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Sign-changing blowing-up solutions for the Brezis–Nirenberg
problem in dimensions four and five

ALESSANDRO IACOPETTI AND GIUSI VAIRA

Abstract. We consider the Brezis-Nirenberg problem

�1u = �u + |u|p�1u in �, u = 0 on @�,

where � is a smooth bounded domain in RN , N � 3, p = N+2
N�2 and � > 0.

We prove that, if� is symmetric and N = 4, 5, there exists a sign-changing
solution whose positive part concentrates and blowsup at the center of symmetry
of the domain, while the negative part vanishes, as � ! �1, where �1 = �1(�)
denotes the first eigenvalue of �1 on �, with zero Dirichlet boundary condition.

Mathematics Subject Classification (2010): 35J60 (primary); 35B33, 35J20
(secondary).

1. Introduction and statement of the main results

In this paper we deal with the following problem
(

�1u = �u + |u|p�1u in �
u = 0 on @�,

(1.1)

where � is a bounded smooth domain of RN , N = 4, 5, � > 0, and p + 1 = 2N
N�2

is the critical Sobolev exponent for the embedding of H10 (�) into L p+1(�).
Problem (1.1) is known as the Brezis–Nirenberg problem, since the first ex-

istence results for positive solutions of (1.1) were given in their celebrated pa-
per [14]. In particular they showed that the dimension N plays a crucial role in
the study of problem (1.1). In fact they proved that if N � 4 there exist positive
solutions of (1.1) for every � 2 (0, �1), where �1 = �1(�) is the first eigenvalue
of �1 on � with zero Dirichlet boundary condition, while if N = 3 there exists
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�⇤ = �⇤(�) > 0 such that positive solutions exist if � 2 (�⇤, �1). When � = B
is a ball they also proved that �⇤(B) = �1(B)

4 and a positive solution of (1.1) ex-
ists if and only if � 2

��1(B)
4 , �1(B)

�
. Moreover, as a consequence of the classical

Pohozaev’s identity positive solutions do not exist if �  0 and � is star-shaped.
Since then several results have been obtained for problem (1.1), in particular

on the asymptotic analysis of positive solutions, mainly for N � 5, because also the
case N = 4 presents more difficulties compared to the higher-dimensional ones.

Concerning the case of sign-changing solutions of (1.1), several existence re-
sults have been obtained if N � 4. In this case one can get sign-changing solutions
for every � 2 (0, �1(�)), or even � > �1(�) (see [6, 17–21, 23, 24, 42]). In par-
ticular, Capozzi, Fortunato and Palmieri in [17] showed that for N = 4, � > 0
and � 62 � (�1) (the spectrum of �1 in H10 (�)) problem (1.1) has a nontrivial
solution. The same holds if N � 5 for all � > 0.

The case N = 3 presents the same difficulties enlightened before for positive
solutions and even more. In fact, it is not yet known, when � = B is a ball in
R3, if there are nonradial sign-changing solutions of (1.1) when � is smaller than
�⇤(B) = �1(B)/4. A partial answer to this question posed by H. Brezis was given
in [10].

However, even in the case N = 4, 5, 6, some apparently strange phenomenon
appears for what concerns radial sign-changing solutions in the ball. Indeed it was
first proved by Atkinson, Brezis and Peletier in [5] that for N = 4, 5, 6 there exists
�⇤ = �⇤(N ) such that there are no sign-changing radial solutions of (1.1) for � 2
(0, �⇤). Later this result was proved in [1] in a different way.

As it will be clear in the sequel, the nonexistence result of Atkinson, Brezis
and Peletier is connected to the asymptotic analysis of low-energy sign-changing
solutions of (1.1). Ben Ayed, El Mehdi and Pacella investigated the latter question
in [10, 11]. More precisely, denoting by k · k the H10 (�)-norm and by S the best
Sobolev constant for the embedding H10 (�) into L2⇤(�), they studied the asymp-
totic behavior of sign-changing solutions u� of (1.1) such that ku�k2 ! 2SN/2,
as � ! 0 if N � 4, or � ! �̄, if N = 3, where �̄ is the infimum of the values
of � for which nodal low-energy solutions exist (see [10]). They proved that these
solutions blow up at two different points ā1, ā2, which are the limit of the concen-
tration points a�,1, a�,2 of the positive and negative part of u�. We point out that
they need to assume the extra hypothesis that the concentration speeds of the two
concentration points are comparable for N � 4 (see [11]), while in dimension three
this was derived without any extra assumption (see [10]).

In view of the results of Ben Ayed, El Mehdi and Pacella we get that, for
N � 4, the question of proving the existence of sign-changing low-energy solutions
(i.e., such that ku�k2� converges to 2S

N/2 as � ! 0) whose positive and negative
part concentrate and blow up at the same point, was left open.

In [30], by studying the asymptotic behavior, as � ! 0, of low-energy ra-
dial sign-changing solutions of (1.1) in the unit ball of RN , for N � 7 (for these
dimensions they do exist, as proved by Cerami, Solimini and Struwe in [20]), it
was proved that the positive and the negative part of such solutions concentrate and
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blow up at the center of the ball, and their concentration speeds are not comparable.
Moreover, in the recent paper [33], it has been proved that for N � 7 these so called
“bubble-tower” solutions for (1.1), exist, as � ! 0, in general bounded domains
with some symmetry.

We point out that, in the previous result, the assumption N � 7 on the dimen-
sion is not only technically crucial but it also is necessary. In fact, in the recent
paper [31], the authors proved that for the low dimensions N = 4, 5, 6, and in gen-
eral bounded domains, there cannot exist sign-changing “bubble-tower” solutions
for (1.1), as � ! 0. This result is hence the counterpart, in general bounded do-
mains, of the nonexistence theorem of Atkinson, Brezis and Peletier if we think
of sign-chaging “bubble-tower” solutions as the functions which play, in general
bounded domains, the same role as the radial solutions in the case of the ball.

In view of all these results it is natural to ask what kind of asymptotic profile we
can expect for sign-changing solutions in the low dimensions N = 4, 5, 6, as � goes
to some strictly positive “limit” value. The case of radial sign-changing solutions
in the ball, having two nodal regions, has been investigated in [32]. By studying
the associated differential equation, and taking into account the results of [6,7], the
authors prove that if (u�) is a family of radial sign-changing solutions of (1.1) in the
unit ball B1 of RN , having two nodal regions, such that u�(0) > 0, and denoting
by �̄ = �̄(N ) the limit value of the parameter �, which arises from the study of the
related ordinary differential equation, then:

(i) if N = 4, 5, then �̄ = �1(B1), where �1(B1) is the first eigenvalue of �1 in
H10 (B1), and u+

� concentrates and blows-up at the center of the ball having the
limit profile of a “standard bubble” in RN (i.e., a solution of the critical problem
in RN , see (2.1)), while u�

� converges to zero uniformly, as � ! �̄;
(ii) if N = 6, then �̄ 2 (0, �1(B1)) and u+

� behaves as in (i) while u
�
� converges to

the unique positive radial solution of (1.1) in B1, as � ! �̄.

The aim of this paper is to show that, in general (symmetric) bounded domains of
RN , when N = 4, 5, there exist sign-changing solutions of problem (1.1) having an
asymptotic profile, as � ! �1(�), which is similar to that of radial ones in the ball.

The case N = 6 is more delicate and at the moment we can only make some
conjecture (see Remark 6.3).

In order to state our results, we denote by e1 the first (positive, L2-normalized)
eigenfunction of the Laplace operator with Dirichlet boundary condition, namely
e1 solves the problem 8

><

>:

�1e1 = �1e1 in �

e1 = 0 on @�,

(1.2)

and e1 > 0 in �, |e1|22 =
R
� |e1|2 dx = 1. We construct solutions u� of problem

(1.1) which, up to a remainder term, are given by the superposition of a “standard
bubble” (suitably projected) and the first eigenfunction of the Laplace operator,
multiplied by a factor tending to zero, as � ! �1.
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More precisely, denoting by P the projection onto H10 (�) (see (2.4)), we get:

Theorem 1.1. Let N = 4. Assume that 0 2 � and that� is symmetric with respect
to x1, . . . , x4.
Then, for all � > �1 sufficiently close to �1, there exists a sign-changing solution
u� of problem (1.1) of the form

u�(x) = P

0

@↵4
(�� �1)e

� 1
���1 s1�

(�� �1)2e
� 2
���1 s21� + |x |2

1

A

� e�
1

���1
h
(s2� � 1)2 + 1

i
e1 +8�

(1.3)

where ↵4 = 2
p
2, s j� ! s̄ j > 0, j = 1, 2 as � ! �+

1 and 8� ! 0 in H10 (�) as
� ! �+

1 . Moreover u� is even with respect to the variables x1, . . . , x4.

