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Symplectic Wick rotations between moduli spaces of 3-manifolds

CARLOS SCARINCI AND JEAN-MARC SCHLENKER

Abstract. We describe natural maps between (parts of) QF , the space of quasi-
fuchsian hyperbolic metrics on a product 3-manifold S⇥R, and GH�1, the space
of maximal globally hyperbolic anti-de Sitter metrics on the same manifold, de-
fined in terms of special surfaces (e.g., minimal/maximal surfaces, CMC surfaces,
pleated surfaces) and prove that these “Wick rotations” are at least C1 smooth and
symplectic with respect to the canonical symplectic structures on both QF and
GH�1. Similar results involving the spaces of globally hyperbolic de Sitter and
Minkowski metrics are also described.

These 3-dimensional results are shown to be equivalent to purely 2-dimen-
sional ones. Namely, consider the double harmonic map H : T ⇤T ! T ⇥ T ,
sending a conformal structure c and a holomorphic quadratic differential q on
S to the pair of hyperbolic metrics (mL ,mR) such that the harmonic maps iso-
topic to the identity from (S, c) to (S,mL ) and to (S,mR) have, respectively,
Hopf differentials equal to iq and �iq, and the double earthquake map E :
T ⇥ ML ! T ⇥ T , sending a hyperbolic metric m and a measured lamina-
tion l on S to the pair (EL (m, l), ER(m, l)), where EL and ER denote the left
and right earthquakes. We describe how such 2-dimensional double maps are re-
lated to 3-dimensional Wick rotations and prove that they are also C1 smooth and
symplectic.

Mathematics Subject Classification (2010): 53C35 (primary); 53C50, 53C40,
83C80 (secondary).

1. Introduction and results

Notation

We consider a closed, oriented surface S of genus g � 2 and the 3-dimensional
product manifold M = S ⇥ R. The boundary of M is the disjoint union of two
surfaces homeomorphic to S, which we denote by @+M and @�M .
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We denote by T the Teichmüller space of S, which is considered either as the
space of conformal structures, the space of complex structures compatible with the
orientation, or the space of hyperbolic metrics on S, all considered up to isotopy,
and by T the Teichmüller space of S with the opposite orientation. Recall that
T is naturally endowed with a symplectic form !WP , called the Weil-Petersson
symplectic form, and T has the corresponding symplectic form !WP (which differs
from !WP by a sign).

We also denote byML the space of measured laminations on S and by Q
the bundle of holomorphic quadratic differentials on S. The space of complex
projective structures on S, considered up to isotopy, will be denoted by CP (see
Subsection 2.2). This space is enowed with a complex symplectic form !G , called
the Goldman symplectic form. We denote by !i

G the imaginary part of !G , which
defines a real symplectic structure.

1.1. Wick rotations

The heuristic idea of Wick rotation is old and quite natural. The underlying space-
time of special relativity is the Minkowski space, that is, R4 with the Lorentzian
metric �dt2 + dx2 + dy2 + dz2. Mathematicians (and physicists at the time) were
used to the four-dimensional Euclidean space, R4 with the bilinear form d⌧ 2 +
dx2 + dy2 + dz2. A simple way to pass from one to the other is to “complexify
time”, that is, write t = i⌧ , so that the Minkowski metric is written in terms of the
variables (⌧, x, y, z) exactly as the Euclidean metric.

The “Wick rotations” that we consider here, following the spirit of [6], are
slightly more elaborate versions of the same idea. We consider a constant curvature
metric g on a 3-dimensional manifold M (homeomorphic to S ⇥ R) along with
a surface 6 ⇢ M . (The metric g can be hyperbolic or Lorentzian of curvature
�1, 0 or 1, and the surface 6 is always “special”, it can be a minimal or maximal
surface, a CMC surface, or a pleated surface.) We then note that under various
hypothesis there is a unique metric g0 on M which is also of constant curvature,
but of a different type than g, containing a surface 60 which is either isometric or
conformal to 6, and “curved” in the same way, in the sense that they have the same
traceless second fundamental form or measured bending lamination, depending on
the case considered.

We are thus interested in the relations between moduli spaces of geometric
structures on M = S ⇥ R, in particular
• the spaceQF of quasifuchsian hyperbolic metrics (see Subsection 2.3), or more
generally the spaceHE of hyperbolic ends (see Subsection 2.4);

• and the space GH�1 of maximal globally hyperbolic anti-de Sitter metrics (see
Subsection 2.5),

but also the spaces GH1 and GH0 of maximal globally hyperbolic de Sitter and
Minkowski metrics (see Subsection 2.8). We give the main definitions first for maps
between quasifuchsian metrics (or more generally hyperbolic ends) and globally
hyperbolic AdS metrics.
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1.2. Convex pleated surfaces

Given a quasifuchsian manifold (M, h), or more generaly a hyperbolic end (E, h),
let S+ denote the upper boundary of the convex core of M (see Subsection 2.6),
respectively the concave boundary component of E (see Subsection 2.4), and denote
by (m+, l+) = @

Hyp
+ (h) the induced metric and measured pleating lamination on

S+. The metric m+ is hyperbolic and can be lifted to a complete hyperbolic metric
m̃+ on the universal cover fS+, and l+ to a measured geodesic lamination l̃+ for m̃+.

Then, the data (m̃+, l̃+) defines a unique pleated surface 6̃ in AdS3 (see [6])
which by construction is invariant and cocompact under an action ⇢ : ⇡1S !
isom(AdS3). This action extends in a properly discontinuous manner to a small
tubular neighborhood of 6̃ in AdS3 and, taking the quotient of this tubular neighbor-
hood by ⇢(⇡1S), defines an AdS 3-manifold (M 0, g0) which is globally hyperbolic.
Therefore (M 0, g0) embeds isometrically in a unique GHM AdS manifold (M, g)
(see [32]). Also by construction, 6/⇢(⇡1S) embeds isometrically as a pleated sur-
face in M , which can only be the upper boundary of the convex core of M , so that
(m+, l+) is also the data defined on the upper boundary of C(M, g)

(m+, l+) = @AdS+ (g) .

This therefore defines a Wick rotation map WAdS
@ : QF ! GH�1 associating

to a quasifuchsian manifold the GHM AdS manifold with matching convex core
boundary data

WAdS
@ = (@AdS+ )�1 � @

Hyp
+ .

We refer the reader to [6] for a similar construction.
The following proposition is perhaps not as obvious as it might appear at first

sight. It is close in spirit to [27, Lemma 1.1].

Proposition 1.1. The map WAdS
@ : QF ! GH�1 is injective and C1-smooth.

Note that the smooth structures onQF and GH�1 considered here are induced
by the holonomy maps holHyp : QF ! X and holAdS : GH�1 ! T ⇥ T . HereX
denotes the PSL2C-character variety of S, T the Teichmüller space of S and T the
Teichmüller space of S with the opposite orientation. Also note thatWAdS

@ becomes
one-to-one when extended to the more general setting of hyperbolic ends.

This proposition implies that we can consider the pull-back by WAdS
@ of the

symplectic structure on the target space. We then obtain the following theorem,
whose proof can be found in Section 5:

Theorem 1.2. The map WAdS
@ : (QF,!i

G) !
�
GH�1,

1
2 (!WP � !WP)

�
is sym-

plectic.

The precise definition of the symplectic structures !i
G and !WP can be found

in Section 2.
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1.3. Minimal or maximal surfaces

Given a quasifuchsian manifold (M, h), it is well known (see, e.g., [46]) that M
contains a closed minimal surface homeomorphic to S. However this minimal
surface is in general not unique. There is a specific class of quasifuchsian mani-
folds containing a unique closed, embedded minimal surface: they are those, called
almost-Fuchsian, which contain a closed, embedded minimal surface with princi-
pal curvatures everywhere in (�1, 1), see [46]. We call AF ⇢ QF the space of
almost-Fuchsian metrics on M , considered up to isotopy.

Thus, restricting our attention to h 2 AF , let 6 ⇢ M be its unique closed,
embedded minimal surface and consider its induced metric I and second funda-
mental form II . It is well known (see, e.g., [26]) that II is then the real part of a
holomorphic quadratic differential q for the complex structure defined on S by the
conformal class of I . So ([I ], II ) define a point (c, q) 2 Q, and we obtain a map

min : AF ! Q,

sending an almost-Fuchian metric to the data on its minimal surface.
Things are somewhat simpler for GHM AdS manifolds. It is well known (see,

e.g., [26]) that any GHM AdS manifold contains a unique closed, space-like max-
imal surface. Moreover, given a complex structure c and a holomorphic quadratic
differential q for c on S, there is a unique GHM AdS metric g such that the induced
metric and second fundamental form on the unique maximal surface in M is I, II
with I compatible with c and II = Re(q). This provides an analogous map

max : GH�1 ! Q

sending an GHM AdS metric to the data on its maximal surface and which, by the
arguments above, is one-to-one.

This defines another Wick rotation map Wmin : AF ! GH�1 associat-
ing to an almost-Fuchian manifold the GHM AdS manifold with matching mini-
mal/maximal surface data

Wmin : max�1 �min .

This map is clearly smooth and injective and we have the following result:

Theorem 1.3. The map Wmin : (AF,!i
G) ! (GH�1,

1
2 (!WP � !WP)) is sym-

plectic.

1.3.1. Constant mean curvature surfaces

The previous picture can be extended by considering constant mean curvature
(CMC) surfaces, rather than minimal or maximal surfaces. Recall that the mean
curvature of a surface in a Riemannian or Lorentzian 3-manifold is given by half
the trace of its second fundamental form. We will use a basic and well-known fact
(see [22]): the traceless part of the second fundamental form of an oriented con-
stant mean curvature surface in any constant curvature 3-dimensional (Riemannian
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or Lorentzian) manifold is the real part of a holomorphic quadratic differential, for
the complex structure associated to its induced metric.

GHM AdS manifold are particularly well-behaved with respect to CMC sur-
faces. On one hand, any GHM AdS manifold contains a canonical foliation by
CMC surfaces.

Theorem 1.4 (Barbot, Béguin, Zeghib [5]). Any GHM AdS manifold M admits a
unique foliation by closed space-like CMC surfaces, with mean curvature varying
between�1 and1. That is, for all H 2 R, M contains a unique closed space-like
CMC-H surface.

On the other hand, one can also associate through CMC-H surfaces a GHM
AdS manifold to any point in Q, thanks to the following proposition (see [26,
Lemma 3.10]).

Proposition 1.5. Let H 2 (�1,1). Given c a complex structure and q a holo-
morphic quadratic differential for c, there is a unique GHM AdS metric g on M
such that the induced metric and traceless part of the second fundamental form
on the unique CMC-H surface in (M, g) is I, II0 with I compatible with c and
II0 = Re(q).

In the quasifuchsian context, it was conjectured by Thurston that the analog of
Theorem 1.4 also holds, but only for almost-Fuchsian manifolds. Lacking a proof
of this fact, we introduce the following notation.

Definition 1.6. We denote byAF 0 the space of quasifuchsian metrics on M which
admit a unique foliation by CMC surfaces with H 2 (�1, 1).

Note that the Thurston conjecture mentioned above can be reformulated as the
fact thatAF ⇢ AF 0, as any closed embedded CMC surface is a leaf of the foliation
by the maximum principle.

We can now construct a generalization of the map Wmin associated to any pair
of constants H 2 (�1, 1) and H 0 2 (�1,1). For each h 2 AF 0, let 6H be the
unique closed CMC-H surface in (M, h), let c be the conformal class of its induced
metric, and let q be the traceless part of its second fundamental form. There is
then a unique GHM AdS metric g on M such that the (unique) CMC-H 0 surface
in (M, g) has induced metric conformal to c and the traceless part of its second
fundamental form is equal to q. We denote by WAdS

H,H 0 : AF 0 ! GH�1 the map
sending h to g.

Theorem 1.7. For all H 2 (�1, 1) and H 0 2 (�1,1), the map

WAdS
H,H 0 :

⇣
AF 0,!i

G

⌘
!

✓
GH�1,

1
2

(!WP � !WP)

◆

is symplectic.
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1.4. Double maps

We now translate the above stated results purely in terms of surfaces, and of maps
between moduli spaces of surfaces, with no reference to 3-dimensional manifolds.
We first consider harmonic maps and then earthquakes.

1.4.1. Harmonic maps

Recall that a map � : (M, g) ! (N , h) between two Riemannian manifolds is
harmonic if it is a critical point of the Dirichlet energy, defined as

E(�) =
Z

M
kd�k2d vol .

If M is a surface, the Dirichlet energy is invariant under conformal deformations of
the metric on M , so the notion of harmonic maps from M to N only depends on the
choice of a conformal class on M (no Riemannian metric is needed).

Let us now consider the case of harmonic diffeomorphisms of a surface S. Let
c 2 T be a complex structure on S and m 2 T a hyperbolic metric. Given a
diffeomorphism � : (S, c) ! (S,m), its Hopf differential Hopf(�) is defined as
the (2, 0) part of �⇤m. A key relation between holomorphic quadratic differentials
and harmonic diffeomorphisms is that Hopf(�) is holomorphic if and only if � is
harmonic. In addition, we will use the following well-know statements.

Theorem 1.8 (Eells and Sampson [15], Hartman [20], Schoen andYau [40]). If
S is a closed surface equipped with a conformal class c and m is any hyperbolic
metric on S, then there is a unique harmonic map isotopic to the identity from (S, c)
to (S,m).

Theorem 1.9 (Sampson [38], Wolf [48]). Let c 2 T be a complex structure on a
surface S, and let q be a holomorphic quadratic differential on (S, c). There is a
unique hyperbolic metric m on S, well-defined up to isotopy, such that the Hopf
differential of the harmonic map � : (S, c) ! (S,m) isotopic to the identity is
equal to q.

Together these define a map H : Q ! T , from the bundle of holomorphic
quadratic differentials to Teichmüller space, associating to (c, q) the hyperbolic
metric m.
Definition 1.10. We denote byH : Q! T ⇥ T the map defined by

H(c, q) = (H(c,�iq), H(c, iq)) .

