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On the volume measure of non-smooth spaces
with Ricci curvature bounded below

MARTIN KELL AND ANDREA MONDINO

Abstract. We prove that, given an RCD⇤(K , N )-space (X,d,m), it is possi-
ble to m-essentially cover X by measurable subsets (Ri )i2N with the following
property: for each i there exists ki 2 N \ [1, N ] such that mxRi is absolutely
continuous with respect to the ki -dimensional Hausdorff measure. We also show
that a Lipschitz differentiability space which is locally bi-Lipschitz embeddable
into Euclidean spaces is rectifiable as a metric measure space, and we conclude
with an application to Alexandrov spaces.

Mathematics Subject Classification (2010): 53C23 (primary); 46G05, 30L99,
49J52 (secondary).

1. Introduction

The object of this note is to investigate the volume measure of non-smooth spaces
having Ricci curvature bounded from below in a synthetic sense, the so called
RCD⇤(K , N )-spaces, where K 2 R stands for the lower bound on the Ricci curva-
ture and N 2 (1,1) stands for an upper bound on the dimension. More precisely
these non-smooth objects are metric measure spaces, i.e. triples (X,d, m) where
(X,d) is a complete and separable metric space endowed with a Borel positive
measure m, such that the optimal transportation satisfies suitable convexity prop-
erties and the Sobolev space W 1,2 is a Hilbert space (see Subsection 2.2 for the
precise notions). Let us mention that RCD⇤(K , N )-spaces can be seen as the Ricci-
curvature counterpart of Alexandrov spaces, which are metric spaces satisfying
sectional-curvature lower bounds in a synthetic sense. Note that while sectional
curvature lower bounds involve only the distance function, so they make perfect
sense for a metric space, on the other hand Ricci curvature lower bounds involve
the interplay of distance and volume so they make sense for metric measure spaces.

Two key properties of the RCD⇤(K , N )-condition are the compatibility with
the smooth counterpart (i.e. a Riemannian manifold endowed with the Riemannian
distance and volume measure is an RCD⇤(K , N )-space if and only if it has Ricci
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� K and dimension  N ) and the stability with respect to measured Gromov-
Hausdorff convergence, mGH for short. The combination of these two properties
clearly implies that Ricci-limit spaces (i.e. mGH-limits of Riemannian manifolds
having Ricci � K and dimension  N ) are RCD⇤(K , N )-spaces. Notice that
the class of RCD⇤(K , N )-spaces contains both collapsed and non-collapsed Ricci-
limits, but may a priori be larger. Let us mention that the corresponding question is
an open problem even in the classical framework of Alexandrov spaces (i.e. it is not
known if every n-dimensional Alexandrov space with curvature bounded below by
k is a GH-limit of a sequence of Riemannian manifolds with Sectional curvatures
� k and dimensions � n).

The structure of Ricci-limits was deeply investigated by J. Cheeger and T.
H. Colding [13–15]. They proved, among other fundamental results, that Ricci-
limits are rectifiable as metric measure spaces, i.e. if (X,d,m) is a Ricci-limit
then it is possible to cover it (up a subset of m-measure zero) by charts R j which
are bi-Lipschitz onto subsets of Rk j , the dimension k j possibly depending on the
chart itself, and such that mxR j is absolutely continuous with respect to the k j -
dimensional measure Hk j . It was later proved by T. H. Colding and A. Naber [16]
that the dimension is independent of the chart.

It is then a natural question if the same statements are true for RCD⇤(K , N )-
spaces. In a joint work of A. Naber with the second named author [25], it was
proved that RCD⇤(K , N )-spaces are rectifiable as metric spaces; more precisely
the following statement holds. Before stating it let us recall that the k-dimensional
regular set Rk is made of those points having unique blow up and such a unique
blow-up is Euclidean of dimension k. More explicitly, x̄ 2 Rk if and only if the se-
quence of rescaled spaces (X, r�1d,mx̄

r , x̄) converges in pointed measured Gromov
Hausdorff sense to (Rk,dRk , ckHk, 0k) as r ! 0+, where ck is the renormalization
constant such that

R
B1(0k)(1� |x |) d(ckHk) = 1 and

mx̄
r :=

✓Z

Br (x̄)

✓
1�

d(x̄, ·)
r

◆
dm

◆�1
m.

From Bishop-Gromov inequality, it is easily seen that Rk = ; for all k � bNc,
where bNc denotes the integer part of N .

Theorem 1.1 (Rectifiability of RCD⇤(K, N)-spaces, [25]). Let (X,d,m) be an
RCD⇤(K , N )-space for some K 2 R, and N 2 (1,1). Then m(X \

SbNc
k=1Rk) =

0, and every k-dimensional regular setRk is k-rectifiable, i.e. it can be covered, up
to an m-negligible set, by Borel subsets which are bi-Lipschitz equivalent to Borel
subsets of Rk . In particular (X,d,m) is rectifiable as a metric space.

One may wonder whether, more strongly, RCD⇤(K , N )-spaces are rectifiable as
metric measure spaces, that is, precisely whether or notmxRk is absolutely contin-
uous with respect to Hk . The main goal of the present paper is to answer affirma-
tively to such a question, that is, to prove the next result.



ON THE VOLUME MEASURE OF RCD⇤(K , N )-SPACES 595

Theorem 1.2. Let (X,d,m) be an RCD⇤(K , N )-space for some K 2 R, and N 2
(1,1), and let Rk be the k-dimensional regular set. Then mxRk is absolutely
continuous with respect to Hk . As a consequence, (X,d,m) is rectifiable as a
metric measure space.

