the (independent) components of an associated system with frozen
variables. In Theorem 6.1, we apply the results in Section 3-4 to provide a second
order version of the Sanov theorem for triangular arrays of i.i.d. random variables
whose law also satisfies a LDP (see the discussion in Section 6 for applications).

ACKNOWLEDGEMENTS. The author has discussed the ideas in this paper with
several people, who motivated and helped him to provide a systematic treatment
of the subject. In this respect, I especially acknowledge G. Bellettini, L. Bertini,
R. Cerf, L. Zambotti. I am also grateful to F. Cagnetti for helpful discussions about
[2, Chapter 10].

2. Preliminaries

In this section we recall the basic notions concerning 0-convergence and LD. Here-
after B(X) denotes be the Borel � -algebra on the Polish space X and P(X) the
set of Borel probability measures on X . For µ 2 P(X) and f a µ-integrable func-
tion on X , µ( f ) will denote the integral of f with respect to µ. P(X) is hereafter
equipped with the narrow topology, namely the weakest topology such that the maps
P(X) 3 µ 7! µ( f ) 2 R are continuous, for all f 2 Cb(X).

We also let K(X) be the collection of compact subsets of X , equipped with the
Hausdorff topology1.

1 If X is compact, the Hausdorff topology on K(X) coincides with the Kuratowski topology, see
[11, Chapter 4]. The latter is often considered in the theory of 0-convergence, due its equivalence
with the Kuratowski convergence of epigraphs, see, e.g., [2, Theorem 4.16]. Here we use a
slightly different construction, as we lift functions and measures on X to functionals on K(X).
The Hausdorff topology comes more handy, since K(X) is itself Polish. The price to pay is that
possibly some of the statements in the paper would extend to closed sets, not just compact sets,
if the Kuratowski topology would be used. However, as long as one sticks with exponentially
tight families of probabilities (or uniformly coercive functions) the two notions of convergence
are equivalent, so that the price to pay for working with the Hausdorff topology is negligible for
all the applications discussed here.
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Namely, fixed a compatible distance d on X , define dH : K(X) ⇥ K(X) !
[0,+1[ as

dH (K , K 0) := inf{" > 0, K ⇢ K 0", K 0 ⇢ K "}

where, for A 2 B(X), A" denotes the "-enlargement of A with respect to the
distance d. As well known, dH defines a distance on K(X), and the associated
topology ⌧H does not depend on the choice of the compatible distance d. Moreover,
(K(X), ⌧H ) is a Polish space, see [11, Chapter 4], and it is understood that K(X) is
equipped with such a topology in the following.

2.1. 0-convergence

0-convergence is the relevant notion of convergence for functionals, whenever
problems related to minima and minimizers are investigated.
Definition 2.1. A functional I : X ! [0,+1] is said lower semicontinuous if for
each ` � 0 the set {x 2 X : I (x)  `} is closed. I is said coercive if for each
` � 0 the set {x 2 X : I (x)  `} is precompact.

Let (In) be a sequence of functionals In : X ! [0,+1]. (In) is said equico-
ercive on X if for each ` > 0, [n{x 2 X : In(x)  `} is precompact.
Definition 2.2. The 0-liminf (also denoted 0–lim) and 0-limsup (also denoted
0–lim) of a sequence (In) of functionals In : X ! [0,+1] are two functionals
on X defined as follows. For x 2 X

�
0–lim
n

In
�
(x) := inf

�
lim
n
In(xn), (xn) sequence in X such that xn ! x

 

�
0–lim
n

In
�
(x) := inf

�
lim
n
In(xn), (xn) sequence in X such that xn ! x

 
.

Whenever 0–lim In = 0–lim In = I , (In) is said to 0-converge to I in X , and I is
called the 0-limit (also denoted 0–lim) of (In).

2.2. Large deviations

Hereafter (µn) is a sequence in P(X) and (an) is a sequence of positive reals such
that limn an = +1.
Definition 2.3. The sequence (µn) is exponentially tight with speed (an) if

inf
K⇢X, compact

lim
n

1
an logµn(Kc) = �1.

Definition 2.4. Let I : X ! [0,+1] be a lower semicontinuous functional. Then
(µn) satisfies

• A LD lower bound with speed (an) and rate I , if for each open set O ⇢ X

lim
n

1
an logµn(O) � � inf

x2O
I (x);
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• A LD weak upper bound with speed (an) and rate I , if for each compact set
K ⇢ X

lim
n

1
an logµn(K )  � inf

x2K
I (x);

• A LD upper bound with speed (an) and rate I , if for each closed set C ⇢ X
lim
n

1
an logµn(C)  � inf

x2C
I (x).

(µn) satisfies a (weak) LDP if both the lower and (weak) upper bounds hold with
same rate and speed.

It is immediate to check that if (µn) is exponentially tight and satisfies a weak
LD upper bound, then it satisfies a LD upper bound.

2.3. Relative entropy

Given µ, ⌫ 2 P(X) and F ⇢ B(X) a � -algebra, the relative entropy of ⌫ with
respect to µ on F is defined as

HF(⌫|µ) := sup
'

�
⌫(') � logµ(e')

 
, (2.1)

where the supremum runs over the bounded F-measurable functions ' on X . For
a fixed µ, HF(·|µ) is a positive, convex functional on P(X). If F = B(X), the
subindex F will be dropped hereafter. In such a case, H(·|µ) is also lower semicon-
tinuous and coercive on P(X).

2.4. Regular set-maps

If a > 0, µ 2 P(X) and I : X ! [0,+1] a lower semicontinuous functional,
define the set-maps la,µ, lI : K(X) ! [0,+1] as

la,µ(K ) = � 1
a logµ(K ) (2.2)

lI (K ) = infx2K I (x). (2.3)
Since probability measures are regular on Polish spaces, it is easy to check that la,µ
is lower semicontinuous on K(X), while the lower semicontinuity of I implies that
lI is lower semicontinuous as well.

3. Large deviations and 0-convergence

The equivalence of probabilistic statements concerning LD (labeled P), 0-conver-
gence statements concerning relative entropies (labeled H) and set-maps (labeled
L) is established in this section.

An equivalent formulation of narrow convergence of probability measures is
first introduced in Subsection 3.1. Although only needed in proofs to appear later
in the paper, it gives an easy example of the ideas concerning the analogous LD
statements in Subsection 3.2. Proofs are provided in Subsection 3.3.
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3.1. Weak convergence and relative entropy

Let (µn) be a sequence in P(X), and define Hn : P(X) ! [0,+1] as

Hn(⌫) := H(⌫|µn).

The parameter a > 0 has no special role in the next two propositions, one could fix
a = 1. Yet, it will become relevant when LD are considered.

Proposition 3.1. The following are equivalent:

(P) (µn) is tight in P(X);
(H) (Hn) is equicoercive on P(X);
(L) For a > 0, (la,µn ) is equicoercive on K(X).

Proposition 3.2. The following are equivalent:

(P1) µn ! µ in P(X);
(P2) For each sequence ('n) of Borel measurable functions 'n : X ! R̄ bounded

from below
lim
n

µn('n) � µ(0–lim
n

'n);

(H) (0–limn Hn)(⌫) = H(⌫|µ);
(L1) For a > 0, 0–limn la,µn = la,µ;
(L2) For a > 0, 0–limn la,µn  la,µ;
(L3) For a > 0, 0–limn la,µn � la,µ.

3.2. Large deviations and relative entropy

In this section the LD analogs of Proposition 3.1 and Proposition 3.2 are stated.
Hereafter a=(an) is a sequence of strictly positive real numbers such that limn an=
+1, (µn) is a sequence in P(X) and I : X ! [0,+1] a measurable function.
Define Han : P(X) ! [0,+1] as

Han (⌫) := 1
an H(⌫|µn)

and, recalling (2.2), lan : K(X) ! [0,+1] as

lan = lan,µn .