We will callH the double harmonic map.
It is a well known fact that the bundleQ of holomorphic quadratic differentials

can be identified with the holomorphic cotangent bundle T ⇤(1,0)T over Teichmüller
space. We denote by !⇤ the canonical complex cotangent bundle symplectic struc-
ture on T ⇤(1,0)T and by !r⇤ its real part, which corresponds to (half) the real canon-
ical cotangent bundle symplectic structure on T ⇤T . We then obtain the following
result.
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Theorem 1.11. H : (Q,�!r⇤) ! (T ⇥ T , 12 (!WP � !WP)) is symplectic.

1.4.2. Earthquakes

Definition 1.12. A measured geodesic lamination is a closed subset l ⇢ S which
is foliated by complete simple geodesics, defined with respect to a given hyperbolic
metric m 2 T , together with a positive measure µ on arcs transverse to the leaves
of l which is invariant under deformations among transverse arcs with fixed end-
points (see, e.g., [12]). We denote the space of measured geodesic laminations on
S, considered up to isotopy, byML.

Similarly to holomorphic quadratic differentials, the definition of measured
geodesic laminations depends on the choice of a point in T and thus determines a
bundle over Teichmüller space. However, unlike Q, there is a canonical identifica-
tion between the fibres over any pair m,m0 2 T — this extends the fact that any
simple closed geodesic for m0 is isotopic to a unique simple closed geodesic for m
(see [12]). This justifies the notation ofML without any reference to a hyperbolic
structure.

Given a hyperbolic metric m 2 T and a measured geodesic lamination l 2
ML we may define the left earthquake of m along l. This is a new hyperbolic
metric on S denoted by EL(m, l). For l supported on a simple close geodesic �
with weight a, EL(m, l) is defined by cutting S along � , rotating the left-hand side
of � by length a and then gluing it back. The operation for general laminations is
then defined as certain (well-defined) limiting procedure [44]. Importantly we have
the following result, which is a geometric analogue to the analytic results above.

Theorem 1.13 (Thurston [44]). For any pair m,m0 2 T of hyperbolic metrics on
S there exists a unique measured lamination l 2 ML such that m and m0 are
related by a left earthquake m0 = EL(m, l).

Theorem 1.14 (Thurston [44], Kerckhoff [25]). The map EL : T ⇥ML ! T
is a homeomorphism for every fixed m 2 T and a real analytic diffeomorphism for
every fixed l 2ML.

The notion of right earthquake is obtained in the same way, by rotating in the
other direction, so that the right earthquake along l, ER(l), is the inverse of EL(l).
So we have two maps EL , ER : T ⇥ML! T .
Definition 1.15. We denote by E : T ⇥ML! T ⇥ T the map defined by

E(m, l) =
⇣
EL(m, l), ER(m, l)

⌘
.

We will call E the double earthquake map.
Note that E is a bijection. Indeed, from Thurston’s Earthquake Theorem, given

any pair m,m0 2 T , there is a unique left earthquake path going from m0 to m. In
other terms, there is a unique measured lamination l 2ML such that EL(l)(m0) =
h. Now let m00 = EL(l/2)(m0). Then clearly (m,m0) = E(m00, l/2). Conversely,
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given any (m00, l) 2 T ⇥ ML such that (m,m0) = E(m00, l), m00 must be the
midpoint of the left earthquake path from m0 to m, and this path is associated to
l, so the map E is one-to-one. However there is no reason to believe that E is
differentiable — actually it is not even clear what it would mean, since there is no
canonical differentiable structure onML. To deal with this differentiability issue
we introduce a map � : T ⇥ML! T ⇤T which sends a hyperbolic metric m 2 T
on S and a measured lamination l 2 ML to the differential at m of the length
function of l, L(l) : T ! R,

�(m, l) = dmL(l) .

This map is a global homeomorphism between T ⇥ML and T ⇤T , see [27, Lemma
2.3].

The following can be seen as a translation of Proposition 1.1, see Section 4 for
a proof.

Proposition 1.16. The map EL � ��1 : T ⇤T ! T is C1-smooth.

Corollary 1.17. E � ��1 : T ⇤T ! T ⇥ T is a C1 diffeomorphism.

This corollary then allows to consider the following statement, whose proof
can be found in Section 5

Theorem 1.18. The map E � ��1 : (T ⇤T , 2!r⇤) ! (T ⇥ T , 12 (!WP � !WP)) is
symplectic.

1.5. Minkowski and de Sitter manifolds

For GHM Minkowski and de Sitter manifolds, it is also possible to define Wick
rotation maps WMink

@ : QF ! GH0, WMink
H,H 0 : AF 0 ! GH0 and WdS

@ : QF !

GH1 and WdS
H,H 0 : AF 0 ! GH1. The main difference is that these manifolds now

do not contain convex pleated surfaces nor maximal surfaces. Their relation with
hyperbolic manifolds in terms of measured laminations is still possible via: (1) the
inital singularity of Minkowski manifolds and (2) the projective duality between
hyperbolic and de Sitter manifolds. The relation in terms of CMC foliations is also
available in both cases, only with H 0 varying between (�1, 0) and (�1,�2),
respectively.

We shall prove, in the de Sitter case, that the CMC Wick rotations WdS
H,H 0 is

again symplectic, where the symplectic structure on GH1 is again the pull-back of
the imaginary part of the Goldman symplectic structure on X .

Theorem 1.19. Let H 2 (�2, 2) and let H 0 2 (�1,�2). The map WdS
H,H 0 :

(AF 0,!i
G) ! (GH1,!

i
G) is symplectic.

The proof can be found in Subsection 7.1.
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1.6. Spaces with particles

The results above might have extensions to constant curvature 3-manifolds of var-
ious types containing “particles”, that is, cone singularities of angle less than ⇡
along infinite geodesics connecting the two connected components of the boundary
at infinity (in a “quasifuchsian” hyperbolic manifold) or along a maximal time-like
geodesic (in a GHM AdS, dS or Minkowski spacetime).

A number of the tools needed to state the results above are known to extend
to this setting. For quasifuchsian manifolds, an extension of the Bers double uni-
formization theorem is known in this setting [29, 34]. The Mess analog for GHM
AdS manifolds also extends to this setting with “particles” [13], and the existence
and uniqueness of a maximal surface (orthogonal to the particles) also holds [45].
However it is not known whether GHM AdS, dS or Minkowski space-times with
particles contain a unique foliation by CMC surfaces orthogonal to the particles.

1.7. Some physical motivations

From a physical point of view there are two approaches to understand the relation
between Teichmüller theory and 3d gravity which motivates the existence of the
symplectic maps considered in the present work. In each approach, one rewrites the
Einstein-Hilbert functional in terms of new variables as to simplify the description
of the moduli space of critical points.

Recall that the Einstein-Hilbert functional on the space of 3-dimensional
Lorentzian metrics on M is defined by

S[g] = �
Z

M
(R � 23)dv

where dv and R are the volume form and the scalar curvature of g, 3 = 0,�1, 1
the cosmological constant. The critical points are given by solutions of Einstein’s
equation

Ric�
1
2
(R � 23)g = 0.

The usual approach to describe the moduli space of critical points of the Einstein-
Hilbert action follows from the interpretation of Einstein’s equation as a constrained
dynamical system for 2-dimensional Riemannian metrics on S, see [4, 33]. One
starts with the choice of a global time function on M and decomposes of the 3-
dimensional metric g in terms of the induced metric I and the extrincic curvature
II of the leaves of the constant time foliation, which are constrained by the Gauss-
Codazzi equations. In terms of isothermal coordinates z on a leaf 6, we my write

I = e2'|dz|2, II =
1
2

⇣
qdz2 + q̄d z̄2

⌘
+ e2'H |dz|2,

and the Gauss-Codazzi equation becomes

4@z@z̄' = e2'
⇣
H2 � 3

⌘
� e�2'|q|2, @z̄q = e2'@z̄ H.
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Here e2' is the conformal factor of I , H is a the mean curvature of 6 and q is a
quadratic differential.

For maximal globally hyperbolic spacetimes, the equations of motion are then
uniquely solved given initial data on any Cauchy surface 6. Also in this case
it is always possible to choose a foliation containing a constant mean curvature
(H = const.) initial surface. The constraints are then easily solved: the Codazzi
constraint equation becomes a holomorphicity equation for the quadratic differ-
ential q determined by the traceless part of II and the Gauss constraint equation
becomes an elliptic differential equation for e2' . The existence and uniqueness of
solutions of the Gauss equation are guaranteed for H2 � 3 � 1 (see [33]) thus
showing that the inital data parameterizing the moduli space of globally hyperbolic
maximal spacetimes is given by points in the cotangent bundle over Teichmüller
space of the initial Cauchy surface:

GH3 = T ⇤T .

The symplectic structure on GH3 is also shown to agree, up to a multiplicative
constant, with the real canonical symplectic structure !r⇤ on T ⇤T , via symplectic
reduction of the cotangent bundle over Riemannian metrics on S, with its canonical
symplectic structure, to the constraint submanifold defined by the Gauss-Codazzi
equation [33].

Another approach to describe the moduli space GH3 stems from the fact that
all Einstein 3-manifolds have constant sectional curvature equal to the cosmological
constant 3. Thus, such manifolds can be described as quotients of appropriate do-
mains of either Minkowski, anti-de Sitter or de Sitter 3-spacetime, in the Lorentzian
setting, and Euclidean, hyperbolic or spherical 3-space, in the Riemannian setting.
The study of 3d Einstein manifolds can thus be viewed in the context of locally
homogeneous geometric structures, i.e., flat G3-bundles over spacetime. Such an
approach was first suggested in the physics literature in [1, 47] where the Einstein-
Hilbert action is shown to be equivalent to a Chern-Simons action on the space of
G-connections over the spacetime manifold. Here G3 is the isometry group of the
relevant model spacetime, that is, PSL2R n sl2R for 3 = 0, PSL2R ⇥ PSL2R for
3 = �1, and PSL2C for 3 = 1.

This is obtained by first decomposing the spacetime metric g in terms of a
coframe field e and spin connection !, which are taken to be independent. By
appropriately tensoring the components of e and ! with Lie algebra generators one
then constructs the associated g3-valued 1-form A on M . Finally, translating the
Einstein-Hibert action for g in terms of A gives exactly the Chern-Simons action

SG3[A] =
Z

M
B3

✓
A ^ d A +

2
3
A ^ A ^ A

◆
,

where B3 denotes an Ad-invariant symmetric bilinear form on g3. This provides a
description of the moduli space of spacetimes as a subspace of the moduli space of
flat G3-connections on S. In the maximal globally hyperbolic case it is possible to
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describe the gravitational component completely (see [32,39])

GH3 =

8
><

>:

T ⇤T 3 = 0
T ⇥ T 3 = �1
CP 3 = 1.

The symplectic structure is now given by the Goldman cup product symplectic form
with coefficient pairing given by B3. For the isometry groups of the 3d geometric
models described above, the corresponding Lie algebras are know to admit a real 2-
dimensional space of such bilinear forms. Thus, there is a 2-dimensional family of
real symplectic forms on the corresponding moduli spaces. In [47] Witten obtained
the relevant bilinear forms for gravity, that is, the ones arrising from the Einstein-
Hilbert functional. This identify the relevant symplectic forms on the moduli spaces
GH3: for 3 = 0 the symplectic form is given by !r⇤, the real canonical cotangent
bundle symplectic form on T ⇤T , for 3 = �1 it is given by !WP � !WP , the
difference of Weil-Petersson symplectic forms on each copy of T , and for 3 = 1
by !i

G , the imaginary part of the complex Goldman symplectic form on CP .

1.8. Content of the paper

Section 2 contains background material on various aspects of the geometry of sur-
faces and 3-dimensional manifolds, which are necessary elsewhere, including the
definitions and basic properties of quasifuchsian manifolds and of globally hyper-
bolic spacetimes of various curvatures, statements on maximal and CMC surfaces,
convex cores, as well as measured laminations and transverse cocycles.

In Section 3 a more complete description of the double harmonic and double
earthquake map, as well as of the Wick rotation map. We describe the precise
relation between those “double” maps and the Wick rotation maps, and show the
equivalence between statements on the “double” maps and statements on the Wick
rotation maps. We prove that the double earthquake and double harmonic map are
one-to-one.

Section 4 is mostly focused on the regularity of the double earthquake map,
and therefore of the earthquake map itself. Section 5 contains the proof that the
double earthquake map is symplectic, and then that the double harmonic map is
symplectic — the connection between the two statements uses a volume argument
that is developed in Subsection 5.3.

Section 6 is focused on CMC surfaces, while the content of Section 7 is cen-
tered on Minkowski and de Sitter manifolds.

ACKNOWLEDGEMENTS. We are particularly grateful to an anonymous referee for
many helpful comments.
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2. Background material

In this section we develop in greater detail a number of definitions and established
results which will be needed in the later parts of this work. In particular, we will
here give the definitions of the moduli spaces and symplectic structures of inter-
est as well as some useful parametrizations of such objects in terms of measured
laminations and holomorphic quadratic differentials.

2.1. Teichmüller space

Let S be a closed oriented surface of genus g � 2. We shall consider here two
equivalent definitions of the Teichmüller space T of S.

Definition 2.1. A complex structure c on S is an atlas of C-valued coordinate
charts, whose transition functions are biholomorphic. The Teichmüller space T
can be defined as the space of all complex structures on S compatible with the
orientation, considered up to isotopy.

A hyperbolic metric on S is a Riemannian metric m of negative constant cur-
vature �1. The Teichmüller space T can be equivalently defined as the space of all
hyperbolic metrics on S, again considered up to isotopy.

