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A Hardy type inequality on fractional order Sobolev
spaces on the Heisenberg group

ADIMURTHI AND ARKA MALLICK

Abstract. In this paper, we derive a non linear Hardy type inequality on certain
fractional order Sobolev spaces on the Heisenberg group. Our inequality is an
analogous version of an inequality of the same name on weighted Folland-Stein
spaces which had been derived in [3]. We also derive Sobolev type and Mor-
rey type embedding to make that abstract fractional order Sobolev spaces on the
Heisenberg group more familiar.

Mathematics Subject Classification (2010): 46E35 (primary); 26D15, 43A80
(secondary).

1. Introduction

Over the last decade different types of Hardy inequalities fascinate a lot of mathe-
maticians and physicists due to their physical significance and application to differ-
ent type of PDEs. In this article, we have investigated such an inequality along with
Sobolev embedding on fractional order Sobolev spaces on the Heisenberg group.
Before stating the main results let us recall some relevant literature.

The classical Hardy inequality asserts that for any domain � ⇢ Rn (n � 3)
with 0 2 �

Z

�
|ru|2dx � �⇤

Z

�

u2

|x |2
dx 8u 2 H10 (�), (1.1)

where �⇤ = (n�2)2
4 is the optimal constant, which is never achieved in H10 (�). The

constant �⇤ plays a crucial role in analysing the behaviour of heat equation with
inverse square potential (See [4, 29]).

Since the inequality (1.1) is strict for any u 2 H10 (�), there is a purpose to
improving (1.1). This opportunity has been exploited in [2, 5, 10] to derive various
improvements of (1.1) by imposing different conditions on�, whereas for� = Rn

it has been shown in [15,17] that additional correction terms cannot be added.
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For s 2 (0, 1) and 1  p < 1, let us consider the fractional order Sobolev
space

Ws,p(�) :=

⇢
u 2 L p(Rn) :

Z

�

Z

�

|u(x) � u(y)|p

|x � y|n+sp
dxdy < 1

�
,

endowed with the norm

||u||Ws,p(�) := ||u||L p(�) + [u]Ws,p(�),

where [u]Ws,p(�) :=
⇣R

�

R
�

|u(x)�u(y)|p
|x�y|n+sp dxdy

⌘ 1
p and � is any open set in Rn . In

[23] Maz’ya and Shaposhnikova proved the following Hardy type inequality:
Z

Rn

|u|p

|x |sp
dx  C(n, p)

s(1� s)
(n � sp)p

[u]pWs,p(Rn) , for all u 2 Ws,p(Rn), (1.2)

where sp < n and C(n, p) > 0 is a constant depending only on n, p. They used it
to prove the following versions of the Sobolev inequality:

(i) ||u||pLq (Rn)  C(n, p)
s(1� s)

(n � sp)p�1
[u]pWs,p(Rn) , for all u 2 Ws,p(Rn), (1.3)

where sp < n, q = np
n�sp and C(n, p) > 0 is a function of n, p only;

(ii) for any cube Q ⇢ Rn

�
�
�
�

�
�
�
�u�

Z

Q
u
�
�
�
�

�
�
�
�

p

Lq (Q)

C(n, p)
(1� s)

(n � sp)p�1
[u]pWs,p(Q), for all u2Ws,p(Q), (1.4)

where s 2 (0, 1), 1  p < 1, sp < n, q = np
n�sp and C(n, p) > 0 is a

constant depending only on n, p.

Inequality (1.4) was established previously by Bourgain, Brezis, and Mironescu
in [8] under the assumption 12  s < 1, 1  p < 1 and sp < 1.Given the fact that,
fractional Sobolev inequalities have already been proved long ago (See [1,9,22,27]),
the inequalities (1.3) and (1.4) still hold strong ground because of the following two
results:

(i) (See [7]) For any smooth bounded domain � ⇢ Rn and for any u 2 W 1,p(�)

lim
s"1

(1� s)
Z

�

Z

�

|u(x) � u(y)|p

|x � y|n+sp
dxdy ⇠ ||ru||pL p(�) , (1.5)

where 1  p < 1;
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(ii) (See [23]) For any u 2 [0<s<1Ws,p(Rn)

lim
s#0

s
Z

Rn

Z

Rn

|u(x) � u(y)|p

|x � y|n+sp
dxdy ⇠ ||u||pL p(Rn) , (1.6)

where 1  p < 1.

Next we will recall some relevant results on the Heisenberg group. The Heisenberg
group Hn is defined as

Hn :={⇠ =(z, t) : z=(x, y)2Rn⇥Rn, t 2R, x=(x1, . . . ,xn) and y=(y1, . . . ,yn)}

with the following group operation:

⇠ � ⇠ 0 =
�
x + x 0, y + y0, t + t 0 + 2

⌦
y, x 0↵� 2

⌦
x, y0↵� ,

where ⇠ 0 = (z0, t 0) = (x 0, y0, t 0), ⇠ 2 Hn and h· , ·i denotes the usual Euclidean
inner product in Rn . Clearly, 0 2 Hn is the identity element, and for any ⇠ 2 Hn ,
⇠�1 = �⇠. A basis for the left invariant vector fields is given by

X j =
@

@x j
+ 2y j

@

@t
, 1  j  n,

Xn+ j =
@

@y j
� 2x j

@

@t
, 1  j  n,

T =
@

@t
.

Let � ⇢ Hn be a domain. For u 2 C1(�) define the sub-gradient rHn (u) by

rHn (u) :=
�
X1(u), . . . , X2n(u)

�
,

and |rHn (u)|2 :=
2nX

j=1

�
�X j (u)

�
�2.

For ⇠ = (z, t) = (x, y, t) 2 Hn define the Koranyi-Folland non isotropic gauge
d(⇠) =

��
|x |2+|y|2

�2
+ t2

� 1
4 =

�
|z|4 + |t |2

� 1
4 . Having this knowledge, let us recall

the sub-elliptic Sobolev embedding theorem which is due to Folland and Stein [18].
While the result is valid for any Carnot group, we will state it in the set up of the
Heisenberg group.

Let 1 < p < Q and set q = pQ
Q�p , where Q = 2n + 2 is the homogeneous

dimension of Hn . Then there exists Sp(Hn) > 0 such that

||u||Lq (Hn)  Sp(Hn) ||rHn u||L p(Hn) , for all u 2 C1
c (Hn). (1.7)

In this context let us mention Vassilev, who proved the existence of extremal func-
tions of the above inequality in [28].
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On the other hand in [19], Garofalo and Lanconelli proved the following Hardy
type inequality
Z

Hn

|rHn d(⇠)|2

d(⇠)2
|u|2d⇠ 

✓
2

Q � 2

◆2 Z

Hn
|rHn u|2d⇠, u 2 C1

c (Hn \ {0}). (1.8)

The optimality of the constant
⇣

2
Q�2

⌘2
is shown in [21]. Inequality (1.8) was used

in [19] to establish some strong unique continuation properties for singular pertur-
bations of the Kohn-Spencer sub-Laplacian on Hn. Over the years, more than one
generalisation of (1.8) have been derived by different authors. For example, differ-
ent extensions of (1.8) have been achieved in [12, 24] when p 6= 2. Also a sharp
inequality of type (1.8) has been derived in general Carnot-Carathéodory spaces
by Danielli, Garofalo and Phuc in [13, 14]. In this connection, let us mention a
Hardy-Sobolev type inequality due to Adimurthi and Sekar [3] which is related to
the operator L p defined as follows. For any smooth function u, and for 1 < p < 1,
we define

L p(u)=�
nX

j=1

"

X j

 �
�
�
�
rHn (u)

|z|

�
�
�
�

p�2
X j (u)

!

+ Xn+ j

 �
�
�
�
rHn (u)

|z|

�
�
�
�

p�2
Xn+ j (u)

!#

.

Let 1 < p < n + 2. Then, for all u 2 FS1,p0 (Hn), the HS-type inequality asserts
that

Z

Hn

|rHn u|p

|z|p�2
�

✓
2(n + 2� p)

p

◆p Z

Hn

|z|2|u|p
�
|z|2 + t2

� p
2

� 0 (1.9)

and
⇣
2(n+2�p)

p

⌘p
is the best constant, which is never achieved. Here FS1,p0 (Hn) is

defined as the completion of C1
c (Hn) under the following norm:

|u|p1,p :=
Z

Hn

|rHn u|p

|z|p�2
dxdydt.

Loosely speaking, our version of the Hardy-Sobolev inequality is a fractional analog
of (1.9). Before going to our results let us define the following fractional order
Sobolev space on Hn:

Ws,p,↵
0 (Hn)

= Cl
⇢
f 2 C1

c (Hn) :
Z

Hn⇥Hn

| f (⇠ 0) � f (⇠)|p

d(⇠�1 � ⇠ 0)Q+ps |z0 � z|(p�2)↵
d⇠ 0d⇠ < 1

�
.

Here 0 < s < 1, 1  p < 1, ↵ 2 R and as usual ⇠ = (z, t), ⇠ 0 = (z0, t) 2 Hn .
For f 2 Hn define

[ f ]s,p,↵ :=

✓Z

Hn⇥Hn

| f (⇠ 0) � f (⇠)|p

d(⇠�1 � ⇠ 0)Q+ps |z0 � z|(p�2)↵
d⇠ 0d⇠

◆ 1
p
and

|| f ||s,p,↵ := || f ||L p(Hn) + [ f ]s,p,↵.
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The above closure is taken under the norm ||.||s,p,↵ . Our first result is the Sobolev
embedding which is the following.