Theorem 3.3. The following are equivalent:

(P) (µn) is exponentially tight with speed (an);
(H) (Han ) is equicoercive;
(L) (lan) is equicoercive.
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Theorem 3.4. The following are equivalent:

(P1) (µn) satisfies a LD lower bound with speed (an) and rate I ;
(P2) For each sequence ('n) of measurable maps 'n : X ! R

lim
n

1
an logµn

�
exp(an'n)

�
� sup

x2X

��
0–lim
n

'n
�
(x) � I (x)

 

where one understands
�
0–limn 'n

�
(x) � I (x) = �1 whenever I (x) =

+1;
(H1) For each x 2 X ,

�
0–limn Han

�
(�x )  I (x), where �x 2 P(X) is the Dirac

mass concentrated at x;
(H2) For each ⌫ 2 P(X),

�
0–limn Han

�
(⌫)  ⌫(I ).

If I is lower semicontinuous, the above statements are also equivalent to

(L) 0–limn lan  lI .

Theorem 3.5. Assume that I is lower semicontinuous. Then the following are
equivalent:

(P1) (µn) satisfies a LD weak upper bound with speed (an) and rate I ;
(P2) For each sequence ('n) of measurable maps 'n : X ! R bounded from below

and such that

sup
K⇢X compact

lim
n

µn
�
1Kc exp(�an'n)

�

µn
�
exp(�an'n)

� = 0 (3.1)

the following inequality holds

lim
n

1
an logµn

�
exp(�an'n)

�
 sup

x2X

�
�

�
0–lim
n

'n
�
(x) � I (x)

 

where �
�
0–limn 'n

�
(x) � I (x) : = �1 whenever I (x) = +1;

(H1) For each x 2 X ,
�
0–limn Han

�
(�x ) � I (x);

(H2) For each ⌫ 2 P(X),
�
0–limn Han

�
(⌫) � ⌫(I );

(L) 0–limn lan � lI .

Assume furthermore that (µn) satisfies the equivalent conditions of Theorem 3.3.
Then the above statements are also equivalent to:

(P3) µn satisfies a LD upper bound with speed (an) and rate I ;
(P4) For each sequence ('n) of measurable maps 'n : X ! R, bounded from

below it holds

lim
n

1
an logµn

�
exp(�an'n)

�
 sup

x2X

�
�

�
0–lim
n

'n
�
(x) � I (x)

 

where �
�
0–limn 'n

�
(x) � I (x) := �1 whenever I (x) = +1.



A 0-CONVERGENCE APPROACH TO LARGE DEVIATIONS 957

3.3. Proofs for Section 3

We start by recalling some basic facts concerning 0-convergence theory and relative
entropies. The claims in the following three remarks are easy to prove.
Remark 3.6. The 0-liminf and 0-limsup of (In) are lower semicontinuous func-
tionals, coercive if (In) is equicoercive.

Let J : X ! [0,+1]. Then:

(i) If for each sequence xn ! x , limn In(xn) � J (x), then J  0–limn In;
(ii) If there exists a sequence xn ! x such that limn In(xn)  J (x), then J �

0–limn In .

The 0–limn In and 0–limn In are, respectively, the smallest and the largest lower
semicontinuous functionals on X satisfying conditions (i) and (ii) above.

Moreover for each x 2 X , open set O ⇢ X and compact set K ⇢ X the
following hold:

(a) There exists a sequence xn ! x such that

lim
n
In(xn) 

�
0–lim
n

In
�
(x),

and
lim
n
inf
y2O

In(y)  inf
y2O

�
0–lim
n

In
�
(x);

(b) For each sequence xn ! x

lim
n
In(xn) �

�
0–lim
n

In
�
(x)

and
lim
n
inf
y2K

In(y)  inf
y2K

�
0–lim
n

In
�
(y).

Additionally, if In is equicoercive then for each closed set C ⇢ X

lim
n
inf
y2C

In(y)  inf
y2C

�
0–lim
n

In
�
(x).

Hereafter forµ 2 P(X) and A a Borel subset of X such thatµ(A) > 0, µA 2 P(X)
denotes the probability measure obtained by conditioning µ on A.
Remark 3.7. If G ⇢ F then

HG(⌫|µ)  HF(⌫|µ). (3.2)

If F is the Borel � -algebra of X , the supremum over ' in (2.1) can equivalently
run over the test functions ' 2 L1(X, d⌫), or equivalently over ' 2 Cc(X), or
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equivalently over the set of measurable functions ' taking only a finite number of
values. Moreover

H(⌫|µ) =

8
<

:

Z

X
µ(dx)

d⌫

dµ
(x) log

d⌫

dµ
(x) if ⌫ ⌧ µ

+1 otherwise.
(3.3)

In particular, for ⌫(A) > 0, d⌫A

dµ = 1A
⌫(A)

d⌫
dµ , so that

H(⌫A|µ) = � log ⌫(A) + 1
⌫(A)

Z

A
d⌫(x) log

d⌫

dµ
(x)

 � log ⌫(A) +
1

⌫(A)

⇣
H(⌫|µ) + (1� ⌫(A)) log

⇣
1�⌫(A)
1�µ(A)

⌘⌘

 � log ⌫(A) +
1

⌫(A)
H(⌫|µ) + 1� µ(A)

⌫(A)

(3.4)

where the first inequality follows by taking ' constant on Ac in the definition (2.1).
Let Y be also a Polish space, � 2 P(Y ), ✓ : X ! Y measurable and F✓ the

associated � -algebra. If � 2 P(Y ) then

H
⇣
�|µ � ✓�1

⌘
= inf

⌫: ⌫�✓�1=�
H(⌫|µ) = HF✓ (⌫|µ) for all ⌫ : ⌫ � ✓�1 = �. (3.5)

If H(�|µ � ✓�1) < +1 then the infimum in (3.5) is attained, namely:

H
⇣
�|µ � ✓�1

⌘
= H(⌫̄|µ)

⌫̄(dx) = µ(dx) E⌫
⇣ d⌫

dµ

�
�
�F✓

⌘
(x) for all ⌫ : ⌫ � ✓�1 = �.

(3.6)

Remark 3.8. If G = �
�
(Ei )Ni=0

�
is a � -algebra generated by a finite partition of

X , then

HG(⌫|µ) =
NX

i=0
⌫(Ei ) log

⌫(Ei )
µ(Ei )

,

where we understand ⌫(A) log ⌫(A)
µ(A) = 0 whenever ⌫(A) = 0 and ⌫(A) log ⌫(A)

µ(A) =
+1 if µ(A) = 0 but ⌫(A) > 0.

Moreover taking ' = log(1+ µ(A))1A in (2.1) one obtains

⌫(A) 
log 2+ H(⌫|µ)

log
�
1+ 1

µ(A)

� (3.7)

whenever H(⌫|µ) < +1 and µ(A) > 0.
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Remark 3.9. Let µ, ⌫ 2 P(X), and (K`)`2N a sequence of compact subsets of X
such that lim` µ(K`) = 1. Then for each � > 0, ` 2 N there exists a finite family
(Ei�,`)

N�,`

i=1 of Borel subsets of X such that:

(i) [i Ei�,` � K` and Ei�,` \ Ei
0

�,` = ; if i 6= i 0;
(ii) diameter(Ei�,`)  �, for i = 1, . . . , N�,`;
(iii) µ(@Ei�,`) = ⌫(@Ei�,`) = 0, for i = 1, . . . , N�,`;
(iv) Each Ei�,` has nonempty interior.

