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A complete Riemannian manifold
whose isoperimetric profile is discontinuous

STEFANO NARDULLI AND PIERRE PANSU

Abstract. The first known example of a complete Riemannian manifold whose
isoperimetric profile is discontinuous is given.

Mathematics Subject Classification (2010): 53C20 (primary); 49Q20 (sec-
ondary).

1. Introduction
1.1. The problem

Let M be a Riemannian manifold. Given 0 < v < vol(M), consider all domains,
i.e. smooth compact codimensional 0 submanifolds in M with volume v. Define
IM(v) as the greatest lower bound of the boundary areas of such domains. In this
way, one gets a function IM : (0, vol(M)) ! R+ called the isoperimetric profile
of M .
Question 1.1. When is the isoperimetric profile a continuous function?

The answer is affirmative when M is compact [7, Lemma 6.2]. S. Gallot’s
proof uses techniques of metric geometry. In the compact case alternative proofs,
based on the direct method of the calculus of variations, can be found in books
like [1, 11, 12]. The finite volume case is similar, see [13, Corollary 2.4].

There are positive results for special classes of Riemannian manifolds: homo-
geneous spaces [9, Lemma 3, Theorem 6], complete Riemannian manifolds pos-
sessing a strictly convex Lipschitz continuous exhaustion function, [15] (Hadamard
manifolds and complete non-compact manifolds with strictly positive sectional cur-
vature belong to the latter class), unbounded convex Euclidean domains [10]. For
more informations about the literature on the continuity of the isoperimetric profile,
the reader should consult the introductions of [15] and [10], and references therein.

A general belief is that the answer should again be affirmative under bounded
geometry assumptions. The case of complete manifolds with C2,↵-locally asymp-
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totic bounded geometry is covered by [6, Theorem 1] and [5, Theorem 2.2]. To
some extent, their argument mimics the compact case.

If one assumes existence of isoperimetric regions of every volume, one can
weaken bounded geometry assumptions. It suffices to assume a lower bound on the
Ricci curvature and on the volumes of balls of radius 1, see [6, Theorem 4.1]. In
our opinion, it remains an open question whether the noncollapsing assumption that
is a lower bound on the volumes of balls can be removed or not (see Question 1.4
below).

An example of a manifold with density with discontinuous isoperimetric pro-
file has been described by Adams, Morgan and Nardulli in [2, Proposition 2]. This
has triggered our interest in this question.

1.2. The result

Theorem 1.2. There exists a complete connected noncompact 3-dimensional Rie-
mannian manifold M such that IM is a discontinuous function.

The proof is a modification of the treatment of Riemannian manifolds with den-
sity by Adams, Morgan and Nardulli, an account of which can be found in Frank
Morgan’s blog [2].

In our example, the isoperimetric profile fails to be lower semi-continuous.
Here is a typical way of proving lower semi-continuity: given an almost minimiz-
ing sequence of domains � j , i.e., with vol(� j ) decreasing to 1 and area equal to
IM(vol(� j )) + ⌫ j satisfying the condition ⌫ j ! 0, modify � j locally in order to
decrease volume substantially without increasing area too much. This can be done
when � j intersects parts of the manifold where ambient geometry stays bounded.
In our construction, we arrange so that almost minimizing sequences escape to in-
finity, encountering higher and higher curvatures and lower and lower injectivity
radii.

Start with a disjoint union of compact Riemannian manifolds N =
`

n Mn
such that vol(Mn) = 1 + ⌧n where ⌧n > 0 tends to 0. Then IN (1 + ⌧n) = 0.
Assume that, for all n, IMn (1) = IMn (⌧n) � 1. Then it is not too hard to show
that IN (1) � 1. Connecting each Mn to Mn+1 with a very thin tube produces a
connected Riemannian manifold M for which IM(1 + ↵n) tends to 0, where ↵n is
another sequence tending to 0. Again, it is not too hard to show that IM(1) > 0.
Therefore IM is discontinuous.