Theorem 1.1 (Sobolev Embedding). Let s 2 (0, 1), 1  p < 1 and ↵ 2 R
satisfy the following two conditions:

(a) (p � 2)↵ � 0;
(b) ps + (p � 2)↵ < Q.

Then there exists a positive constant Cn,p,s,↵ depending only on n, p, s and ↵ such
that

|| f ||Lq (Hn)  Cn,p,s,↵[ f ]s,p,↵, for all f 2 Ws,p,↵
0 (Hn), (1.10)

where q := Qp
Q�ps�(p�2)↵ .

Next we have proved the following Hardy type inequality.

Theorem 1.2. Let s 2 (0, 1), 1  p < 1 and ↵ 2 R satisfies the following three
conditions:

(a) (p � 2)↵ � 0;
(b) ps > 2;
(c) ps + (p � 2)↵ < Q.

Then there exists a positive constant Cn,p,s,↵ depending only on n, p, s and ↵ such
that for any f 2 Ws,p,↵

0 (Hn), the following holds true:
Z

Hn

| f (⇠)|pd⇠

d(⇠)ps |z|(p�2)↵
 Cn,p,s,↵[ f ]ps,p,↵, (1.11)

where ⇠ = (z, t) 2 Hn.

Remark 1.3.

(i) The condition ps > 2 along with s 2 (0, 1) forces us to choose p > 2. But
the main ingredient, i.e. Lemma 5.1 holds true for p = 2. Hence, the Hardy-
Sobolev type inequality (1.11) still holds for p = 2;

(ii) Since we are dealing with the case p � 2, the condition (p � 2)↵ � 0 is
natural;

(iii) Condition (b) and (c) together imply (p�2)↵ < Q�2 which is not surprising,
since, as proved in Section 2, if (p � 2)↵ � Q � 2 then Ws,p,↵

0 (Hn) becomes
trivial;

(iv) One can easily observe that (1.11) is an analogous version of (1.2) but with a
rough constant. Because of this, our proof is more elementary than the proof
of (1.2).
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In Section 6 we prove the compactness of the Sobolev embedding. The theorem
states as follows.

Theorem 1.4. Let s 2 (0, 1), 32  p < 1 and ↵ 2 R satisfy the conditions (a) and
(b) mentioned in Theorem 1.1. Let � be a bounded extension domain for Ws,p,↵

0
and F be a bounded set of L p(�). Suppose that

sup
u2F

[u]s,p,↵,� < 1.

Then for any 1  r < q, F is relatively compact in Lr (�).

The space Ws,p,↵
0 (�) along with the quantity [u]s,p,↵,� have been defined in

Section 6. Also we have recalled the definition of an extension domain in the same
section. Towards the end of the article (see Section 7) we have proved the following
Morrey type embedding.

Theorem 1.5. Let p 2 [1,1), s 2 (0, 1) and ↵ 2 R satisfy the following two
conditions:

(i) 0  (p � 2)↵ < Q � 2;
(ii) ps + (p � 2)↵ > Q.

Then there exists a constant C > 0 depending only on n, s, p,↵ such that for any
u 2 L p(Hn)

||u||C0,� (Hn)  C
⇣
||u||pL p(Hn) + [u]ps,p,↵

⌘ 1
p
, (1.12)

where � := ps+(p�2)↵�Q
p .

We have adopted the methods introduced in [16] to prove Theorem 1.1, Theo-
rem 1.4 and Theorem 1.5. The proofs of Theorem 1.4 and Theorem 1.5 are almost
the same as the proof in [16] for the Euclidean case. But for the sake of complete-
ness we have added it.

As far as we know, there is no work related to Hardy inequalities of type (1.11)
apart form results in [11] and [25]. In both the articles the authors have derived
different Hardy type inequalities for different fractional powers of the sublaplacian.
In [11], the authors have derived the inequalities for general stratified Lie group
whereas in [25] a completely different approach has been used. In fact, they proved
a non homogeneous Hardy type inequality for the fractional sublaplacian Ls on the
Heisenberg group (see [25, Theorem 1.1]) via the following integral representation
of Ls :

hLs f, f i =
2n�2+3s0

⇣
n+1+s
2

⌘2

⇡n+1|0(�s)|

Z

Hn

Z

Hn

| f (⇠ 0) � f (⇠)|2

d(⇠�1.⇠ 0)Q+2s d⇠ 0d⇠.
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The above representation makes our definition of fractional Sobolev space more
relevant. Finally, we remark that following a similar approach one can generalize
all the theorems that have been proved in this article to any homogeneous Carnot
group.

The outline of the article is as follows. In Section 2 we have recalled a structure
theorem involving the elements of Hn. In Section 3 we have investigated the non
triviality of Ws,p,↵

0 (Hn). In Section 4, 5, 6 and 7 we have proved Theorems 1.1,
1.2, 1.4 and 1.5 respectively.

ACKNOWLEDGEMENTS. The authors would like to thank Prof. Sandeep for his
helpful suggestions.

2. Preliminaries

Let us recall a very basic result about the structure of elements ofHn. Although the
result is true for any general Homogeneous Carnot Group, let us state it, in the set
up of the Heisenberg group. The proof of this result can be found in [6, page 727,
Theorem 19.2.1]. Also we have added a short proof in the Appendix.

Theorem 2.1. Let g denote the Lie algebra of vector fields of Hn and Exp : g !
Hn be the usual exponential map. Then there exist a constant M 2 N (depending
only on Hn) such that for any h 2 Hn,

h = h1 � . . . � hM
d(h j )  c0d(h), j = 1 . . .M,

where h j = Exp(t j Xi j ), for some t j 2 R, i j 2 {1, . . . , 2n} and c0 > 0 is a constant
independent of h and h j .

Remark 2.2. Note that, here Exp(t j Xi j ) = t j ei j , where {ei }2n+1i=1 is the standard
basis on R2n+1 and hence d(h j ) = |t j |.

3. Non triviality ofWs,p,↵
0 (Hn)Ws,p,↵
0 (Hn)Ws,p,↵
0 (Hn)

From the definition it is not clear whether Ws,p,↵
0 (Hn) is non trivial or not. In fact,

if (p � 2)↵ � Q � 2 then Ws,p,↵
0 (Hn) is trivial. The next proposition shows that

if (p � 2)↵ < min {Q � 2, p(1� s)} then C1
c (Hn) ⇢ Ws,p,↵

0 (Hn). For the rest of
this article we will assume the above condition on ↵.

Proposition 3.1. Let s 2 (0, 1), 1  p < 1 and ↵ 2 R satisfy the following
condition

(p � 2)↵ < min {Q � 2, p(1� s)}. (3.1)
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Then for any u 2 C1
c (Hn), [u]s,p,↵ < 1.

Proof. For any ⇠ 2 Hn , define B(⇠, 1) := {⇠ 0 2 Hn : d(⇠�1 � ⇠ 0) < 1}. Then
[u]ps,p,↵ = I1 + I2, where

I1 : =
Z

Hn

Z

Bc(⇠,1)

|u(⇠ 0) � u(⇠)|p

d(⇠�1 � ⇠ 0)Q+ps |z0 � z|(p�2)↵
d⇠ 0d⇠,

I2 : =
Z

Hn

Z

B(⇠,1)

|u(⇠ 0) � u(⇠)|p

d(⇠�1 � ⇠ 0)Q+ps |z0 � z|(p�2)↵
d⇠ 0d⇠.

We will show that both I1 and I2 are finite. First consider I1:

I1  2p�1
Z

Hn

Z

B(⇠,1)c

|u(⇠ 0)|p + |u(⇠)|p

d(⇠�1 � ⇠ 0)Q+ps |z0 � z|(p�2)↵
d⇠ 0d⇠

= 2p
Z

Hn
|u(⇠)|p

Z

B(⇠,1)c

d⇠ 0

d(⇠�1 � ⇠ 0)Q+ps |z0 � z|(p�2)↵
d⇠.

In the above integral, changing the variable ⇠ 0 by ⇠ � ⇠̃ , where ⇠̃ = (z̃, t̃) 2 R2n⇥R,
we obtain

I1  2p ||u||pL p(Hn)

Z

Bc(0,1)

dz̃dt̃
�
|z̃|4 + t̃2

� Q+ps
4 |z̃|(p�2)↵

. (3.2)

Note that in view of (3.2), it is enough to show I3 :=
R
Bc(0,1)

dz̃dt̃

(|z̃|4+t̃2)
Q+ps
4 |z̃|(p�2)↵

<

1 to establish I1 < 1. To show this, we break I3 as I3 = I4+ I5+ I6+ I7, where

I4 : =
Z

{|z̃|<1}⇥{|t̃ |<1}\B(0,1)

dz̃dt̃
�
|z̃|4 + t̃2

� Q+ps
4 |z̃|(p�2)↵

,

I5 : =
Z

{|z̃|�1}⇥{|t̃ |<1}

dz̃dt̃
�
|z̃|4 + t̃2

� Q+ps
4 |z̃|(p�2)↵

,

I6 : =
Z

{|z̃|<1}⇥{|t̃ |�1}

dz̃dt̃
�
|z̃|4 + t̃2

� Q+ps
4 |z̃|(p�2)↵

,

I7 : =
Z

{|z̃|�1}⇥{|t̃ |�1}

dz̃dt̃
�
|z̃|4 + t̃2

� Q+ps
4 |z̃|(p�2)↵

.

