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Smooth projective varieties with a torus action
of complexity 1 and Picard number 2

ANNE FAHRNER, JÜRGEN HAUSEN AND MICHELE NICOLUSSI

Abstract. We give an explicit description of all smooth varieties with a torus
action of complexity one having Picard number at most two. As a consequence,
we classify in every dimension the smooth (almost) Fano varieties with a torus
action of complexity one having Picard number two. It turns out that all the Fano
examples are obtained via an iterated generalized cone construction from a series
of smooth varieties of dimension at most seven.

Mathematics Subject Classification (2010): 14J45 (primary); 14L30 (sec-
ondary).

1. Introduction

A basic intention of this article is to contribute to the classification of smooth (al-
most) Fano varieties with a torus action. Most studied in this context are the toric
Fano varieties; based on their description in terms of lattice polytopes, there are
meanwhile classification results up to dimension nine [2, 3, 20, 23, 24, 26]. We go
one step beyond the toric case and focus on rational varieties with a torus action of
complexity one, i.e., an action whose general torus orbit is of dimension one less
than the variety; see [25] for results on smooth Fano threefolds with an action of a
two-dimensional torus.

Instead of bounding the dimension, we look here at varieties of small Picard
number. Recall that for toric varieties, the projective spaces are the only smooth
examples of Picard number one, and we have Kleinschmidt’s description [19] of all
smooth toric varieties of Picard number two, which in particular allows to figure out
the (almost) Fano ones in this setting. We follow that line and study first arbitrary
smooth projective rational varieties with a torus action of complexity one. The
case of Picard number one is basically settled by a result of Liendo and Süß [21,
Theorem 6.5]: the only non-toric examples are the smooth projective quadrics in
dimensions three and four. Picard number two means to provide an analogue of
Kleinschmidt’s description for complexity one.

Our approach goes via the Cox ring and we use the methods developed in [1,
13,15]; the ground fieldK is algebraically closed and of characteristic zero. Recall
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that the Cox ring is graded by the divisor class group and, together with the choice
of an ample class, fixes our variety up to isomorphism; we refer to [1] for the basic
background. Here comes the first result.

Theorem 1.1. Every smooth rational projective non-toric variety of Picard number
two that admits a torus action of complexity one is isomorphic to precisely one of
the following varieties X , specified by their Cox ring R(X) and an ample class
u 2 Cl(X), where we always have Cl(X) = Z2 and the grading is fixed by the
matrix [w1, . . . , wr ] of generator degrees deg(Ti ), deg(S j ) 2 Cl(X).

No. R(X) [w1, . . . , wr ] u dim(X)

1 K[T1,...,T7]
hT1T2T 23 +T4T5+T6T7i


0 0 1 1 1 1 1
1 1 0 a 2� a b 2� b

�

1  a  b


1

1+ b

�
4

2 K[T1,...,T7]
hT1T2T3+T4T5+T6T7i


0 0 1 1 0 1 0
1 1 0 1 1 1 1

� 
1
2

�
4

3 K[T1,...,T6]
hT1T2T 23 +T4T5+T 26 i


0 0 1 1 1 1
1 1 0 2� a a 1

�

a � 1


1

1+ a

�
3

4
K[T1,...,T6,S1,...,Sm ]

hT1T
l2
2 +T3T

l4
4 +T5T

l6
6 i

m�0


0 1 a 1 b 1 c1 . . . cm
1 0 1 0 1 0 1 . . . 1

�

0  a  b, c1  . . .  cm ,

l2 = a + l4 = b + l6


d + 1
1

�

d := max(b, cm )

m + 3

5
K[T1,...,T6,S1,...,Sm ]
hT1T2+T 23 T4+T

2
5 T6i

m�0


0 2a + 1 a 1 a 1 1 . . . 1
1 1 1 0 1 0 0 . . . 0

�

a � 0


2a + 2
1

�
m + 3

6
K[T1,...,T6,S1,...,Sm ]
hT1T2+T3T4+T 25 T6i

m�1


0 2c + 1 a b c 1 1 . . . 1
1 1 1 1 1 0 0 . . . 0

�

a, b, c � 0, a < b,
a + b = 2c + 1


2c + 2
1

�
m + 3

7
K[T1,...,T6,S1,...,Sm ]
hT1T2+T3T4+T5T6i

m�1


0 0 0 0 �1 1 1 . . . 1
1 1 1 1 1 1 0 . . . 0

� 
1
2

�
m + 3

8
K[T1,...,T6,S1,...,Sm ]
hT1T2+T3T4+T5T6i

m�2


0 0 0 0 0 0 1 1 . . . 1
1 1 1 1 1 1 0 a2 . . . am

�

0  a2  . . .  am , am > 0


1

am + 1

�
m + 3

9
K[T1,...,T6,S1,...,Sm ]
hT1T2+T3T4+T5T6i

m�2


0 a2 . . . a6 1 . . . 1
1 1 . . . 1 0 . . . 0

�

0  a3  a5  a6  a4  a2,
a2 = a3 + a4 = a5 + a6


a2 + 1
1

�
m + 3

10
K[T1,...,T5,S1,...,Sm ]
hT1T2+T3T4+T 25 i

m�1


1 1 1 1 1 0 . . . 0
�1 1 0 0 0 1 . . . 1

� 
2
1

�
m + 2

11
K[T1,...,T5,S1,...,Sm ]
hT1T2+T3T4+T 25 i

m�2


1 1 1 1 1 0 a2 . . . am
0 0 0 0 0 1 1 . . . 1

�

0  a2  . . .  am , am > 0


am + 1
1

�
m + 2

12
K[T1,...,T5,S1,...,Sm ]
hT1T2+T3T4+T 25 i

m�2


1 1 1 1 1 0 0 . . . 0
0 2c a b c 1 1 . . . 1

�

0  a  c  b, a + b = 2c


1

2c + 1

�
m + 2

13
K[T1,...,T8]⌧

T1T2+T3T4+T5T6,
�T3T4+T5T6+T7T8

�

�2K⇤\{1}


1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

� 
1
1

�
4
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Moreover, each of the listed data defines a smooth rational non-toric projective
variety of Picard number two coming with a torus action of complexity one.

Note that by our approach we obtain the Cox ring of the respective varieties for free
which in turn allows an explicit treatment of geometric questions by means of Cox
ring based techniques. In particular, the canonical divisor of the varieties listed in
Theorem 1.1 admits a simple description in terms of the defining data. This enables
us to determine for every dimension the finitely many (families of) non-toric smooth
rational Fano varieties of Picard number two that admit a torus action of complexity
one; we refer to Section 6 for a geometric description of the listed varieties.

Theorem 1.2. Every smooth rational non-toric Fano variety of Picard number two
that admits a torus action of complexity one is isomorphic to precisely one of the
following varieties X , specified by their Cox ring R(X), where the grading by
Cl(X) = Z2 is given by the matrix [w1, . . . , wr ] of generator degrees deg(Ti ),
deg(S j ) 2 Cl(X) and we list the (ample) anticanonical class �KX .

No. R(X) [w1, . . . , wr ] �KX dim(X)

1 K[T1,...,T7]
hT1T2T 23 +T4T5+T6T7i


0 0 1 1 1 1 1
1 1 0 1 1 1 1

� 
3
4

�
4

2 K[T1,...,T7]
hT1T2T3+T4T5+T6T7i


0 0 1 1 0 1 0
1 1 0 1 1 1 1

� 
2
4

�
4

3 K[T1,...,T6]
hT1T2T 23 +T4T5+T 26 i


0 0 1 1 1 1
1 1 0 1 1 1

� 
2
3

�
3

4.A
K[T1,...,T6,S1,...,Sm ]
hT1T2+T3T4+T5T6i

m�0


0 1 0 1 0 1 c 0 . . . 0
1 0 1 0 1 0 1 1 . . . 1

�

c 2 {�1, 0},
c := 0 if m = 0


2+ c
2+ m

�
m + 3

4.B
K[T1,...,T6,S1,...,Sm ]
hT1T 22 +T3T4+T5T6i

m�0


0 1 1 1 1 1 1 . . . 1
1 0 1 0 1 0 1 . . . 1

� 
3+ m
2+ m

�
m + 3

4.C
K[T1,...,T6,S1,...,Sm ]
hT1T 22 +T3T 24 +T5T 26 i

m�0


0 1 0 1 0 1 0 . . . 0
1 0 1 0 1 0 1 . . . 1

� 
1

2+ m

�
m + 3

5
K[T1,...,T6,S1,...,Sm ]
hT1T2+T 23 T4+T

2
5 T6i

m�1


0 2a + 1 a 1 a 1 1 . . . 1
1 1 1 0 1 0 0 . . . 0

�

0  2a < m


2a + m + 2

2

�
m + 3

6
K[T1,...,T6,S1,...,Sm ]
hT1T2+T3T4+T 25 T6i

m�1


0 2c + 1 a b c 1 1 . . . 1
1 1 1 1 1 0 0 . . . 0

�

a, b, c � 0, a < b,
a + b = 2c + 1,
m > 3c + 1


3c + 2+ m

3

�
m + 3

7
K[T1,...,T6,S1,...,Sm ]
hT1T2+T3T4+T5T6i

1m3


0 0 0 0 �1 1 1 . . . 1
1 1 1 1 1 1 0 . . . 0

� 
m
4

�
m + 3

8
K[T1,...,T6,S1,...,Sm ]
hT1T2+T3T4+T5T6i

m�2


0 0 0 0 0 0 1 1 . . . 1
1 1 1 1 1 1 0 a2 . . . am

�

0  a2  . . .  am ,

am 2 {1, 2, 3},
4+

Pm
k=2 ak > mam


m

4+
Pm
k=2 ak

�
m + 3
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9
K[T1,...,T6,S1,...,Sm ]
hT1T2+T3T4+T5T6i

m�2


0 a2 . . . a6 1 . . . 1
1 1 . . . 1 0 . . . 0

�

0  a3  a5  a6  a4  a2,
a2 = a3 + a4 = a5 + a6,

2a2 < m


2a2 + m

4

�
m + 3

10
K[T1,...,T5,S1,...,Sm ]
hT1T2+T3T4+T 25 i

1m2


1 1 1 1 1 0 . . . 0
�1 1 0 0 0 1 . . . 1

� 
3
m

�
m + 2

11
K[T1,...,T5,S1,...,Sm ]
hT1T2+T3T4+T 25 i

m�2


1 1 1 1 1 0 a2 . . . am
0 0 0 0 0 1 1 . . . 1

�

0  a2  . . .  am ,

am 2 {1, 2},
3+

Pm
k=2 ak > mam


3+

Pm
k=2 ak
m

�
m + 2

12
K[T1,...,T5,S1,...,Sm ]
hT1T2+T3T4+T 25 i

m�2


1 1 1 1 1 0 0 . . . 0
0 2c a b c 1 1 . . . 1

�

0  a  c  b, a + b = 2c,
3c < m


3

3c + m

�
m + 2

13
K[T1,...,T8]⌧

T1T2+T3T4+T5T6,
�T3T4+T5T6+T7T8

�

�2K⇤\{1}


1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

� 
2
2

�
4

Moreover, each of the listed data defines a smooth rational non-toric Fano variety
of Picard number two coming with a torus action of complexity one.

ForK = C, the assumption of rationality can be omitted in Theorem 1.2 due to [18,
Section 2.1] and [1, Remark 4.4.1.5]. A closer look to the varieties of Theorem 1.2
reveals that they all are obtained from a series of lower dimensional varieties via
iterating the following procedure: we take a certain P1-bundle over the given vari-
ety, apply a natural series of flips and then contract a prime divisor. In terms of Cox
rings, this generalized cone construction simply means duplicating a free weight,
i.e., given a variable not showing up in the defining relations, one adds a further one
of the same degree, see Section 5. Proposition 5.4 and Theorem 5.5 then yield the
following.

Corollary 1.3. Every smooth rational non-toric Fano variety with a torus action
of complexity one and Picard number two arises via iterated duplication of a free
weight from a smooth rational projective (not necessarily Fano) variety with a torus
action of complexity one, Picard number two and dimension at most seven.

Note that we cannot expect such a statement in general: Remark 5.7 shows that
the smooth toric Fano varieties of Picard number two do not allow a bound d such
that they all arise via iterated duplication of free weights from smooth varieties of
dimension at most d.

Similar to the Fano varieties, we can figure out the almost Fano varieties from
Theorem 1.1, i.e., those with a big and nef anticanonical divisor. In general, i.e.,
without the assumption of a torus action, the classification of smooth almost Fano
varieties of Picard number two is widely open; for the threefold case, we refer to
the work of Jahnke, Peternell and Radloff [16,17]. In the setting of a torus action of
complexity one, the following result together with Theorem 1.2 settles the problem



SMOOTH PROJECTIVE T -VARIETIES OF COMPLEXITY 1 WITH ⇢(X) = 2 615

in any dimension; by a truly almost Fano variety we mean an almost Fano variety
which is not Fano.

Theorem 1.4. Every smooth rational projective non-toric truly almost Fano variety
of Picard number two that admits a torus action of complexity one is isomorphic to
precisely one of the following varieties X , specified by their Cox ringR(X) and an
ample class u 2 Cl(X), where we always have Cl(X) = Z2 and the grading is fixed
by the matrix [w1, . . . , wr ] of generator degrees deg(Ti ), deg(S j ) 2 Cl(X).