Thus the key input is the sequence of Riemannian manifolds Mn with vol(Mn)
bounded and IMn (⌧n) bounded below. Adams, Morgan and Nardulli indulged them-
selves in introducing densities. They took for Mn a tiny round sphere with a high
constant density. Since volumes and boundary areas rescale differently, one can
achieve IMn (✏n) � 1. Instead, we use nilmanifolds equipped with metrics which
converge (up to rescaling) to a single Carnot-Carathéodory metric. The Carnot-
Carathéodory isoperimetric inequality established in [14] gives a uniform lower
bound for the isoperimetric profiles of such metrics.
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Question 1.3. Does there exist a 2-dimensional Riemannian manifold whose
isoperimetric profile is discontinuous?

In [10], it is proven that, for unbounded convex Euclidean domains, the (rel-
ative) isoperimetric profile is either identically zero, or positive and continuous,
the latter case arising if and only if the volumes of unit balls are bounded below.
This suggests that non-collapsing might be needed merely to garantee existence of
isoperimetric minimizers, and raises the following question.
Question 1.4. Does a manifold with Ricci curvature bounded below and admitting
isoperimetric regions in every volume, have a continuous isoperimetric profile?

ACKNOWLEDGEMENTS. We thank the referee for numerous helpful suggestions.

2. Isoperimetry in nilmanifolds

2.1. Isoperimetry in the Heisenberg group

The Heisenberg group H is the group of real upper triangular unipotent 3 ⇥ 3 ma-
trices,

H =

8
<

:

0

@
1 x z
0 1 y
0 0 1

1

A ; x, y, z 2 R

9
=

;
.

Putting integer entries produces the discrete subgroup HZ ⇢ H. Let dx , dy, ✓ =
dz � xdy be a basis of left-invariant forms. Let

g✏ = dx2 + dy2 +
1
✏2

✓2.

Our notation differs from [4, page 25], in the sense that our g✏ coincides with their
gL with L = 1/✏2. This is a left-invariant Riemannian metric on H. As ✏ tends to
0, the distance d✏ associated to g✏ converges to the Carnot-Carathéodory distance

dc(p, q) = inf
�
length(� ) ; � (0) = p, � (1) = q, � ⇤✓ = 0

 
.

The volume element of g✏ is 1✏ dx ^ dy ^ ✓ . Next we investigate perimeters. Let
(X1 = @

@x , X2 = @
@y + x @

@z , X3 = @
@z ) denote the basis of left-invariant vector

fields dual to (dx, dy, ✓). Let F denote the space of pairs of smooth functions
� : H ! R2 having compact support and whose Euclidean norm satisfies |�|  1
pointwise. In [4, page 96], the (horizontal) perimeter of a subset E ⇢ H is defined
by

PH(E) = sup
�2F

Z

E
(X1�1 + X2�2) dx ^ dy ^ ✓ .
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Assume that E has a smooth boundary. Since X1�1 + X2�2 is the divergence of
the vector field �1X1 + �2X2 (independently of the choice of ✏), an integration by
parts gives

Z

E
(X1�1 + X2�2) dx ^ dy ^ ✓ = ✏

Z

@E
h�1X1 + �2X2, n✏i✏ darea✏,

where n✏ is the unit outward normal and darea✏ denotes Riemannian area relative
to the Riemannian metric g✏ . Therefore

PH(E) =
Z

@E
✏|nh✏ |✏ darea✏,

where nh✏ is the horizontal projection of n✏ , i.e., nh✏ is the orthogonal projection of
n✏ onto the horizontal distribution span(X1, X2) generated by the vector fields X1,
X2 with respect to the metric g". Note that |nh✏ |✏  1, so

PH(E)  ✏ area✏(@E). (2.1)

As ✏ tends to 0, the vertical component nvert
" := n" � nh✏ of n✏ with respect to g"

tends to 0, therefore |nh✏ | converges uniformly on @E , and

PH(E) = lim
✏!0

✏ area✏(@E), (2.2)

compare with [4, page 99]. It turns out that, for smooth domains, perimeter co-
incides with Hausdorff 3-dimensional measure of boundary. By convention, we
define the Heisenberg volume element as VH = dx ^ dy ^ ✓ .