Clearly

I4  2
Z

|z̃|<1

dz̃
|z̃|(p�2)↵

< 1, (3.3)
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since (p � 2)↵ < Q � 2. Moreover

I5  2
Z

|z̃|�1

dz̃
|z̃|Q+ps+(p�2)↵ = 4nw2n

Z 1

1

dr
r3+ps+(p�2)↵ < 1. (3.4)

Now let us estimate I6:

I6  2nw2n
Z

|t̃ |�1

dt̃

t̃
Q+ps
2

Z 1

0
r Q�3�(p�2)↵dr < 1 (3.5)

since Q + ps > 2 and (p � 2)↵ < Q � 2. Now

I7 = 2
Z

|z̃|�1

Z 1

1
|z̃|2

dt̃d z̃
�
1+ t̃2

� Q+ps
4 |z̃|Q�2+ps+(p�2)↵

 2
Z 1

0

dt̃
�
1+ t̃2

�
Z

|z̃|�1

dz̃
|z̃|Q�3+ps+(p�2)↵ < 1.

(3.6)

Hence, from (3.3), (3.4), (3.5), (3.6) we conclude that I3 < 1 and hence from (3.2)

I1  Cn,s,p,↵ ||u||pL p(Hn) , (3.7)

whereCn,s,p,↵ >0 is a constant depending only on n, s, p,↵.Now, as u 2 C1
c (Hn),

one has I1 < 1. It remains to show that I2 < 1. Before that, let us point out the
following fact, which will be used without mention. If ⇠ 0, ⇠, ⇠̃ 2 Hn are such that
⇠ = ⇠ 0 � ⇠̃ then for any u 2 C1(Hn) we have r⇠ 0

Hn u(⇠ 0 � ⇠̃) = r⇠
Hn u(⇠), where r⇠ 0

Hn

and r⇠
Hn denote the sub-gradient with respect to ⇠ 0 and ⇠ variable respectively.
Now let us consider

I2 : =
Z

Hn

Z

B(⇠,1)

|u(⇠ 0) � u(⇠)|p

d(⇠�1 � ⇠ 0)Q+ps |z0 � z|(p�2)↵
d⇠ 0d⇠.

Changing the variable ⇠ 0 by ⇠ � ⇠̃ , ⇠̃ = (z̃, t̃) 2 Hn we have

I2 =
Z

Hn
|u(⇠ � ⇠̃) � u(⇠)|p

Z

B(0,1)

d ⇠̃

d(⇠̃)Q+ps |z̃|(p�2)↵
d⇠. (3.8)

By Theorem 2.1, for ⇠̃ 2 B(0, 1) there exists M 2 N (depending only on Hn) such
that

⇠̃ = h1 � . . . � hM ,

d(h j )  c0d(⇠̃), j = 1, . . . ,M,

where h j = Exp(t j Xi j ) 2 Hn for some t j 2 R and i j 2 {1, . . . , 2n} and c0 > 0
is a constant independent of ⇠̃ and h j . Also d(h j ) = |t j |. Using this decomposition
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of ⇠̃ we will estimate |u(⇠ � ⇠̃) � u(⇠)| in terms of |rHn u|. For this, we can take
t j � 0 without losing generality. Now,

|u(⇠ � ⇠̃) � u(⇠)| 
MX

j=1
|u(⇠ � h1 � . . . � h j ) � u(⇠ � h1 � . . . � h j�1)|. (3.9)

Here we follow the convention that at j = 1, ⇠ � h1 � . . . � h j�1 = ⇠. Now let us
consider the integral curve � (t, Xi j ) of Xi j starting from ⇠ � h1 � . . . � h j�1. Then

�
�
t, Xi j

�
= ⇠ � h1 � . . . � h j�1 � Exp

�
t Xi j

�

and

�
�
0, Xi j

�
= ⇠ � h1 � . . . � h j�1, � (t j , Xi j ) = ⇠ � h1 � . . . � h j .

So there holds

u
�
�
�
t j , Xi j

��
� u

�
�
�
0, Xi j

��

=
Z t j

0

d
dr
u
�
�
�
r, Xi j

��
dr

=
Z t j

0
ru

�
�
�
r, Xi j

��
�̇ (r, Xi j )dr

=
Z t j

0
X ⇠
i j u
�
�
�
r, Xi j

��
dr

�
since � is the integral curve of Xi j

�

=
Z 1

0
t j X

⇠
i j u
�
⇠ � h1 � . . . � h j�1 � Exp(t j r Xi j )

�
dr.

Hence using Jensen’s inequality and the above in (3.9) we get

�
�
�u
⇣
⇠ �⇠̃

⌘
� u(⇠)

�
�
�
p
c0d(⇠̃)

MX

j=1

Z 1

0

�
�
�r⇠

Hn u
�
⇠ � h1 � . . . � h j�1 � Exp(t j r Xi j )

���
�
p
dr.

So, from (3.8) we have

I2 
MX

j=1

Z 1

0

Z

B(0,1)

1
d(⇠̃)Q�p(1�s)|z̃|(p�2)↵

·
Z

Hn

�
�
�r⇠

Hn u
�
⇠ � h1 � . . . � h j�1 � Exp(rt j Xi j )

���
�
p
d⇠d ⇠̃dr

= c0M ||rHn u||pLP (Hn)

Z

B(0,1)

d ⇠̃

d(⇠̃)Q�p(1�s)|z̃|(p�2)↵

 c0M ||rHn u||pL p(Hn)

Z

|z̃|<1

Z

|t̃ |<1

dt̃d z̃
�
|z̃|4 + t̃2

� Q�p(1�s)
4 |z̃|(p�2)↵

.

(3.10)
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Let

J :=
Z

|z̃|<1

Z

|t̃ |<1

dt̃d z̃
�
|z̃|4 + t̃2

� Q�p(1�s)
4 |z̃|(p�2)↵

.

Then (3.10) suggests that it is enough to prove J < 1 to conclude I2 < 1. To
show this we will consider the following cases.

Case I: Q � p(1� s)  0. Then, since (p � 2)↵ < Q � 2,
Z

|z̃|<1

dz̃
|z̃|(p�2)↵

= 2nw2n
Z 1

0
r Q�3�(p�2)↵dr < 1.

Hence J < 1.

Case II: 0 < Q � p(1� s) < 2, i.e. Q � 2 < p(1� s). Then
Z 1

0

dt̃

t̃
Q�p(1�s)

2
< 1.

Also, as (p � 2)↵ < Q � 2,
R
|z̃|<1

dz̃
|z̃|(p�2)↵ < 1. Hence

J  2
Z

|z̃|<1

dz̃
|z̃|(p�2)↵

Z 1

0

dt̃

t̃
Q�p(1�s)

2
< 1.

Case III: Q � p(1� s) > 2, i.e. p(1� s) < Q � 2. Then

J = 4nw2n
Z 1

0

Z 1

0

r Q�3�(p�2)↵drdt̃
�
r4 + t̃2

� Q�p(1�s)
4

.

Changing the variable t̃ by r2t in the above integral we get

J = 4nw2n
Z 1

0

Z 1
r2

0

r�1+p(1�s)�(p�2)↵

�
1+ t2

� Q�p(1�s)
4

dtdr.

Now, since (p � 2)↵ < p(1� s) and Q � p(1� s) > 2 both the integrals

Z 1

0
r�1+p(1�s)�(p�2)↵dr and

Z 1

0

dt̃
�
1+ t̃2

� Q�p(1�s)
4

are finite. Hence J < 1.
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Case IV: Q� p(1� s) = 2. Then by the same change of variable as in Case III we
have

J = 4nw2n
Z 1

0

Z 1
r2

0

r Q�3�(p�2)↵

�
1+ t̃2

� 1
2

dt̃dr

= 4nw2n

2

4
Z 1

0

Z 1

0

r Q�3�(p�2)↵

�
1+ t̃2

� 1
2

dt̃dr +
Z 1

0

Z 1
r2

1

r Q�3�(p�2)↵

�
1+ t̃2

� 1
2

dt̃dr

3

5 .

(3.11)

Now, since (p � 2)↵ < Q � 2, the first integral of the above equality is finite. To
show the second one is finite let us set

J1 :=
Z 1

0

Z 1
r2

1

r Q�3�(p�2)↵

�
1+ t̃2

� 1
2

dt̃dr.

Then

J1 
Z 1

0
r Q�3�(p�2)↵

Z 1
r2

1

dt̃
t̃
dr

= 2
Z 1

0
r Q�3�(p�2)↵ log

1
r
dr.

Put t = log 1r in the above integral. Then

J1  2
Z 1

0
te�(Q�2�(p�2)↵)t dt < 1,

since Q � 2� (p � 2)↵ > 0. Hence from (3.11) we have J < 1.

This proves the proposition.

