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Global Marcinkiewicz estimates for nonlinear parabolic equations
with nonsmooth coefficients

THE ANH BUI AND XUAN THINH DUONG

Abstract. Consider the parabolic equation with measure data
⇢ ut � diva(Du, x, t) = µ in �T
u = 0 on @p�T ,

where� is a bounded domain inRn ,�T = �⇥(0, T ), @p�T = (@�⇥(0, T ))[
(�⇥{0}), and µ is a signed Borel measure with finite total mass. Assume that the
nonlinearity a satisfies a small BMO-seminorm condition, and � is a Reifenberg
flat domain. This paper proves a global Marcinkiewicz estimate for the SOLA
(Solution Obtained as Limits of Approximation) to the parabolic equation.

Mathematics Subject Classification (2010): 35R06 (primary); 35R05, 35K65,
35B65 (secondary).

1. Introduction

Let � be a bounded open domain in Rn , n � 2. For p � 2, we consider the
following parabolic equation with measure data

⇢
ut � diva(Du, x, t) = µ in �T

u = 0 on @p�T ,
(1.1)

where T > 0 is a given positive constant, �T = � ⇥ (0, T ), @p�T = (@� ⇥
(0, T ))[(�̄⇥{0}), andµ is a signed Borel measure with finite total mass. Through-
out the paper, we set ut = @u

@t and Du = Dxu := (Dx1u, . . . , Dxnu).
In this paper, we assume that the nonlinearity a(⇠, x, t) = (a1, . . . , an) : Rn ⇥

Rn ⇥ R ! Rn in (1.1) is measurable in (x, t) for every ⇠ , differentiable in ⇠ for
a.e. (x, t), and satisfies the following conditions: there exist 31,32 > 0 so that

|a(⇠, x, t)| + |⇠ ||D⇠a(⇠, x, t)|  31|⇠ |p�1, (1.2)
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and
ha(⇠, x, t) � a(⌘, x, t), ⇠ � ⌘i � 32|⇠ � ⌘|p (1.3)

for a.e. (⇠, ⌘) 2 Rn ⇥ Rn and a.e. (x, t) 2 Rn ⇥ R.
Note that a standard example of such a nonlinearity a(⇠, x, t) satisfying these

conditions is the p-Laplacian1pu = div(|Du|p�2Du) with respect to a(⇠, x, t) =
|⇠ |p�2⇠ . This general nonlinearity was studied for both elliptic and parabolic equa-
tion by many authors. See for example [1,9–11,22,26–30] and the reference therein.
Definition 1.1. A function u 2 C(0, T ; L2(�)) \ L p(0, T ;W 1,p

0 (�)) is said to be
a weak solution to the equation (1.1) if the following holds true

�
Z

�T

u't dxdt +
Z

�T

ha(Du, x, t), D'idxdt =
Z

�T

'dµ, (1.4)

for every test function ' 2 C1(�T ) vanishing in a neighborhood of @p�T .
Remark 1.2. Due to the lack of regularity with respect to the time variable, the
weak solution u to the problem (1.1) could not be choosen as a test function in
the formula (1.4). In order to overcome this trouble, we make use of the Steklov
averages or the standard mollifiers. For further details, we refer, for example, to
[16,38].

In general, it is not clear whether the weak solution to the equation (1.1) exists.
For this reason, the notion of SOLA (Solution Obtained as Limits of Approxima-
tion) will be employed in this situation. For the sake of convenience, we sketch
the ideas of an approximation scheme in [6–8]. For each k 2 N, we consider the
regularized problem

⇢
(uk)t � diva(Duk, x, t) = µk in �T

uk = 0 on @p�T ,
(1.5)

where µk 2 C1(�T ) converges to µ in the weak sense of measures and

|µk |(QR \ �T )  |µ|(QR \ �T ), k � 1, R > 0.

As a classical result, the equation (1.5) admits a weak solution uk 2C(0,T ;L2(�))\
L p(0, T ;W 1,p

0 (�)) for each k. Moreover, it was proved in [8] that there exists u so
that uk ! u in Lq(0, T ;W 1,q

0 (�)) for any q 2 [1, p�1+ 1
n+1 ). By this reason, the

limit of approximation solution u is refered to SOLA (Solution Obtained as Limits
of Approximation). In the general case, the SOLA may not be unique. However,
in our situation the uniqueness of SOLA is guaranteed by µ 2 L1(�T ). See for
example [14].

Let 0 < ✓  n+2; we say that the measure µ is in the Morrey space L1,✓ (�T )
if the following holds true:

sup
z2�T

sup
0<rdiam�T

|µ|(Qr (z) \ �T )

|Qr (z) \ �T |1�
✓

n+2
< 1,

where Qr (z) = Br (x) ⇥ (t � r2, t + r2) with z = (x, t) and Br (x) = {y 2 Rn :
|x � y| < r}.
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The nonlinear elliptic and parabolic equations with measure data have received
a great deal of attention by many mathematicians. See for example [5–8,18,19,25,
33–36] and the references therein. One of the most interesting problems concerning
the SOLAs to the equation (1.1) is theMarcinkiewicz type estimate. More precisely,
we look for suitable conditions on the nonlinearity a and the domain � so that the
following implication holds true

µ 2 L1,✓ (�T ), ✓ 2 (1, n + 2] =) |Du| 2Mm(�T ) (1.6)

for some m = m(p, ✓), where Mm(�T ) is the weak-Lebesgue space, or the
Marcinkiewicz space, defined by the set of all measurable functions f on �T satis-
fying

k f kMm(�T ) := sup
�>0

�|{z 2 �T : | f (z)| > �}|
1
m < +1.

The usual modification is used to define theMarcinkiewicz space on anymeasurable
subset E ⇢ �T .

In [34], the local Marcinkiewicz type estimates (1.6) were obtained for the
elliptic equations with Morrey data:

µ 2 L1,✓ (�), 2  ✓  n =) |Du| 2M
✓(p�1)

✓�1
loc (�).

Note that when ✓ = n, the above estimate reads

µ 2 L1,n(�) =) |Du|p�1 2M
n

n�1
loc (�),

which was proved in [6, 8] for p < n. The borderline case p = n is much more
difficult and was investigated in [17].

For the parabolic equation, the local version of Marcinkiewicz type estimates
(1.6) for p = 2 was obtained in [4] by making use of the maximal function tech-
nique. The case p � 2 is more complicated and has been studied recently in [3].
More precisely, the author in [3] proved that there exists ✓̃ 2 (1, 2) so that

µ 2 L1,✓ (�T ), ✓ 2 (✓̃, n + 2] =) |Du| 2Mm
loc(�T ), m = p � 1+

1
✓ � 1

.

The number ✓̃ 2 (1, 2) is a threshold and has a connection with the exponent in
higher integrability estimates of the associated homogeneous equation. It is also
claimed in [3] that the range ✓ 2 (✓̃, n + 2] can be improved to be ✓ 2 (1, n + 2]
if either a(⇠, x, t) = b(x)a(⇠, t) and b(·) satisfies certain VMO regularity condi-
tions, or a(⇠, x, t) is continuous with respect to x with some additional smoothness
conditions.

This paper is devoted to the global Marcinkiewicz estimates (1.6) with a gen-
eral class of nonlinearities a and non-smooth domains. Our main result is the fol-
lowing theorem.
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Theorem 1.3. For any 1 < ✓  n + 2, there exists a positive constant � such
that the following holds. If µ 2 L1,✓ (�T ), the domain � is a (�, R0)-Reifenberg
flat domain (see Definition 2.3), and the nonlinearity a satisfies (1.2), (1.3) and the
small (�, R0)-BMO condition (2.1) (see Definition 2.1 for (2.1)), then the problem
(1.1) has a unique SOLA u such that

k|Du|kMm(�T )  C
h
|µ|(�T )

n
n+1 + 1

i
, m = p � 1+

1
✓ � 1

, (1.7)

where C is a constant depending on n,31,32, �, R0 and �T .

Remark 1.4. (a) In Theorem 1.3, we are only interested in ✓ 2 (1, n + 2]. The
case ✓ 2 (0, 1] can be deduced immediately from the estimate for ✓ 2 (1, n + 2].
Indeed, if µ 2 L1,✓̃ (�T ) for some ✓̃ 2 (0, 1], then from the definition we have
L1,✓ (�T ) for any ✓ 2 (1, n + 2]. Applying Theorem 1.3 and letting ✓ ! 1+, we
obtain |Du| 2Mq(�T ) for any p � 1 < q < 1. Hence, |Du| 2 Lq(�T ) for any
p � 1 < q < 1.
(b) It is not clear whether the exponent n

n+1 on the right hand side of (1.7) is optimal.
This problem is, of course, interesting in its own right, but we do not pursue it in
this paper.

It is important to stress that although the local Marcinkiewicz estimates have
been investigated intensively for elliptic and parabolic equations, (see for exam-
ple [3,34] and the references therein), the global Marcinkiewicz estimates have not
been obtained. Hence, the result in Theorem 1.3 gives a new result on the global
Marcinkiewicz estimate for nonlinear parabolic equations with measure data. We
note that in Theorem 1.3, we require neither continuity conditions of the nonlin-
earity a, nor smoothness conditions on the boundary @�. See Section 2 for further
discussion on these two conditions.