Theorem 1.2. Let N = 5. Assume that 0 2 � and that� is symmetric with respect
to x1, . . . , x5.

Then, for all � < �1 sufficiently close to �1, there exists a sign-changing solu-
tion u� of problem (1.1) of the form

u�(x) = P

2

4↵5

 
(�1 � �)

3
2 d2�

(�1 � �)2d22� + |x |2

! 3
2
3

5 � (�1 � �)
3
4 d1�e1 +8� (1.4)

where ↵5 = 15
p
15, d j� ! d̄ j > 0, j = 1, 2 as � ! ��

1 and 8� ! 0 in H10 (�)

as � ! ��
1 . Moreover u� is even with respect to the variables x1, . . . , x5.

Remark 1.3. We observe that the solutions obtained in Theorem 1.1 and Theorem
1.2 are sign-changing because, in the case N = 4 they solve problem 1.1 for � > �1
and it is well known that for these values of the parameter � there cannot exist
solutions of problem (1.1) of constant sign (see [14, Remark 1.1]). In the case N =
5, the sign-changingness of the solution is a consequence of the estimates of the
L1-norm of the remainder term (see the proof of Theorem 1.2 and Proposition 6.1).

We point out that since �1(�) is reached from above, if N = 4, while, it is
reached from below, if N = 5, our results agree with those of [4, 26] for radial
sign-changing solutions in the ball.

Moreover, we observe that, thanks to the estimates of the L1-norm of the re-
mainder term in compact subsets of� \ {0} (see the proof of Theorem 1.2, Proposi-
tion 6.1 and Remark 6.2), the main contribution to the negative part of the solutions
obtained in Theorems 1.1 and 1.2 is given by the first (normalized, positive) eigen-
function of�1 in H10 (�), multiplied by a factor tending to zero, as � ! �1. Hence,
this family of solutions verifies, in the more general setting of bounded (symmet-
ric) domains, a conjecture made by Atkinson, Brezis and Peletier in [6] for nodal
radial solutions in the ball, for N = 4, 5, which states that the negative part of these
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nodal radial solutions, converges to zero, in compact subsets of B1 \ {0}, as the first
eigenfunction of �1 in the unit ball multiplied by a vanishing factor, as � ! �1.

We also observe that the energy (see (1.5)) of the solutions obtained in Theo-
rems 1.1 and 1.2 converges, as � ! �1(�), to the “critical” energy level 1N S

N/2

for the Palais-Smale condition (as a consequence of (5.17), (5.18) and since the
H10 -norm of the remainder term goes to zero).

The proof of our results is based on the Lyapunov-Schmidt reduction method
which allows us to reduce the problem of finding blowing-up solutions to (1.1) to
the problem of finding critical points of a functional (the reduced energy) which
depends only on the concentration parameters.

We point out that, since we deal with the critical exponent, there are serious
difficulties with the standard procedure when trying to look for critical points for
the energy functional associated to (1.1), namely

J�(u) =
1
2

Z

�
|ru|2 dx�

1
p + 1

Z

�
|u|p+1 dx�

�

2

Z

�
u2 dx, u 2 H10 (�). (1.5)

In oder to overcome these difficulties, for the case N = 5 we use a new idea, in-
troduced in our paper [33], which is based on the splitting of the remainder term in
two parts. Usually the remainder term 8� is found by solving an infinite dimen-
sional problem, called “the auxiliary equation”, here, we look for a remainder term
which is the sum of two remainder terms, of different orders. Differently from the
standard procedure these two functions are found by solving a system of two equa-
tions, which is obtained by splitting the auxiliary equation in an appropriate way.
We stress that by using the standard procedure it is not possible to prove the exis-
tence of a critical point of the reduced energy and consequently to find a solution
of problem (1.1) (see [33, Section 1]). We think that this improvement of a very
consolidate technique can be used in other contexts for proving existence of solu-
tions. We also note that in order to make the finite dimensional reduction method
work, we use some techniques which usually belong to the variational framework.
In fact, the standard procedure allows us to get only estimates of the H10 -norm of the
remainder term, but in our case it is necessary to improve them up to the L1-norm
(see Lemma 5.2).

For the case N = 4 we use the standard procedure, but it requires finer and dif-
ferent estimates, since they are more delicate in this dimension, and it also requires
suitable choices of the parameters � and ⌧ .

We also observe that the symmetry assumption on the domain � is only made
in order to simplify the computations which however, even in the symmetric con-
text, are long and tough. But there is no reason, a priori, for the previous result not
to hold in general domains.

The outline of the paper is the following: in Section 2 we set the notation and
recall some preliminary results. In Section 3 we explain the setting of the problem.
In Section 4 we look for the remainder term8� in a suitable space. In Section 5 we
study the reduced energy. Finally, in Section 6 we prove Theorems 1.1 and 1.2.
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2. Notation and some preliminary results

We introduce the functions

U�(x) = ↵N
�
N�2
2

�
�2 + |x |2

� N�2
2

, � > 0, x 2 RN (2.1)

with ↵N := [N (N �2)]
N�2
4 . Is is well known (see [8,16,44]) that (2.1) are the only

radial solutions of the equation

�1u = u p in RN . (2.2)

We define '� to be the unique solution to the problem

(
1'� = 0 in �
'� = U� on @�,

(2.3)

and let
PU� := U� � '� (2.4)

be the projection of U� onto H10 (�), i.e.

(
�1PU� = U p

� in �

PU� = 0 on @�.
(2.5)

Finally, we introduce the Robin function of a domain�, which is defined as ⌧ (x) =
H(x, x).

Here H(x, y), for x, y 2 �, is given as follows: for all y 2 �, H(x, y) satisfies

�1H(x, y) = 0 in �, H(x, y) =
1

|x � y|N�2 for x 2 @�.

The function H is nothing but the regular part of the Green function. Indeed, if
G(x, y) denotes the Green function of the Laplace operator at the boundary @�, we
have:

G(x, y) = �N

✓
1

|x � y|N�2 � H(x, y)
◆

with �N := 1
(N�2)!N , where !N denotes the surface area of the unit sphere in RN .
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It is well-known that the following expansion holds (see [40])

'�(x) = ↵N �
N�2
2 H(0, x) + O(�

N+2
2 ) as � ! 0. (2.6)

Moreover, from elliptic estimates it follows that

0 < '�(x) < c�
N�2
2 , in � (2.7)

and
|'�|q,�  C�

N�2
2 , q 2

✓
p + 1
2

, p + 1
�

, (2.8)

see for instance [45] and references therein.
In what follows we let

(u, v) :=
Z

�
ru · rv dx, kuk :=

✓Z

�
|ru|2 dx

◆ 1
2

as the inner product in H10 (�) and its corresponding norm while we denote by
(·, ·)H1(RN ) and by k ·kH1(RN ) the scalar product and the standard norm in H1(RN ).
Moreover we denote by

|u|r :=

✓Z

�
|u|r dx

◆ 1
r

the Lr (�)-standard norm for any r 2 [1,+1]. When A 6= � is any Lebesgue
measurable subset of RN , or, when A = � and we need to specify the domain of
integration, we use the alternative notations kukA, |u|r,A.

From now on we assume that � is a bounded open set with smooth boundary
of RN , symmetric with respect to x1, . . . , xN and which contains the origin.

We define then

Hsym :=
n
u 2 H10 (�) : u is symmetric with respect to x1, . . . , xN

o
,

and for q 2 [1,+1]

Lqsym :=
�
u 2 Lq(�) : u is symmetric with respect to x1, . . . , xN

 
.

3. Setting of the problem

Let i⇤ : L
2N
N+2
sym ! Hsym be the adjoint operator of the embedding i : Hsym(�) !

L
2N
N�2
sym , namely if v 2 L

2N
N+2
sym then u = i⇤(v) in Hsym is the unique solution of the

equation (
�1u = v in �
u = 0 on @�.
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By the continuity of i it follows that

ki⇤(v)k  C|v| 2N
N+2

8v 2 L
2N
N+2
sym (3.1)

for some positive constant C which depends only on N ,
⇢
u = i⇤ [ f (u) + �u]
u 2 Hsym

(3.2)

where f (s) = |s|p�1s, p = N+2
N�2 .