Let us mention that the proof for Ricci-limits in [15] was performed by getting es-
timates on the smooth approximating sequence and then passing to the limit; since
we do not have at disposal smooth approximations of an RCD⇤(K , N )-space, our
strategy is completely different and we will work directly on the non-smooth space
X itself. More precisely, we first observe that an RCD⇤(K , N )-space is a Lipschitz
differentiability space (see Subsection 2.1 for the definition and some basic proper-
ties), indeed, since an RCD⇤(K , N )-space is locally doubling and satisfies a local
Poincaré inequality (as respectively proved by K. Bacher and K. T. Sturm [7], and
by T. Rajala [26]), the claim follows by the celebrated work of J. Cheeger [12]. In
particular, since by Theorem 1.1 we can locally embed X into a Euclidean space, it
is clear the link with the Lipschitz differentiability spaces which are embeddable in
Euclidean spaces. It was proved by J. Cheeger [12] (for embeddable PI spaces) and
G. C. David [18] that such a space has almost everywhere unique tangent which is
moreover isometric to a Euclidean space having the same dimension of the Lips-
chitz chart (in the sense of the Lipschitz differentiable structure). In a rather explicit
and independent way, in Section 3 we show that, more strongly, a Lipschitz differ-
entiability space locally embeddable in Euclidean spaces is rectifiable as metric
measure space. Recall that a m.m.s. (X,d, m) is locally bi-Lipschitz embeddable
in Euclidean spaces if there exist Borel subsets {E j ⇢ X} j2N such that each E j is
bi-Lipschitz embeddable in some Euclidean space RN j and m(X \

S
j2N E j ) = 0.

Theorem 1.3 (Theorem 3.7). Let (X,d,m) be a Lipschitz differentiability space
and assume that it is locally bi-Lipschitz embeddable in Euclidean spaces. Then
there exists a countable collection {R j } j2N of Borel subsets of X , covering X up to
anm-negligible set, such that each R j is bi-Lipschitz equivalent to a Borel subset of
Rn j and mxR j is absolutely continuous with respect to the n j -dimensional Haus-
dorff measure Hk j . In other words, (X,d,m) is rectifiable as a metric measure
space.

We briefly mention that in order to build the bi-Lipschitz charts we make use of a
construction of P. Mattila [24], and in order to control the measure we combine the
work of G. Alberti and A. Marchese [2] with the recent paper of G. De Philippis
and F. Rindler [19] on the structure of Radon measures in Euclidean spaces, and the
work of D. Bate [8] on Alberti representations of Lipschitz differentiability spaces.

We then show that the dimension of the chart in the Lipschitz differentiable
structure of an RCD⇤(K , N )-space X is the same as the dimension of the bi-
Lipschitz chart in the rectifiability Theorem 1.1 (see Proposition 4.1 and compare
with [10]). At this point, Theorem 1.2 will follow from Theorem 1.3.

We conclude with a couple of applications, the first one to Alexandrov geom-
etry; to this aim let us recall that if (X,d) is an n-dimensional Alexandrov space
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with curvature bounded from below, then there exists an open dense setR ⇢ X with
Hn(X \R) = 0 such that every point of it has an open neighborhood bi-Lipschitz
homeomorphic to an open region of Rn (see for instance [6, Theorem 10.8.3 and
Section 10.10.3]).

Corollary 1.4. Let (X,d) be an n-dimensional Alexandrov space with curvature
bounded from below, n 2 N, n � 2. Let m be a positive Radon measure over
(X,d) with sptm = X , m(X \ R) = 0 and such that the metric measure space
(X,d,m) is an RCD⇤(K , N )-space for some K 2 R, N 2 (1,1) (or, more gener-
ally, (X,d,m) is a Lipschitz differentiability space). Then m is absolutely continu-
ous with respect toHn .

Let us mention that related questions and results about the structure of measures
satisfying Ricci curvature lower bounds have been studied by F. Cavalletti and the
second author in [11], for the specific case of Alexandrov space see [11, Corollary
7.4]. As a final application we wish to investigate the uniqueness of measures on an
RCD⇤(K , N )-space such that the resulting space is still RCD or, more generally is
a Lipschitz differentiability space. In order to state the result precisely, let us call
R ⇢ X any maximal set (with respect to inclusion) which can be covered by Borel
subsets of X bi-Lipschitz to Borel sets in Euclidean spaces; by Theorem 1.1 we
know that m(X \R) = 0.

Corollary 1.5. Let (X,d,m) be an RCD⇤(K , N )-space for some K 2 R, N 2
(1,1) and letR be any set as above.

Let m̃ be another positive Radon measure over (X,d) with spt m̃ = X , m̃(X \
R) = 0 and such that the metric measure space (X,d, m̃) is an RCD⇤(K̃ , Ñ )-
space for some K̃ 2 R, Ñ 2 (1,1) (or more generally (X,d, m̃) is a Lipschitz
differentiability space). Then m̃xRk is absolutely continuous with respect toHk .

In other words, every RCD measure is forced to belong to the class of measures
which are absolutely continuous with respect to the relevant Hausdorff measure of
each stratumRk .

The proof of the last two corollaries is omitted as it can be performed by fol-
lowing verbatim the proof of Theorem 1.2.