We now give some comments on the technique used in this paper. In the par-
ticular case p = 2, the Marcinkiewicz estimate can be otained by using maximal
function techniques. See for example [4]. However, this harmonic analysis tool
does not work well for the case p 6= 2, mainly because the homogeneity of the
parabolic equations is no longer true as p 6= 2, even when µ ⌘ 0. To overcome
this trouble, we adapt the technique introduced in [1, 2] which makes use of the
approximation method in [13] and the Vitali covering lemma. This method is an
effective tool in studying the general nonlinear parabolic equations. See for exam-
ple [1–3,12].

The organization of the paper is as follows. In Section 2, we give the assump-
tions used in the paper. Some important approxiation results for the solution to the
problem (1.1) are illustrated in Section 3. The proof of Theorem 1.3 is described in
Section 4.

Throughout the paper, we always use C and c to denote positive constants that
are independent of the main parameters involved but whose values may differ from
line to line. We will write A . B if there is a universal constant C so that A  CB
and A ⇠ B if A . B and B . A. We denote by O(data) a small quantity such
that limdata!0O(data) = 0.
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2. Our assumptions

For r, ⌧, � > 0, z = (x, t) with x 2 Rn, t > 0, we first introduce some notation
which will be used in the paper:

• �T = � ⇥ (0, T ) and @p�T = (@� ⇥ [0, T ]) [ (�̄ ⇥ {0});
• Br = {y : |y| < r}, �r = Br \�, B+

r = Br \ {y = (y1, . . . , yn) : yn > 0}, and
Br (x) = x + Br , �r (x) = x + �r , B+

r (x) = x + B+
r ;

• Qr,⌧ = Br ⇥ (�⌧, ⌧ ), Qr,⌧ (z) = z + Qr,⌧ , Kr,⌧ (z) = Qr,⌧ (z) \ �T ;
• Qr = Qr,r2 , Q+

r = Qr \ {z = (x 0, xn, t) : xn > 0}, and Qr (z) = z + Qr ,
Q+
r (z) = z + Q+

r ;
• @pQr = @Qr\(B̄r ⇥ {r2}), @pQr (z) = z + @pQr
• Kr (z)=Qr (z)\�T , @wKr (z)=Qr (z)\(@�⇥R), @pKr (z)=@Kr (z)\(�r (x)⇥

{t + r2});
• I �r (t) = (t � �2�pr2, t + �2�pr2), Q�

r (z) = Br (x) ⇥ I �r (t), @pQ�
r (z) =

@Q�
r (z)\(B̄r (x) ⇥ {t + �2�pr2});

• K �
r (z)=Q�

r (z)\�T ,@wK �
r (z)=Q�

r (z)\(@�⇥R),@pK �
r (z)=@K �

r (z)\(�̄r (x)⇥
{t + �2�pr2});

• for a measurable function f on a measurable subset E in Rn (or in Rn+1) we
define

f E =
Z

E
f =

1
|E |

Z

E
f.

2.1. The small BMO-seminorm condition

Assume that the nonlinearity a satisfy (1.2) and (1.3). We set

2(a, Br (y))(x, t) = sup
⇠2Rn\{0}

|a(⇠, x, t) � aBr (y)(⇠, t)|
|⇠ |p�1

where
aBr (y)(⇠, t) =

Z

Br (y)
a(⇠, x, t)dx .

Definition 2.1. Let R0, � > 0. The nonlinearity a is said to satisfy the small
(�, R0)-BMO condition if

[a]2,R0 := sup
y2Rn

sup
0<rR0,0<⌧<r2

Z

Q(r,⌧ )(y)
|2(a, Br (y))(x, t)|2dxdt  �2. (2.1)
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Remark 2.2. (a) The nonlinearity a satisfying the small (�, R0)-BMO condition
(2.1) is assumed to be merely measurable only in the time variable t and belong
to the BMO class (functions with bounded mean oscillation) as functions of the
spatial variable x . To see this, we consider the following example. If a(⇠, x, t) =
b(⇠, x)c(t), then (2.1) requires small BMO norm regularity for b(⇠, ·), whereas
c(·) is just needed to be bounded and measurable. This is weaker than those used
in [11, 12] in which the nonlinearity a is required to belong to the BMO class in
both variables t and x . Note that the condition (2.1) is similar to that used in [23] to
study the parabolic and elliptic equations with VMO coefficients. We refer to [40]
for the definition of VMO functions.
(b) Under the conditions (1.2), (1.3) and the small (�, R0)-BMO condition (2.1), it
is easy to see that for any � 2 [1,1) there exists ✏ > 0 so that

[a]� ,R0 := sup
y2Rn

sup
0<rR0,0<⌧<r2

Z

Q(r,⌧ )(y)
|2(a, Br (y))(x, t)|� dxdt . �✏ .

2.2. Reifenberg flat domains

Concerning the underlying domain �, we do not assume any smoothness condition
on �, but the following flatness condition.
Definition 2.3. Let �, R0 > 0. The domain� is said to be a (�, R0)-Reifenberg flat
domain if for every x 2 @� and 0 < r  R0, then there exists a coordinate system
depending on x and r , whose variables are denoted by y = (y1, . . . , yn) such that
in this new coordinate system x is the origin and

Br \ {y : yn > �r} ⇢ Br \ � ⇢ {y : yn > ��r}. (2.2)

Remark 2.4. (a) The condition of (�, R0)-Reifenberg flatness condition was first
introduced in [39]. This condition does not require any smoothness on the bound-
ary of �, but sufficiently flat in the Reifenberg’s sense. The Reifenberg flat domain
includes domains with rough boundaries of fractal nature, and Lipschitz domains
with small Lipschitz constants. For further discussions about the Reifenberg do-
main, we refer to [15,37,39, 42] and the references therein.

(b) If � is a (�, R0) Reifenberg domain, then for any x0 2 @� and 0 < ⇢ <
R0(1 � �) there exists a coordinate system, whose variables are denoted by y =
(y1, . . . , yn), such that in this coordinate system the origin is some interior point of
�, x0 = (0, . . . , 0,� �⇢

1�� ) and

B+
⇢ ⇢ B⇢ \ � ⇢ B⇢ \

⇢
y : yn > �

2�⇢
1� �

�
.

(c) For x 2 � and 0 < r < R0, we have

|Br (x)|
|Br (x) \ �|



✓
2

1� �

◆n
. (2.3)
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Throughout the paper, we always assume that the domain� is a (�, R0) Reifen-
berg flat domain, and the nonlinearity a satisfies (1.2), (1.3) and the small (�, R0)-
BMO condition (2.1).

2.3. Sobolev-Poincaré inequality on Reifenberg domains

Let 1 < p < 1 and E be a compact subset in �. The p-capacity of a compact set
E which is denoted by Cp(E,�) is defined by

Cp(E,�) = inf
⇢Z

�
|Dg|pdx : g 2 C1

0 (�), g = 1 in E
�

.

It is well known that for 1 < p < 1 and r > 0,

Cp(Br , B2r ) = crn�p, (2.4)

where c depends on n and p. See for example [21,32].

Lemma 2.5. Suppose that 1 < q < 1 and that u is a q-quasicontinuous function
in W 1,q(B), where B is a ball. Let NB(u) = {x 2 B : u(x) = 0}. Then

✓Z

B
|u|qdx

◆ 1
q

 c
✓

1
Cq(NB(u), 2B)

Z

B
|ru|qdx

◆1/q
,

where c = c(n, q) > 0 and  = n/(n � q) if 1 < q < n and  = 2 if q � n.

In the particular case when � is a Reifenberg flat domain, we have the follow-
ing result.

Lemma 2.6. Let � is a (�, R0)-Reifenberg domain. Suppose that 1 < q < 1
and that u is a q-quasicontinuous function in W 1,q(�r (x0)), where x0 2 @� and
0 < r < R0. Then

✓Z

�r (x0)
|u|qdx

◆ 1
q

 cr
✓Z

Br (x0)
|rū|qdx

◆1/q
, (2.5)

where c = c(n, q) > 0 and  = n/(n � q) if 1 < q < n and  = 2 if q � n, and ū
is the zero extension of u from �r (x0) to Br (x0).

In particular, we have

✓Z

�r (x0)
|u|qdx

◆ 1
q

 cr
✓Z

Br (x0)
|rū|qdx

◆1/q
. (2.6)

Proof. The inequality (2.5) follows immediately from the definition of a (�, R0)
Reifenberg domain, (2.4) and Lemma 2.6. The inequality (2.6) follows from (2.5)
and Hölder’s inequality.
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3. Interior estimates

For z0 = (x0, t0) 2 �T , 0 < R < R0/4 and � � 1 satisfying B4R ⌘ B4R(x0) ⇢ �,
we set

Q�
4R ⌘ Q�

4R(z0) = B4R(x0) ⇥ I �4R(t0). (3.1)

For the sake of simplicity, we may assume that I �4R(t0) ⇢ (0, T ), or equivalently,
Q�
4R ⇢ �T . The case I �4R(t0) \ (0, T )c 6= ; can be done in the same manner with

minor modifications.
Assume that u is a weak solution to (1.1). It is well-known that there exists a

unique weak solutionw 2 C(I �4R(t0); L2(B4R(x0)))\L p(I �4R(t0);W 1,p(B4R(x0)))
to the following equation

(
wt � div a(Dw, x, t) = 0 in Q�

4R

w = u on @pQ�
4R .