Let Z� the following function:

Z�(x) := @�U�(x) = ↵N
N � 2
2

�
N�4
2

|x |2 � �2

�
�2 + |x |2

� N
2

. (3.3)

We remark that the function Z� solves the problem (see [13])

�1z = p|U�|p�1z, in RN . (3.4)

Let PZ� the projection of Z� onto H10 (�). Elliptic estimates give

PZ�(x) = Z�(x) � ↵N
N � 2
2

�
N�4
2 H(0, x) + O(�

N
2 )

| {z }
:= �(x)

(3.5)

uniformly in �.
We next describe the shape of the solution we are looking for. Let �, ⌧ be

positive parameters defined in the following way: for N = 4 we let

� = ✏e�
1
✏ s1

⌧ = e�
1
✏ g(s2)

with �� �1 = ✏,

g(s2) = (s2 � 1)2 + 1, s j >0.

(3.6)

Instead, for N = 5 we let

⌧ = ✏
3
4 d1

� = ✏
3
2 d2,

with �1 � � = ✏, d j > 0.

(3.7)

Fix a small ⌘ > 0 and assume that

⌘ < d j , s j <
1
⌘

for j = 1, 2. (3.8)
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We look for an approximate solution to problem (3.2) which is of the form

u�(x) = PU� � ⌧e1 +8�(x), (3.9)

where e1 > 0 is the first eigenfunction of �1 corresponding to the first eigenvalue
�1, and the remainder term 8� is a small function which is even with respect to the
variables x1, . . . , xN .

Finally let us recall some useful inequalities that we will use in the sequel.
Since these are known results, we omit the proof. Recalling that f (s) = |s|p�1s,
where p = N+2

N�2 , we have:

Lemma 3.1. Let N < 6. There exists a positive constant c, depending only on p,
such that for any a, b 2 R

| f (a + b) � f (a) � f 0(a)b|  c
⇣
|a|p�2|b|2 + |b|p

⌘
, (3.10)

and
| f (a + b) � f (a)|  c

⇣
|a|p�1|b| + |b|p + |a|p�2|b|2

⌘
. (3.11)

Lemma 3.2. Let N < 6. There exists a positive constant c depending only on p
such that for any a, b1, b2 2 R we get

�
� f (a + b1) � f (a + b2) � f 0(a)(b1 � b2)

�
�

 c
⇣
|a|p�2|b2 � b1| + |b1|p�1 + |b2|p�1

⌘
|b1 � b2|.

(3.12)

3.1. Scheme of the reduction

Let us consider

K1 := span {e1} ⇢ Hsym and K := span {PZ�, e1} ⇢ Hsym

and the orthogonal spaces

K?
1 :=

n
� 2 Hsym : (�, e1)H10 (�) = 0

o

K? :=
n
� 2 Hsym : (�, e1)H10 (�) = 0, (�,PZ�)H10 (�) = 0

o
.

Let maps 51 : Hsym ! K1, 5 : Hsym ! K and maps 5?
1 : Hsym ! K?

1 , and
5? : Hsym ! K? be the projections onto K1, K and K?

1 , K?, respectively.
We set

V�(x) := PU�(x) � ⌧e1(x). (3.13)

We remark that V�(x) = V�(s̄, x) for N = 4 and V�(x) = V�(d̄, x) for N = 5
where s̄ := (s1, s2) 2 R2+ and d̄ := (d1, d2) 2 R2+.
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In order to solve problem (1.1) we will solve the pair of equations

5? �
V� +8� � i⇤ [ f (V� +8�) + �(V� +8�)]

 
= 0, (3.14)

5
�
V� +8� � i⇤ [ f (V� +8�) + �(V� +8�)]

 
= 0. (3.15)

Given s̄ and d̄ satisfying condition (3.8), one has to solve first the equation (3.14)
in 8� which is the lower order term in the description of the ansatz and then solve
equation (3.15).

We recall now the definition of stable critical point that we will use in the
sequel.
Definition 3.3. Let h : D ! R be a C1� function where D ⇢ Rm is an open set.
We say that x0 is a stable critical point if

rh(x0) = 0

and there exists a neighourhood U of x0 such that

rh(x) 6= 0 8 x 2 @U

rh(x) = 0, x 2 U =) h(x) = h(x0)

and
deg(rh,U, 0) 6= 0,

where deg denotes Brouwer degree.
We remark that any non-degenerate critical point of h is a stable critical point

in the sense of Definition 3.3.
Moreover it is easy to see that if x0 is a minimum or a maximum point of h

(not necessarily non-degenerate) then x0 is a stable critical point in according to
Definition 3.3.

4. The auxiliary equation (3.14)

In the sequel we solve (3.14) in both cases N = 4, 5.

4.1. The reduction for N = 4

We write (3.14) as
R� + L(�) +N (�) = 0, (4.1)

where

R� := 5? �
V� � i⇤ [ f (V�) + �V�]

 
(4.2)

L(�) := 5? �
� � i⇤

⇥
f 0(U�)� + ��

⇤ 
(4.3)
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and
N (�) := 5? �

�i⇤
⇥
f (V� + �) � f (V�) � f 0(U�)�

⇤ 
. (4.4)

In what follows we estimate the error term R�, we analyze the invertibility of the
linear operator L and, at the end, we look for a solution of (4.1) by using a fixed
point argument.

4.1.1. Estimate of the error term

Proposition 4.1. For any ⌘ > 0, there exist ✏0 > 0 and c > 0 such that for all
✏ 2 (0, ✏0), for all (s1, s2) 2 R2+ satisfying (3.8), we have

kR�k  c✏e�
1
✏ .

Proof. By continuity of5?, by definition of i⇤ and by using (3.1), we deduce that

kR�k  c| f (PU� � ⌧e1) � f (PU�)| 2N
N+2| {z }

(I )

+ c| f (PU�) � f (U�)| 2N
N+2| {z }

(I I )

+ c�|PU�| 2N
N+2| {z }

(I I I )

+ c⌧ |�� �1||e1| 2N
N+2| {z }

(I V )

.

Let us fix ⌘ > 0. We begin with estimating (I ). By using Lemma 3.1 and recalling
the choice of ⌧ and � (see (3.6)), we deduce that

(I )  c1
✓Z

�


PU (p�1)( 2N

N+2 )

� (⌧e1)
2N
N+2 +(⌧e1)p+1

+⌧
4N
N+2PU

2N (6�N )
(N�2)(N+2)
� e

4N
N+2
1 dx

�◆ N+2
2N

 c2
✓
⌧

2N
N+2 |e1|

2N
N+2
1

Z

�

��
4N
N+2

⇣
1+

�
� x
�

�
�2
⌘ 4N
N+2

dx

+⌧ p+1|e1|
p+1
1 |�|+⌧

4N
N+2 |e1|

4N
N+2
1 �

N (6�N )
N+2

Z

�

1

|x |
2N (6�N )
N+2

dx
◆ N+2

2N

 c
⇣
✏e�

2
✏ +✏3e�

3
✏ +✏e�

3
✏

⌘
c(⌘,�,N )✏e�

1
✏ .

The estimate of (I I ) is standard and hence, by making some computations we get

(I I )  c3�N�2  c4✏e�
1
✏ (4.5)

for all sufficiently small ✏.
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We now estimate (I I I ). Since PU�  U� we have:

(I I I )  ↵N �
N�2
2

 Z

�

1

(�2 + |x |2)
N (N�2)
N+2

dx

! N+2
2N

 ↵N �
N�2
2

 Z

�

1

|x |
N (N�2)
N+2

dx

! N+2
2N

 c✏e�
1
✏ .

Finally
(I V )  c⌧✏  c✏e�

1
✏ .

Putting together all these estimates the result follows.

4.1.2. The linear operator Let us consider the linear operator L : K? ! K?

defined in (4.3). Next results states the invertibility of L and provides a uniform
estimate on the norm of L�1.

Proposition 4.2. Let N = 4 and � be as in (3.6). Then, for any small ⌘ > 0, there
exists C = C(⌘) > 0 such that for all � sufficiently close to �1, for any real number
s1 2 (⌘, 1⌘ ) and for any � 2 K? it holds that

kL(�)k � Ck�k.

Moreover L is invertible and kL�1k  1
C .

Proof. The proof is quite standard and so we limit to sketch the proof of the first
part. The invertibility of L follows by arguing as in Proposition 3.2 of [37].

We argue by contradiction. Assume that there exists a small ⌘ > 0, a sequence
(�n)n converging to �1, a sequence of real numbers (sn)n ⇢ (⌘, 1⌘ ) and a sequence
of functions (�n)n ⇢ H10 (�) such that for all n 2 N

�n 2 K?

k�nk = 1
(4.6)

and
L(�n) = hn with khnk ! 0, as n ! +1. (4.7)

Since hn 2 K? we get that there exist some real numbers cnj , j = 0, 1 such that

�n � i⇤
⇥
f 0(U�n )�n + �n�n

⇤
= hn + wn in � (4.8)

where wn = cn0PZ�n + cn1e1.
First we will show that

lim
n!+1

kwnk = 0. (4.9)
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To this end we multiply (4.8) by PZ�n and by e1 and we integrate by parts in �
deducing that

(�n,PZ�n )H10 (�) �
Z

�
f 0(U�n )�nPZ�n dx � �n

Z

�
�nPZ�n dx

= (hn,PZ�n )H10 (�) + cn0(PZ�n ,PZ�n )H10 (�) dx + cn1(e1,PZ�n )H10 (�)

and

(�n, e1)H10 (�) �
Z

�
f 0(U�n )�ne1 dx � �n

Z

�
�ne1 dx

= (hn, e1)H10 (�) + cn0(PZ�n , e1)H10 (�) + cn1(e1, e1)H10 (�).

