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Boundary concentrations on segments
for the Lin-Ni-Takagi problem

WEIWEI AO, HARDY CHAN AND JUNCHENG WEI

Abstract. We consider the following singularly perturbed Neumann problem
(Lin-Ni-Takagi problem)

"21u � u + u p = 0 , u > 0 in �,
@u
@⌫

= 0 on @�,

where p > 2 and � is a smooth and bounded domain in R2. We construct a
new class of solutions that consists of a large number of spikes concentrating on
a segment of the boundary that contains a strict local minimum point of the mean
curvature function and has the same mean curvature at the two end points. We
find a continuum limit of ODE systems governing the interactions of spikes and
show that the derivative of the mean curvature function acts as friction force. Our
construction is partly motivated by the construction of CMC surfaces on broken
geodesics by Butscher and Mazzeo [10].

Mathematics Subject Classification (2010): 35J61 (primary); 35B40 (sec-
ondary).

1. Introduction and statement of main results

1.1. Introduction and Main Results

In this paper, we establish new concentration phenomena for the following singu-
larly perturbed elliptic problem:

8
>><

>>:

"21u � u + u p = 0 in �

u > 0 in �
@u
@⌫

= 0 on @�,

(1.1)

where � is a smooth bounded domain in R2 with its unit outer normal ⌫, the expo-
nent p is greater than 2, and " > 0 is a small parameter. We prove the existence of
solutions concentrating on a segment of @�.
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This equation is known as the time-independent nonlinear Schrödinger equa-
tion:

i~@ 
@t

= �
~2
2m
1 + V � �̃ | |p�2 (1.2)

where ~ is the Plank constant, V is the potential, and �̃ ,m are positive constants.
Then, standing waves of (1.2) can be found by setting  = ei Et/~v(x), where E is
a constant and the real function v satisfies the elliptic equation:

�~21v + Ṽ v = |v|p�2v (1.3)

for some modified potential Ṽ . If we consider ~ ! 0, the above equation becomes
a singularly perturbed one.

It can also be viewed as a stationary equation of Keller-Segel system in chemo-
taxis [24] and the Gierer-Meinhardt biological pattern formation system [19]. In
particular, Lin-Ni-Takagi [29] first derived this problem from Keller-Segel system
and initiated the study of the quantitative properties of its solutions. In the literature
this is also called as the Lin-Ni-Takagi problem [18].

Although problem (1.1) appears simple, it has a rich and interesting structure
of solutions. For the last twenty years, it has received considerable attention. In par-
ticular, various concentration phenomena exhibited by the solutions of (1.1) seem
both mathematically intriguing and scientifically useful. We refer to three survey
articles [38, 39], and [44] for more background and references.

In the subcritical case, problem (1.1) admits spike layer solutions, concentrat-
ing at one or multiple points of �̄. It was first established in [40, 41] by Ni and
Takagi the existence of least energy (mountain pass) solutions to (1.1), that is, a
solution u✏ with minimal energy. They showed in [40, 41] that, for each ✏ > 0,
sufficiently small, u✏ has a spike at the most curved part of the boundary, i.e., the
region where the mean curvature attains maximum value.

Since the publication of [41], further studies on spike-layer solutions (for the
Dirichlet problem and mixed boundary problem as well) have been made. For spike
solutions, solutions with multiple boundary spikes as well as multiple interior spikes
and mixed interior and boundary spikes have been established (see [4, 7, 8, 12, 15–
18,20–23,26,27,42,43,45,46], and the references therein). Owing to these works,
the phenomenon of concentration at points is now well-understood. Necessary and
sufficient conditions for the location of boundary and interior spikes are available.

In particular, with regard to the interior spike layer solutions, Lin, Ni, and
Wei [28] showed that there are at least CN

("| log "|)N interior spikes, and recently the
first author, the third author and Zeng [5] extended their result and obtained the
optimal bound of number of interior spikes, CN

"N
, for general smooth domain in RN .

A general principle is that for interior spike solutions, the distance function
from the boundary @� plays an important role, while for the boundary spike solu-
tions, the mean curvature function of the boundary plays an important role.

Besides the spike-layer solutions, it has been conjectured for a long time that
problem (1.1) should possess solutions, which have m�dimensional concentration
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sets for every 0  m  N � 1 (see, e.g. [38]). The case m = N is excluded since
(1.1) is not expected to exhibit phase transitions.

Under symmetry conditions, some results for problem (1.1) have been obtained
in [1,2,6,9,13], as well as for the Dirichlet problem and the nonlinear Schrödinger
equation.

In the general case, progresses although still limited, have also been made
in [30, 31, 33–37, 47, 48]. For solutions concentrating on interior higher dimen-
sional sets, results were first obtained in [47, 48] where the third author and Yang
constructed solutions concentrating on line segments in the interior of the domain
�. For boundary concentration solutions, in a series of papers Malchiodi and Mon-
tenegro [34,36] proved the existence of solutions concentrating on thewhole bound-
ary or arbitrary components of @� when � ⇢ RN and solutions concentrating on
closed geodesics of @�, when � ⇢ R3; later Mahmoudi and Malchiodi [30] ex-
tended the results and obtained the existence of solutions concentrating on the k-
submanifolds of @� ⇢ RN , provided that the sequence " satisfies a gap condition
is called resonance.

In [3], the first and the third authors and Musso removed the resonance con-
dition in [47] and proved the existence of solutions concentrating on the interior
straight line by putting a large number of spikes distributed along the line. It is nat-
ural to ask that whether one can remove the resonance condition for the boundary
concentration solutions using similar ideas. In addition, in all the above mentioned
papers, for higher dimensional boundary concentration solutions, the concentration
sets were either the whole boundary or closed submanifolds of the boundary. A
natural question is:

Does problem (1.1) have solutions that concentrate on a broken segment of the
boundary for all " ! 0 ?

In this paper we provide an affirmative answer to the above question. We construct
solutions concentrating on a broken segment � of the boundary @� ⇢ R2 for all
" ! 0 if � satisfies the following condition:

(H1). Let � = � ([0, b]) be the segment parametrized by arc length, and H(q) be
the curvature of @� at q. Denote by

H 0(� (s)) =
d
ds
H(� (s)), H 00(� (s)) =

d2

ds2
H(� (s)).

Assume that H 00(� (s)) � c0 > 0 for all s 2 [0, b], and H(� (0)) = H(� (b)).
Remark 1.1. From assumption (H1), one can see that � must contain a non-de-
generate local minimum point of the curvature H , and that the curvature at the two
end points of � must be the same.

Our main result in this paper is stated as follows:

Theorem 1.2. Assume that � satisfies (H1). Then there exists "0 > 0 such that, for
" < "0, there exists boundary spike solutions to (1.1) concentrating on � .
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Remark 1.3. In the paper [23] Gui, Winter, and the third author proved the exis-
tence of multiple spike solutions concentrating at the local minimum point of the
curvature H(p). In this paper, we proved the existence of spike solutions con-
centrating on the segment that contains a local minimum of H(p). Theorem 1.2
extends their result to a segment containing a local minimum point of H .
Remark 1.4. In this paper the condition p > 2 on the exponent is imposed for
technical reasons. In the range 1 < p  2, we believe that the conclusion is also
true by more refined estimates.

1.2. Description of the construction

The solutions we construct consist of a large number (O( 1
" ln " )) of spikes distributed

along the segment � whose mutual distance is sufficiently small (O(" ln ")).
At first glance one may discard such kind of solutions, as there seems to be

no balancing force at the end points of the segment. In the following, we show
that the derivative of the mean curvature function acts as friction force. This new
phenomenon was first discovered in the work by Butscher and Mazzeo [10], in
which they constructed CMC surfaces condensing to a finite geodesic segment. We
comment more on this later.

In this subsection, we briefly describe the solutions to be constructed later and
present the main idea in the procedure of the construction.

More precisely, let w be the unique solution of the following equation:
8
><

>:

1w � w + w p = 0 in R2
w > 0, w(0) = maxy2R2 w(y)
w ! 0 as |y| ! 1.

(1.4)

It is well-known (see [25]) that w is radial, i.e. w = w(r), w0(r) < 0 and has the
following asymptotic behavior:

w(y) = cN ,p|y|�
N�1
2 e�|y|(1+ o(1)) (1.5)

and
w0(y) = �(1+ o(1))w(y) as |y| ! 1. (1.6)

For q 2 @�, we set

�" = {z : "z 2 �}, �",q = {z : "z + q 2 �},

and
Pwq(z) = P�",qw

⇣
z �

q
"

⌘
, wq(z) = w

⇣
z �

q
"

⌘
, z 2 �",

where P�",qw(z � q
" ) is defined to be the unique solution of

1u � u + w
⇣
· �

q
"

⌘p
= 0 in �",q ,

@u
@⌫

= 0 on @�",q . (1.7)
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We put a large number of boundary spikes along � . Let (� (s1), · · · , � (sk)) be the
location of spikes. We define

U =
kX

i=1
P�",� (si )

w

✓
z �

� (si )
"

◆

to be an approximate solution.
A natural and central question is how to choose si such thatU is indeed a good

approximation. By formal calculation, one has the following energy expansion for
the energy functional corresponding to (1.1):

J (U) =
k
2
I (w) � "�0

kX

i=1
H(� (si )) �

�1
2

w

✓
� (si ) � � (s j )

"

◆
+ o("),

where �0, �1 are positive constants. One needs to find a critical point (s1, · · · , sk)
of J in order to obtain a solution of (1.1), i.e., @

@si J = 0 for all i . The main point
in this paper is to exploit the contribution of H 0(� (s)) in @ J

@si . The novelty of this
paper is the new method of constructing balance approximate spike solutions, i.e.,
the configuration space {(s1, · · · , sk)}, such that @ J@si is almost 0.

In this paper we establish a method to find such balance approximate solutions.
It turns out that the number of spikes and their positions are determined by some
nonlinear equations, which involve the interaction of spikes and also the effect of the
boundary curvature. To explain this, we need to introduce the interaction function
9(s) to describe the interactions of different spikes, which is defined for all s 2 R
by

9(s) = �
Z

R2+
w(y � (s, 0))pw p�1 @w

@y1
dy.