Set E0�,` = X \ [i�1Ei�,`. One can assume the following with no loss of generality:

(v) The partition (Ei�,`)
N�,`

i=0 is finer than (Ei�0,`0)
N�0,`0

i=0 if �  �0 and ` � `0.

Moreover, if G�,` is the � -algebra generated by (Ei�,`)

lim
`
lim
�
HG�,`(⌫|µ) = H(⌫|µ).

Proof. Fix �, ` and take a finite cover of K` with open balls B�/2(xi ) of radius
�/2 and centered at xi 2 K`, i = 1, . . . , N`,� . Take r > 0 such that r  �/2
and r  distance(xi , x j ) for all i 6= j . By � -additivity of µ and ⌫, there exists
�0 2]�/2, �/2+ r[ such that µ(@B�0(xi )) = ⌫(@B�0(xi )) = 0 for all i . Then take

(
E1�,` = B�0(x1)
Ei�,` = B�0(xi ) \ [ j<i E

j
�,` for i > 1.

It is immediate to check that (Ei�,`) satisfies (i)-(iv); and by a refining procedure
one gets the Ei�,` to satisfy (v) as well. The convergence of the relative entropies is
a consequence of (i)-(v).

Next we turn to the proofs of the statements in Subsections 3.1 and 3.2.

Proof of Proposition 3.1. (H))(P). µn is in the 0 sublevel set of Hn , and thus (µn)
is precompact (and tight) by the definition of equicoercivity.
(P) ) (H). Let (⌫n) be a sequence in P(X) such that limn H(⌫n|µn) < +1.
Since µn is tight, there exists an increasing sequence (K`) of compacts such that
lim` limn µn(Kc

` ) = 0. Since H(⌫n|µn) is uniformly bounded, the application of
(3.7) with A = Kc

` yields lim` limn ⌫n(Kc
` ) = 0. Namely (⌫n) is tight.

(P) , (L). It is trivial.

Proof of Proposition 3.2. (P1))(P2). Assume µn ! µ and let (Ei�,`)
N�,`

i=0 be as
in Remark 3.9 with ⌫ = µ. Let ('n) be as in the statement (P2), and define
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'n,�,`, '�,` : X ! R̄ by

'n,�,`(x) = inf
y2Ei�,`

'n(y) if x 2 Ei�,`

'�,`(x) = lim
n

'n,�,`(x).

Note that by Remark 3.9-(iii) and (v) one has:

µ
⇣
[`,�>0 [

N�,`

i=1 @Ei�,`
⌘

= lim
`
lim
�

N�,X̀

i=0
µ(Ei�,`) = 0.

On the other hand, if x 62 [`,�>0 [
N�,`

i=1 @Ei�,` it is easy to check that

lim
`
lim
�

'�,`(x) = (0–lim
n

'n)(x),

the limit being monotone increasing by Remark 3.9-(v). Thus lim` lim� '�,` =
(0–limn 'n) µ-a.e., and by monotone convergence

µ(0–lim
n

'n) = lim
`
lim
�

µ('�,`) = lim
`
lim
�

N�,X̀

i=0

"

µ(Ei�,`) lim
n

inf
y2Ei�,`

'n,�,`(y)

#

= lim
`
lim
�
lim
n

N�,X̀

i=0

"

µn(Ei�,`) inf
y2Ei�,`

'n,�,`(y)

#

 lim
n

µn
�
'n

�
,

where last equality follows from Remark 3.9-(iii).
(P2) ) (H). By (P2), µn(') ! µ(') for each ' 2 Cb(X). Let now ⌫ 2 P(X) and
let (⌫n) be an arbitrary sequence in P(X) such that ⌫n ! ⌫. Then

lim
n
H(⌫n|µn) = lim

n
sup

'2Cb(X)

�
⌫n(') � logµn(e')

 

� sup
'2Cb(X)

lim
n

�
⌫n(') � logµn(e')

 

= sup
'2Cb(X)

�
⌫(') � logµ(e')

 
= H(⌫|µ).

Namely limn Hn(⌫n) � H(⌫), and thus the 0-liminf inequality holds. It is enough
to prove the 0-limsup inequality for ⌫ such that H(⌫|µ) < +1. In particular ⌫ is
absolutely continuous with respect to µ. Let (Ei�,`)

N�,`

i=0 be as in Remark 3.9. Fix
�, ` > 0, and for n large enough define the probability ⌫n,�,` 2 P(X) as

⌫n,�,`(A) =
N�,X̀

i=0
⌫(Ei�,`)

µn(A \ Ei�,`)

µn(Ei�,`)
;

⌫n,�,` is well defined since ⌫(Ei�,`) = 0 whenever µn(Ei�,`) = 0 for n large enough.
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Then
lim
`
lim
�
lim
n

⌫n,�,` = ⌫.

On the other hand, by explicit calculation, H(⌫n,�,`|µn) = HG�,`(⌫|µn), and recall-
ing that the sets Ei�,� are µ- and ⌫-regular

lim
n
H(⌫n,�,`|µn) = lim

n
HG�,`(⌫|µn) = lim

n

N�,X̀

i=0
⌫(Ei�,`) log

⌫(Ei�,`)

µn(Ei�,`)

=
N�,X̀

i=0
⌫(Ei�,`) log

⌫(Ei�,`)

µ(Ei�,`)
= HG�,`(⌫|µ)  H(⌫|µ).

Thus there exist sequences (�n), (̀ n) such that ⌫n :=⌫n,�n,`n!⌫ and limn H(⌫n|µn)
H(⌫|µ).

(H) ) (P1). µn is the unique minimizer of Hn , and µ is the unique minimizer
of H . Since converging sequences of minimizers converge to minimizers of the
0-limit (see [2, Proposition 7.18]), one is left to show that (µn) is precompact in
P(X), namely that

sup
K2K(X)

lim
n

µn(K ) = 1. (3.8)

(H) implies that there exists a sequence (⌫n) converging toµ such that lim
n
H(⌫n|µn)

H(µ|µ); so that, in view of the tightness of (⌫n)

lim
n
H(⌫n|µn) = 0, sup

K2K(X)

lim
n

⌫n(K ) = 1. (3.9)

Reversing the inequality in (3.7) (with A = K ), one gets for each K 2 K(X)

µn(K ) �
1

2
1

⌫n(K ) exp[H(⌫n|µn)] � 1
.

Taking the liminf in n and the supremum over K 2 K(X), one gets (3.8) by (3.9).

(P1) ) (L1). Fix " > 0, K 2 K(X), and let K " be the open "-enlargement of K
with respect to any compatible metric on X . For each n, take a compact set Kn,"
such that K ⇢ Kn," ⇢ K " and µn(Kn,") � µn(K ") � ". Then by (P1)

lim
"#0
lim
n

µn(Kn,") � lim
"#0

�
lim
n

µn(K ") � "
�

� lim
"#0

µ(K ") � " = µ(K ).

Thus there exists "n # 0 such that Kn := Kn,"n ! K inK(X) and limn la,µn (Kn) 
la,µ(K ). Namely the 0-limsup inequality holds.
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Fix now K 2 K(X) and let (Kn) be a sequence converging to K in K(X).
Define Qm := K

S
[n�mKn . Then Qm is compact for all m, and by (P1)

lim
n

µn(Kn)  lim
m
lim
n

µn(Qm)  lim
m

µ(Qm) = µ(K ),

which is the 0-liminf inequality for (la,µn ).

(L2) ) (P1). Let " > 0 and O ⇢ X be open. By the regularity of µ on X ,
there exists a compact set K ⇢ O such that µ(K ) � µ(O) � ". By the 0-limsup
inequality for la,µn and Remark 3.6-(a), there exists a sequence (Kn) in K(X) such
that limn µn(Kn) � µ(K ). Since K is compact O � K � for some � > 0, so that,
for n large enough, Kn ⇢ O . Thus

lim
n

µn(O) � lim
n

µn(Kn) � µ(K ) � µ(O) � "

and we conclude since " > 0 was arbitrary.