No. R(X) [w1, . . . , wr ] u dim(X)

4.A
K[T1,...,T6,S1,...,Sm ]
hT1T2+T3T4+T5T6i

m�1


0 1 0 1 0 1 c1 . . . cm
1 0 1 0 1 0 1 . . . 1

�

c1  . . .  cm
d := max(0, cm )

(2+ m)d = 2+ c1 + · · · + cm


1

1+ d

�
m + 3

4.B
K[T1,...,T6,S1,...,Sm ]
hT1T 22 +T3T4+T5T6i

m�1


0 1 1 1 1 1 0 1 . . . 1
1 0 1 0 1 0 1 1 . . . 1

� 
1
2

�
m + 3

4.C
K[T1,...,T6,S1,...,Sm ]
hT1T 22 +T3T 24 +T5T 26 i

m�1


0 1 0 1 0 1 �1 0 . . . 0
1 0 1 0 1 0 1 1 . . . 1

� 
1
1

�
m + 3

4.D
K[T1,...,T6,S1,...,Sm ]
hT1T 22 +T3T 24 +T5T6i

m�0


0 1 0 1 1 1 1 . . . 1
1 0 1 0 1 0 1 . . . 1

� 
1
2

�
m + 3

4.E
K[T1,...,T6,S1,...,Sm ]
hT1T 32 +T3T4+T5T6i

m�0


0 1 2 1 2 1 2 . . . 2
1 0 1 0 1 0 1 . . . 1

� 
1
3

�
m + 3

4.F
K[T1,...,T6,S1,...,Sm ]
hT1T 32 +T3T 24 +T5T 26 i

m�0


0 1 1 1 1 1 1 . . . 1
1 0 1 0 1 0 1 . . . 1

� 
1
2

�
m + 3

5
K[T1,...,T6,S1,...,Sm ]
hT1T2+T 23 T4+T

2
5 T6i

m�0


0 2a + 1 a 1 a 1 1 . . . 1
1 1 1 0 1 0 0 . . . 0

�

m = 2a


m + 2
1

�
m + 3

6
K[T1,...,T6,S1,...,Sm ]
hT1T2+T3T4+T 25 T6i

m�1


0 2c + 1 a b c 1 1 . . . 1
1 1 1 1 1 0 0 . . . 0

�

a, b, c � 0, a < b,
a + b = 2c + 1,
m = 3c + 1


2c + 2
1

�
m + 3

7
K[T1,...,T6,S1,...,Sm ]
hT1T2+T3T4+T5T6i

m=4


0 0 0 0 �1 1 1 1 1 1
1 1 1 1 1 1 0 0 0 0

� 
1
2

�
7

8
K[T1,...,T6,S1,...,Sm ]
hT1T2+T3T4+T5T6i

m�2


0 0 0 0 0 0 1 1 . . . 1
1 1 1 1 1 1 0 a2 . . . am

�

0  a2  . . .  am , am > 0,
4+ a2 + . . . + am = mam


1

am + 1

�
m + 3

9
K[T1,...,T6,S1,...,Sm ]
hT1T2+T3T4+T5T6i

m�2


0 a2 . . . a6 1 . . . 1
1 1 . . . 1 0 . . . 0

�

0  a3  a5  a6  a4  a2,
a2 = a3 + a4 = a5 + a6,

m = 2a2


a2 + 1
1

�
m + 3
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10
K[T1,...,T5,S1,...,Sm ]
hT1T2+T3T4+T 25 i

m=3


1 1 1 1 1 0 0 0
�1 1 0 0 0 1 1 1

� 
2
1

�
5

11
K[T1,...,T5,S1,...,Sm ]
hT1T2+T3T4+T 25 i

m�2


1 1 1 1 1 0 a2 . . . am
0 0 0 0 0 1 1 . . . 1

�

0  a2  . . .  am , am > 0,
3+ a2 + . . . + am = mam


1

am + 1

�
m + 2

12
K[T1,...,T5,S1,...,Sm ]
hT1T2+T3T4+T 25 i

m�3


1 1 1 1 1 0 0 . . . 0
0 2c a b c 1 1 . . . 1

�

0  a  c  b, a + b = 2c,
m = 3c


1

2c + 1

�
m + 2

Moreover, each of the listed data defines a smooth rational non-toric truly almost
Fano variety of Picard number two coming with a torus action of complexity one.

The article is organized as follows. In Section 2, we briefly present the neces-
sary background on rational varieties X with a torus action of complexity one. In
Section 3, we derive first constraints on the defining data for smooth X of Picard
number two. Section 4 is devoted to proving the main results. In Section 5, we
introduce and discuss duplication of free weights and show how to obtain the Fano
varieties of Theorem 1.2 via this procedure from lower dimensional varieties. Fi-
nally, in Section 6, we describe the Fano varieties of Theorem 1.2 in more geometric
terms.

ACKNOWLEDGEMENTS. We would like to thank Ivo Radloff for his interest in the
subject and for helpful discussions. Moreover, we would like to thank the referee
for very valuable suggestions.

2. Varieties with torus action of complexity one

We recall from [1,13,15] the Cox ring-based approach to (irreducible) normal pro-
jective rational varieties X with a torus action of complexity one and thereby fix the
notation used throughout the article. The first step is to describe the possible Cox
ringsR(X); they are encoded by a pair (A, P) of matrices of the following shape.
Notation 2.1. Fix r 2 Z�1, a sequence n0, . . . , nr 2 Z�1, set n := n0 + . . . + nr ,
and fix integers m 2 Z�0 and 0 < s < n + m � r . A pair (A, P) of defining
matrices consists of

• a matrix A := [a0, . . . , ar ] with pairwise linearly independent column vectors
a0, . . . , ar 2 K2;

• an integral block matrix P of size (r + s)⇥ (n + m), the columns of which are
pairwise different primitive vectors generating Qr+s as a cone:

P =


L 0
d d 0

�
,
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where d is an (s⇥n)-matrix, d 0 an (s⇥m)-matrix and L an (r ⇥n)-matrix built
from tuples li := (li1, . . . , lini ) 2 Zni

�1 as follows:

L =

2

6
4

�l0 l1 . . . 0
...

...
. . .

...
�l0 0 . . . lr

3

7
5 .

Denote by vi j , where 0  i  r and 1  j  ni , the first n columns of P and by vk ,
where 1  k  m, the last m ones. Moreover, ei j , ek 2 Zn+m are the canonical
basis vectors indexed accordingly, i.e., P sends ei j to vi j and ek to vk .
Construction 2.2. Fix (A, P) as in 2.1. Consider the polynomial ring K[Ti j , Sk]
in the variables Ti j , where 0  i  r , 1  j  ni , and Sk , where 1  k  m. For
every 0  i  r , define a monomial

T lii := T li1i1 · · · T
lini
ini 2 K[Ti j , Sk].

Denote by I the set of all triples I = (i1, i2, i3) with 0  i1 < i2 < i3  r and
define for any I 2 I a trinomial

gI := gi1,i2,i3 := det

"
T
li1
i1 T

li2
i2 T

li3
i3

ai1 ai2 ai3

#

.

Let P⇤ denote the transpose of P , consider the factor group K := Zn+m/im(P⇤)
and the projection Q : Zn+m ! K . We define a K -grading onK[Ti j , Sk] by setting

deg(Ti j ) := wi j := Q(ei j ), deg(Sk) := wk := Q(ek).

Then the trinomials gI just introduced are K -homogeneous, all of the same degree.
In particular, we obtain a K -graded factor ring

R(A, P) := K[Ti j , Sk; 0  i  r, 1  j  ni , 1  k  m] / hgI ; I 2 Ii.

The rings R(A, P) are precisely those which occur as Cox rings of normal ratio-
nal projective (or, more generally, complete A2-) varieties with a torus action of
complexity one; see [13, Theorem 1.5]. We recall basic properties.
Remark 2.3. The K -graded ring R(A, P) of Construction 2.2 is a complete inter-
section: setting gi := gi,i+1,i+2 we have

hgI ; I 2 Ii = hg0, . . . , gr�2i, dim(R(A, P)) = n + m � (r � 1).

Remark 2.4. The following operations on the columns and rows of the defining
matrix P do not change the isomorphy type of the graded ring R(A, P); we call
them admissible operations:

(i) swap two columns inside a block vi j1, . . . , vi jni ;
(ii) swap two whole column blocks vi j1, . . . , vi jni and vi 0 j1, . . . , vi 0 jni 0

;
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(iii) add multiples of the upper r rows to one of the last s rows;
(iv) any elementary row operation among the last s rows;
(v) swap two columns inside the d 0 block.

The operations of type (iii) and (iv) do not even change R(A, P), whereas types (i),
(ii), (v) correspond to certain renumberings of the variables of R(A, P) keeping the
(graded) isomorphy type.
Remark 2.5. If we have ni = 1 and li1 = 1 in a defining matrix P , then we may
eliminate the variable Ti1 in R(A, P) by modifying P appropriately. This can be
repeated until P is irredundant in the sense that li1 + . . . + lini � 2 holds for all
i = 0, . . . , r .

We come to the construction of all normal projective varieties sharing a given
R(A, P) as their Cox ring. By KQ := K ⌦Z Q we denote the rational vector
space associated to an abelian group K . We shortly write w for w ⌦ 1 2 KQ and,
similarly, we keep the symbols when passing from homomorphisms K ! K 0 to the
associated linear maps KQ ! K 0Q. Moreover, when we speak of a cone ⌧ ✓ KQ,
then we mean a convex, polyhedral cone in KQ. The relative interior of ⌧ is denoted
by ⌧ �.
Definition 2.6. The moving cone in KQ of the K -graded ring R(A, P) from Con-
struction 2.2 is the

Mov(A, P) :=
\

i, j
cone(Q(euv, et ; (u,v) 6= (i, j)))\

\

k
cone(Q(euv, et ; t 6= k)).

Construction 2.7. Take R(A, P) as in Construction 2.2 and fix u 2 Mov(A, P)�.
The K -grading on K[Ti j , Sk] defines an action of the quasitorus H := Spec K[K ]
on Z := Kn+m leaving X := V (gI ; I 2 I) ✓ Z invariant. Consider

bZ := {z 2 Z; f (z) 6= 0 for some f 2 K[Ti j , Sk]⌫u, ⌫ 2 Z>0} ✓ Z ,

the set of H -semistable points with respect to the weight u. Then bX := X \bZ is an
open H -invariant set in X and we have a commutative diagram

bX //

//H ⇡

✏✏

bZ
//H

✏✏

X (A, P, u) // Z

where X = X (A, P, u) is a variety with torus action of complexity one, Z :=
bZ//H is a toric variety, the downward maps are characteristic spaces and the lower
horizontal arrow is a closed embedding. We have

dim(X) = s + 1, Cl(X) ⇠= K , R(X) ⇠= R(A, P).

Moreover, for an irredundant defining matrix P , the variety X = X (A, P) is non-
toric if and only if r � 2 holds.
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See [1,13] for the proof that this construction yields indeed all normal rational
projective varieties with a torus action of complexity one. We will make intensive
use of the machinery developed in [1,7,12]. Let us briefly summarize the necessary
notions and statements in a series of remarks adapted to our needs.
Remark 2.8. Fix defining matrices (A, P) and let � ✓ Qn+m be the positive or-
thant, spanned by the canonical basis vectors ei j , ek 2 Zn+m . Every face �0 � �

defines a toric orbit in Z = Kn+m :

Z(�0) := {z 2 Z; zi j 6= 0, ei j 2 �0 and zk 6= 0, ek 2 �0} ✓ Z .

We say that �0 � � is an F-face (for (A, P)) if the associated toric orbit meets the
total coordinate space X = V (gI ; I 2 I) ✓ Z , that means if we have

X(�0) := X \ Z(�0) 6= ;.

In particular, X is the disjoint union of the locally closed pieces X(�0) associated
to the F-faces.
Remark 2.9. Fix u 2 Mov(A, P)�. Then, for the ambient toric variety Z and
X = X (A, P, u) of Construction 2.7, we have the collections of relevant faces:

rlv(Z) :=
�
�0 � � ; u 2 Q(�0)

� ,

rlv(X) :=
�
�0 2 rlv(Z); �0 is an F-face

 
.

Let � ⇤0 := �?0 \ � � � denote the complementary face of �0 � � . Then there is a
bijection between rlv(Z) and the fan 6 of the toric variety Z :

rlv(Z) ! 6, �0 7! P(� ⇤0 ).

The toric orbits of Z correspond to the cones of the fan 6 and thus to the cones
of rlv(Z). Concretely, the toric orbit of Z associated with �0 2 rlv(Z) is

Z(�0) = ⇡
�
Z(�0)

�
.

The relevant faces rlv(X) of X define exactly the toric orbits of Z that intersect
X ✓ Z non-trivially and thus give a locally closed decomposition

X =
[

�02rlv(X)

X (�0), X (�0) := X \ Z(�0) = ⇡
�
(X(�0)

�
.

The fan 6X generated by the cones � = P(� ⇤0 ), where �0 2 rlv(X), defines the
minimal toric open subset ZX ✓ Z containing X . For the set of rays we have

6
(1)
X = 6(1) =

�
%i j , %k; 0  i  r, 1  j  ni , 1  k  m

 
,

where the %i j := cone(vi j ) and %k := cone(vk) are the rays through the columns
vi j and vk of the defining matrix P .
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Remark 2.10. Let X = X (A, P, u) arise from Construction 2.7. Then the cones
of effective, movable, semiample and ample divisor classes are given as

Eff(X) = Q(� ), Mov(X) = Mov(A, P) =
\

�0 facet of �
Q(�0),

SAmple(X) =
\

�02rlv(X)

Q(�0), Ample(X) =
\

�02rlv(X)

Q(�0)
�.

In particular, the GIT-fan of the H -action on X induces the Mori chamber decompo-
sition, i.e., it subdivides Mov(X) into the nef cones of the small birational relatives
of X .
Remark 2.11. Let X = X (A, P, u) arise from Construction 2.7. Consider �0 2
rlv(X) and x 2 X (�0). Then the following statements hold:

(i) x is Q-factorial if and only if Q(�0) is full-dimensional;
(ii) x is factorial if and only if Q maps lin(�0) \ Zn+m onto Cl(X);
(iii) x is smooth if and only if x is factorial and all z 2 ⇡�1(x) are smooth in X .

Remark 2.12. Let X = X (A, P, u) arise from Construction 2.7. The anticanoni-
cal class of X does not depend on u and is given by

�KX = (A, P) :=
X

i, j
Q(ei j ) +

X

k
Q(ek) � (r � 1)

n0X

j=0
l0 j Q(e0 j ) 2 K .

In particular, a K -graded ring R(A, P) is the Cox ring of a Fano variety if and only
if (A, P) belongs to the relative interior of Mov(A, P).
Remark 2.13. Consider X ✓ Z , where X = X (A, P, u) and Z are as in Con-
struction 2.7. Then, setting � := 0 ⇥ Qs ✓ Qr+s , the canonical basis vectors
e1, . . . , er 2 Zr+s and e0 := �e1 � . . .� er , the associated tropical variety is

trop(X) = �0 [ . . . [ �r ✓ Qr+s, where �i := � + cone(ei ).