4. Sobolev embedding

Let 1  p < 1 and s 2 (0, 1).We are trying to find a positive constant C indepen-
dent of f 2 Ws,p,↵

0 (Hn) such that the following inequality holds:

|| f ||Lq (Hn)  C[ f ]s,p,↵

for some specific q. To find the desirable value of q let us use the following dilation
argument. Let f 2 Ws,p,↵

0 (Hn); for � > 0 we define

f�
�
⇠ 0� = f

⇣p
�z0, �t 0

⌘
for ⇠ 0 =

�
z0, t 0

�
=
�
x 0, y0, t 0

�
2 Hn.
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So,

|| f�||Lq (Hn) =

✓Z

Rn⇥Rn⇥R

�
� f�
�
x 0, y0, t 0

���q dx 0dy0dt 0
◆ 1

q

=

✓Z

Rn⇥Rn⇥R

�
�
� f
�p

�x 0,
p

�y0, �t 0
���
�
q
dx 0dy0dt 0

◆ 1
q

=
1

�
Q
2q

|| f ||Lq (Hn) .

For ⇠ = (x, y, t) = (z, t) and ⇠ 0 2 Hn let us define

⇠� =

✓
x

p
�
,
y

p
�
,
t
�

◆
, ⇠ 0

� =

✓
x 0

p
�
,
y0

p
�
,
t 0

�

◆
.

Then d(⇠�1
� � ⇠ 0

�) = 1p
�
d(⇠�1 � ⇠ 0)

[ f�]
p
s,p,↵ =

Z

Hn⇥Hn

| f�(⇠ 0) � f�(⇠)|p

d(⇠�1 � ⇠ 0)Q+ps |z0 � z|(p�2)↵
d⇠ 0d⇠

=
Z

Hn⇥Hn

�
Q+ps+(p�2)↵

2 | f (⇠ 0) � f (⇠)|p

�Qd(⇠�1 � ⇠ 0)Q+ps |z0 � z|(p�2)↵
d⇠ 0d⇠

=
[ f ]ps,p,↵

�
Q�ps�(p�2)↵

2
.

Consequently, to prove || f ||Lq (Hn)  C[ f ]s,p,↵ , it is necessary to choose q such
that Q�ps�(p�2)↵

2p = Q
2q , i.e. q = Qp

Q�ps�(p�2)↵ holds. Hence for the remaining
part of this section let us assume that ps + (p � 2)↵ < Q, (p � 2)↵ � 0 and
q = Qp

Q�ps�(p�2)↵ . From the definition of q and by our assumption it follows that
1  q < 1 and

p
q

= 1�
ps + (p � 2)↵

Q
.

Clearly p
q < 1. Let us take r = Q

ps+(p�2)↵ . Then r > 1 and 1r + p
q = 1.

Lemma 4.1. Let E ⇢ Hn be any measurable set with finite Lebesgue measure. Fix
⇠ = (x, y, t) = (z, t) 2 Hn , 1  p < 1. Then there exists a positive constant
Cn,p,s,↵ depending only on n, p,↵, s such that

Z

Ec

d⇠ 0

d(⇠ 0�1 � ⇠)Q+ps |z � z0|(p�2)↵
� Cn,p,s,↵|E |�

ps+(p�2)↵
Q , (4.1)

where ⇠ 0 = (x 0, y0, t 0) = (z0, t 0) 2 Ec and |E | denotes the Lebesgue measure of E .



930 ADIMURTHI AND ARKA MALLICK

Proof. The integral of (4.1) is of the form

I :=
Z

Ec

dz0dt 0
⇣
|z � z0|4 + (t � t 0 + 2 < x 0, y > �2 < y0, x >)2

⌘ Q+ps
4

|z � z0|(p�2)↵
.

Put ⇣ = z�z0, where ⇣ =(⇣1, ⇣2) 2 R2n andµ = t�t 0+2 < x 0, y > �2 < y0, x >.
Then

I =
Z

Fc

d⇣dµ
�
|⇣ |4 + µ2

� Q+ps
4 |⇣ |(p�2)↵

, (4.2)

where F is a measurable set depending on ⇠ with |F | = |E |.Now let R > 0 be such
that |E | = 2w2n RQ . Denote BR = B2n(0, R) ⇥ (�R2, R2), where B2n(0, R) is a
ball in R2n with radius R and centre at the origin. Then clearly |E | = |F | = |BR|.
Now (4.2) can be written as

I =
Z

Fc\BR

d⇣dµ
�
|⇣ |4 + µ2

� Q+ps
4 |⇣ |(p�2)↵

+
Z

Fc\BcR

d⇣dµ
�
|⇣ |4 + µ2

� Q+ps
4 |⇣ |(p�2)↵

�
Z

Fc\BR

d⇣dµ

2
Q+ps
4 RQ+ps+(p�2)↵

+
Z

Fc\BcR

d⇣dµ
�
|⇣ |4 + µ2

� Q+ps
4 |⇣ |(p�2)↵

.

(4.3)

The last inequality came from the fact that, for (p � 2)↵ � 0 and (⇣, µ) 2 BR
⇣
|⇣ |4 + µ2

⌘ Q+ps
4

< 2
Q+ps
4 RQ+ps+(p�2)↵ and |⇣ |(p�2)↵  R(p�2)↵.

Now, since |F | = |BR|, we have |BcR \ F | = |BR \ Fc|. Hence continuing from
(4.3) we have

I �
Z

F\BcR

d⇣dµ

2
Q+ps
4 RQ+ps+(p�2)↵

+
Z

Fc\BcR

d⇣dµ
�
|⇣ |4 + µ2

� Q+ps
4 |⇣ |(p�2)↵

. (4.4)

Now let B̃R := Bc2n(0, R) ⇥ (�R2, R2)c. Then B̃R ⇢ BcR and for (⇣, µ) 2 B̃R we
have

⇣
|⇣ |4 + µ2

⌘ Q+ps
4

|⇣ |(p�2)↵ � 2
Q+ps
4 RQ+ps+(p�2)↵.

Consequently, from (4.4) we obtain

I �
Z

B̃R

d⇣dµ
�
|⇣ |4 + µ2

� Q+ps
4 |⇣ |(p�2)↵

=
Z

|⇣ |>R

Z

|µ|>R2

dµd⇣
�
|⇣ |4 + µ2

� Q+ps
4 |⇣ |(p�2)↵

.

(4.5)
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Let

I1 : =
Z

|µ|>R2

dµ
�
|⇣ |4 + µ2

� Q+ps
4

= 2
Z 1

R2

dµ
�
|⇣ |4 + µ2

� Q+ps
4

.

Put µ = |⇣ |2⌫, then I1 becomes

I1 =
2

|⇣ |Q+ps�2

Z 1

R2
|⇣ |2

d⌫
�
1+ ⌫2

� Q+ps
4

. (4.6)

Consider

I2 :=
Z 1

R2
|⇣ |2

d⌫
�
1+ ⌫2

� Q+ps
4

.

Integrating by parts we get

I2=
Q+ ps
2

Z 1

R2
|⇣ |2

⌫2d⌫
�
1+⌫2

� Q+ps
4 +1

�
R2

|⇣ |2
⇣
1+ R4

|⇣ |4

⌘ Q+ps
4

=
Q+ ps
2

I2�
Q+ ps
2

Z 1

R2
|⇣ |2

d⌫
�
1+⌫2

�Q+ps
4 +1

�
R2

|⇣ |2
⇣
1+ R4

|⇣ |4

⌘Q+ps
4

.

Hence
I2 �

2R2

Q � 2+ ps
|⇣ |Q�2+ps

�
|⇣ |4 + R4

� Q+ps
4

.

So, from (4.5) and (4.6) we have

I �
4R2

Q + ps � 2

Z

|⇣ |>R

d⇣
�
|⇣ |4 + R4

� Q+ps
4 |⇣ |(p�2)↵

=
8nw2n R2

Q + ps � 2

Z 1

R

r Q�3dr
�
r4 + R4

� Q+ps
4 r (p�2)↵

.

Now, in the above integral, since r > R, there holds 1
r4+R4 � 1

2r4 . Hence from the
above formula we have

I �
8nw2n R2

(Q + ps � 2)2
Q+ps
4

Z 1

R

r Q�3�(p�2)↵dr
r Q+ps

=
8nw2n

(2+ ps + (p � 2)↵)(Q + ps � 2)2
Q+ps
4

1
Rps+(p�2)↵

= Cn,p,s,↵|E |�
ps+(p�2)↵

Q .

This proves the lemma.
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Lemma 4.2. Let s 2 (0, 1) , 1  p < 1 and ↵ be such that it satisfies (p� 2)↵ �
0. Let ps + (p � 2)↵ < Q. Let {ak}, {dk} be two sequences of nonnegative real
numbers satisfying the following properties:

(a) ak is decreasing;

(b) ak =
1X

j=k
d j .

Then we have

(i) for any fixed T > 0
X

k2Z
a
Q�ps�(p�2)↵

Q
k T k  T

Q
Q�ps�(p�2)↵

X

k2Z,ak 6=0
ak+1a

� ps+(p�2)↵
Q

k T k; (4.7)

(ii) moreover, if T > 1 then
X

i2Z,ai�1 6=0

X

j�i+1
T pia

� ps+(p�2)↵
Q

i�1 d j 
1

T p�1
X

i2Z,ai�1 6=0
T pia

� ps+(p�2)↵
Q

i�1 di . (4.8)

Proof. (i) Let 1⌘ := ps+(p�2)↵
Q and 1

� := Q�ps�(p�2)↵
Q . Then clearly 1

⌘ + 1
� = 1.