(L3) ) (P1). By sequential compactness of 0-convergence [2, Chapter 10], from
any subsequence (µn0) of (µn) one can extract a further subsequence µn00 such that
la,µn00 0-converges to la,µ, thus µn00 ! µ by the statement (L2))(P1) proved
above. Since P(X) is Polish, the Urysohn property holds, and µn ! µ.

(L1) ) (L2) and (L1) ) (L3) are trivial.

Proof of Theorem 3.3. (P) ) (H). By (P), for each ` > 0, there exists a compact
set K` ⇢ X such that µn(Kc

` )  e�` an . By (3.7), for each ⌫ 2 P(X), one has

⌫(Kc
` ) 

1
an H(⌫|µn) + log 2

an
1
an log

�
1+ 1

µn(Kc
` )

� 
Han (⌫) + log 2

an
`

.

Let n0 be such that an � 1 for n � n0. Then for M > 0

[n�n0
�
⌫ 2 P(X) : Han (⌫)  M

 
⇢

⇢
⌫ 2 P(X) : 8` > 0, ⌫(Kc

` )
M + log 2

`

�
,

which is a tight set, and thus precompact in P(X). Since [n<n0
�
⌫ 2 P(X) :

Han (⌫)  M
 
is precompact, we conclude.

(H) ) (P). Note that, by (3.4), for each ` > 0 and integer n0 � 1

Pn0,` := [n�n0

n
µKc
n , K ⇢ X is compact and µn(Kc) � e�` an

o

⇢ [n�n0
�
⌫ 2 P(X) : Han (⌫)  `

 
.

Therefore by (H), for each ` > 0 there exists n0(`) such that Pn0(`),` is precompact
in P(X), and thus tight. In particular, for each ` > 0 there exists a compact set
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K` ⇢ X such that µKc
n (Kc

` )  1/2, for each n � n0(`) and each compact set
K such that µn(Kc) � exp(�` an). But µKc

n (Kc) = 1 for each compact set K
with µn(Kc) > 0. Thus K` 6= K for each compact set K such that µn(Kc) �
exp(�` an) for some n � n0(`). Namely µn(Kc

` )  exp(�` an) for each ` > 0 and
n � n0(`).
(P) , (L). It is trivial.

Proof of Theorem 3.4. (P1) ) (H1). For x 2 X and � > 0 let B�(x) the open ball
of radius � centered at x . Fix n and define ⌫n,� 2 P(X) by

⌫n,� :=

(
µ
B�(x)
n if µn(B�(x)) > 0

�x otherwise

and note that H(⌫n,�|µn) = � logµn(B�(x)), where we understand � log(0) =
+1. By (P1), for each � > 0

lim
n
Han (⌫n,�) = � lim

n

1
an logµn(B�(x))  inf

y2B�(x)
I (y)  I (x).

On the other hand lim� limn ⌫n,� = �x in P(X). In particular, by a diagonal ar-
gument, there exists a sequence (�n) converging to 0 (slowly enough) such that
limn ⌫n,�n = �x and limn Han (⌫n,�n )  I (x). (H1) follows by Remark 3.6-(ii).
(H1)) (P2). Let Y :=

�
x 2 X : (0–limn 'n)(x) > �1

 
. By the definition of the

0-liminf, for each x 2 Y there exist �(x) > 0 and n0(x) 2 N such that

inf
y2B�(x)

inf
n�n0(x)

'n(y) > �1. (3.10)

For x 2 Y , let (⌫n,x ) be a sequence converging to �x in P(X) and such that
lim Han (⌫n,x )  I (x). Such a sequence exists by (H1). By (3.4), it is easily seen
that (⌫n,x ) can be assumed to be concentrated on B�(x)(x). By (2.1)

logµn(e') � �H(⌫n,x |µn) + ⌫n,x (') (3.11)

for each measurable ' : X ! [�1,+1], provided we read the right hand side
as �1 whenever H(⌫n,x |µn) = +1 or ⌫n,x ('

�) = +1. Evaluating (3.11) for
' = an'n , taking the liminf in n and next optimizing on x 2 Y

lim
n

1
an logµn

�
exp(an'n)

�
� sup

x2Y

n
� lim

n
Han (⌫n,x ) + lim

n
⌫n,x ('n)

o
.

Since ⌫n,x is concentrated on B�(x)(x), and by (3.10) 'n is bounded from below on
B�(x)(x) for n � n0(x), (H1) and Proposition 3.2 yield

lim
n

1
an logµn

�
exp(an'n)

�
� sup

x2Y

�
� I (x) + (0–lim

n
'n)(x)

 

= sup
x2X

�
� I (x) + (0–lim

n
'n)(x)

 
.
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(P2) ) (P1). Fix an open set O ⇢ X and M > 0. Then 'n ⌘ M1O is lower
semicontinuous, and thus coincides with its 0-limit. It follows that

1
an logµn(exp(an 'n)) = 1

an log (1+ µn(O) exp(an M)))

 log 2
an +max(0,M + 1

an log(µn(O)).
(3.12)

By (P2) applied to such a sequence 'n , by taking the limit in (3.12) one gathers

max
✓

�M, lim
n

1
an log(µn(O))

◆
� �M + sup

x2X

�
M1O � I (x)

�
� � inf

x2O
I (x).

This implies (P1) by taking M ! 1.

(H2)) (H1). Take ⌫ = �x .

(H1) ) (H2). Since Han is a convex functional, 0–limn Han is also convex. For an
arbitrary ⌫ 2 P(X), by Jensen inequality and (H1)

(0–lim
n

Han )(⌫) = (0–lim
n

Han )
⇣ Z

P(X)
⌫(dx) �x

⌘


Z

P(X)
⌫(dx) (0–lim

n
Han )(�x ) 

Z

P(X)
⌫(dx) I (x).

(P1)) (L). Fix " > 0, K 2 K(X), and let K " be the open "-enlargement of K with
respect any fixed compatible metric on X . Then, by the regularity of µn on X , for
each n there exists Kn," ⇢ K " compact such that µn(Kn,") � exp(�" an) µn(K ").
By (P1)

lim
"#0
lim
n
lan(Kn,")  lim

"#0
lim
n

� 1
an logµn(K ") � "  lim

"#0
inf
x2K "

I (x) � " = inf
x2K

I (x).

Thus there exists "n # 0 such that Kn := Kn,"n [ K converges to K in K(X) and
limn lan(Kn)  lI (K ). Namely the 0-limsup inequality holds by Remark 3.6-(ii).

(L) ) (P1). Let " > 0 and O ⇢ X open. Since I is lower semicontinuous, there
exists K ⇢ O compact such that infx2K I (x)  infx2O I (x) + ". By (L) there
exists a sequence (Kn) converging to K in K(X) such that limn � 1

an logµn(Kn) 
infx2K I (x). Since for n large enough Kn ⇢ O

lim
n

� 1
an logµn(O)  lim

n
� 1
an logµn(Kn)  inf

x2K
I (x)  inf

x2K
I (x) + "

and (P1) follows since " > 0 is arbitrary.

Proof of Theorem 3.5. (P1) ) (H1). Let x 2 X and (⌫n) ⇢ P(X) be such that
lim
n

⌫n= �x inP(X). In view of Remark 3.6-(i), it is enough to show limn Han (⌫n) �
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I (x). Fix " > 0; since (⌫n) is tight, there exists K ⇢ X compact such that ⌫n(K ) �
1� " for all n. By (3.7), for each Borel set A ⇢ X

Han (⌫n) �
⌫n(A)

an
log

✓
1+

1
µn(A)

◆
�
log 2
an

� �
⌫n(A)

an
logµn(A) �

log 2
an

.