Note that this defines the coarsest possible quasifan structure on trop(X), and the
lineality space of this quasifan is �. Moreover, a cone � 2 6 corresponds to �0 2
rlv(X) if and only if � � \ trop(X) 6= ; holds.
Definition 2.14. Consider X ✓ Z , where X = X (A, P, u) and Z are as in Con-
struction 2.7. A cone � 2 6X is called:

(i) big, if � \ ��i 6= ; holds for each i = 0, . . . , r .
(ii) elementary big if it is big, has no rays inside � and precisely one inside �i for

each i = 0, . . . , r .
(iii) a leaf cone if � ✓ �i holds for some i .

We say that the variety X is weakly tropical, if the fan 6X is supported on the
tropical variety trop(X).
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Remark 2.15. Let X = X (A, P, u) arise from Construction 2.7. Then the follow-
ing holds:

(i) The fan 6X is generated by big cones and leaf cones;
(ii) Every big cone of 6X is of the form P(� ⇤0 ) with a �0 2 rlv(X);
(iii) The tropical variety trop(X) is contained in the support of 6X ;
(iv) X is weakly tropical if and only 6X consists of leaf cones;
(v) If X is weakly tropical, then � ✓ trop(X) is a union of cones of 6X .

3. First structural constraints

We derive first constraints on the defining matrices of smooth rational varieties with
a torus action of complexity one having Picard number two. Wework in the notation
of Section 2. The aim is to show the following:

Proposition 3.1. Let X be a non-toric smooth rational projective variety with a
torus action of complexity one and Picard number ⇢(X)=2. Then X⇠= X (A, P, u),
where P is irredundant and fits into one of the following cases:

(I) We have r = 2 and one of the following constellations:

(a) m � 0 and n = 4+ n0, where n0 � 3, n1 = n2 = 2;
(b) m = 0 and n = 6, where n0 = 3, n1 = 2, n2 = 1;
(c) m = 0 and n = 5, where n0 = 3, n1 = 1, n2 = 1;
(d) m � 0 and n = 6, where n0 = n1 = n2 = 2;
(e) m � 0 and n = 5, where n0 = n1 = 2, n2 = 1;
(f) m � 1 and n = 4, where n0 = 2, n1 = n2 = 1;

(II) We have r = 3 and one of the following constellations:

(a) m = 0 and n = 8, where n0 = n1 = n2 = n3 = 2;
(b) m = 0 and n = 7, where n0 = n1 = n2 = 2, n3 = 1;
(c) m = 0 and n = 6, where n0 = n1 = 2, n2 = n3 = 1.

The statement is an immediate consequence of Propositions 3.12 and 3.13; see
the end of this section. Throughout the whole section, the defining matrix P is
irredundant. In particular, X (A, P, u) is non-toric if and only if r � 2 holds, i.e.,
we have a relation in the Cox ring. During our considerations, we will freely use
the Remarks 2.8 to 2.15.

We first study the impact of X = X (A, P, u) being locally factorial on the
defining matrix P , where locally factorial means that the local rings of the points
x 2 X are unique factorization domains.

Lemma 3.2. Let X = X (A, P, u) be non-toric and locally factorial. If X is weakly
tropical, then ni � 2 holds for all i = 0, . . . , r .
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Proof. Assume that ni = 1 holds for some i . Since X is weakly tropical, there
exists a cone � 2 6X of dimension s + 1 contained in the leaf �i . Since ni = 1,
we have � = %i1 + ⌧ with a face ⌧ � � such that ⌧ ✓ �. Now, � = P(� ⇤0 )
holds for some �0 ✓ rlv(X). Since the points of X (�0) are factorial, � is a regular
cone. Thus, also ⌧ ✓ � must be regular. This implies li1 = 1, contradicting the
irredundancy of P .

Lemma 3.3. Let X = X (A, P, u) be non-toric and locally factorial. If X is weakly
tropical, then ⇢(X) � r + 3 holds.

Proof. Lemma 3.2 ensures that ni � 2 for all i = 1, . . . , r , hence n � 2 · (r + 1).
The s-dimensional lineality space � = {0} ⇥Qs ✓ trop(X) is a union of cones of
6X . Thus P must have at least s+1 columns vk which means m � s+1. Together
the following yields:

⇢(X) = n + m � (r � 1)� (s + 1) � r + 3.

Lemma 3.4. Let X = X (A, P, u) be non-toric and not weakly tropical. If X is
Q-factorial, then there is an elementary big cone in 6X .

Proof. Since X is not weakly tropical, there exists a big cone � 2 6X . We have
� = P(� ⇤0 ) with �0 2 rlv(X). Since the points of X (�0) are Q-factorial, the cone
� is simplicial. For every i = 0 . . . , r choose a ray %i � � with %i 2 �i . Then
�0 := %0 + . . . + %r � � is as wanted.

Corollary 3.5. Let X = X (A, P, u) be non-toric and locally factorial. If ⇢(X) 
4 holds, then there exists an elementary big cone � 2 6X .

Next we investigate the effect of quasismoothness on the defining matrix P ,
where we call X = X (A, P, u) quasismooth if bX is smooth. Thus, quasismooth-
ness means that X has at most quotient singularities by quasitori. The smoothness
of bX will lead to conditions on P via the Jacobian of the defining relations of X .
Remark 3.6. Let (A, P) be defining matrices. Then the Jacobian Jg of the defining
relations g0, . . . , gr�2 from Remark 2.3 is of the shape Jg = (J, 0) with a zero
block of size (r � 1)⇥ m corresponding to the variables S1, . . . , Sm and a block

J :=

2

6
6
6
6
4

�10 �11 �12 0
0 �21 �22 �23 0

...
�r�2,r�3 �r�2,r�2 �r�2,r�1 0
0 �r�1,r�2 �r�1,r�1 �r�1,r

3

7
7
7
7
5

of size (r � 1)⇥ n, where each vector �a,i is a nonzero multiple of the gradient of
the monomial T lii :

�a,i = ↵a,i

 

li1
T lii
Ti1

, . . . , lini
T lii
Tini

!

, ↵a,i 2 K⇤.
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For given 1  a, b  r � 1, 0  i  r and z 2 X , we have �a,i (z) = 0 if and only
if �b,i (z) = 0. Moreover, the Jacobian Jg(z) of a point z 2 X is of full rank if and
only if �a,i (z) = 0 holds for at most two different i = 0, . . . , r .
Lemma 3.7. Assume that X = X (A, P, u) is non-toric and that there is an ele-
mentary big cone � = %0 j0 + . . . + %r jr 2 6X . If X is quasismooth, then li ji � 2
holds for at most two i = 0, . . . , r .
Proof. We have � = P(� ⇤0 ) with a relevant face �0 2 rlv(X). Since X is quasis-
mooth, any z 2 X(�0) is a smooth point of X . Thus, Jg(z) is of full rank r � 1.
Consequently, �a,i (z) = 0 holds for at most two different i . This means li ji � 2 for
at most two different i .

Corollary 3.8. Let X = X (A, P, u) be non-toric and quasismooth. If there is an
elementary big cone in6X , then ni = 1 holds for at most two different i = 0, . . . , r .
Lemma 3.9. Let (A, P) be defining matrices. Consider the rays �k := cone(ek)
and �i j := cone(ei j ) of the orthant � ✓ Qr+s and the two-dimensional faces

�k1,k2 := �k1 + �k2, �i j,k := �i j + �k, �i1 j1,i2 j2 := �i1 j1 + �i2 j2 .

Then the following hold:

(i) All �k , respectively �k1,k2 , are F-faces and each X(�k), respectively X(�k1,k2),
consists of singular points of X;

(ii) A given �i j , respectively �i j,k , is an F-face if and only if ni � 2 holds. In that
case, X(�i j ), respectively X(�i j,k), consists of smooth points of X if and only
if r = 2, ni = 2 and li,3� j = 1 hold;

(iii) A given �i j1,i j2 with j1 6= j2 is an F-face if and only if ni � 3 holds. In that
case, X(�i j1,i j2) consists of smooth points of X if and only if r = 2, ni = 3
and li j = 1 for the j 6= j1, j2 hold;

(iv) A given �i1 j1,i2 j2 with i1 6= i2 is an F-face if and only if we have ni1, ni2 � 2
or ni1 = ni2 = 1 and r = 2. In the former case, X(�i1 j1,i2 j2) consists of
smooth points of X if and only if one of the following holds:
• r = 2, nit = 2 and lit ,3� jt = 1 for a t 2 {1, 2};
• r = 3, ni1 = ni2 = 2, li1,3� j1 = li2,3� j2 = 1.

Proof. The statements follow directly from the structure of the defining relations
g0, . . . , gr�2 of R(A, P) and the shape of the Jacobian Jg.

We now restrict to the case that the rational divisor class group Cl(X)Q = KQ
of X = X (A, P, u) is of dimension two. Set ⌧X := Ample(X). Then the effective
cone Eff(X) is of dimension two and is uniquely decomposed into three convex sets

Eff(X) = ⌧+ [ ⌧X [ ⌧�,

such that ⌧+, ⌧� do not intersect the ample cone ⌧X and ⌧+ \ ⌧� consists of the
origin (Figure 3.1). Recall that u 2 ⌧X holds and that, due to ⌧X ✓ Mov(X), each
of ⌧+ and ⌧� contains at least two of the weights wi j , wk .
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τX

u

τ+

τ−

Fig. 3.1.

Remark 3.10. Consider X = X (A, P, u) such that Cl(X)Q is of dimension two.
Then, for every F-face {0} 6= �0 � � precisely one of the following inclusions
holds

Q(�0) ✓ ⌧+, ⌧X ✓ Q(�0)
�, Q(�0) ✓ ⌧�.

The F-faces �0 � � satisfying the second inclusion are exactly those with �0 2
rlv(X), i.e., the relevant ones.

Lemma 3.11. Let X = X (A, P, u) be non-toric with rk (Cl(X)) = 2. Then the
following hold:

(i) Suppose that X isQ-factorial. Then wk /2 ⌧X holds for all 1  k  m and for
all 0  i  r with ni � 2 we have wi j /2 ⌧X , where 1  j  ni ;

(ii) Suppose that X is quasismooth, m > 0 holds and there is 0  i1  r with
ni1 � 3. Then the wi j , wk with ni � 3, j = 1, . . . , ni and k = 1, . . . ,m lie
either all in ⌧+ or all in ⌧�;

(iii) Suppose that X is quasismooth and there is 0  i1  r with ni1 � 4. Then the
wi j with ni � 4 and j = 1, . . . , ni lie either all in ⌧+ or all in ⌧�;

(iv) Suppose that X is quasismooth and there exist 0  i1 < i2  r with ni1, ni2 �
3. Then the wi j with ni � 3, j = 1, . . . , ni lie either all in ⌧+ or all in ⌧�;

(v) Suppose that X is quasismooth. Then w1, . . . , wm lie either all in ⌧+ or all
in ⌧�.

Proof. We prove (i). By Lemma 3.9 (i) and (ii), the rays �k, �i j � � with ni � 2
are F-faces. Since X is Q-factorial, the ample cone ⌧X ✓ KQ of X is of dimension
two and thus ⌧X ✓ Q(�i j )

� or ⌧X ✓ Q(�k)
� is not possible. Remark 3.10 yields

the assertion.
We turn to (ii). By Lemma 3.9 (i) and (ii), all �k, �i j , �i j,k � � in question are

F-faces and the corresponding pieces in X consist of singular points. Because X is
quasismooth, none of these F-faces is relevant. Thus, Remark 3.10 gives wi11 2 ⌧+

or wi11 2 ⌧�; say we have wi11 2 ⌧+. Then, applying again Remark 3.10, we
obtain wk, wi j 2 ⌧+ for k = 1, . . . ,m, all i with ni � 3 and j = 1, . . . , ni .

Assertion (iii) is proved analogously: treat first �i11,i12 with Lemma 3.9 (iii),
then �i11,i j with Lemma 3.9 (iii) and (iv). Similarly, we obtain (iv) by treating first
�i11,i21 and then all �i11,i j and �i21,i j with Lemma 3.9 (iii) and (iv). Finally, we
obtain (v) using Lemma 3.9 (i).

Proposition 3.12. Let X = X (A, P, u) be non-toric, quasismooth andQ-factorial
with ⇢(X) = 2. Assume that there is an elementary big cone in 6X and that we
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have n0 � . . . � nr . If m > 0 holds, then there is a �i j,k 2 rlv(X), we have r = 2
and the constellation of the ni is (n0, 2, 2), (2, 2, 1) or (2, 1, 1).

Proof. According to Lemma 3.11 (v), we may assumew1, . . . , wm 2 ⌧+. We claim
that there is a wi1 j1 2 ⌧� with ni1 � 2. Otherwise, use Corollary 3.8 to see that
there exist wi j with ni � 2 and Lemma 3.11 (i) to see that they all lie in ⌧+. Since
all monomials T lii have the same degree in K , we obtain in addition wi1 2 ⌧+ for
all i with ni = 1. But then no weights wi j , wk are left to lie in ⌧�, a contradiction.

Having verified the claim, we may take a wi1 j1 2 ⌧� with ni1 � 2. Then
�i1 j1,1 2 rlv(X) is as desired. Moreover, Lemma 3.9 (ii) yields r = 2 and ni1 = 2.
If n0 � 3 holds, then Lemma 3.11 (ii) gives wi j 2 ⌧+ for all i with ni � 3.
Moreover, as all T lii share the same K -degree, we have wi1 2 ⌧+ for all i with
ni = 1. By the same reason, one of the wi11, wi12 must lie in ⌧+. As ⌧� contains
at least two weights, there is a wi2 j2 2 ⌧� with ni2 = 2 and i1 6= i2. Thus, the
constellation of n0 � n1 � n2 is as claimed.

Proposition 3.13. Let X = X (A, P, u) be non-toric, quasismooth andQ-factorial
with ⇢(X) = 2. Assume that there is an elementary big cone in 6X and that we
have n0 � . . . � nr . If m = 0 holds, then there is a �i1 j1,i2 j2 2 rlv(X), we have
r  3 and the constellation of the ni is one of the following:

• r = 2 : (n0, 2, 2), (3, 2, 1), (3, 1, 1), (2, 2, 2), (2, 2, 1),
• r = 3 : (2, 2, 2, 2), (2, 2, 2, 1), (2, 2, 1, 1).