(3.2)

Then we have the following estimate. See [25, Lemma 4.1].

Lemma 3.1. Let w be a weak solution to the problem (3.2). Then for every 1 
q < p � 1+ 1

n+1 , there exists C so that

 Z

Q�
4R

|D(u � w)|qdxdt

!1/q
 C

"
|µ|(Q�

4R)

|Q�
4R|(n+1)/(n+2)

# n+2
p+(p�1)n

. (3.3)

Moreover, we have the following higher integrability property.

Proposition 3.2. Let w be a weak solution to the problem (3.2). Assume that

�1�p 
Z

Q�
R

|Dw|pdxdt and
Z

Q�
2R

|Dw|pdxdt  �p, (3.4)

for some  > 1. Then there exist ✏0 > 0 such that
 Z

Q�
R

|Dw|p+✏0dxdt

! 1
p+✏0

 C
Z

Q�
2R

|Dw|dxdt,

where C depends on n, p,31,32 and  .

Proof. We refer to [3, Corollary 4.8] for the proof of the proposition.

Let w be a weak solution to (3.2) satisfying (3.4). We now consider the following
problem (

vt � div aBR (Dv, t) = 0 in Q�
R ⌘ Q�

R(z0)

v = w on @pQ�
R,

(3.5)

where Q�
R is defined by (3.1).
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Then we obtain the following estimate.

Lemma 3.3. Let v be a weak solution to (3.5). Then there exist C > 0 and �1 so
that

Z

Q�
R

|D(w � v)|pdxdt  C[a]�12,R0

 Z

Q�
2R

|Dw|dxdt

!p

. (3.6)

Proof. Observe that, by (1.3), we have
Z

Q�
R

|D(w�v)|pdxdtC
Z

Q�
R

haBR (Dw, t) � aBR (Dv, t), Dw�Dvidxdt. (3.7)

Taking w � v as a test function, it can be verified that
Z

Q�
R

haBR (Dw, t) � aBR (Dv, t), Dw � Dvidxdt

=
Z

Q�
R

haBR (Dw, t) � aBR (Dw, x, t), Dw � Dvidxdt.

This, in combination with (3.7), yields
Z

Q�
R

|D(w � v)|pdxdt C
Z

Q�
R

haBR (Dw, t) � aBR (Dw, x, t), Dw � Dvidxdt

 C
Z

Q�
R

2(a, BR)|Dw|p�1|D(w � v)|dxdt.

(3.8)
Applying Young’s inequality and Proposition 3.2, we have, for ⌧ > 0,
Z

Q�
R

2(a, BR)|Dw|p�1|D(w � v)|dxdt

⌧

Z

Q�
R

|D(w � v)|p + C(⌧ )

Z

Q�
R

2(a, BR)
p

p�1 |Dw|pdxdt

⌧

Z

Q�
R

|D(w � v)|p

+ C(⌧ )

 Z

Q�
R

2(a, BR)
p(p+✏0)
(p�1)✏0 dxdt

! ✏0
p+✏0

 Z

Q�
R

|Dw|p+✏0dxdt

! p
p+✏0

⌧

Z

Q�
R

|D(w � v)|p + C(⌧ )[a]�12,R0

 Z

Q�
2R

|Dw|dxdt

!p

.

(3.9)
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From (3.8) and (3.9), by taking ⌧ to be sufficiently small, we obtain the desired
estimate.

We now state the standard Hölder regularity result. See for example [16, Chap-
ter 8].

Proposition 3.4. Let v solve the equation (3.5). Then we have

kDvkpL1(Q�
R/2)

 C
Z

Q�
R

|Dv|pdxdt.

We have the following approximation result.

Proposition 3.5. Let µ 2 L1,✓ (�T ), 1 < ✓  n + 2. For each ✏ > 0 there exists
� > 0 so that the following holds true. Assume that u is a weak solution to the
problem (1.1) satisfying

�1�p�1 
Z

Q�
R

|Du|p�1dxdt

and
Z

Q�
4R

|Du|p�1dxdt  �p�1, for some  > 1,
(3.10)

and
|µ|(Q�

4R)

|Q�
4R|

 ��m . (3.11)

Then there exists a weak solution v to the problem (3.5) satisfying

kDvkL1(Q�
R/2)

. �, (3.12)

and
Z

Q�
R

|D(u � v)|p�1dxdt  (✏�)p�1. (3.13)

Proof. Since µ 2 L1,✓ , we have

µ(Q�
4R)

|Q�
4R|


µ(Q4R)

|Q�
4R|

 �p�2R�✓ .
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This along with (3.11) imply

"
|µ|(Q�

4R)

|Q�
4R|(n+1)/(n+2)

# n+2
p+(p�1)n

=

"
|µ|(Q�

4R)

|Q�
4R|

# n+2
p+(p�1)n

|Q�
4R|

1
p+(p�1)n

=

"
|µ|(Q�

4R)

|Q�
4R|

# 1
✓

n+2
p+(p�1)n

"
|µ|(Q�

4R)

|Q�
4R|

# ✓�1
✓

n+2
p+(p�1)n

|Q�
4R|

1
p+(p�1)n

.
h
�p�2R�✓

i 1
✓

n+2
p+(p�1)n ⇥

��m
⇤ ✓�1

✓
n+2

p+(p�1)n
h
Rn+2�2�p

i 1
p+(p�1)n

. �
✓�1
✓

n+2
p+(p�1)n �.

(3.14)

This along with Lemma 3.1 implies that
Z

Q�
4R

|D(u � w)|p�1dxdt  O(�)�p�1. (3.15)

Taking this and (3.10) into account, we obtain

�p�1 .
Z

Q�
R

|Dw|p�1dxdt,
Z

Q�
4R

|Dw|p�1dxdt . �p�1,

provided that � is sufficiently small.
We now apply Proposition 5.5 in [3] to find that

̄�1�p 
Z

Q�
R

|Dw|pdxdt,
Z

Q�
2R

|Dw|pdxdt  ̄�p, (3.16)

for some ̄ > 1.
Then the inequality (3.13) follows immediately from (3.15), Lemma 3.3 and

the following estimate
Z

Q�
R

|D(u�v)|p�1dxdt .
Z

Q�
R

|D(u�w)|p�1dxdt+
Z

Q�
R

|D(w�v)|p�1dxdt.

On the other hand, from Proposition 3.4 we have

kDvkpL1(Q�
R/2)

.
Z

Q�
R

|Dv|pdxdt .
Z

Q�
R

|Dw|pdxdt +
Z

Q�
R

|D(w � v)|pdxdt.

This along with (3.16) and Lemma 3.3 yields (3.12).
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4. Boundary estimates

Fix t0 2 (0, T ) and x0 2 @�, we set z0 = (x0, t0). Let 0 < R < R0/4 and � � 1.
For the sake of simplicity, we restrict ourself to consider the lateral boundary case
with respect to

I �4R(t0) ⇢ (0, T ),

since the initial boundary case can be done in the same manner.
Before coming to the main comparision estimates, we shall establish some

boundary estimates on weak solutions to the homogeneous equations associated to
(1.1).

4.1. Some boundary estimates for homogeneous equations

We now consider the weak solution

w 2 C(I �4R(t0); L2(�4R(x0))) \ L p(I �4R(t0);W 1,p(�4R(x0)))

to the following equation
(

wt � div a(Dw, x, t) = 0 in K �
4R(z0)

w = 0 on @wK �
4R(z0).

(4.1)

Lemma 4.1. Letw be a weak solution to the problem (4.1). Let K �
⇢1(z̄) ⇢ K �

⇢2(z̄) ⇢
K �
4R(z0) with z̄ = (x̄, t̄) and ⇢2 > ⇢1 > 0. Then there exists c = c(n, p,31,32)

so that
Z

K �
⇢1 (z̄)

|Dw|pdxdt + sup
t2I�⇢1 (t̄)

Z

B⇢1 (x̄)
|w|2dx 

1
�2�p(⇢22 � ⇢21)

Z

K �
⇢2 (z̄)

|w|2dxdt

+
c

(⇢2 � ⇢1)p

Z

K �
⇢2 (z̄)

|w|pdxdt.

Proof. We adapt an idea in [22] to our present situation. Fix t1 2 I �⇢1(t̄). Let
⌘ 2 C1

0 (Q�
⇢2(z̄)) such that ⌘ � 0, ⌘ = 1 in Q�

⇢1(z̄) and

(⇢2 � ⇢1)|D⌘| + �2�p(⇢22 � ⇢21)|⌘t |  100. (4.2)

For ✏ 2 (0, 1) we define the function �✏
t1 2 C1

c ([✏/2, t1 � ✏/2]) with

�✏
t1(t) = 1 in [✏, t1 � ✏], and

�
�[�✏

t1(t)]
0
�
�  2/✏.