Take now A = K \ B"(x), where B"(x) is the closed ball of radius " centered at x .
Note that A is compact and limn ⌫n(A) � 1� ", thus by (P1)

lim
n
Han (⌫n) � �(1�") lim

n
1
an logµn(A) � (1�") inf

y2A
I (y) � (1�") inf

y2B"(x)
I (y).

Since " > 0 was arbitrary, one can take the limit " # 0 in the above formula, and
since I is lower semicontinuous the right hand side in the above formula converges
to I (x).
(H2)) (H1). Take ⌫ = �x .
(H1) ) (H2). Assume (H1). Let ⌫ 2 P(X) and (⌫n) be a sequence converging to
⌫ in P(X). One needs to show that limn Han (⌫n) � ⌫(I ).

For �, ` > 0 let (Ei�,`)
N�,`

i=0 be as in Remark 3.9 (with µ = ⌫). For i 2

{0, . . . , N�,`} such that ⌫n(Ei�,`) > 0 define the probability measures ⌫in,�,` :=

⌫
Ei�,`
n 2 P(X). Then by (3.3), for each n, ` > 0,

H(⌫n|µn) =
N�,X̀

i=0
⌫n(Ei�,`)H(⌫in,�,`|µn) + ⌫n(Ei�,`) log ⌫n(Ei�,`)

�
N�,X̀

i=0
⌫n(Ei�,`)H(⌫in,�,`|µn) � log N�,`,

(3.13)

where the terms in the above sums are understood to vanish for all i such that
⌫n(Ein,`) = 0. Dividing (3.13) by an , taking the liminf and recalling that the sets
Ei�,` are ⌫-regular

lim
n
Han (⌫n)�

N�,X̀

i=0
lim
n

⌫n(Ei�,`)H
a
n (⌫in,�,`)=

Nn,X̀

i=0
⌫(Ei�,`) lim

n
Han (⌫in,�,`)=

Z
I�,`(x)d⌫(x),

where I�,` is defined by

I�,`(x) := lim
n
Han (⌫in,�,`) if x 2 Ei�,`.

Note that I�,` is monotone both in � and `, the partitions {Ei�,`} are increasing as
� # 0 and ` " +1, see (2.1). By monotone convergence

lim
n
Han (⌫n) �

Z �
lim
`
lim
�
I�,`(x)

�
d⌫(x).
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However, since lim` lim� limn ⌫n = �x , (H1) implies lim` lim� I�,`(x) � I (x)
pointwise by Remark 3.6-(b), thus the conclusion.

(H2)) (P2). Consider the sequence (⌫n) in P(X) defined as

⌫n(dx) :=
exp(�an 'n(x))

µn
�
exp(�an 'n)

�µn(dx).

By (3.3)
1
an logµn

�
exp(�an 'n)

�
= �⌫n('n) � Han (⌫n).

By (3.1), (⌫n) is tight and thus precompact in P(X). Let ⌫ be an arbitrary limit
point of (⌫n). Taking the limsup in n, using Proposition 3.2 and (H2)

lim
n

1
an logµn

�
exp(�an 'n)

�
� lim

n
⌫n
�
'n

�
� lim

n
Han (⌫n) �⌫(0–lim

n
'n) � ⌫(I )

 sup
x2X

⇢
�(0–lim

n
'n)(x) � I (x)

�
.

(P2) ) (P1). Let K be a compact set in X , and for M > 0 let 'n ⌘ ' = M1Kc .
('n) satisfies (3.1). Moreover ' = 0- limn 'n since it is lower semicontinuous.
Therefore, assuming (P2),

lim
n

1
an logµn(K )  lim

n
1
an logµn

�
exp(�an M 1Kc)

�
 sup

x2X
{�M 1Kc(x) � I (x)}.

Letting M ! +1, (P1) follows.

(P1) ) (L). Fix K 2 K(X) and let (Kn) be a sequence converging to K in K(X).
Define Qm := K

S
[n�mKn . Then Qm is compact for all m, and by (P1)

lim
n

� 1
an logµn(Kn) � lim

m
lim
n

� 1
an logµn(Qm) � lim

m
inf
x2Qm

I (x) = inf
x2K

I (x)

where we used the lower semicontinuity of I in the last inequality.
(L) ) (P1). The weak upper bound is nothing but the 0-liminf inequality for lan
along a constant sequence Kn ⌘ K .

The implications (P3) ) (P1), (P4) ) (P2), and {Theorem 3.3-(P), (P1)} )
(P3) are trivial. On the other hand the implication {Theorem 3.3-(P), (P2)} ) (P4)
follows from a standard cut-off argument.

4. Applications to large deviations

In this section a few consequences of the results of Section 3 are discussed.
The following proposition gives an explicit representation of the optimal upper

and low bound rate functions, see also [5, Chapter 4.1], which will come useful in
the following:



A 0-CONVERGENCE APPROACH TO LARGE DEVIATIONS 967

Proposition 4.1 (Existence of large deviations). There exist I a and I a which are
respectively the minimal and maximal lower semicontinuous functionals for which
the weak lower bound and the upper bound hold respectively. A weak LDP holds
for (µn) with speed (an) if I

a
= I a. The following representations of I a and I a

hold:

I a(x) = (0–lim
n

Han )(�x ) = lim
�#0
lim
n

�1
an logµn(B�(x)) = sup

(Vn)
(0–lim

n
Vn)(x), (4.1)

I a(x) = (0–lim
n

Han )(�x ) = lim
�#0
lim
n

�1
an logµn(B�(x)) = sup

(Vn)
(0–lim

n
Vn)(x), (4.2)

where the supremums are carried over all the sequences (Vn) such that Vn : X !
[�1,+1] is measurable (or equivalently continuous and bounded) andµn(eanVn)
1 (or equivalently µn(eanVn ) = 1 or equivalently limn a�1

n logµn(eanVn )  0).

Proof. The existence of the optimal rate functions I a and I a, and the first represen-
tation formula above follows from the equivalences (P1), (H1) in Theorems 3.4-
3.5. By (3.4), it is easy to see that, given x 2 X , the sequence µ

B�(x)
n is an optimal

recovery sequence for �x in the 0-limit of Han , provided � # 0 after n ! +1. The
second equalities in (4.1)-(4.2) then follow again by (P1) , (H1) in Theorem 3.4-
3.5. The third equalities in (4.1)-(4.2) follow in the same fashion, if one remarks
that the supremum in the rightest hand side is attained on the family of sequences
(Vn) of the form

Vn(y) :=

(
� 1
an logµn(B�(x)) if y 2 B�(x)

�1 if y 62 B�(x)

as � runs in [0, 1[.

The following corollaries follow easily from Proposition 4.1.

Corollary 4.2 (Improving the bounds). Let A be a set of indexes.
Assume that for each ↵ 2 A, µn satisfies a LD lower bound with speed (an)

and rate I↵ . Then (µn) satisfies a LD lower bound with speed (an) and rate equal
to the lower semicontinuous envelope of x 7! inf↵2A I↵(x).

Assume that for each ↵ 2 A, µn satisfies a weak LD upper bound with speed
(an) and lower semicontinuous rate I↵ . Then (µn) satisfies a weak LD upper bound
with speed (an) and rate x 7! sup↵2A I↵(x).

Corollary 4.3 (Large deviations for double indexed sequences). Let (µn,m)n,m
be a double-indexed sequence, directed by (n0,m0) � (n,m) if n0 > n or n0 = n
and m0 � m. For each fixed m let I am and I am be the optimal lower and weak upper
bound rate functionals for (µn,m)n .