The relation between the two definitions is given through the Riemann-Poincaré-
Koebe uniformization theorem, which also identifies T with a connected compo-
nent of the representation variety R = Hom(⇡1S,PSL2R)/PSL2R, associating to
each point in Teichmüller space its holonomy representation ⇢ : ⇡1S ! PSL2R.
Such holonomy representations of hyperbolic surfaces are called Fuchsian repre-
sentations and are characterized by the maximality of their Euler number [18].

2.1.1. The Weil-Petersson symplectic structure

The L2-norm

kqk2WP =
1
8

Z

S
kqk2mdam

on the bundle Q of holomorphic quadratic differentials induces a hermitian metric
on T via the well-known identification between Q and the holomorphic cotangent
bundle T ⇤(1,0)T over Teichmüller space. The imaginary part of this hermitian met-
ric is then a symplectic form !WP on T , called theWeil-Petersson symplectic form.

This is equivalent, up to a sign, to the restriction of the Goldman symplectic
structure onR, defined via the cup product of cohomology classes with coefficients
paired with (4 times) the Killing form of sl2R, see [16]. Specifically,

Theorem 2.2 (Goldman [16]).

!WP = �!
PSL2R
G .
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2.2. Complex projective structures

We now consider another type of structure on the surface S which has many paral-
lels with our previous considerations.
Definition 2.3. A complex projective structure � on S is an atlas ofCP1-valued co-
ordinate charts, whose transition functions are complex projective transformations.
We denote by CP the space of all complex projective structures on S, considered
up to isotopy.

Note that there is a natural projection p : CP ! T associating to a complex
projective structure � on S its underlying complex structure c. The space CP can
thus be considered as the total space of a bundle over T . There are again two pos-
sible descriptions of CP obtained by analytic or geometric deformations of a fixed
complex projective structure. The first is related to the bundle Q of holomorphic
quadratic differentials via the Schwarzian derivative, while the second is related to
the trivial bundle T ⇥ML via the operation of grafting along measured lamina-
tions.

2.2.1. Grafting

Given a hyperbolic metricm 2 T and a measured geodesic lamination l 2ML one
may define a complex projective structure via grafting ofm along l as follows. For l
supported on a simple close geodesic � with weight a, G(m, l) is defined by cutting
S along � and inserting a Euclidean cylinder � ⇥ [0, a]. This defines a complex
projective structure on S by complementing the Fuchsian projective structure of
m by the projective structure on � ⇥ [0, a] defined by its natural embedding as
an annulus in C⇤, see, e.g., [14]. As for earthquakes, the operation of grafting is
defined for general laminations via a limiting procedure.

Theorem 2.4 (Thurston, see [23]). The map G : T ⇥ ML ! CP is a homeo-
morphism.

2.2.2. Schwarzian derivative

Given two complex projective structures �, � 0 2 CP with the same underlying
complex structure c 2 T , the Schwarzian derivative of the identity map between
(S, � ) and (S, � 0) is a holomorphic quadratic differential S(�, � 0) 2 Qc. The
composition rule satisfied by the Schwarzian derivative means that if �, � 0 and � 00

are three complex projective structures with underlying complex structure c, then
S(�, � 00) = S(�, � 0) + S(� 0, � 00). This identifies CP with the affine bundle of
holomorphic quadratic differentials on T (see [14, Section 3]) and we may thus
write � 0 � � 2 Qc instead of S(�, � 0).

Note however that the identification CP ' Q depends on the choice of a
global section T ! CP , and there are distinct “natural” possible choices for such
a section, which induce distinct structures on CP . For now, let’s consider the nat-
ural Fuchsian section given by the Fuchsian uniformization of Riemann surfaces.
Thus, given a complex structure c on S, the Riemann Uniformization Theorem pro-
vides a unique Fuchsian complex projective structure �c uniformizing c. Using this
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canonical section we can define an identification SF : CP ! Q, sending a com-
plex projective structure � 2 CP with underlying complex structure c = p(� ) to
(c, � ��c) 2 Q. (The subscript “F” here reminds us that we make use of Fuchsian
sections.)

2.2.3. The Goldman symplectic structure

For complex projective structures, unlike the case of complex structures, holonomies
are not enough to parametrize the moduli space. The holonomymap hol : CP ! X
gives only a local diffeomorphism between the moduli space of complex projective
structures CP and the PSL2C character variety X = Hom(⇡1S,PSL2C)/PSL2C,
which is surjective but not injective, see, e.g., [14].

On the other hand, the holonomymap can be used to pull-back to CP the Gold-
man symplectic structure !

PSL2C
G on X , now obtained by taking the cup-product of

the cohomology classes with coefficients paired with (4 times) the Killing form on
sl2C, see [17]. Pulling back !

PSL2C
G by hol thus gives a complex symplectic struc-

ture on CP , which we call !G . We will denote by !i
G the imaginary part of !G ,

which is a real symplectic structure and will play an important role in what follows.
Also, via the identification of the holomorphic cotangent bundle T ⇤(1,0)T with

the bundle of holomorphic quadratic differentials Q, we may use the Schwarzian
parametrization SF : CP ! Q to pull-back the canonical complex symplectic
structure !⇤ on T ⇤(1,0)T to another complex symplectic structure !F = S⇤

F!⇤ on
CP . We will be interested here only in the real part of !⇤, corresponding to (half)
the real symplectic structure on T ⇤T . We denote by !rF the real part of !F , which
is just S⇤

F!r⇤
The following theorem provides the relation between the Goldman symplectic

structure and the pull-back of the cotangent bundle symplectic structure via the
Fuchsian slice, see [30, Corollary 5.13].

Theorem 2.5 (Loustau [30]). !
PSL2C
G = p⇤!

PSL2R
G + i!F , where p : CP ! T is

the canonical forgetful map. In particular,

!i
G = !rF .

Note that besides the Goldman symplectic structure, there are other complex sym-
plectic structures on CP . In fact it is known from Hitchin’s work [21] that there is a
hyperkähler structure defined at least on an open subset of CP . We do not elaborate
on this here, however understanding this hyperkähler structure geometrically can
be one motivation for investigating the (complex) symplectic structures on CP in
relation to other moduli spaces of geometric structures.

2.3. Quasifuchsian hyperbolic manifolds

The first moduli space of 3-dimensional geometric structures will consider here is
the space of quasifuchsian hyperbolic metrics on M , which can be most simply
defined in terms of convex subsets. Given a hyperbolic metric h on M , we say that
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a subset K ⇢ M is convex if any geodesic segment in M with endpoints in K is
contained in K .
Definition 2.6. A complete hyperbolic metric h on M is called quasifuchsian if
(M, h) contains a non-empty compact convex subset. We denote by QF the space
of quasifuchsian hyperbolic metrics on M , considered up to isotopy.

Note that there are other equivalent definitions of quasifuchsian manifolds,
e.g., as quotients of the hyperbolic 3-space by Kleinian groups whose limit set is a
Jordan curve, related to quasiconformal deformations of Fuchsian representations.

Given a quasifuchsian manifold (M, h), its universal cover M̃ admits a devel-
oping map with values in H3. This then restricts to a developing map of ]@+M into
@1H3 ' CP1 and, since hyperbolic isometries act on @1H3 as projective trans-
formations, the holonomy representation of (M, h) endows @+M with a complex
projective structure �+ 2 CP . We thus obtain an injective map @

Hyp
1 : QF ! CP ,

which is however not surjective.
We will continue to denote by !G the pull-back to QF of the complex Gold-

man symplectic structure on CP , and by !i
G its imaginary part.

2.4. Hyperbolic ends

As mentioned in Section 1 the description of quasifuchsian manifold in terms of
the upper boundary of the convex core admits an extension to a more general con-
text of hyperbolic ends, which we now describe in more details. Thus, consider a
quasifuchsian manifold (M, h) homeomorphic to S ⇥ R, and let E+ be the upper
connected component of M \ C(M, h). It is a non-complete hyperbolic manifold,
homeomorphic to S ⇥ (0,1), which is complete on the side corresponding to 1,
and bounded on the side corresponding to 0 by a concave pleated surface. A hy-
perbolic manifold of this type is called a (non-degenerate) hyperbolic end. We call
HE the space of (non-degenerate) hyperbolic ends homeomorphic to S ⇥ (0,1).

Given a hyperbolic end (E, h), we call @1E its “boundary at infinity” cor-
responding to the “complete” side, and @0E its boundary component which is a
concave pleated surface. The universal cover Ẽ of E admits a developing map with
values inH3, which restricts to a developing map of ]@1E into @1H3, which can be
identified with CP1. Since hyperbolic isometries act on @1H3 ' CP1 as projec-
tive transformations, @1E is endowed with a complex projective structure � 2 CP .
On the other hand, @0E is endowed with a hyperbolic metric pleated along a mea-
sured geodesic lamination. Thus, we have a pair of maps @

Hyp
1 : HE ! CP and

@
Hyp
+ : HE ! T ⇥ ML, which are in fact homeomorphisms by the following
result by Thurston.

Theorem 2.7 (Thurston, see [14]). Given a pair (m, l) 2 T ⇥ ML there is a
unique non-degenerate hyperbolic end (E, h) such that @0E has induced metric
given by m and bending lamination given by l. Also, each � 2 CP is the complex
projective structure at @1E of a unique (non-degenerate) hyperbolic end E . The
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relation between the complex projective structure � and the pair (m, l) is given by
the grafting map G : T ⇥ML! CP which furthermore is a homeomorphism.

2.5. Globally hyperbolic anti-de Sitter manifolds

The second moduli space of interest in this work is that of globally hyperbolic
maximal anti-de Sitter metrics on M .

The 3-dimensional anti-de Sitter space, denoted here by AdS3, can be defined
as the quadric n

p 2 R2,2 | hp, pi = �1
o

with the induced metric from the metric of signature (2, 2) on R4.
Definition 2.8. A Lorentzian metric g on M is called globally hyperbolic maxi-
mal (GHM) anti-de Sitter (AdS) if (M, g) is locally modeled on AdS3, contains a
Cauchy surface and is maximal under these conditions. We call GH�1 the space of
GHM AdS metrics on M , considered up to isotopy.

We say that a surface 6 ⇢ M is a Cauchy surface if it is a closed space-
like surface homeomorphic to S such that any inextendible time-like curve on M
intersects 6 exactly once. The maximality condition then says that any isometric
embedding (M, g) ! (M 0, g0), with (M 0, g0) also satisfying the two conditions
above, is a global isometry.

The space GH�1 also carries a natural symplectic structure. First, note that
the identity component isom0(AdS3) of the isometry group of AdS3 is isomorphic
to PSL2R ⇥ PSL2R. Thus, since the holonomy representation ⇢ of a GHM AdS
metric g on M has values in isom0(AdS3), it can be decomposed as ⇢ = (⇢L , ⇢R),
where ⇢L , ⇢R are morphisms from ⇡1S to PSL2R, well-defined up to conjugation.
We will call ⇢L and ⇢R the left and right representations of g.

The following result by Mess [3, 32] provides a classification of GHM AdS
manifolds in terms of their holonomy representations and can be considered as an
analog of the Bers Double Uniformization Theorem.

Theorem 2.9 (Mess). The representations ⇢L and ⇢R have maximal Euler num-
ber, so that they are by [18] holonomy representations of hyperbolic structures
mL ,mR 2 T . Given (⇢L , ⇢R) 2 T ⇥ T , there is a unique GHM AdS metric
g 2 GH�1 such that ⇢L and ⇢R are the left and right representations of g.

As a consequence, we have a homeomorphism holAdS : GH�1 ! T ⇥ T ,
sending g to (⇢L , ⇢R). Moreover, T is equipped with a natural symplectic structure,
given by the Weil-Petersson symplectic form !WP , so that T ⇥ T is also equipped
with a symplectic form !WP � !WP . The symplectic structure on GH�1 is then
obtained by pull-back of !WP � !WP by holAdS.

As we have seen in Section 1 it is possible to identify GH�1 with both T ⇥
ML and T ⇥ T via homeomorphisms @AdS+ : GH�1 ! T ⇥ML and holAdS :
GH�1 ! T ⇥ T . This is analogous to the case of hyperbolic ends described
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above. The T ⇥ML parametrization is obtained by from the upper boundary of the
convex core data while the T ⇥ T parametrization can be obtained by considering
any “well-behaved” Cauchy surface, see [26, Lemma 3.16].

Lemma 2.10. Let 6 be a Cauchy surface in M with principal curvatures every-
where in (�1, 1). Then, up to isotopy,

mL = I
�
(E + J B)·, (E + J B) ·

�
, mR = I

�
(E � J B)·, (E � J B) ·

�
,

where I and B are the induced metric and shape operator of 6, respectively, and
E is the identity map from T6 to itself.

The relation between the two parametrizations is also analogous to the grafting
parametrization of complex projective structures, relevant in the case of hyperbolic
end. It is given by the double earthquake of the induced hyperbolic metric on the
upper or lower boundary of the convex core along its bending lamination.

Theorem 2.11 (Mess [32]). Given a pair (m, l) 2 T ⇥ ML there is a unique
GHM AdS manifold (M, g) such that @+C(M, g) has induced metric given by m
and bending lamination given by l. Also, each pair (mL ,mR) 2 T ⇥ T are the
hyperbolic metrics corresponding to the left and right Fuchsian holonomies of a
unique GHM AdS manifold. The relation between the pair of hyperbolic met-
rics and (mL ,mR) and the pair (m, l) is given by the double earthquake map
E : T ⇥ML ! T ⇥ T which is a homeomorphism by the Thurston Earthquake
Theorem 1.13.

Note that one could equivalently state the above theorem in terms of the data
(m�, l�) on the lower boundary of the convex core. The translation between the
upper and lower boundary descriptions is summarized in Figure 2.1.

Figure 2.1. Relation between the left/right metrics and the boundary of the convex core.

2.6. Convex cores of quasifuchsian and globally hyperbolic manifolds

Now consider a quasifuchsian metric h on M . According to the definition given
above, M contains a non-empty, compact, convex subset K . It is easily seen that
the intersection of two non-empty convex subsets is also convex, and it follows that
M contains a unique smallest non-empty convex subset, called its convex core and
denoted here by C(M, h).