We set '✏(x, t) = ⌘p(x, t)w(x, t)�✏
t1(t). Taking '✏ as a test function, we obtain

J ✏
1 + J ✏

2 := �
Z

K �
⇢2 (z̄)

w'✏
t dz +

Z

K �
⇢2 (z̄)

a(Dw, x, t) · D'✏dz = 0. (4.3)
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By integration by parts, we have

J ✏
1 = �

1
2

Z

K �
⇢2 (z̄)

w2(⌘p�✏
t1)t dz

= �
p
2

Z

K �
⇢2 (z̄)

w2⌘p�1⌘t�
✏
t1dz �

1
2

Z

K �
⇢2 (z̄)

w2⌘p(�✏
t1)t dz,

which implies

J ✏
1 ! �

p
2

Z

B⇢2 (x̄)⇥(0,t1)
w2⌘p�1⌘t dz+

1
2

Z

B⇢2 (x̄)
w(x, t1)2⌘p(x, t1)dx as ✏ ! 0.

On the other hand, we have

J ✏
2 !

Z

B⇢2 (x̄)⇥(0,t1)
[a(Dw, x, t) · Dw]⌘pdz

+ p
Z

B⇢2 (x̄)⇥(0,t1)
[a(Dw, x, t) · D⌘]⌘p�1wdz as ✏ ! 0.

Taking (4.3) and these two estimates above into account we find that

Z

B⇢2 (x̄)⇥(0,t1)
[a(Dw, x, t) · Dw]⌘pdz +

1
2

Z

B⇢2

w(x, t1)2⌘p(x, t1)dx


p
2

Z

B⇢2 (x̄)⇥(0,t1)
w2⌘p�1|⌘t |dz

+ p
Z

B⇢2 (x̄)⇥(0,t1)
|[a(Dw, x, t) · D⌘]| ⌘p�1wdz.

This together with (1.2), (1.3) and (4.2) implies that

Z

B⇢2 (x̄)⇥(0,t1)
|Dw|p⌘pdz +

1
2

Z

B⇢2 (x̄)
w(x, t1)2⌘p(x, t1)dx

.
1

�2�p(⇢22 � ⇢21)

Z

K �
⇢2 (z̄)

w2dz

+ p
Z

B⇢2 (x̄)⇥(0,t1)
|Dw|p�1|D⌘|⌘p�1|w|dz.
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Applying Young’s inequality we deduce that, for ⌧ > 0,
Z

B⇢2 (x̄)⇥(0,t1)
|Dw|p⌘pdz +

1
2

Z

B⇢2 (x̄)
w(x, t1)2⌘p(x, t1)dx

.
1

�2�p(⇢22 � ⇢21)

Z

K �
⇢2 (z̄)

w2dz + ⌧

Z

B⇢2 (x̄)⇥(0,t1)
|Dw|p⌘pdz

+ c(⌧ )

Z

B⇢2 (x̄)⇥(0,t1)
|D⌘|p|w|pdz

.
1

�2�p(⇢22 � ⇢21)

Z

K �
⇢2 (z̄)

w2dz + ⌧

Z

B⇢2 (x̄)⇥(0,t1)
|Dw|p⌘pdz

+
c(⌧ )

(⇢2 � ⇢1)p

Z

B⇢2 (x̄)⇥(0,t1)
|w|pdz.

By choosing ⌧ to be sufficiently small, we end up with
Z

B⇢2 (x̄)⇥(0,t1)
|Dw|p⌘pdz +

1
2

Z

B⇢2 (x̄)
w(x, t1)2⌘p(x, t1)dx

.
1

�2�p(⇢22 � ⇢21)

Z

K �
⇢2 (z̄)

w2dz +
1

(⇢2 � ⇢1)p

Z

K �
⇢2 (z̄)

|w|pdz.

This deduces the desired estimate.

We now give a useful result which will be used in the sequel.
Lemma 4.2. Let w be a weak solution to the equation (4.1). Then for ✓ 2 (0, 1)
and K⇢,� (z0) ⇢ K �

4R(z0) with ⇢, � > 0 we have

sup
K✓⇢,✓� (z0)

|w|  c
✓

1
(1� ✓)

◆n+p �

⇢ p

Z

K⇢,� (z0)
|w|p�1dz +

✓
⇢ p

�

◆ 1
p�2

. (4.4)

Proof. Since w is a weak solution to (4.1), |w| is a nonnegative subsolution to the
equation (4.1). See for example Lemma 1.1 in [16, page 19]. Recall that a sub-
solution is a function such that the left-hand side of the weak formula of (4.1) is
negative, for all positive test functions.

The estimate (4.4) was proved in Theorem 4.1 in [16, pages 122–123] for the
interior case. The estimate is still true near the boundary of a Reifenberg domain
by similar argument with some minor modifications. Hence, we skip the proof of
(4.4) here and leave it to interested readers.

Proposition 4.3. Let w be a weak solution to the problem (4.1) satisfying the esti-
mates

�1�p 
Z

K �
R(z0)

|Dw|pdxdt and
Z

K �
2R(z0)

|Dw|pdxdt  �p, (4.5)

for some  � 1.
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Then there exist 1  q < p, c = c(n, p,31,32, ) and � = � (n, p) so that
 Z

K �
r1 (z0)

|Dw|pdxdt

!1/p
 c

✓
2R

r2 � r1

◆�
 Z

K �
r2 (z0)

|Dw|qdxdt

!1/q
,

for all R  r1 < r2  2R.

Proof. For the sake of simplicity, we shall write, respectively, K �
r ,�r for K �

r (z0),
�r (x0) for all r > 0. Set r3 = r1 + (r2 � r1)/2. Then from Lemma 4.1, we have
Z

K �
r1

|Dw|pdxdt .
1

�2�p(r23 � r21 )

Z

K �
r3

|w|2dxdt +
1

(r3 � r1)p

Z

K �
r3

|w|pdxdt

.
1

�2�p(r3 � r1)2

Z

K �
r3

|w|2dxdt +
1

(r3 � r1)p

Z

K �
r3

|w|pdxdt

⇠
1

�2�p(r2 � r1)2

Z

K �
r3

|w|2dxdt +
1

(r2 � r1)p

Z

K �
r3

|w|pdxdt

:= I1 + I2.

By Hölder’s inequality, for ⌧ > 0 we have

I1  �p�2

 
1

(r2 � r1)p

Z

K �
r3

|w|pdxdt

!2/p

 ⌧�p + c(⌧ )I2

where in the last inquality we used Young’s inequality.
From this and (4.5), by taking ⌧ to be sufficiently small, we find that

Z

K �
r1

|Dw|pdxdt . I2.

Hence, it suffices to prove that

I2 .
✓

2R
r2 � r1

◆p�
 Z

K �
r2

|Dw|qdxdt

!p/q

. (4.6)

Indeed, we now consider two cases: 2  p < n + 2 and p � n + 2.
Case 1: 2  p < n + 2. By Hölder’s inequality, we have

Z

�r3

|w|pdx 

 Z

�r3

|w|2dx

!q/n  Z

�r3

|w|q
⇤
dx

!q/q⇤

,

where q = pn/(n + 2) < min{n, p} and q⇤ = nq/(n � q).
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Then applying Sobolev-Poincaré’s inequalities (2.5), we have

 Z

�r3

|w|q
⇤
dx

!q/q⇤

. rq3

Z

�r3

|Dw|qdx .

Hence,
Z

�r3

|w|pdx  rq3

 Z

�r3

|w|2dx

!q/n  Z

�r3

|Dw|qdx

!

⇠

 Z

�r3

|w|2dx

!q/n  Z

�r3

|Dw|qdx

!

.

This implies that

I2 .
1

(r2 � r1)p

 Z

K �
r3

|Dw|qdz

!0

@ sup
t2I�r3

Z

�r3

|w|2dx

1

A

q/n

. r�p
2

✓
R

r2 � r1

◆p
 Z

K �
r3

|Dw|qdz

!0

@ sup
t2I�r3

Z

�r3

|w|2dx

1

A

q/n

.

(4.7)

On the other hand, by Lemma 4.1 and Hölder’s inequality, we have

sup
t2I�r3

Z

�r3

|w|2dx .
1

�2�p(r22 � r23 )

Z

K �
r2

|w|2dxdt +
c

(r2 � r3)p

Z

K �
r2

|w|pdxdt

.
1

�2�p(r2 � r3)2

Z

K �
r2

|w|2dxdt +
1

(r2 � r3)p

Z

K �
r3

|w|pdxdt

⇠
1

�2�p(r2 � r1)2

Z

K �
r2

|w|2dxdt +
1

(r2 � r1)p

Z

K �
r2

|w|pdxdt

. rn+22

 
1

(r2 � r1)p

Z

K �
r2

|w|pdxdt

!2/p

+
�2�prn+22
(r2 � r1)p

Z

K �
r2

|w|pdxdt.
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Applying Sobolev-Poincaré’s inequality (2.6) and (4.5), we obtain further

sup
t2I�r3

Z

�r3

|w|2dx . rn+22

 
r p2

(r2 � r1)p

Z

K �
r3

|Dw|pdxdt

!2/p

+ �2�prn+22
r p2

(r2 � r1)p

Z

K �
r2

|Dw|pdxdt

. rn+22 �2
✓

2R
r2 � r1

◆p
.

Inserting this into (4.7), and then using Young’s inequality we obtain, for ⌧ > 0,

I2 . r (n+2)q/n�p
2 �2q/n

✓
2R

r2 � r1

◆p+qp/nZ

K �
r3

|Dw|qdz

=

✓
2R

r2 � r1

◆p+qp/n
�
2p
n+2

Z

K �
r3

|Dw|qdz

 ⌧�p + c(⌧ )

✓
2R

r2 � r1

◆ p2(n+q)
pq

 Z

K �
r3

|Dw|qdz

!p/q

.

