A complete Riemannian manifold whose isoperimetric profile is discontinuous

Stefano Nardulli and Pierre Pansu

Abstract

The first known example of a complete Riemannian manifold whose isoperimetric profile is discontinuous is given.

Mathematics Subject Classification (2010): 53C20 (primary); 49Q20 (secondary).

1. Introduction

1.1. The problem

Let M be a Riemannian manifold. Given $0<v<\operatorname{vol}(M)$, consider all domains, i.e. smooth compact codimensional 0 submanifolds in M with volume v. Define $I_{M}(v)$ as the greatest lower bound of the boundary areas of such domains. In this way, one gets a function $I_{M}:(0, \operatorname{vol}(M)) \rightarrow \mathbf{R}_{+}$called the isoperimetric profile of M.

Question 1.1. When is the isoperimetric profile a continuous function?
The answer is affirmative when M is compact [7, Lemma 6.2]. S. Gallot's proof uses techniques of metric geometry. In the compact case alternative proofs, based on the direct method of the calculus of variations, can be found in books like [$1,11,12$]. The finite volume case is similar, see [13, Corollary 2.4].

There are positive results for special classes of Riemannian manifolds: homogeneous spaces [9, Lemma 3, Theorem 6], complete Riemannian manifolds possessing a strictly convex Lipschitz continuous exhaustion function, [15] (Hadamard manifolds and complete non-compact manifolds with strictly positive sectional curvature belong to the latter class), unbounded convex Euclidean domains [10]. For more informations about the literature on the continuity of the isoperimetric profile, the reader should consult the introductions of [15] and [10], and references therein.

A general belief is that the answer should again be affirmative under bounded geometry assumptions. The case of complete manifolds with $C^{2, \alpha}$-locally asymp-
totic bounded geometry is covered by [6, Theorem 1] and [5, Theorem 2.2]. To some extent, their argument mimics the compact case.

If one assumes existence of isoperimetric regions of every volume, one can weaken bounded geometry assumptions. It suffices to assume a lower bound on the Ricci curvature and on the volumes of balls of radius 1 , see [6, Theorem 4.1]. In our opinion, it remains an open question whether the noncollapsing assumption that is a lower bound on the volumes of balls can be removed or not (see Question 1.4 below).

An example of a manifold with density with discontinuous isoperimetric profile has been described by Adams, Morgan and Nardulli in [2, Proposition 2]. This has triggered our interest in this question.

1.2. The result

Theorem 1.2. There exists a complete connected noncompact 3-dimensional Riemannian manifold M such that I_{M} is a discontinuous function.

The proof is a modification of the treatment of Riemannian manifolds with density by Adams, Morgan and Nardulli, an account of which can be found in Frank Morgan's blog [2].

In our example, the isoperimetric profile fails to be lower semi-continuous. Here is a typical way of proving lower semi-continuity: given an almost minimizing sequence of domains Ω_{j}, i.e., with $\operatorname{vol}\left(\Omega_{j}\right)$ decreasing to 1 and area equal to $I_{M}\left(\operatorname{vol}\left(\Omega_{j}\right)\right)+v_{j}$ satisfying the condition $v_{j} \rightarrow 0$, modify Ω_{j} locally in order to decrease volume substantially without increasing area too much. This can be done when Ω_{j} intersects parts of the manifold where ambient geometry stays bounded. In our construction, we arrange so that almost minimizing sequences escape to infinity, encountering higher and higher curvatures and lower and lower injectivity radii.

Start with a disjoint union of compact Riemannian manifolds $N=\coprod_{n} M_{n}$ such that $\operatorname{vol}\left(M_{n}\right)=1+\tau_{n}$ where $\tau_{n}>0$ tends to 0 . Then $I_{N}\left(1+\tau_{n}\right)=0$. Assume that, for all $n, I_{M_{n}}(1)=I_{M_{n}}\left(\tau_{n}\right) \geq 1$. Then it is not too hard to show that $I_{N}(1) \geq 1$. Connecting each M_{n} to M_{n+1} with a very thin tube produces a connected Riemannian manifold M for which $I_{M}\left(1+\alpha_{n}\right)$ tends to 0 , where α_{n} is another sequence tending to 0 . Again, it is not too hard to show that $I_{M}(1)>0$. Therefore I_{M} is discontinuous.

Thus the key input is the sequence of Riemannian manifolds M_{n} with $\operatorname{vol}\left(M_{n}\right)$ bounded and $I_{M_{n}}\left(\tau_{n}\right)$ bounded below. Adams, Morgan and Nardulli indulged themselves in introducing densities. They took for M_{n} a tiny round sphere with a high constant density. Since volumes and boundary areas rescale differently, one can achieve $I_{M_{n}}\left(\epsilon_{n}\right) \geq 1$. Instead, we use nilmanifolds equipped with metrics which converge (up to rescaling) to a single Carnot-Carathéodory metric. The CarnotCarathéodory isoperimetric inequality established in [14] gives a uniform lower bound for the isoperimetric profiles of such metrics.