798 CARLOS SCARINCI AND JEAN-MARC SCHLENKER

In some cases, C(M, h) is a totally geodesic surface S. This happens exactly
when M is “Fuchsian”, that is, the image of its holonomy representation is con-
jugate to a subgroup of PSL2R ⇢ PSL2C. Otherwise, when M is non-Fuchsian,
C(M, h) has non-empty interior. Its boundary @C(M, h) is then the disjoint union
of two surfaces S+ and S� homeomorphic to S, facing respectively towards the up-
per and lower asymptotical boundaries @+M and @�M of M . When M is Fuchsian,
we set S� = S+ = S, the totally geodesic closed surface in M .

Both S+ and S� are locally convex surfaces with no extreme points. It follows
(see [43]) that their induced metrics m+ and m� are hyperbolic, and that they are
pleated along measured laminations l+ and l�. This associates to h 2 QF a pair of
hyperbolic metrics m+,m� 2 T and a pair of measured laminations l+, l� 2ML.
These data are however not independent with, say, the pair (m�, l�) on the lower
boundary of the convex core being completely determined by the pair (m+, l+) on
the upper boundary. Thus, restricting our attention to the upper boundary, we obtain
a map

@
Hyp
+ : QF ! T ⇥ML

associating to a quasifuchsian metric h the data (m+, l+) on S+.

2.7. Minimal and maximal surfaces

Besides the boundary of the convex core and the conformal boundary/holonomy
parametrizations, quasifuchsian and GHM AdS manifolds also admit a minimal/
maximal surface parametrizations. Here, in hyperbolic case, we must restrict to
a subclass of quasifuchsian manifolds admiting a unique minimal surface, the so
called almost-Fuchsian manifolds.

Definition 2.12. A quasifuchsian metric h on M is almost-Fuchsian if it contains a
closed, embedded minimal surface with principal curvatures in (�1, 1). We denote
byAF the space of almost-Fuchsian metrics on M , considered up to isotopy.

It was noted by Uhlenbeck [46] that almost-Fuchsian manifolds contain only
one closed, embedded minimal surface.

For AdS manifolds, there is a deep relationship between maximal surfaces,
harmonic maps and minimal Lagrangian maps. A key point is the following lemma
due to Ayiama, Akutagawa and Wan [2, Proposition 3.1].

Let g be a GHM AdS metric on M , and let 6 be the (unique) closed space-
like maximal surface in (M, g). Let I and II be the induced metric and second
fundamental form on 6, and let mL ,mR be the left and right hyperbolic metrics
on 6.

Lemma 2.13. The identity map fL : (6, [I ]) ! (6,mL) (respectively fR :
(6, [I ]) ! (6,mR)) is harmonic, and the imaginary part of its Hopf differential
is equal to II (respectively to �II ). In particular, fR � f �1

L : (6,mL) ! (6,mR)
is minimal Lagrangian.
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2.8. Globally hyperbolic flat and de Sitter manifolds

The 3-dimensional Minkowski space is defined as the space R2,1 with the flat
Lorentzian metric of signature (2, 1).

GHM flat metrics on M are defined in the same manner as in the AdS case
described previously, and we denote by GH0 the moduli spaces of flat GHMmetrics
on M , considered up to isotopy. We consider only future complete spacetimes,
presenting an initial singularity. Past complete spacetimes are obtained by time
reversal.

The isometry group isom0 (R2,1) is isomorphic to a semi-direct product
PSL2R n sl2R. Thus, the holonomy representations of GHM flat manifolds define
points in the representation variety Rep(⇡1S,PSL2R n sl2R). A holonomy repre-
sentation then decomposes as ⇢ = (⇢0, ⌧ ) with linear part ⇢0 : ⇡1(S) ! PSL2R
and a ⇢0-cocycle ⌧ : ⇡1(S) ! sl2R. The following result of Mess [3, 32] provides
the classification of GHM flat metrics in terms of holonomies.

Theorem 2.14 (Mess). The linear part ⇢0 of the holonomy representations of a
GHM flat metric have maximal Euler number, so that it is the holonomy represen-
tations of a hyperbolic structure h0 2 T . Given ⇢0 2 T and a ⇢0-cocycle ⌧ , there
is a unique future complete GHM Minkowski metric h 2 GH0 such that ⇢0 and ⌧
describes its holonomy representation.

Adding a coboundary to ⌧ is equivalent to conjugating the representation by a
translation. Thus only the cohomology class of ⌧ is relevant. The first cohomology
group H1(⇡1S, sl2RAd⇢0) can be seen as the fibre of the cotangent bundle T ⇤T
over Teichmüller space. In fact, the embedding of T into the PSL2R representation
variety parametrizes the tangent space to T at ⇢0 by the first cohomology group
H1(⇡1S, sl2RAd⇢0) and the non-degenerate cup product can be used as the duality
pairing between TT and T ⇤T . We thus have a one-to-one correspondence holMink :
GH0 ! T ⇤T sending h to (⇢0, ⌧ ).

The 3-dimensional de Sitter space is defined as the set

dS3 =
n
x 2 R3,1 | hx, xi = 1

o

with the induced metric from the 4-dimensional Minkowski metric.
We will denote by GH1 the moduli spaces of de Sitter GHM metrics on M .

Again, we consider only future complete spacetimes.
The isometry group isom0(dS3) is isomorphic to PSL2C. The holonomy rep-

resentations of GHM dS manifolds therefore define points in the character variety
X . As for quasifuchsian manifolds, and more generally for hyperbolic ends, the
classification of GHM de Sitter spacetimes in terms of holonomies is not possible
since the map holdS : GH1 ! X is only a local diffeomorphism (importantly it
is not injective). However, similarly to hyperbolic ends, de Sitter manifolds can be
understood in terms of a complex projective structure at their boundary at future
infinity @+M . More precisely, the developing map dev : M̃ ! dS3 restricts to
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a developing map dev : ]@+M ! @+dS3 ' CP1. The holonomy representation
⇢ : ⇡1S ! PSL2C then endows @+M with a complex projective structure. We
denote the map associating to a GHM dS manifold (M, g) the corresponding com-
plex projective structure on @+M by @dS+ : GH1 ! CP . A result of Scannell [39]
gives the converse construction of GHM dS manifolds given a complex projective
structure on S. We thus obtain the following result.

Theorem 2.15 (Scannell). GHM de Sitter spacetimes are in one-to-one correspon-
dence with complex projective structures.

We continue to denote by !i
G the symplectic form on GH1 obtained by pull-

back of the imaginary part of the Goldman symplectic form on CP .

3. Wick rotations and double maps

In this section we explain the relation between the three- and two-dimensional
points of view developed in the introduction. More specifically, we shall see why
Theorem 1.2 implies Theorem 1.18, and Theorem 1.3 is equivalent to Theorem
1.11. We then prove that the double earthquake map E and the double harmonic
map H are one-to-one, leaving the discussion of the regularity properties of the
earthquake map for the next section.

3.1. Earthquakes and the boundary of the convex core

Let us start considering the relations between Theorem 1.2 and Theorem 1.18. As
we have seen in the introduction, the definition of the Wick rotation between hyper-
bolic ends and GHM AdS manifolds is given by matching the boundary data at the
initial boundary of a hyperbolic ends and at the upper boundary of the convex core
of a GHM AdS manifolds

WAdS
@ =

⇣
@AdS+

⌘�1
� @

Hyp
+ : HE ! GH�1.

(Recall that the maps @AdS+ and @
Hyp
+ are defined in Subsection 2.6.)

The motivation behind this definition is quite clear in terms of 3-dimensional
geometry. On the other hand, due to the lack of a smooth structure on T ⇥ML, it
is unclear how to use the Wick rotation WAdS

@ to relate the geometric properties of
the two moduli spaces. To address this we must describe the Wick rotation in terms
of better behaved (smooth) maps.

First note that by Thurston’s result, Theorem 2.7, we have a relation between
the complex projective data at the asymptotic boundary and the lamination data at
the initial boundary of hyperbolic ends given by grafting

@
Hyp
1 = G � @

Hyp
+ : HE ! CP .
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The smooth and symplectic structures on CP can in fact be defined via pull-back
the inverse of this map @

Hyp
1 . Analogously, by Mess’ result, Theorem 2.11, the

holonomy mapping can be written in terms of the upper boundary of the convex
core in GHM AdS manifolds via the double earthquake map

holAdS = E � @AdS+ : GH�1 ! T ⇥ T ,

with the smooth and symplectic structures on GH�1 also given via pull-back.
On the other hand, the composition G0 = G � ��1 of the grafting map G with

the inverse of � : T ⇥ML ! T ⇤T , the map sending (m, l) to dmL(l), is a C1
symplectomorphism between (T ⇤T , 2!r⇤) and (CP,!i

G), see [27]. This motivates
us to consider the analogous composition, E 0 = E � ��1, of the double earthquake
map E with ��1. We then obtain be the diagram in Figure 3.1, which is shown
below to be commutative.

Figure 3.1. Relation between double earthquakes and Wick rotations through pleated
surfaces.

Lemma 3.1. The diagram in Figure 3.1 commutes.

Proof. The commutativity of the upper triangle follows directly from the definition
of WAdS

@ , while the definitions of G0 and E 0 provides the commutativity of the two
lower triangles. The fact that the middle left triangle commutes is a translation
of Thurston’s Theorem 2.7, while the middle right triangle commutes by Mess’
Theorem 2.11.

This allows us to write the relation between the Wick rotation and the double
earthquake map as

WAdS
@ =

⇣
holAdS

⌘�1
� E 0 � (G0)�1 � @

Hyp
1 .

We record the following consequence for future use.

Remark 3.2. WAdS
@ is C1-smooth and symplectic if and only if E 0 is C1-smooth

and symplectic.
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3.2. Harmonic maps and minimal surfaces

Turning now to the relations between Theorem 1.3 and Theorem 1.11, we shall
use a much simpler commutative diagram, see Figure 3.2. From the introduction,
the map Wmin : AF 0 ! GH�1 is defined by matching the holomorphic data of
the minimal surface in an almost-Fuchsian manifold and the maximal surface of a
GHM AdS manifold. More precisely, we have

Wmin = max�1 �min,

where min : AF 0 ! T ⇤T (respectively max : GH�1 ! T ⇤T ) is the map sending
an almost-Fuchsian (respectively maximal globally hyperbolic AdS) metric on M
to the complex structure and holomorphic quadratic differential determined on its
unique minimal (respectively maximal) surface by the first and second fundamental
forms.

Considering also the maps @
Hyp
1 : AF 0 ! CP and holAdS : GH�1 ! T ⇥ T

we obtain the diagram Figure 3.2, which commutes as a direct consequence of
Lemma 2.13.

Figure 3.2. The minimal surfaces Wick rotation

The map ↵ = min �(@Hyp1 )�1 is symplectic up to sign, see [30, Corollary 5.29].

Theorem 3.3 (Loustau). Re(↵⇤!⇤) = �!i
G .

We thus have the following remark.
Remark 3.4. H is symplectic (up to sign) if and only if Wmin is symplectic.

Proof. If H is symplectic (up to sign), then it follows directly from the diagram in
Figure 3.2 that Wmin is symplectic, because it can be written as a composition of
symplectic maps.

For the converse note that both H and Wmin are real analytic. If Wmin is sym-
plectic, it follows from the diagram thatH is symplectic on an open subset of T ⇤T .
Since the symplectic forms on both T ⇤T and T ⇥ T are analytic, it follows thatH
is symplectic everywhere.

3.3. The double maps are one-to-one and onto

This part contains (simple) proofs that the double earthquake map and the double
harmonic map are one-to-one.
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Lemma 3.5. The mapH : T ⇤T ! T ⇥ T is bijective.

Proof. Let (mL ,mR) 2 T ⇥ T . There is then a unique minimal Lagrangian dif-
feomorphism isotopic to the identity � from (S,mL) to (S,mR), see [28, Corollaire
2.3.4] or [41]. If we define m = mL + �⇤(mR) and denote by [m] its underlying
conformal structure, then id : (S, c) ! (S,mL) and � : (S, c) ! (S,mR) are
harmonic with opposite Hopf differentials �iq and iq. Therefore, (mL ,mR) =
H(c, q), where c is the complex structure on S associated to [m]. SoH is onto.

Conversely, let (mL ,mR) 2 T ⇥ T , and let (c, q) 2 T ⇤T be such that
(mL ,mR) = H(c, q). Then c = [mL + �⇤(mR)], where � is the unique mini-
mal Lagrangian diffeomorphism isotopic to the identity from (S,mL) to (S,mR).
Moreover, the Hopf differential of the unique harmonic map isotopic to the identity
from (S, c) to (S,mL) is equal to �iq. This shows that (c, q) is uniquely deter-
mined by (mL ,mR), and therefore proves that H is injective. (Note that another
equivalent proof is obtained by noting that c must be the conformal class on the
unique minimal surface in (S ⇥ S,mL � mR) with projections on both factors dif-
feomorphisms, and �iq must be the Hopf differential of the projection on the first
factor.)

Lemma 3.6. The double earthquake map E : T ⇥ML! T ⇥ T is bijective.

Proof. Let (mL ,mR) 2 T ⇥ T . By Thurston’s Earthquake Theorem (see the ap-
pendix in [24]) there exists a unique l 2 ML such that mL = EL(mR, 2l). But
ER(l) = EL(l)�1 and EL(2l) = EL(l)2. So, if we set m = EL(mR, l), we have

mL = EL(m, l), mR = ER(m, l),

so that (mL ,mR) = E(m, l).
Conversely, if (mL ,mR) = E(m0, l 0), then mL = EL(mR, 2l 0), so it follows

from the uniqueness in the Earthquake Theorem that 2l 0 = 2l, so that l = l 0 and
m = m0.

3.4. Wick rotations to flat and dS manifolds

We now consider analogous Wick rotations from hyperbolic ends to GHM flat and
de Sitter manifolds.