It turns out that � (si ) are determined by the following non-linear system:
8
>>>>>>>>>>>><

>>>>>>>>>>>>:

9

✓
|s2 � s1|

"

◆
+ "2H 0(� (s1)) = O

�
"3
�

9

✓
|s3 � s2|

"

◆
�9

✓
|s2 � s1|

"

◆
+ "2H 0(� (s2)) = O

�
"3
�

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9

✓
|sk � sk�1|

"

◆
�9

✓
|sk�1 � sk�2|

"

◆
+ "2H 0(� (sk�1)) = O

�
"3
�

�9

✓
|sk � sk�1|

"

◆
+ "2H 0(� (sk)) = O

�
"3
�
,

(1.8)

and the number of spikes depending on " is given by k = k" =
⇥ b

|" ln "|
⇤
+ 1.

One can see from the above equations that it is possible to balance the two end
points of the segment using the derivative of the curvature function. However, in



658 WEIWEI AO, HARDY CHAN AND JUNCHENG WEI

general, the above nonlinear system is difficult to solve. Our new idea is to consider
this non-linear system as a discretization of its continuum limiting ODE systems
(as the step size h = "| ln "| tends to 0):

8
>>>>>>>><

>>>>>>>>:

dx
dt

= �
1
ln "

9�1
⇣ "

ln "
⇢(t)

⌘

d⇢
dt

= H 0
�
� (x(t))

�
, 0 < t < b"

⇢(0) = 0, ⇢(b") = ⇢b

x 0(b") = �
1
ln "

9�1�"2H 0
�
� (x(b"))

��
,

(1.9)

where 9�1 is the inverse function of 9, and b" = (k" � 1)h = b + O(h) and
⇢b < 0 is a small constant depending on ". The above overdetermined ODE is
solvable under the assumption of the segment � in (H1).

To describe the configuration space of � (si ), we solve the ODE system (1.9)
first and denote the solution as x(t). Then, we define the positions of the spikes by
midpoint approximation:

s0i = x
✓
ti + ti+1

2

◆
for i = 1, · · · , k � 1 (1.10)

and
s0k = s0k�1 + "9�1

⇣
"2H 0

⇣ "

ln "
⇢b

⌘⌘
, (1.11)

where
ti = (i � 1)|" ln "|, i � 1. (1.12)

The method to determine the approximate positions, i.e., s0i , is the main contribution
of this paper, which we elaborate in Section 6. The position defined in this manner
is indeed an almost balanced one. We find real solutions by perturbing these spike
points.

Letting yi 2 R, we define

si = s0i + yi , for i = 1, · · · , k, (1.13)

and yi satisfies
8
>>><

>>>:

|y1|  C|" ln(� ln ")|

|(si+1 � si ) � (si � si�1)| 
C"3

min

(

9

 
s0i � s0i�1

"

!

,9

 
s0i � s0i+1

"

!) (1.14)

for i = 2, · · · , k � 1 and for some large constant C > 0.
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With these notations, we can define the configuration space of (s1, · · · , sk) by:

3k = {(s1, · · · , sk) 2 Rk |si is defined by (1.13) and satisfies (1.14)}. (1.15)

The reason behind defining the configuration space in this manner is made clear in
Section 3.

Moreover, from the analysis of the ODE (1.9) in Section 6, one can infer that

|si � si�1| � (1+ o(1))|" ln "|, w

✓
si � si�1

"

◆


c"
| ln "|

(1.16)

for i = 2, · · · , k, and

|si � si�1| = 2(1+ o(1))|" ln "|| (1.17)

for i = 2, k.
We prove Theorem 1.2 by showing the following result:

Theorem 1.5. Let � be a segment of @� that satisfies (H1). Then, there exists "0
such that for " < "0, there exists a positive number k = k",� =

⇥ b
|" ln "|

⇤
+ 1 and

k points (� (s1), · · · , � (sk)) on � , where (s1, · · · , sk) 2 3k such that there exists a
solution u" to problem (1.1) having the following form:

u"(x) =
kX

i=1
P�",� (si )

w

✓
x � � (si )

"

◆
+ o(1), (1.18)

where o(1) ! 0 uniformly as " ! 0.

Remark 1.6. The motivation behind our construction comes from the study of the
constant mean curvature surfaces. In [10], Butscher and Mazzeo constructed CMC
surfaces condensing to a geodesic segment by connecting a large number (O( 1r )) of
spheres of radius r distributed along the geodesic segments. Such surfaces cannot
exist in Euclidean space, but they are able to show that the gradient of the ambient
scalar curvature acts as a ‘friction term’, which permits the existence of balance
surfaces. Therefore, the gradient of scalar curvature plays the same role as the
gradient of the mean curvature in our case. In their paper, they require the symmetry
condition on the geodesic segment. In our main Theorem 1.2, if we further require
that � is symmetric, it is easy to see that (H1) can always be satisfied near the
non-degenerate minimum point of the curvature H(� (s)). Since we do not require
any symmetry of the segment in Theorem 1.2, we believe that our idea can be used
to construct CMC surfaces condensing to geodesic segments without the symmetry
condition. This is the main contribution of our paper. We will discuss this in a
forthcoming paper (A. Butscher announced this result in a preprint [11], but the full
details have not been published as yet).
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1.3. Sketch of the proof of Theorem 1.5

We will use the Lyapunov-Schmidt reduction method and a perturbation argument
to construct the solutions to (1.1). The perturbation argument used to produce a real
solution is not so different from the ones appearing elsewhere in the literature. As
mentioned earlier, the main contribution of this paper is a novel approach to con-
structing balanced approximate solutions. In the following, we present the sketch
of the proof.

We first introduce some notation. Given that, after the scaling x = "z, the
original problem becomes

8
>><

>>:

1u � u + u p = 0 in �"
u > 0 in �"
@u
@⌫

= 0 on @�".
(1.19)

Fixing s = (s1, · · · , sk) 2 3k , we denote by

P = (P1, · · · , Pk) =

✓
� (s1)
"

, · · · ,
� (sk)
"

◆

and define the sum of k spikes as

U =
kX

i=1
P�",Pi w(z � Pi ).

Define the operator
S(u) = 1u � u + u p.

We also define the following functions as the approximate kernels

Zi =
@P�",Pi w(z � Pi )

@⌧Pi
for i = 1, · · · , k.

UsingU as the approximate solution, and performing the Lyapunov-Schmidt reduc-
tion, we can show that there exists "0 such that, for " < "0, we can find a solution
 of the following projected problem:

S(U +  ) =
kX

i=1
ci Zi ,

Z

�"

 Zi = 0, i = 1, · · · , k,

where ci are constants depending on the form of  , Zi .
Next, we need to solve the reduced problem

ci = 0, i = 1, · · · , k

by adjusting the points in 3k .
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There are two main difficulties in solving the reduced problem. First, we need
to control the error projection produced by  . In order to control this projection,
we need to work in a weighted norm, which estimates  locally (see Section 3).
Further, we need a decomposition of  , which is given in Section 4, from where
one can see why we define the configuration space of si in (1.15). The reason
why one needs to obtain a further decomposition of  is that the mutual distance
of the spikes at the main order is not the same. In fact, near the two end points,
the mutual distance of two consecutive spikes is 2(1 + o(1))"| ln "|, while in the
more central part the mutual distance of two consecutive spikes is (1+o(1))"| ln "|.
Thus, the global estimate for  is not sufficient for our estimates. We need further
decomposition near each spike. Second, we need to solve a non-linear system of
the form (1.8), for which we use the discretization of the ODE equation (1.9).

Finally, the remainder of this paper is organized as follows. Some preliminary
facts and useful estimates are explained in Section 2. Section 3 contains the standard
Lyapunov-Schmidt reduction process: we study the linearized projected problem in
Subsection 3.1 and then solve a non-linear projected problem in Subsection 3.2. In
Section 4, we obtain further asymptotic behavior of , which provides an expansion
in ". In Section 5, we derive the reduced nonlinear system of algebraic equations
for the location. Section 6 is devoted to solving the reduced problem.

2. Technical analysis

In this section we introduce a projection and derive some useful estimates. Most of
the results in this section are quite standard now and have been extensively used in
the literature (see [21–23,40, 43, 45]).

Throughout this paper, we shall use the letter C to denote a generic positive
constant that may vary from term to term. Through the following rescaling

x = "z, z 2 �" := {"z 2 �}, (2.1)

equation (1.1) becomes
8
<

:

1u � u + u p = 0, in �"
@u
@⌫

= 0 on @�".
(2.2)

We denote byR2+ = {(y1, y2)|y2 > 0}. Recall thatw is the unique solution of (1.4).
Let q 2 @�. We can define a diffeomorphism straightening the boundary. We

may assume that the inward normal to @� at q points in the direction of the positive
x2 axis. Denote B 0(R) = {|x1|  R}, and �1 = � \ B(q, R) = {(x1, x2) 2
B(q, R)|x2 � q2 > ⇢(x1 � q1)} where B(q, R) = {x 2 R2||x � q| < R}. Then,
since @� is smooth, we can find a constant R such that @� can be represented by
the graph of a smooth function ⇢q : B0(R) ! R where ⇢q(0) = 0, and ⇢0

q(0) = 0.
Hereafter, we omit the use of q in ⇢q and write ⇢ instead, barring any confusion.
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Therefore, @� can be represented near q by (x1, ⇢(x1)). The curvature of @� at q
is H(q) = ⇢00(0). After scaling, we know that near Q = q

" , @�" can be represented
by (z1, "�1⇢("z1)), where (z1, z2) = "�1(x1, x2). By Taylor’s expansion, we have
the following:

"�1⇢("z1) =
1
2
⇢00(0)"z21 +

1
6
⇢(3)(0)"2z31 + O

⇣
"3z41

⌘
. (2.3)

Recall that for a smooth bounded domain U , the projection PU of H2(U) onto
{u 2 H2(U)| @u@⌫ = 0 at @U} is defined as follows: For v 2 H2(U), let PUv be the
unique solution of the boundary value problem:

8
<

:

1u � u + v p = 0 in U
@u
@⌫

= 0 on @U .
(2.4)

Let hP(z) = w(z � P) � P�",Pw(z � P). Then, hP satisfies
8
<

:

1hP(z) � hP(z) = 0 in �"
@hP
@⌫

=
@

@⌫
w(z � P) on @�".