This together with the fact that I2 � C�p implies that

I2  c(⌧ )

✓
2R

r2 � r1

◆ n+2
n + p2

n
 Z

K �
r3

|Dw|qdz

!p/q

provided that ⌧ is sufficiently small.
Case 2: p � n + 2. By Hölder’s inequality, we have

Z

�r3

|w|pdx 

 Z

�r3

|w|2dx

!1/2  Z

�r3

|w|2qdx

!1/2

where q = p � 1 > n.
Then applying Sobolev-Poincaré’s inequalities (2.5), we have

 Z

�r3

|w|2qdx

!1/2
=

 Z

�r3

|w|2qdx

! q
2q

. rq3

Z

�r3

|Dw|qdx .

Hence,
Z

�r3

|w|pdx  rq3

 Z

�r3

|w|2dx

!1/2  Z

�r3

|Dw|qdx

!

⇠ rq�n/2
3

 Z

�r3

|w|2dx

!1/2  Z

�r3

|Dw|qdx

!

.
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Therefore,

I2 .
rq�n/2
3

(r2 � r1)p

 Z

K �
r3

|Dw|qdz

!0

@ sup
t2I�r3

Z

�r3

|w|2dx

1

A

1/2

. r�1�n/2
2

✓
R

r2 � r1

◆p
 Z

K �
r3

|Dw|qdz

!0

@ sup
t2I�r3

Z

�r3

|w|2dx

1

A

1/2

.

(4.8)

In Case 1, we proved that

sup
t2I�r3

Z

�r3

|w|2dx . rn+22 �2
✓

2R
r2 � r1

◆p
.

Inserting this into (4.8), and then using Young’s inequality we obtain, for ⌧ > 0,

I2 . r (n+2)/2�1�n/2
2 �

✓
2R

r2 � r1

◆3p/2Z

K �
r3

|Dw|qdz

= �

✓
2R

r2 � r1

◆3p/2Z

K �
r3

|Dw|qdz

 ⌧�p + c(⌧ )

✓
2R

r2 � r1

◆ 3p2
2q
 Z

K �
r3

|Dw|qdz

! p
q

.

This together with the fact that I2 � C�p implies that

I2 . c(⌧ )

✓
2R

r2 � r1

◆ 3p2
2(p�1)

 Z

K �
r3

|Dw|qdz

! p
q

provided that ⌧ is sufficiently small.
This completes our proof.

We now recall the following result [24, Lemma 5.1].
Lemma 4.4. Let 1 < q < p < 1 and � � 0, and let {U✓ : 0 < ✓  1} be
a family of open sets in Rn+1 with property U✓1 ⇢ U✓2 ⇢ U1 ⌘ U whenever
0 < ✓1  ✓2 < 1. If f 2 Lq(U) is a non-negative function satisfying

 Z

U✓1

f pdxdt

!1/p


c0
(✓2 � ✓1)�

 Z

U✓2

f qdxdt

!1/q
,

for all 1/2  ✓1 < ✓2  1, then there exists c = c(c0, �, p, q) so that
✓Z

U✓

f pdxdt
◆1/p


c

(1� ✓)
�q(p�1)
p�q

Z

U
f dxdt.
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As a direct consequence of Proposition 4.3 and Lemma 4.4, we deduce the follow-
ing result.

Lemma 4.5. Let w be a weak solution to the problem (4.1) satisfying the estimates

�1�p 
Z

K �
R(z0)

|Dw|pdxdt and
Z

K �
2R(z0)

|Dw|pdxdt  �p,

for some  � 1.
Then we have

 Z

K �
R(z0)

|Dw|pdxdt

!1/p
.
Z

K �
2R(z0)

|Dw|dxdt.

Proposition 4.6. Let w be a weak solution to the problem (4.1) satisfying the esti-
mates

1
1

�p�1 
Z

K �
R(z0)

|Dw|p�1dxdt and
Z

K �
4R(z0)

|Dw|p�1dxdt  1�
p�1, (4.9)

for some 2 � 1 and � > 1. Then we have

1
2

�p 
Z

K �
R(z0)

|Dw|pdxdt and
Z

K �
2R(z0)

|Dw|pdxdt  2�
p. (4.10)

Proof. By Hölder’s inequality, we have
Z

K �
R(z0)

|Dw|pdxdt � C�p.

It remains to prove the second inequality in (4.10). Indeed, from Lemma 4.1 we
have
Z

K �
2R(z0)

|Dw|pdxdt 
c

�2�p R2

Z

K �
3R(z0)

|w|2dxdt +
c
Rp

Z

K �
3R(z0)

|w|pdxdt.

Applying Hölder’s inequality and Young’s inequality, we deduce

Z

K �
2R(z0)

|Dw|pdxdt 
c

�2�p R2

 Z

K �
3R(z0)

|w|pdxdt

!2/p
+

c
Rp

Z

K �
3R(z0)

|w|pdxdt

. �p +
1
Rp

Z

K �
3R(z0)

|w|pdxdt

. �p +
1
Rp sup

K �
3R(z0)

|w|p.
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Hence, by using Lemma 4.2 with ✓ = 3/4, ⇢ = 4R and � = �2�p(4R)2, we obtain

sup
K �
3R(z0)

|w| .
�2�p

R p�2

Z

Q�
4R(z0)

|w|p�1dxdt + R�.

By Sobolev-Poincaré’s inequality (2.6), we further obtain

sup
K �
3R(z0)

|w| . R�2�p
Z

Q�
4R(z0)

|Dw|p�1dxdt + R� . R�.

Hence, Z

K �
2R(z0)

|Dw|pdxdt . �p.

This completes our proof.

Proposition 4.7. Let w be a weak solution to the problem (4.1). Assume that

�1�p 
Z

K �
R(z0)

|Dw|pdxdt and
Z

K �
2R(z0)

|Dw|pdxdt  �p, (4.11)

for some  > 1. Then there exists ✏0 > 0 so that
 Z

K �
R(z0)

|Dw|p+✏0dxdt

! 1
p+✏0

 C
Z

K �
2R(z0)

|Dw|dxdt.

Proof. We consider the rescaled maps
8
>><

>>:

w̄(x, t) =
u(x0 + Ri x, t0 + �2�p R2t)

R�

āi (⇠, x, t) =
a(�⇠, x0 + Rx, t0 + �2�p R2t)

�p�1
.

(4.12)

Then arguing similarly to the proof of Theorem 4.7 in [38], we obtain
✓Z

K1
|Dw̄|p+✏0dxdt

◆ 1
p+✏0

 C
✓Z

K2
|Dw̄|pdxdt

◆�

(4.13)

where � = (2+ ✏0)/(2(p + ✏0)).
Rescaling back in (4.13) we get that

 Z

K �
R

|Dw|p+✏0dxdt

! 1
p+✏0

 C�1�� p

 Z

K �
2R

|Dw|pdxdt

!�

.

This together with (4.11) implies the desired estimate.

We now give some comparision estimates for the weak solutions to (1.1).
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4.2. Comparision estimates

Assume that u is a weak solution to the problem (1.1). We consider the following
equation (

wt � div a(Dw, x, t) = 0 in K �
4R(z0)

w = u on @pK �
4R(z0).

(4.14)

It is well-known that w exists and unique.
Arguing similarly to the proof of Lemma 4.1 in [25], we can prove the follow-

ing estimate.

Lemma 4.8. Let w be a weak solution to the problem (4.14). Then for every 1 
q < p � 1+ 1

n+1 , there exists C so that

 Z

K �
4R(z0)

|D(u � w)|qdxdt

!1/q
 C

"
|µ|(K �

4R(z0))
|K �
4R(z0)|(n+1)/(n+2)

# n+2
p+(p�1)n

. (4.15)

We now assume that 0 < � < 1/50. Since x0 2 @�, there exists a new coordinate
system whose variables are still denoted by (x1, . . . , xn) such that in this coordinate
system the origin is some interior point of �, x0 = (0, . . . , 0,� �R

2(1��) ) and

B+
R/2 ⇢ BR/2 \ � ⇢ BR/2 \ {x : xn > �3�R}. (4.16)

Note that due to � 2 (0, 1/50), we further obtain

B3R/8 ⇢ BR/4(x0) ⇢ BR/2 ⇢ BR(x0). (4.17)

Let w be a weak solution to (4.14) satisfying

1
2

�p 
Z

K �
R(z0)

|Dw|pdxdt and
Z

K �
2R(z0)

|Dw|pdxdt  2�
p. (4.18)

We now consider the following problem (in the new coordinate system)
(
ht � div aBR/2(Dh, t) = 0 in K �

R/2(0, t0)

h = w on @pK �
R/2(0, t0).

(4.19)

Using the argument as in the proof of Lemma 3.3 and the fact that BR ⇢ B2R(x0)
we obtain the following estimate.