3.4.1. Hyperbolic metrics and measured laminations

In analogy to the AdS case, we consider Wick rotations from hyperbolic ends to
GHM flat manifolds WMink

@ : HE ! GH0 given by matching the data at the inital
boundary of hyperbolic ends to the pair formed by the linear holonomy and the
measured lamination dual to the initial singularity of GHM flat manifolds

WMink
@ :

⇣
@Mink⇤

⌘�1
� @

Hyp
+ .
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Again, using the fact that the cocycle part of the holonomy is related to the measured
lamination via grafting, we may write

holMink = G0 � @Mink⇤ : GH0 ! T ⇤T .

The smooth and symplectic structures on GH0 are again given via pull-back. We
now obtain the first diagram in Figure 3.3, where we denote G0

0 = G0 � ��1.
The passage WdS

@ : HE ! GH1 from hyperbolic ends to GHM dS manifolds
is given automatically via duality, by matching the data at their common asymptotic
boundary

WdS
@ = (@dS1 )�1 � @

Hyp
1 .

Here there is no problem with differentiability and the symplectic structures agree,
since in both cases the smooth and symplectic structures are again given via pull-
back from CP . The second diagram in Figure 3.3 describe these relations.

Figure 3.3. Wick rotations to flat and de Sitter manifolds.

Note that the diagrams in Figure 3.3 commute, by definition of the some of the maps
used, as well as by Theorem 2.7 (for the middle left triangle of the left diagram and
the lower triangle of the right diagram).

3.4.2. CMC surfaces

GHMC flat and de Sitter manifolds are also shown to admit a unique foliation by
CMC surfaces.

Theorem 3.7 (Barbot, Béguin, Zeghib [5]). Any GHM flat and dS manifolds ad-
mit a unique foliation by closed space-like CMC surfaces, with mean curvature in

• (�1, 0), in the flat case,
• (�1,�1), in the dS case.

For every prescribed H as above, the spacetimes contain a unique closed space-like
CMC-H surface.

As in the AdS case, the first and second fundamental forms of the CMC-H
surface are in correspondence with a point in T ⇤T (see [33] and [26, Lemma 6.1]).



SYMPLECTIC WICK ROTATIONS 805

Proposition 3.8. Let H 2 (�1,�1). Given a complex structure c and a holo-
morphic quadratic differential q for c on S, there is a unique GHM dS metric h
on M such that the induced metric and traceless part of the second fundamental
form on the unique CMC-H surface in (M, h) is I, II0 with I compatible with c
and II0 = Re(q).

We may therefore construct as a version of the flat and de Sitter CMC-Wick
rotation.
Definition 3.9. Let H 2 (�1, 1), H 0 2 (�1, 0) and H 00 2 (�1,�1). For each
h 2 AF 0, let SH be the unique closed CMC-H surface in (M, h), let c be the
conformal class of its induced metric, and let q be the traceless part of its second
fundamental form. There is then a unique GHM flat metric h0 and a unique GHM
dS metric h00 on M such that the (unique) CMC-H 0 surface in (M, h0) and the
unique CMC-H 00 surface in (M, h00) have induced metric conformal to c and the
traceless part of its second fundamental form is equal to q. We denote these maps
respectively by WMink

H,H 0 : AF 0 ! GH0 and WdS
H,H 00 : AF 0 ! GH1.

4. Regularity of the earthquake map

We now focus on the C1 regularity of the earthquake map, more specifically on the
proof of Proposition 1.16 and of Corollary 1.17. The notations here are similar to
those of [27, Section 2.5], with the relevant adaptations, further developing some
of the arguments which in [27] were too elliptic. As in [27], the arguments will be
based on the ideas and tools developed by Bonahon [7, 8].

4.1. Maximal laminations and transverse cocycles

We first recall basic facts on transverse cocycles on a surface, which will be used to
give a parametrization of both the Teichmüller space T and the space of measured
geodesic laminationsML, see [7].

We start with a fixed reference hyperbolic structurem 2 T on S and a maximal
geodesic lamination � 2 L on (S,m). The maximality condition here is given with
respect to inclusion. Equivalently, this condition can be stated as the property that
the complement of � on S is given by finitely many disjoint ideal triangles, see [7].
Definition 4.1. AR-valued transverse cocycle � for a lamination � is a real valued
function on arcs transverse to � which is

• additive: � (k1 t k2) = � (k1) + � (k2),
• �-invariant: � (k1) = � (k2) if k1 and k2 are homotopic through a family of arcs
transverse to �.

We denoteH(�, R) the space of all transverse cocycles for �.
The space H(�, R) has the structure of a finite dimensional vector space. In

particular, if � is a maximal lamination, its dimension is given by dimH(�, R) =
6g � 6.
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Note that the notion of transverse cocycles on maximal laminations generalizes
the notion of measured laminations. In fact, the support of any measured lamina-
tion l 2 ML is contained (possibly non-uniquely) into a maximal lamination �
on S. Further, given such maximal lamination � containing the support of l, the
transverse measure of l defines uniquely a non-negative transverse cocycle µ on �.
Thus any measured lamination gives rise to a non-negative transverse cocycle on
some maximal lamination on S. Conversely, a non-negative transverse cocycle can
be equally seen as a transverse measure on the maximal lamination, thus defining
a measured lamination. This gives a 1-to-1 correspondence betweenML

�
�
�
, the

space of measured laminations supported on �, and H(�, R+), the space of non-
negative transverse cocycles on �.

It is also possible to give a parametrization the Teichmüller space in terms of
transverse cocycles. Given a maximal lamination � on S, Bonahon [7] defines for
each hyperbolic metric m 2 T a transverse cocycle �m 2 H(�, R), assigning to
each transverse arc k to � a real number �m(k) which we now define. Let �̃ be
the preimage of � in the universal cover S̃ of S. The maximality condition for �

then implies that �̃ determines a tessellation of S̃ by ideal triangles. For any pair
P, Q of such ideal triangles we associate a real number �PQ as follows. Assuming,
first, that P and Q are adjacent, we take �PQ to be the logarithm of the cross-ratio
of the ideal quadrilateral defined by P and Q. Equivalently, �PQ is the signed
hyperbolic distance along their common edge between the orthogonal projections
of the opposite vertices to this edge. For non-adjacent ideal triangles P, Q we then
define �PQ as the sum of �P 0Q0 over all pairs of adjacent ideal triangles P 0, Q0

between P and Q. Note that such sum may be an infinte sum. However, an upper
bound for each of the �P 0Q0 , given by the distance between their outermost edges
[7], implies that �PQ differs from the distance between the innermost edges of P
and Q only by a finite constant, so that �PQ is indeed well defined.

The transverse cocycle �m 2 H(�, R) associated to the hyperbolic metric m 2
T can now be defined. Given a transverse arc k to � let k̃ be a lift of k to S̃. By
transversality the endpoints of k̃ belong to the interior of ideal triangles P and Q
and we can define �m(k) = �PQ .

Theorem 4.2 (Bonahon [7]). The map '� : T ! H(�, R) defined by

'�(m) = �m

is injective and open. Furthermore, it is real analytic into its image.

4.2. Smoothness of the double earthquake

4.2.1. Differentiability

We now turn to the C1-smoothness of the double earthquake map E 0 = E � ��1 :
T ⇤T ! T ⇥ T , starting with the differentiability of EL � ��1. The strategy here
is the same as in [27] showing that for each maximal lamination � there is a pair of
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tangentiable maps 8� : T ⇥H(�, R+) ! T and 9� : T ⇥H(�, R+) ! T ⇤T
such that

• The composition 8� � 9�1
� agrees with EL � ��1 on �(T ⇥ML|�) ⇢ T ⇤T ;

• For two maximal laminations, � and �0, the tangent maps of 8� � 9�1
� and

8�0 � 9�1
�0 agree on T(m,u)T ⇤T for all (m, u) 2 �(T ⇥ML|� \ML|�0).

Start by noting that given a maximal lamination � the notion of length of mea-
sured laminations and of earthquakes along measured laminations naturally extend
to notions of length of transverse cocycles and shearings along transverse cocy-
cles [7]. Further, such extensions are well behaved under the vector space structure
ofH(�, R) in that the length function L : T ⇥H(�, R+) ! R is linear in its sec-
ond argument and the shear map E : T ⇥H(�, R+) ! T satisfies the following
equivariance property

E�+� 0(m) = E� � E� 0(m).

It is thus natural to consider the following tangentiable maps

8�(m, � ) = E� (m), 9�(m, � ) = dmL(� ).

Given m 2 T and u 2 T ⇤
mT let (m, l) = ��1(m, u) 2 T ⇥ ML denote the

image of (m, u) under the inverse of �. Then, choose a maximal lamination �
containing the support of l and let � 2 H(�, R+) denote the positive transverse
cocycle corresponding to the measure of l. It follows directly from the definitions
of length and shears that

8� � 9�1
� (m, u) = 8�(m, � ) = EL(m, l) = EL � ��1(m, u).

Further, from the equivariance of E� (m) and the linearity of Lm(� ), we can easily
compute

d(m,� )8�(ṁ, �̇ ) =
d
dt

�
�
�
t=0+

Etdm'�(ṁ) � Et �̇ � E� (m)

= (edm'�(ṁ) + e�̇ )(E� (m)) = dmE� (edm'�(ṁ)(m) + e�̇ (m)),

where e� (m) 2 TmT is the infinitesimal shearing vector at m determined by � , and

d(m,� )9�(0, �̇ ) =
d
dt

�
�
�
t=0+

dmL(t �̇ + � ) = dmL(�̇ ) = e⇤�̇ (m),

where ⇤means the duality between T ⇤
mT and TmT with respect to theWeil-Petersson

symplectic form. Note that here d8� and d9� denote the tangent maps of 8� and
9� and not their differentials.

To compute the differential of 8� � 9�1
� we introduce a decomposition of the

tangent space to T ⇤T at (m, u) into horizontal and vertical subspaces

T(m,u)T ⇤T = H(m,u)T ⇤T � V(m,u)T ⇤T .
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First note that the map � evaluated at a fixed measured lamination l determines a
section sl = �( · , l) : T ! T ⇤T of the cotangent bundle over T . This is in fact a
smooth section since the Hessian of the length function of l depends continuously
on bothm and l, as follows for instance from [49, Theorem 1.1]. We can then define
the horizontal and vertical subspaces as

H(m,u)T ⇤T ={Uh = dmsl(ṁ); ṁ 2 TmT }, V(m,u)T ⇤T ={Uv = u̇; u̇ 2 T ⇤
mT } .

(Note that V(m,u)T ⇤T does not appear to correspond to the vertical space defined
by the Levi-Civita connection of the Weil-Petersson metric on T .)

A simple computation now gives for a horizontal vector Uh 2 H(m,u)T ⇤T

d(m,u)(8� � 9�1
� )(Uh) =

d
dt

h
8� � 9�1

� � sl � ⇡(m(t), u(t))
i

=
d
dt

h
8� � 9�1

� � sl(m(t))
i

= dm(8� � 9�1
� � sl)(ṁ)

= dmE� (ṁ) = dmEL
l (ṁ),

with ṁ = d(m,u)⇡(Uh), and for a vertical vector Uv 2 V(m,u)T ⇤T

d(m,u)(8� � 9�1
� )(Uv) =

d
dt

h
8� � 9�1

� (m, u(t))
i

=
d
dt

h
E

9�1
� (m,u(t))(m)

i

= dmE� (e�̇ (m)) = dmE� (u̇⇤) = dmEL
l (u̇⇤),

with u̇ = Uv and �̇ = d(m,u)(pr2 � 9�1
� )(u̇). This shows in particular that

d(8� � 9�1
� ) does not depend on �, since the right-hand sides of both equations

are completely independent on its choice, implying that EL � ��1 is differentiable
at each point (m, u) 2 T ⇤T with

d(m,u)(EL � ��1)(U) = dmEL
l (ṁ + u̇⇤) . (4.1)

4.2.2. Continuity of the differential

To complete the argument, it now only remains to show that the differential of
EL � ��1 is continous. Let ↵(m,l) : T(m,u)T ⇤T ! T ⇤

mT denote the projection onto
the vertical subspace of T(m,u)T ⇤T , sending U to u̇. To prove that E � ��1 is C1, it
is sufficient to prove that ↵(m,l) vary continuously with (m, l), since all other maps
entering the right-hand side of (4.1) are clearly smooth by [25] and the analyticity
of the Weyl-Petersson symplectic form.

On the other hand, the decomposition of T(m,u)T ⇤T into horizontal and vertical
subspaces then allows us to explicitly write ↵(m,l) as

↵(m,l) = id� dmsl � d(m,u)⇡,
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where id is the identity map in T(m,u)T ⇤T , dmsl denote the linear horizontal em-
bedding of TmT into T(m,u)T ⇤T and d(m,u)⇡ the natural projection of T(m,u)T ⇤T
onto TmT . So ↵(m,l) depends continuously on (m, l) and this concludes the proof
of Proposition 1.16, that EL � ��1 is C1-smooth.

4.2.3. Proof of Corollary 1.17

The C1-smoothness of ER � ��1 is proven analogously. Thus Proposition 1.16
implies that E � ��1 is C1.

The map E : T ⇥ ML ! T ⇥ T is clearly a bijection, because a GHM
AdS manifold is uniquely determined by the induced metric and measured pleating
lamination on the upper boundary of the convex core, and any hyperbolic metric
and pleating lamination can be realized in this way. The map � : T ⇥ML! T ⇤T
is also bijective, see [27]. So E � ��1 is bijective.

It remains to prove that the differential of E ���1 is everywhere invertible. This
can be done directly from (4.1) and the corresponding expression for the differential
of ER � ��1

d(m,u)

⇣
ER � ��1

⌘
(U) = dmER

l
�
ṁ � u̇⇤� .