Now
X

k2Z
a
Q�ps�(p�2)↵

Q
k T k =

X

k2Z,ak 6=0
a
Q�ps�(p�2)↵

Q
k+1 T k+1 (since, ak+1 = 0 if ak = 0)

= T
X

k2Z,ak 6=0
a
1
�

k+1T
k

= T
X

k2Z,ak 6=0

✓
a
ps+(p�2)↵

Q�

k T
k
⌘

◆✓
a

� ps+(p�2)↵
Q�

k a
1
�

k+1T
k
�

◆

(applying Hölder’s inequality)

 T

0

@
X

k2Z,ak 6=0
a

⌘ ps+(p�2)↵
Q�

k T k
1

A

1
⌘ X

ak 6=0
a

� ps+(p�2)↵
Q

k ak+1T k
!1

�

= T

 
X

ak 6=0
a
Q�ps�(p�2)↵

Q
k T k

! 1
⌘
 
X

ak 6=0
a

� ps+(p�2)↵
Q

k ak+1T k
! 1

�

.

Hence,
X

k2Z
a
Q�ps�(p�2)↵

Q
k T k  T �

X

k2Z,ak 6=0
a

� ps+(p�2)↵
Q

k ak+1T k .

This proves the first part of the lemma.
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(ii) Let

I : =
X

ai�1 6=0

X

j�i+1
T pia

� ps+(p�2)↵
Q

i�1 d j

=
X

ai�1 6=0

X

j�i+1,d j 6=0
T pia

� ps+(p�2)↵
Q

i�1 d j .

Now, as j � i + 1 so, d j  a j  a j�1  ai  ai�1. Hence

I 
X

i2Z

X

j�i+1,d j a j�1 6=0
T pia

� ps+(p�2)↵
Q

i�1 d j


X

i2Z

X

j�i+1,d j a j�1 6=0
T pia

� ps+(p�2)↵
Q

j�1 d j (Since a j�1  ai�1)

=
X

j2Z,d j a j�1 6=0

 
X

i j�1
T pi

!

a
� ps+(p�2)↵

Q
j�1 d j

=

 
1X

k=0
T�pk

!
X

j2Z,a j�1 6=0
T ( j�1)pa

� ps+(p�2)↵
Q

j�1 d j

=
1

T p � 1
X

j2Z,a j�1 6=0
T jpa

� ps+(p�2)↵
Q

j�1 d j .

This proves the second part of the lemma.

4.1. Proof of Theorem 1.1

Proof. It is enough to prove the theorem for 0  f 2 Ws,p,↵
0 (Hn) with compact

support. For such an f let us define the following sets:

Ak :=
n
x 2 Hn : f (x) � 2k

o
,

Dk := Ak \ Ak+1 =
n
x 2 Hn : 2k  f (x) < 2k+1

o
.

Let ak = |Ak | and dk = |Dk |. Then, clearly, ak and dk satisfy the conditions of
Lemma 4.2. Now

|| f ||qLq (Hn) =
X

k2Z

Z

Dk
f q(x)dx


X

k2Z
2q(k+1)dk

 2q
X

k2Z
2qkak,
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where, in the last inequality, we have used dk  ak . So,

|| f ||pLq (Hn)  2p
 
X

k2Z
2qkak

! p
q

 2p
X

k2Z
2pka

p
q
k (Since p < q)

= 2p
X

k2Z
2pka

Q�ps�(p�2)↵
Q

k .

Using inequality (4.7) of Lemma 4.2 we obtain

|| f ||pLq (Hn)  2p+q
X

k2Z,ak 6=0
2pkak+1a

� ps+(p�2)↵
Q

k . (4.9)

Now let us estimate [ f ]s,p,↵. Note that if j  i � 2, then for any ⇠ 0 = (z0, t 0) 2 Dj
and ⇠ = (z, t) 2 Di , we have 2 j  f (⇠ 0) < 2 j+1  2i�1 < 2i  f (⇠) < 2i+1.
Hence, f (⇠) � f (⇠ 0) � 2i�1. So

[ f ]ps,p,↵ �
X

i2Z

X

j2Z

Z

Di⇥Dj

| f (⇠ 0) � f (⇠)|pd⇠ 0d⇠

d(⇠�1 � ⇠ 0)Q+ps |z0 � z|(p�2)↵

�
X

i2Z

X

ji�2

Z

Di

Z

Dj

| f (⇠ 0) � f (⇠)|pd⇠ 0d⇠

d(⇠�1 � ⇠ 0)Q+ps |z0 � z|(p�2)↵

�
X

i2Z

X

ji�2
2p(i�1)

Z

Di

Z

Dj

d⇠ 0d⇠

d(⇠�1 � ⇠ 0)Q+ps |z0 � z|(p�2)↵

=
X

i2Z
2p(i�1)

Z

Di

Z

[ ji�2Dj

d⇠ 0d⇠

d(⇠�1� ⇠ 0)Q+ps |z0�z|(p�2)↵

=
X

i2Z
2p(i�1)

Z

Di

Z

Aci�1

d⇠ 0d⇠

d(⇠�1 � ⇠ 0)Q+ps |z0 � z|(p�2)↵

(using Lemma 4.1) � Cn,s,p,↵
X

i2Z,ai�1 6=0
2p(i�1)a

� ps+(p�2)↵
Q

i�1 di (4.10)

✓
putting di =ai�

X

j�i+1
d j
◆

= Cn,s,p,↵
X

ai�1 6=0
2piaia

� ps+(p�2)↵
Q

i�1

�
X

ai�1 6=0

X

j�i+1
2pia

� ps+(p�2)↵
Q

i�1 d j .
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Hence

[ f ]ps,p,↵ + Cn,s,p,↵
X

ai�1 6=0

X

j�i+1
2pia

� ps+(p�2)↵
Q

i�1 d j

�Cn,s,p,↵
X

ai�1 6=0
2piaia

� ps+(p�2)↵
Q

i�1 .

(4.11)

So, by using inequality (4.8) and (4.10), we get

X

ai�1 6=0

X

j�i+1
2pia

� ps+(p�2)↵
Q

i�1 d j 
1

2p � 1
X

i2Z,ai�1 6=0
2pia

� ps+(p�2)↵
Q

i�1 di

 Cn,s,p,↵[ f ]ps,p,↵.

Hence, from (4.11) and the above inequality, we get

[ f ]ps,p,↵ � Cn,s,p,↵
X

i2Z,ai�1 6=0
2piaia

� ps+(p�2)↵
Q

i�1 . (4.12)

Finally, combining the above inequality with (4.9), we get the required Sobolev
embedding (1.10).

5. A Hardy type inequality
Before proving the theorem let us prove the following lemma.

Lemma 5.1. Let s 2 (0, 1), 1  p < 1 and ↵ 2 R satisfy the following three
conditions:

(a) (p � 2)↵ � 0;
(b) ps > 2;
(c) ps + (p � 2)↵ < Q.

Then there exists a positive constant Cn,s,p,↵ depending only on n, s, p,↵ such that
for any measurable set D ⇢ R2n+1 with |D| < 1 we have

Z

D

dzdt
�
|z|4 + t2

� ps
4 |z|(p�2)↵

 Cn,s,p,↵|D|1�
ps+(p�2)↵

Q . (5.1)

Here, z 2 R2n, t 2 R and |D| denotes the Lebesgue measure of D.

Proof. Let |D| = 2w2n RQ . Then, if we denote the set B2n(0, R) ⇥ (�R2, R2) by
BR , where B2n(0, R) is the ball in R2n centred at origin with radius R, one can
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easily notice that |BR| = |D|. Let

I : =
Z

D

dzdt
�
|z|4 + t2

� ps
4 |z|(p�2)↵

=
Z

D\BR

dzdt
�
|z|4 + t2

� ps
4 |z|(p�2)↵

+
Z

D\BcR

dzdt
�
|z|4 + t2

� ps
4 |z|(p�2)↵

.

Now let us define the following quantities:

BR,1 : =
n
z 2 R2n : |z| > R} ⇥ {t 2 R : |t | > R2

o
,

BR,2 : =
n
z 2 R2n : |z| > R} ⇥ {t 2 R : |t | < R2

o
,

BR,3 : =
n
z 2 R2n : |z| < R} ⇥ {t 2 R : |t | > R2

o

and

I1 : =
Z

D\BR

dzdt
�
|z|4 + t2

� ps
4 |z|(p�2)↵

,

I2 : =
Z

D\BR,1

dzdt
�
|z|4 + t2

� ps
4 |z|(p�2)↵

,

I3 : =
Z

D\BR,2

dzdt
�
|z|4 + t2

� ps
4 |z|(p�2)↵

,

I4 : =
Z

D\BR,3

dzdt
�
|z|4 + t2

� ps
4 |z|(p�2)↵

.