Then I a = 0–limm I
a
m and I a = 0–limm I am , where I

a and I a are defined as in
(4.1)-(4.2) by changing the index n with (n,m) (or in other words, performing the
limits n ! 1 and next m ! 1).
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Proposition 4.4 (General contraction principle). Let X , Y be two Polish spaces,
let (µn) be a sequence in P(X) and for n 2 N let ✓n, ✓ : X ! Y be measurable
maps. Assume that ✓n ! ✓ uniformly on compact sets. Define �n = µn � ✓�1

n 2
P(Y ). Then

(i) If (µn) satisfies a LD lower bound with speed (an) and lower semicontinuous
rate I : X ! [0,+1], then (�n) satisfies a LD lower bound with the same
speed and rate J : Y ! [0,+1] given by

J (y) := inf
x23y

I (x),

where

3y := lim
�#0
Interior

�
✓�1(B�(y))

�
;

(ii) If (µn) is exponentially tight and satisfies a LD upper bound with speed (an)
and lower semicontinuous rate I : X ! [0,+1], then (�n) satisfies a LD
weak upper bound with the same speed and rate J : Y ! [0,+1] given by

J (y) := inf
x23

y
I (x),

where

3
y

:= lim
�#0
Closure

�
✓�1(B�(y))

�
.

Note in particular that3y
� ✓�1(y) � 3y , with equality holding if ✓ is continuous

(recovering the standard contraction principle).

The proof requires a similar statement concerning 0-convergence (contraction
principles are surprisingly missing from the 0-convergence literature).

Lemma 4.5. Let X , Y be two Polish spaces, and let (In) be a sequence of lower
semicontinuous functions on X . Let ✓n , ✓ , J and J be as in Proposition 4.4. Define
Jn : Y ! [0,+1] as Jn(y) = infx2✓�1

n (y) In(x). Then 0–limn Jn  J and, if (In)
is equicoercive, 0–limn Jn � J .

Proof. Fix y 2 Y .

0-limsup inequality. If3y = ; there is nothing to prove. Otherwise, take " > 0 and
x" 2 3y such that J (y) � I (x") � ". Then there is a sequence (xn,") converging to
x" in X such that limn In(xn,")  I (x"). Since x" 2 3y , for all � > 0 and n � n�

large enough, xn," 2 Interior
�
✓�1(B�(x))

�
. So that ✓(xn,") ! y, and setting yn," =

✓n(xn,") one has limn yn," = y. On the other hand, limn Jn(yn,")  limn I (xn,") 
J (y) + ". Thus there is a subsequence ("n) such that limn Jn(yn)  Jn(y) + " with
yn = yn,"n .
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0-liminf inequality. Let (yn) be a sequence converging to y. Up to passing to a
subsequence (still label n here), we can assume supn Jn(yn) < +1, the inequality
being trivial otherwise. In particular, ✓�1

n (yn) 6= ;. For " > 0, let xn," 2 ✓�1
n (yn)

be such that In(xn,")  Jn(yn) + ". Since In is equicoercive and Jn(yn) uniformly
bounded, (xn,") is precompact. It is easy to check that any limit point of (xn,") is in
3
y (which is nonempty under the above assumptions). In particular, by the 0-liminf
inequality for (In)

lim
n
Jn(yn) � lim

n
In(xn,") � " � J (y) � "

and we get the statement since (yn) and " > 0 where arbitrary.

Proof of Theorem 4.4. Let # : P(X) ! P(Y ) be defined by #(µ) = µ � ✓�1, and
let #n be defined similarly. It is easy to see that #n ! # uniformly on compact
subsets of the Polish space P(X). Then (3.5) implies that for � 2 P(Y )

1
an H(�|�n) = 1

an H(�|#n(µn)) = inf
⌫2#�1

n (�)

1
an H(⌫|µn).

Therefore, by Lemma 4.5 (applied to the Polish space P(X) and maps #n) and the
equivalence (P1)-(H1) in Theorem 3.4, (�n) satisfies a LD lower bound with speed
(an) and rate

J̃ (y) := inf
⌫21y

Z

X
⌫(dx) I (x)

with
1y = lim

r#0
Interior

�
#�1(Br (�y))

�
,

where Br (�y) is the open ball of radius r > 0 centered in �y in P(X) (with respect
to a fixed compatible distance on P(X)). However, since �x 2 1y iff x 2 3y , it is
easy to see that J̃ = J . Namely the statement (i) holds.

In order to prove (ii), note that by Theorem 3.3 the sequence of functionals
1
an H(·|µn) is equicoercive. One can then apply the0-liminf statement in Lemma 4.5,
to prove (ii) following exactly the same lines as in (i).

The following result appears to be new in such a generality.
Theorem 4.6 (Large deviations for coupled systems). For n 2 N, i = 1, 2 let
(�i , Fi , Pin) be standard probability spaces, and let (�, F, Pn) be their product
space. Let X, Y be Polish spaces with compatible distances dX and dY . Assume
that for each n there are measurable maps Fn : Y ⇥ �1 ! X , Gn : X ⇥ �2 ! Y ,
⇠n : � ! X and ⌘n : � ! Y such that Pn-a.s.

⇠n(!
1,!2) = Fn(⌘n(!1,!2),!1)

⌘n(!
1,!2) = Gn(⇠n(!

1,!2),!2).

For fixed x 2 X , y 2 Y define f yn (!1) = Fn(y,!1), gxn (!2) = Gn(x,!2), and let
µ
y
n := P1n � ( f yn )�1 2 P(X) and ⌫xn := P2n � (gxn )�1 2 P(Y ) be the laws of f yn and

gxn respectively. Assume that for fixed x 2 X , y 2 Y there exists a positive function
q ⌘ qx,y 2 Cb(R+; R+) with q(0) = 0 such that
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(i) (µ
y
n) satisfies a weak LDP with speed (an) and lower semicontinuous rate

x 7! K y(x);
(ii) (⌫xn ) satisfies a weak LDP with speed (an) and lower semicontinuous rate

y 7! J x (y);
(iii) For each " > 0

lim
n

1
an logPn

⇣
dX (⇠n, x)+dY (⌘n, y) � q

�
dX ( f yn , x)+dY (gxn , y)

�
+"

⌘
= �1;

(iv) For each " > 0

lim
n

1
an logPn

⇣
dX ( f yn , x)+dY (gxn , y) � q

�
dX (⇠n, x)+dY (⌘n, y)

�
+"

⌘
= �1.

Define I : X ⇥ Y ! [0,+1] as the lower semicontinuous envelope of the map
(x, y) 7! K y(x) + J x (y) and let �n := Pn � (⇠n, ⌘n)

�1 be the law (⇠n, ⌘n). Then
(�n) satisfies a weak LDP with speed (an) and rate I .

In the above theorem, (iii) and (iv) are basically uniform regularity require-
ments on Fn, Gn . (iii) is only used in the lower bound, (iv) in the upper bound.
Theorem 4.6 applies in the following kind of situations. Suppose we have a weak
solution to the system of SDEs on R ⇥ R

(
⇠̇ = bn(⇠, ⌘) + 1

n Ẇ
1

⌘̇ = cn(⇠, ⌘) + 1
n Ẇ

2
(4.3)

where W 1 and W 2 are independent Brownian motions. If one knows the LD on
C([0, T ]; R) of the solutions to

⇣̇ = bn(⇣, y) + 1
n Ẇ

1

⇣̇ = cn(x, ⇣ ) + 1
n Ẇ

2

for fixed x, y 2 C([0, T ]; R), and if conditions (iii)-(iv) is satisfied (which happens
under uniform Lipschitz conditions on bn and cn), then one gets the LD for the law
of the original coupled system (4.3). While this kind of statement can be quite
standard for finite-dimensional systems, Theorem 4.6 also applies for instance in
the stochastic PDEs framework, and when considering asymptotics other than the
small noise limit (e.g., slow-fast random dynamics).