Proof. We first show that n1  2. Otherwise we had n1 � 3. Then, according
to Lemma 3.11 (iv), we may assume that all the wi j with ni � 3 lie in ⌧+. In
particular, w11 lies in ⌧+. Because all monomials T lii have the same degree in
K , also wi1 2 ⌧+ holds for all i with ni = 1. At least two weights wi1 j1 and
wi2 j2 must belong to ⌧�. For these, only ni1 = ni2 = 2 and i1 6= i2 is possible.
Applying Lemma 3.9 (iv) to �11,i1 j1 2 rlv(X) gives r = 2, contradicting the fact
that n0 � n1 � 3 and ni1 = ni2 = 2.

We treat the case n0 � 4. By Lemma 3.11 (iii), we can assume that w01, . . .
. . . , w0n0 2 ⌧+. As before, we obtain that wi1 2 ⌧+ for all i with ni = 1, and we
find two weights wi1 j1, wi2 j2 2 ⌧� with ni1 = ni2 = 2 and i1 6= i2. Then we have
�01,i1 j1 2 rlv(X) is as wanted. Lemma 3.9 (iv) gives r = 2 and we end up with
(n0, 2, 2).

Now let n0 = 3. Lemma 3.11 (i) guarantees that no w0 j lies in ⌧X . If weights
w0 j occur in both cones ⌧+ and ⌧�, say w01 2 ⌧+ and w02 2 ⌧�, then �01,02 is as
wanted. Lemma 3.9 (iii) yields r = 2 and we obtain the constellations (n0, 2, 2),
(3, 2, 1) and (3, 1, 1). So, assume that all weights w0 j lie in one of ⌧+ and ⌧�, say
in ⌧+. Then we proceed as in the case n0 � 4 to obtain a �01,i1 j1 2 rlv(X) and
r = 2 with the constellation (3, 2, 2).

Finally, let n0  2. Corollary 3.8 yields n0 = 2. According to Lemma 3.11 (i)
no wi j with ni = 2 lies in ⌧X . So, we may assume w01 2 ⌧+. Moreover, all wi j
with ni = 1 lie together in one ⌧+, ⌧X or in ⌧�. Since each of ⌧+ and ⌧� contains
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two weights, we obtain n1 = 2 and some �0 j1,1 j2 is as wanted. Lemma 3.9 (iv)
shows r  3.

We retrieve a special case of [11, Corollary 4.18].

Corollary 3.14. Let X = X (A, P, u) be smooth with ⇢(X) = 2. Then the divisor
class group Cl(X) is torsion-free.

Proof. By Corollary 3.5, there is an elementary big cone in 6X . Thus, Proposi-
tions 3.12 and 3.13 deliver a two-dimensional �0 2 rlv(X). The corresponding
weights generate K as a group. This gives Cl(X) ⇠= K ⇠= Z2.

Proof of Proposition 3.1. The variety X is isomorphic to some X (A, P, u), where
after suitable admissible operations we may assume n0 � . . . � nr . Thus, Proposi-
tions 3.12 and 3.13 apply.

4. Proof of Theorems 1.1, 1.2 and 1.4

We prove Theorems 1.1, 1.2 and 1.4 by going through the cases established in
Proposition 3.1. The notation is the same as in Sections 2 and 3. So, we deal
with a smooth projective variety X = X (A, P, u) of Picard number ⇢(X) = 2
coming with an effective torus action of complexity one.

From Corollary 3.14 we know that Cl(X) = K = Z2 holds. With wi j =
Q(ei j ) and wk = Q(ek), the columns of the 2 ⇥ (n + m) degree matrix Q will be
written as

wi j = (w1i j , w
2
i j ) 2 Z2, wk = (w1k , w

2
k ) 2 Z2.

Recall that all relations g0, . . . , gr�2 of R(A, P) have the same degree in K = Z2;
we set for short

µ = (µ1, µ2) := deg(g0) 2 Z2.
We will frequently work with the faces of the orthant � = Qn+m

�0 introduced in
Lemma 3.9:

�i j,k = cone(ei j , ek) � � , �i1 j1,i2 j2 = cone(ei1 j1, ei2 j2) � � .

Remark 4.1. Consider a face �0 � � of type �i j,k or �i1 j1,i2 j2 . Write e0, e00 for
the two generators of �0 and w0 = Q(e0), w00 = Q(e00) for the corresponding
columns of the degree matrix Q such that (w0, w00) is positively oriented in Z2.
Then Remark 2.11 tells us

�0 2 rlv(X) ) det(w0, w00) = 1.

So, if �0 2 rlv(X), then we may multiply Q from the left with a unimodular 2⇥ 2
matrix transforming w0 and w00 into (1, 0) and (0, 1). This change of coordinates
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on Cl(X) does not affect the defining data (A, P). If w0 = (1, 0) and w00 = (0, 1)
hold and e 2 � is a canonical basis vector with corresponding column w = Q(e),
then we have

cone(e0, e) 2 rlv(X) ) w = (w1, 1),
cone(e00, e) 2 rlv(X) ) w = (1, w2).

We are ready to go through the cases of Proposition 3.1; we keep the numbering
introduced there.
Case (I) (a). We have r = 2, m � 0 and the list of ni is (n0, 2, 2), where n0 � 3.
This leads to the first two cases of Theorems 1.1 and 1.2.

Proof. In a first step we show that there occur weights w0 j in each of ⌧+ and
⌧�. Otherwise, we may assume that all w0 j lie in ⌧+, see Lemma 3.11 (i). Then
Lemma 3.11 (ii) says that also all wk lie in ⌧+. Moreover, we have deg(T lii ) 2 ⌧+

for i = 0, 1, 2. Thus, we may assume w11, w21 2 ⌧+ and obtain w12, w22 2
⌧�, as there must be at least two weights in ⌧�. Finally, we may assume that
cone(w01, w12) contains w02, . . . , w0n0 and w22. Applying Remark 4.1 first to
�01,12, then to all �0 j,12, �12,k and �01,22, �12,21 yields

Q =

"
0 w102 . . . w10n0 w111 1 w121 1 w11 . . . w1m

1 1 . . . 1 w211 0 1 w222 1 . . . 1

#

,

where w10 j � 0 and w222 � 0. Since �01,12, �01,22 2 rlv(X) holds, Lemma 3.9 (iv)
implies l11 = l21 = 1. Applying P · Qt = 0 to the first row of P and the second
row of Q gives

0 < 3  n0  l01 + . . . + l0n0 = w211 = 1+ w222w
1
11,

where the last equality is due to �11,22 2 rlv(X), and thus det(w22, w11) = 1.
We conclude that w222 > 0 and w111 > 0. Because of �0 j,22 2 rlv(X), we obtain
det(w22, w0 j ) =1. This implies w10 j = 0 for all j=2, . . . , n0. Applying P ·Qt = 0
to the first row of P and the first row of Q gives w111 + l12 = 0: a contradiction.

Knowing that each of ⌧+ and ⌧� contains weights w0 j , we can assume
w01, w02 2 ⌧+ and w03 2 ⌧�. Lemma 3.11 (ii) and (iii) show n0 = 3 and m = 0.
There is at least one other weight in ⌧�, say w11 2 ⌧�. Applying Lemma 3.9 (iii)
to �0 j,03 2 rlv(X) for j = 1, 2 and (iv) to suitable �0 j1,i2 j2 2 rlv(X), we obtain

l01 = l02 = 1, l11 = l12 = 1, l21 = l22 = 1.

Moreover, Remark 4.1 applied to �01,03 as well as �02,03 and �01,11 brings the ma-
trix Q into the shape

Q =

"
0 w102 1 1 w112 w121 w122

1 1 0 w211 w212 w221 w222

#

.



628 ANNE FAHRNER, JÜRGEN HAUSEN AND MICHELE NICOLUSSI

Observe that the second component of the degree of the relation is µ2 = 2. The
possible positions of the weights w2 j define three subcases (Figure 4.1):

τXw01
w02

τ+

w03 w11
w21 w22

τ−

(i)

τX
w01 w02

w22

τ+

w03
w11 w21

τ−

(ii)

τX
w01 w02
w21 w22

τ+

w03
w11

τ−

(iii)

Fig. 4.1.

Wewill see that cases (i) and (ii) give the first two cases of Theorem 1.1 respectively
and case (iii) will not provide any smooth variety.

In (i) we assume w21, w22 2 ⌧�. Then �01,21, �01,22 2 rlv(X) holds and Re-
mark 4.1 shows w121 = w122 = 1. This implies µ1 = 2. Similarly, considering
�02,21, �02,22 2 rlv(X), we obtain w102 = 0 or w221 = w222 = 0. The latter contra-
dicts µ2 = 2 and thus w102 = 0 holds. We conclude l03 = µ1 = 2. Furthermore
w112 = µ1 �w111 = 1. Together, we have

g0 = T01T02T 203 + T11T12 + T21T22, Q =


0 0 1 1 1 1 1
1 1 0 a 2� a b 2� b

�
,

where a, b 2 Z. Observe that w12 2 ⌧� must hold; otherwise, �03,12 2 rlv(X)

and Remark 4.1 yields w212 = 1, contradicting w12 = (1, 1) = w11 2 ⌧�. The
semiample cone is SAmple(X) = cone((0, 1), (1, d)), where d = max(a, 2 �
a, b, 2� b). The anticanonical class is �KX = (3, 4). Hence X is an almost Fano
variety if and only if d = 1, which is equivalent to a = b = 1. In this situation X is
already a Fano variety.

In (ii) we assumew212⌧� andw222⌧+. Remark 4.1, applied to �01,21, �03,222
rlv(X) shows w121 = w222 = 1. The latter implies w221 = µ2 � w222 = 1. We claim
w211 6= 0. Otherwise, we have w212 = µ2 = 2. This gives det(w03, w12) = 2. We
conclude �03,12 62 rlv(X) and w12 2 ⌧�. Then �01,12 2 rlv(X) implies w112 = 1.
Thus, w22 = (1, 1) and w12 = (1, 2) hold, contradicting w22 2 ⌧+ and w12 2 ⌧�.
Now, �11,22 2 rlv(X) yields w211w

1
22 = 0 and thus w122 = 0. We obtain µ1 = 1 and,

as a consequence l03 = 1, w102 = 0 and w112 = 0. Therefore w12 2 ⌧+ holds. Now
�03,12 2 rlv(X) implies w212 = 1 and w211 = µ2 �w212 = 1. We arrive at

g0 = T01T02T03 + T11T12 + T21T22, Q =


0 0 1 1 0 1 0
1 1 0 1 1 1 1

�
.

The anticanonical class is �KX = (2, 4) and the semiample cone is SAmple(X) =
cone((0, 1), (1, 1)). In particular X is Fano.

We turn to (iii), where both w21 and w22 lie in ⌧+. The homogeneity of g0
yields w12 2 ⌧+. Thus, �03,12, �03,21, �03,22 2 rlv(X) holds and Remark 4.1
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implies w212 = w221 = w222 = 1. We conclude w211 = µ2 � w212 = 1. Simi-
larly, �02,11, �11,21, �11,22 2 rlv(X) yields w102 = w121 = w122 = 0. This gives
0 6= l03 = µ1 = w121 + w122 = 0 which is not possible.

Case (I) (b). We have r = 2, m = 0, n = 6 and the list of ni is (3, 2, 1). This leads
to the third case Theorems 1.1 and 1.2.

Proof. Since there are at least two weights in ⌧+ and two more in ⌧�, we can
assume w01, w02 2 ⌧+ and w03, w12 2 ⌧�. By Lemma 3.9 (iii) and (iv) we obtain
l01 = l02 = l11 = l12 = 1. We may assume that cone(w01, w03) contains w02.
Applying Remark 4.1 firstly to �01,03, then to �02,03 and �01,12, we obtain

Q =


0 w102 1 w111 1 w121
1 1 0 w211 w212 w221

�
,

where w102 � 0. For the degree µ of g0, we have µ2 = 2. We conclude w211 =
2 � w212 and l21w

2
21 = 2 which in turn implies l21 = 2 and w221 = 1. For �02,12 2

rlv(X), Remark 4.1 gives det(w12, w02) = 1 and thus w102 = 0 or w212 = 0 must
hold.

We treat the case w102 = 0. Then µ = (l03, 2) holds. We conclude w111 =
l03 � 1 and w121 = l03/2. With c := l03/2 2 Z�1 and a := w212 2 Z, we obtain the
degree matrix

Q =


0 0 1 2c � 1 1 c
1 1 0 2� a a 1

�
.

We show that w11 2 ⌧�. Otherwise, w11 2 ⌧+ holds, we have �03,11 2 rlv(X) and
Remark 4.1 yields a = 1. But then w01 = (0, 1) 2 ⌧+ and w11 = (2c� 1, 1) 2 ⌧+

imply w12 = (1, 1) 2 ⌧+; a contradiction. So we have w11 2 ⌧�. Then �01,11 2
rlv(X) holds. Remark 4.1 gives det(w11, w01) = 1 which means c = 1 and, as a
consequence, l03 = 2. Together, we have

g0 = T01T02T 203 + T11T12 + T 221, Q =


0 0 1 1 1 1
1 1 0 2� a a 1

�
,

where we may assume a � 2 � a that means a 2 Z�1. The semiample cone is
SAmple(X) = cone((0, 1), (1, a)), and the anticanonical class is �KX = (2, 3).
In particular, X is an almost Fano variety if and only a = 1 holds. In this situation
X is already a Fano variety.

We turn to the case w212 = 0. Here, w211 = µ2 = 2 leads to det(w03, w11) = 2
and thus the F-face �03,11 does not belong to rlv(X); see Remark 4.1. Hence w11 2
⌧� and thus �01,11 2 rlv(X). This gives w111 = 1 and thus w11 = (1, 2). Because
of w02 = (w02, 1) 2 ⌧+, we must have w102 = 0 and the previous consideration
applies.

Case (I) (c). We have r = 2, m = 0, n = 5 and the list of ni is (3, 1, 1). This case
does not provide smooth varieties.
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Proof. Each of ⌧+ and ⌧� contains at least two weights. Wemay assumew01,w022
⌧+ andw03, w11, w21 2 ⌧�. Then �01,03, �02,03 2 rlv(X) holds and Lemma 3.9 (iii)
yields l01 = l02 = 1. By Remark 4.1 we can assumew03 = (1, 0) andw201 = w202 =
1. This impliesµ2 = 2 and, as a consequence, l11 = l21 = 2. By [13, Theorem 1.1],
we have torsion in Cl(X); a contradiction to Corollary 3.14.