Then I = I1 + I2 + I3 + I4. We will estimate each of I1, I2, I3, I4 separately to
arrive at (5.1).
Estimation of I1:

I1 
Z

BR

dzdt
�
|z|4 + t2

� ps
4 |z|(p�2)↵

= 2
Z

|z|<R

Z R2

0

dtdz
�
|z|4 + t2

� ps
4 |z|(p�2)↵

A = 4nw2n
Z R

0

Z R2

0

r Q�3�(p�2)↵

�
r4 + t2

� ps
4
dtdr

(putting t = r2 t̄) =
Z R

0

Z R2
r2

0

r Q�1�(p�2)↵�ps

�
1+ t̄2

� ps
4

dt̄dr

 4nw2n
Z 1

0

dt̄
�
1+ t̄2

� ps
4

Z R

0
r Q�1�ps�(p�2)↵dr.
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Now, since ps > 2,
R1
0

dt̄

(1+t̄2)
ps
4

< 1, we get

I1  Cn,s,p,↵
RQ�ps�(p�2)↵

Q � ps � (p � 2)↵
(Since ps + (p � 2)↵ < Q)

=
Cn,s,p,↵

Q � ps � (p � 2)↵
|D|1�

ps+(p�2)↵
Q ,

(5.2)

where, Cn,s,p,↵ > 0 is a constant depending only on n, s, p,↵.

Estimation of I2:

I2 
|BR,1 \ D|

Rps+(p�2)↵


|D|

Rps+(p�2)↵ = Cn,s,p,↵|D|1�
ps+(p�2)↵

Q ,

(5.3)

where, Cn,s,p,↵ is a positive constant depending only on n, s, p,↵.

Estimation of I3: Let D1 := BR,2 \ D. Choose R1 > 0 so that |D1| = 2nw2n RQ1 .

Define B(0, R1) := {(z, t) 2 R2n ⇥ R :
�
|z|4 + t2

� 1
4 < R1}. Now, for (z, t) 2 D1

we have

|z|4 + t2  |z|4 + R4  2|z|4.

Since, (p � 2)↵ � 0 we have

1
|z|(p�2)↵


2

(p�2)↵
4

�
|z|4 + t2

� (p�2)↵
4

.

So

I3
2

(p�2)↵
4


Z

D1

dzdt
�
|z|4 + t2

� ps+(p�2)↵
4

=
Z

D1\B(0,R1)

dzdt
�
|z|4 + t2

� ps+(p�2)↵
4

+
Z

D1\Bc(0,R1)

dzdt
�
|z|4 + t2

� ps+(p�2)↵
4


Z

D1\B(0,R1)

dzdt
�
|z|4 + t2

� ps+(p�2)↵
4

+
|D1 \ Bc(0, R1)|
Rps+(p�2)↵
1

=
Z

D1\B(0,R1)

dzdt
�
|z|4 + t2

� ps+(p�2)↵
4

+
Z

Dc1\B(0,R1)

1
Rps+(p�2)↵
1

dzdt

since |Dc
1 \ B(0, R1)| = |D1 \ Bc(0, R1)|.
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Now, for (z, t) 2 B(0, R1),we have
�
|z|4 + t2

� ps+(p�2)↵
4  Rps+(p�2)↵

1 .Hence

I3
2

(p�2)↵
4


Z

D1\B(0,R1)

dzdt
�
|z|4 + t2

� ps+(p�2)↵
4

+
Z

Dc1\B(0,R1)

dzdt
�
|z|4 + t2

� ps+(p�2)↵
4

=
Z

B(0,R1)

dzdt
�
|z|4 + t2

� ps+(p�2)↵
4

.

Note that B(0, R1) ⇢ {z 2 R2n : |z| < R1} ⇥ {t 2 R : |t | < R21} so

I3
2

(p�2)↵
4


Z

|z|<R1

Z

|z|<R21

dtdz
�
|z|4 + t2

� ps+(p�2)↵
4

= 4nw2n
Z R1

0

Z R21
r2

0

r Q�1�ps�(p�2)↵

�
1+ t2

� ps+(p�2)↵
4

dtdr.

Now ps > 2 implies that ps+(p�2)↵ > 2, which makes
R1
0

dt

(1+t2)
ps+(p�2)↵

4
< 1.

Hence

I3  Cn,s,p,↵
Z R1

0
r Q�1�ps�(p�2)↵dr

= Cn,s,p,↵
|D1|1�

ps+(p�2)↵
Q

Q � ps � (p � 2)↵

 Cn,s,p,↵
|D|1�

ps+(p�2)↵
Q

Q � ps � (p � 2)↵
(Since |D1|  |D|),

(5.4)

where, Cn,s,p,↵ > 0 is a constant depending only on n, s, p,↵.
Estimation of I4: Clearly,

I4 
Z

|z|<R

Z

|t |>R2

dtdz
t
ps
2 |z|(p�2)↵

= 4nw2n
Z R

0
r Q�3�(p�2)↵dr

Z 1

R2

dt
t
ps
2

.

Now the conditions ps > 2 and ps + (p � 2)↵ < Q together imply (p � 2)↵ <
Q � 2. Hence

I4  Cn,s,p,↵
RQ�2�(p�2)↵

(Q � 2� (p � 2)↵) (ps � 2)Rps�2

=
Cn,s,p,↵RQ�ps�(p�2)↵

(Q � 2� (p � 2)↵) (ps � 2)
= Cn,s,p,↵|D|1�

ps+(p�2)↵
Q ,

(5.5)

where, Cn,s,p,↵ is a positive constant depending only on n, s, p,↵. Now using the
relation I = I1 + I2 + I3 + I4 and the inequalities (5.2), (5.3), (5.4) and (5.5) we
get the required inequality (5.1). This proves the lemma.
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Remark 5.2.

(i) The condition ps > 2 forces us to choose p > 2. However, in the case of
p = 2, the approach of estimating I3, in the above Lemma could be followed
to deduce the inequality (5.1);

(ii) In general, the inequality (5.1) is not true. For example if 0 < (p�2)↵ < Q�2
and ps < 2(p�2)↵

Q�2 , then one can choose D = B2n(0, R) ⇥ (�1, 1) and make
R ! 0 to show that (5.1) is false. Note that in this case 2(p�2)↵Q�2 < 2 and so
ps < 2.

5.1. Proof of Theorem 1.2

Proof. Note that it is enough to prove the theorem for every nonnegative compactly
supported smooth function f . Let the quantities Ak, Dk, ak, dk be the same as
defined in the proof of Theorem 1.1. Let

J : =
Z

Hn

| f (⇠)|p

d(⇠)ps |z|(p�2)↵
d⇠

=
X

i2Z

Z

Di

f p
�
|z|4 + t2

� ps
4 |z|(p�2)↵

dzdt


X

i2Z
2(i+1)p

Z

Di

dzdt
�
|z|4 + t2

� ps
4 |z|(p�2)↵

.

Now we use Lemma 5.1 to obtain

J  Cn,s,p,↵
X

i2Z
2(i+1)pd

1� ps+(p�2)↵
Q

i

 Cn,s,p,↵
X

i2Z
2i pa

1� ps+(p�2)↵
Q

i (since di  ai ).

Using inequality (4.7) with T = 2p and combining it with (4.12) we get the required
inequality (1.2). This proves the theorem.

6. Compactness of Sobolev type embedding

In analogy with the definition of Ws,p,↵
0 (Hn) one can define Ws,p,↵

0 (�), where
� ⇢ Hn is any open set. More precisely, we define

Ws,p,↵
0 (�) = Cl

⇢
u 2 C1

c (�) :
Z

�⇥�

|u(⇠ 0) � u(⇠)|p

d(⇠�1.⇠ 0)Q+ps |z0 � z|(p�2)↵
d⇠ 0d⇠ < 1

�
.
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Here the closure is taken under the norm ||.||s,p,↵,� := ||.||LP (�) +[.]s,p,↵,�,where
for any u 2 C1

c (�),

[u]s,p,↵,� :=
Z

�⇥�

|u(⇠) � u(⇠ 0)|p

d(⇠�1.⇠ 0)Q+ps |z0 � z|(p�2)↵
d⇠ 0d⇠.

Clearly, for (p � 2)↵ < min {Q � 2, p(1� s)}, Ws,p,↵
0 (�) is non trivial. Let us

recall the following definition.
Definition 6.1. Let � be any domain in Hn . We say that � is an extension domain
if it satisfies the following property. For any f 2 Ws,p,↵

0 (�) there exists f̄ 2
Ws,p,↵
0 (Hn) such that f̄ |� = f and satisfies the following inequality

k f̄ ks,p,↵  Cn,s,p,↵(�)k f ks,p,↵,�,

where Cn,s,p,↵(�) > 0 is a constant depending only on n, s, p,↵ and �.
Now if � is an extension domain and s 2 (0, 1), 1  p < 1, ↵ 2 R satisfy

the following conditions:

(a) (p � 2)↵ � 0;
(b) ps + (p � 2)↵ < Q;

then from Theorem 1.1 it follows that there exists a constantCn,s,p,↵ > 0 depending
only on n, s, p,↵ such that for any u 2 Ws,p,↵

0 (�)

||u||Lq (�)  Cn,s,p,↵kuks,p,↵,�. (6.1)

Here q = Qp
Q�ps�(p�2)↵ . The above inequality shows that Ws,p,↵

0 (�) is continu-
ously embedded in Lr (�) for any 1  r < q, if � is a bounded extension domain.
Because of (6.1) it is relevant to prove Theorem 1.4.