The Heisenberg isoperimetric inequality [14] states that for all smooth domains
� ⇢ H,

PH(�) �
⇣ ⇡

12

⌘ 1
4 VH(�)3/4 (2.3)

(the unsharp numerical constant is irrelevant here).
With inequality (2.1), the Heisenberg isoperimetric inequality (2.3) implies a

lower bound on the isoperimetric profile of (H, g✏) for all ✏ > 0:

I(H,g✏)(v) �
⇣ ⇡

12

⌘ 1
4 v

3
4

✏1/4
. (2.4)

This is asymptotically sharp for large volumes, but not for small volumes, where
the correct asymptotics is v2/3. However it is the dependency on ✏ which is most
important here.

We shall not directly use inequality (2.4). Instead, we shall rely on inequality
(2.3) to study the Carnot-Carathéodory isoperimetric profile of a quotient of H.
Only at the very end we shall return to Riemannian geometry, using inequality
(2.1).
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2.2. Nilmanifolds

H possesses group automorphisms �t (x, y, z) = (t x, t y, t2z). Let 0t = �t (HZ),
and let Nt = 0t \ H be the quotient manifold. It inherits quotient metrics g✏ ,
yielding Riemannian nilmanifolds Nt,✏ of total volume equal to t4

✏ . But it also
inherits a Carnot-Carathéodory metric that depends only on t . Our first goal is to
show that the Carnot-Carathéodory isoperimetric profile of Nt satisfies an inequality
similar to (2.3). Note that �t induces a homothetic map of N1 onto Nt , volumes VH
are multiplied by t4 and perimeters PH by t3 (see for instance [4, pages 22 and
96]), so it suffices to work with one single compact space N1. The volume of N1 is
VH(N1) = 1.

Theorem 2.1. There exists a constant c such that the Carnot-Carathéodory isoperi-
metric profile of N1 satisfies I(N1,dc)(v) � c min{v, 1 � v}3/4. In other words, if
� ⇢ N1 is a smooth domain of volume less that 1/2, then

PH(�) � c VH(�)3/4.

The method, inspired by [3], consists in cutting domains of N1 into pieces that lift
to covering spaces. Ultimately, pieces lift to H where one can apply (2.3). This
covers cases where volume is smaller than some universal constant v0. To treat
domains with volume � v0 > 0, we apply a compactness result due to [8], which
provides a uniform lower bound on the isoperimetric profile on [v0, Vol(N1)� v0].

2.3. Lifting domains piece by piece

Imitating [3], we shall cut domains in N1 using families of parallel planes. Again,
the point is to reduce to domains which are null-homotopic and then to lift to the
universal covering, where the isoperimetric inequality is known.

Let us explain Bérard and Meyer’s idea in the flat torus T = Z3 \ R3. For
t = (t1, t2, t3) 2 T , let

Gt = {p 2 T ; x(p) = t1 or y(p) = t2 or z(p) = t3} .

Gt is the projection to the torus of three perpendicular planes. As t moves, these
planes stay parallel to themselves. Let � be a domain in T . The coarea formula
shows that

3 · volume(�) =
Z

T
area(� \ Gt ) dt.

One can pick t such that area(� \ Gt )  3 · volume(�). Then � \ Gt lifts to a
Euclidean domain �0 whose boundary is not too much larger than that of �,

area(@�0)  area(@�) + 6 · volume(�).

Note that when volume(�) is small, it is much smaller than area(@�0), which is
at least volume(�)2/3, according to Euclidean isoperimetric inequality. Therefore
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Bérard-Meyer’s construction provides an isoperimetric inequality valid in T , for
domains of small volume.

Due to the anisotropic character of Carnot-Carathéodory geometry, there are
two different kinds of planes:

1. Vertical planes, containing lines parallel to the z axis, defined by linear equations
in x and y only;

2. Horizontal planes, i.e. level sets of the z coordinate.

These families satisfy different coarea formulae, therefore we shall proceed in two
steps.

2.4. Reduction to pillars

A first step is to cut domains into pieces called pillars that lift to a Z� Z covering
space Z of N1.
Definition 2.2. Let ⇣ denote the center of HZ and [H,H] the subgroup of com-
mutators of H. Let us call pillar a subset of Z = ⇣ \ H whose projection to
[H,H] \H = R2 is contained in a unit square. Denote by P IZ the pillar profile of
Z , i.e.