Case (I) (d). We have r = 2, m � 0, n = 6 and the list of ni is (2, 2, 2). Suitable
admissible operations lead to one of the following configurations for the weights
wi j (Figure 4.2):

τX
w01 w11

w21

τ+

w02
w12 w22

τ−

(i)

τX
w01 w02
w11 w21

τ+

w12
w22

τ−

(ii)

τX

w01 w02
w11 w12

w21

τ+

w22

τ−

(iii)

τX

w01 w02
w11 w12
w21 w22

τ+

τ−

(iv)

Fig. 4.2.

Configuration (i) amounts to No. 4 in Theorems 1.1, 1.2 and 1.4, configuration (ii)
to No. 5, configuration (iii) to Nos. 6 and 7, and configuration (iv) to Nos. 8 and 9.

Proof for configuration (i). We have w01, w11, w21 2 ⌧+ and w02, w12, w22 2 ⌧�.
We may assume wk 2 ⌧+ for all k = 1, . . . ,m. If m > 0, we have �i2,1 2 rlv(X)
and Lemma 3.9 (ii) gives li1 = 1 for i = 0, 1, 2. If m = 0, we use �i11,i22 2 rlv(X)
and Lemma 3.9 (iv) to obtain li12 = 1 or li21 = 1 for all i1 6= i2. Thus, for m = 0,
we may assume l01 = l11 = 1 and are left with l21 = 1 or l22 = 1.

We treat the case m � 0 and l01 = l11 = l21 = 1. Here we may assume
w11, w21, w22 2 cone(w01, w12). Applying Remark 4.1 firstly to �01,12 and then to
�01,22, �12,21 and all �12,k gives

Q =


0 w102 w111 1 w121 1 w11 . . . w1m
1 w202 w211 0 1 w222 1 . . . 1

�
.

Using w11, w21, w22 2 cone(w01, w12) and the fact that the determinants of
(w02, w01), (w12, w11) and (w22, w21) are positive, we obtain

w111, w121, w222 � 0, w102, w211 > 0, 1 > w222w
1
21.



SMOOTH PROJECTIVE T -VARIETIES OF COMPLEXITY 1 WITH ⇢(X) = 2 631

The degree µ of the relation satisfies

0 < µ1 = l02w102 = w111 + l12 = w121 + l22,

0 < µ2 = 1+ l02w202 = w211 = 1+ l22w222.

In particular, w202 � 0 holds and thus all components of the wi j are non-negative.
With �02,11, �02,21,2 rlv(X) and Remark 4.1, we obtain

w102w
2
11 = 1+ w202w

1
11, w102 � 1 = w202w

1
21.

We show w222 = 0. Otherwise, because of 1 > w222w
1
21, we have w121 = 0. This

implies w102 = 1 and thus

w211 = 1+ w202w
1
11 = 1+ l02w202.

This gives w202 = 0 or w111 = l02. The first is impossible because of l02w202 =
l22w222 and the second because of l02 = l02w102 = w111 + l12.

Knowing w222 = 0, we directly conclude w211 = 1 and w202 = 0 from µ2 = 1.
This gives w102 = 1. With a := w111 2 Z�0, b := w121 2 Z�0 and ck := w1k 2 Z we
are in the situation

g0 = T01T
l02
02 + T11T l1212 + T21T l2222 , Q =


0 1 a 1 b 1 c1 . . . cm
1 0 1 0 1 0 1 . . . 1

�
,

where we may assume 0  a  b and c1  . . .  cm . Observe l02 = a + l12 =
b + l22. The anticanonical class and the semiample cone of X are given by

�KX = (3+ b + c1 + . . . + cm � l12, 2+ m),

SAmple(X) = cone((1, 0), (d, 1)),

where d := max(b, cm). Consequently, X is a Fano variety if and only if the
following inequality holds:

3+ b + c1 + . . . + cm � l12 > (2+ m)d.

A necessary condition for this is 0  d  1 with l12 = 1 if d = 1 and l12  2 if
d = 0 The sextuples (a, b, d, l02, l12, l22) fulfilling that condition are

(0, 0, 0, 2, 2, 2), (0, 0, 0, 1, 1, 1), (1, 1, 1, 2, 1, 1).

Each of these three tuples leads indeed to a Fano variety X ; the respectively possible
choices of the ck lead to Nos. 4.A, 4.B and 4.C of Theorem 1.2 and are as follows:
c1 = . . . = cm = 0, �1  c1  0 = c2 = . . . = cm, c1 = . . . = cm = 1.

Moreover X is a truly almost Fano variety if and only if the following equality holds

3+ b + c1 + . . . + cm � l12 = (2+ m)d.
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This implies 0  d  2 and the only possible parameters fulfilling that condition
are listed as Nos. 4.A to 4.F in the table of Theorem 1.4.

We turn to the case m = 0, l01 = l11 = 1 and l21 � 2. Lemma 3.9 (iv)
applied to �01,22, �11,22 2 rlv(X) gives l02 = l12 = 1. If l22 = 1, then suitable
admissible operations bring us to the previous case. So, let l22 � 2. We may assume
w11 2 cone(w01, w12). We apply Remark 4.1 firstly to �01,12, then to �01,22, �12,21
and arrive at

g0 = T01T02 + T11T12 + T l2121 T
l22
22 , Q =

"
0 w102 w111 1 w121 1

1 w202 w211 0 1 w222

#

,

where w111 � 0 and w211 = det(w12, w11) > 0. We have µ = w02 + w01 =
w11+w12 and thus w02 = w11+w12�w01. Because of �02,11 2 rlv(X), we obtain

1 = det(w02, w11) = det(w12 �w01, w11) = w111 + w211.

We conclude w11 = (0, 1) and µ = (1, 1). Using µ = l21w21 + l22w22 and
l21, l22 � 2 we see w121, w

2
22 < 0. On the other hand, 0 < det(w22, w21) =

1�w121w
2
22, a contradiction. Thus l22 � 2 does not occur.

Proof for configuration (ii). We havew01, w02, w11, w21 2 ⌧+ andw12, w22 2 ⌧�.
We may assume that w02, w12 2 cone(w01, w22) holds. Applying Remark 4.1 first
to �01,22 2 rlv(X) and then to �01,12, �02,22, �11,22 2 rlv(X) we obtain

Q =

"
0 w102 w111 1 w121 1 w11 . . . w1m

1 1 1 w212 w221 0 w21 . . . w2m

#

,

where we have w102, w
2
12 � 0 due to w02, w12 2 cone(w01, w22). Moreover, w221 >

0 holds, as we infer from the conditions

0  µ1 = l02w102 = l11w111 + l12 = l21w121 + l22,

0 < µ2 = l01 + l02 = l11 + l12w212 = l21w221.

We show l11 � 2. Otherwise, the above conditions give l12w212 > 0 and thus
w212 > 0. For �02,12 2 rlv(X), Remark 4.1 gives det(w12, w02) = 1 which means
w212w

1
02 = 0 and thus w102 = 0. This implies l21w121 + l22 = 0 and thus w121 < 0;

a contradiction to 1 = det(w12, w21) = w221 � w212w
1
21 which in turn holds due to

�12,21 2 rlv(X) and Remark 4.1.
Lemma 3.9 (iv) applied to �02,12, �01,12, �21,12 2 rlv(X) shows that l01 =

l02 = l22 = 1. Putting together µ2 = 2 = l11 + l12w212 and l11 6= 1, we conclude
l11 = 2 and w212 = 0. With �12,21 2 rlv(X) and Remark 4.1 we obtain w221 = 1 and
hence l21 = µ2 = 2. From

0  µ1 = w102 = 2w111 + 1 = 2w121 + 1
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we conclude w111 = w121 � 0 and thus w102 > 0. Lemma 3.9 (ii) implies that the
possible weights of type wk lie in ⌧�. Thus Remark 4.1 and �01,k imply w1k = 1
for all k. Moreover, since �02,k 2 rlv(X), the latter implies w2k = 0. All in all, we
arrive at

g0 = T01T02 + T 211T12 + T 221T22, Q =


0 2a + 1 a 1 a 1 1 . . . 1
1 1 1 0 1 0 0 . . . 0

�
,

where a 2 Z�0. The anticanonical class is �KX = (2a + 2 + m, 2) and the
semiample cone is SAmple(X) = cone((1, 0), (2a + 1, 1)). Hence X is an almost
Fano variety if and only if m � 2a holds and X is a Fano variety if and only if
m > 2a holds.

Proof for configuration (iii). We have w01, w02, w11, w12, w21 2 ⌧+ and w22 2
⌧�. As there must be another weight in ⌧�, we obtain m > 0. Lemma 3.11 (v)
yields w1, . . . , wm 2 ⌧�. We may assume w02, w11, w12, wk 2 cone(w01, w1),
where k = 2, . . . ,m. Applying Remark 4.1 firstly to �01,1 2 rlv(X) and then to the
remaining faces �01,22, �01,k, �i j,1 from rlv(X) leads to the degree matrix

Q =

"
0 w102 w111 w112 w121 1 1 1 . . . 1

1 1 1 1 1 w222 0 w22 . . . w2m

#

,

with at most w121, w
2
22 negative. We infer l01 = l02 = l11 = l12 = l22 = 1 from

Lemma 3.9 (ii). For �02,22, �11,22, �12,22 2 rlv(X) Remark 4.1 tells us

w222 = 0 or w102 = w111 = w112 = 0.

We treat the case w222 = 0. Here l21 = µ2 = 2 holds. Thus µ1 = w102 = 2w121 + 1
holds. Because of w102 � 0, we conclude w102 > 0 and w121 � 0. Remark 4.1
applied to �02,k 2 rlv(X) gives w2k = 0 for all k = 2, . . . ,m. We arrive at

g0 = T01T02 + T11T12 + T 221T22, Q =


0 2c + 1 a b c 1 1 . . . 1
1 1 1 1 1 0 0 . . . 0

�
,

where a, b, c 2 Z�0 and a + b = 2c + 1. Furthermore, the anticanonical class is
�KX = (3c + 2+ m, 3) and we have SAmple(X) = cone((1, 0), (2c + 1, 1)). In
particular, X is an almost Fano variety if and only if 3c + 1  m holds and a Fano
variety if and only if the corresponding strict inequality holds.

Now we consider the case w102 = w111 = w112 = 0. We have µ1 = 0, which
implies l21 = 1, w121 = �1. Consequently, µ2 = 2 gives w222 = 1. Since �21,k 2
rlv(X) for 2  k  m, we conclude w2k = 0 for all k. Therefore we obtain

g0 = T01T02 + T11T12 + T21T22, Q =


0 0 0 0 �1 1 1 . . . 1
1 1 1 1 1 1 0 . . . 0

�
.
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Finally, we have �KX = (m, 4) and SAmple(X) = cone((1, 1), (0, 1)). Thus, X
is a Fano variety if and only if m < 4 holds. Moreover, X is an almost Fano variety
if and only if m  4 holds.

Proof for configuration (iv). All wi j lie in ⌧+. Then we have m � 2, and one,
and hence all wk , lie in ⌧�, see Lemma 3.11 (v). Applying Lemma 3.9 (ii) to
�i j,1 2 rlv(X), we conclude li j = 1 for all i, j . Thus we have the relation

g0 = T01T02 + T11T12 + T21T22.

We may assume that cone(w01, w1) contains all wi j , wk . Remark 4.1 applied to
�01,1 2 rlv(X) leads to w1 = (1, 0) and w01 = (0, 1). All other weights lie in the
positive orthant. For �i j,1, �01,k 2 rlv(X) Remark 4.1 shows w2i j = w1k = 1 for all
i, j, k. Consider the case that all w2k vanish. Then the degree matrix is of the form

Q =


0 a2 a3 a4 a5 a6 1 . . . 1
1 1 1 1 1 1 0 . . . 0

�
,

where ai 2 Z�0 and a2 = a3 + a4 = a5 + a6. We have �KX = (2a2 + m, 4)
and SAmple(X) = cone((1, 0), (a2, 1)). Hence X is a Fano variety if and only if
2a2 < m holds and an almost Fano variety if and only if 2a2  m holds.

Finally, letw2k > 0 for some k. Note that we may assume 0  w22  . . .  w2m ;
in particular w2m > 0. Since �i j,m 2 rlv(X) for all i, j , Remark 4.1 yields w1i j = 0
for all i, j . Thus we obtain the degree matrix

Q =


0 0 0 0 0 0 1 1 . . . 1
1 1 1 1 1 1 0 a2 . . . am

�
,

where 0  a2  . . .  am and am > 0. The anticanonical class and the semiample
cone are given as

�KX = (m, 4+ a2 + . . . + am), SAmple(X) = cone((0, 1), (1, am)).

In particular, X is a Fano variety if and only if 4 + a2 + . . . + am > mam holds.
Note that for the latter am  3 is necessary. Moreover, X is a truly almost Fano
variety if and only if the equality 4+ a2 + . . . + am = mam holds.

Case (I) (e). We have r = 2, m � 0, n = 5 and the list of ni is (2, 2, 1). This leads
to Nos. 10, 11 and 12 in Theorems 1.1, 1.2 and 1.4.

Proof. We divide this case into the following three configurations, according to the
way some weights lie with respect to ⌧X (Figure 4.3).

We show that configuration (i) does not provide any smooth variety, (ii) deliv-
ers No. 10 of Theorem 1.1 and (iii) delivers Nos. 11 and 12.

In configuration (i) we have w01, w11 2 ⌧� and w02, w12 2 ⌧+. We may
assume w11 2 cone(w01, w12). Remark 4.1 applied to �01,12 2 rlv(X) leads to
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τXw02
w12

τ+

w01
w11

τ−

(i)

τXw02
w1

τ+

w01
w11 w12

τ−

(ii)

τXw1
w2

τ+

w01 w02
w11 w12

τ−

(iii)

Fig. 4.3.

w01 = (1, 0) and w12 = (0, 1). Observe w111, w
2
11 � 0. Due to det(w11, w12) > 0,

we even have w111 > 0 and det(w01, w02) > 0 gives w202 > 0. Since T l00 and T l11
share the same degree, we have

l01w01 + l02w02 = l11w11 + l12w12.