(2.5)

For z 2 �1,", for P = (P1,P2), set now
(
y1 = z1 � P1
y2 = z2 � P2 � "�1⇢

�
"(z1 � P1)

�
.

(2.6)

Under this transformation, the Laplace operator and the boundary derivative opera-
tor become

1z = 1y + ⇢("z1)2@y2y2 � 2⇢0("z1)@y1y2 � "⇢00("z1)@y2,
⇣
1+ ⇢0("z1)2

⌘ 1
2 @

@⌫
= ⇢0("z1)@y1 � (1+ ⇢02("z1))@y2 .

First, we need to obtain the expansion of hP(z) in terms of ", from which one can
see the effect of the boundary curvature. In this paper, we need to expand it up to
O("2). To be more specific, let v(1) be the unique solution of

8
<

:

1v � v = 0 in R2+
@v

@y2
=

w0

|y|
⇢00(0)
2

y21 on @R2+,
(2.7)

where w0 is the radial derivative of w, i.e., w0 = wr (r), and r = |z � P|.
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Let v(2) be the unique solution of
8
>><

>>:

1v � v � 2⇢00(0)y1
@2v1
@ y1@ y2

= 0 in R2+
@v

@y2
= �⇢00(0)y1

@v1
@y1

on @R2+.

Let v(3) be the unique solution of
8
<

:

1v � v = 0 in R2+
@v

@y2
=

w0

|y|
1
3⇢

(3)(0)y31 on @R2+.
(2.8)

Note that v(1), v(2) are even functions in y1 and v(3) is an odd function in y1. More-
over, it is easy to see that |vi (y)|  Ce�µ|y| for any 0 < µ < 1. Let �(x) be a
smooth cut-off function such that �(x) = 1, x 2 B(0, R0"| ln "|), and �(x) = 0 for
x 2 B(0, 2R0"| ln "|)c for R0 large enough, and �"(z) = �("z) for z 2 �". In this
case, one has w(R0| ln "|) = O("R0). Set

hP(z) = �
⇣
"v1(y) + "2

�
v2(y) + v3(y)

�⌘
�"(z � P) + "3⇠P(z), z 2 �". (2.9)

Then, we have the following estimate:

Proposition 2.1.
k⇠(z)kH1(�")  C. (2.10)

Proposition 2.1 was proved in [45] by Taylor expansion and a rigorous estimate for
the reminder using estimates for elliptic equations. Moreover, one can check that
|⇠(z)|  Ce�µ|z�P| for some 0 < µ < 1.

In our proof, only the evenness property in y1 of the functions v(1) and v(2) are
used. However, for the function v(3), both the oddness property and the equation it
satisfies will be used. In fact, it is from this term that the derivative of the curvature
function appears.

Similarly, we know from [45] that:

Proposition 2.2.

@w

@⌧P
�
@P�",Pw

@⌧P

�
(z � P) = "⌘(y)�"(z � P) + "2⌘1(z), z 2 �", (2.11)

where ⌘ is the unique solution of the following equation:
8
<

:

1⌘ � ⌘ = 0 in R2+
@⌘

@y2
= �

1
2

✓
w00

|y|2
�

w0

|y|3

◆
⇢00(0)y31 �

w0

|y|
⇢00(0)y1 on @R2+.

(2.12)

Moreover,
k⌘1kH1(�")  C. (2.13)
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One can observe that ⌘(y) is an odd function in y1. It can be seen that |⌘i (y)| 
Ce�µ|y| for some 0 < µ < 1.

Finally, set
L0 = 1� 1+ pw p�1(z). (2.14)

We have the following non-degeneracy property:

Lemma 2.3.
Ker(L0) \ H2N (R2+) = span

⇢
@w

@y1

�
, (2.15)

where H2N (R2+) =
�
u 2 H2(R2+), @u@y2 = 0 on @R2+

 
.

Proof. See [40, Lemma 4.2].

Next, we state a useful lemma that we will frequently use:

Lemma 2.4. If |q1 � q2| ⌧ |q1|, we have the following estimate:
Z

R2+
pw(y)p�1

�
w(y�q1e1)+w(y+q2e1)

� @w
@y1

dy = O
�
|q1�q2|w(|q1|)

�
(2.16)

as |q1| ! 1, where e1 is the unit vector (1, 0).

Proof. By the oddness of @w@y1 in y1, one has

Z

R2+
pw(y)p�1

�
w(y � q1e1) + w(y + q2e1)

� @w
@y1

dy

=
Z

R2+
pw(y)p�1

�
w(y � q1e1) � w(y � q2e1)

� @w
@y1

dy

=
Z

R2
pw(y)p�1

�
�
�
@w

@y1

�
�
�O

�
w0(y � q1e1)|q1 � q2|

�
dy

= O(|q1 � q2|)w(|q1|).

Remark 2.5. In the following sections, we will denote by yi = (yi1, y
i
2) the trans-

formation defined by (2.6) centered at the point Pi and by v
( j)
i be the corresponding

solutions in the expansion of hPi .

3. Liapunov-Schmidt reduction

In this section we reduce problem (2.2) to a finite dimensional one by the Liapunov-
Schmidt reduction method. The argument, thus far, is quite standard. We leave most
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of the proofs to the appendix. We first introduce some notation. Let H2N (�") be the
Hilbert space defined by

H2N (�") =

⇢
u 2 H2(�")

�
�
�
@u
@⌫

= 0 on @�"
�

. (3.1)

Define
S(u) = 1u � u + u p (3.2)

for u 2 H2N (�"). Then solving equation (2.2) is equivalent to solve

S(u) = 0 with u 2 H2N (�"). (3.3)

To this end, we first study the linearized operator

L"( ) := 1 �  + p

 
kX

i=1
P�",Pi w(z � Pi )

!p�1

 ,

and define the approximate kernels to be

Zi =
@P�",Pi w(z � Pi )

@⌧Pi
,

for i = 1, · · · , k.

3.1. Linear projected problem

We first develop a solvability theory for the linear projected problem:
8
>>>>><

>>>>>:

L"( ) = h +
kX

i=1
ci Zi

Z

�"

 Zidz = 0, i = 1, · · · , k

 2 H2N (�").

(3.4)

Given 0 < µ < 1, consider the norm

khk⇤ = sup
z2�"

�
�
�
�
�
�

 
X

j
e�µ|z�Pi |

!�1

h(z)

�
�
�
�
�
�
, (3.5)

where Pi 2 3k , with 3k is defined in (1.15).
The proof of the following Proposition on linearized operator, which we post-

pone to the appendix, is, thus far, standard.
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Proposition 3.1. There exist positive numbers µ 2 (0, 1), "0 and C , such that for
all "  "0, and for any set of points Pj , j = 1, . . . , k, given by (1.15), there is a
unique solution ( , ci ) to problem (3.4). Furthermore,

k k⇤  Ckhk⇤. (3.6)

In the following, if  is the unique solution given by Proposition 3.1, we set

 = A(h). (3.7)

Estimate (3.6) implies that
kA(h)k⇤  Ckhk⇤. (3.8)

3.2. Nonlinear projected problem

We now have sufficient context to solve the nonlinear equation:
8
>>>>><

>>>>>:

L"( ) + E + N ( ) =
kX

i=1
ci Zi

Z

�"

 Zi = 0 for i = 1, · · · , k

 2 H2N (�")

(3.9)

where E is the error of the approximate solution U :

E = 1

 
kX

i=1
P�",Pi w(z � Pi )

!

�

 
kX

i=1
P�",Pi w(z � Pi )

!

(3.10)

+

 
kX

i=1
P�",Pi w(z � Pi )

!p

,

and N ( ) is the nonlinear term:

N ( ) =

  
kX

i=1
P�",Pi w(z � Pi )

!

+  

!p

�

 
kX

i=1
P�",Pi w(z � Pi )

!p

(3.11)

�p

 
kX

i=1
P�",Pi w(z � Pi )

!p�1

 .

By Proposition 3.1, we can rewrite (3.9) as

 = �A
�
E + N ( )

�
, (3.12)
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where A is the operator introduced in (3.7). In other words,  solves (3.9) if and
only if  is a fixed point for the operator

T ( ) := �A
�
E + N ( )

�
.

We show that the operator T defined above for  2 H2N (�") is a contraction on

B =

⇢
 2 H2N (�") : k k⇤  C",

Z

�"

 Zi = 0
�

for some adequately large C > 0.
In fact, we have the following lemma:

Lemma 3.2. There exist µ 2 (0, 1), and positive numbers "0, C , such that for all
"  "0, for any set og points Pj , j = 1, . . . , k, given by (1.15), the following
estimates hold:

kEk⇤  C" (3.13)

and
kN (�)k⇤  Ck�k2⇤. (3.14)

Proof. We start with the proof for (3.13). Fix j 2 {1, . . . , k} and consider the region
|z � Pj | 

min{|Pj�Pj�1|,|Pj�Pj+1|}
2 . In this region, the error E , whose definition is

given in (3.11), can be estimated in the following way:

|E(z)|  Cw p�1(z � Pj )

2

4
X

Pi 6=Pj

w(z � Pi ) +
X

i
hPi (z)

3

5

 C(" + "
p�µ
2 )e�µ|z�Pj |  C"e�µ|z�Pj |,

(3.15)

if we choose an adequately small µ such that p � µ > 2.
Now, consider the region |z � Pj | >

min{|Pj�Pj�1|,|Pj�Pj+1|}
2 , for all j . From

the definition of E , we obtain in the region under consideration

|E(z)|  C

"
X

i
hPi (z) +

 
kX

i=1
P�",Pi w(z � Pi )

!p

�
X

i
w(x � Pi )p

#

 C
X

i
e�µ|z�Pi |

⇣
" + "

p�µ
2
⌘

 C"
X

i
e�µ|z�Pi |.