P IZ (v) = inf{PH(P) ; P is a pillar, VH(P) = v}.

Proposition 2.3 (Reduction to pillars). The pillar profile of Z bounds the profile
of N1 from below, with an error term:

I(N1,dc)(v) � P IZ (v) � 4v.

Proof. The coordinate functions x and y on H pass to the quotient N1 ! Z \ R.
For u = (s, s0) 2 (Z \ R)2, let

Gu =
�
p 2 N1 ; x(p) = s or y(p) = s0

 
.

This is the union of two surfaces, each of which is a level set of one of the func-
tions x or y. The complement of Gu has a cyclic fundamental group that maps
isomorphically onto ⇣ .

Let � be a domain in N1. By the coarea formula,

VH(�) =
Z

Z\R
PH(x�1(s) \ �) ds.

This coarea formula follows from the fact that the volume element is a 3-form and
splits as

d VH = dx ^ dy ^ ✓ = dx ^ d PH,

since dy ^ ✓ = d PH along the fibers of x , see Lemma 2.4 below.
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The same inequality holds with x replaced with y. This shows that there exists
u = (s, s 0) 2 (Z \ R)2 such that

PH
⇣
x�1(s) \ �

⌘
 VH(�), PH

⇣
y�1(s0) \ �

⌘
 VH(�),

and thus

PH(Gu \ �)  2 · VH(�).

The complement�\Gu lifts to the covering space Z . Indeed, it is homotopic to the
circle {(0, 0, z) ; z 2 Z \ R}. Pick some lift. Its closure P is a pillar. Indeed, on P ,
the real-valued functions x and y take values in intervals of length 1. The boundary
of P consists of a part that isometrically and injectively maps to @�, and of a part
that maps two-to-one to Gu \ �. Therefore

PH(@P)  PH(@�) + 2 · PH(Gu \ �)  PH(@�) + 4 · VH(�).

If VH(�) = v, this shows that

I(N1,dc)(v) � P IZ (v) � 4v.

Lemma 2.4. Let F be the vertical plane {x = 0} inH. Then the perimeter measure
on F is dy ^ ✓ .

Proof. The Riemannian normal is n✏ = X1, it is horizontal and does not depend
on ✏. Its horizontal projection is nh✏ = X1, whose norm is 1. Since dy and ✓
are orthogonal, |dy|✏ = 1, and |✓ |✏ = ✏, then the Riemannian area element is
darea✏ = dy^ 1

✏ ✓ , and the perimeter measure is dPH = ✏|nh✏ |✏darea✏ = dy^✓ .

2.5. Treatment of pillars

Proposition 2.5 (Treatment of pillars). The profile of H bounds the pillar profile
of Z from below, with an error term:

P IZ (v) � IH(v) � 2v.

Proof. Let P ⇢ Z be a pillar. We can assume that its projection to R2 is contained
in {0  x  1}. Its inverse image P̃ in H is a ⇣ -invariant subset with small
projection in R2. Again, we cut P̃ into logs of height 1 using level sets of the z
function. This time, we split the volume element as

dVH = dx ^ dy ^ dz = dz ^ (dx ^ dy) = dz ^
1
|x |

d PH � dz ^ d PH.

We have used the expression d PH = |x | dx dy for the measure induced on hori-
zontal planes {z = s}, see Lemma 2.6 below.
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The coarea formula gives

VH(P) = VH(P̃ \ {0  z  1})

=
Z 1

0

✓Z

P̃\{z=s}

1
|x |

d PH
◆
ds

�
Z 1

0
PH(P̃ \ {z = s}) ds.

There exists s 2 [0, 1] such that

PH(P̃ \ {z = s})  VH(P).

Set �0 = P̃ \ {s  z  s + 1}. Then

PH(@�0)  PH(@P) + 2 · VH(P).

If P has volume v, this leads to

P IZ (v) � IH(v) � 2v.

Lemma 2.6. Let H be the horizontal plane {z = 0} in H. Then the perimeter
measure on H is |x |dx ^ dy.