We remark that since PZ�n solves (3.4) and �n 2 K? we have

0 = (�n,PZ�n )H10 (�) =
Z

�
f 0(U�n )�n Z�n dx

and

(PZ�n ,PZ�n )H10 (�) =
Z

�
|rPZ�n |2 dx =

Z

�
f 0(U�n )Z�nPZ�n dx .

Moreover since e1 solves (1.2)

(PZ�n , e1)H10 (�) =
Z

�
re1rPZ�n dx = �1

Z

�
e1PZ�n dx .

and (since e1 2 K?)

0 = (�n, e1)H10 (�) = �1

Z

�
e1�n dx .

Hence the equations become

cn0

Z

�
f 0(U�n )Z�nPZ�n dx

| {z }
(I )

+cn1�1
Z

�
e1PZ�n dx

| {z }
(I I )

= �
Z

�
f 0(U�n )�n(PZ�n � Z�n ) dx � �n

Z

�
�nPZ�n dx � (hn,PZ�n )H10 (�)

and (hn,PZ�n )H10 (�) := 0 since hn 2 K?, and

cn0�1
Z

�
e1PZ�n dx

| {z }
(I I )

+cn1�1
Z

�
e21 dx

| {z }
:=D0>0

= �
Z

�
f 0(U�n )�ne1 dx � (hn, e1)H10 (�)
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and (hn, e1)H10 (�) := 0 since hn 2 K?. By definition of projection we havePZ�n =
Z�n �  �n , where  �n is an harmonic function and  �n = Z�n on @�. Therefore,
by elliptic estimates, it follows that there is a constant C > 0 depending only on N
and �, such that | �n |1,�  C (see also (3.5)).

Hence
Z

�
f 0(U�n )PZ�n Z�n dx =

Z

�
f 0(U�n )Z2�n dx �

Z

�
f 0(U�n ) �n Z�n dx .

Now Z

�
f 0(U�n )Z2�n dx = ↵

p+1
4 ��2n

Z

R4

(|y|2 � 1)2

(1+ |y|2)6
dy + O

⇣
�2n

⌘

= A��2n + o(1) as n ! +1

where A := ↵
p+1
4

R
R4

(|y|2�1)2
(1+|y|2)6 dy.Moreover

Z

�
f 0(U�n ) �n Z�n dx = ↵

p
4 H(0, 0)

Z

R4

1� |y|2

(1+ |y|2)4
dy + O(�n) = A0 + O(�n).

Therefore
(I ) = A��2n � A0 + o(1)

as n ! +1.Moreover
Z

�
e1PZ�n dx =

Z

�
e1Z�n dx �

Z

�
e1 �n dx

and now
Z

�
e1Z�n dx = B + o(1) as n ! +1

where B =
R
� e1

1
|x |2 dx . Moreover

Z

�
e1 �n dx = ↵4

Z

�
e1H(0, x) dx = B0.

We then get
(I I ) = B � B0 + o(1).

Hence the equations become

cn0
⇣
A � A0�2n + o(�2n)

⌘
+ cn1�1

⇣
(B � B0)�2n + o(�2n)

⌘

= � �2n

Z

�
f 0(U�n )�n(PZ�n � Z�n ) dx

| {z }
(I I I )

� �2n�n

Z

�
�nPZ�n dx

| {z }
(I V )
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and
cn0�1 (B � B0 + o(1)) + cn1�1D0 = �

Z

�
f 0(U�n )�ne1 dx

| {z }
(V )

.

Now by using (3.5) we get that

|(I I I )| =

�
�
�
���

2
n

Z

�
f 0(U�n )�n(PZ�n � Z�n ) dx

�
�
�
�

 �2n |PZ�n � Z�n |4,�|�n|4,�| f 0(U�n )|2,� = O
⇣
�2n

⌘
.

We remark that

kPZ�nk2 =
Z

�
f 0(U�n )PZ�n Z�n dx 

�
�
�
�

Z

�
f 0(U�n )PZ�n Z�n dx

�
�
�
�  C��2n .

Hence we get
|(I V )|  C|�n|2,�kPZ�nk  C�n.

Finally

|(V )|  |e1|1,�

Z

�
| f 0(U�n )�n| dx  C

�
�U�n

�
�
2
3
3,� |�n|3,�  C�

2
3
n = o(1).

Then
8
<

:

cn0
�
A � A0�2n + o(�2n)

�
+ cn1�1

�
(B � B0)�2n + o(�2n)

�
= o(�n)

cn0�1 (B � B0 + o(1)) + cn1�1D0 = o(1).

In both cases the system is definitely non singular and hence it has a solution
(cn0 , c

n
1) such that c

n
j ! 0 as n ! +1.

Moreover cn0 = o(�n). Now we observe that

kwnk
2
H10 (�)

= (�n,wn)H10 (�)�
Z

�
f 0(U�n )�nwndx��n

Z

�
�nwndx�(hn,wn)H10 (�)

= �cn0

Z

�
f 0(U�n )�nPZ�n dx�cn1

Z

�
f 0(U�n )�ne1dx+(�n,wn)H10 (�)

��ncn0

Z

�
�nPZ�n dx��ncn1

Z

�
�ne1dx�(hn,wn)H10 (�)

Reasoning as before and using that cn0 = o(�n), cn1 = o(1) as n ! +1 we get that

kwnk
2
H10 (�)

= o(1)

and the thesis easily follows.
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Now let us define
e�n(y) := �n�n(�n y).

Then e�n solves the problem

�1e�n� pU(y)p�1e�n��n�
2
ne�n = �3n1(hn(�n y)+wn(�n y)) in

�n

�n
. (4.10)

We point out that since ke�nk �
�n
is bounded, then, up to a subsequence, e�n converges

weakly in D1,2(R4) to some �0. This means that
Z

�
�n

r�̃nr' dx !
Z

R4
r�0r' dx as n ! +1

for any ' 2 C1
0 (R4).

By multiplying equation (4.10) by ' 2 C1
0 (R4) and integrating we get that

Z

�
�n

r�̃nr' dx � p
Z

�
�n

U p�1�̃n' dx � �n�
2
n

Z

�
�n

�̃n' dx

= �3n

Z

�
�n

rh̃nr' dx + �3n

Z

�
�n

rw̃nr' dx,

where h̃n(y) = hn(�n y) and w̃n(y) = wn(�n y). So, as n ! +1, by using also the
results of Step 1, we get that �0 solves the problem

�1�0 = p |U(y)|p�1 �0 in R4

and satisfies the condition Z

R4
r�0rZ dx = 0

and hence �0 ⌘ 0.
Moreover also k�nkH10 (�) is bounded and so, up to a subsequence, also �n

converges weakly to some �⇤ in H10 (�) and, as before, we get that, as n ! +1,
�⇤ solves

�1�⇤ = �1�
⇤ in �

with the condition Z

�
re1r�⇤ dx = 0.

Hence we get that �⇤ = 0.
At the end, in a very standard way, one can prove that k�nk = o(1). This

immediately gives a contradiction since by assumption k�nk2 = 1.
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4.1.3. Solving equation (4.1) We are now in position to find a solution 8� 2 K?

of the equation (4.1), namely we prove the following result.

Proposition 4.3. Let N = 4, ⌧ and � as in (3.6). Then, for any ⌘ > 0, there exist
✏0 > 0 and c > 0 such that for all ✏ 2 (0, ✏0), for all (s1, s2) 2 R2+ satisfying
condition (3.8), there exists a unique solution 8̄� 2 K? of the equation (4.1), such
that

k8̄�k  c✏e�
1
✏ . (4.11)

Moreover 8̄� is continuously differentiable with respect to (s1, s2).

Proof. The proof is almost standard and hence we sketch it. Let us fix ⌘ > 0 and
define the operator T : K? ! K? as

T (�) := �L�1[N (�) +R�].