After finishing this note we got to know that with a similar approach, a re-
lated result has been proven by De Philippis, Marchese and Rindler [20]; never-
theless it is worth to point out some crucial differences. In [20] it is proved that if
' : U ! Rn , with U ⇢ X Borel subset, is a Lipschitz chart in a Lipschitz differ-
entiability space (X,d,m) then ']m ⌧ Hn; this answers positively to a conjecture
of Cheeger [12]. As the example of the Heisenberg group shows, in general it is not
possible to conclude that mxU ⌧ Hn; so one cannot directly deduce our Theorem
1.2 from [20]. Indeed in our results, a crucial additional information (guaranteed
by Theorem 1.1) is that the space is locally bi-Lipschitz embeddable in Euclidean
spaces, an assumption which is used throughout the paper. Another difference from
the technical point of view is that we reduce the arguments to directly apply the
weak converse Rademacher Theorem 3.5 proved in [19], while in [20] the absolute
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continuity of the measure is achieved by a slightly different argument involving
one-dimensional currents.

Let us finally mention that a couple of weeks after our preprint appeared, Gigli
and Pasqualetto [22] posted an independent paper proving Theorem 1.2 with a dif-
ferent approach, still relying on the 1-dimensional currents formulation of the weak
converse of Rademacher Theorem proved in [19] but more analytic in nature: ba-
sically they prove that the bi-Lipschitz charts of Theorem 1.1 induce vector fields
with measure-valued divergence (by using the Laplacian comparison theorem), and
therefore give independent 1-dimensional currents.

ACKNOWLEDGEMENTS. The authors wish to thank the anonymous referee for the
careful reading and the valuable comments which improved the exposition of the
paper.

2. Preliminaries

2.1. Lipschitz differentiability spaces

Throughout the paper (X,d) will denote a metric space; most of the times it will
be assumed complete, but in general it may be not. A metric measure space is a
triple (X,d,m), where m is a Borel positive measure defined over the metric space
(X,d). When the metric and measure are understood from the context, we will
denote such a space simply by X . In order to emphasize the dependency of the
metric d on X we may also write dX . We denote open and closed balls in (X,d) of
center x and radius r > 0 respectively by Br (x) and B̄r (x).

Given a real valued function f : X ! R, its local Lipschitz constant at x0 2 X
is denoted by Lip f (x0) and defined by

Lip f (x0) := lim sup
x!x0

| f (x) � f (x0)|
d(x, x0)

if x0 is not isolated, Lip f (x0)=0 otherwise.

Recall that if (X,dX ) and (Y,dY ) are metric spaces, then a mapping f : X ! Y is
Lipschitz if there is a constant L > 0 such that

dY ( f (x1), f (x2))  L dX (x1, x2), (2.1)

for any two points x1, x2 2 X . The infimal value of L such that equation (2.1) holds
is called Lipschitz constant of f . The mapping f is called bi-Lipschitz if there is a
constant L � 1 such that

L�1 dX (x1, x2)  dY ( f (x1), f (x2))  L dX (x1, x2), (2.2)

for any two points x1, x2 2 X . Two spaces are said to be bi-Lipschitz equivalent
if there is a bi-Lipschitz map of one onto the other. A non-trivial Borel regular
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measure m over the metric space (X,d) is said to be doubling if there exists a
constant C > 0 such that

m(B2r (x))  C m(Br (x)) (2.3)

for all x 2 X and r > 0. We say that m is locally doubling if for every bounded
subset K ⇢ X , the estimate (2.3) holds for every x 2 K for some C > 0 possibly
depending on K . If m is a (respectively locally) doubling measure on the metric
space (X,d), then (X,d) is a (respectively locally) doubling metric space, which
means that there exists a constant N > 0, depending only on the doubling constant
associated to m (respectively and on the compact subset K ⇢ X), such that every
ball of radius 2r in X (respectively centered at a point x 2 K ) can be covered by at
most N balls of radius r . We writeHk for the k-dimensional Hausdorff measure.

Definition 2.1. A Lipschitz differentiability space is a (possibly non-complete)
metric measure space (X,d, m) satisfying the following condition: there are posi-
tive measure sets (called charts) Ui covering X , positive integers ni (called dimen-
sions of the charts), and Lipschitz maps �i : Ui ! Rni with respect to which
any Lipschitz function f is differentiable almost everywhere, in the sense that for
m-almost every x 2 Ui , there exists a unique d fx 2 Rni such that

lim
y!x

| f (y) � f (x) � d fx ·
�
�i (y) � �i (x)

�
|

d(x, y) = 0. (2.4)

Here d fx ·
�
�i (y)��i (x)

�
denotes the standard scalar product between elements of

Rni .

If a reference point x̄ 2 X is fixed, we will call the triple (X,d, x̄) a pointed
metric space. We now recall the notion of tangent space to a pointed metric space.

Definition 2.2. A pointed metric space (Y,dY , ȳ) is said to be a tangent space
to X at x̄ if there exists a sequence ri # 0 such that the rescaled pointed spaces
(X, r�1

i d, x̄) converge to (Y,dY , ȳ) in the pointed Gromov-Hausdorff topology.
The collection of all tangent spaces to X at x̄ is denoted by Tan(X, x̄).

By Gromov’s compactness theorem it follows that if (X,d) is locally doubling
then Tan(X, x̄) is not empty. A delicate issue is instead the uniqueness of tangent
spaces, which clearly in the general framework of locally doubling spaces fails, but
in many interesting geometric situations holds true, as we will discuss in the next
sections.

Let us also recall the following localization result of Lipschitz differentiability
spaces; for the proof see for instance [8, Corollary 4.6] or [9, Corollary 2.7].

Proposition 2.3. Let (X,d,m) be a Lipschitz differentiability space and letU ⇢ X
be a subset with m(U) > 0. Then (U,d|U⇥U ,mxU) is itself a Lipschitz differen-
tiability space with respect to the same charts structure.
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2.2. RCD⇤(K, N)-spaces

In this section we quickly recall the definition of RCD⇤(K , N )-space and the prop-
erties used in the paper; for brevity we will not mention many interesting results in
the field that will not be needed in the present work.