Question 1.3. Does there exist a 2-dimensional Riemannian manifold whose isoperimetric profile is discontinuous?

In [10], it is proven that, for unbounded convex Euclidean domains, the (relative) isoperimetric profile is either identically zero, or positive and continuous, the latter case arising if and only if the volumes of unit balls are bounded below. This suggests that non-collapsing might be needed merely to garantee existence of isoperimetric minimizers, and raises the following question.
Question 1.4. Does a manifold with Ricci curvature bounded below and admitting isoperimetric regions in every volume, have a continuous isoperimetric profile?

ACKNOWLEDGEMENTS. We thank the referee for numerous helpful suggestions.

2. Isoperimetry in nilmanifolds

2.1. Isoperimetry in the Heisenberg group

The Heisenberg group \mathbf{H} is the group of real upper triangular unipotent 3×3 matrices,

$$
\mathbf{H}=\left\{\left(\begin{array}{ccc}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right) ; x, y, z \in \mathbf{R}\right\}
$$

Putting integer entries produces the discrete subgroup $\mathbf{H}_{\mathbf{Z}} \subset \mathbf{H}$. Let $d x, d y, \theta=$ $d z-x d y$ be a basis of left-invariant forms. Let

$$
g_{\epsilon}=d x^{2}+d y^{2}+\frac{1}{\epsilon^{2}} \theta^{2}
$$

Our notation differs from [4, page 25], in the sense that our g_{ϵ} coincides with their g_{L} with $L=1 / \epsilon^{2}$. This is a left-invariant Riemannian metric on \mathbf{H}. As ϵ tends to 0 , the distance d_{ϵ} associated to g_{ϵ} converges to the Carnot-Carathéodory distance

$$
d_{c}(p, q)=\inf \left\{\operatorname{length}(\gamma) ; \gamma(0)=p, \gamma(1)=q, \gamma^{*} \theta=0\right\}
$$

The volume element of g_{ϵ} is $\frac{1}{\epsilon} d x \wedge d y \wedge \theta$. Next we investigate perimeters. Let $\left(X_{1}=\frac{\partial}{\partial x}, X_{2}=\frac{\partial}{\partial y}+x \frac{\partial}{\partial z}, X_{3}=\frac{\partial}{\partial z}\right.$) denote the basis of left-invariant vector fields dual to $(d x, d y, \theta)$. Let \mathcal{F} denote the space of pairs of smooth functions $\phi: \mathbf{H} \rightarrow \mathbf{R}^{2}$ having compact support and whose Euclidean norm satisfies $|\phi| \leq 1$ pointwise. In [4, page 96], the (horizontal) perimeter of a subset $E \subset \mathbf{H}$ is defined by

$$
P_{\mathbf{H}}(E)=\sup _{\phi \in \mathcal{F}} \int_{E}\left(X_{1} \phi_{1}+X_{2} \phi_{2}\right) d x \wedge d y \wedge \theta
$$

Assume that E has a smooth boundary. Since $X_{1} \phi_{1}+X_{2} \phi_{2}$ is the divergence of the vector field $\phi_{1} X_{1}+\phi_{2} X_{2}$ (independently of the choice of ϵ), an integration by parts gives

$$
\int_{E}\left(X_{1} \phi_{1}+X_{2} \phi_{2}\right) d x \wedge d y \wedge \theta=\epsilon \int_{\partial E}\left\langle\phi_{1} X_{1}+\phi_{2} X_{2}, n_{\epsilon}\right\rangle_{\epsilon} d \operatorname{area}_{\epsilon}
$$

where n_{ϵ} is the unit outward normal and d area $_{\epsilon}$ denotes Riemannian area relative to the Riemannian metric g_{ϵ}. Therefore

$$
P_{\mathbf{H}}(E)=\int_{\partial E} \epsilon\left|n_{\epsilon}^{h}\right|_{\epsilon} \text { darea }_{\epsilon}
$$

where n_{ϵ}^{h} is the horizontal projection of n_{ϵ}, i.e., n_{ϵ}^{h} is the orthogonal projection of n_{ϵ} onto the horizontal distribution $\operatorname{span}\left(X_{1}, X_{2}\right)$ generated by the vector fields X_{1}, X_{2} with respect to the metric g_{ε}. Note that $\left|n_{\epsilon}^{h}\right|_{\epsilon} \leq 1$, so

$$
\begin{equation*}
P_{\mathbf{H}}(E) \leq \epsilon \operatorname{area}_{\epsilon}(\partial E) \tag{2.1}
\end{equation*}
$$

As ϵ tends to 0 , the vertical component $n_{\varepsilon}^{\text {vert }}:=n_{\varepsilon}-n_{\epsilon}^{h}$ of n_{ϵ} with respect to g_{ε} tends to 0 , therefore $\left|n_{\epsilon}^{h}\right|$ converges uniformly on ∂E, and

$$
\begin{equation*}
P_{\mathbf{H}}(E)=\lim _{\epsilon \rightarrow 0} \epsilon \operatorname{area}_{\epsilon}(\partial E), \tag{2.2}
\end{equation*}
$$

compare with [4, page 99]. It turns out that, for smooth domains, perimeter coincides with Hausdorff 3-dimensional measure of boundary. By convention, we define the Heisenberg volume element as $V_{\mathbf{H}}=d x \wedge d y \wedge \theta$.