(3.16)

From (3.15) and (3.16), we obtain (3.13).
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We now prove (3.14). Let  2 B. Then,

|N ( )| 

�
�
�
�
�

  
kX

i=1
P�",Pi w(z � Pi )

!

+  

!p

�

 
kX

i=1
P�"w(z � Pi )

!p

� p

 
kX

i=1
P�",Pi w(z � Pi )

!p�1

 

�
�
�
�
�
�
 C 2.

Thus, we have �
�
�
�
�
�

 
X

j
e�µ|x�Pj |

!�1

N ( )

�
�
�
�
�
�
 Ck k2⇤ .

This gives (3.14).

Using the above estimates, we validate the following result:
Proposition 3.3. There exist µ 2 (0, 1) and positive numbers "0, C such that for
all "  "0, for any set of points Pj , j = 1, . . . , k, given by (1.15), there is a
unique solution ( , ci ) to problem (3.9). This solution depends continuously on the
parameters of the construction (namely Pj , j = 1, . . . , k), and furthermore

k k⇤  C". (3.17)

Proof. As mentioned before, we show that the operator T is a contraction mapping
in B.

By the estimates in Lemma 3.2, (3.13), (3.14), and taking into account (3.8),
we have, for any  2 B,

kT ( )k⇤  C [kE + N ( )k⇤]  C(" + "2)

 C1"
for a proper choice of C1 in the definition of B. Take now  1 and  2 in B. Then it
is straightforward to show that

kT ( 1) � T ( 2)k⇤  CkN ( 1) � N ( 2)k⇤

 C [k 1k⇤ + k 2k⇤] k 1 �  2k⇤

 o(1)k 1 �  2k⇤ .

This means that T is a contraction mapping from B into itself.
The existence of a fixed point  now follows from the contraction mapping

principle, and  is a solution of (3.9) and satisfying (3.17).
A direct consequence of the fixed point characterization of  given above, to-

gether with the fact that the error term E depends continuously (in the *-norm) on
the parameters Pj ( j = 1, . . . , k), is that the map (P1,· · ·, Pk) !  into the
space C(�") is continuous (in the ⇤-norm). This concludes the proof of the Propo-
sition.
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4. Further expansion of the error

In the previous section, we obtained a solution  to (3.9) which satisfies k k⇤ 
C". However, this estimate is not enough to solve the reduced problem. To proceed,
we need to obtain the asymptotic behavior of the function  as " ! 0. This is
needed to compute the neighboring interactions. The idea is that although the k · k⇤
norm of  is not small enough, we can obtain a more accurate decomposition such
that the projection with respect to Zi is small enough for our purpose.

Before we state the result, we first consider the following equation:

8
>>>>>><

>>>>>>:

1� � � + pw(y)p�1� = h + d
@w(y)
@y1

in R2+
@�

@y2
= 0 on @R2+

Z

R2+
�
@w(y)
@y1

dy = 0,

(4.1)

where d = �

R
R2+

h @w@y1
R

R2+

�
@w
@y1

�2 . We consider the above equation in the space {khk⇤⇤ <

+1}, where khk⇤⇤ = supy2R2+ |eµ1|y|h| for some 0 < µ1 < 1. It is quite stan-
dard to show the solvability of the above equation, and the solution � satisfies the
following estimate:

k�k⇤⇤  Ckhk⇤⇤. (4.2)

Now, we decompose  as follows:

Proposition 4.1. We may write

 =
kX

i=1
�"(z � Pi )�i + "2 1, (4.3)

where
k 1k⇤  C, (4.4)

and �i = �i (yi ) is the unique solution of

8
>>>>>><

>>>>>>:

1�i � �i + pw(yi )p�1�i = Hi + di
@w(yi )
@yi

in R2+
@�i

@y2
= 0 on @R2+

Z

R2+
�i
@w(yi )
@y1

dy = 0,

(4.5)
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where di is defined such that the right hand side of the above equation is orthogonal
to @w(yi )

@y1 in L2 norm, and

Hi =�pw(yi )p�1

w

✓
yi �

si�1� si
"

e1
◆

+ w

✓
yi �

si+1 � si
"

e1
◆

+ "v
(1)
i

�
, (4.6)

for i = 2, · · · , k � 1, while

H1 = �pw(y1)p�1

w

✓
y1 �

s2 � s1
"

e1
◆

+ "v
(1)
1

�
, (4.7)

and
Hk = �pw(yk)p�1


w

✓
yk �

sk�1 � sk
"

e1
◆

+ "v
(1)
k

�
, (4.8)

and where we have set
v

(1)
i = v

(1)
Pi

⇣
yi
⌘

(4.9)

for the solutions obtained in Section 1.2 centered at the point Pi .

Proof. First, by the definition of di , there holds

di = �
Z

R2+
Hi
@w(yi )
@y1

dy. (4.10)

Then, from Lemma 2.4, the evenness of v
(1)
i with respect to yi1, and the definition

of the configuration space (1.15), we know that for i = 2, · · · , k � 1

|di | C"�1||si+1 � si | � |si � si�1|min
⇢
w

✓
si � si+1

"

◆
, w

✓
si � si�1

"

◆�

 C"2,
(4.11)

and for i = 1, k,

|d1| = O
✓

w

✓
s1 � s2
"

◆◆
= O

⇣
"2
⌘
and |dk | = O

✓
w

✓
sk � sk�1

"

◆◆
= O("2).

(4.12)
Moreover, from (4.1), we have the following estimate:

k�ik⇤⇤  C" if p > 2+ µ1. (4.13)

Our strategy is to estimate  1 in order to decompose  1 into three parts and show
that each of them is bounded in k · k⇤ as " ! 0. We write  1 as

 1 =  11 +  12 +  13, (4.14)
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where  11 satisfies
8
<

:

1 11 �  11 = 0 in �"
@ 11
@⌫

= �
1
"2
@
Pk

i=1 �"(z � Pi )�i
@⌫

on @�".
(4.15)

Define  12 by

 12 =
1
"2

kX

i=1
si Zi , (4.16)

where si is determined by

M(si ) = �
Z

�"

 
kX

i=1
�"(z � Pi )�i + "2 11

!

Zi . (4.17)

Finally, define  13 to be the solution of the following equation:
8
>>>>>>><

>>>>>>>:

L"( 13)=
1
"2
L"

⇣
 �

Pk
i=1 �"(z � Pi )�i � "2( 11 +  12)

⌘
in �"

@ 13
@⌫

= 0 on @�"
Z

�"

 13Zidz = 0.

(4.18)

Next, we estimate  11, 12, 13 term by term.
First, we estimate g1" = 1

"2
@
Pk

i=1 �"(z�Pi )�i
@⌫ . By direct calculation,

g1" =
1
"2

kX

i=1

✓
�"(z � Pi )

@�i

@⌫
+ �i

@�"(z � Pi )
@⌫

◆

=
1
"2

kX

i=1
"e�µ1|y�

si
" | @�"(z � Pi )

@⌫
+ O

⇣
"2
⌘

= O
⇣
"�2e�(µ1�µ)R0| ln "|

⌘ kX

i=1
e�µ|z�Pi |

 C
kX

i=1
e�µ|z�Pi |,

if we choose µ1 > µ and the cutoff function in such a way that (µ1�µ)R0 � 1. In
the above estimate, we use the definition of �i , , the Neumann boundary conditions
satisfied by it, and the definition of the cut-off function � . Thus, we have that
kg1"k⇤  C . Therefore, there exists a constant C > 0 such that

k 11k⇤  C. (4.19)
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By the definition of  12, �i and the estimate on  11, one can obtain that
Z

�"

 
kX

j=1
�"(z � Pj )� j + "2 11

!

Zidz =
Z

�"

�"(z � Pi )�i Zi dz

+
X

j=i�1,i+1
�"(z � p j )� j Zi dz

+O
⇣
"1+(1+µ)(1+o(1))

⌘
+ O

⇣
"2
⌘

.

In order to estimate the above term, we first consider a general function that is the
solution of the following equation:
8
>>>>>>>>><

>>>>>>>>>:

1� �� + pw(y)p�1�=�pw(y)p�1
⇣
w(y � q1e1)

+w(y + q2e1) + "v(1)
⌘

+ d
@w(y)
@y1

in R2+
@�

@y2
= 0 on @R2+

Z

R2+
�
@w(y)
@y1

dy = 0 .

(4.20)

We can decompose it as
� = �1 + �2, (4.21)

where
8
>>>>>>>>>>>><

>>>>>>>>>>>>:

1�1 � �1 + pw(y)p�1�1

= �pw(y)p�1
⇣
w(y � q1e1) + w(y + q1e1) + "v(1)

⌘

+d1
@w(y)
@y1

in R2+
@�1

@y2
= 0 on @R2+

Z

R2+
�1
@w(y)
@y1

dy = 0

(4.22)

and
8
>>>>>>>>><

>>>>>>>>>:

1�2 � �2 + pw(y)p�1�2

= �pw(y)p�1
⇣
w(y + q2e1) � w(y + q1e1)

⌘
+ d2

@w(y)
@y1

in R2+
@�2

@y2
= 0 on @R2+

Z

R2+
�2
@w(y)
@y1

dy = 0,

(4.23)



CONCENTRATIONS ON SEGMENTS 673

where di are defined such that the right hand sides of the above equations are or-
thogonal to @w

@y1 in the L
2 norm. It is easy to see that �1 is even in y1 and that, by

Lemma 2.4, �2 satisfies

k�2k⇤⇤  Cw(q1)|q1 � q2|,

if |q1 � q2| ⌧ |q1| and |q1| ! 1.
Using the above estimates, we can decompose �i as

�i = �i,1 + �i,2 (4.24)

with �i,1 even in yi1 and

k�i,2k⇤⇤ C
�
�
�
�

�
�
�
�
si�si�1
"

�
�
�
��

�
�
�
�
si�si+1
"

�
�
�
�

�
�
�
�min

⇢
w

✓
si�si�1
"

◆
, w

✓
si�si+1
"

◆�

 C"2.
(4.25)

Then, by the above estimate and the decomposition in Proposition 2.2, we have
Z

�"

�"(z � Pi )�i Zi dz = O
⇣
"2
⌘

, (4.26)

and similar to the decomposition of �i , one can also decompose �i�1 + �i+1 as an
even function of yi1 and an O("2) function; thus, we obtain

X

j=i�1,i+1

Z

�"

�"(z � Pj )� j Zi dz =
Z

R2+
(�i�1 + �i+1)

@w(yi )
@y1

dy + O
⇣
"2
⌘

= O
⇣
"2
⌘

.