Lemma 4.9. Let h be a weak solution to (4.19). Then there exist C > 0 and �2 so
that

Z

K �
R/2(0,t0)

|D(w � h)|pdxdt  C[a]�22,R0

 Z

K �
2R(z0)

|Dw|dxdt

!p

. (4.20)
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The main different from the interior case is that due to the lack of smoothness
condition on the boundary of�, we can not expect that the L1-norm of Dh is finite
near the boundary. To handle this trouble, we consider its associated problem.
(

vt � div aBR/2(Dv, t) = 0 in (Q�
R/2)

+(0, t0)
v = 0 on Q�

R/2(0, t0) \ {z = (x 0, xn, t) : xn = 0}.
(4.21)

Proposition 4.10. Let µ 2 L1,✓ (�T ), 1 < ✓  n + 2. For each ✏ > 0 there exists
� > 0 so that the following holds true. Assume that u is a weak solution to the
problem (1.1) satisfying

�1�p�1
Z

K �
R(z0)

|Du|p�1dxdt,
Z

K �
4R(z0)

|Du|p�1dxdt�p�1, for some  >1,

(4.22)
and

|µ|(K �
4R(z0))

|K �
4R(z0)|

 ��m . (4.23)

Then there exists a weak solution v to the problem (4.21) satisfying

kDv̄kL1(Q�
R/8(z0))

. �, (4.24)

and Z

K �
R/4(z0)

|D(u � v̄)|p�1dxdt  (✏�)p�1 (4.25)

where v̄ is the zero extension of v to Q�
R/2(0, t0) � Q�

R/4(z0).

Proof. Similarly to (3.14), we have

"
|µ|(K �

4R(z0))
|K �
4R(z0)|(n+1)/(n+2)

# n+2
p+(p�1)n

. O(�)�.

This along with Lemma 4.8 implies that
Z

K �
4R(z0)

|D(u � w)|p�1dxdt  O(�)�p�1. (4.26)

From this inequality and (4.22), we find that

�p�1 .
Z

K �
R(z0)

|Dw|p�1dxdt,
Z

K �
4R(z0)

|Dw|p�1dxdt . �p�1

provided that � is sufficiently small.
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Applying Proposition 4.6, we obtain

�1�p 
Z

K �
R(z0)

|Dw|pdxdt,
Z

K �
2R(z0)

|Dw|pdxdt  �p (4.27)

for some  > 1.
This together with Lemma 4.9 implies that if h is a solution to (4.19), then it

also solves
(
ht � div aBR/2(Dh, t) = 0 in K �

R/2(0, t0),

h = 0 on @wK �
R/2(0, t0),

(4.28)

with
Z

K �
R/2(0,t0)

|h|pdz .
Z

K �
R/2(0,t0)

|h � w|pdz +
Z

K �
R/2(0,t0)

|w|pdz . �p.

We first show that there exists a weak solution v to the problem (4.21) such that

kDv̄kL1(Q�
R/4(0,t0))

. �, (4.29)

and Z

K �
3R/8(0,t0)

|D(h � v̄)|pdxdt  (✏�)p (4.30)

where v̄ is the zero extension of v to Q�
R/2(0, t0).

Once (4.29) and (4.30) are proved, the desired estimates follow immediately.
Indeed, assume that (4.29) and (4.30) hold true. Since K �

R/4(z0) ⇢ K �
R/2(0, t0) ⇢

K �
R(z0), we have

Z

K �
R/4(z0)

|D(u � v)|p�1dxdt .
Z

K �
R/4(z0)

|D(u � w)|p�1dxdt

+
Z

K �
R/4(z0)

|D(w � h)|p�1dxdt

+
Z

K �
R/4(z0)

|D(h � v)|p�1dxdt

.
Z

K �
R/4(z0)

|D(u � w)|p�1dxdt

+
Z

K �
R/2(0,t0)

|D(w � h)|p�1dxdt

+
Z

K �
R/2(0,t0)

|D(h � v)|p�1dxdt.

At this stage, applying (4.30), (4.26) and (4.20), we get (4.25).
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The estimate (4.24) follows immediately from (4.29) and the following

kDv̄kL1(Q�
3R/8(z0))

 kDv̄kL1(Q�
R/4(0,t0))

(due to (4.17)).

Hence, to complete the proof, we need only to prove (4.29) and (4.30).

Proof of (4.29) and (4.30). By using suitable scaled maps, it suffices to prove in-
equalities above for � = 1 and R = 8, that is, if h is a solution to (4.28) with
� = 1, R = 8, then there exists a weak solution v to the problem (4.21) with
� = 1, R = 8 such that

kDv̄kL1(Q2(0,t0)) . 1 (4.31)

and Z

K3(0,t0)
|D(h � v)|pdxdt  ✏ p. (4.32)

To do this, we first prove that

kDv̄kL1(Q2(0,t0)) . 1 (4.33)

and Z

Q+
4 (0,t0)

|h � v|pdxdt  ✏ p. (4.34)

Indeed, we assume, to the contrary, that there exist an ✏ > 0, a sequence of domains
{�k} such that

B+
4 ⇢ �k

4 ⇢

⇢
x 2 B4 : xn > �

16
k

�
, (4.35)

and a sequence of functions {hk} which solve the problem
(
hkt � div aB4(Dhk, t)=0 in Kk

4 (0, t0) := (�k \ B4) ⇥ (t0 � 42, t0 + 42)
hk = 0 on @wKk

4 (0, t0).
(4.36)

satisfying Z

Kk
4 (0,t0)

|Dhk |p . 1. (4.37)

But we have Z

Q+
4 (0,t0)

|hk � v|p > ✏ (4.38)

for any weak solution v to the problem (4.21) with
Z

Q+
4 (0,t0)

|Dv|p . 1. (4.39)



GLOBAL MARCINKIEWICZ ESTIMATES FOR PARABOLIC EQUATIONS 905

From (4.35), (4.37), (1.2) and Poincaré’s inequality, we have
Z

Q+
4 (0,t0)

|Dhk |pdxdt 
Z

Kk
4 (0,t0)

|Dhk |pdxdt 
Z

Kk
4 (0,t0)

|Dhk |pdxdt . 1,

and

khkt kL p0 (t0�42,t0+42;W�1,p0 (B+
4 )) = kdiv aB4(Dh

k, t)kL p0 (t0�42,t0+42;W�1,p0 (B+
4 ))

 kaB4(Dh
k, t)kL p0 (t0�42,t0+42;L p0 (B+

4 ))

 k(Dhk)p�1kL p0 (t0�42,t0+42;L p0 (B+
4 ))

.

 Z

Kk
4 (0,t0)

|Dhk |p
! p�1

p

. 1.

Therefore, by Aubin-Lions Lemma in [41, Chapter 3], there exists h0 with h0 2
L p(t0 � 42, t0 + 42;W 1,p(B+

4 )) and h0t 2 L p0
(t0 � 42, t0 + 42;W�1,p0

(B+
4 )) such

that there exists a subsequence of {hk}, which is still denoted by {hk}, satisfying

hk ! h0, strongly in L p
⇣
t0 � 42, t0 + 42; L p

�
B+
4
�⌘

,

Dhk ! Dh0, weakly in L p
⇣
t0 � 42, t0 + 42; L p

�
B+
4
�⌘

,

and
hkt ! h0t , weakly in L p

0
⇣
t0 � 42, t0 + 42;W�1,p0 �

B+
4
�⌘

.

As a direct consequence, we have
Z

Q+
4 (0,t0)

|Dh0|pdxdt . lim inf
k

Z

Q+
4 (0,t0)

|Dhk |pdxdt . 1.

From (4.35), we have

h0 = 0 on Q4 \ {x : xn = 0} ⇥ (t0 � 42, t0 + 42).

Therefore, h0 solves
(
h0t � div aB4(Dh0, t) = 0 in Q+

4 (0, t0),
h0 = 0 on Q4 \ {x : xn = 0} ⇥

�
t0 � 42, t0 + 42

�
.

This contradicts to (4.38) by taking v = h0 and k sufficiently large. Hence, (4.33)
and (4.34) are proved.

We now turn to prove (4.31) and (4.32). Let v̄ be a zero extension of v to
Q4(z0). Then it can be verified that v̄ solves

v̄t � div aB4(Dv̄, t) = Dxn

h
anB4(Dv̄(x 0, 0, t))�{x :xn<0}

i
in Q4(0, t0),

where x = (x 0, xn) and a = (a1, . . . , an).
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Therefore, h � v̄ solve

(h� v̄)t �div aB4(D(h� v̄), t) = �Dxn

h
anB4(Dv̄(x 0, 0, t))�{x :xn<0}

i
in K4(0, t0).

By a standard argument as in the proof of Lemma 4.1, we can show that
Z

K3(0,t0)
|D(h � v̄)|pdxdt

.
Z

K4(0,t0)
|h � v̄|pdxdt +

Z

K4(0,t0)
|h � v̄|2dxdt

+
Z

K4(0,t0)
|Dv̄(x 0, 0, t)�{x :xn<0}|

pdxdt.

(4.40)

Using (4.34), we discover that
Z

K3(0,t0)
|h � v̄|pdxdt  C

Z

Q+
4 (0,t0)

|h � v̄|pdxdt

+
Z

K4(0,t0)\Q+
4 (0,t0)

|h|pdxdt

 C(✏1 +O(�)).