The extra minus sign on the RHS comes from writing right-earthquakes as the in-
verse of left-earthquakes, which in terms of shearing corresponds to considering the
negative transverse cocycles. Thus, writing (m+,m�) = E � ��1(m, u), we have

d(m,u)(E � ��1)(U) =
⇣
dmEL

l (ṁ + u̇⇤), dmER
l (ṁ � u̇⇤)

⌘

= (ṁ+, ṁ�) 2 T(m+,m�)T ⇥ T ,

and, after some simple algebra, we can solve for (ṁ, u̇) 2 TmT ⇥ T ⇤
mT in terms of

(ṁ+, ṁ�) 2 T(m+,m�)T ⇥ T :

ṁ =
1
2

⇣
dmER

l (ṁ+) + dmEL
l (ṁ�)

⌘
, u̇ =

1
2

⇣
dmER

l (ṁ+) � dmEL
l (ṁ�)

⌘⇤
.

5. Double maps are symplectic

In this section we provide proofs for the symplecticity of the double earthquake and
double harmonic maps, Theorem 1.11 and Theorem 1.18.

5.1. Train Tracks and the Thurston intersection form

We start by recalling here another set of tools that will be needed in the next part of
this section. More details can be found, e.g., in [35] and [42].

First let us introduce the notion of a train track carrying a lamination. A train
track T on the surface S is a (regular) tubular neighborhood of an embedded smooth
graph with at least 2-valent vertices. We shall consider only generic train tracks with
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only 3-valent vertices. The edges of T meet tangentially at vertices and, therefore,
we may divide edges incident to a given vertex as incoming or outgoing according
to the relative direction of their tangent vectors. We denote by ev the incoming edge
and by e+v , e�v the outgoing edges of a vertex v, where the + and � signs denote
the order of the outgoing edges with respect to the incoming one given by a fixed
choice of orientation of the surface.

An edge weight system for T is a map a : E(T ) ! R assigning a weight
a(e) 2 R to each edge e 2 E(T ) and satisfying the switch relation

a(ev) = a(e+v ) + a(e�v )

for each vertex v 2 V (T ). We denote by W(T ) the vector space of edge weight
systems for T .

A lamination � is said to be carried by a train track T if it is contained in its
interior in such a way that the leaves of � are transverse to the normal fibers of T .
In the particular case of a maximal lamination �, there is a 1-to-1 correspondence
between transverse cocycles � 2 H(�, R) and edge weight systems a 2 W(T )
obtained by assigning to each edge e 2 E(T ) the weight

a(e) = � (ke)

where ke is any normal fibre of T , see [42]. The swich relation is automatically
satisfied due to the additivity of � . We thus obtain a mapH(�, R) !W(T ) which
is shown to be an isomorphism of vector spaces.

The Thurston intersection form onH(�, R) defined by

�Th =
X

v2V (T )

da(e+v ) ^ da(e�v ).

More precisely, given �, � 0 2 H(�, R), let a, a0 2 W(T ) be the corresponding
edge weight systems. Then

�Th(�, � 0) =
X

v2V (T )

⇣
a(e+v )a0(e�v ) � a0(e+v )a(e�v )

⌘
.

This gives a non-degenerate 2-form on H(�, R) which is closely related with the
m-length of transverse cocycles, see [7]. Namely, given a hyperbolic metric m and
� a transverse cocycle, the m-length of � can be computed as value of the Thurston
intersection between �m and �

Lm(� ) = ��Th(�m, � ).

The main reason we consider Thurston’s intersection form is due to its relation with
the Weil-Petersson symplectic form.

Theorem 5.1 (Bonahon-Sözen [42]). The map '� : (T ,!WP)! (H(�, R),�Th)
is symplectic up to a sign

'⇤
��Th = �!WP .
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Similarly, the canonical cotangent bundle symplectic structure on T ⇤T can
also be related with Thurston’s intersection form. First, note that the map '� :
T (S) ! H(�, R) naturally identifies the cotangent space to T (S) at m with
the cotangent space to H(�, R) at �m which, furthermore, is just the dual space
H(�, R)⇤ toH(�, R):

T ⇤
mT (S) = T ⇤

�mH(�, R) = H(�, R)⇤.

The total space of the cotangent bundle T ⇤T (S) over T (S) is then identified with
a subset ofH(�, R) ⇥H(�, R)⇤ by

�
'�,

�
'�1

�

�⇤�
: (m, u) 7!

�
'�(m),

�
'�1

�

�⇤u
�

=
�
�m, � ⇤

u
�
.

Using the Thurston intersection form we may further identify the dual space
H(�, R)⇤ withH(�, R) via

� 7! � ⇤ = �Th( · , � )

so the symplectic form onH(�, R) ⇥H(�, R)⇤ can be written as

�⇤
�
(�1, ⌧

⇤
1 ), (�2, ⌧

⇤
2 )

�
= �Th(⌧1, �2) � �Th(⌧2, �1).

Proposition 5.2. The map ('�, ('
�1
� )⇤) : (T ⇤T ,!r⇤)!(H(�, R)⇥H(�, R)⇤,�⇤)

is a symplectomorphism

�
'�,

�
'�1

�

�⇤�⇤
�⇤ = 2!r⇤ .

Proof. We only need to compare the canonical Liouville 1-forms ✓ on T ⇤T (S) and
2 onH(�, R) ⇥H(�, R)⇤

✓(m,u)(U) = u(⇡⇤U), 2(�,⌧⇤)(⇢,�⇤) = ⌧⇤(⇢).

Pulling back 2 by ('�, ('
�1
� )⇤) gives

⇣�
'�,

�
'�1

�

�⇤�⇤
2

⌘

(m,u)
(U) =

�
('�1

� )⇤u
��

('�)⇤ � ⇡⇤U
�

= ✓(m,u)(U).

Thus
�
'�,

�
'�1

�

�⇤�⇤
�⇤ =

�
'�,

�
'�1

�

�⇤�⇤d2 = d✓ = 2!r⇤ .
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5.2. The double earthquake map is symplectic

We now provide a proof that the double earthquake map E 0 is symplectic, up to
a multiplicative factor, Theorem 1.18. First we need a description of earthquakes
along measured laminations in terms of transverse cocycles for maximal lamina-
tions.

Thus, given (m, l) 2 T ⇥ML let m0 = EL(m, l) denote the left earthquake of
m along l and let � be a maximal lamination on S containing the support of l. De-
note by � = �m the transverse cocycles associated with m and by ⌧ the transverse
measure of l. We now compute the transverse cocycle � 0 = �m0 corresponding to
m0. Let us fix a transverse arc k to �. Let k̃ be a lift of k to the universal cover of
S. By transversality, the endpoints of k̃ lay in the interior of triangles P , Q in the
triangulation of S̃ determined by the complement S̃\�̃ of the preimage �̃ of �. We
only need to consider the case where P and Q are adjacent since for non-adjacent
triangles the cocycles are obtained as the sum of cocycles of the intermediate pairs
of triangles. The construction of the transverse cocycle associated with a hyper-
bolic metric is given by orthogonally projecting the third vertex of P and Q to
their common edge and computing the signed hyperbolic distance between the ob-
tained pair of points (equivalently, this is given by the logarithm of the cross-ratio
of the ideal square determined by P and Q). The action of the earthquake EL(l),
as viewed from P , is then to shift the projected point from Q by ⌧ . Therefore, the
transformation of the PQ-cocycle is

�PQ 7! � 0
PQ = �PQ + ⌧PQ

where ⌧PQ is the measure of any arc transversally intersecting �̃ a unique time at
the common edge of P and Q. If P and Q are non-adjacent, the formula

�PQ 7! � 0
PQ = �PQ + ⌧PQ

is still valid, where now �PQ, ⌧PQ are given by the sum (possibly with an infinite
number of terms) over intermediate pairs of triangles. The measure of the transverse
arc k is then given by

�m0(k) = �m(k) + ⌧ (k)

and we see that the transverse cocycles of m and m0 are related by

�m0 = �m + ⌧.

Proof of Theorem 1.18. From the discussion above, we may write the double earth-
quake map E : T ⇥ML! T ⇥ T in terms of transverse cocycles for � as

E�(�, ⌧ ) = ('�,'�) � E � ('�1
� , ◆�)(�, ⌧ ) = (� + ⌧, � � ⌧ ).

Here we denote by ◆� : H(�, R+) ! ML the map assigning to a non-negative
transverse cocycle ⌧ the measured lamination with support � and transverse mea-
sure ⌧ .
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On the other hand by the relation between the m-length of measured lamina-
tions and Thurston’s intersection form recalled above,

Lm(l) = ��Th(�m, �l) ,

we may also describe the inverse of the map � : T ⇥ ML ! T ⇤T in terms of
cocycles by

��(�, ⌧ ) = ('�, ('
�1
� )⇤) � � � ('�1

� , ◆�)(�, ⌧ )

= ('�, ('
�1
� )⇤)('�1

� �,�⌧⇤ � ('�)⇤) = (�,�⌧⇤).

Thus the double earthquake map E 0 : T ⇤T ! T ⇥ T can be realized by

E 0
�(�, ⌧⇤) = E� � ��1

� (�, ⌧⇤) = (� � ⌧, � + ⌧ ) .

Now note that the map E 0
� : H(�, R) ⇥H(�, R)⇤ ! H(�, R) ⇥H(�, R) defined

above is a symplectomorphism (up to a multiplicative factor) with respect to the
cotangent bundle symplectic form on H(�, R) ⇥ H(�, R)⇤ and the difference of
Thurston intersection forms onH(�, R) ⇥H(�, R)

E 0
�
⇤(�Th � �Th)

⇣
(⇢1,�

⇤
1 ), (⇢2,�

⇤
2 )

⌘
= �Th(⇢1 � �1, ⇢2 � �2)

� �Th(⇢1 + �1, ⇢2 + �2)

= �2�Th(�1, ⇢2) + 2�Th(�2, ⇢1)

= �2�⇤

⇣
(⇢1,�

⇤
1 ), (⇢2,�

⇤
2 )

⌘
.

Finally, restricting to the appropriate subsets, we have

1
2
E 0⇤(!WP � !WP) = �

1
2
E 0⇤ � ('�,'�)

⇤ �
�Th � �Th

�

= �
1
2

⇣
'�,

⇣
'�1

�

⌘⇤⌘⇤
� E 0

�
⇤ �

�Th � �Th
�

=
⇣
'�,

⇣
'�1

�

⌘⇤⌘⇤
�⇤ = 2!r⇤ .

Proof of Theorem 1.2. The proof that WAdS
@ : HE ! GH�1 is symplectic now

follows from Theorem 1.18 and Remark 3.2.

5.3. The dual Schläfli formula for convex cores of AdS manifolds

The main point of this section is a result on the variation, under a deformation, of
the volume (or rather the dual volume) of the convex core of a globally hyperbolic
AdS manifold. Although not obviously related to the main results of this paper, this
formula is the key tool in proving, in the next section, that the double harmonic map
is symplectic.
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The result presented here should be compared with the Schläfli formula ob-
tained by Bonahon [9] for convex cores of quasifuchsian hyperbolic manifolds, and
to the dual formula, for the variation of the dual volume of quasifuchsian manifolds,
used in [27]. The result we prove here (and need below) is the AdS analog of the
dual Schläfli formula of [27]. We do not consider here the Schläfli formula itself
for AdS convex cores, however it is possible that it could be obtained from the dual
formula by a fairly direct argument (possibly similar to the argument used in the
other direction in [27] in the hyperbolic setting).
Definition 5.3. Let g 2 GH�1 be a GHM AdS metric on M . We denote by �+
the domain of M bounded by the unique maximal surface S ⇢ M and by the upper
boundary @+C(M, g) of the convex core of M , and set

V ⇤
+(g) = V (�+) �

1
2
Lm+(l+) ,

where V (�+) is the volume of �+ and m+ and l+ are the induced metric and the
measured bending lamination on @+C(M, g).

A key point of the proof of the symplecticity of the double harmonic map will
be the following variation formula for the volume V ⇤

+.

Lemma 5.4. The function V ⇤
+ : GH�1 ! R is tangentiable. For a first-order

variation of the GHM AdS metric g, the corresponding variation of V ⇤
+ is

(V ⇤
+(g))0 = �

1
4

Z

S
hI 0, II iI daI �

1
2
dm+L(l+)(m0

+) , (5.1)

where I and II are the induced metric and second fundamental form on the unique
maximal Cauchy surface S in M .

We denote by V ⇤ the sum of V ⇤
+ and V ⇤

�, analogously defined in terms of the
lower boundary of the convex core, and by (m, l) the hyperbolic metric and mea-
sured lamination induced on the whole boundary of the convex core @C(M, g) =
@+C(M, g) t @�C(M, g). The dual Schläfli formula for convex core of GHM AdS
manifolds now follows directly.

Proposition 5.5. In a first-order variation of the GHM AdS metric g,

(V ⇤(g))0 = �
1
2
dmL(l)(m0) .

Proof. This follows directly from applying Lemma 5.4 both to V ⇤
+ and to the cor-

responding quantity V ⇤
� for the part of M between the maximal surface S and the

lower boundary of the convex core, that is, the quantity corresponding to V ⇤
+ after

changing the time orientation of M . The first term on the right-hand side of (5.1)
is then exactly compensated by the corresponding term for the lower half of the
convex core, and only the second term remains.
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The proof of Lemma 5.4 will basically follow from a first variation formula
for the volume of AdS domains with smooth boundary. In the following state-
ment we denote by I, II, H the induced metric, second fundamental form and mean
curvature of the boundary, with H = 1

2 trI (II ), and suppose that the orientation
conventions are such that H is positive when the boundary is convex.

Lemma 5.6. Let � be a 3-dimensional manifold with boundary, with a one-pa-
rameter family of AdS metrics (gt )t2[0,1] such that the boundary is C1,1 smooth and
space-like. Then

V (�)0 =
Z

@�
H 0 +

1
4
hI 0, II idaI .

Here V (�)0 = (d/dt)V (�, gt )|t=0 and similarly for the other primes.