Throughout the section (X,d) will be a complete and separable metric space
endowed with a positive Borel measure m finite on bounded subsets. Recall that a
curve � : [0, 1] ! X is a geodesic if

d(� (s), � (t)) = |s � t | d(� (0), � (1)). (2.5)

We denote by Geo(X) the space of geodesics on (X,d) endowed with the sup
distance, and by et : Geo(X) ! X , t 2 [0, 1], the evaluation maps defined by
et (� ) := �t . (X,d) is a geodesic space if every couple of points of X are joined by
a geodesic.

We denote by P(X) the space of Borel probability measures on (X,d) and
by P2(X) ⇢ P(X) the subspace consisting of all the probability measures with
finite second moment. For µ0, µ1 2 P2(X) the quadratic transportation distance
W2(µ0, µ1) is defined by

W 2
2 (µ0, µ1) = inf

⇡

Z

X
d2(x, y) d⇡(x, y), (2.6)

where the infimum is taken over all ⇡ 2 P(X ⇥ X) with µ0 and µ1 as the first and
the second marginal.

Assuming the space (X,d) to be geodesic, the space (P2(X),W2) is also
geodesic. It turns out that any geodesic (µt ) 2 Geo(P2(X)) can be lifted to a
measure ⇡ 2 P(Geo(X)), so that (et )]⇡ = µt for all t 2 [0, 1]. Given µ0, µ1 2
P2(X), we denote by OptGeo(µ0, µ1) the space of all ⇡ 2 P(Geo(X)) for which
(e0, e1)]⇡ realizes the minimum in (2.6). If (X,d) is geodesic, then the set
OptGeo(µ0, µ1) is non-empty for any µ0, µ1 2 P2(X).

We turn to the formulation of the CD⇤(K , N ) condition, coming from [7].
Given K 2 R and N 2 [1,1), we define the distortion coefficient [0, 1] ⇥ R+ 3
(t, ✓) 7! �

(t)
K ,N (✓) as

�
(t)
K ,N (✓) :=

8
>>>><

>>>>:

+1, if K ✓2 � N⇡2

sin(t✓
p
K/N )

sin(✓
p
K/N )

if 0 < K ✓2 < N⇡2

t if K ✓2 = 0
sinh(t✓

p
K/N )

sinh(✓
p
K/N )

if K ✓2 < 0.

Definition 2.4 (Curvature dimension bounds). Let K 2 R and N 2 [1,1). We
say that a m.m.s. (X,d,m) is aCD⇤(K , N )-space if for any two measuresµ0, µ1 2
P(X) with support bounded and contained in sptm there exists a measure ⇡ 2
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OptGeo(µ0, µ1) such that, for every t 2 [0, 1] and N 0 � N , we have

�
Z

⇢
1� 1

N 0
t dm  �

Z
�

(1�t)
K ,N 0 (d(�0, �1))⇢

� 1
N 0

0

+ �
(t)
K ,N 0(d(�0, �1))⇢

� 1
N 0

1 d⇡(� ),

(2.7)

where for any t 2 [0, 1] we have written (et )]⇡ = ⇢tm + µs
t with µs

t ? m.
Notice that, if (X,d,m) is a CD⇤(K , N )-space, then so is (sptm,d,m), hence

it is not restrictive to assume that sptm = X , a hypothesis that we shall always
implicitly do from now on.

OnCD⇤(K , N )-spaces a natural version of the Bishop-Gromov volume growth
estimate holds (see [7, Theorem 6.2]), in particular a CD⇤(K , N )-space is locally
doubling. Moreover, as proved by T. Rajala [26], CD⇤(K , N )-spaces satisfy a local
Poincaré inequality. Combining the local doubling and the Poincaré inequality with
the celebrated work of J. Cheeger [12] we get the following result.

Theorem 2.5. Every CD⇤(K , N )-space is a Lipschitz differentiability space.

One crucial property of the CD⇤(K , N )-condition is the stability under measured
Gromov-Hausdorff convergence of m.m.s., so that Ricci limit spaces areCD⇤(K ,N).
Moreover, on the one hand Finsler manifolds are allowed as CD⇤(K , N )-space
while on the other hand, from the work of Cheeger and Colding [13–15], it was
understood that purely Finsler structures never appear as Ricci limit spaces. In-
spired by this fact, in [4], Ambrosio, Gigli, and Savaré proposed a strengthening
of the CD-condition in order to enforce, in some weak sense, a Riemannian-like
behavior of spaces with a curvature-dimension bound (to be precise in [4] it was
analyzed the case of strong-CD(K ,1) spaces endowed with a probability refer-
ence measurem; the axiomatization has been then simplified and generalized in [3]
to allow CD(K ,1)-spaces endowed with a � -finite reference measure); the finite
dimensional refinement led to the RCD⇤(K , N ) condition.

Such a strengthening consists in requiring that the space (X,d,m) is such that
the Sobolev space W 1,2(X,d,m) is Hilbert, a condition we shall refer to as in-
finitesimal Hilbertianity. It is out of the scope of this note to provide full details
about the definition of W 1,2(X,d,m) and its relevance in connection with Ricci
curvature lower bounds. We will instead be satisfied by recalling the definition and
a structural result proved by A. Naber and the second named author [25] which will
play a key role in the present paper.

First of all recall that on a m.m.s. there is a canonical notion of modulus of the
differential of a function f , called weak upper differential and denoted with |Df |w;
with this object one defines the Cheeger energy

Ch( f ) :=
1
2

Z

X
|Df |2w dm.