(4.41)

It is not difficult to see that
Z

K4(0,t0)
|h � v̄|2dxdt  C(✏1 +O(�)). (4.42)

Moreover, by (4.16), we have
Z

K3(0,t0)
|Dv̄(x 0, 0, t)�{x :xn<0}|

pdxdt


Z

K3(0,t0)\{x :�12�<xn0}⇥(t0�33,t0)
|Dv̄(x 0, 0, t)|pdxdt

 O(�).

(4.43)

Taking the estimates (4.40), (4.41), (4.42) and (4.43) into account, we deduce (4.32).
The assertion (4.31) follows immediately from (4.32):

kvkpL1(Q+
2 (0,t0))

 C
Z

Q+
4 (0,t0)

|Dv|p .
Z

Q+
4 (0,t0)

|D(h � v̄)|pdz

+
Z

Q+
4 (0,t0)

|D(h � w)|pdz +
Z

Q+
4 (0,t))

|Dw pdz

.
Z

Q+
4 (0,t0)

|D(h � v̄)|pdz

+
Z

Q+
4 (0,t))

|D(h � w)|pdz +
Z

K �
8 (z0))

|Dw|pdz

.1,
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where in the first inequality we used the Hölder estimate of v near the flat boundary
in [31].

This completes our proof.

5. The global Marcinkiewicz estimates

This section is devoted to the proof of Theorem 1.3.
Let µ 2 L1,✓ (�T ) with 1 < ✓  n + 2 and u be a SOLA to (1.1). We assume

that 0 < � < 1
50 . Fix 1  s1 < s2  2, R < min{R0/4, 1/4} and z0 2 �T . We set

�0 :=
Z

K2R(z0)
|Du|p�1dz +


1
�

|µ|(K2R(z0))
|K2R(z0)|

� p�1
m

+ 1, (5.1)

where m = p � 1+ 1
✓�1 .

For � > 0, we now define the level set

Es1(�) = {z 2 Ks1R(z0) : |Du(z)| > �}.

For z 2 Es1(�), we define

Gz(r) =
Z

K �
r (z)

|Du|p�1dz +


1
�

|µ|(K �
r (z))

|K �
r (z)|

� p�1
m

.

By Lebesgue’s differentiation theorem, we have

lim
r!0

Gz(r) = |Du(z)|p�1 > �p�1. (5.2)

Note that for (s2�s1)R
105 < r  (s2 � s1)R, z 2 Es1(�) and � > 1, we have K �

r (z) ⇢
K2R(z0). Hence, for a such r one gets that

Gz(r) =
Z

K �
r (z)

|Du|p�1dz +


1
�

|µ|(K �
r (z))

|K �
r (z)|

� p�1
m


|K2R(z0)|
|K �

r (z)|

Z

K2R(z0)
|Du|p�1dz +


1
�

|µ|(K2R(z0))
|K �

r (z)|

� p�1
m


|K2R(z0)|
|K �

r (z)|

Z

K2R(z0)
|Du|p�1dz +


|K2R(z0)|
|K �

r (z)|

� p�1
m
"
1
�

|µ|(K2R(z0))
|K �
2R(z0)|

# p�1
m


|K2R(z0)|
|K �

r (z)|

8
<

:

Z

K2R(z0)
|Du|p�1dz +

"
1
�

|µ|(K2R(z0))
|K �
2R(z0)|

# p�1
m
9
=

;


|K2R(z0)|
|K �

r (z)|
�0 

|Q2R(z0)|
|Q�

r (z)|
|Q�

r (z)|
|K �

r (z)|
�0  4n

(2R)n+2

�2�prn+2
�0.

(5.3)
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We now fix

� > 4n
 
2⇥ 105

s2 � s1

!n+2
�0 = C̃0�0. (5.4)

Then from (5.3), we obtain

Gz(r) < �p�1, for all r 2 [10�5(s2 � s1)R, (s2 � s1)R].

This together with (5.2) implies that for each z 2 Es1(�) there exists 0 < rz <

10�5(s2 � s1)R so that

Gz(rz) = �p�1, and Gz(r) < �p�1 for all r 2 (rz, (s2 � s1)R).

We now apply Vitali’s covering lemma to obtain the following result directly.

Lemma 5.1. There exists a countable disjoint family {K �
ri (zi )}i2I with ri <

(s2�s1)R
105

and zi = (xi , ti ) 2 Es1(�) such that:

(a) Es1(�) ⇢
S

i K
�
5ri (zi );

(b) Gzi (ri ) = �p�1, and Gzi (r) < �p�1 for all r 2 (ri , (s2 � s1)R).

For each i , from Lemma 5.1 we have

�p�1 =
Z

K �
ri (zi )

|Du|p�1dz +

"
1
�

|µ|(K �
ri (zi ))

|K �
ri (zi )|

# p�1
m

.

This implies that

�p�1

2

Z

K �
ri (zi )

|Du|p�1dxdt or
�p�1

2


"
1
�

|µ|(K �
ri (zi ))

|K �
ri (zi )|

# p�1
m

.

This is equivalent to

K �
ri (zi ) 

2
�p�1

Z

K �
ri (zi )

|Du|p�1dxdt, (5.5)

or

�m |K �
ri (zi )| 

2
m
p�1

�
|µ|(K �

ri (zi )). (5.6)

We now set

M = {i : (5.5) holds true}, N = {i : (5.6) holds true}.

Then, I =M [N .
We have the following estimate.
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Proposition 5.2. For each i 2M we have

|K �
ri (zi )| . |K �

ri (zi ) \ Es2(�/4)|. (5.7)

Proof. Let uk be a weak solution to the problem (1.5) for each k 2 N. Since uk ! u
in L p�1(0, T ;W 1,p�1

0 (�)), from (5.5) there exists k1 such that for all k � k1,

K �
ri (zi ) 

3
�p�1

Z

K �
ri (zi )

|Duk |p�1dxdt.

For each k 2 N and s > 0, we define Ek,s(�) = {z 2 KsR(z0) : |Duk(z)| > �}.
Due to K �

ri (zi ) ⇢ Ks2R(z0), we have

|K �
ri (zi )| 

3
�p�1

Z

K �
ri (zi )\Ek,s2 (�/4)

|Duk |p�1dxdt

+
3

�p�1

Z

K �
ri (zi )\Ek,s2 (�/4)

|Duk |p�1dxdt


|K �

ri (zi )|
4p�2

+
3

�p�1

Z

K �
ri (zi )\Ek,s2 (�/4)

|Duk |p�1dxdt.

This implies

|K �
ri (zi )| .

1
�p�1

Z

K �
ri (zi )\Ek,s2 (�/4)

|Duk |p�1dxdt. (5.8)

Note that from the definitions of ri , the index setM and the fact that uk ! u in
L p�1(0, T ;W 1,p�1

0 (�)), there exists k2 such that for all k � k2 we have

�p�1

3

Z

K �
ri (zi )

|Duk |p�1dxdt,
Z

K �
4ri

(zi )
|Duk |p�1dxdt < 3�p�1,

and
|µk |(K �

4ri (zi ))

|K �
4ri (zi )|

 ��m .

By Hölder’s inequality, for a fixed ⌫ 2 (p � 1, p � 1+ 1
n+1 ) we have

✓
1

|K �
ri (zi )|

Z

K �
ri (zi )\Ek,s2 (�/4)

|Duk |p�1dxdt
◆ 1

p�1



 
1

|K �
ri |

Z

K �
ri (zi )\Ek,s2 (�/4)

|Duk |⌫dxdt

! 1
⌫
 

|K �
ri (zi ) \ Ek,s2(�/4)|

|K �
ri (zi )|

!1� 1
⌫

,

(5.9)

Since u is not a weak solution, we cannot apply the results in Section 3 and Section 4
directly. However, we can apply the results to estimate u via an approximation
scheme.
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For each k and i , consider the following equation
(

(wi
k)t � div a(Dwi

k, x, t) = 0 in Q�
4ri

wi
k = uk on @pQ�

4ri .

At this stage, arguing similarly to (4.26), we have
Z

K �
4ri

(zi )
|D(uk � wi

k)|
⌫dxdt  O(�)�⌫ . (5.10)

On the other hand, the argument used in the proof of (4.27) also implies that

c�1�p 
Z

K �
ri (zi )

|Dwi
k |
pdxdt,

Z

K �
2ri

(zi )
|Dwi

k |
pdxdt  c�p,

for some c � 1.
As a consequence,

Z

K �
ri (zi )

|Dwi
k |

⌫dxdt  c�⌫ .

This along with (5.10) yields
Z

K �
ri (zi )

|Duk |⌫dxdt . �⌫

provided that � is sufficiently small.
Inserting this into (5.9), we get that

0

B
B
@

1
|K �

ri (zi )|

Z

K �
ri (zi )\Ek,s2 (�/4)

|Duk |p�1dxdt

1

C
C
A

1
p�1

 c�

 
|K �

ri (zi ) \ Ek,s2(�/4)|
|K �

ri (zi )|

!1� 1
⌫

,

or equivalently,

Z

K �
ri (zi )\Ek,s2 (�/4)

|Duk |p�1dxdt  c�p�1|K �
ri (zi )|

 
|K �

ri (zi )\Ek,s2(�/4)|
|K �

ri (zi )|

!(p�1)(⌫�1)
⌫

.