This statement is the exact Lorentzian analog, in the 3-dimensional case, of
[36, Theorem 1] (see also [37] for a complete proof). The argument there can
be used almost with no modification here. We leave the details to the interested
reader. (The proof can be obtained by integrating by parts the equation satisfied by
a normalized deformation of the AdS structure on the convex core, considered as a
symmetric 2-tensor.)

Note that Lemma 5.6 could be stated in a much more general way by consider-
ing a higher-dimensional manifold with a one-parameter family of Einstein metrics,
as in [37]. The fact that the boundary is space-like is not essential. Note also that
an alternate proof can be found, for Riemannian Einstein manifolds, in [19].

Corollary 5.7. Under the same conditions as in Lemma 5.6, let

V ⇤(�) = V (�) �
Z

@�
HdaI .

Then
V ⇤(�)0 =

1
4

Z

@�
hI 0, II � 2H I iI daI .

Proof. This follows from Lemma 5.6 because an elementary computation shows
that ✓Z

@�
HdaI

◆0

=
Z

@�
H 0 +

H
2

hI 0, I iI daI .

The last technical tool that will be needed in the proof of Lemma 5.4 is the de-
scription of the surfaces equidistant from a convex pleated surface in AdS3. This
description is directly analogous to what is well-known for the equidistant surfaces
from a convex pleated surface in H3, so we give only a brief account here, leav-
ing the details to the reader. We consider a past-convex space-like pleated surface
6 ⇢ AdS3, denote its induced metric by m and its measured pleating lamination
by l, and will denote by 6r the equidistant surface at time-distance r in the past
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of 6 (i.e., in the convex domain bounded by 6 — this contrasts with the hyper-
bolic situation where one typically considers the equidistant surface in the concave
region).

The simplest case occurs when l = 0 and 6 is totally geodesic. Then a simple
computation shows that 6r is umbilic and future-convex, with principal curvatures
equal to � tan(r). If on the other hand we suppose that 6 is made of two to-
tally geodesic half-planes P1 and P2 intersecting at an angle ✓ along their common
boundary, we obtain that 6r has three components:

• Two umbilic surfaces P1,r and P2,r , with orthogonal projection on 6 respec-
tively on P1 and P2;

• A strip S of width ✓ sin(r), which projects orthogonally to @P1 = @P2, where
one principal direction (along the axis) is 1/ tan(r), while the other is � tan(r).

Suppose now that 6 is a past-convex space-like pleated surface in a GHM AdS
manifold, with rational measured bending lamination l. It follows from the previous
description that6r has umbilic regions (projecting orthogonally to the complement
of the support of l in 6) with principal curvatures � tan(r), and “strips” projecting
orthogonally to the support of l, with principal curvatures equal to 1/ tan(r) and to
� tan(r). In particular, it will be important below to note that the area of 6r is

A(6r ) = cos2(r)(�2�(S)) + sin(r) cos(r)Lm(l) .

It follows by continuity that the same area formula holds for general (not rational)
measured bending lamination.

We can now provide a direct proof of Lemma 5.4. Note that this contrasts with
the argument given in [27], where the “dual Schläfli formula” was proved using
Bonahon’s Schläfli formula (see [10, 11]). It appears likely that, in the hyperbolic
setting too, a direct proof of the dual Schläfli formula can be given without going
through Bonahon’s Schläfli formula, which is more complicated even to state since
it involves the first-order variation of the measured bending lamination.

Proof of Lemma 5.4. Recall that weighted multicurves are dense inML. There-
fore for any data (m+, l+) on the upper boundary of the convex core, l+ can be
approximated by a sequence of laminations supported on a disjoint union of closed
curves. It is therefore sufficient to prove the lemma when l+ is supported on a
disjoint union of closed curve. We will focus on this situation in the rest of the
proof.

We consider a smooth one-parameter family (gt )t2[0,1] of AdS metrics on M
and the corresponding one-parameter family of hyperbolic metrics and measured
laminations (mt , lt )t2[0,1] induced on the upper boundary of the convex core. It
is convenient here to choose a maximal lamination � containing the support of l,
so that l can be identified with the corresponding transverse cocycle, as outlined
in Section 4.1. A first order variation ġ = (dgt/dt)|t=0 of g then determines a
first-order variation ṁ 2 TmT of m and a first-order variation l̇ 2 H(�, R) of l.
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We can now slightly change the perspective and consider (m, l) as the main
variables, with the first-order variation ġ of g to be determined by first-order vari-
ations ṁ and l̇ of m and l. Thus, given (m, l) 2 T ⇥H(�, R), let (M, g) be the
GHM AdS manifold whose upper boundary of the convex core has induced metric
m and measured bending lamination l and denote by S the unique maximal Cauchy
surface in M , and by � the domain in M bounded by S and by the upper boundary
of the convex core @+�. We will now prove that

V ⇤
+(m, l) = V (�) �

1
2
Lm(l)

is tangentiable with the correct derivative.
Our strategy to prove the variation formula for V ⇤

+ will be to approximate the
pleated surface @+� by equidistant surfaces, to which we can apply the smooth dual
Schläfli formula of Lemma 5.6. So, for r > 0, we denote by 6r the set of points at
time distance r from @+� in the past. If r is small enough, then 6r ⇢ �. We then
call �r the compact domain in M bounded by S and 6r . So �r is contained in �,
more precisely� is composed of all points at time distance at most r from�r in its
future.

We denote by Ir , IIr , Hr the induced metric, second fundamental form and
mean curvature of 6r , and define

V ⇤
r (m, l) = V (�r ) �

Z

6r

HrdaIr .

The first-order variation formula for V ⇤
r follows from Lemma 5.6 and the proof of

Corollary 5.7:

(V ⇤
r (m, l))0 = �

Z

S

✓
H 0 +

1
4
hI 0, II i

◆
daI +

1
4

Z

6r

hI 0r , IIr � 2Hr Ir iIr daIr .

Note that the terms corresponding to 6r is different from the term on S since, in
the definition of V ⇤

r (m, l), an integral mean curvature term is added but it is only an
integral on 6r . The first integral already occurs in the statement of Lemma 5.4, and
moreover H 0 = 0 since S remains a maximal surface throughout the deformation.
So, to prove the statement, we need to show that

Z

6r

hI 0r , IIr � 2Hr Ir iIr daIr
r!0
�! �2dmL(l)(ṁ) . (5.2)

For r > 0 small enough, 6r is C1,1 smooth — this is the Lorentzian analog of
the well-known fact that the equidistant surface from a convex pleated surface in
hyperbolic space, on the concave side of the complement, is C1,1 smooth. Note that
6r is not convex, but this will not play any role in the argument.

There is a well-defined nearest-point projection ⇢ : 6r ! @+�. Therefore we
can decompose 6r in two components:
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• 6l
r is the inverse image by ⇢ of the support of l, so that is a closed subset of 6r ,

• 6
f
r = 6r \ 6l

r is the open set of points which project to a point of @+� which
has a totally geodesic neighborhood.

Both 6l
r and 6

f
r are smooth surfaces.

The area of 6 f
r depends on the area of @+�, specifically:

A(6
f
r ) = cos2(r)(�2⇡�(S)) .

Similarly, the area of 6l
r depends on the length of l for m:

A(6l
r ) = sin(r) cos(r)Lm(l) .

As a consequence, we can express the volume of �r in terms of the volume of �:

V (�r ) � V (�) =
Z r

s=0

⇣
sin(s) cos(s)Lm(l) + cos2(s)(�2⇡�(S))

⌘
ds r!0

�! 0 .

Moreover Z

6r

HrdaIr
r!0
�!

1
2
Lm(l) ,

and it follows that V ⇤
r (m, l) ! V ⇤

+(m, l) in the local C0 sense as r ! 0.
Clearly, 6 f

r is the disjoint union of open surfaces which are equidistant from a
plane and therefore umbilic, with principal curvatures equal to � tan(r). The local
geometry of 6l

r is slightly more interesting. It has a foliation 3 by geodesics, each
of which project to a leaf of l. The directions parallel to 3 are principal directions,
with corresponding principal curvature � tan(r), while the principal curvature cor-
responding to the directions orthogonal to 3 is cotan(r).

As a consequence, the mean curvature of6r is equal to� tan(r)+ cotan(r) on
6l
r , and to �2 tan(r) on 6

f
r . It follows that IIr � 2Hr Ir is equal to

• �cotan(r)Ir on directions parallel to 3 on 6l
r ;

• tan(r)Ir on directions orthogonal to 3 on 6l
r and on all directions in 6

f
r .

To prove (5.2), we decompose the first-order variation of Ir in two terms: d Ir (ṁ)
corresponding to ṁ, and d Ir (l̇) corresponding to l̇. We will compute separately the
contribution of each term to the limit of the integral on the left-hand side of (5.2).
For both computations, we will consider the area A(6r ) = A(6l

r ) + A(6
f
r ) of Ir .

Similarly as in the hyperbolic setting (see, e.g., [26]) we have

A(6r ) = �2⇡�(S) + sin(r) cos(r)Lm(l) .

The first-order deformation d Ir (l̇) corresponds to varying the bending on @+�
while keeping the induced metric fixed, so it vanishes in the directions parallel to3
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on 6l
r (which project to directions parallel to the support of the bending lamination

on @+�). So it follows from the description of IIr � 2Hr Ir given above that
Z

6r

hd Ir (l̇), IIr � 2Hr Ir iIr daIr =
Z

6r

hd Ir (l̇), tan(r)Ir iIr daIr

= 2 tan(r)d A(6r )(l̇)
= 2 sin2(r)dLm(l̇)
= 2 sin2(r)Lm(l̇)
r!0
�! 0 .

Similarly, d Ir (ṁ) is bounded on 6
f
r , while it vanishes on 6l

r on directions orthog-
onal to 3. It follows that

Z

6r

hd Ir (ṁ), IIr � 2Hr Ir iIr daIr =
Z

6l
r

hd Ir (ṁ),�cotan(r)Ir iIr daIr

+
Z

6
f
r

hd Ir (ṁ), tan(r)Ir iIr daIr .

However Z

6
f
r

hd Ir (ṁ), tan(r)Ir iIr daIr
r!0
�! 0 ,

while
Z

6l
r

hd Ir (ṁ),�cotan(r)Ir iIr daIr = �cotan(r)
Z

6l
r

hd Ir (ṁ), Ir iIr daIr

= �2cotan(r)d A(6l
r )(ṁ)

= �2 cos2(r)dmL(l)(ṁ)
r!0
�! �2dmL(l)(ṁ) .

Summing up, we obtain Equation (5.2).
Therefore,

dV ⇤
r (m, l) ! �

Z

S

✓
H 0 +

1
4
hI 0, II i

◆
daI �

1
2
dmL(l)(m0) .

pointwise as r ! 0. Since V ⇤
r (m, l) ! V ⇤(m, l) in C0 as r ! 0, the result

follows.

5.4. The double harmonic map is symplectic

We turn here to the proof of Theorem 1.11: the double harmonic mapH : T ⇤T !
T ⇥ T is symplectic up to a factor, more precisely,

H⇤(!WP � !WP) = �2!r⇤ ,

where !r⇤ is the real part of the complex symplectic structure on T ⇤T .
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The key part of the argument is the dual Schläfli formula, more specifically
Lemma 5.4 seen in the previous section. Note that a similar argument was used in
the hyperbolic setting by Loustau in [31].

We will use the diagram in Figure 5.1, which is a variant of other similar (re-
lated) diagrams presented in the paper.

Figure 5.1. Earthquakes and harmonic maps associated to GHM AdS manifolds.

In this diagram we denote by @ 0 : GH�1 ! T ⇤T the composition @ 0 = � � @AdS+ .
This diagram is commutative. The fact that the right triangle commutes is a

direct translation of Lemma 2.13. In the left square, the triangles not involving
the holAdS map commute by definition, while the two triangles involving holAdS
commutes by Theorem 2.11 and Lemma 2.13.

Proposition 5.8. The map max � @ 0�1 is symplectic up to a factor �2: (max �
@ 0�1)⇤!r⇤ = �2!r⇤.

Proof of Proposition 5.8. Recall that the map � : T ⇥ML ! T ⇤T is defined as
�(m, l) = dmL(l). Let ✓ denote the canonical Liouville 1-form of T ⇤T , that is, the
1-form on T ⇤T defined at a point (m, u) 2 T ⇤T by

8U 2 T(m,u)T ⇤T , ✓(U) = u(⇡⇤U) ,

where ⇡ : T ⇤T ! T is the canonical projection. It follows from the defintion of �
that

(�⇤✓)(ṁ, l̇) = d(L(l))(ṁ) .

Pulling-back this 1-form on GH�1 by the map @ 0, we obtain that
�
(@ 0)⇤✓

�
(ṁ, l̇) =

�
(@ � �)⇤✓

� �
ṁ, l̇

�
= d(L(l))(ṁ) ,

where (ṁ, l̇) is now taken to define a tangent vector to GH�1, as seen at the begin-
ning of Subsection 5.3.

A very similar argument shows that

(max⇤✓)( İ , İI ) =
Z

S
h İ , II idaI ,

where (I, II ) determine a point in GH�1 and ( İ , İI ) a tangent vector to GH�1 at
this point.
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Lemma 5.4 can therefore be stated as follows: on GH�1,

dV ⇤
+ = �

1
4
max⇤✓ �

1
2
(@ 0)⇤✓ .

Taking the differential, we obtain that

0 = �
1
4
max⇤!r⇤ �

1
2
(@ 0)⇤!r⇤ ,

and therefore that �
max � (@ 0)�1

�⇤
!r⇤ + 2!r⇤ = 0 .

Proof of Theorem 1.11. The proof clearly follows from Proposition 5.8, and from
the diagram in Figure 5.1, because Theorem 1.18 asserts that

(E 0)⇤
✓
1
2

(!WP � !WP )

◆
= 2!r⇤ .

Proof of Theorem 1.3. The proof that the map Wmin : AF ! GH is symplectic
follows from Theorem 1.11 and from Remark 3.4.