The Sobolev space W 1,2(X,d,m) is by definition the space of L2(X,m) functions
having finite Cheeger energy, and it is endowed with the natural norm k f k2W 1,2 :=
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k f k2L2 + 2Ch( f ), which makes it a Banach space. We remark that, in general,
W 1,2(X,d,m) is not Hilbert (for instance, on a smooth Finsler manifold the space
W 1,2 is Hilbert if and only if the manifold is actually Riemannian); in case
W 1,2(X,d,m) is Hilbert then we say that (X,d,m) is infinitesimally Hilbertian.
Definition 2.6. An RCD⇤(K , N )-space (X,d,m) is an infinitesimally Hilbertian
CD⇤(K , N )-space.

The following structural result, proved by A. Naber and the second named
author [25], will play a key role in the present paper.

Theorem 2.7 (Rectifiability of RCD⇤(K, N)-spaces). Let (X,d,m) be an
RCD⇤(K , N )-space for some K 2 R, N 2 (1,1). Then there exists a countable
collection {R j } j2N ofm-measurable subsets of X , covering X up to anm-negligible
set, such that each R j is bi-Lipschitz to a measurable subset of Rk j , for some k j 2
N, possibly depending on j . Moreover for m-a.e. x 2 R j the tangent space is
unique and isometric to Rk j .

3. Structure of Radon measures in Euclidean spaces Vs Lipschitz
differentiability spaces

The goal of this section is to investigate the structure of Lipschitz differentiability
spaces which can be locally bi-Lipschitz embedded in Euclidean spaces. Recall that
a m.m.s. (X,d,m) is locally bi-Lipschitz embeddable in Euclidean spaces if there
exist Borel subsets {E j ⇢ X} j2N such that each E j is bi-Lipschitz embeddable in
some Euclidean space RN j and m(X \

S
j2N E j ) = 0. Notice that, by Proposition

2.3, each E j endowed with the induced metric measure structure is a Lipschitz dif-
ferentiability space which is globally bi-Lipschitz embeddable in RN j . It is known
from the works of J. Cheeger (for PI-spaces globally bi-Lipschitz embeddable in
some RN [12, Theorem 14.1, 14.2]) and of G. C. David (for complete doubling
Lipschitz differentiability spaces embedded in RN [18, Corollary 8.1]) that such
spaces have a.e. a unique tangent space which is isometric to a Euclidean space of
the same dimension of the Lipschitz chart.

In the present section we prove that, more strongly, a Lipschitz differentiability
space locally bi-Lipschitz embeddable in Euclidean spaces is rectifiable as a metric
measure space. Our proof is independent on the ones mentioned above and we
directly construct the rectifiability charts using the Lipschitz differentiability. We
start by showing that such spaces are rectifiable as metric spaces.

Theorem 3.1. Let (X,d,m) be a Lipschitz differentiability space, let (U,�) be
an n-dimensional chart, and assume that (X,d,m) is locally bi-Lipschitz embed-
dable in Euclidean spaces. Then there exists a countable collection {R j } j2N of
m-measurable subsets of X , covering U up to an m-negligible set, such that each
R j is bi-Lipschitz to a measurable subset of Rn . In other words U is n-rectifiable
as a metric space.
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For w 2 SN�1 and ✓ 2 [0, ⇡
2 ] the (closed) cone of width ✓ centered at w is the set

C(w, ✓) = {v 2 RN | v · w � cos(✓)kvk}.

If V is a linear subspace of RN , we define C(V, ✓) as the union of C(w, ✓), w 2
V \ SN�1.

Lemma 3.2. Let m be a measure in RN such that (sptm, | · |RN ,m) is a Lipschitz
differentiability space with n-dimensional chart (sptm,�). Then for m-almost ev-
ery x0 2 RN there is an n-dimensional subspace Vx0 such that for every ✓ 2 (0, ⇡

2 ]
there is a % = %(x0) > 0 satisfying:

(sptm \ Br (x0)) \(x0 + C(Vx0, ✓)) = ;, 8r 2 (0, %].

Proof. Since the coordinate functions are Lipschitz functions, for m-almost every
x0 2 sptm there is a unique linear map dek(x0) : Rn ! R such that

ek(x) = ek(x0) + dek(x0) · (�(x) � �(x0)) + o(kx � x0k) (3.1)

for all x 2 sptm. Note that the assignment f 7! d f (x0) is linear whenever two
functions are both differentiable at x0. Thus if x0 is a point of differentiability of
all coordinate functions then there is a linear map Dx0 : RN ! Rn such that for
` =

PN
k=1 �k ek 2 RN it holds

Dx0` =
NX

k=1
�k dek(x0). (3.2)

Let Vx0 be the set of all v 2 RN such that `(v) = 0 for all ` 2 ker Dx0 , in other
words set Vx0 := (ker Dx0)

?. The claim follows since, for all ` 2 ker Dx0 with
k`k = 1, we must have

`(x � x0) = o(kx � x0k).

It is easy to see that Vx0 is at most n-dimensional. By uniqueness of dek(x0) the case
dim(Vx0) < n cannot happen; compare also with [9, Lemma 2.1] and [8, Lemma
3.3].

Corollary 3.3. Under the same hypothesis and notation of Lemma 3.2, assume
moreover that for m-almost every x0 2 sptm it holds Vx0 = RN . Then (sptm, | ·
|RN ,m) is a Lipschitz differentiability space with respect to the chart (sptm, id).