We remark that T is well defined since L is invertible (see Proposition 4.2).
In order to find a solution of the equation (4.1) we solve the fixed point problem

T (�) = �. Let us define the proper ball

B✏ :=
n
� 2 K? : k�k  r✏e�

1
✏

o

for r > 0 sufficiently large.
Let us show that T maps B✏ into B✏ . From Proposition 4.2, there exists ✏0 =

✏0(⌘) > 0 and c = c(⌘) > 0 such that:

kT (�)k  c(kN (�)k + kR�k), (4.12)

for all � 2 K?, for all (s1, s2) 2 R2+ satisfying (3.8) and for all ✏ 2 (0, ✏0).
In view of Proposition 4.1 we have to estimate only kN�(�)k. Indeed:

kN (�)k  c| f (PU� � ⌧e1 + �) � f (PU� � ⌧e1) � f 0(PU� � ⌧e1)�| 2N
N+2

+ |[ f 0(PU� � ⌧e1) � f 0(PU�)]�| 2N
N+2

+ |[ f 0(PU�) � f 0(U�)]�| 2N
N+2

 c|PU p�2
� �2| 2N

N+2
+ c|⌧ p�2ep�21 �2| 2N

N+2

+ c|� p| 2N
N+2

+ c|⌧ p�1ep�11 �| 2N
N+2

+ c|(⌧e1)p�2PU��| 2N
N+2

+ c|' p�1� �| 2N
N+2

+ c|' p�2� U��| 2N
N+2

.

(4.13)

Now since p � 2 = 6�N
N�2 , we have

⇣
PU p�2

�

⌘ 2N
N+2

= PU
2N (6�N )

(N�2)(N+2)
�  U

2N (6�N )
(N�2)(N+2)
�  c��

N (6�N )
N+2 .
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Hence we get that

✓Z

�

⇣
PU p�2

� �2
⌘ 2N
N+2 dx

◆ N+2
2N

 c
✓
��N

6�N
N+2

Z

�
�

4N
N+2 dx

◆ N+2
2N

 c1��
6�N
2

✓Z

�
�

4N
N+2 dx

◆ N+2
2N

 c2��
6�N
2 k�k2.

We observe that for N = 4, and thanks to the choice of � we have

��
6�N
2 k�k2  c✏e�

1
✏

for all sufficiently small ✏.
The remaining terms of (4.13) are even simpler and the estimates can be ob-

tained in a similar way. Moreover, with analogous estimates we obtain that T :
B✏ ! B✏ is a contraction. Hence, by the fixed point theorem there exists a unique
solution 8̄� of T (�) = �. Finally, in a standard way one can prove that the map
8̄� is differentiable with respect to (s1, s2) (see [2]). The proof is complete.

4.2. The reduction for N = 5

As anticipated in the introduction, in the case N = 5 we look for a remainder term
of the form

8� = �1 + �2,

with
k�2k = o(k�1k).

To this end we write (3.14) as

R1 +R2 + L1(�1) + L2(�2) +N1(�1) +N2(�1,�2) = 0, (4.14)

where

R1 := 5?
1
�
�⌧e1 � i⇤ [��⌧e1]

 
, (4.15)

R2 := 5? �
PU� � i⇤

⇥
�PU� + f (PU� � ⌧e1)

⇤ 
. (4.16)

L1(�1) := 5?
1
�
�1 � i⇤ [�1�1]

 
(4.17)

L2(�2) := 5? �
�2 � i⇤

⇥
f 0(U�)�2 + ��2

⇤ 
(4.18)

N1(�1) := 5?
1 {�i⇤[ f (�⌧e1 + �1) � (�1 � �)�1]}, (4.19)

and

N2(�1,�2) := 5?
n

� i⇤
⇥
f (V� + �1 + �2)

� f 0(U�)�2 � f (�⌧e1 + �1) � f (PU� � ⌧e1)
⇤o

.
(4.20)
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Now, in order to solve equation (4.14) we solve the following system of equations
(
R1 + L1(�1) +N1(�1) = 0
R2 + L2(�2) +N2(�1,�2) = 0.

(4.21)

It is clear that a solution of (4.21) gives a solution of (4.14). Moreover we remark
that it is not restrictive to considerR1,L1(�1),N1(�1) 2 K?

1 since only �1 appears.
In order to solve (4.21) we apply a fixed point argument twice (see Section

4.2.3). As usual we have to estimate first the error termsR1 andR2, then we have
to analyze the invertibility of the linear operators L1 and L2.

In what follows we let

✓1 :=
5
4

and ✓2 := 3. (4.22)

4.2.1. Estimates of the error terms

Proposition 4.4. It holdsR1 = 0.

Proof. Let us fix ⌧ > 0. By linearity we have R1 = ⌧5?
1 {�e1 � i⇤ [��e1]};

hence R1 = 0 if and only if �e1 � i⇤ [��e1] = ce1 for some c 2 R. This is true,
since, by definition of i⇤ and e1, it holds �e1 � i⇤ [��e1] = (�1 + �

�1
)e1. The

proof is complete.

Proposition 4.5. For any ⌘ > 0, there exist ✏0 > 0 and c > 0 such that for all
✏ 2 (0, ✏0), for all (d1, d2) 2 R2+ satisfying (3.8), we have

kR2k  c ✏
✓2
2 +� ,

for some positive real number � , whose choice depends only on N .

The proof of this result can be obtained by reasoning as in Proposition 4.1.

4.2.2. The linear operators Let us first consider the linear operator L1 : K?
1 !

K?
1 defined as in (4.17).
Next result states the invertibility of the operator L1 and provides a uniform

estimate on the norm of L�1
1 .

Proposition 4.6. The linear operator L1 : K?
1 ! K?

1 is invertible and kL�1
1 k  c

for some constant depending only on N and �.

Proof. Let us fix h 2 K?
1 . We consider the problem

(
�1� = �1� + h in �
� = 0 on @�.

(4.23)
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Since h 2 K?
1 it is well known that (4.23) has a solution � 2 H10 (�) (see [3],

Theorem 0.7). Moreover it is elementary to see that the solution is unique in K?
1 .

Hence by definition of5?
1 and i

⇤ it follows immediately that L1(�) = h has a
unique solution �̄ = �̄(h) 2 K?

1 , and from elliptic estimates we have k�̄k  ckhk,
which implies the boundedness of L�1

1 . The proof is complete.

Let now L2 : K? ! K? defined in (4.18). Reasoning as in Proposition 4.2
we have the following result.

Proposition 4.7. Let N = 5 and � as in (3.7). Then, for any small ⌘ > 0, there
exists C = C(⌘) > 0 such that for all � sufficiently close to �1, for any real number
d1 2 (⌘, 1⌘ ) and for any � 2 K? it holds

kL2(�)k � Ck�k.

Moreover L2 is invertible and kL�1
2 k  1

C .

4.2.3. The auxiliary equation: solution of the system (4.21) In this section we
solve system (4.21).

The strategy is to solve the first equation of (4.21) by a fixed point argument,
finding a unique �̄1 and then, substituting �̄1 in the second equation of (4.21), we
obtain an equation depending only on the variable �2. Hence, using again a fixed
point argument, we solve the second equation of (4.21) uniquely. More precisely,
by arguing as in the proofs of [33, Propositions 3.1, 3.6], we obtain the following
results:

Proposition 4.8. Let N = 5 and ⌧ as in (3.7). Then, for any ⌘ > 0, there exist
✏0 > 0 and c > 0 such that for all ✏ 2 (0, ✏0), for all d1 2 R+ satisfying condition
(3.8) for j = 1, there exists a unique solution �̄1 = �̄1(d1), �̄1 2 K?

1 of the first
equation in (4.21) which is continuously differentiable with respect to d1 and such
that

k�̄1k  c✏
✓1
2 +� , (4.24)

where ✓1 is defined in (4.22) and � is some positive real number whose choice
depends only on N .

Proposition 4.9. Let N = 5, ⌧ and � as in (3.7). Then, for any ⌘ > 0, denoting by
�̄1 2 K?

1 the solution of the first equation in (4.21) found in Proposition 4.8, there
exist ✏0 > 0 and c > 0 such that for all ✏ 2 (0, ✏0), for all (d1, d2) 2 R2+ satisfying
condition (3.8), there exists a unique solution �̄2 2 K? of the second equation in
(4.21) with �1 = �̄1, such that

k�̄2k  c✏
✓2
2 +� , (4.25)

where ✓2 is defined in (4.22) and � is some positive real number depending only on
N . Moreover �̄2 is continuously differentiable with respect to (d1, d2).
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5. The reduced problem

We are now left to solve (3.15).

5.1. Estimates for the reduced functional for N = 4

Let 8̄� 2 K? be the solution found in Proposition 4.3. Hence V�+ 8̄� is a solution
of our original problem (1.1) if we can find s̄� = (s̄1�, s̄2�)which satisfies condition
(3.8) and solves equation (3.15).