6. Constant mean curvature surfaces

In this section we consider the symplectic structures induced on the various moduli
spaces of geometric structures in 3 dimensions (AF 0,GH�1,GH0 and GH1) by
their identification with T ⇤T through constant mean curvature surfaces. We then
prove Theorem 1.7.

6.1. CMC surfaces in hyperbolic manifolds

Recall thatAF 0 denotes the subspace ofAF of almost-Fuchsian metrics on S⇥ R
which admit a foliation by CMC surfaces, with mean curvature going from�1 to 1.
Conjecturally, AF 0 = AF . An elementary application of the maximum principle
shows that for h 2 AF 0, (M, h) contains a unique closed, embedded CMC-H
surface, which is a leave of the CMC foliation.

Definition 6.1. For all H 2 (�1, 1), we denote by CMCHypH : AF 0 ! T ⇤T the
map sending a hyperbolic metric h 2 AF 0 to ([I ], II0), where [I ] is the conformal
class of the induced metric and II0 is the traceless part of the second fundamental
form of the unique closed, embedded CMC-H surface in (M, h).

A key point for us is that the symplectic form obtained onAF 0 by pulling back
the cotangent symplectic structure on T ⇤T to AF 0 by all those maps is always the
same. We will see below that the same result, basically with the same proof, extends
to globally hyperbolic constant curvature space-times.
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Proposition 6.2. Let H, H 0 2 (�1, 1). Then (CMCHypH )⇤!r⇤ = (CMCHypH 0 )⇤!r⇤.

Proof. We suppose, without loss of generality, that H 0 > H . Let 6 and 60 be the
closed, embedded surfaces with constant mean curvature H and H 0, respectively,
and let � be the domain bounded by 6 and 60. We orient both 6 and 60 towards
increasing values of H . We define

V ⇤(�) = V (�) �
Z

60
H 0daI +

Z

6
HdaI .

Corollary 5.7 then indicates that, in a first-order deformation of g,

2V ⇤(�)0 =
Z

60

1
2
hI 0, II � 2H 0 I iI daI �

Z

6

1
2
hI 0, II � 2H I iI daI .

(Note that the signs are slightly different from those in Corollary 5.7 because the
orientation of 6 is different, here it is towards increasing values of H and therefore
towards the interior of �.)

Clearly we have
II = II0 + H I ,

so that
II � 2H I = II0 � H I .

As a consequence,

2V ⇤(�)0 =
Z

60

1
2
hI 0, II0iI daI � H 0

Z

60

1
2
hI 0, I iI daI

�
Z

6

1
2
hI 0, II0iI daI + H

Z

6

1
2
hI 0, I iI daI

=
1
2

Z

60
hI 0, II0iI daI �

1
2

Z

6
hI 0, II0iI daI � H 0A(60)0 + H A(6)0 .

Another way to state this is that

2d
�
2V ⇤(�) + H 0A(60) � H A(6)

�
= (CMCHypH 0 )⇤✓ � (CMCHypH )⇤✓ ,

where ✓ is the Liouville form on T ⇤T . It follows that

(CMCHypH 0 )⇤!r⇤ � (CMCHypH )⇤!r⇤ = d((CMCHypH 0 )⇤✓ � (CMCHypH )⇤✓) = 0 .

6.2. CMC surfaces in Lorentzian space-times

Recall that, according to Theorem 1.4, any GHM AdS manifold admits a unique
foliation by CMC surfaces, with mean curvature going monotonically from �1 to
1. This makes the following definition possible.
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Definition 6.3. For all H 2 R, we call CMCAdSH : GH�1 ! T ⇤T the map sending
a GHM AdS metric g 2 GH�1 to ([I ], II0), where [I ] is the conformal class of the
induced metric and II0 is the traceless part of the second fundamental form of the
unique closed, embedded CMC-H surface in (M, g).

Proposition 6.4. Let H, H 0 2 (�1,1). Then (CMCAdSH )⇤!r⇤ = (CMCAdSH 0 )⇤!r⇤.

The proof is exactly the same as in the hyperbolic setting, since the dual
Schläfli formula has the same statement.

Things are similar in the de Sitter setting. According to Theorem 3.7, any
GHM de Sitter manifold has a unique foliation by CMC surfaces, with mean curva-
ture varying between �1 and �1 (with the orientation conventions used here).
Definition 6.5. For all H 2 (�1,�1), we call CMCdSH : GH1 ! T ⇤T the map
sending a GHM dS metric g 2 GH1 to ([I ], II0), where [I ] is the conformal class
of the induced metric and II0 is the traceless part of the second fundamental form
of the unique closed, embedded CMC-H surface in (M, g).

Proposition 6.6. Let H, H 0 2 (�1,�1). Then (CMCdSH )⇤!r⇤ = (CMCdSH 0)
⇤!r⇤.

The proof is again almost the same as for Proposition 6.2 above. The smooth
Schläfli formula has a different sign in de Sitter manifolds, and it now reads:

V (�)0 = �
Z

@�
H 0 +

1
4
hI 0, II iI daI .

Therefore one has to define the dual volume as

V ⇤(�) = V (�) +
Z

@�
HdaI ,

and the variation formula for V ⇤ has a minus sign compared to the hyperbolic or
AdS cases. However the proof of Proposition 6.6 can be done as the proof of Propo-
sition 6.2, with obvious sign differences.

Finally, in the Minkowski space, Theorem 3.7 indicates that any GHM
Minkowski manifold has a unique foliation by CMC surfaces, with mean curva-
ture varying between �1 and 0.
Definition 6.7. For all H 2 (�1, 0), we call CMCMinkH : GH0 ! T ⇤T the map
sending a GHM AdS metric g 2 GH0 to ([I ], II0), where [I ] is the conformal class
of the induced metric and II0 is the traceless part of the second fundamental form
of the unique closed, embedded CMC-H surface in (M, g).

Proposition 6.8. Let H, H 0 2 (�1, 0). Then (CMCMinkH )⇤!r⇤ = (CMCMinkH 0 )⇤!r⇤.

The proof is again similar, but with larger differences. The smooth Schläfli
formula now reads as Z

@�
H 0 +

1
4
hI 0, II iI daI = 0 .
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We now define
F(�) =

Z

@�
2HdaI ,

and have the following variation formula for F under a first-order deformation:

F(�)0 =
Z

@�

1
2
hI 0, II � 2H I iI daI .

The proof of Proposition 6.8 can then proceed as the proof of Proposition 6.2, with
F instead of V ⇤.

Proof of Theorem 1.7. Note that for all H 2 (�1, 1) and H 0 2 (�1,1), we have

WAdS
H,H 0 = (CMCAdSH 0 )�1 � CMCHypH .

We first consider the special case where H = H 0 = 0. With the notations used
above, CMCHyp0 = min while CMCAdS0 = max. We already know by Theorem 3.3
that min : (AF,!i

G) ! (T ⇤T ,!r⇤) is symplectic up to the sign, that is

min⇤!r⇤ = �!i
G .

Moreover, WAdS
0,0 = Wmin : (AF,!i

G) ! (GH�1,
1
2 (!WP � !WP)) is symplectic

by Theorem 1.3. It follows that max : (GH�1,
1
2 (!WP � !WP)) ! (T ⇤T ,�!r⇤)

is also symplectic.
Proposition 6.2 and Proposition 6.4 therefore indicate that for all H 2 (�1, 1)

and H 0 2 (�1,1), CMCAdSH 0 and CMCHypH are symplectic. Therefore, WAdS
H,H 0 :

(AF 0,!i
G) ! (GH�1,

1
2 (!WP � !WP)) is also symplectic.

7. Minkowski and de Sitter manifolds

In this section we prove that the symplectic structure !i
G on the moduli space GH1

of globally hyperbolic de Sitter manifolds is identical (up to the sign) to the sym-
plectic structure induced by the identification of GH1 with T ⇤T through CMC
surfaces. The proof of Theorem 1.19 will follow.

We then describe some conjectural statements for globally hyperbolicMinkow-
ski manifolds.

7.1. De Sitter CMCWick rotation are symplectic

The proof of Theorem 1.19 is mostly based, in addition to the content of the pre-
vious sections, on the following proposition. We call 1 : HE ! GH1 the duality
map, that is, the map sending a hyperbolic end E to the “dual” GHM de Sitter man-
ifold, which has the same complex projective structure at future infinity as E . So
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1 = (@dS1 )�1�@
Hyp
1 is a homeomorphism fromHE to GH1, such that1⇤!i

G = !i
G .

We also call 10 the restriction of 1 to the space AF 0 of almost-Fuchsian metrics
admitting a folation by CMC surfaces.

Proposition 7.1. For all H⇤ 2 (�1,�1) and all H 2 (�1, 1), we have

(CMCdSH⇤
� 10)⇤!r⇤ = (CMCHypH )⇤!r⇤ .

The proof is based on a basic differential geometry computation concerning the
term which appears in the smooth Schläfli formula of Lemma 5.6.

Lemma 7.2. Let 6 be a closed, embedded, locally convex surface with non-degen-
erate shape operator in a hyperbolic end E . In a first-order deformation of E and
6, we have on 6

2H 0 +
1
2
hI 0, II iI daI =

1
2
hIII 0, II � 2H⇤ III iIII daIII ,

where III is the third fundamental form of 6 and H⇤ = H/(K + 1) is the mean
curvature of the dual surface.

Proof. By definition, we have III = I (B·, B·), where B is the shape operator of 6.
Let B⇤ = B�1 and let id denote the identity, then

II � 2H⇤ III = III
�
(B⇤ � tr(B⇤)I d)·, ·

�
= III

✓
B

det B
·, ·

◆
.

Let A : T6 ! T6 be the self-adjoint (for I ) bundle morphism such that I 0 =
I (A·, ·). Then a simple computation shows that

III 0 = III
✓✓

B�1AB + B�1B0 +
⇣
B�1B0

⌘†◆
·, ·

◆
,

where the † is the adjoint with respect to III . Therefore

hIII 0, II � 2H⇤ III iIII =
tr((B�1AB + B�1B0 + (B�1B0)†)B)

det B
.

Since B† = B, it follows that

hIII 0, II � 2H⇤ III iIII =
tr(AB + 2B0)

det B
.

But daIII = det(B)daI , so it follows that

hIII 0, II � 2H⇤ III iIII daIII = tr(AB + 2B0)daI = (4H 0 + hI 0, II iI )daI ,

as needed.
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Proof of Proposition 7.1. Let E 2 HE be a hyperbolic end, and let M 2 GH1 be
the dual GHM de Sitter manifold. Thanks to Proposition 6.2 and Proposition 6.6,
we only need to prove the statement for any arbitrary value of H and H⇤, so we
suppose (without loss of generality) that 6⇤

H⇤
is on the positive side of 6H .

We denote by � the domain of M bounded by 6H and 6⇤
H⇤
. We then define

W = V (�) +
Z

6H

HdaI = V (�) � H A(6H ) .

It then follows from Lemma 5.6 and from Corollary 5.7 that, in a first-order defor-
mation of M ,

2W 0 =
Z

6⇤
H⇤

2H 0
⇤ +

1
2
hI 0, II idaI �

Z

6H

1
2
hI 0, II � 2H I idaI .

(The sign differs from that of Corollary 5.7 because of the orientation on 6H .)
Using Lemma 7.2, we can reformulate this equation as

2W 0 =
Z

6⇤
H⇤

1
2
hIII 0, II � 2H⇤ III idaIII �

Z

6H

1
2
hI 0, II � 2H I idaI .

Now the duality between H3 and dS3 exchanges the induced metric and the third
fundamental forms of surfaces, and the equation becomes

2W 0 =
Z

6H⇤

1
2
hI 0, II � 2H⇤ I idaI �

Z

6H

1
2
hI 0, II � 2H I idaI

=
Z

6H⇤

1
2
hI 0, II0idaI � H⇤A(6H⇤)

0 �
Z

6H

1
2
hI 0, II0idaI + H A(6H )0 .

This means that

d(2W + H⇤A(6H⇤) � H A(6H )) = (CMCHypH )⇤✓ � (CMCdSH⇤
)⇤✓,

where ✓ denotes again the Liouville form of T ⇤T . The result follows by taking the
exterior differential of this last equation.

We can now prove Theorem 1.19.

Proof of Theorem 1.19. Let H 2 (�1, 1) and H⇤ 2 (�1,�1), then it follows
from the definition of WdS

H,H⇤
that

W dS
H,H⇤

= (CMCdSH⇤
)�1 � CMCHypH .

The statement therefore follows directly from Proposition 7.1, along with Theo-
rem 3.3.
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7.2. Minkowski Wick rotations and Wick rotations between moduli spaces
of Lorentzian space-times

We do not elaborate here on the symplectic properties of Wick rotations between
quasifuchsian manifolds and GHM Minkowski manifolds. Note that there are at
least two natural Wick rotations one can consider:

• The map WMink
H,H 0 : AF 0 ! GH0, depending on the choice of H 2 (�1, 1) and

of H 0 2 (�1, 0) sending an almost-Fuchsian manifold M 2 AF 0 containing
a CMC-H surface 6H to the unique GHM Minkowski containing a CMC-H 0

surface with the same data ([I ], II0) as 6. (This map is well-defined by [26,
Lemma 6.1].)

• The map sending a hyperbolic end E with boundary data (m, l) 2 T ⇥ML on
its pleated surface to the GHM Minkowski manifold for which (m, l) describes
the initial singularity (see [32]).

It would be interesting to know whether those maps have interesting properties
related to the natural symplectic structures onAF 0 (respectivelyHE) and on GH0.

As a final note, we have considered here only Wick rotations between hyper-
bolic manifolds and constant curvature Lorentzian space-times — either AdS, de
Sitter or Minkowski. However a number of statements on “Wick rotations” between
constant curvature Lorentzian space-times of different types (AdS to Minkowski,
etc.) clearly follow by composing different maps. We leave the details to the inter-
ested reader.
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