Proof. Use the parametrization (x, y) 7! (x, y, 0). The vectors

@

@x
= X1 and

@

@y
= X2 � x X3

are tangent to H . Their cross-product

X1 ⇥ (X2 � x X3) = ✏X3 +
x
✏
X2

is normal. Its norm equals

�
�
�✏X3 +

x
✏
X2
�
�
�
✏

=

s

1+
x2

✏2
.

The Riemannian area element is

darea✏ =

s

1+
x2

✏2
dx ^ dy.

The unit normal is

n✏ =
1

q
1+ x2

✏2

⇣
✏X3 +

x
✏
X2
⌘

.
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Its horizontal projection is

nh✏ =
1

q
1+ x2

✏2

|x |
✏
X2.

Therefore, the perimeter measure is

dPH = ✏|nh✏ |✏darea✏

= |x |
1

q
1+ x2

✏2

s

1+
x2

✏2
dx ^ dy

= |x |dx ^ dy.

2.6. Profile of (N1, dc)

Proposition 2.7. (Carnot-Carathéodory isoperimetric inequality for small vol-
umes). If v  v0 := (12)�5⇡ , then

I(N1,dc)(v) �
c̃
2
v3/4,

where c̃ :=
�

⇡
12
� 1
4 is the non-sharp isoperimetric constant for the Carnot-

Carathéodory metric appearing in (2.3).

Proof. Combined with Propositions 2.3 and 2.5, the Heisenberg isoperimetric in-
equality (2.3) yields

I(N1,dc)(v) � c̃v3/4 � 4v � 2v = v3/4(c̃ � 6 v1/4) �
c̃
2
v3/4,

since v  v0 = 12�5⇡ .

2.7. Proof of Theorem 2.1

There is a notion of Carnot-Carathéodory perimeter, an appropriate topology, name-
ly the L1loc convergence of the characteristic functions for which VH is continu-
ous and the perimeter (which coincides with PH for smooth domains) lower semi-
continuous, and a compactness theorem for sets of bounded perimeter in a compact
Carnot manifold, due to Garofalo and Nhieu in [8, Theorem 1.28]. This implies
that the Carnot-Carathéodory isoperimetric profile I(N1,dc) is positive on (0, 1) and
lower semi-continuous. Therefore, there exists ⌘ > 0 such that I(N1,dc) � ⌘ on
[v0, 1� v0]. Set c = min

n
1
2 , 2

3/4⌘, c̃2

o
. Then I(N1,dc)(v) � ⌘ = c(12 )

3/4 � c v3/4

for every v 2
h
v0,

1
2

i
. On the other hand, Proposition 2.7 shows that I(N1,dc)(v) �

c v3/4 for all v 2 [0, v0].
Note that the proof does not provide an effective constant c.
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2.8. Riemannian profile

Corollary 2.8. Let Nt,✏ denote the quotient �t (HZ) \H equipped with the Rieman-
nian metric induced by g✏ . The isoperimetric profile of Nt,✏ satisfies

INt,✏ (v) �
c

✏1/4
min

(

v,
t4

✏
� v

)3/4
.

Proof. The homothetic map N1 ! Nt induced by the automorphism �t transports
the inequality of Theorem 2.1 to Nt without any change but the fact that VH(Nt ) =
t4 replaces 1. The Riemannian volume element of Nt,✏ is 1✏ VH, the Riemannian
area induced on surfaces satisfies ✏ area � PH by Equation (2.1). This leads to the
indicated dependence on ✏ in the isoperimetric profile of Nt,✏ .

3. Proof of Theorem 1.2

In this section, complete manifolds are constructed by piecing together compact
nilmanifolds like beads. As a warm up, we start with a disjoint union, where the
mechanism is more visible. A slight modification will provide a connected example.

3.1. The case of a disjoint union of nilmanifolds

Proposition 3.1. Let ⌧n = 1
n , ✏n = ⌧ 3n and tn = ⌧

3/4
n (1 + ⌧n)

1/4. Let N =
`

n Ntn,✏n . Then, for all v 2 [ 116 , 1], IN (v) � c
8 , where c is the constant of Theo-

rem 2.1.

Proof. By construction, vol(Ntn,✏n ) = 1 + ⌧n . Let � be a domain in N with
vol(�) = v. Write � =

`
n �n where �n ⇢ Ntn,✏n has volume vn ,

P1
n=1 vn = v.