Lemma 3.9 (iv) says l02 = 1 or l11 = 1, which allows us to resolve for w02 or for
w11 in the above equation. Using �02,11 2 rlv(X), we obtain

l02 =1 =) 1 = det(w11, w02) = det(w11, l12w12 � l01w01) = l12w111 + l01w211,

l11 =1 =) 1 = det(w11, w02) = det(l01w01 � l12w12, w02) = l01w202 + l12w102.

We show l02 > 1. Otherwise, l02 = 1 holds. The above consideration shows
w211 = 0 and l12 = w111 = 1. Thus, l21w221 = l12 = 1 holds and we obtain l21 = 1;
a contradiction to P being irredundant. Thus, l02 > 1 and l11 = 1 must hold.
Because of w202 > 0, we must have w102  0. With

1 = det(w11, w02) = w111w
2
02 �w211w

1
02

we see that w211w
1
02 = 0 and w111 = w202 = 1. But then we arrive at 1 = l11w111 =

l21w121. Again this means l21 = 1; a contradiction to P being irredundant.
In configuration (ii) we have w01, w11, w12 2 ⌧� and w02, w1 2 ⌧+. In partic-

ular m � 1. Lemma 3.11 (v) yields w2, . . . , wm 2 ⌧+. Applying Remark 4.1 first
to �11,1 2 rlv(X) an then to �01,1, �12,1, �02,11, �11,k 2 rlv(X) leads to

Q =

"
1 w102 1 1 w121 0 w12 . . . w1m

w201 1 0 w212 w221 1 1 . . . 1

#

.

Applying Lemma 3.9 (ii) to �01,1, �12,1, �11,1 2 rlv(X) we obtain l02 = l11 = l12 =
1. For the degree µ of the relation g0 we note

µ1 = l01+ w102 = 2 = l21w121, µ2 = l01w201+ 1 = w212 = l21w221.

From µ1 = 2 we infer l21 = 2 and w121 = 1. Consequently, µ2 is even and
both l01, w201 are odd. Using again µ1 = 2 gives w102 6= 0. For �02,12 2 rlv(X)
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Remark 4.1 yields det(w12, w02) = 1 which means w102w
2
12 = 0. We conclude

w212 = 0 = µ2. This implies w221 = 0, w201 = �1, l01 = 1 and w102 = 1. We obtain

g0 = T01T02 + T11T12 + T 221, Q =


1 1 1 1 1 0 . . . 0
�1 1 0 0 0 1 . . . 1

�
,

where w12 = . . . = w1m = 0 follows from Remark 4.1 applied to �01,k 2 rlv(X).
The semiample cone is given as SAmple(X) = cone((1, 0), (1, 1)) and the anti-
canonical class as �KX = (3,m). Therefore X is a Fano variety if and only if
m < 3, i.e m = 1, 2. Moreover, X is an almost Fano variety if and only if m  3.

In configuration (iii) we have w01, w02, w11, w12 2 ⌧� and w1, w2 2 ⌧+. In
particular m � 2. Lemma 3.11 (v) ensures w3, . . . , wm 2 ⌧+. We can assume that
all wi j , wk lie in cone(w01, w1). Applying Remark 4.1, firstly to �01,1 and then to
all relevant faces of the types �i j,1 and �01,k , we achieve

w01 = (1, 0), w1 = (0, 1), w102 = w111 = w112 = 1, w22 = . . . = w2m = 1.

Lemma 3.9 (ii) applied to all �i j,1 shows li j = 1 for all i, j . We conclude µ1 = 2
which in turn implies l21 = 2 and w121 = 1. In particular, we have the relation

g0 = T01T02 + T11T12 + T 221.

We treat the case in which w11 = . . . = w1m = 0 holds. All columns of the degree
matrix lie in cone(w01, w1) and thus Q is of the form

Q =


1 1 1 1 1 0 0 . . . 0
0 2c a b c 1 1 . . . 1

�
,

where a, b, c 2 Z�0 and a + b = 2c. The anticanonical class is �K = (3,m + 3c)
and we have SAmple(X) = cone((0, 1), (1, 2c)). Therefore X is a Fano variety if
and only if m > 3c. Moreover, X is an almost Fano variety if and only if m � 3c.

We treat the case that w1k > 0 holds for some k. Then we obtain w202 = 0 by
applying Remark 4.1 to �02,k . This yields µ2 = 0 and thus w2i j = 0 for all i, j .
Consequently, the degree matrix is given as

Q =


1 1 1 1 1 0 w12 . . . w1m
0 0 0 0 0 1 1 . . . 1

�
,

where we can assume 0  w12  . . .  w1m . The semiample cone and the anti-
canonical divisor are given as

SAmple(X) = cone((1, 0), (w1m, 1)), �K = (3+ w12 + . . . + w1m,m).

We see that X is an almost Fano variety if and only ifmw1m  3+w12+. . .+w1m and
that X is a Fano variety if and only if the corresponding strict inequality holds.
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Case (I) (f). We have r = 2, m � 1, n = 4 and the list of ni is (2, 1, 1). This case
does not provide any smooth variety.

Proof. We can assumew012⌧� andw12⌧+. Lemma 3.11 (v) ensuresw2, . . . ,wm 2
⌧+. Applying Remark 4.1 first to �01,1 2 rlv(X) and then to the remaining �01,k 2
rlv(X), we achieve

Q =

"
1 w102 w111 w121 0 w12 . . . w1m

0 w202 w211 w221 1 1 . . . 1

#

.

Moreover �01,1 2 rlv(X) implies l02 = 1 by Lemma 3.9 (ii). Recall from Corol-
lary 3.14 that Cl(X) is torsion-free. Thus [13, Theorem 1.1] implies that l11 and l21
are coprime.

Consider the case w02 2 ⌧�. Then �02,1 2 rlv(X) holds, Lemma 3.9 (ii) yields
l01 = 1 and Remark 4.1 shows w102 = 1. We conclude µ1 = 2 and thus obtain
l11 = l21 = 2: a contradiction.

Now let w02 2 ⌧+, which implies �01,02,11 2 rlv(X). Since X is locally
factorial, Remark 2.11 (ii) shows that w202 and w211 are coprime. Now we look at

µ2 = w202 = l11w211 = l21w221.

We infer that l21 divides w202 and w211. This contradicts the coprimeness of w202
and w211, because by irredundancy of P we have l21 � 2.

Case (II). We have r = 3, m = 0 and 2 = n0 = n1 � n2 � n3 � 1. This leads to
No. 13 in Theorems 1.1 and 1.2.

Proof. We treat the constellations (a), (b) and (c) at once. First observe that for
every wi1 j1 with ni1 = 2, there is at least one wi2 j2 with ni2 = 2 and i1 6= i2 such
that ⌧X ✓ Q(�i1 j1,i2 j2)

� and thus �i1 j1,i2 j2 2 rlv(X). Since r = 3, we conclude
li j = 1 for all i with ni = 2; see Lemma 3.9 (iv).

We can assumew01,w112⌧� andw02,w122⌧+ as well asw112cone(w01,w12).
Applying Remark 4.1 to �01,12,2 rlv(X), we obtainw01 = (1, 0) andw12 = (0, 1).
Moreover w111, w

2
11 � 0 holds and, because of w11 62 ⌧+, we even have w111 > 0.

For the degree µ of g0 and g1 we note that

µ1 = w102 + 1 = w111, µ2 = w202 = w211 + 1.

Thus, we can express w02 in terms of w11. Remark 4.1 applied to �02,11 2 rlv(X)

gives 1 = det(w11, w02) = w111+w211. We concludew11 = (1, 0) andw02 = (0, 1).
In particular, the degree of the relations g0 and g1 is µ = (1, 1).

In constellations (b) and (c), we have n3 = 1 and µ = (1, 1). This implies
l31 = 1, a contradiction to P being irredundant. Thus, constellations (b) and (c) do
not occur.
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We are left with constellation (a), that means that we have n0 = . . . = n3 = 2.
As seen before, li j = 2 for all i, j . Thus, the relations are

g0 = T01T02 + T11T12 + T21T22, g1 = �T11T12 + T21T22 + T31T32,

where � 2 K⇤ \ {1}. In this situation, we may assume w21, w31 2 ⌧�. Applying
Remark 4.1 to the relevant faces �02,21, �02,31, we conclude w121 = w131 = 1. Since
µ1 = 1 and li j = 1, we obtain w122 = w132 = 0. Thus, w22 and w32 lie in ⌧+. Again
Remark 4.1, this time applied to �01,22, �01,32 2 rlv(X), yields w222 = w232 = 1.
Since µ2 = 1 and li j = 1, we obtain w221 = w231 = 0. Hence we obtain the degree
matrix

Q =


1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

�
.

The semiample cone is SAmple(X) = (Q�0)2 and the anticanonical divisor is
�KX = (2, 2). In particular, X is a Fano variety.

Proof of Theorems 1.1, 1.2 and 1.4. The preceding analysis of the cases of Propo-
sition 3.1 shows that every smooth rational non-toric projective variety of Picard
number two coming with a torus action of complexity one occurs in Theorem 1.1
and, among these, the Fano ones in Theorem 1.2 and the truly almost Fano ones in
Theorem 1.4. Comparing the defining data, one directly verifies that any two dif-
ferent listed varieties are not isomorphic to each other. Finally, using Remark 2.11
one explicitly checks that indeed all varieties listed in Theorem 1.1 are smooth.

5. Duplicating free weights

As mentioned in the introduction, there are (up to isomorphism) just two smooth
non-toric projective varieties with a torus action of complexity one and Picard num-
ber one, namely the smooth projective quadrics in dimensions three and four. In
Picard number two we obtained examples in every dimension and this even holds
when we restrict to the Fano case. Nevertheless, also in Picard number two we will
observe a certain finiteness feature: each Fano variety listed in Theorem 1.2 arises
from a smooth, but not necessarily Fano, variety of dimension at most seven via
an iterated generalized cone construction. In terms of the Cox ring the generalized
cone construction simply means duplicating a free weight.

For the precise treatment, the setting of bunched rings (R,F,8) is most ap-
propriate. Recall from [1, Section 3.2] that R is an integral normal almost freely
factorially K -graded K-algebra, F a system of pairwise non-associated K -prime
generators for R and 8 a certain collection of polyhedral cones in KQ defining an
open set bX ✓ X = Spec R with a good quotient X = bX//H by the action of the
quasitorus H = SpecK[K ] on X . Dimension, divisor class group and Cox ring of
X are given by

dim(X) = dim(R)� dim(KQ), Cl(X) = K , R(X) = R.
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We call X = X (R,F,8) the variety associated with the bunched ring (R,F,8).
This construction yields for example all normal complete A2-varieties with a finitely
generated Cox ring, e.g., Mori dream spaces. Observe that our Construction 2.7
presented earlier is a special case; it yields precisely the rational projective varieties
with a torus action of complexity one. The approach via bunched rings allows in
particular an algorithmic treatment [14].
Construction 5.1. Let R = K[T1, . . . , Tr ]/hg1, . . . , gsi a K -graded algebra pre-
sented by K -homogeneous generators Ti and relations g j 2 K[T1, . . . , Tr�1]. By
duplicating the free weight deg(Tr ) we mean passing from R to the K -graded alge-
bra

R0 := K[T1, . . . , Tr , Tr+1]/hg1, . . . , gsi, deg(Tr+1) := deg(Tr ) 2 K ,

where g j 2 K[T1, . . . , Tr�1] ✓ K[T1, . . . , Tr , Tr+1]. If in this situation (R,F,8)
is a bunched ring with F = (T1, . . . , Tr ), then (R0,F0,8) is a bunched ring with
F0 = (T1, . . . , Tr , Tr+1).

Proof. The K-algebra R0 is integral normal and, by [4, Theorem 1.4], factorially
K -graded. Obviously, the K -grading is almost free in the sense of [1, Defini-
tion 3.2.1.1]. Moreover, (R,F) and (R0,F0) have the same sets of generator weights
in the common grading group K and the collection of projected F0-faces equals the
collection of projected F-faces. We conclude that 8 is a true F0-bunch in the sense
of [1, Definition 3.2.1.1] and thus (R0,F0,8) is a bunched ring.

The word “free” in Construction 5.1 indicates that the variable Tr does not oc-
cur in the relations g j . In the above setting, we say that R is a complete intersection,
for short c.i., if R is of dimension r�s. Here are the basic features of the procedure.

Proposition 5.2. Let (R0,F0,8) arise from the bunched ring (R,F,8) via Con-
struction 5.1. Set X 0 := X (R0,F0,8) and X := X (R,F,8). Then:

(i) We have dim(X 0) = dim(X) + 1;
(ii) The cones of semiample divisor classes satisfy SAmple(X 0) = SAmple(X);
(iii) The variety X 0 is smooth if and only if X is smooth;
(iv) The ring R0 is a c.i. if and only if R is a c.i.;
(v) If R is a c.i., deg(Tr ) semiample and X Fano, then X 0 is Fano.

Proof. By construction, dim(R0) = dim(R) + 1 holds. Since R and R0 have the
same grading group K , we obtain (i). Moreover, R and R0 have the same defining
relations g j , hence we have (iv). According to [1, Proposition 3.3.2.9], the semi-
ample cone is the intersection of all elements of 8 and thus (ii) holds.

To obtain the third assertion, we show first that bX 0 is smooth if and only if bX
is smooth. For every relevant F-face �0 � Qr

�0 consider

� 00 := �0 + cone(er+1), � 000 := cone(ei ; 1  i < r, ei 2 �0) + cone(er+1).
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Then �0, �
0
0, �
00
0 � Qr+1

�0 are relevant F0-faces and, in fact, all relevant F0-faces are
of this form. Since the variables Tr and Tr+1 do not appear in the relations g j ,
we see that a stratum X(�0) is smooth if and only if the strata X

0
(�0), X

0
(� 00) and

X 0(� 000 ) are smooth. Now [1, Corollary 3.3.1.11] gives (iii).
Finally, we show (v). As we have complete intersection Cox rings, [1, Propo-

sition 3.3.3.2] applies and we obtain

�KX 0 =
r+1X

i=1
deg(Ti )�

sX

j=1
deg(g j ) = �KX + deg(Tr+1).