To this end we consider the reduced functional J̃� : R2+ ! R defined by:

J̃�(s1, s2) := J�
�
V� + 8̄�

�
,

where J� is the functional defined in (1.5).
The following result states that solving (3.15) is equivalent to finding critical

points (s̄1,�, s̄2,�) of the reduced functional J̃�(s1, s2), moreover it provides a uni-
form expansion of the reduced functional which will be used in the sequel.

Lemma 5.1. The following facts hold true:

(i) For any small ⌘ > 0 there exists ✏0 > 0 such that for all � 2 (�1, �1 + ✏0)
if (s̄1,�, s̄2,�) is a critical point of J̃� and satisfies (3.8), then V� + 8̄� is a
solution of (1.1);

(ii) For any ⌘ > 0 there exists ✏0 > 0 such that for any ✏ 2 (0, ✏0) it holds

J�(V� + 8̄�) = J�(V�) + o
⇣
✏e�

2
✏

⌘
.

The proof of the above lemma is quite standard (see for instance [37]) and hence
we omit it.

5.2. Estimates for the reduced functional for N = 5

Let (�̄1, �̄2) 2 K?
1 ⇥ K? be the solution found in Propositions 4.8, 4.9. As in the

case N = 4, in order to solve (3.15) we consider the reduced functional J̃� : R2+ !
R defined by:

J̃�(d1, d2) := J�(V� + �̄1 + �̄2),

where J� is the functional defined in (1.5).
As before critical points of the reduced functional give rise to solutions of

(3.15) (see (i) of Lemma 5.3). Nevertheless, the expansion of the reduced func-
tional is more delicate. In fact, in order to get the estimates of Lemma 5.3 we need
informations on the asymptotic behavior of the L1-norm of �̄1. This is the content
of the next lemma.
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Lemma 5.2. Let ⌘ be a small positive number and �̄1 2 K?
1 be the solution of the

first equation in (4.21), found in Proposition 4.8. Then, up to a subsequence, as
✏ ! 0, we have

|�̄1|1 ! 0,

uniformly with respect to d1 such that ⌘ < d1 < 1
⌘ .

Proof. Let us fix a small ⌘ > 0 and remember that ⌧ = d1✏
3
4 , where d1 2]⌘, 1⌘ [ . We

observe that by definition, since �̄1 2 K?
1 solves the first equation of (4.21), then,

for all ✏ sufficiently small, for all d1 2]⌘, 1⌘ [, there exists a constant c✏ = c✏(d1)
such that �̄1 weakly solves

�1�̄1 = (�1 � ✏)�̄1 + f (�⌧e1 + �̄1) � �1c✏e1. (5.1)

Testing (5.1) with e1, and taking into account that �̄1 2 K?
1 , we deduce that c✏ ! 0,

as ✏ ! 0, uniformly with respect to d1 2]⌘, 1⌘ [.
We observe that �̄1 is a classical solution of (5.1). This comes from standard

elliptic regularity theory, the application of a well-known lemma by Brezis and
Kato, taking into account that �̄1 2 H10 (�) weakly solves (5.1) and the smoothness
of e1, f.

We consider the quantity supd12]⌘, 1⌘ [ |�̄1|1, which is defined for all ✏ 2 (0, ✏0),
where ✏0 > 0 is given by Proposition 4.8. We want to prove that

lim
✏!0+

sup
d12]⌘, 1⌘ [

|�̄1|1 = 0. (5.2)

In order to prove (5.2) we argue by contradiction. Assume that (5.2) is false. Then,
there exists a positive number m 2 R+, a sequence (✏k)k ⇢ R+, ✏k ! 0 as
k ! +1, such that

sup
d12]⌘, 1⌘ [

|�̄1,k |1 > m, (5.3)

for any k 2 N, where we have set �̄1,k := �̄1(✏k, d1) 2 B1,✏k . We observe that (5.3)
contemplates the possibility that supd12]⌘, 1⌘ [ |�̄1,k |1 = +1. From (5.3), for any

k 2 N, thanks to the definition of sup, we get that there exists d1,k 2]⌘, 1⌘ [ such that

|�̄1,k |1(d1,k) >
m
2

.
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Hence, if we consider the sequence
�
|�̄1,k |1(d1,k)

�
k , then, up to a subsequence, as

k ! +1, there are only two possibilities:

(a) |�̄1,k |1(d1,k) ! +1;

(b) |�̄1,k |1(d1,k) ! l, for some l � m
2 > 0.

We will show that (a) and (b) cannot happen.
Assume (a). We point out that, since ⌘ > 0 is fixed, then, d1,k 2]⌘, 1⌘ [ for all

k, in particular this sequence stays definitely away from 0 and from +1. Hence,
in order to simplify the notation of this proof, we omit the dependence from d1,k in
�̄1,k(d1,k), c✏k (d1,k) and thus we simply write �̄1,k , c✏k . In particular, we observe
that, for any fixed k, �̄1,k is a function depending only on the space variable x 2 �.

Then, for any k 2 N, let ak 2 � such that |�̄1,k(ak)| = |�̄1,k |1 and set
Mk := |�̄1,k |1. We consider the rescaled function

e�1,k(y) :=
1
Mk
�̄1,k

 

ak +
y
M�
k

!

, � =
2

N � 2
,

defined for y 2 e�k := M
2

N�2
k (�� ak).

Moreover let us set

ee1,k(y) :=
1
Mk

e1

0

@ak +
y

M
2

N�2
k

1

A and ⌧k := d1,k✏
3
4
k .

It is clear that kee1,kk1,e�k ! 0, ⌧k ! 0, as k ! +1. By elementary computations
we see that e�1,k solves

8
><

>:

�1e�1,k =
�1 � ✏k

M
4

N�2
k

e�1,k + f (�⌧kee1,k + e�1,k) �
�1c✏k

M
4

N�2
k

ee1,k in e�k

e�1,k = 0, on @e�k .

(5.4)

Let us denote by 5 the limit domain of e�k . Since we are assuming (a) we have
Mk ! +1, as k ! +1, and hence 5 is the whole RN or an half-space. More-
over, since the family (e�1,k)k is uniformly bounded and solves (5.4), then, by the
same proof of [11, Lemma 2.2], we get that 0 2 5 (in particular 0 /2 @5), and, by
standard elliptic theory, it follows that, up to a subsequence, as k ! +1, we have
that e�1,k converges in C2loc(5) to a function w which satisfies

�1w = f (w) in5
w(0) = 1 (or w(0) = �1)
|w|  1 in5

w = 0 on @5.

(5.5)



24 ALESSANDRO IACOPETTI AND GIUSI VAIRA

We observe that, thanks to the definition of the chosen rescaling, by elementary
computations (see [30, Lemma 2]), it holds ke�1,kk2e�✏

= k�̄1,kk2�. Now, since

k�̄1,kk  c✏
✓1
2 +�
k , where c depends only on ⌘ and � is some positive number (see

Proposition 4.8), we have ke�1,kk2e�k
= k�̄1,kk2� ! 0, as k ! +1. Hence, since

e�1,k ! w in C2loc(5), by Fatou’s lemma, it follows that

kwk25  lim inf
k!+1

ke�1,kk2e�k = 0. (5.6)

Therefore, since kwk25 = 0 andw is smooth, it follows thatw is constant, and from
w(0) = 1 (or w(0) = �1) we get that w ⌘ 1 (or w ⌘ �1) in 5. But, since w
is constant and solves �1w = f (w) in 5, then necessarily f (w) ⌘ 0 in 5, and
hence w must be the null function, but this contradicts w ⌘ 1 (or w ⌘ �1).

Assume (b). We use the same convention on the notation as in previous case.
Then (�̄1,k)k is uniformly bounded, in particular there exist two positive constants
c1, c2 such that for all k 2 N it holds

c1 < |�̄1,k |1 < c2. (5.7)

By definition, �̄1,k solves

�1�̄1,k = (�1 � ✏k)�̄1,k + f (�⌧ke1 + �̄1,k) � �1c✏k e1. (5.8)

Hence, by standard elliptic theory, it follows that, up to a subsequence, �̄1,k con-
verges in C2loc(�) to a function w which satisfies

(
�1w = �1w + f (w) in �
w = 0 on @�.

(5.9)

Now, since k�̄1,kk  c✏
✓1
2 +�
k , where c > 0 depends only on ⌘ and �̄1,k ! w in

C2loc(�), then, by Fatou’s Lemma and Sobolev inequality we have that

|w|p+1  lim inf
k!+1

|�̄1,k |p+1 = 0,

thus, sincew is smooth, it follows thatw ⌘ 0. But, if ak 2 � is such that |�̄1,k |1 =
�̄1,k(ak), by slightly modifications to the proof of [11, Lemma 2.2] we have that
d(ak, @�) 9 0 as k ! +1. Hence, this fact, �̄1 ! w in C2loc(�) and w ⌘ 0
contradict (5.7).