Proof of Theorem 4.6. Fix x 2 X , y 2 Y and let q ⌘ qx,y be as in the hypothesis.

Lower bound. By (i), (ii) and Theorem 3.4-(H1) there exist sequences (n) inP(X),
(�n) in P(Y ) such that

n ! �x and lim
n

1
an H(n|µ

y
n)  K y(x)

�n ! �y and lim
n

1
an H(�n|µ

y
n)  J x (y).

(4.4)
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By (3.6) there exist probabilities (Q1
n), (Q2

n) on (�1,F1), (�2,F2) respectively,
such that n = Q1

n � ( f yn )
�1, �n = Q2

n � (gxn )
�1 and

H(n|µ
y
n) = H(Q1

n|P1n) H(�n|⌫
x
n ) = H(Q2

n|P2n). (4.5)

Set now Qn = Q1
n ⌦ Q2

n , and define �n 2 P(X ⇥ Y ) as the law of (⇠n, ⌘n) under
Qn , �n := Qn � (⇠n, ⌘n)

�1. Then patching (4.4) and (4.5) together

lim
n

1
an H(�n|�n)  lim

n
1
an H(Qn|Pn) = lim

n
1
an H(Q1

n|P1n) + 1
an H(Q1

n|P1n)

 lim
n

1
an H(n|µ

y
n) + lim

n
1
an H(�n|⌫

x
n )  K y(x) + J x (y).

(4.6)

In particular, if K y(x) + J x (y) < +1, 1an H(Qn|Pn) is uniformly bounded. Thus
by (iii) and (3.7), for each " > 0

lim
n

Qn

⇣
dX (⇠n, x) + dY (⌘n, y) � q

�
dX ( f yn , x) + dY (gxn , y)

�
+ "

⌘
= 0. (4.7)

By (4.4) and q(0) = 0, for all "0 > 0

lim
n

Qn
�
q(dX ( f yn , x) + dY (gxn , y)) > "0� = 0. (4.8)

(4.7) and (4.8) yield �n ! �(x,y) in P(X ⇥ Y ). Inequality (4.6) and Theorem 3.4-
(H1) imply that the lower bound holds with rate K y(x) + J x (y), and by Corol-
lary 4.2, it holds with its lower semicontinuous envelope I .
Upper bound. Assume that �n 2 P(X ⇥ Y ) is such that �n ! �(x,y). By
Theorem 3.5, we need to prove that limn a�1

n H(�n|�n) � I (x, y). Up to pass-
ing to a subsequence, one can assume a�1

n H(�n|�n) to be bounded uniformly in
n, so that by the Remark 3.7 there exists a probability Qn on (�,F) such that
�n = Qn � (⇠n, ⌘n)

�1 and H(�n|�n) = H(Qn|Pn). Let Q1
n(d!1) and Q2

n(d!2) be
the marginals of Qn on �1 and �2 respectively. For all " > 0

Q1
n(dX ( f yn , x) > ") + Q2

n(dY (gxn , y) > ")

= Qn(dX ( f yn , x) > ") + Qn(dY (gxn , y) > ")

 2Qn
�
dX ( f yn , x) + dY (gxn , y) > "

�

 2Qn

⇣
dX ( f yn , x) + dY (gxn , y) > q

�
dX (⇠n, x) + dY (⌘n, y)

�
+ "/2

⌘

+ 2Qn

⇣
q
�
dX (⇠n, x) + dY (⌘n, y)

�
> "/2

⌘
.

(4.9)

The last line of (4.9) vanishes as n ! +1, since �n ! �x,y . On the other hand,
by (3.7) and hypothesis (iv)

lim
n

Qn

⇣
dX ( f yn , x) + dY (gxn , y) > q

�
dX (⇠n, x) + dY (⌘n, y)

�
+ "/2

⌘

 lim
n

log 2
an + 1

an H(Qn|Pn)

� 1
an logPn

⇣
dX ( f yn , x) + dY (gxn , y)>q

�
dX (⇠n, x)+ dY (⌘n, y)

�
+"/2

⌘ =0.
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Thus by (4.9), for all " > 0

lim
n

Q1
n(dX ( f yn , x) > ") = lim

n
Q2
n(dY (gxn , y) > ") = 0

and, letting n = Q1
n � ( f yn )

�1
2 P(X), �n = Q2

n � (gxn )
�1 2 P(Y ), we gather

lim
n

n = �x in P(X) lim
n

�n = �y in P(Y ). (4.10)

Disintegrate now Qn as Qn(d!1, d!2) = Q1
n(d!1)Qn(!

1; d!2). Then by explicit
calculations and Jensen inequality

H(�n|�n) = H(Qn|Pn) = H(Q1
n|P1n) +

Z

�1
Qn(d!1) H(Qn(!

1; ·)|P2n)

� H(Q1
n|P1n) + H

✓Z

�1
Qn(d!1)Qn(!

1; ·)
�
�
�P2n

◆

= H(Q1
n|P1n) + H(Q2

n|P2n)+ � H(
y
n |µy

n) + H(�
y
n |⌫

x
n ).

(4.11)

By (4.10), hypothesis (i), (ii) and Theorem 3.5-(H1) we get

lim
n

1
an H(�n|�n) � lim

n

1
an H(

y
n |µy

n)+lim
n

1
an H(�

y
n |⌫

x
n ) � K y(x)+J x (y) � I (x, y)

concluding the proof.

5. LD and 0-convergence topology

We say that the speed a is trivial for the LD of (µn) if the functionals I
a, I a only

take the values 0 and +1. Assume, for the sake of simplicity, that (µn) converges
to µ in P(X), and note that

Support(µ) ⇢ Closure
�
lim
n
Support(µn)

�
. (5.1)

If the inclusion (5.1) is actually an equality, which means that the measures µn do
not feature any concentration phenomena in the limit n ! 1, then it is easy to
check that

I a(x) = I a(x) =

(
0 if x 2 Support(µ)

+1 otherwise

regardless of the speed (an). That is, the LD of (µn) are trivial. On the other hand,
if the inclusion (5.1) is strict, one can prove that there exists a non-trivial speed
(an). This remark suggests that, when considering LD as a notion of convergence
on the space of couples (a, µ) 2 R+ ⇥ P(X), one should identify the singular
measures, since no speed (an) can catch the concentration speed of the support of
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Dirac masses. More precisely, recall (2.2), and define the equivalence relation on
R+ ⇥ P(X)

(a, µ) ⇠ (a0, µ0),
�
(a, µ) = (a0, µ0) or 9x 2 X : µ = µ0 =�x

 
, la,µ = la0,µ0,

and let
U(X) := R+ ⇥ P(X)/ ⇠

V(X) :=
�
I : X ! [0,+1], I is lower semicontinuous

 

W(X) := U(X) [ V(X)

L(X) :=
�
l :K(X)! [0,+1], l is lower semicontinuous, l(K) l(K 0) if K�K 0 .

We want to look at LD as a notion of convergence inW(X). To our aim, L(X) is
naturally equipped with the topology of 0-convergence [2, Chapter 10] on K(X).
One can prove that L(X) is a T1, supercompact space (an easy extension of [2, The-
orem 10.6]). The maps (2.2), (2.3) define an injection W(X) ,! L(X), and we
equipW(X) with the induced topology. We say that a subsetW(X) is equicoer-
cive, if its homeomorphic image in L(X) is equicoercive. Note in particular that a
sequence (an, µn) is equicoercive iff (µn) is exponentially tight with speed (an).