Since X and X 0 share the same ample cone, we conclude that ampleness of �KX
implies ampleness of �KX 0 .

We interprete the duplication of free weights in terms of birational geometry:
it turns out to be a composition of a contraction of fiber type, a series of flips and a
divisorial contraction, where all contractions are elementary, i.e., of relative Picard
number one; see [8] for a detailed study of the latter type of maps in the context of
general smooth Fano 4-folds.

Proposition 5.3. Let (R0,F0,8) arise from the bunched ring (R,F,8) via Con-
struction 5.1. Set X 0 := X (R0,F0,8) and X := X (R,F,8). Assume that X is
Q-factorial. Then there is a sequence

X  � eX1 99K . . . 99K eXt �! X 0,

where eX1 ! X is a contraction of fiber type with fibers P1, every eXi 99K eXi+1 is
a flip and eXt ! X 0 is the contraction of a prime divisor. If deg(Tr ) 2 K is Cartier,
then eX1 ! X is the P1-bundle associated with the divisor on X corresponding to
Tr .

Proof. In order to define eX1, we consider the canonical toric embedding X ✓ Z in
the sense of [1, Construction 3.2.5.3]. Let 6 be the fan of Z and P = [v1, . . . , vr ]
be the matrix having the primitive generators vi 2 Zn of the rays of 6 as its
columns. Define a further matrix

eP :=


v1 . . . vr�1 vr 0 0
0 . . . 0 �1 1 �1

�
.

We denote the columns of eP by ev1, . . . ,evr ,ev+,ev� 2 Zn+1, write %+, %� for the
rays throughev+,ev� and define a fan

e61 := {e� + %+, e� + %�, e� ; � 2 6}, e� := cone(evi ; vi 2 � ).

The projection Zn+1 ! Zn is a map of fans e61 ! 6. The associated toric
morphism eZ1 ! Z has fibers P1. If the toric divisor Dr corresponding to the ray
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through vr is Cartier, then eZ1! Z is the P1-bundle associated with Dr . We define
eX1 ✓ eZ1 to be the preimage of X ✓ Z . Then eX1 ! X has fibers P1. If deg(Tr ) is
Cartier, then so is Dr and hence eX1! X inherits the P1-bundle structure.

Now we determine the Cox ring of the variety eX1. For this, observe that the
projection Zr+2 ! Zr defines a lift of eZ1 ! Z to the toric characteristic spaces
and thus leads to the commutative diagram

e⇡](eX1) ✓

e⇡
✏✏

eW1 //

e⇡
✏✏

W

⇡

✏✏

⇡](X)◆

⇡

✏✏

eX1 ✓ eZ1 // Z X◆

where e⇡](eX1) and ⇡](X) denote the proper transforms with respect to the down-
wards toric morphisms. Pulling back the defining equations of ⇡](X) ✓ W , we see
thate⇡](eX1) ✓ eW1 has coordinate algebra eR := R[S+, S�] graded by eK := K ⇥Z
via

deg(Ti ) := (wi , 0),
w+ := deg(S+) := (wr , 1),
w� := deg(S�) := (0, 1),

where wi := deg(Ti ) 2 K . The K-algebra eR is normal and, by [4, Theorem 1.4],
factorially eK -graded. Moreover the eK -grading is almost free, as the K -grading of
R has this property and eF = (T1, . . . , Tr , S+, S�) is a system of pairwise non-
associated eK -prime generators. We conclude that eR is the Cox ring of eX1.

Next we look for the defining bunch of cones for eX1. Observe that K sits
inside eK as K ⇥ {0}. With ✓ := SAmple(X) ⇥ {0} we obtain a GIT-cone ✓1 :=
cone(✓, w+) \ cone(✓, w�) of the eK -graded ring eR. The associated bunch e81
consists of all cones of the form

e⌧ + cone(w+), e⌧ + cone(w�), e⌧ + cone(w+, w�),

wheree⌧ = ⌧ ⇥ {0}, ⌧ 2 8. Since 8 is a true bunch, so is e81. Together we obtain
a bunched ring (eR,eF,e81). By construction, the fan corresponding to e81 via Gale
duality is e61. We conclude that eX1 is the variety associated with (eR, eF,e81) and
eX1 ✓ eZ1 is the canonical toric embedding.

Observe that eX1! X corresponds to the passage from the GIT-cone ✓1 to the
facet ✓ . In particular, we see that eX1! X is a Mori fiber space. To obtain the flips
and the final divisorial contraction, we consider the full GIT-fan (Figure 5.1).

The GIT-cones inside ✓ + cone(w�) are the important ones. There we have
the facet ✓ and the semiample cone ✓1 of eX1. Proceeding in the direction of w�,
we come across other full-dimensional GIT-cones, say ✓2, . . . , ✓t+1. This gives a
sequence of flips eX1 99K . . . 99K eXt , where eXi is the variety with semiample cone
✓i . Passing from ✓t to ✓t+1 gives a morphism eXt ! eXt+1 contracting the prime
divisor corresponding to the variable S� of the Cox ring eR of eXt . Note that eXt+1 is
Q-factorial, as it is the GIT-quotient associated with a full-dimensional chamber.
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wr

w+

w−

θ

θ1

θt

θt+1

Fig. 5.1.

We show eXt+1 ⇠= X 0. Recall that X 0 arises from X by duplicating the weight
deg(Tr ). We have Cl(X 0) = K and the Cox ring R0 = R[Tr+1] of X 0 is K -graded
via deg(Ti ) = wi for i = 1, . . . , r and deg(Tr+1) = wr . In particular, the fan of the
canonical toric ambient variety of X 0 has as its primitive ray generators the columns
of the matrix

P 0 =


v1 . . . vr�1 vr 0
0 . . . 0 �1 1

�
.

On the other hand, the canonical toric ambient variety eZt+1 of eXt+1 is obtained
from eZt by contracting the divisor corresponding to the ray %�. Hence P 0 is as well
the primitive generator matrix for the fan of eZt+1. We conclude that

Cl(eXt+1) = Zr+1/ im((P 0)⇤) = Cl(X 0) = K .

Similarly, we compare the Cox rings of eXt+1 and X 0. Let eZt denote the canonical
toric ambient variety of eXt . Then the projection Zr+2 ! Zr+1 defines a lift of
eZt ! eZt+1 to the toric characteristic spaces and thus leads to the commutative
diagram

e⇡](eXt ) ✓

e⇡
✏✏

eWt
//

e⇡
✏✏

eWt+1

⇡

✏✏

⇡](eXt+1)◆

⇡

✏✏

eXt ✓ eZt // eZt+1 eXt+1◆

where the proper transforms e⇡](eXt ) and ⇡](eXt+1) are the characteristic spaces of
eXt and eXt+1 respectively and the first is mapped onto the second one. We conclude
that the Cox ring of eXt+1 is R[S+] graded by deg(Ti ) = wi for i = 1, . . . , r and
deg(S+) = wr and thus is isomorphic to the Cox ring R0 of X 0.

The final step is to compare the defining bunches of cones e8t+1 of eXt+1 and
80 of X 0. For this, observe that the fan of the toric ambient variety eZt+1 contains
the conese� +%+, where � 2 6. Thus, every ⌧ 2 80 belongs to e8t+1. We conclude
that

SAmple(eXt+1) ✓ SAmple(X 0).
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Since eXt+1 is Q-factorial, its semiample cone is of full dimension. Both cones
belong to the GIT-fan, hence we see that the above inclusion is in fact an equality.
Thus e8t+1 equals 80.

We return to the Fano varieties of Theorem 1.2. We first list the (finitely many)
examples which do not allow duplication of a free weight and then present the
starting models for constructing the Fano varieties via duplication of weights.

Proposition 5.4. The varieties of Theorem 1.2 containing no divisors with infinite
general isotropy are precisely the following ones.

No. R(X) [w1, . . . , wr ] �KX dim(X)

1 K[T1,...,T7]
hT1T2T 23 +T4T5+T6T7i


0 0 1 1 1 1 1
1 1 0 1 1 1 1

� 
3
4

�
4

2 K[T1,...,T7]
hT1T2T3+T4T5+T6T7i


0 0 1 1 0 1 0
1 1 0 1 1 1 1

� 
2
4

�
4

3 K[T1,...,T6]
hT1T2T 23 +T4T5+T 26 i


0 0 1 1 1 1
1 1 0 1 1 1

� 
2
3

�
3

4.A K[T1,...,T6]
hT1T2+T3T4+T5T6i


0 1 0 1 0 1
1 0 1 0 1 0

� 
2
2

�
3

4.B K[T1,...,T6]
hT1T 22 +T3T4+T5T6i


0 1 1 1 1 1
1 0 1 0 1 0

� 
3
2

�
3

4.C K[T1,...,T6]
hT1T 22 +T3T 24 +T5T 26 i


0 1 0 1 0 1
1 0 1 0 1 0

� 
1
2

�
3

13
K[T1,...,T8]⌧

T1T2+T3T4+T5T6,
�T3T4+T5T6+T7T8

�

�2K⇤\{1}


1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

� 
2
2

�
4

Proof. For a T -variety X = X (A, P, u), the divisors having infinite general T -
isotropy are precisely the vanishing sets of the variable Sk . Thus we just have to
pick out the cases with m = 0 from Theorem 1.2.

Theorem 5.5. Let X be a smooth rational Fano variety with a torus action of com-
plexity one and Picard number two. If there is a prime divisor with infinite general
isotropy on X , then X arises via iterated duplication of the free weight wr from one
of the following varieties Y .

No. R(Y ) [w1, . . . , wr ] u dim(Y )

4.A K[T1,...,T6,S1]
hT1T2+T3T4+T5T6i


0 1 0 1 0 1 0
1 0 1 0 1 0 1

� 
1
1

�
4

4.A K[T1,...,T6,S1,S2]
hT1T2+T3T4+T5T6i


0 1 0 1 0 1 �1 0
1 0 1 0 1 0 1 1

� 
1
1

�
5
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4.B K[T1,...,T6,S1]
hT1T 22 +T3T4+T5T6i


0 1 1 1 1 1 1
1 0 1 0 1 0 1

� 
2
1

�
4

4.C K[T1,...,T6,S1]
hT1T 22 +T3T 24 +T5T 26 i


0 1 0 1 0 1 0
1 0 1 0 1 0 1

� 
1
1

�
4

5 K[T1,...,T6,S1]
hT1T2+T 23 T4+T

2
5 T6i


0 2a + 1 a 1 a 1 1
1 1 1 0 1 0 0

�

a � 0


2a + 2
1

�
4

6 K[T1,...,T6,S1]
hT1T2+T3T4+T 25 T6i


0 2c + 1 a b c 1 1
1 1 1 1 1 0 0

�

a, b, c � 0, a < b,
a + b = 2c + 1


2c + 2
1

�
4

7 K[T1,...,T6,S1]
hT1T2+T3T4+T5T6i


0 0 0 0 �1 1 1
1 1 1 1 1 1 0

� 
1
2

�
4

8 K[T1,...,T6,S1,S2]
hT1T2+T3T4+T5T6i


0 0 0 0 0 0 1 1
1 1 1 1 1 1 0 a

�

a 2 {1, 2, 3}


1

a + 1

�
5

8 K[T1,...,T6,S1,S2,S3]
hT1T2+T3T4+T5T6i


0 0 0 0 0 0 1 1 1
1 1 1 1 1 1 0 a � 1 a

�

a 2 {1, 2}


1

a + 1

�
6

8 K[T1,...,T6,S1,...,S4]
hT1T2+T3T4+T5T6i


0 0 0 0 0 0 1 1 1 1
1 1 1 1 1 1 0 0 0 1

� 
1
2

�
7

9 K[T1,...,T6,S1,S2]
hT1T2+T3T4+T5T6i


0 a2 . . . a6 1 1
1 1 . . . 1 0 0

�

0  a3  a5  a6  a4  a2,
a2 = a3 + a4 = a5 + a6


a2 + 1
1

�
5

10 K[T1,...,T5,S1]
hT1T2+T3T4+T 25 i


1 1 1 1 1 0
�1 1 0 0 0 1

� 
2
1

�
3

11 K[T1,...,T5,S1,S2]
hT1T2+T3T4+T 25 i


1 1 1 1 1 0 a
0 0 0 0 0 1 1

�

a 2 {1, 2}


a + 1
1

�
4

11 K[T1,...,T5,S1,S2,S3]
hT1T2+T3T4+T 25 i


1 1 1 1 1 0 0 1
0 0 0 0 0 1 1 1

� 
2
1

�
5

12 K[T1,...,T5,S1,S2]
hT1T2+T3T4+T 25 i


1 1 1 1 1 0 0
0 2c a b c 1 1

�

0  a  c  b, a + b = 2c


1

2c + 1

�
4

For Nos. 4, 8 and 11, the variety Y is Fano and any iterated duplication of wr pro-
duces a Fano variety X . For the remaining cases, the following table tells which Y
are Fano and gives the characterizing condition when an iterated duplication of wr
produces a Fano variety X:

No. 5 6 7 9 10 12
Y Fano a = 0 c = 0 X a2 = 0 X c = 0
X Fano m > 2a m > 3c + 1 m  3 m > 2a2 m  2 m > 3c

Proof. A T -variety X = X (A, P, u) has a divisor with infinite general T -isotropy
if and only if m � 1 holds. In the cases 4.A, 4.B, 4.C, 5, 6, 7, 9, 10 and 12 we
directly infer from Theorem 1.2 that the examples with higher m arise from those
listed in the table above via iterated duplication of wr .
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We still have to consider Nos. 8 and 11. If X is a variety of type 8, then the
condition for X to be a Fano variety is

4+ a2 + . . . ,+am > mam,

where am = 1, 2, 3 and 0  a2  . . .  am . This is satisfied if and only if one of
the following conditions holds:

(i) a2 = . . . = am 2 {1, 2, 3};
(ii) a2 + 1 = a3 . . . = am 2 {1, 2}, with m � 3;
(iii) a2 = a3 = 0 and a4 = . . . = am = 1, with m � 4.

Similarly for No. 11 the Fano condition in the table of Theorem 1.2 is equivalent to
the fulfillment of one of the following:

(i) a2 = . . . = am 2 {1, 2};
(ii) a2 = 0 and a3 = . . . = am = 1, with m � 3.