Proof. By (3.1) and by the very definition of Dx0 given in (3.2), we know that for
all ` 2 RN and m-a.e. x0 2 sptm it holds

` · (x � x0) = Dx0` · (�(x) � �(x0)) + o(kx � x0k). (3.3)

Assume f is a Lipschitz function that is differentiable at x0 with respect to to the
chart � and denote the �-relative Lipschitz differential by d� f (x0). From the proof
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of the previous lemma we know that Dx0 : RN ! RN is invertible. Set d f (x0) :=
(Dx0)

�1d� f (x0); by applying (3.3) with ` = d f (x0) we get

f (x) � f (x0) = d� f (x0) · (�(x) � �(x0)) + o(kx � x0k)
= d f (x0) · (x � x0) + o(kx � x0k),

(3.4)

which shows that the Lipschitz differential with respect to (sptm, id) exists at x0.
We now show uniqueness of the differential. The definition of Lipschitz dif-

ferential implies that

Lip f (x0) = Lip
�
d� f (x0) · (�(·) � �(x0)

�
(x0)

whenever f is differentiable at x0. Furthermore, equivalence shown in [9, Lemma
2.1] implies that for all v 2 RN and m-almost all x0 2 sptm it holds

Lip (v · (�(·) � �(x0))) (x0) > 0. (3.5)

Since Dx0 has trivial kernel for m-almost all x0 2 sptm, by using again (3.3) to-
gether with (3.5), we see that

Lip (` · (· � x0)) (x0) = Lip
�
Dx0` · (�(·) � �(x0))

�
(x0) > 0, 8` 2 RN .

The uniqueness of the differential of f at x0 with respect to (sptm, id) then follows
by [9, Lemma 2.1]; see also [8, Lemma 3.3].

We conclude that there is a subset � ⇢ sptm of full m-measure such that, for
any x0 2 �, any Lipschitz function is differentiable at x0 with respect to the chart
� if and only if it is differentiable at x0 with respect to the identity chart id. In
particular, (sptm, | · |RN ,m) is a Lipschitz differentiability space with respect to the
N -dimensional chart (sptm, id).

On the space S(RN ) of non-trivial linear subspaces of RN we define a com-
plete metric as follows:

d(V,W ) = inf
n
✓ 2

h
0,

⇡

2

i �
�
�W ⇢ C(V, ✓), V ⇢ C(W, ✓)

o

for V,W 2 S(RN ). In particular, for every V,W 2 S(RN ), it holds

d(V,W ) 
⇡

2
,

with equality for W = V?.
Note that such a metric d can be equivalently defined as the Hausdorff metric

of the (N�1)-sphere SN�1 where each non-trivial linear subspace represents either
a closed totally geodesic submanifold of SN�1 or two antipodal points.
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Lemma 3.4 ([24, Lemma 15.13]). Let V 2 S(RN ) with n = dim(V ) < N and let
✓ 2 (0, ⇡

2 ) and r 2 (0,1). Assume E ⇢ RN is a subset satisfying

E \ Br (x) \ (x + C(V?, ✓)) = {x}, 8x 2 E .

Then, for any x0 2 E , the map PV : E \ Br
2
(x0) ! V is bi-Lipschitz onto its

image, where PV denotes the orthogonal projection onto V . In particular, E is
n-rectifiable.

Proof. Fix x0 2 E and let x, y 2 E \ Br
2
(x0). The condition can be equally stated

as
E \ Br (x) ⇢ x + C

⇣
V,

⇡

2
� ✓

⌘
.

In particular,

(PV (x � y)) · (x � y) � cos
⇣⇡

2
� ✓

⌘
kx � yk2.

Since x � y = PV (x � y) + w for some w 2 V?, it holds

kPV (x � y)k2 = (PV (x � y)) · (x � y).

Therefore,
kPV x � PV yk2 � cos

⇣⇡

2
� ✓

⌘
kx � yk2.

Setting s = cos(⇡
2 � ✓)

1
2 > 0 it follows that

skx � yk  kPV x � PV yk  kx � yk,

i.e. PV : E \ Br
2
(x0) ! V is bi-Lipschitz onto its image.

Proof of Theorem 3.1. Since by Proposition 2.3 we know that Borel subsets of posi-
tive measure in a Lipschitz differentiability space are still Lipschitz differentiability
spaces with respect to the induced metric measure structure, and since by assump-
tion (X,d, m) is locally bi-Lipschitz embeddable in Euclidean spaces, without loss
of generality we can assume that all the space (X,d) is bi-Lipschitz embeddable
into some RN (otherwise just repeat the argument below for each E j ⇢ X which is
by assumption bi-Lipschitz embeddable into someRN j ). Sincem is an inner regular
measure we can invade U by an exhaustion of compact subsets, up to a negligible
set. Composing with the bi-Lipschitz embedding into RN , we may even assume
that m is a finite measure supported on a compact set K ⇢ RN . Using Lusin’s and
Egorov’s theorems we may further assume that the assignment K 3 x 7! Vx ⇢ RN

is continuous from the support ofm to the space S(RN ) of linear subspaces onRN ,
where Vx ⇢ RN is the n-dimensional linear subspace given by Lemma 3.2.
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The continuity of x 7!Vx at x0 implies that for all ✓ >0 there is a �= �(✓)>0
such that, for all x 2 B�(x0),

d(Vx , Vx0) < ✓ .

In particular,
d(Vx , V?

x0 ) >
⇡

2
� ✓

and then, by definition of the metric d, also

V?
x0 \ C(Vx , ✓) = {0}.

By Lemma 3.2 for every x 2 K there is an r = r(✓, x) \ (0, 1] such that

K \ Br (x)\(x + C(Vx , ✓)) = ;.

Thus
K \ Br (x) \ (x + C(V?

x0 , ✓̃)) = x (3.6)

for some fixed ✓̃ 2 (0, ⇡
2 � ✓). Again we can decompose K into subsets {R j } j2N

such that (3.6) holds for r = 1
j whenever x 2 R j , that is

R j \ B 1
j
(x) \ (x + C(V?

x0 , ✓̃)) = x .