The Heisenberg isoperimetric inequality [14] states that for all smooth domains $\Omega \subset \mathbf{H}$,

$$
\begin{equation*}
P_{\mathbf{H}}(\Omega) \geq\left(\frac{\pi}{12}\right)^{\frac{1}{4}} V_{\mathbf{H}}(\Omega)^{3 / 4} \tag{2.3}
\end{equation*}
$$

(the unsharp numerical constant is irrelevant here).
With inequality (2.1), the Heisenberg isoperimetric inequality (2.3) implies a lower bound on the isoperimetric profile of $\left(\mathbf{H}, g_{\epsilon}\right)$ for all $\epsilon>0$:

$$
\begin{equation*}
I_{\left(\mathbf{H}, g_{\epsilon}\right)}(v) \geq\left(\frac{\pi}{12}\right)^{\frac{1}{4}} \frac{v^{\frac{3}{4}}}{\epsilon^{1 / 4}} \tag{2.4}
\end{equation*}
$$

This is asymptotically sharp for large volumes, but not for small volumes, where the correct asymptotics is $v^{2 / 3}$. However it is the dependency on ϵ which is most important here.

We shall not directly use inequality (2.4). Instead, we shall rely on inequality (2.3) to study the Carnot-Carathéodory isoperimetric profile of a quotient of \mathbf{H}. Only at the very end we shall return to Riemannian geometry, using inequality (2.1).

2.2. Nilmanifolds

\mathbf{H} possesses group automorphisms $\delta_{t}(x, y, z)=\left(t x, t y, t^{2} z\right)$. Let $\Gamma_{t}=\delta_{t}\left(\mathbf{H}_{\mathbf{Z}}\right)$, and let $N_{t}=\Gamma_{t} \backslash \mathbf{H}$ be the quotient manifold. It inherits quotient metrics g_{ϵ}, yielding Riemannian nilmanifolds $N_{t, \epsilon}$ of total volume equal to $\frac{t^{4}}{\epsilon}$. But it also inherits a Carnot-Carathéodory metric that depends only on t. Our first goal is to show that the Carnot-Carathéodory isoperimetric profile of N_{t} satisfies an inequality similar to (2.3). Note that δ_{t} induces a homothetic map of N_{1} onto N_{t}, volumes $V_{\mathbf{H}}$ are multiplied by t^{4} and perimeters $P_{\mathbf{H}}$ by t^{3} (see for instance [4, pages 22 and 96]), so it suffices to work with one single compact space N_{1}. The volume of N_{1} is $V_{\mathbf{H}}\left(N_{1}\right)=1$.

Theorem 2.1. There exists a constant c such that the Carnot-Carathéodory isoperimetric profile of N_{1} satisfies $I_{\left(N_{1}, d_{c}\right)}(v) \geq c \min \{v, 1-v\}^{3 / 4}$. In other words, if $\Omega \subset N_{1}$ is a smooth domain of volume less that $1 / 2$, then

$$
P_{\mathbf{H}}(\Omega) \geq c V_{\mathbf{H}}(\Omega)^{3 / 4}
$$

The method, inspired by [3], consists in cutting domains of N_{1} into pieces that lift to covering spaces. Ultimately, pieces lift to \mathbf{H} where one can apply (2.3). This covers cases where volume is smaller than some universal constant v_{0}. To treat domains with volume $\geq v_{0}>0$, we apply a compactness result due to [8], which provides a uniform lower bound on the isoperimetric profile on $\left[v_{0}, \operatorname{Vol}\left(N_{1}\right)-v_{0}\right]$.

2.3. Lifting domains piece by piece

Imitating [3], we shall cut domains in N_{1} using families of parallel planes. Again, the point is to reduce to domains which are null-homotopic and then to lift to the universal covering, where the isoperimetric inequality is known.

Let us explain Bérard and Meyer's idea in the flat torus $T=\mathbf{Z}^{3} \backslash \mathbf{R}^{3}$. For $t=\left(t_{1}, t_{2}, t_{3}\right) \in T$, let

$$
G_{t}=\left\{p \in T ; x(p)=t_{1} \text { or } y(p)=t_{2} \text { or } z(p)=t_{3}\right\}
$$

G_{t} is the projection to the torus of three perpendicular planes. As t moves, these planes stay parallel to themselves. Let Ω be a domain in T. The coarea formula shows that

$$
3 \cdot \operatorname{volume}(\Omega)=\int_{T} \operatorname{area}\left(\Omega \cap G_{t}\right) d t
$$

One can pick t such that area $\left(\Omega \cap G_{t}\right) \leq 3 \cdot \operatorname{volume}(\Omega)$. Then $\Omega \backslash G_{t}$ lifts to a Euclidean domain Ω^{\prime} whose boundary is not too much larger than that of Ω,

$$
\operatorname{area}\left(\partial \Omega^{\prime}\right) \leq \operatorname{area}(\partial \Omega)+6 \cdot \operatorname{volume}(\Omega)
$$

Note that when volume (Ω) is small, it is much smaller than area $\left(\partial \Omega^{\prime}\right)$, which is at least volume $(\Omega)^{2 / 3}$, according to Euclidean isoperimetric inequality. Therefore

Bérard-Meyer's construction provides an isoperimetric inequality valid in T, for domains of small volume.