Moreover, since |s1�s2| = 2(1+o(1))|" ln "| and |sk�1�sk | = 2(1+o(1))|" ln "|,
one can obtain
Z

�"

�"(z � P2)�2Z1dz = O("2),

Z

�"

�"(z � Pk�1)�k�1Zkdz = O
⇣
"2
⌘

. (4.27)

Thus, we have
|si |  C"2. (4.28)

Next, we estimate  13. Set

f" = L"

 

 �
kX

i=1
�"(z � pi )�i � "2( 11 +  12)

!

.

We claim that
k f"k⇤  C"2. (4.29)
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Indeed by the definition of f" we have

f"(z) = L"

 

 �
kX

i=1
�"(z � Pi )�i � "2( 11 �  12)

!

= E + N ( ) +
X

i
ci Zi �

X

i
L"(�"(z � Pi )�i ) � "2L( 11 +  12)

=

 
X

i
P�",Pi w(z � Pi )

!p

�
X

i
w(z � Pi )p + N ( ) +

X

i
ci Zi

�
X

i
�"(z�Pi )

0

@1y�i��i + p

0

@

 
X

i
P�"w(z�Pi )

!p�1
+ O(")

1

A�i

1

A

+
X

i
(2r�ir (�"(z � Pi )) + �i1�"(z � Pi )) � "2L"( 11 +  12)

=

 
X

i
P�",Pi w(z � Pi )

!p

�
X

i
w(z � Pi )p + N ( ) +

X

i
ci Zi

�
X

i
�"(z�Pi )

0

@p

0

@

 
X

i
P�",Pi w(z � Pi )

!p�1
� w(y � Pi )p�1

1

A�i

� pw(y � Pi )p�1 (w(y � Pi�1) + w(y � Pi+1) + "v1i (y)) + di Zi

!

+
X

i
O(")�i +

X

i

⇣
2r�ir (�"(z � pi )) + �i1�"(z � Pi )

⌘

�"2L"( 11 +  12).

From the definition, and from theestimates of �i ,  11, 12, � , and the configuration
space, we know that |ci | = O("2), so

k f"k⇤  C"2.

By the a priori estimate, we know that

k 13k⇤  C,

thus, we have
k 1k⇤  C.

We thus complete the proof.

Given points Pj defined by (1.15), Proposition 3.3 guarantees the existence
(and provides estimates) of a unique solution  , and ci , for i = 1, . . . , k, to the
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problem (3.9). It is clear then that the function u = U +  is an exact solution to
our problem (1.1), with the required properties stated in Theorem 1.5 if we show
that there exists a configuration for the points Pj that provides all the constants ci
in (3.9) equal to zero. In order to do so, we first need to find the correct conditions
on the points to obtain ci = 0. This condition is naturally given by projecting in
L2(�") the equation in (3.9) into the space spanned by Zi , namely by multiplying
the equation in (3.9) by Zi and integrating all over �". We do so in detail in the
next section.

5. The reduced problem

In this section we keep the notation and the assumptions of the previous sections. As
explained in the previous section, we have obtained a solution u=

Pk
i=1P�",Piw(z�

Pi ) +
Pk

i=1 �"(z � Pi )�i + "2 1 of the following equation
8
>><

>>:

1u � u + u p =
kX

i=1
ci Zi in �"

@u
@⌫

= 0 on @�".
(5.1)

In this section we solve ci = 0 for all i by adjusting the position of the spikes, i.e.,
Pi . First, multiplying the above equation (5.1) by Zi , i = 1, · · · , k and integrating
over �", we obtain

M

2

6
6
4

c1
c2
...
ck

3

7
7
5 =

2

6
6
6
6
6
6
6
6
6
4

Z

�"

(1u � u + u p)Z1
Z

�"

(1u � u + u p)Z2
...Z

�"

(1u � u + u p)Zk

3

7
7
7
7
7
7
7
7
7
5

. (5.2)

Recall that M is invertible, so the equation ci = 0, f oralli = 1, · · · , k, is reduced
to solve the following system:

2

6
6
6
6
6
6
6
6
6
4

Z

�"

(1u � u + u p)Z1
Z

�"

(1u � u + u p)Z2
...Z

�"

(1u � u + u p)Zk

3

7
7
7
7
7
7
7
7
7
5

= 0. (5.3)
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We have the following estimates:

Lemma 5.1. Under the assumption of Proposition 3.3, for " small enough, the fol-
lowing expansion holds:
Z

�"

(1u � u + u p)Z1dz = �9

✓
s1 � s2
"

◆
� "2⌫2H 0(� (s1)) + O

⇣
"3
⌘

, (5.4)

and moreover, for i = 2, · · · , k � 1, there holds
Z

�"

�
1u � u + u p

�
Zidz = 9

✓
si � si�1

"

◆
�9

✓
si � si+1

"

◆

� "2⌫2H 0(� (si )) + O
⇣
"3
⌘ (5.5)

and finally
Z

�"

�
1u � u + u p

�
Zkdz = 9

✓
sk � sk�1

"

◆
� "2⌫2H 0(� (sk)) + O

⇣
"3
⌘

, (5.6)

where ⌫2 > 0 is a constant defined in (5.12).

Proof. First, by direct calculation, one can obtain the following expansion:

1u � u + u p

=

"

1

 

U +
kX

i=1
�"(z � Pi )�i

!

�

 

U +
kX

i=1
�"(z � Pi )�i

!

+

 

U +
X

i
�"(z � Pi )�i

!p#

+

2

4"2

0

@1 1 �  1 + p

 

U +
kX

i=1
�"(z � Pi )�i

!p�1

 1

1

A

3

5

+

" 

U +
kX

i=1
�"(z � Pi )�i + "2 1

!p

�

 

U +
kX

i=1
�"(z � Pi )�i

!p

�p

 

U +
kX

i=1
�"(z � Pi )�i

!p�1

"2 1

3

5

:= I1 + I2 + I3.
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Next, we calculate I1 to I3 term by term. First, from the estimate on  1 in (4.4),

Z

�"

I2Zi ="2
Z

�"

0

@1 1� 1+ p

 

U+
X

i
�"(z� pi )�i

!p�1

 1

1

AZi

="2
Z

�"

�pw(z�Pi )p�1
@w(z�Pi )

@⌧
 1

+ p

 

U+
X

i
�"(z�Pi )�i

!p�1

Zi 1 (5.7)

="2
Z

�"

p(p�1)w(z�Pi )p�2
@w(z�Pi )

@⌧
 1

 
X

j 6=i

@w(z�Pj )
@⌧

+O(")

!

dz

=O
⇣
"3
⌘
.

Moreover,
Z

�"

I3Zi =
Z

�"

" 

U +
X

i
�"(z � Pi )�i + "2 1

!p

�

 

U +
X

i
�"(z � Pi )�i

!p

�p(U +
X

i
�"(z � Pi )�i )p�1"2 1

#

Zi

 C
Z

�"

"4| 1|
2|Zi | = O

⇣
"3
⌘

.

(5.8)

Next, from the equation satisfied by �i and the definition of the cutoff function � ,
we obtain
Z

�"

I1Zi

=
Z

�"

�
1U�U+U p� Zi+

X

j

Z

�"

�"(z�Pj )
⇣
1� j�� j+ pU p�1� j

⌘
Zi

+

" 

U+
X

i
�"(z�Pi )�i

!p
�U p� pU p�1

X

i
�"(z � pi )�i

#

Zi+O
⇣
"3
⌘

=
Z

�"

(1U �U +U p)Zi + I11 + I12 + O("3).

(5.9)

In the following, we show that, although �i is of O("), after projection with respect
to Zi , the terms containing �i are indeed O("3).
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Similar to the estimate in (4.26), using the equation satisfied by �i , we have
for i = 2, · · · , k � 1

X

j

Z

�"

�"(z � Pj )
⇣
1� j � � j + pU p�1� j

⌘
Zi

=
Z

�"

�"(z � Pi )
⇣
1� j � � j + pU p�1� j

⌘
Zi

+
X

j 6=i

Z

�"

�"(z � Pj )
⇣
1� j � � j + pU p�1� j

⌘
Zi

=
Z

�"

p
⇣
U p�1 � w

p�1
i

⌘
�i Zi + O

⇣
"3
⌘

+
X

j=i�1,i+1

Z

�"

�(z � Pj )
⇣
1� j � � j + pU p�1� j

⌘
Zi + O

⇣
"3
⌘

=
Z

�"

p(p � 1)w p�2
i (wi+1 + wi�1)�i Zi

+
X

j=i�1,i+1

Z

�"

�"(z � Pj )
⇣
1� j � � j + pU p�1� j

⌘
Zi + O

⇣
"3
⌘

=O
✓
"

�
�
�
�

�
�
�
si�si�1
"

�
�
��

�
�
�
si � si+1

"

�
�
�

�
�
�
�min

⇢
w

✓
si�si�1
"

◆
, w

✓
si�si+1
"

◆�◆
+O

⇣
"3
⌘

= O("3)

and similarly, we can always decompose

kX

j=1
�"(z � Pj )� j = " 1,i + O

⇣
"2
⌘

,

where  1,i is a function even in yi1. By Proposition 2.2, we have

Zi =
@w(yi )
@y1

+ "⌘i + O
⇣
"2
⌘

,

where ⌘i is odd in yi1. Thus, we have

I12  C
Z

�"

p(p � 2)w p�2
i

 
kX

j=1
�"(z � Pj )� j

!2

Zidz + O
⇣
"3
⌘

 C"3.