Alternatively, assuming that @� is of class C2,↵ , for some ↵ 2 (0, 1), with-
out using the arguments of [11, Lemma 2.2], but using standard elliptic regularity
theory and [27, Lemma 6.36], since �̄1,k is uniformly bounded, we get that, up to
a subsequence �̄1,k converges to w in C2(�), where w solves (5.9). As before it
holds w ⌘ 0 and hence we contradicts (5.7). The proof is then concluded.



THE BREZIS-NIRENBERG PROBLEM IN LOW DIMENSIONS 25

Lemma 5.3. The following facts hold true:

(i) For any small ⌘ > 0 there exists ✏0 > 0 such that for all � 2 (�1 � ✏0, �1) if
(d̄1,�, d̄2,�) is a critical point of J̃� and satisfies (3.8), then V� + �̄1 + �̄2 is a
solution of (1.1).

(ii) For any ⌘ > 0 there exists ✏0 > 0 such that for any ✏ 2 (0, ✏0) it holds:

J�(V� + �̄1) = J�(V�) + O(✏✓1+� ),

with
O(✏✓1+� ) = ✏✓1+�M1(d1) + o

�
✏✓2

�
, (5.10)

for some function M1 depending only on d1 (and uniformly bounded with re-
spect to ✏), where ✓1, ✓2 are defined in (4.22), � is some positive real num-
ber (depending only on N ). These expansion are C0-uniform with respect to
(d1, d2) satisfying condition (3.8).

(iii) For any ⌘ > 0 there exists ✏0 > 0 such that for any ✏ 2 (0, ✏0) it holds:

J�(V� + �̄1 + �̄2) = J�(V� + �̄1) + O(✏✓2+� ),

C0-uniformly with respect to (d1, d2) satisfying condition (3.8), for some pos-
itive real number � depending only on N .

Proof. The proof of the lemma can be made as in [33, Lemmas 4.3, 4.4]. We limit
to sketch the proof of (ii) just to underline where Lemma 5.2 is needed.

Let us fix ⌘ > 0. By direct computation we see that

J�(V� + �̄1) � J�(V�) =
1
2

Z

�
|r�̄1|

2 dx +
Z

�
rV� · r�̄1 dx

�
�

2

Z

�
|�̄1|

2 dx � �

Z

�
V��̄1 dx

�
1

p + 1

Z

�
(|V� + �̄1|

p+1 � |V�|p+1) dx .

(5.11)

By definition we have

Z

�
rV� · r�̄1 dx =

Z

�
r(PU� � ⌧e1) · r�̄1 dx =

Z

�
(U p
� � �1⌧e1)�̄1 dx

=
Z

�
[ f (U�) � �1⌧e1]�̄1 dx,
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moreover, since F(s) = 1
p+1 |s|

p+1 is a primitive of f , we can write (5.11) as

J�(V� + �̄1) � J�(V�) =
1
2
k�̄1k

2 �
�

2
|�̄1|

2
2 � �

Z

�
V��̄1 dx

+
Z

�
[ f (U�) � �1⌧e1]�̄1 dx

�
Z

�
[F(V� + �̄1) � F(V�)] dx

=
1
2
k�̄1k

2 �
�

2
|�̄1|

2
2 � �

Z

�
PU��̄1 dx

+ (�� �1)

Z

�
⌧e1�̄1 dx

+
Z

�
[ f (U�) � f (V�)]�̄1 dx

�
Z

�
[F(V� + �̄1) � F(V�) � f (V�)�̄1] dx

:= A + B + C + D + E + F.

(5.12)

For the terms A–E, by arguing as in [33, Lemma 4.3] we get that

J�(V� + �̄1) � J�(V�) = ✏✓1+�M1(d1) + o(✏✓2), (5.13)

for all sufficiently small ✏, for some function M1 depending only on d1 (and uni-
formly bounded with respect to ✏). For the remaining term F, applying elementary
inequalities we get that

|F |  c
Z

�

⇣
|V✏ |p�1�̄21 + |�̄1|

p+1
⌘
dx

 c
Z

�
(PU p�1

� �̄21 + (⌧e1)p�1�̄21 + |�̄1|
p+1) dx

= F1 + F2 + F3.

For F1, applying Lemma 5.2, as ✏ ! 0, we have |�̄1|1 = o(1). Hence, taking into
account that

R
�

1
|x |4 dx is finite, we get that

F1 =
Z

�
PU p�1

� �̄21 dx 
Z

�
U p�1
� �̄21 dx  c

Z

�

�2

|x |4
�̄2 dx

= o
✓
�2

Z

�

1
|x |4

dx
◆

= o(✏✓2).
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For F2, thanks to the definition of ⌧ and since �̄1 2 B1,✏ , we have
Z

�
(⌧e1)p�1�̄21 dx  ⌧ p�1ke1k

p�1
1

Z

�
�̄21 dx  c ⌧ p�1

Z

�
|r�̄1|

2 dx

 c1✏
3
4
4
3 ✏2(

5
4+� )  c1✏✓2+� .

Finally, for F3, we have
Z

�
|�̄1|

p+1 dx  ck�̄1kp+1  c1✏
10
3 ( 54+� )  c1✏✓2+� .

Hence |F |=o(✏✓2) and combining this with (5.13) we get the desired assertion.

5.3. Energy expansion of the approximate solution

By the above discussion, in order to prove our main results, we need to find critical
points of the reduced functional J̃ . To this end we have to analyze the term J�(V�),
which is the energy of the approximate solution V� = PU� � ⌧e1. In the proof of
the following lemma we find an expansion for J�(V�), and combining it with the
expansions obtained in Lemma 5.1, Lemma 5.3 we get:

Proposition 5.4. The following facts hold:

(i) Let N = 4. For any ⌘ > 0, as � ! �+
1 , the following expansion holds:

J̃�(s1, s2) =
1
4
S2 + ✏e�

1
✏

h
�b1g(s2)2 + b2g(s2)s1 � b3s21

i

+o
⇣
✏e�

2
✏

⌘
,

(5.14)

where ✏ = �� �1, b1, b2, b3 are positive known constants.
(ii) Let N = 5. For any ⌘ > 0, as � ! ��

1 it holds:

J̃�(d1, d2) =
1
5
S5/2 + ✏

5
2


a1d21 � a2d

10
3
1

�
+ O

⇣
✏
5
2+�

⌘
, (5.15)

with

O(✏
5
2+� ) = ✏

5
2+�M1(d1) + ✏3


a3d1d

3
2
2 � a4d22

�
+ o

⇣
✏3
⌘

, (5.16)

for some function M1 depending only on d1 (and uniformly bounded with re-
spect to ✏ = �1 � �), where � is some positive real number (depending only
on N ) and a j , j = 1, 2, 3, 4 are some positive and known constants.

The expansions (5.14), (5.15) and (5.16) are C0-uniform with respect to (s1, s2) or
(d1, d2) satisfying condition (3.8).
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Remark 5.5. We point out that the term M1 appearing in (5.16) does not depend
on d2 and this will be used in the sequel.

Proof. By making some standard computations we find that

J�(PU��⌧e1)=
✓
1
2

�
1

p+1

◆Z

�
U p+1
� dx+

1
2

Z

�
U p
� '�dx+

⌧2

2
(�1��)

Z

�
e21dx

+⌧ (���1)
Z

�
PU�e1dx�

�

2

Z

�
PU2� dx

�
1

p+1

Z

�

h
|U��'� |p+1�U

p+1
� +(p+1)U p

� '�

i
dx

| {z }
(I )

�
⌧ p+1

p+1

Z

�
ep+11 dx+⌧

Z

�
PU p

� e1dx�⌧ p
Z

�
PU�e

p
1 dx

�
1

p+1

Z

�

h
|PU��⌧e1|p+1�PU

p+1
� �⌧ p+1ep+11 +(p+1)PU p

� ⌧e1�(p+1)PU�⌧ pe
p
1

i
dx

| {z }
(I I )

.

For N = 4, 5 we have that
✓
1
2

�
1

p + 1

◆Z

�
U p+1
� dx =

1
N
SN/2
N + O(�N )

and
1
2

Z

�
U p
� '� dx = O

⇣
�N�2

⌘
.