Due to the anisotropic character of Carnot-Carathéodory geometry, there are two different kinds of planes:

1. Vertical planes, containing lines parallel to the z axis, defined by linear equations in x and y only;
2. Horizontal planes, i.e. level sets of the z coordinate.

These families satisfy different coarea formulae, therefore we shall proceed in two steps.

2.4. Reduction to pillars

A first step is to cut domains into pieces called pillars that lift to a $\mathbf{Z} \oplus \mathbf{Z}$ covering space Z of N_{1}.
Definition 2.2. Let ζ denote the center of $\mathbf{H}_{\mathbf{Z}}$ and $[\mathbf{H}, \mathbf{H}]$ the subgroup of commutators of \mathbf{H}. Let us call pillar a subset of $Z=\zeta \backslash \mathbf{H}$ whose projection to $[\mathbf{H}, \mathbf{H}] \backslash \mathbf{H}=\mathbf{R}^{2}$ is contained in a unit square. Denote by $P I_{Z}$ the pillar profile of Z,i.e.

$$
P I_{Z}(v)=\inf \left\{P_{\mathbf{H}}(P) ; P \text { is a pillar, } V_{\mathbf{H}}(P)=v\right\}
$$

Proposition 2.3 (Reduction to pillars). The pillar profile of Z bounds the profile of N_{1} from below, with an error term:

$$
I_{\left(N_{1}, d_{c}\right)}(v) \geq P I_{Z}(v)-4 v
$$

Proof. The coordinate functions x and y on \mathbf{H} pass to the quotient $N_{1} \rightarrow \mathbf{Z} \backslash \mathbf{R}$. For $u=\left(s, s^{\prime}\right) \in(\mathbf{Z} \backslash \mathbf{R})^{2}$, let

$$
G_{u}=\left\{p \in N_{1} ; x(p)=s \text { or } y(p)=s^{\prime}\right\}
$$

This is the union of two surfaces, each of which is a level set of one of the functions x or y. The complement of G_{u} has a cyclic fundamental group that maps isomorphically onto ζ.

Let Ω be a domain in N_{1}. By the coarea formula,

$$
V_{\mathbf{H}}(\Omega)=\int_{\mathbf{Z} \backslash \mathbf{R}} P_{\mathbf{H}}\left(x^{-1}(s) \cap \Omega\right) d s
$$

This coarea formula follows from the fact that the volume element is a 3-form and splits as

$$
d V_{\mathbf{H}}=d x \wedge d y \wedge \theta=d x \wedge d P_{\mathbf{H}}
$$

since $d y \wedge \theta=d P_{\mathbf{H}}$ along the fibers of x, see Lemma 2.4 below.

The same inequality holds with x replaced with y. This shows that there exists $u=\left(s, s^{\prime}\right) \in(\mathbf{Z} \backslash \mathbf{R})^{2}$ such that

$$
P_{\mathbf{H}}\left(x^{-1}(s) \cap \Omega\right) \leq V_{\mathbf{H}}(\Omega), \quad P_{\mathbf{H}}\left(y^{-1}\left(s^{\prime}\right) \cap \Omega\right) \leq V_{\mathbf{H}}(\Omega)
$$

and thus

$$
P_{\mathbf{H}}\left(G_{u} \cap \Omega\right) \leq 2 \cdot V_{\mathbf{H}}(\Omega)
$$

The complement $\Omega \backslash G_{u}$ lifts to the covering space Z. Indeed, it is homotopic to the circle $\{(0,0, z) ; z \in \mathbf{Z} \backslash \mathbf{R}\}$. Pick some lift. Its closure P is a pillar. Indeed, on P, the real-valued functions x and y take values in intervals of length 1 . The boundary of P consists of a part that isometrically and injectively maps to $\partial \Omega$, and of a part that maps two-to-one to $G_{u} \cap \Omega$. Therefore

$$
P_{\mathbf{H}}(\partial P) \leq P_{\mathbf{H}}(\partial \Omega)+2 \cdot P_{\mathbf{H}}\left(G_{u} \cap \Omega\right) \leq P_{\mathbf{H}}(\partial \Omega)+4 \cdot V_{\mathbf{H}}(\Omega)
$$

If $V_{\mathbf{H}}(\Omega)=v$, this shows that

$$
I_{\left(N_{1}, d_{c}\right)}(v) \geq P I_{Z}(v)-4 v
$$

Lemma 2.4. Let F be the vertical plane $\{x=0\}$ in \mathbf{H}. Then the perimeter measure on F is $d y \wedge \theta$.