(5.11)
This, in combination with (5.8), gives that

|K �
ri (z)|  c|K �

ri (zi )|

 
|K �

ri (zi ) \ Ek,s2(�/4)|
|K �

ri (zi )|

! (p�1)(⌫�1)
⌫

.
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Therefore
|K �

ri (zi )| . |K �
ri (zi ) \ Ek,s2(�/4)|.

Letting k ! 1, we get (5.7) immediately.

Proposition 5.3. There exists N0 > 1 so that for any � > C̃0�0 we have
X

i2M
|Es1(N0�) \ K �

5ri (zi )| ✏Es2(�/4). (5.12)

As a consequence, we have

|Es1(N0�)|  ✏Es2(�/4) + c��m |µ|(Ks2R(z0)). (5.13)

Proof. We set

M1 := {i : B�
40ri (xi ) ⇢ �}, and M2 := {i : B�

40ri (zi ) \ �c 6= ;}.

For i 2M1, from the definition ofM1 and Lemma 5.1, we have

�p�1 .
Z

Q�
10ri

(zi )
|Du|p�1dxdt,

Z

Q�
40ri

(zi )
|Du|p�1dxdt < �p�1,

and
|µ|(Q�

40ri (zi ))

|Q�
40ri (zi )|

 ��m .

Let {uk} be weak solutions to the problems (1.5) for each k 2 N. Then from the
two estimates above there exists k1 > 0 so that for all k � k1 we have

�p�1 .
Z

Q�
10ri

(zi )
|Duk |p�1dxdt,

Z

Q�
40ri

(zi )
|Duk |p�1dxdt < �p�1,

and
|µk |(Q�

40ri (zi ))

|Q�
40ri (zi )|

 ��m .

Then applying Proposition 3.5, for each k � k1 and i 2 M1 we can find vik such
that

kDvikkL1(Q�
5ri

(zi ))  A1�,

Z

Q�
10ri

(zi )
|D(uk � vik)|

p�1  (✏�)p�1. (5.14)

For i 2M2, pick x̄i 2 B10ri (xi ) \ @�. Setting z̄i = (x̄i , ti ), then we have

Q�
5ri (zi ) ⇢ Q�

15ri (z̄i ) ⇢ Q�
280ri (z̄i ) ⇢ Q�

500ri (zi ). (5.15)

Therefore, from the definition ofM2 and Lemma 5.1, we have

�p�1 .
Z

K �
120ri

(z̄i )
|Du|p�1dxdt,

Z

K �
480ri

(z̄i )
|Du|p�1dxdt . �p�1,
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and
|µ|(K �

480ri (z̄i ))

|K �
480ri (z̄i )|

 ��m .

Hence, there exists k2 such that for all k � k2 we have

�p�1 .
Z

K �
120ri

(z̄i )
|Duk |p�1dxdt,

Z

K �
480ri

(z̄i )
|Duk |p�1dxdt . �p�1,

and
|µk |(K �

480ri (z̄i ))

|K �
480ri (z̄i )|

 ��m .

We now apply Proposition 4.10 to find a function vik , for each k � k2 and i 2 M2
so that

kDvikkL1(Q�
15ri

(z̄i ))  c�,

Z

K �
30ri

(z̄i )
|D(uk � vik)|

p�1  (✏�)p�1.

This together with (5.15) implies

kDvikkL1(Q�
5ri

(zi ))  A2�,

Z

K �
10ri

(zi )
|D(uk � vik)|

p�1  (✏�)p�1. (5.16)

Taking N0 = max{2A1, 2A2}, from (5.14) and (5.16) we have, for k � max{k1, k2},
X

i2M
|Es1(N0�) \ K �

5ri (zi )| 
X

i2M
|{z 2 K �

5ri (zi ) : |Duk(z)| > N0�/2}|

+
X

i2M
|{z 2 K �

5ri (zi ) : |D(u � uk)(z)| > N0�/2}|

.
2X

j=1

X

i2M j

h
|{z 2 K �

5ri (zi ) : |D(uk � vik)(z)| > N0�}|

+ |{z2K �
5ri (zi ) : |Dvik(z)|>N0�/2}|

i
+ |{z 2 �T : |D(u � uk)(z)|>N0�/2}|

.
2X

j=1

X

i2M j

|{z 2 K �
5ri (zi ) : |D(uk � vik)(z)| > N0�}|+

+ |{z 2 �T : |D(u � uk)(z)| > N0�/2}|

.
2X

j=1

X

i2M j

1
(N0�)p�1

Z

K �
5ri

(zi )

|D(uk� vik)|
p�1dz +

1
(N0�)p�1

Z

�T

|D(uk� u)|p�1dz

. ✏|K �
5ri (zi )| + +

1
(N0�)p�1

Z

�T

|D(uk � u)|p�1dz

. ✏|K �
ri (zi )| + +

1
(N0�)p�1

Z

�T

|D(uk � u)|p�1dz.
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Letting k ! 1 and using the fact that K �
ri (zi ) ⇢ Ks2R(z0), the estimate (5.12)

follows as desired.
To prove (5.13), we observe that from Lemma 5.1, (5.12) and the fact that

I =M [N , we have

|Es1(N0�)| 
X

i2M
|Es1(N0�) \ K �

5ri (zi )| +
X

i2N
|Es1(N0�) \ K �

5ri (zi )|

 ✏Es2(�/4) +
X

i2N
|K �
5ri (zi )|.

From the definition ofN and the fact that K �
ri (zi ) ⇢ Ks2R(z0), we have

X

i2N
|K �
5ri (zi )|C

X

i2N
|K �

ri (zi )|C��m
X

i2N
|µ|(K �

ri (zi ))C��m |µ|(Ks2R(z0)),

where in the last inequality we used the fact that {K �
ri (zi )} is pairwise disjoint.

We now recall the result in [20, Lemma 4.3].

Lemma 5.4. Let f be a bounded nonnegative function on [a1, a2] with 0 < a1 <
a2. Assume that for any a1  x1  x2  a2 we have

f (x1)  ✓1 f (x2) +
A1

(x2 � x1)✓2
+ A2,

where A1, A2 > 0, 0 < ✓1 < 1 and ✓2 > 0. Then, there exists c = c(✓1, ✓2) so that

f (x1)  c


A1
(x2 � x1)✓2

+ A2
�

.

We now ready to give the proof of Theorem 1.3.

Proof of Theorem 1.3. For each k > 0 we define |Du|k = min{k, |Du|}. Then
|Du|k 2 Mm(�T ) for all k. We set Eks (�) = {z 2 KsR(z0) : |Du(z)|k > �} for
s > 0.

From (5.13), it follows immediately that there exists C independing of k so
that

|Eks1(N0�)|  ✏Eks2(�/4) + c��m |µ|(Ks2R(z0)), � > C̃0�0.

Hence,

�m |Eks1(N0�)|  ✏�mEks2(�/4) + C|µ|(Ks2R(z0)), � > C̃0�0.

This implies that

sup
�>0

�m |Eks1(N0�)|  sup
0<�C̃0�0

�m |Eks1(N0�)| + sup
�>C̃0�0

�m |Eks1(N0�)|

 (C̃0�0)m |Ks1R(z0)| + ✏ sup
�>0

�m |Eks2(�/4)| + C|µ|(Ks2R(z0)).
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Substituting the values of C̃0 and �0 given by (5.1) and (5.4) into the inequality
above, we obtain

k|Du|kkmMm(Ks1R(z0))  ✏k|Du|kkmMm(Ks2R(z0))+ |µ|(�T ) + C

 
2⇥ 105

s2 � s1

!(n+2)m

⇥

Z

K2R(z0)
|Du|p�1dz +


1
�

|µ|(K2R(z0))
|K2R(z0)|

�p�1
m
|+1

�m
|�T |.

Applying Lemma 5.4, we get that

k|Du|kkmMm(Ks1R(z0)) . |µ|(�T ) +

 
2⇥ 105

s2 � s1

!(n+2)m

⇥

Z

K2R(z0)
|Du|p�1dz +


1
�

|µ|(K2R(z0))
|K2R(z0)|

� p�1
m

|+1
�m

|�T |.

Taking s1 = 1, s2 = 2, we have

k|Du|kkmMm(KR(z0)) . |µ|(�T )

+

Z

K2R(z0)
|Du|p�1dz +


1
�

|µ|(K2R(z0))
|K2R(z0)|

�p�1
m

| + 1
�m

|�T |

. |µ|(�T ) + kDukm(p�1)
L p�1(�T )

+ |µ|(�T )p�1 + 1.

.
h
|µ|(�T ) + kDukmL p�1(�T )

+ 1
ip�1

.

Since �T is bounded, we deduce that

k|Du|kkmMm(�T ) .
h
|µ|(�T ) + kDukmL p�1(�T )

+ 1
ip�1

.

On the other hand, by tracking the constant in the proof of Lemma 2.2 in [8] we
have

k|Du|kL p�1(�T )  C|µ|(�T )
n+1

n(p�1) .

Hence,

k|Du|kkMm(�T ) .
h
|µ|(�T )

n+1
n + |µ|(�T )

p�1
m + 1

i
.
h
|µ|(�T )

n+1
n + 1

i
.

Letting k ! 1, we obtain

k|Du|kmMm(�T ) .
h
|µ|(�T )

n+1
n + 1

i
.

This completes our proof.
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