For the case i = 1, k, recall that w
� s1�s2

"

�
, w

� sk�sk�1
"

�
= O("2), one can also

obtain
I11 + I12 = O("3). (5.10)
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Thus, we have the following:
Z

�"

I1Zidz =
Z

�"

�
1U �U +U p� Zi + O

⇣
"3
⌘

.

Next, for i = 2, · · · , k � 1,
Z

�"

�
1U �U +U p� Zi

=
Z

�"

" 
X

i
P�",Pi w(z � Pi )

!p

�
X

i
w(z � Pi )p

#

Zi

=
Z

�"

" 

w(z � Pi ) + "v
(1)
i + "2

⇣
v

(2)
i + v

(3)
i

⌘

+
X

j 6=i
P�",Pi w(z � Pj ) + O("3)

!p

�
X

i
w(z � Pi )p

#

Zi

=
Z

�"

pw(z � Pi )p�1
✓
"v

(1)
i + "2

⇣
v

(2)
i + v

(3)
i

⌘

+ w(z � Pi�1) + w(z � Pi+1)
◆
@w(z � Pi )

@⌧
+ O

⇣
"3
⌘

=
Z

R2+
pw(y)

✓
w

✓
y �

si�1 � si
"

e1
◆

+ w

✓
y �

si+1 � si
"

e1
◆◆

@w(y)
@y1

+ "2
Z

R2+
pw(y)p�1

@w(y)
@y1

v
(3)
i + O

⇣
"3
⌘

.

(5.11)

Similarly, one has for i = 1, k,
Z

�"

�
1U �U +U p� Z1 =

Z

R2+
pw(y)w

✓
y �

s2 � s1
"

e1
◆
@w(y)
@y1

+"2
Z

R2+
pw(y)p�1

@w(y)
@y1

v
(3)
1 + O

⇣
"3
⌘

,

and
Z

�"

(1U �U +U p)Zk =
Z

R2+
pw(y)w

✓
y �

sk�1 � sk
"

e1
◆
@w(y)
@y1

+"2
Z

R2+
pw(y)p�1

@w(y)
@y1

v
(3)
k + O

⇣
"3
⌘

.
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Next, by the definition of v(3)
i , we obtain

Z

R2+
pw(y)p�1

@w(y)
@y1

v
(3)
i dy =

Z

R2+
�(1� 1)

@w(y)
@y1

v
(3)
i

= �
Z

@R2+

@w(y)
@y1

@v
(3)
i
@y2

� v
(3)
i

@

@y2
@w(y)
@y1

dy

= �
1
3

Z

R

✓
w0(|y|)

|y|

◆2
⇢(3)(Pi )y41dy1

= �⌫2⇢
(3)(Pi ) = �⌫2H 0(� (si )),

(5.12)

where ⌫2 = 1
3
R
R
�

w0

|y|
�2y41 > 0 is a positive constant.

Recall that the interaction function is defined by

9(s) = �
Z

R2+
pw(y � (s, 0))w(y)p�1

@w(y)
@y1

dy. (5.13)

Combining (5.9), (5.10), (5.11), (5.12) and (5.13), we know that
Z

�"

I1Z1dz = �9

✓�
�
�
s1 � s2
"

�
�
�
◆

� "2⌫2H 0(� (s1)) + O
⇣
"3
⌘

, (5.14)

that for i = 2, · · · , k � 1
Z

�"

I1Zidz = 9

✓�
�
�
si � si�1

"

�
�
�
◆

�9

✓�
�
�
si � si+1

"

�
�
�
◆

� "2⌫2H 0(� (si ))

+ O
⇣
"3
⌘ (5.15)

and that
Z

�"

I1Zkdz = 9

✓�
�
�
sk � sk�1

"

�
�
�
◆

� "2⌫2H 0(� (si )) + O("3). (5.16)

The results follows from (5.7), (5.8) and (5.14)-(5.16).

From Lemma 5.1, the problem (5.3) is reduced to the following system:
8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

91

✓�
�
�
s1 � s2
"

�
�
�
◆

+ "2H 0 (� (s1)) = O
�
"3
�

91

✓�
�
�
s3 � s2
"

�
�
�
◆

�91

✓�
�
�
s2 � s1
"

�
�
�
◆

+ "2H 0(� (s2)) = O
�
"3
�

...

91

✓�
�
�
sk � sk�1

"

�
�
�
◆

�91

✓�
�
�
sk�1 � sk�2

"

�
�
�
◆

+ "2H 0(� (sk�1)) = O
�
"3
�

�91

✓�
�
�
sk � sk�1

"

�
�
�
◆

+ "2H 0(� (sk)) = O
�
"3
�
,
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where we denote
91(s) = ⌫�1

2 9(s). (5.17)

By summing up the first i equations, one has
8
>>>><

>>>>:

91

✓
si+1 � si

"

◆
+

iX

j=1
"2H 0(� (s j )) = O

⇣
i"3

⌘
for i = 1, · · · , k � 1

kX

i=1
"2H 0(� (si )) = O

⇣
k"3

⌘
.

(5.18)

We need to find a solution of (5.18 ) in (1.15).

6. Solving the nonlinear system

Our aim in the rest of this paper is to find a solution {si } to the above non-linear
system (5.18) the class 3k defined in (1.15).

Observe that the linearized matrix of the above system at the main order is
degenerate, thus the terms containing H 0(� (s)) play an important role. We explain
how we solve system (5.18). The novelty of this paper is to consider the above
system as a discretization of an ODE system. In order to explain this idea, we first
introduce some notation.

Let
s = G(b)

be the solution of 91(s) = b. Since 91(s) = Cns�
1
2 e�s(1 + o(1)) as s ! 1,

using this asymptotic behavior of 91, one has the following:

G(b) = �

✓
1+ O

✓
ln(� ln b)
ln b

◆◆
ln b, as b ! 0. (6.1)

Then, the above reduced system (5.18) is equivalent to the following system:
8
><

>:

si+1�si = "G

 

�
iX

j=1
"2H 0(� (s j )) + O

⇣
"3i

⌘
!

for i = 1, · · · , k � 1

sk � sk�1 = "G
�
"2H 0(� (sk)) + O("3k)

�
.

(6.2)

Let h = �" ln " be the boot size, where we have set si = x(ti ) and ti = (i � 1)h.
Then from the above system (6.2),
8
>>><

>>>:

x(ti+1)� x(ti )
h

= �
1
ln "

G

 

�
"

ln "

 

�
iX

j=1
H 0(� (x(t j )))h

!

+ O("3i)

!

x(tk)� x(tk�1)
h

= �
1
ln "

G
⇣
"2H 0 (� (x(tk))) + O

⇣
"3k

⌘⌘
.

(6.3)
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In order to the solve the above system, we consider the limiting case of the above
system, i.e., view x(ti+1)�x(ti )

h as x 0(t) and
Pi

j=1 H 0(� (x(t j )))h as
R t
0 H

0(� (x(t)))dt ,
and introduce the following ODE:

8
>>>>>>>>>><

>>>>>>>>>>:

dx
dt

= �
1
ln "

G
⇣ "

ln "
⇢(t)

⌘

d⇢
dt

= H 0(� (x(t)))

⇢(0) = 0, ⇢(b") = ⇢b

x 0(b") = �
1
ln "

G
⇣
"2H 0�� (x(b"))

�⌘
,

(6.4)

where b" = (k � 1)h = [ bh ]h = b + O(h).
One can see that the above second order ODE has three initial conditions. Be-

sides the two end point initial values, there is an extra condition, i.e., the last equa-
tion of (6.4), which in fact comes from the last equation of (6.2). This ODE with
extra initial condition is not always solvable. It turns out that this extra condition
corresponds to some balancing condition of the curvature of the segment � . In or-
der to solve this ODE, we need assumption (H1) on � . For this ODE, we have the
following existence result:

Lemma 6.1. Under the assumption (H1), there exists "0 > 0, such that for every
" < "0 there exist ⇢b = ⇢b(") < 0, such that the above ODE (6.4) is solvable.
Moreover, ⇢b satisfies the following asymptotic behavior:

⇢b = �

✓
H 0(� (b")) + O

✓
ln(� ln ")
ln "

◆◆
h. (6.5)

Proof. From the asymptotic behavior of G, we know that the first equation of (6.4)
is

dx
dt

= �
1
ln "

G
⇣ "

ln "
⇢(t)

⌘

=

✓
1+ O

✓
ln(� ln ")
ln "

◆◆
�
a1 ln(�⇢(t)) + a2

�
,

where
a1 =

1
ln "

, a2 = 1�
ln(� ln ")
ln "

.

Integrating the above equation from b" to t , one has

x(t) � x(b") =
Z t

b"
�
1
ln "

G
⇣ "

ln "
⇢(t)

⌘
dt

=

✓
1+ O

✓
ln(� ln ")
ln "

◆◆
a2(t � b") + a1

Z t

b"
ln(�⇢(t))dt

�
.
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Plugging the expression for x(t) into the second equation,

⇢0(t)=H 0
✓
� (x(b"))+

✓
1+O

✓
ln(� ln ")
ln "

◆◆
a2(t�b")+a1

Z t

b"
ln(�⇢(t))dt

�◆
. (6.6)

By the boundary conditions ⇢(0) = 0, ⇢(b") = ⇢b, we have
Z 0

b"
H 0

✓
�

✓
x(b")+

✓
1+O

✓
ln(�ln")
ln"

◆◆
a2(t�b")+a1

Z t

b"
ln(�⇢(t))dt

�◆◆
dt=�⇢b.

(6.7)
By Taylor’s expansion,

H 0
✓
�

✓
x(b") +

✓
1+ O

✓
ln(� ln ")
ln "

◆◆
a2(t � b") + a1

Z t

b
ln(�⇢(t))dt

�◆◆

= H 0
✓
�

✓
x(b") + a2(t � b) + O

✓
ln(� ln ")
ln "

◆◆◆

= H 0
⇣
�
�
x(b") + a2(t � b")

�⌘
+ O

✓
ln(� ln ")
ln "

◆
.