Proof. The Riemannian normal is $n_{\epsilon}=X_{1}$, it is horizontal and does not depend on ϵ. Its horizontal projection is $n_{\epsilon}^{h}=X_{1}$, whose norm is 1 . Since $d y$ and θ are orthogonal, $|d y|_{\epsilon}=1$, and $|\theta|_{\epsilon}=\epsilon$, then the Riemannian area element is d area $_{\epsilon}=d y \wedge \frac{1}{\epsilon} \theta$, and the perimeter measure is $d \mathcal{P}_{\mathbf{H}}=\epsilon\left|n_{\epsilon}^{h}\right|_{\epsilon} d$ area $_{\epsilon}=d y \wedge \theta$.

2.5. Treatment of pillars

Proposition 2.5 (Treatment of pillars). The profile of \mathbf{H} bounds the pillar profile of Z from below, with an error term:

$$
P I_{Z}(v) \geq I_{\mathbf{H}}(v)-2 v
$$

Proof. Let $P \subset Z$ be a pillar. We can assume that its projection to \mathbf{R}^{2} is contained in $\{0 \leq x \leq 1\}$. Its inverse image \tilde{P} in \mathbf{H} is a ζ-invariant subset with small projection in \mathbf{R}^{2}. Again, we cut \tilde{P} into logs of height 1 using level sets of the z function. This time, we split the volume element as

$$
d V_{\mathbf{H}}=d x \wedge d y \wedge d z=d z \wedge(d x \wedge d y)=d z \wedge \frac{1}{|x|} d P_{\mathbf{H}} \geq d z \wedge d P_{\mathbf{H}}
$$

We have used the expression $d P_{\mathbf{H}}=|x| d x d y$ for the measure induced on horizontal planes $\{z=s\}$, see Lemma 2.6 below.

The coarea formula gives

$$
\begin{aligned}
V_{\mathbf{H}}(P) & =V_{\mathbf{H}}(\tilde{P} \cap\{0 \leq z \leq 1\}) \\
& =\int_{0}^{1}\left(\int_{\tilde{P} \cap\{z=s\}} \frac{1}{|x|} d P_{\mathbf{H}}\right) d s \\
& \geq \int_{0}^{1} P_{\mathbf{H}}(\tilde{P} \cap\{z=s\}) d s .
\end{aligned}
$$

There exists $s \in[0,1]$ such that

$$
P_{\mathbf{H}}(\tilde{P} \cap\{z=s\}) \leq V_{\mathbf{H}}(P)
$$

Set $\Omega^{\prime}=\tilde{P} \cap\{s \leq z \leq s+1\}$. Then

$$
P_{\mathbf{H}}\left(\partial \Omega^{\prime}\right) \leq P_{\mathbf{H}}(\partial P)+2 \cdot V_{\mathbf{H}}(P)
$$

If P has volume v, this leads to

$$
P I_{Z}(v) \geq I_{\mathbf{H}}(v)-2 v
$$

Lemma 2.6. Let H be the horizontal plane $\{z=0\}$ in \mathbf{H}. Then the perimeter measure on H is $|x| d x \wedge d y$.
Proof. Use the parametrization $(x, y) \mapsto(x, y, 0)$. The vectors

$$
\frac{\partial}{\partial x}=X_{1} \quad \text { and } \quad \frac{\partial}{\partial y}=X_{2}-x X_{3}
$$

are tangent to H. Their cross-product

$$
X_{1} \times\left(X_{2}-x X_{3}\right)=\epsilon X_{3}+\frac{x}{\epsilon} X_{2}
$$

is normal. Its norm equals

$$
\left|\epsilon X_{3}+\frac{x}{\epsilon} X_{2}\right|_{\epsilon}=\sqrt{1+\frac{x^{2}}{\epsilon^{2}}}
$$

The Riemannian area element is

$$
d \operatorname{area}_{\epsilon}=\sqrt{1+\frac{x^{2}}{\epsilon^{2}}} d x \wedge d y
$$

The unit normal is

$$
n_{\epsilon}=\frac{1}{\sqrt{1+\frac{x^{2}}{\epsilon^{2}}}}\left(\epsilon X_{3}+\frac{x}{\epsilon} X_{2}\right)
$$

Its horizontal projection is

$$
n_{\epsilon}^{h}=\frac{1}{\sqrt{1+\frac{x^{2}}{\epsilon^{2}}}} \frac{|x|}{\epsilon} X_{2}
$$

Therefore, the perimeter measure is

$$
\begin{aligned}
d \mathcal{P}_{\mathbf{H}} & =\epsilon\left|n_{\epsilon}^{h}\right|_{\epsilon} d \text { area }_{\epsilon} \\
& =|x| \frac{1}{\sqrt{1+\frac{x^{2}}{\epsilon^{2}}}} \sqrt{1+\frac{x^{2}}{\epsilon^{2}}} d x \wedge d y \\
& =|x| d x \wedge d y .
\end{aligned}
$$

2.6. Profile of $\left(N_{1}, d_{c}\right)$

Proposition 2.7. (Carnot-Carathéodory isoperimetric inequality for small volumes). If $v \leq v_{0}:=(12)^{-5} \pi$, then

$$
I_{\left(N_{1}, d_{c}\right)}(v) \geq \frac{\tilde{c}}{2} v^{3 / 4}
$$

where $\tilde{c}:=\left(\frac{\pi}{12}\right)^{\frac{1}{4}}$ is the non-sharp isoperimetric constant for the CarnotCarathéodory metric appearing in (2.3).