The following theorem is a consequence of the equivalence between the (L)
and (P) statements in Proposition 3.2 and Theorems 3.4-3.5, and the metrizabil-
ity properties of the topology of 0-convergence for equicoercive subsets [2, Theo-
rem 10.22].

Theorem 5.1. Let (wn) be a sequence converging to w inW(X). Then

(i) Up to ⇠ identification, if wn = (an, µn) and (an) is bounded, then an ! a
and µn ! µ and w = (a, µ) 2 U(X);

(ii) If wn = (an, µn) and an ! +1, then w = I 2 V(X) and µn satisfies a
weak LDP with speed (an) and rate I ;

(iii) If wn = In , then w = I and In 0-converges to I .

The relative topology induced byW(X) on an equicoercive subset E is metrizable.
Roughly speaking, the previous theorem states that the topology induced by E

on measures is the usual topology of narrow convergence, the topology it induces
on functionals is the topology of 0-convergence. However, while the space of func-
tionals on X is compact under this topology, it can happen that measures converge
to functionals, and this is the case if and only if a LDP holds. It is worth to re-
mark that up to identification W(X) can be regarded as a subset of the set Q(X)
introduced in [5, Chapter 4.7], and while the topology of L(X) does not induce the
topology onQ(X) therein considered, the two topologies coincide onW(X).

6. Second order Sanov theorem

In this section we give a simple application of the results in Section 3. Sanov
theorem states that, if the random variables (xi )i2N are i.i.d. with law µ 2 P(X),
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then the law of their empirical measure satisfies a LDP with speed (n) and rate
H(·|µ). The result also holds if the law µn of the random variables depends on
n, provided µn ! µ. However, if (µn) concentrates in the sense of (5.1), the
LD can admit a nontrivial “second order” expansion. To fix ideas, suppose that
µn ! µ = �x for some x 2 X . Then the functional H(·|�x ) is trivial (in the sense
of Section 5), and the speed (n) is not the interesting one. More in general, several
non-trivial LDPs may hold, as shown in the following theorem (this result already
appeared in the literature in the context of diffusion processes [4], and closer to the
framework of this paper in [9]).

Theorem 6.1. Let (µn) be a sequence converging to µ in P(X), and define the
empirical measure ⇡n : Xn ! P(X) as

⇡n := 1
n

nX

i=1
�xi .

Then the law Pn := µ⌦n
n � ⇡�1

n of ⇡n under the product measure µ⌦n
n satisfies a

LDP on P(X) with speed (n) and rate H(·|µ).
Assume furthermore that (µn) satisfies a LDP on P(X) with speed (an) and

lower semicontinuous, coercive rate I : P(X) ! [0,+1]. Then the law of ⇡n
satisfies a LDP on P(X) with speed (n an) and lower semicontinuous, coercive
rate I : P(X) ! [0,+1]

I(⌫) :=
Z

X
⌫(dx) I (x).

Proof. Fix ⌫ 2 P(X).
Lower bound with speed (n). By Proposition 3.2-(H), there exists ⌫n ! ⌫ such that
limn H(⌫n|µn)  H(⌫|µn). Take Qn := ⌫⌦n

n � ⇡�1
n . Then Qn ! �⌫ and

1
n H(Qn|Pn) = 1

n H
�
⌫⌦n
n � ⇡�1

n |µ⌦n
n � ⇡�1

n
�

 1
n H

�
⌫⌦n
n |µ⌦n

n
�

= H
�
⌫n|µn

�
(6.1)

so that we conclude by Theorem 3.4-(H1).
Lower bound with speed (n an). By Theorem 3.4-(H2), there exists ⌫n ! ⌫ such
that limn

1
an H(⌫n|µn)  I(⌫). Take Qn := ⌫⌦n

n � ⇡�1
n . By the same calculation as

in (6.1) and Theorem 3.4-(H1) we conclude.
Weak upper bound with speed (n). Let (Qn) be a sequence in P(P(X)) such that
Qn ! �⌫ . We want to prove limn H(Qn|Pn) � H(⌫|µ). One can assume Qn =
�n � ⇡�1

n for some �n 2 P(Xn) the relative entropy being infinite otherwise, see
(3.5). Since ⇡n(x) = ⇡n(x0) iff x0 is obtained from x by an index permutation, �n
can be assumed invariant under index permutation as well (see (3.6)), to obtain

H(Qn|Pn) = H
�
�n � ⇡�1

n |µ⌦n
n � ⇡�1

n
�

= H
�
�n|µ

⌦n
n

�
.

Let ⌫n 2 P(X) be the one-dimensional marginal of �n . By the explicit representa-
tion (3.3) of the relative entropy and its convexity, reasoning as in (4.11)

H(Qn|Pn) = H
�
�n|µ

⌦n
n

�
� H

�
⌫⌦n
n |µ⌦n

n
�

= n H(⌫n|µn).
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On the other hand Qn ! �⌫ implies ⌫n ! ⌫, so that by Proposition 3.2-(H)

lim
n

1
n H(Qn|Pn) � lim

n
H(⌫n|µn) � H(⌫|µ).

Weak upper bound with speed (n an). Following the same strategy of the bound
with speed (n), we obtain

lim
n

1
n an H(Qn|Pn) � lim

n

1
an H(⌫n|µn) �

Z
⌫(dx) I (x),

where in the last inequality we used Theorem 3.5-(H2). We conclude by applying
Theorem 3.5-(H1) to (Qn).

Exponential tightness. With the same notation of the upper bound proofs, if
1
n H(Qn|Pn) is uniformly bounded then H(⌫n|µn) also is. Since µn is tight, Propo-
sition 3.1 implies that ⌫n is tight and thus Qn is tight as well. By Theorem 3.3
we conclude that (Pn) is exponentially tight with speed (n). Since (µn) satisfies
a LDP with speed (n an) and I is coercive, (µn) is exponentially tight with this
speed [5, Ex. 4.1.10], and the same proof yields that (Pn) is exponentially tight
with speed (n an).

An example of application of Theorem 6.1, is the extension of well known re-
sults about LD for the empirical measure of independent random walks or diffusion
processes. Let (Xni )i2N be a family of stochastic process Xni 2 D([0,+1[;Rd),
all starting at 0 (the case of different initial conditions for each Xni could also be
fitted in this framework, but we keep the notation simple). If Xni converges in law to
some limit process X (e.g., Xni is a parabolically-rescaled symmetric random walk
converging to a brownian motion or a Levy process in case of heavy tails), then
the LD of the empirical measure ⇡n happen with speed (n), for instance the results
in [8] can be recovered from the first part of Theorem 6.1 by a contraction principle.
However, if Xni converges to a deterministic trajectory (e.g., X

n
i is a hyperbolically-

rescaled asymmetric random walk, converging to a uniform motion), then the LD
happen with a faster speed. For instance one can recover the results in [7] by the
second part of Theorem 6.1 by a contraction principle.

A most interesting open problem related to the above framework is the anal-
ysis of the LD for the empirical measure of a totally asymmetric simple exclusion
process on Z (TASEP). Indeed, the law of the path of a particle Xi is independent
of the law of the other particles conditionally to the path of the particle at its right
(provided the TASEP moves right). TASEP would therefore fit in the framework of
Theorem 6.1, except that (xi ) is now a Markov chain (not an i.i.d. sequence), and
µn is replaced by a jump kernel µn(x, dy). In this case, one still expects the pres-
ence of multiple non-trivial speeds for the LD in the same fashion of Theorem 6.1;
however the Markov equivalent of Theorem 6.1 features a richer description, and it
is still subject of investigation.
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