Lemma 3.4 finally implies that R j is bi-Lipschitz to a subset in Rn , where n =
dim(Vx0) is equal to the dimension of the original chart (U,�).

In order to show thatmxR j is absolutely continuous with respect to the relevant
Hausdorff measure, we will make use of the next result proved by G. Alberti, M.
Csörnyei and D. Preiss [1] in two dimension and recently by G. De Philippis and F.
Rindler [19, Theorem 1.14] in higher dimensions.

Theorem 3.5. Let m be a positive Radon measure on Rd such that every Lipschitz
function f : Rd ! R is differentiable m-almost everywhere. Then m is absolutely
continuous with respect to the d-dimensional Lebesgue measure in Rd .

Let us mention that the aforementioned statement will also follow by a stronger
result announced by Csörnyei and Jones [17], namely that for every Lebesgue null
set E ⇢ Rd there exists a Lipschitz map f : Rd ! Rd which is nowhere differ-
entiable; see also the discussion in the introduction of [2] for a detailed account of
these type of results.

If we combine Theorem 3.5 with the precise characterization of directions of
non-differentiability by Alberti-Marchese [2, Theorem 1.1] we get the following
Corollary 3.6. Before stating it, let us recall the notion of decomposability bundle
of a Radon measure µ introduced in [2, Definition 2.6].

Given a Radon measure µ over Rd , we denote by Fµ the class of all families
{µt : t 2 I } where I is a measure space endowed with a probability measure dt
satisfying the following properties:
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(a) Each µt is the restriction ofH1 to a 1-rectifiable set Et ⇢ Rd ;
(b) The map t 7! µt (E) is measurable for every Borel subset E ⇢ Rd andR

I |µt |(Rd) dt < 1, where |µt | denotes the total variation measure associated
to µt ;

(c) The measure
R
I µt dt is absolutely continuous with respect to µ.

Then we denote by Gµ the class of all Borel maps V : Rd ! S(Rd) such that for
every {µt : t 2 I } 2 Fµ there holds

Tan(Et , x) ⇢ V (x), for µt -a.e. x and dt-a.e. t 2 I ,

where Tan(Et , x) denotes the tangent space of Et at x which exists for H1-a.e.
x 2 Et since by assumption Et is 1-rectifiable.

Since Gµ is closed under countable intersection (see [2, Lemma 2.4]), it admits
a µ-minimal element which is unique modulo equivalence µ-a.e.. With a slight
abuse of language and notation we call any of these minimal elements decompos-
ability bundle of µ, and denote it by x 7! V (x, µ).

The motivation to consider the decomposability bundle is that, roughly said,
V (x, µ) represents the maximal vector space of differentiability of µ at x , see [2,
Theorem 1.1] for the precise statement.

Corollary 3.6. Let µ be a Radon measure on Rd and assume that (sptµ, | · |Rd , µ)
is a Lipschitz differentiability space with d-dimensional charts. Then every Lips-
chitz function f : Rd ! R is differentiable µ-almost everywhere. In particular, µ
is absolutely continuous with respect to the Lebesgue measure on Rd .

Proof. Arguing as in the beginning of the proof of Theorem 3.1, we get that for
µ-almost every x0 2 K = sptm the space Vx0 has dimension d so that by Corollary
3.3 the identity on K is a d-dimensional chart.

Assume that µ is of the form

µ =
Z

µ! dP(!)

such that for P-almost all ! the measure µ! is supported on a 1-rectifiable curve
�!. Such a disintegration-type formula is called Alberti representation of µ; see [8,
Definition 2.2]. Combining [2, Theorem 1.1] with Theorem 3.5, it follows that in
order to get our thesis it is enough to show that

V (x, µ) = Rd , for µ-a.e. x, (3.7)

where x 7! V (x, µ) is the decomposability bundle of µ defined above. Indeed, if
(3.7) holds, then every Lipschitz function is differentiable µ-a.e. by [2, Theorem
1.1(i)], but then in view of Theorem 3.5 we get that µ is absolutely continuous with
respect to the Lebesgue measure on Rd .

Assume by contradiction that (3.7) is violated. Then restricting K , we may as-
sume that µ(K ) > 0 and there is a fixed cone C ⇢ Rd that is disjoint from V (x, µ)
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for all x 2 K . Since by assumption (K , | · |Rd , µ) is a Lipschitz differentiability
space with d-dimensional charts, Bate [8, Corollary 5.4] showed that there is an
Alberti representation in the direction of any cone C 0 ⇢ Rd . Choosing in particular
C 0 = C , we get that for µ-a.e. x 2 K there is a curve �x that is differentiable at
� �1
x (x) and is tangent to C .
However, by [2, Theorem 1.1(ii)] there exists a Lipschitz function that is not

differentiable in any direction v /2 V (x, µ) for µ-a.e. x 2 K . In particular, such a
function is not differentiable along the curves �x for µ-a.e. x 2 K . Since µ(K ) >
0, this contradicts the assumption that (K , | · |Rd , µ) is a Lipschitz differentiability
space. Thus (3.7) holds and the proof is complete.

Finally, recall that an n-rectifiable measure inRN that is absolutely continuous
with respect to the n-dimensional Hausdorff measure has almost everywhere unique
linear tangents that are n-dimensional linear subspaces of RN ; see [24, Theorem
15.19]. Thus we may summarize the content of the section in the next statement.