Proof. Combined with Propositions 2.3 and 2.5, the Heisenberg isoperimetric inequality (2.3) yields

$$
I_{\left(N_{1}, d_{c}\right)}(v) \geq \tilde{c} v^{3 / 4}-4 v-2 v=v^{3 / 4}\left(\tilde{c}-6 v^{1 / 4}\right) \geq \frac{\tilde{c}}{2} v^{3 / 4}
$$

since $v \leq v_{0}=12^{-5} \pi$.

2.7. Proof of Theorem 2.1

There is a notion of Carnot-Carathéodory perimeter, an appropriate topology, namely the L_{loc}^{1} convergence of the characteristic functions for which $V_{\mathbf{H}}$ is continuous and the perimeter (which coincides with $P_{\mathbf{H}}$ for smooth domains) lower semicontinuous, and a compactness theorem for sets of bounded perimeter in a compact Carnot manifold, due to Garofalo and Nhieu in [8, Theorem 1.28]. This implies that the Carnot-Carathéodory isoperimetric profile $I_{\left(N_{1}, d_{c}\right)}$ is positive on $(0,1)$ and lower semi-continuous. Therefore, there exists $\eta>0$ such that $I_{\left(N_{1}, d_{c}\right)} \geq \eta$ on $\left[v_{0}, 1-v_{0}\right]$. Set $c=\min \left\{\frac{1}{2}, 2^{3 / 4} \eta, \frac{\tilde{c}}{2}\right\}$. Then $I_{\left(N_{1}, d_{c}\right)}(v) \geq \eta=c\left(\frac{1}{2}\right)^{3 / 4} \geq c v^{3 / 4}$ for every $v \in\left[v_{0}, \frac{1}{2}\right]$. On the other hand, Proposition 2.7 shows that $I_{\left(N_{1}, d_{c}\right)}(v) \geq$ $c v^{3 / 4}$ for all $v \in\left[0, v_{0}\right]$.

Note that the proof does not provide an effective constant c.

2.8. Riemannian profile

Corollary 2.8. Let $N_{t, \epsilon}$ denote the quotient $\delta_{t}\left(\mathbf{H}_{\mathbf{Z}}\right) \backslash \mathbf{H}$ equipped with the Riemannian metric induced by g_{ϵ}. The isoperimetric profile of $N_{t, \epsilon}$ satisfies

$$
I_{N_{t, \epsilon}}(v) \geq \frac{c}{\epsilon^{1 / 4}} \min \left\{v, \frac{t^{4}}{\epsilon}-v\right\}^{3 / 4}
$$

Proof. The homothetic map $N_{1} \rightarrow N_{t}$ induced by the automorphism δ_{t} transports the inequality of Theorem 2.1 to N_{t} without any change but the fact that $V_{\mathbf{H}}\left(N_{t}\right)=$ t^{4} replaces 1. The Riemannian volume element of $N_{t, \epsilon}$ is $\frac{1}{\epsilon} V_{\mathbf{H}}$, the Riemannian area induced on surfaces satisfies ϵ area $\geq P_{\mathbf{H}}$ by Equation (2.1). This leads to the indicated dependence on ϵ in the isoperimetric profile of $N_{t, \epsilon}$.

3. Proof of Theorem 1.2

In this section, complete manifolds are constructed by piecing together compact nilmanifolds like beads. As a warm up, we start with a disjoint union, where the mechanism is more visible. A slight modification will provide a connected example.

3.1. The case of a disjoint union of nilmanifolds

Proposition 3.1. Let $\tau_{n}=\frac{1}{n}, \epsilon_{n}=\tau_{n}^{3}$ and $t_{n}=\tau_{n}^{3 / 4}\left(1+\tau_{n}\right)^{1 / 4}$. Let $N=$ $\coprod_{n} N_{t_{n}, \epsilon_{n}}$. Then, for all $v \in\left[\frac{1}{16}, 1\right], I_{N}(v) \geq \frac{c}{8}$, where c is the constant of Theorem 2.1.