If some vn satisfies vn � 1
2 (1+ ⌧n), then

area(@�n) �
c

✏
1/4
n

(1+ ⌧n � vn)
3/4

�
c

✏
1/4
n

⌧
3/4
n = c,

the last inequality coming from the fact that vn  v 2]0, 1], so that

area(@�) � c, (3.1)

in this case.
Otherwise, for all n � 1,

area(@�n) �
c

✏
1/4
n

v
3/4
n � c v

3/4
n .
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We use the concavity inequality

a↵ + b↵ � (a + b)↵,

valid for all 0  ↵  1, a � 0 and b � 0. This gives

area(@�) =
1X

n=1
area(@�n)

� c
1X

n=1
v
3/4
n

� c

 
1X

n=1
vn

!3/4
�

✓
1
16

◆3/4
c =

c
8
.

3.2. Connecting manifolds

Proof of Theorem 1.2. We construct a noncompact manifold that has the shape of
an infinite pearl necklace, adjusting suitable parameters carefully. Let 0 < ⌧n < 1
be the sequence of positive real numbers chosen in the proof of Proposition 3.1.
Pick another sequence of volumes wn < 1, such that

X

n
wn <

1
2
, (3.2)

and a sequence of areas an > 0 such that
X

n
an <

c
16

, (3.3)

where c is the constant of Theorem 2.1.
The manifolds Ntn,✏n we want to connect to obtain our counterexample M ,

are like in Proposition 3.1, in particular we retain here that V (Ntn,✏n ) = 1 + ⌧n ,
where V is the Riemannian measure associated to g. Take two small disjoint balls
Bn,1, Bn,2 inside Ntn,✏n whose boundaries have total area  an , except that for
n = 1, B1,1 := ;. Arrange that Bn,2 and Bn+1,1 be nearly isometric with the same
volume ṽ0

n = V (Bn,2) = V (Bn+1,1). Put Ñn := Ntn,✏n \
�
Bn,1[̊Bn,2

�
, A[̊B denotes

set theoretical disjoint union for any pair of sets A, B such that A \ B = ;.
Consider tubes or cylinders Tn of the form Tn := (S2(1) ⇥ [0, 1], gn), where

the metrics gn are chosen in such a way that V (gn)  wn and they glue together
into a smooth metric on the connected sum Mn := Ñn#Tn where the gluing is done
along in(S2(1) ⇥ {0}) ⇠= @Bn,2. Now consider

(M, g) := M1#M2# · · · #Mn#Mn+1# · · · (3.4)
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where Mn and Mn+1 are glued together along the boundaries in(S2(1) ⇥ {1}) ⇠=
@B(n+1),1, where in : Tn ! M is the isometric embedding associated to our con-
struction.

Consider domains Dn := Ñn , we get V (Dn) = 1 + ⌧n � ṽ0
n�1 � ṽ0

n = 1 +
↵n , with ↵n ! 0, "0

n := A(@Dn) = Ag(@Bn,2[̊@Bn+1,1) ! 0, where A is the
2-dimensional Hausdorff measure with respect to the metric induced by g. This
implies readily

0  lim
n!+1

IM(1+ ↵n)  lim
n!+1

A(@Dn) = 0. (3.5)

We show that IM(1) > 0. Let � be a domain in M such that V (�) = 1. Write
�̃ :=

S̊
�̃n , where �̃n := � \ Ñn . Then

V (�̃) � 1�
X

n
wn �

1
2
.

According to Proposition 3.1,
A(@�̃) �

c
8
.

We have, for all n,

@�̃n =
⇣
(@�) \ Ñn

⌘
[̊
⇣
� \ @ Ñn

⌘
,

A
⇣
@�̃n

⌘
� A

⇣
(@�) \ Ñn

⌘
 Ag

�
@Bn,2[̊@Bn,1

�
 an,

thus

A(@�) � A(@�̃) �
X

n
an �

c
8

�
c
16

=
c
16

.

This shows that IM(1) � c
16 .

This last inequality combined with (3.5) concludes the proof of Theorem 1.2.
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