6.1. Proof of Theorem 1.4

Proof.

Step 1: In this step we will showF is relatively compact in Lr (�), if 1  r  2p
3 .

Note that, it is enough to show F is totally bounded in Lr (�). Since � is an ex-
tension domain, there exists an extension of u 2 Ws,p,↵

0 (�), say U 2 Ws,p,↵
0 (Hn),

such that ||U ||s,p,↵  C ||u||s,p,↵,� . Here C > 0 is a constant independent of u.
Let I ⇢ R2n ⇥ R be a rectangle such that its projection on R2n is a cube of side R
and on R is an interval of length R2. Here R > 0 is chosen such that � ⇢ I.

||U ||s,p,↵,I  ||U ||s,p,↵  C ||u||s,p,↵,� .

Also, since I is bounded, U 2 Lr (�) for any r 2 [1, p]. Let

C0 = 1+ sup
u2F

||U ||Lr (I ) + sup
u2F

[U ]s,p,↵,I .
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Now consider a collection of disjoint rectangles I1, . . . , IM ⇢ I such that the pro-
jection of every rectangle on R2n is cube of side µ and on R is an interval of length
µ2 and I = [N

j=1 I j upto a set of measure zero. We will choose µ later. For any
⇠ 0 2 � (excluding probably a measure zero set) we define j (⇠ 0) as the unique
integer in {1, . . . ,M} for which ⇠ 0 2 I j (⇠ 0) and for any u 2 F let

P(u)(⇠ 0) :=
1

|I j (⇠ 0)|

Z

I j (⇠ 0)

U(⇠)d⇠.

Note that P is additive and constant, say q j (u) on any I j , for j 2 {1, . . . ,M}.
Therefore we can define

R(u) := µ
Q
r (q1(u), . . . , qM(u)) 2 RM .

Consider the spatial r-norm in RM as

||v||r :=

 
MX

j=1
|v j |

r

! 1
r

, for any v 2 RM .

Observe that R is also additive. Moreover,

||P(u)||rLr (�) =
MX

j=1

Z

I j\�
|P(u)(⇠ 0)|r d⇠ 0


MX

j=1
|q j (u)|r =

||R(u)||rr
µQ .

(6.2)

Now by Jensen’s inequality

||R(u)||rr = µQ
MX

j=1
|q j (u)| = µQ

MX

j=1

�
�
�
�
�
1

|I j |

Z

I j
U(⇠)d⇠

�
�
�
�
�

r


MX

j=1

Z

I j
|U(⇠)|r d⇠ = ||U ||Lr (I ) .

Hence,

sup
u2F

||R(u)||rr  C0.

So the set R(F ) is bounded inRM and asRM is finite dimensional, R(F) is totally
bounded. Therefore, for any ⌘ > 0 there exists b1, . . . , bN 2 RM such that for any
v 2 R(F )

||v � bi ||r  ⌘, for some i 2 {1, . . . , N }. (6.3)
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For any i 2 {1, . . . , N }, let us write the coordinate of bi as

bi = (bi,1, . . . , bi,M) 2 RM .

For any ⇠ 2 � we define

�i (⇠) := µ� Q
r

NX

j=1
bi, j� j (⇠),

where � j denotes the characteristic function of I j .
Note that if ⇠ 2 I j then

P(�i )(⇠) = �i (⇠), (6.4)

so q j (�i ) = µ� Q
r bi, j and this implies

R(�i ) = bi . (6.5)

For any u 2 F

||u � P(u)||rLr (�) =
MX

j=1

Z

�\I j

�
�u(⇠ 0) � P(u)(⇠ 0)

�
�r d⇠ 0

=
MX

j=1

Z

�\I j

�
�
�
�
�
u(⇠ 0) �

1
|I j |

Z

I j
U(⇠)d⇠

�
�
�
�
�

r

d⇠ 0

=
MX

j=1

Z

�\I j

�
�
�
�
�
1

|I j |

Z

I j
u(⇠ 0) �U(⇠)d⇠

�
�
�
�
�

r

d⇠ 0


MX

j=1

1
|I j |r

Z

I j\�

"Z

I j
|u(⇠ 0) �U(⇠)|d⇠

#r
d⇠ 0

=
1

µQr

MX

j=1

"Z

I j\�

Z

I j
|u(⇠ 0) �U(⇠)|d⇠

#r
d⇠ 0.

(6.6)

Since r < p, using Hölder’s inequality with exponents p and p
p�1 we get

J : =
1

µQr

"Z

I j

�
�u(⇠ 0) �U(⇠)

�
�d⇠

#r


|I j |

(p�1)r
p

µQr

 Z

I j

�
�u(⇠ 0) �U(⇠)

�
�pd⇠

! r
p

=
1

µ
Qr
p

"Z

I j

�
�u(⇠ 0) �U(⇠)

�
�pd⇠

# r
p

.

(6.7)
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Now for ⇠ 0 = (z0, t 0) = (x 0, y0, t 0) and ⇠ = (z, t) = (x, y, t) 2 I j ⇢ I

d(⇠�1 � ⇠ 0) =
⇣
|z0 � z|4 +

�
t 0 � t + 2

�
< x, y0 > � < y, x 0 >

��2⌘
1
4


⇣
4n2µ4 + 2(t 0 � t)2 + 4

�
< x, y0 > � < y, x 0 >

�2⌘
1
4


⇣
(4n2 + 2)µ4 + 4

�⌦
(y0,�x 0), z � z0

↵�2⌘
1
4

 Cn,�µ
1
2 ,

where Cn,� > 0 is a constant depending only on n,�. So from (6.7) we have

J  Cn,s,p,↵,�
µ

r
p

⇣
Q+ps
2 +(p�2)↵

⌘

µ
Qr
p

"Z

I j

|U(⇠ 0) �U(⇠)|pd⇠

d(⇠�1 � ⇠ 0)Q+ps |z0 � z|(p�2)↵

# r
p

= Cn,s,p,↵,�µ
r
p

⇣
2(p�2)+ps�Q

2

⌘ "Z

I j

|U(⇠ 0) �U(⇠)|pd⇠

d(⇠�1 � ⇠ 0)Q+ps |z0 � z|(p�2)↵

# r
p

,

(6.8)

where Cn,s,p,↵,� > 0 is a constant depending only on n, s, p,↵,�. Hence, from
(6.6) and (6.8) we get

||u � P(u)||rLr (�)

 Cn,s,p,↵,�µ
r
p

⇣
2(p�2)↵+ps�Q

2

⌘ MX

j=1

Z

I j

"Z

I j

|U(⇠ 0) �U(⇠)|pd⇠

d(⇠�1 � ⇠ 0)Q+ps |z0 � z|(p�2)↵

# r
p

d⇠ 0

 Cn,s,p,↵,�µ
r
p

⇣
2(p�2)↵+ps�Q

2

⌘ MX

j=1
|I j |

1� r
p
�
[U ]s,p,↵,I j

� r
p (by Jensen’s inequality)

 Cn,s,p,↵,�µ
r
p

⇣
2(p�2)↵+ps

2

⌘
+Q

⇣
1� 3r

2p

⌘

[U ]s,p,↵,I

 C0Cn,s,p,↵,�µ
r
p

⇣
2(p�2)↵+ps

2

⌘
+Q

⇣
1� 3r

2p

⌘

.

Now since r  2p
3 , for ✏ > 0 small enough we can choose µ such that

C0Cn,s,p,↵,�µ
r
p

⇣
2(p�2)↵+ps

2

⌘
+Q

⇣
1� 3r

2p

⌘

=
✏r

2r
.

As a consequence of this we have

||u � P(u)||Lr (�) 
✏

2
. (6.9)

Recalling the definition of P and R we have, for any j 2 {1, . . . , N },
�
�
�
�u � � j

�
�
�
�
Lr (�)

 ||u � P(u)||Lr (�) +
�
�
�
�P(� j ) � � j

�
�
�
�
Lr (�)

+
�
�
�
�P(u � � j )

�
�
�
�
Lr (�)


✏

2
+

�
�
�
�R(u) � R(� j )

�
�
�
�
r

µ
Q
r

,
(6.10)
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where the last inequality is a result of the combination of (6.2) and (6.9). Now
given any u 2 F, (6.3) suggests that we can choose j 2 {1, . . . , N } such that�
�
�
�R(u) � b j

�
�
�
�
r < ⌘. Then from (6.5) and (6.10) we obtain

�
�
�
�u � � j

�
�
�
�
Lr (�)


✏

2
+

⌘

µ
Q
r

.

Note that, we can choose ⌘ so that ⌘

µ
Q
r

< ✏
2 . Hence for ✏ > 0 small enough, we

found �1, . . . ,�N 2 Lr (�) such that for any u 2 F there exists j 2 {1, . . . , N }
satisfying

�
�
�
�u � � j

�
�
�
�
Lr (�)

 ✏. (6.11)

This proves Step 1.

Step 2: In this step we will show thatF is totally bounded in Lr (�) for any 2p
3 <

r < q = Qp
Q�ps�(p�2)↵ and this will complete our theorem. For ✏ > 0 small enough

take the same set of � j as in the Step 1. Choose ✓ 2 (0, 1) so that 1r = 3✓
2p + (1�✓)

q .