Proof. By construction, $\operatorname{vol}\left(N_{t_{n}, \epsilon_{n}}\right)=1+\tau_{n}$. Let Ω be a domain in N with $\operatorname{vol}(\Omega)=v$. Write $\Omega=\coprod_{n} \Omega_{n}$ where $\Omega_{n} \subset N_{t_{n}, \epsilon_{n}}$ has volume $v_{n}, \sum_{n=1}^{\infty} v_{n}=v$. If some v_{n} satisfies $v_{n} \geq \frac{1}{2}\left(1+\tau_{n}\right)$, then

$$
\begin{aligned}
\operatorname{area}\left(\partial \Omega_{n}\right) & \geq \frac{c}{\epsilon_{n}^{1 / 4}}\left(1+\tau_{n}-v_{n}\right)^{3 / 4} \\
& \geq \frac{c}{\epsilon_{n}^{1 / 4}} \tau_{n}^{3 / 4}=c
\end{aligned}
$$

the last inequality coming from the fact that $\left.\left.v_{n} \leq v \in\right] 0,1\right]$, so that

$$
\begin{equation*}
\operatorname{area}(\partial \Omega) \geq c \tag{3.1}
\end{equation*}
$$

in this case.
Otherwise, for all $n \geq 1$,

$$
\operatorname{area}\left(\partial \Omega_{n}\right) \geq \frac{c}{\epsilon_{n}^{1 / 4}} v_{n}^{3 / 4} \geq c v_{n}^{3 / 4}
$$

We use the concavity inequality

$$
a^{\alpha}+b^{\alpha} \geq(a+b)^{\alpha}
$$

valid for all $0 \leq \alpha \leq 1, a \geq 0$ and $b \geq 0$. This gives

$$
\begin{aligned}
\operatorname{area}(\partial \Omega) & =\sum_{n=1}^{\infty} \operatorname{area}\left(\partial \Omega_{n}\right) \\
& \geq c \sum_{n=1}^{\infty} v_{n}^{3 / 4} \\
& \geq c\left(\sum_{n=1}^{\infty} v_{n}\right)^{3 / 4} \geq\left(\frac{1}{16}\right)^{3 / 4} c=\frac{c}{8}
\end{aligned}
$$

3.2. Connecting manifolds

Proof of Theorem 1.2. We construct a noncompact manifold that has the shape of an infinite pearl necklace, adjusting suitable parameters carefully. Let $0<\tau_{n}<1$ be the sequence of positive real numbers chosen in the proof of Proposition 3.1. Pick another sequence of volumes $w_{n}<1$, such that

$$
\begin{equation*}
\sum_{n} w_{n}<\frac{1}{2} \tag{3.2}
\end{equation*}
$$

and a sequence of areas $a_{n}>0$ such that

$$
\begin{equation*}
\sum_{n} a_{n}<\frac{c}{16} \tag{3.3}
\end{equation*}
$$

where c is the constant of Theorem 2.1.
The manifolds $N_{t_{n}, \epsilon_{n}}$ we want to connect to obtain our counterexample M, are like in Proposition 3.1, in particular we retain here that $V\left(N_{t_{n}, \epsilon_{n}}\right)=1+\tau_{n}$, where V is the Riemannian measure associated to g. Take two small disjoint balls $B_{n, 1}, B_{n, 2}$ inside $N_{t_{n}, \epsilon_{n}}$ whose boundaries have total area $\leq a_{n}$, except that for $n=1, B_{1,1}:=\emptyset$. Arrange that $B_{n, 2}$ and $B_{n+1,1}$ be nearly isometric with the same volume $\tilde{v}_{n}^{\prime}=V\left(B_{n, 2}\right)=V\left(B_{n+1,1}\right)$. Put $\tilde{N}_{n}:=N_{t_{n}, \epsilon_{n}} \backslash\left(B_{n, 1} \cup B_{n, 2}\right), A \cup \bigcirc B$ denotes set theoretical disjoint union for any pair of sets A, B such that $A \cap B=\emptyset$.

Consider tubes or cylinders T_{n} of the form $T_{n}:=\left(S^{2}(1) \times[0,1], g_{n}\right)$, where the metrics g_{n} are chosen in such a way that $V\left(g_{n}\right) \leq w_{n}$ and they glue together into a smooth metric on the connected sum $M_{n}:=\tilde{N}_{n} \# T_{n}$ where the gluing is done along $i_{n}\left(S^{2}(1) \times\{0\}\right) \cong \partial B_{n, 2}$. Now consider

$$
\begin{equation*}
(M, g):=M_{1} \# M_{2} \# \cdots \# M_{n} \# M_{n+1} \# \cdots \tag{3.4}
\end{equation*}
$$

where M_{n} and M_{n+1} are glued together along the boundaries $i_{n}\left(S^{2}(1) \times\{1\}\right) \cong$ $\partial B_{(n+1), 1}$, where $i_{n}: T_{n} \rightarrow M$ is the isometric embedding associated to our construction.