Theorem 3.7. Let (X,d, m) be a Lipschitz differentiability space and assume it
is locally bi-Lipschitz embeddable in Euclidean spaces, with charts Fk : Ek !
RNk bi-Lipschitz onto their image and m(X \

S
k2N Ek) = 0. Then there exists a

countable collection {R j } j2N of m-measurable subsets of X , covering X up to an
m-negligible set, such that each R j is bi-Lipschitz to a measurable subset of Rn j

and mxR j is absolutely continuous with respect to the n j -dimensional Hausdorff
measureHn j . In other words, X is rectifiable as metric measure space. In addition,
form-almost every x 2 R j \ Ek , the set Fk(Ek) has a unique tangent at Fk(x) that
is an n j -dimensional linear subspace of RNk .

Proof. The first part of the statement corresponds to Theorem 3.1; denote by 8 j :
R j ! Rn j such bi-Lipschitz embeddings. In order to show thatmxR j is absolutely
continuous with respect to Hk j , we first observe that the property of being a Lips-
chitz differentiability space is invariant under composition with bi-Lipschitz maps,
so that (spt(8 j ](mxR j )), | · |Rn j ,8 j ](mxR j )) is a Lipschitz differentiability space
with charts in Rn j . At this point we apply Corollary 3.6 and infer that 8 j ](mxR j )

is absolutely continuous with respect to the Lebesgue measure on Rn j and there-
fore mxR j is absolutely continuous with respect to the n j -dimensional Hausdorff
measure Hn j , since 8 j is bi-Lipschitz. The uniqueness of tangent spaces follows
then by [24, Theorem 15.19].

4. Proof of Theorem 1.2

Let (X,d,m) be an RCD⇤(K , N )-space for some K 2 R and N 2 (1,1). From
Theorem 2.5 we know that (X,d,m) is a Lipschitz differentiability space, namely
there are countably many charts {(Ui ,�i )}i2N with m(Ui ) > 0, X = [i2NUi and
�i : Ui ! Rni Lipschitz maps, with respect to which any Lipschitz function is
differentiable almost everywhere (see Definition 2.1 for more details).
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On the other hand, from Theorem 2.7 we know that there exists a countable col-
lection {R j } j2N of m-measurable subsets of X , covering X up to an m-negligible
set, such that each R j is bi-Lipschitz equivalent to a measurable subset of Rk j , for
some k j 2 N. A natural question is what is the relation between the dimensions ni
and the dimensions k j , the first ones given by the Lipschitz differentiable structure
and the second ones given by the rectifiability result. As observed by F. Caval-
letti and T. Rajala [10], the two agree m-almost everywhere. More precisely the
following proposition holds true.

Proposition 4.1. Let (X,d,m) be an RCD⇤(K , N )-space for some K 2 R and
N 2 (1,1) and let

(1) {(Ui ,�i )}i2N, with �i : Ui ! Rni Lipschitz maps, be the Lipschitz differen-
tiable structure given by Theorem 2.5 and Definition 2.1;

(2) {R j } j2N collection of m-measurable subsets of X , covering X up to an m-
negligible set, such that each R j is bi-Lipschitz to a measurable subset of Rk j

and for m-a.e. x 2 X the tangent space is unique and isometric to Rk j ; i.e. the
rectifiable structure given by Theorem 2.7.

Ifm(Ui \R j ) > 0, then it holds ni = k j , andmx(Ui \R j ) is absolutely continuous
with respect to the k j -dimensional Hausdorff measure.

Proof. Ifm(Ui\R j )>0, by Proposition 2.3, we know that (Ui\R j ,d|Ui\R j⇥Ui\R j ,
mxUi\R j ) is a Lipschitz differentiability space admitting a bi-Lipschitz embedding
8 j into Rk j . Therefore, Theorem 3.7 implies that Ui \ R j admits a unique tangent
space at m-a.e. x 2 Ui \ R j which is isometric to Rni , ni being the dimension of
the Lipschitz chart �i . But on the other hand, by (2), for m-a.e. x 2 Ui \ R j the
tangent space is unique and isometric to Rk j . It clearly follows that ni = k j .

Finally, again by Theorem 3.7, we know that mx(Ui \ R j ) is absolutely con-
tinuous with respect to the k j -dimensional Hausdorff measureHk j .

Since (Ui )i2N covers X up to anm-negligible set andmx(Ui\R j ) is absolutely
continuous with respect to the k j -dimensional Hausdorff measure, we infer that the
same holds for mxR j so that we can conclude the proof of Theorem 1.2.
Remark 4.2 (An alternative proof of Theorem 1.2). We decided to give a proof
of Theorem 1.2 as self-contained as possibile but we wish to mention that by using
more heavily the work of Bate [8] and David [18], it is possibile to give an alter-
native argument which avoids the rectifiability Theorem 3.7. Indeed the fact that
ni = k j in Proposition 4.1 can be showed by using solely the uniqueness of tangent
spaces to Lipschitz differentiability spaces embeddable in Rd proved in [8, Theo-
rem 6.6] with a different argument than ours. Once we know that the dimension of
the bi-Lipschitz charts given by Theorem 2.7 agree with the dimension as Lipschitz
differentiable space, we are reduced to prove the following statement: if µ is a posi-
tive finite measure supported on an compact subset ofRn such that (sptµ, | · |Rn , µ)
is a Lipschitz differentiability space with a unique Lipschitz chart with values inRn ,
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then µ is absolutely continuous with respect to the Lebesgue measure of Rn . Such
a statement can be showed as follows: by the work of Bate [8, Theorem 6.6] the
measure µ admits n-independent Alberti representantions. But if a positive Radon
measure in Rn admits n-independent Alberti representations then, by the recent
work of De Philippis-Rindler [19, Corollary 1.12], it must be absolutely continuous
with respect to the Lebesgue measure of Rn , as desired.
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