In both cases this explicit characterization makes clear that we are in the setting of
the duplication of a free weight.

Remark 5.6. Consider iterated duplication of wr for a variety X = X (A, P, u) as
in Theorem 5.5. Recall that the effective cone of X is decomposed as ⌧+[⌧X [⌧�,
where ⌧X = Ample(X). Lemma 3.11 (i) says wr 62 ⌧X and thus we have a unique
 2 {⌧+, ⌧�} with wr /2  . Then the number of flips per duplication step equals

|{cone(wi j ), cone(wk); wi j , wk 2 }|� 1.

In particular, for Nos. 4.A, 4.B, 4.C, 8, 11, 9 with ai = 0, 12 with b = 0 the
duplications steps require no flips.
Remark 5.7. For toric Fano varieties, there is no statement like Corollary 1.3. Re-
call from [6] that all smooth projective toric varieties Z with Cl(Z) = Z2 admit a
description via the following data:

• Weight vectors w1 := (1, 0) and wi := (bi , 1) with 0 = bn < bn�1 < . . . < b2;
• Multiplicities µi := µ(wi ) � 1, where µ1 � 2 and µ2 + . . . + µn � 2.

(µ1)

(µ2)(µ3)(µ4)
(µn)

Fig. 5.2.

The variety Z arises from the bunched polynomial ring (R,F,8), where R equals
K[Si j ; 1  i  n, 1  j  µi ] with the system of generators F = (S11, . . . , Snµn )
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and the bunch 8 = {cone(w1, wi ); i = 2, . . . , n}. In this setting Z is Fano if and
only if

b2(µ3 + . . . + µn) < µ1 + µ3b3 + . . . + µn�1bn�1.

For any n 2 Z�4 and i = 2, . . . , n set µi := 1 and wi := (n � i, 1). Then, with
µ1 := 2 we obtain a smooth (non-Fano) toric variety Z 0n of Picard number two and
dimension n � 1. Moreover, for µ1 := 1 + (n � 2)(n � 1)/2 we obtain a smooth
toric Fano variety Zn of Picard number two that is Fano and is obtained from Z 0n
via iterated duplication ofw1 but cannot be constructed from any lower dimensional
smooth variety this way.

6. Geometry of the Fano varieties

We take a closer look at the Fano varieties X listed in Theorem 1.2 and describe
explicitly their Mori fibre spaces and their divisorial contractions. The approach
uses suitable toric ambient varieties. The following Remark can be found, at least
partially, for example in [9, Section 7.3].
Remark 6.1. Let Z be a smooth projective toric variety of Picard number 2, given
by weight vectors w1 := (1, 0) and wi := (bi , 1) with 0 = bn < bn�1 < . . . < b2,
and multiplicities µi := µ(wi ) � 1, where µ1 � 2 and µ2 + . . . + µn � 2 as in
Remark 5.7. Then the toric variety Z is a projectivized split vector bundle of rank r
over a projective space Ps , where s := µ1 � 1 and r := µ2 + . . . + µn � 1. More
precisely, we have

Z ⇠= P
 

µnM

i=1
OPs �

µn�1M

i=1
OPs (bn�1)� . . .�

µ2M

i=1
OPs (b2)

!

.

The bundle projection Z ! Ps is the elementary contraction associated to the
divisor class w1 2 Z2 = Cl(Z). If n = 2 holds, then we have Z ⇠= Ps ⇥ Pr . If
n = 3 and µ3 = 1 hold, then the class w3 2 Z2 = Cl(Z) gives rise to a divisorial
contraction onto a weighted projective space:

Z ! Z 0 := P(1, . . . , 1| {z }
µ1

, b2, . . . , b2| {z }
µ2

).

The exceptional divisor EZ ✓ Z is isomorphic to Ps ⇥ Pµ2�1 and the center
C(Z 0) ✓ Z 0 of the contraction is isomorphic to Pµ2�1. In particular, for µ2 = 1,
we have EZ ⇠= Ps and C(Z 0) is a point.

From the explicit description of the Cox ring of our Fano variety X , we ob-
tain via Construction 2.7 a closed embedding X ! Z into a toric variety Z . As a
byproduct of our classification, it turns out that, whenever X admits a elementary
contraction, then X inherits all its elementary contractions from Z . Remark 6.1
together with the explicit equations for X in Z will then allow us to study the situa-
tion in detail. We now present the results. The cases are numbered according to the
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table of Theorem 1.2. Moreover, we denote by Q3 ✓ P4 and Q4 ✓ P5 the three
and four-dimensional smooth projective quadrics and we write P(aµ1

1 , . . . , aµr
r ) for

the weighted projective space, where the superscript µi indicates that the weight ai
occurs µi times.
No. 1. The variety X is of dimension four and admits two elementary contrac-
tions, Q4  X ! P1. The morphism X ! Q4 is a divisorial contraction with
exceptional divisor isomorphic to P1 ⇥ P1 ⇥ P1 and center isomorphic to P1 ⇥ P1.
The morphism X ! P1 is a Mori fiber space with general fiber isomorphic to Q3
and singular fibers over [0, 1] and [1, 0] each isomorphic to the singular quadric
V (T2T3 + T4T5) ✓ P4.
No. 2. The variety X is of dimension four and admits two elementary contrac-
tions, Q4  X ! P3. The morphism X ! Q4 is a divisorial contraction with
exceptional divisor isomorphic to a hypersurface of bidegree (1, 1) in P1 ⇥ P3 and
center isomorphic to P1. The morphism X ! P3 is a Mori fiber space with fibers
isomorphic to P1.

No. 3. The variety X is of dimension three and occurs as No. 2.29 in the Mori-
Mukai classification [22]. Moreover, X admits two elementary contractions, Q3 
X ! P1. The morphism X ! Q3 is a divisorial contraction with exceptional
divisor isomorphic to P1⇥P1 and center isomorphic to P1. The morphism X ! P1
is a Mori fiber space with general fiber isomorphic to P1 ⇥ P1 and singular fibers
over [0, 1] and [1, 0] each isomorphic to V (T1T2 + T 23 ) ✓ P3.

No. 4A. CASE 1: we have c = �1. Then X admits two elementary contractions
Y  X ! P2, where Y := V (T1T2+ T3T4+ T5T6) ✓ Pm+4 is a terminal factorial
Fano variety which is smooth if and only if m = 1 holds. The morphism X ! Y
is a divisorial contraction with exceptional divisor isomorphic to a hypersurface
of bidegree (1, 1) in P2 ⇥ Pm+1 and center isomorphic to Pm+1. The morphism
X ! P2 is a Mori fiber space with fibers isomorphic to Pm+1.

CASE 2: we have c = 0. Then X is a hypersurface of bidegree (1, 1) in P2⇥Pm+2.
Moreover, X admits twoMori fiber spaces Pm+2 X ! P2. TheMori fiber space
X ! P2 has fibers isomorphic to Pm+1, whereas the Mori fiber space X ! Pm+1
has general fiber isomorphic to P1 and special fibers over V (T1, T2, T3) ✓ Pm+2
isomorphic to P2. For m = 0, we have dim(X) = 3 and X is the variety No. 2.32
in [22].

No. 4B. The variety X admits two elementary contractions Y  X ! P2, where
Y := V (T 21 + T2T3 + T4T5) ✓ Pm+4 is a terminal factorial Fano variety. The
variety Y is smooth if and only if m = 0 holds and in this case X occurs as No. 2.31
in [22]. The morphism X ! Y is a divisorial contraction with exceptional divisor
isomorphic to a hypersurface of bidegree (1, 1) in P2⇥Pm+1 and center isomorphic
to Pm+1. The morphism X ! P2 is a Mori fiber space with fibers isomorphic to
Pm+1.
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No. 4C. The variety X is a hypersurface of bidegree (2, 1) inP2⇥Pm+2; form = 0
we have dim(X) = 3 and X is No. 2.24 in [22]. Moreover, X admits two Mori fiber
spaces Pm+2  X ! P2. The morphism X ! P2 has fibers isomorphic to Pm+1.
To describe the fibers of ' : X ! Pm+2, set Yi := VPm+2(Ti ), Yi j := VPm+2(Ti , Tj )
and Y123 := VPm+2(T1, T2, T3). Then we have

'�1(z) ⇠=

8
>>><

>>>:

P2 if z 2 Y123
P1 if z 2 (Y12 [ Y13 [ Y23) \ Y123,
VP2(T1T2) if z 2 (Y1 [ Y2 [ Y3) \ (Y12 [ Y13 [ Y23)
P1 otherwise.

No. 5. The variety X admits a Mori fiber space ' : X ! Pm+1, whose general
fiber is isomorphic to P1 ⇥ P1. More precisely, with Y1 := VPm+1(T1) and Y2 :=
VPm+1(T2), we have

'�1(z) ⇠=

8
><

>:

VP3(T1T2) if z 2 Y1 \ Y2
VP3(T1T2 + T 23 ) if z 2 Y1 \ Y2 or z 2 Y2 \ Y1
P1 ⇥ P1 otherwise.

No. 6. The variety X admits a Mori fiber space X ! Pm , with general fiber iso-
morphic to Q3 and singular fibers over V (T1) ✓ Pm each isomorphic to V (T1T2 +
T3T4) ✓ P4.

No. 7. The variety X admits a divisorial contraction X ! Pm+3 with exceptional
divisor isomorphic to the projectivized split bundle

P
✓ mM

i=1
OP1⇥P1 �OP1⇥P1(1, 1)

◆

and center isomorphic to P1⇥P1. Moreover, if m = 1 holds, X admits a further di-
visorial contraction X ! Q4 with exceptional divisor isomorphic to P3 and center
a point.

No. 8. Here we have X = P(OQ4 � OQ4(a2) . . . � OQ4(am)). Thus, there is a
Mori fiber space X ! Q4 with fibers isomorphic to Pm�1. If a2 = . . . = am > 0
holds, then X admits in addition a divisorial contraction X ! Y , where Y :=
V (T1T2 + T3T4 + T5T6) ✓ P(16, am�12 ). The exceptional divisor is isomorphic to
Q4 ⇥ Pm�2 and the center to Pm�2.

No. 9. The variety X is a bundle over Pm�1 with fibers isomorphic to Q4. In
particular, if ai = 0 holds for all 2  i  6, then X ⇠= Q4 ⇥ Pm�1.
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No. 10. The variety X admits a divisorial contraction X ! Pm+2 with exceptional
divisor isomorphic to the projectivized split bundle

P
✓ mM

i=1
OP1 �OP1(1)

◆

and center isomorphic to P1. For m = 1, we have dim(X) = 3 and X is No. 2.30
from [22]; in this case it admits a further divisorial contraction X ! Q3 with
exceptional divisor isomorphic to P2 and center a point.

No. 11. Here X = P(OQ3 � OQ3(a2) . . . � OQ3(am)) holds. Thus, there is a
Mori fiber space X ! Q3 with fibers isomorphic to Pm�1. If a2 = . . . = am > 0
holds, then X admits a divisorial contraction X ! Y , where the variety Y equals
V (T1T2 + T3T4 + T 25 ) ✓ P(15, am�12 ). The exceptional divisor is isomorphic to
Q3 ⇥ Pm�2 and the center to Pm�2.

No. 12. The variety X is a bundle over Pm�1 with fibers isomorphic to Q3. In
particular, if a = b = c = 0 holds, then X ⇠= Q3 ⇥ Pm�1.

No. 13. This case presents a one-parameter family of varieties X�, with parameter
� 2 K⇤\{1}. They are generally non-isomorphic to each other, except for the pairs
X�
⇠= X��1 for all �. The variety X� is the intersection of two hypersurfaces

D1 = V (T1S1 + T2S2 + T3S3), D2 = V (�T2S2 + T3S3 + T4S4),

both of bidegree (1,1) in P3 ⇥ P3, where the Ti are the coordinates of the first P3
and the S j those of the second. Note that each Di has an isolated singularity, which
is not contained in the other hypersurface. Both D1, D2 are terminal and factorial.
Moreover, X admits two Mori fiber spaces P3  X ! P3, both with typical fiber
P1 and having four special fibers, all isomorphic to P2 and lying over the points
[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0] and [0, 0, 0, 1].
Remark 6.2. In contrast to the toric case, a smooth projective variety of Picard
number 2 with torus action of complexity one need not admit a non-trivial Mori
fiber space. For example, in Theorem 1.2, this happens in precisely two cases,
namely No. 7 and No. 10, both with m = 1.
Remark 6.3. In the list of Theorem 1.2 there are several examples, where the ef-
fective cone coincides with the cone of movable divisor classes: No. 4A with c = 0,
No. 4C, No. 5 with a = 0, No. 6 with a = 0, No. 8 with a2 = 0, No. 9 with a3 = 0,
No. 11 with a2 = 0, No. 12 with a = 0 and No. 13. Thus, these varieties admit no
divisorial contraction.
Remark 6.4. In Theorem 1.1 it is possible that non-isomorphic varieties share the
same Cox ring and thus differ from each other by a small quasimodification, i.e.
only by the choice of the ample class. This happens exactly in the following cases:
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(i) No. 4 with  l2 = l4 = 2, l6 = 1, a = 0, b = 1, ci = 0 for all i = 1, . . . ,m has
the same Cox ring as No. 5 with a = 0. Note that for m = 0 both varieties are
truly almost Fano, whereas for m � 1 No. 5 is Fano;

(ii) For m � 1, No. 4 with  l2 = 2, l4 = l6 = 1, a = b = 1, ci = 0 for all
i = 1, . . . ,m has the same Cox ring as No. 6 with a = c = 0 and b = 1. Note
that for m = 1 both varieties are truly almost Fano, whereas for m � 2 No. 6
is Fano;

(iii) For m � 2, No. 7 has the same Cox ring as No. 9 with a2 = 2 and a3 = . . . =
a6 = 1. Note that for m = 2, 3 No. 7 is Fano, for m = 4 both varieties are
truly almost Fano, whereas for m � 5 No. 9 is Fano;

(iv) For m � 2, No. 10 has the same Cox ring as No. 12 with a = b = c = 1.
Note that for m = 2 No. 10 is Fano, for m = 3 both varieties are truly almost
Fano, whereas for m � 4 No. 12 is Fano.
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