Consider domains $D_{n}:=\tilde{N}_{n}$, we get $V\left(D_{n}\right)=1+\tau_{n}-\tilde{v}_{n-1}^{\prime}-\tilde{v}_{n}^{\prime}=1+$ α_{n}, with $\alpha_{n} \rightarrow 0, \varepsilon_{n}^{\prime}:=A\left(\partial D_{n}\right)=A_{g}\left(\partial B_{n, 2} \cup \partial B_{n+1,1}\right) \rightarrow 0$, where A is the 2-dimensional Hausdorff measure with respect to the metric induced by g. This implies readily

$$
\begin{equation*}
0 \leq \lim _{n \rightarrow+\infty} I_{M}\left(1+\alpha_{n}\right) \leq \lim _{n \rightarrow+\infty} A\left(\partial D_{n}\right)=0 \tag{3.5}
\end{equation*}
$$

We show that $I_{M}(1)>0$. Let Ω be a domain in M such that $V(\Omega)=1$. Write $\tilde{\Omega}:=\bigcup^{\circ} \tilde{\Omega}_{n}$, where $\tilde{\Omega}_{n}:=\Omega \cap \tilde{N}_{n}$. Then

$$
V(\tilde{\Omega}) \geq 1-\sum_{n} w_{n} \geq \frac{1}{2}
$$

According to Proposition 3.1,

$$
A(\partial \tilde{\Omega}) \geq \frac{c}{8}
$$

We have, for all n,

$$
\begin{gathered}
\partial \tilde{\Omega}_{n}=\left((\partial \Omega) \cap \tilde{N}_{n}\right) \stackrel{\cup}{ }\left(\Omega \cap \partial \tilde{N}_{n}\right), \\
A\left(\partial \tilde{\Omega}_{n}\right)-A\left((\partial \Omega) \cap \tilde{N}_{n}\right) \leq A_{g}\left(\partial B_{n, 2} \cup \circ \partial B_{n, 1}\right) \leq a_{n}
\end{gathered}
$$

thus

$$
A(\partial \Omega) \geq A(\partial \tilde{\Omega})-\sum_{n} a_{n} \geq \frac{c}{8}-\frac{c}{16}=\frac{c}{16}
$$

This shows that $I_{M}(1) \geq \frac{c}{16}$.
This last inequality combined with (3.5) concludes the proof of Theorem 1.2.

References

[1] L. Ambrosio, N. Fusco and D. Pallara, "Functions of Bounded Variation and Free Discontinuity Problems", Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000.
[2] C. Adams, F. Morgan and S. Nardulli, http://sites.williams.edu/morgan/2013/07/26/ isoperimetric-profile-continuous/. BlogPost, 2013.
[3] P. BÉRARD and D. MEYER, Inégalités isopérimétriques et applications, Ann. Sci. École Norm. Sup. (4) 15 (1982), 513-541.
[4] L. Capogna, D. Danielli, S. D. Pauls and J. T. Tyson, "An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem", Progress in Mathematics, Vol. 259, Birkhäuser Verlag, Basel, 2007.
[5] A. E. Munoz Flores and S. Nardulli, Generalized compactness for finite perimeter sets and applications to the isoperimetric problem, preprint, 2015.
[6] A. M. Flores and S. Nardulli, Continuity and differentiability properties of the isoperimetric profile in complete noncompact Riemannian manifolds with bounded geometry, arXiv:1404.3245, 2015.
[7] S. Gallot, Inégalités isopérimétriques et analytiques sur les variétés riemanniennes, Astérisque, (163-164):5-6, 31-91, 281 (1989), 1988. On the geometry of differentiable manifolds (Rome, 1986).
[8] N. Garofalo and D.-M. Nhieu, Isoperimetric and Sobolev inequalities for CarnotCarathéodory spaces and the existence of minimal surfaces, Comm. Pure Appl. Math. 49 (1996), 1081-1144.
[9] Wu-Yi Hsiang, On soap bubbles and isoperimetric regions in noncompact symmetric spaces. I, Tohoku Math. J. (2) 44 (1992), 151-175.
[10] G. P. Leonardi, M. Ritoré and E. Vernadakis, Isoperimetric inequalities in unbounded convex bodies, ArXiv e-prints, June 2016.
[11] F. Maggi, "Sets of Finite Perimeter and Geometric Variational Problems", An introduction to geometric measure theory, Cambridge Studies in Advanced Mathematics, Vol. 135, Cambridge University Press, Cambridge, 2012.
[12] F. Morgan, "Geometric Measure Theory", A beginner's guide, Elsevier/Academic Press, Amsterdam, fourth edition, 2009.
[13] S. NARDULLI and F. RuSSo, On the Hamilton's isoperimetric ratio in complete Riemannian manifolds of finite volume, arXiv:1502.05903, 2015.
[14] P. PANSU, An isoperimetric inequality on the Heisenberg group, Conference on differential geometry on homogeneous spaces (Turin, 1983). Rend. Sem. Mat. Univ. Politec. Torino, Special Issue (1984), 159-174.
[15] M. Ritoré, Continuity of the isoperimetric profile of a complete Riemannian manifold under sectional curvature conditions, Rev. Mat. Iberoam. 33 (2017), 239-250.

Instituto de Matemática
UFRJ Av. Athos da Silveira Ramos 149
Centro de Tecnologia - Bloco C Cidade Universitária Ilha do Fundão
Caixa Postal 68530
21941-909 Rio de Janeiro, RJ - Brasil
nardulli@im.ufrj.br
Laboratoire de Mathématiques d'Orsay
Université Paris-Sud, C.N.R.S.
Bâtiment 307
F-91405 Orsay, France
pierre.pansu@math.u-psud.fr