So from (6.7) and the above equation, we have
Z 0

b"
H 0(� (x(t)))dt=

Z 0

b"
H 0

⇣
�
�
x(b") + a2(t � b)

�⌘
dt + O

✓
ln(� ln ")
ln "

◆

=H
⇣
�
�
x(b") � a2b"

�⌘
�H

⇣
�
�
x(b")

�⌘
+O

✓
ln(� ln ")
ln "

◆

=⇢b.

(6.8)

Since by the third boundary condition

x 0(b") = �
1
ln "

G
⇣
"2H 0�� (x(b"))

�⌘
, (6.9)

one can obtain
⇢b = H 0

⇣
�
�
x(b")

�⌘
" ln ". (6.10)

We assume that
⇢b =

⇣
H 0(� (b")) + ⇢"

⌘
" ln ", (6.11)

then
x(b") = b" +

(1+ o(1))⇢"
H 00(� (b"))

. (6.12)

Using (6.12), (6.8) is reduced to the following:

H(� (0)) � H(� (b")) +
H 0(� (0)) � H 0(� (b"))

H 00(� (b"))
⇢" + o(⇢") + O(⇢2" )

= O
✓
ln(� ln ")
ln "

◆
.

(6.13)
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By the assumption (H1)

H(� (0)) = H(� (b)), H 0(� (0)) 6= H 0(� (b)), (6.14)

and
H 00(� ) � c0 > 0, b" = b + O(h), (6.15)

the above equation is uniquely solvable with

⇢" = O
✓
ln(� ln ")
ln "

◆
. (6.16)

Therefore, there exists a unique ⇢b =
�
H 0(� (b")) + O

� ln(� ln ")
ln "

��
" ln " such that

(6.4) is solvable, and we have

x(0) = O
✓
ln(� ln ")
ln "

◆
, x(b") = b" + O

✓
ln(� ln ")
ln "

◆
. (6.17)

We will use the solution of the ODE to approximate the solution of (6.2). In order
to obtain a good approximate solution, one needs to control the error of

iX

j=1
H 0

⇣
� (x(t j ))

⌘
h �

Z ti+1

0
H 0

⇣
� (x(t))

⌘
dt.

Therefore, we use the midpoint Riemann sum approximation of integrals, which
gives us

iX

j=1
H 0

⇣
� (x(t j ))

⌘
h �

Z ti+1

0
H 0

⇣
� (x(t))

⌘
dt = O

⇣
h2

⌘
. (6.18)

To be more specific, we choose the approximate solution to be the following:

x0i = x(t̄i ), t̄i =
ti + ti+1

2
, i = 1, · · · , k � 1, (6.19)

and
x0k = x0k�1 + "G

⇣ "

ln "
⇢b

⌘
, (6.20)

where x(t) is the solution determined by the ODE (6.4).
We want to find the solution to (6.2) of the form

si = x0i + yi . (6.21)
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Then, yi satisfies the following equation:
8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

yi+1�yi

=�Ei+"

 

G

 

�"2
iX

j=1
H 0

⇣
�
⇣
x0j +y j

⌘⌘
+O

⇣
"3i

⌘
!

�G

 

�"2
iX

j=1
H 0

⇣
�
⇣
x0j

⌘⌘
!!

for i=1,···,k�1

"2
kX

j=1
H 00

⇣
�
⇣
x0j

⌘⌘
y j+O

⇣
"2
⌘ kX

j=1
|y j |2

=�Ek+O
⇣
"3k

⌘
,

(6.22)

where

Ei = x0i+1 � x0i � "G

 

�"2
iX

j=1
H 0

⇣
�
⇣
x0j

⌘⌘
!

for i = 1, · · · , k � 1, and

Ek = "2
kX

j=1
H 0

⇣
�
⇣
x0j

⌘⌘
.

First, we show that the approximate solution we choose is indeed a good approxi-
mate solution, i.e., the error Ei is small enough. In fact, we have the following error
estimate:

Lemma 6.2.

Ei = x0i+1 � x0i � "G

 

�"2
iX

j=1
H 0

⇣
�
⇣
x0j

⌘⌘
!

= O(") (6.23)

for i = 1, · · · , k � 1, and

Ek = "2
kX

j=1
H 0

⇣
�
⇣
x0j

⌘⌘
= O

✓
"2
ln(� ln ")
ln "

◆
. (6.24)

Moreover, the following estimate holds:

k�1X

i=1
|Ei | = O("). (6.25)
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Proof. First, for i = k � 1, we have

x0k � x0k�1 � "G

 

�"2
k�1X

j=1
H 0

⇣
�
⇣
x0j

⌘⌘
!

= "G
⇣ "

ln "
⇢b

⌘
� "G

 

�"2
k�1X

j=1
H 0

⇣
�
⇣
x0j

⌘⌘
!

= O
✓
"

⇢b

◆ �
�
�⇢b �

k�1X

j=1
H 0�� (x0j )

�
h
�
�
�.

Since we choose the midpoint approximation, we have, for i = 1, · · · , k � 2,

⇢(ti+1) �
iX

j=1
H 0

⇣
�
⇣
x0j

⌘⌘
h = O

⇣
h2

⌘
, (6.26)

and

kX

j=1
H 0

⇣
�
⇣
x0j

⌘⌘
h =

 
k�1X

j=1
H 0

⇣
�
⇣
x0j

⌘⌘
h � ⇢(tk)

!

+ H 0
⇣
�
⇣
x0k

⌘⌘
h + ⇢(tk)

= O
⇣
h2

⌘
+ O

✓
ln(� ln ")
ln "

◆
h = O

✓
ln(� ln ")
ln "

◆
h.

(6.27)

By (6.26) and (6.27), and recall that ⇢b = O(h), one can obtain that

Ek�1 = x0k � x0k�1 � "G

 

�"2
k�1X

j=1
H 0

⇣
�
⇣
x0j

⌘⌘
!

= O("h)

and

Ek = O
✓
"2
ln(� ln ")
ln "

◆
. (6.28)

Next, by the equation satisfied by ⇢(t), we can obtain that

⇢(ti ) = O
�
min{i, k � i + 1}h

�
, (6.29)
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so, for i = 1, · · · , k � 2,

x0i+1 � x0i � "G

 

�"2
iX

j=1
H 0

⇣
�
⇣
x0j

⌘⌘
!

=
Z t̄i+1

t̄i
�
1
ln "

G
⇣ "

ln "
⇢(t)

⌘
dt � "G

 

�"2
iX

j=1
H 0

⇣
�
⇣
x0j

⌘⌘
!

= �
1
ln "

G
⇣ "

ln "
⇢(ti+1)

⌘
h � "G

 

�"2
iX

j=1
H 0

⇣
�
⇣
x0j

⌘⌘
!

+O

 
⇢00⇢ � (⇢0)2

| ln "|⇢2
(ti+1)

!

h3

= "

 

G
⇣ "

ln "
⇢(ti+1)

⌘
� G

 

�"2
iX

j=1
H 0

⇣
�
⇣
x0j

⌘⌘
!!

+O

 
⇢00⇢ � (⇢0)2

| ln "|⇢2
(ti+1)

!

h3

= O
✓

"

⇢(ti+1)

◆ 

⇢(ti+1) �
iX

j=1
H 0

⇣
�
⇣
x0j

⌘⌘
h

!

+ O

 
⇢00⇢ � (⇢0)2

| ln "|⇢2
(ti+1)

!

h3

= O
✓

"h
min{i, k � i + 1}

◆
+ O(")

✓
1

min{i, k � i + 1}2
+

h
min{i, k � i + 1}

◆

= O(").

Moreover, from the above estimate, we have

iX

j=1
E j = O("), for i = 1, · · · , k � 1.

Finally, we show that equation (6.22) is solvable.

Lemma 6.3. There exists "0 > 0, such that for " < "0, there exists a solution
{yi }1ik to (6.22) such that

kyk1  C" ln(� ln "). (6.30)
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Proof. For kyk1 ⌧ "| ln "|, we have

"G

 

�"2
iX

j=1
H 0

⇣
�
⇣
x0j + y j

⌘⌘
+ O

⇣
"3i

⌘
!

� "G

 

�"2
iX

j=1
H 0

⇣
�
⇣
x0j

⌘⌘
!

= �"

0

@

Pi
j=1 H 00

⇣
�
⇣
x0j

⌘⌘
y j

Pi
j=1 H 0

⇣
�
⇣
x0j

⌘⌘

1

A + O

0

@
"i |y|2ji

Pi
j=1 H 0

⇣
�
⇣
x0j

⌘⌘

1

A

+O

0

@ "2i
Pi

j=1 H 0
⇣
�
⇣
x0j

⌘⌘

1

A .

The equations (6.22) for yi can be rewritten as follows:
8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

yi+1 � yi + "

Pi
j=1 H 00

⇣
�
⇣
x0j

⌘⌘
y j

Pi
j=1 H 0

⇣
�
⇣
x0j

⌘⌘

= �Ei + O

0

@
"i |y|2ji

Pi
j=1 H 0

⇣
�
⇣
x0j

⌘⌘

1

A + O

0

@ "2i
Pi

j=1 H 0
⇣
�
⇣
x0j

⌘⌘

1

A

for i = 1, · · · , k � 1
kX

j=1
H 00

⇣
�
⇣
x0j

⌘⌘
y j +

kX

j=1
H 000

⇣
�
⇣
x0j

⌘⌘
y2j =O("k) + O

✓
ln(� ln ")
ln "

◆
.

(6.31)

We show that one can first solve y2 to yk in terms of y1 from the first k�1 equations,
and finally solve y1 by the k-th equation of (6.31).