Then using Hölder’s inequality with the exponents 2p
3✓r and

q
(1�✓)r we get

�
�
�
�u � � j

�
�
�
�
Lr (�)



✓Z

�
|u � � j |

2p
3 d⇠

◆ 3✓
2p
✓Z

�
|u � � j |

qd⇠

◆ (1�✓)
q

 C
�
�
�
�u � � j

�
�
�
�(1�✓)

s,p,↵,�

�
�
�
�u � � j

�
�
�
�✓
L
2p
3 (�)

(by Theorem (1.1))

 C✏✓ (by (6.11)).

This proves the theorem.

7. A Morrey type inequality

In this section we prove Theorem 1.5. To do this we need the following lemma
which is basically an adaptation of [20, Lemma 2.2] in our set up.

Lemma 7.1. Let p 2 [1,1), s 2 (0, 1) and ↵ 2 R satisfy ps + (p � 2)↵ > Q.
Also, suppose that u is a real valued measurable function on Hn with

[u]p,ps+(p�2)↵ :=

 

sup
⇠02Hn,⇢>0

R
B(⇠0,⇢) |u � u⇠0,⇢ |pd⇠

⇢ ps+(p�2)↵

! 1
p

< 1,

where B(⇠0, ⇢) := {⇠ 0 : d(⇠�1
0 � ⇠ 0) < ⇢} is a ball in Hn with centre ⇠0 and radius

⇢ and u⇠0,⇢ denotes the average of u over B(⇠0, ⇢). Then there exists a constant
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C(n) > 0 depending only on n such that for any ⇠0 2 Hn and 0 < R0 < R < 1
we have

�
�u⇠0,R � u⇠0,R0

�
�  C(n)[u]p,ps+(p�2)↵|B(⇠0, R)|

ps+(p�2)↵�Q
Qp . (7.1)

Proof. Let 0 < r < t < R and � := ps + (p � 2)↵. Then

|u⇠0,t � u⇠0,r | 
1

|B(⇠0, r)|

Z

B(⇠0,r)
|u(⇠) � u⇠0,t |d⇠

(by Hölder’s inequality) 
1

|B(⇠0, r)|
1
p

✓Z

B(⇠0,r)
|u(⇠) � u⇠0,t |

pd⇠

◆ 1
p

 C(n)
✓
t
r

◆ �
p
r

��Q
p [u]p,�

= C(n)
✓
t
r

◆ �
p
[u]p,�|B(⇠0, r)|

��Q
Qp .

(7.2)

Putting r = ri = R2�i and s = ri�1 in the above inequality and summing over i
from 0 to k (k to be chosen later) we obtain

|u⇠0,R � u⇠0,rk |  C(n)[u]p,�. (7.3)

Now choose k such that

rk  R0 < rk�1.

Then we have from (7.2)

|u⇠0,R0 � u⇠0,rk |  C(n)
✓
R0

rk

◆ �
p
[u]p,�|B(⇠0, rk)|

��Q
Qp

 C(n)[u]p,�|B(⇠0, R)|
��Q
Qp .

(7.4)

Combining (7.3) and (7.4) we get (7.1).

7.1. Proof of Theorem 1.5

Proof. Let u 2 L p(Hn). First of all note that if [u]s,p,↵ = 1 then there is
nothing to prove. So let [u]s,p,↵ < 1. Then we claim that [u]s,ps+(p�2)↵ 
C(n, s, p,↵)[u]ps,p,↵, where C(n, s, p,↵) > 0 is a constant depending only on
n, s, p,↵. To prove this consider r > 0 and ⇠0 2 Hn be any element. Then by
Jensen’s inequality we have
Z

B(⇠0,r)
|u(⇠) � u⇠0,r |

pd⇠ 
1

|B(⇠0, r)|

Z

B(⇠0,r)

Z

B(⇠0,r)
|u(⇠) � u(⇠ 0)|pd⇠d⇠ 0.
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Now for ⇠, ⇠ 0 2 B(⇠0, r) we have d(⇠�1 � ⇠ 0)  2r and |z � z0|  2r . So from
above we have

Z

B(⇠0,r)
|u(⇠) � u⇠0,r |

pd⇠


(2r)Q+ps+(p�2)↵

|B(⇠0, r)|

Z

B(⇠0,r)

Z

B(⇠0,r)

|u(⇠) � u(⇠ 0)|pd⇠d⇠ 0

d(⇠�1 � ⇠ 0)Q+ps |z � z0|(p�2)↵

 C(n, s, p,↵)r ps+(p�2)↵[u]ps,p,↵.

(7.5)

Hence

[u]p,ps+(p�2)↵  C(n, s, p,↵)[u]s,p,↵ < 1. (7.6)

We will use (7.6) and Lemma 7.1 to prove (1.12). Inequality (7.1) suggests that
limR!0u⇠,R exists uniformly in ⇠ 2 Hn and by Lebesgue differentiation theorem,
since Hn is a homogeneous space, so here Lebesgue differentiation theorem holds
true; see [26] for details.

lim
R!0

u⇠,R = u(⇠) almost everywhere.

Since u⇠,R is continuous in ⇠ so is u. Now making R0 ! 0 in (7.1) and taking
R = 2R we obtain

|u⇠,R � u(⇠)|  C(n)[u]s,ps+(p�2)↵R
ps+(p�2)↵�Q

p . (7.7)

For any ⇠, ⇠ 0 2 Hn let R = d(⇠�1 � ⇠ 0). Then
�
�u(⇠) � u(⇠ 0)

�
�  |u(⇠) � u⇠,2R| +

�
�u(⇠ 0) � u⇠ 0,2R

�
�+ |u⇠,2R � u⇠ 0,2R|. (7.8)

Now for any ⇠̃ 2 B(⇠, 2R) \ B(⇠ 0, 2R)

|u⇠,2R � u⇠ 0,2R| 
�
�u(⇠̃) � u⇠,2R

�
�+

�
�u(⇠̃) � u⇠ 0,2R

�
�.

Noticing B(⇠, R) [ B(⇠ 0, R) ⇢
�
B(⇠, 2R) \ B(⇠ 0, 2R)

�
and integrating over ⇠̃ we

get

|u⇠,2R � u⇠ 0,2R| 
1

|B(⇠, R)|

Z

B(⇠,2R)

�
�
�u(⇠̃) � u⇠,2R

�
�
� d ⇠̃

+
1

B(⇠ 0, R)

Z

B(⇠ 0,2R)

�
�
�u(⇠̃) � u⇠ 0,2R

�
�
� d ⇠̃ .

(7.9)

By Hölder’s inequality we have
1

|B(⇠, R)|

Z

B(⇠,2R)

�
�
�u(⇠̃) � u⇠,2R

�
�
� d ⇠̃


|B(⇠, 2R)|

p�1
p

|B(⇠, R)|

✓Z

|B(⇠,2R)|
|u(⇠̃) � u⇠,2R|pd ⇠̃

◆ 1
p

 C(n, s, p,↵)[u]s,ps+(p�2)↵R
ps+(p�2)↵�Q

p .

(7.10)
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Similarly,
1

|B(⇠ 0, R)|

Z

|B(⇠ 0,2R)|

�
�
�u(⇠̃) � u⇠ 0,2R

�
�
� d ⇠̃  C(n, s, p,↵)R

ps+(p�2)↵�Q
p . (7.11)

Using (7.7), (7.9), (7.10), and (7.11) we have from (7.8)

�
�u(⇠) � u(⇠ 0)

�
�  C[u]s,ps+(p�2)↵d

⇣
⇠�1 � ⇠ 0

⌘ ps+(p�2)↵�Q
p

.

So using (7.6) we have

sup
⇠ 6=⇠ 0

|u(⇠) � u(⇠ 0)|

d(⇠�1 � ⇠ 0)�
 C(n, s, p,↵)[u]s,p,↵. (7.12)

Now taking R0 > 0 and using (7.6), (7.7) and Hölder’s inequality we have for any
⇠ 2 Hn

|u(⇠)|  C(n, s, p,↵)

 
1

|B(⇠, R0)|
1
p

||u||L p(Hn) + [u]s,p,↵|B(⇠, R0)|�
!

. (7.13)

Hence combining (7.12) and (7.13) we have (1.12).

Appendix

A. Proof of Theorem 2.1

Proof. We will prove the theorem for n = 1. The same proof will work for higher
values of n. Note that, it is enough to find a decomposition of type mentioned in the
theorem for the elements (0, 0, t) = Exp(tT ) 2 H1. Without loss generality, we
can take t > 0. Clearly, [X1, X2] = �4T . Easy to see that

Exp
✓
X1 + X2 +

1
2
[X1, X2]

◆
= Exp(X1) � Exp(X2). (A.1)

Consequently,

Exp ([X1, X2]) = Exp(X1) � Exp(X2) � Exp(�X1) � Exp(�X2). (A.2)

This implies

Exp(tT ) = Exp
✓p

t
2
X2
◆

� Exp
✓p

t
2
X1
◆

� Exp
✓

�

p
t
2
X2
◆

� Exp
✓

�

p
t
2
X1
◆

.

Note that

d
✓
Exp

✓
±

p
t
2
Xi
◆◆

=

p
t
2


p
t = d (Exp (tT )) , for any i = 1, 2.

This proves the theorem.
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