For 1  l  i0 = (1 � �)k, where � > 0 is a small number to be determined
later, we have

yl+1 � y1 + "
lX

i=1

Pi
j=1 H 00

⇣
�
⇣
x0j

⌘⌘
y j

Pi
j=1 H 0

⇣
�
⇣
x0j

⌘⌘

=
lX

i=1
Ei +

lX

i=1

"i
Pi

j=1 H 0
⇣
�
⇣
x0j

⌘⌘
�
�y
�
�2
il +

lX

i=1

"2i
Pi

j=1 H 0
⇣
�
⇣
x0j

⌘⌘

= O(") +
lX

i=1

"i
�
�y
�
�2
il

min{i, k � i + 1}
+

lX

i=1
O

 
"2i

min{i, k � i + 1}

!

= O(") + O
✓
"l
�

◆ �
�y
�
�2
il ,
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where we have set
|y|i1ii2 = sup

i1ii2
|yi |.

Moreover,

"
lX

i=1

Pi
j=1 H 00

⇣
�
⇣
x0j

⌘⌘
y j

Pi
j=1 H 0

⇣
�
⇣
x0j

⌘⌘ = "
lX

i=1
O

✓
i |y|il

min{i, k � i + 1}

◆

= O
✓
"l|y|il
�

◆
= o(1)|y|il .

Thus, one can obtain that for l  i0

yl = y1 + o(1)|y|ii0 + o(1)
�
�y
�
�2
ii0

+ O("). (6.32)

Therefore, we obtain

yi =
�
1+ o(1)

�
y1 + O(") for all i = 2, · · · , i0. (6.33)

For l > i0, we have the following:

yl+1 � y1 = �"
lX

i=i0+1

Pi
j=1 H 00

⇣
�
⇣
x0j

⌘⌘
y j

Pi
j=1 H 0

⇣
�
⇣
x0j

⌘⌘

+O(") + O
⇣
|y|2i0<il

⌘
+ O

✓
"l
�

◆ �
�y
�
�2
ii0

+ o(1)
�
�y
�
�
ii0

= C0�|y|i0<il + O
⇣
|y|2i0<il

⌘
+ O

�
|y|ii0

�
+ O(")

for some C0 independent of " and �. Therefore, for i0 < i  k, we have

yi = O(y1) + C0�|y|i0<il + O
⇣�
�y
�
�2
i0<il

⌘
+ O("). (6.34)

If � > 0 is small such that C0� < 1
4 , then the above system is solvable with

yi = O(y1) + O("). (6.35)

From the last equation, we have
i0X

i=1
H 00

⇣
�
⇣
x0i

⌘⌘
yi +

kX

i=i0+1
H 00

⇣
�
⇣
x0i

⌘⌘
yi + O

⇣
k|y1|2

⌘
+ O

⇣
k"2

⌘

=
i0X

i=1
H 00

⇣
�
⇣
x0i

⌘⌘ �
1+ o(1)

�
y1 + O(�k|y1|) + O (k") + O

⇣
k|y1|2

⌘

= O
✓
ln(� ln ")
ln "

◆
.
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Thus, by the assumption (H1), the equation is reduced to

y1 = o(1)y1 + O(�)|y1| + O
⇣
|y1|2

⌘
+ O

�
" ln(� ln ")

�
.

If we further choose � small enough but independent of " such that O(�)|y1| <
1
2 |y1|, it is easy to see that, by the contraction mapping theorem, the above equation
has a solution and satisfies

y1 = O(" ln
�
� ln ")

�
. (6.36)

Thus we obtain that there exists a solution to (6.22) with

kyk1  C" ln(� ln ") ⌧ "| ln "|.

Thus, we have proved the existence of solution to (6.22).

Appendix

A. Proof of Proposition 3.1

In this appendix, we present the proof of Proposition 3.1. The proof is rather stan-
dard. It follows from the argument in [5] and [28]. It is based on Fredholm alterna-
tive theorem for compact operators and an apriori estimate.

First, we require an estimate on the matrix M defined by

Mi j =
Z

�"

Zi Z jdz for all i, j = 1, · · · , k. (A.1)

Lemma A.1. For " sufficiently small, given any vector Eb 2 Rk , there exists a
unique vector E� 2 Rk , such that M E� = Eb. Moreover,

k E�k1  CkEbk1 (A.2)

for some constant C independent of ".

Proof. To prove the existence, it is sufficient to prove the a priori estimate (A.2).
Suppose that |�i | = k�k1, we have

kX

i=1
Mi j� j = bi .

For the entries Mi j , from the definition of 3k , and the exponential decay property
of Zi , we know that

Mii =
Z

�"

Z2i dz =
�
1+ o(1)

� Z

R2+

✓
@w

@y1

◆2
dy > c0 > 0,
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and
X

j 6=i
|Mi j |  C

X

j 6=i
e�

|Pi�Pj |
2 = o(1).

Hence, for " small, we have

c0k E�k1  c0| E�i | 
X

j 6=i
|Mi j || E� j | + |bi |

 o(1)k E�k1 + kEbk1

from which the desired result follows.

Next, we need the following a priori estimate:

Lemma A.2. Let h 2 L2(�") with khk⇤ bounded and assume that ( , {ci }) is a
solution to (3.4). Then, there exist positive numbers "0 and C , such that for all
"  "0, for any set of points Pi , i = 1, . . . , k given by (1.15) , one has

k k⇤  Ckhk⇤. (A.3)

Proof. We argue by contradiction. Assume there exists  solution to (3.4) and that

khk⇤ ! 0, k k⇤ = 1.

We prove that

ci ! 0 for i = 1, · · · , k. (A.4)

Multiplying the equation in (3.4) against Z j and integrating in �", we get

Z

�"

L" Z j (z) =
Z

�"

hZ j + M(c j ),

By the exponentially decay of Zi , we first know that

�
�
�
�

Z

�"

hZ j

�
�
�
�  Ckhk⇤.
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Here and in what follows, C stands for a positive constant independent of ", as
" ! 0. Secondly, by the equation satisfied by P�",Pi w(z � Pi ), we have

Z

�"

L" Zidz =
Z

�"

0

@1 �  + p

 
kX

i=1
P�",Pi w(z � Pi )

!p�1

 

1

A Zidz

=
Z

�"

0

@1Zi � Zi + p

 
kX

i=1
P�",Pi w(z � Pi )

!p�1

Zi

1

A dz

=
Z

�"

2

4p

 
kX

i=1
P�",Pi w(z � Pi )

!p�1
@P�",Pi w(z � Pi )

@⌧

�pw(z � Pi )p�1
@w(z � Pi )

@⌧

#

 dz

 C
Z

B| ln "|(Pi )

�
�
�
�
�
@w(z � Pi )

@⌧

�
�
�
�
�
O(") + w(z � Pi )p�2

X

j 6=i
P�",Pi w(z � Pj )

�
�
�
�
�
 

�
�
�
�
�
dz

+
Z

�"\B| ln "|(Pi )

�
�
�
�
@w(z � pi )

@⌧

�
�
�
�

"
kX

j=1
w
p�1
j + O(")

kX

j=1
e�µ|z�Pj |

#

| |dz

 Ck k⇤

⇣
O(") + O

⇣
"
p�⌘
2
⌘⌘

 C"k k⇤

if we choose ⌘ small enough such that p � ⌘ > 2. This can be done since p > 2.
Since M is invertible and kM�1k  C , we obtain

|ci |  C(khk⇤ + O(")k k⇤). (A.5)

Thus, we obtain the validity of (A.4), since we assume k k⇤ = 1 and khk⇤ ! 0.
Now, let µ 2 (0, 1). It is easy to check that the function

W :=
kX

i=1
e�µ |·�Pi |,

satisfies
L" W 

1
2

⇣
µ2 � 1

⌘
W ,

in �" \ [ j=1,...,k B(Pj , R) provided R is fixed large enough (independently of ").
Hence, the function W can be used as a barrier to prove the pointwise estimate

|�|(x)  C

 

kL"  k⇤ + sup
j

k kL1(B(p j ,R)\�")

!

W (x) , (A.6)

for all z 2 �" \ [ j B(Pj , R).
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Granted these preliminary estimates, the proof of the result goes by contradic-
tion. Let us assume there exist a sequence of " ! 0 and a sequence of solutions
of (3.4) for which the inequality is not true. The problem being linear, we can re-
duce to the case where we have a sequence "(n) tending to 0 and sequences h(n),
 (n), c(n) such that

�
�
�h(n)

�
�
�

⇤
! 0, and

�
�
� (n)

�
�
�

⇤
= 1.

However, (A.4) implies that we also have

kc(n)k⇤ ! 0 .

Then, (A.6) implies that there exists P(n)
i such that

k (n)kL1(B(P(n)
i ,R))

� C (A.7)

for some fixed constant C > 0. Using elliptic estimates together with the Ascoli-
Arzelà’s theorem, we can find a sequence P (n)

i and we can extract, from the se-
quence  (n)

i (· � P(n)
i ) a subsequence that will converge (on compact) to  1, a

solution of 8
><

>:

�
1� 1+ pw p�1�  1 = 0 in R2+,

@ 1

@y2
= 0 on @R2+,

which is bounded by constant times e�µ |x |, with µ > 0. Moreover, since  (n)
i

satisfies the orthogonality conditions in (3.4), the limit function  1 also satisfies
Z

R2+
 1

@w

@y1
dx = 0 .

However, the solution w being non-degenerate, this implies that  1 ⌘ 0, which is
certainly in contradiction with (A.7), which implies that  1 is not identically equal
to 0.

Having reached a contradiction, this completes the proof of the lemma.

We can now prove Proposition 3.1.

Proof of Proposition 3.1. Consider the space

H =

⇢
u 2 H2N (�") :

Z

�"

uZi = 0, i = 1, . . . , k
�

.

Notice that the problem (3.4) in  is rewritten as

 + K ( ) = h̄ in H (A.8)
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where h̄ is defined by duality and K : H ! H is a linear compact operator. Using
Fredholm’s alternative theorem, to show that equation (A.8) has a unique solution
for each h̄ is equivalent to show that the equation has a unique solution for h̄ = 0,
which in turn follows from Proposition A.2. The estimate (3.6) follows directly
from Proposition A.2. This concludes the proof of Proposition (3.1).
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