Now if N = 4, fixing a small R > 0 such that BR ⇢⇢ �, we get
Z

�
U2� dx = �2

Z

|x |<R

↵24
(�2 + |x |2)2

dx + �2
Z

�\{|x |<R}

↵24
(�2 + |x |2)2

dx

= !4↵
2
4�
2 log

1
�

+ O
⇣
�2
⌘

where !4 denotes the surface area of the unit sphere in R4. Instead, for N = 5 we
have
Z

�
U2� dx = ��3

Z

�

↵25
⇣
1+

�
� x
�

�
�2
⌘3 dx=�2

Z

R5
U2dx+O

 

�2
Z +1

1
�

r4

(1+r2)3
dr

!

.

HenceZ

�
PU2� dx =

Z

�
U2� dx +

Z

�
'2� dx � 2

Z

�
U�'� dx

=

8
<

:

!4↵
2
4�
2 log 1� + O(�2) + O(|'�|1

R
� U� dx) for N = 4

�2
Z

RN
U2 dx + O(�3) + O(|'�|2|U�|2) for N = 5
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and so
Z

�
PU2� dx =

8
><

>:

!4↵
2
4�
2 log 1� + O

�
�2
�

for N = 4

�2
R
RN U2 dx + O

⇣
�
5
2
⌘

for N = 5.

Moreover
Z

�
PU�e1 dx =

Z

�
e1

⇥
U� � '�

⇤
dx

=
Z

�
e1

"

↵N
�
N�2
2

(�2 + |x |2)
N�2
2

� ↵N �
N�2
2 H(x, 0) + O

⇣
�
N+2
2
⌘
#

dx

=
Z

�
↵N �

N�2
2 e1


1

|x |N�2 � H(x, 0)
�
dx + O

⇣
�
N+2
2
⌘

=
↵N

�N
�
N�2
2

Z

�
e1G(x, 0) dx + O

⇣
�
N+2
2
⌘

=
↵N

�N�1
�
N�2
2 e1(0) + O

⇣
�
N+2
2
⌘

,

since �1e1 = �1e1 and hence e1(0) = �1
R
� e1(x)G(x, 0) dx .

Moreover

⌧

Z

�
e1PU p

� dx = ⌧

Z

�
e1U p

� dx + ⌧

Z

�
e1(PU p

� � U p
� ) dx

= ⌧�
N�2
2 e1(0)

Z

RN
U p dx +

8
<

:

O
⇣
⌧�

N+2
2 log 1�

⌘
if N = 4

O
⇣
⌧�

N+2
2
⌘

if N = 5

and

⌧ p
Z

�
PU�ep1 dx = ⌧ p�

N�2
2
↵N

�N

Z

�
ep1G(x, 0) dx + O

⇣
⌧ p�

N+2
2
⌘

.

Now

|(I )|  c
✓

|'�|
p+1
p+1,� +

Z

�
U p�1
� '2� dx

◆
 c1

 

�N + |'�|
2
1

Z

�

�2

(�2 + |x |2)2
dx

!

 c1�N+ c2�N�2

8
>><

>>:

C0�2 log 1� + O(1) for N=4

�2
Z

�

1
|x |N�2 dx for N=5

 c3

8
><

>:

�4 log 1� for N=4

�5 for N=5
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and

|(I I )|  |
Z

Bp
�(0)

. . . dx | + |
Z

�\Bp
�(0)

. . . dx |


Z

Bp
�(0)

�
�
�|PU� � ⌧e1|p+1 � PU p+1

� + (p + 1)PU p
� ⌧e1

�
�
� dx

+⌧ p+1
Z

Bp
�(0)

ep+11 dx + ⌧ p(p + 1)
Z

Bp
�(0)
PU�ep1 dx

+
Z

�\Bp
�(0)
PU p+1

� dx + ⌧ (p + 1)
Z

�\Bp
�(0)
PU p

� e1 dx

+
Z

�\Bp
�(0)

�
�
�|PU� � ⌧e1|p+1 � ⌧ p+1ep+11 � (p + 1)⌧ pep1PU�

�
�
� dx

 c1

 

⌧ 2
Z

Bp
�(0)
PU p�1

� e21 dx + ⌧ p+1
Z

Bp
�(0)

ep+11 dx

+⌧ p
Z

Bp
�(0)
PU�ep1 dx +

Z

�\Bp
�(0)
PU p+1

� dx

+⌧ p�1
Z

�\Bp
�(0)
PU2� e

p�1
1 dx + ⌧

Z

�\Bp
�(0)
PU p

� e1 dx

!

 c

0

B
@⌧ 2�2

8
><

>:

log 1� for N = 4

p
� for N = 5

+ ⌧ p+1�
N
2

+⌧ p�
N
2 + �

N
2 + ⌧ p�1

8
><

>:

�2 for N = 4

�
5
2 for N = 5

+ ⌧�
N
2

1

C
A .

Putting together all these estimates for N = 4 we get that

J�(PU� � ⌧e1) =
1
4
S2 + ✏e�

2
✏

h
�b1g(s2)2 + b2g(s2)s1 � b3s21

i

+o(✏e�
2
✏ )

(5.17)

where
b1 :=

1
2

Z

�
e21 dx

b2 := e1(0)
Z

R4
U p dx

b3 :=
�1
2
!4↵

2
4,
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while for N = 5 we get

J�(PU� � ⌧e1) =
1
5
S
5
2
5 + ✏

5
2


a1d21 � a2d

10
3
1

�
+ ✏

5
2+�M1(d1)

+ ✏3

a3d1d

3
2
2 � a4d22

�
+ O(✏3+� )

(5.18)

where
a1 :=

1
2

Z

�
e21 dx

a2 :=
1

p + 1

Z

�
ep+11 dx

a3 := e1(0)
Z

R5
U p dx

a4 :=
�1
2

Z

R5
U2.

In the end, combining these expansions with those of Lemma 5.1, Lemma 5.3 the
result follows.

5.4. C1� estimate of the reduced functional in the case N = 4

In the case N = 4 we need to be more accurate in order to find a critical point of
the reduced functional (see the proof of Theorem 1.1).

Let 9 : R2+ ! R the function defined by

9(s1, s2) := �b1g(s2)2 + b2g(s2)s1 � b3s21 ,

where b j , for j = 1, 2, 3, are the positive constants appearing in (5.17) and g is the
function defined in (3.6). The following result holds.

Lemma 5.6. For any ⌘ > 0 there exists ✏0 > 0 such that for any ✏ 2 (0, ✏0) it
holds that

@s j J�(V� + �̄) = ✏e�
2
✏ @s j9(s1, s2) + o

⇣
✏e�

2
✏

⌘

C0-uniformly with respect to s j satisfying (3.8).

The proof can be made as in [34] with some changes and so we omit it.

6. Proof of the main theorems

Proof of Theorem 1.1. Let us fix a small ⌘ > 0. Recalling that ✏ = ���1, by (i) of
Proposition 5.4, for (s1, s2) satisfying (3.8) the reduced functional has the uniform
expansion

J̃�(s1, s2) =
1
4
S2 + ✏e�

2
✏ [9(s1, s2)]+ o

⇣
✏e�

2
✏

⌘
,
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where
9(s1, s2) = �b1g(s2)2 + b2g(s2)s1 � b3s21 .

It is easy to see that 9 has a non-trivial critical point in
� b2
2b3 , 1

�
. Moreover it is

a non-degenerate maximum point if b22 � 4b1b3 < 0. Hence, since the maximum
points are stable under small perturbation, we get that the functional J̃�(s1, s2) has
a critical point in some (s̄1�, s̄2�) such that

(s̄1�, s̄2�) !

✓
b2
2b3

, 1
◆

as � ! �+
1 . If instead b

2
2 � 4b1b3 = 0, the point is a degenerate critical point but it

is stable according to Definition 3.3 since it is a maximum for 9. Indeed

9(s1, s2) �9

✓
b2
2b3

, 1
◆

< 0 8 (s1, s2) 2 U ,

where U is a neighborhood of the point
� b2
2b3 , 1

�
, and we get the same conclusion

by using also Lemma 5.6.
Furthermore, if b22 � 4b1b3 > 0 then

� b2
2b3 , 1

�
is a non degenerate critical point

but we have a direction in which it is a maximum and a direction in which it is a
minimum. However by Lemma 5.6 we get the same conclusion.

In the end the result follows from (i) of Lemma 5.1.

Proof of Theorem 1.2. Let us set G1(d1) := a1d21 � a2d
10/3
1 , where a1, a2 are the

positive constants appearing in Proposition 5.4 statement (ii). It is elementary to see
that the function G1 : R+ ! R has a strictly local maximum point at d̄1 =

�3
5
a1
a2

� 3
4 .

Since d̄1 is a strictly local maximum for G1, then, for any sufficiently small
� > 0 there exists an open interval I1,�1 such that I 1,�1 ⇢ R+, with diameter �1,
such that d̄1 2 I1,�1 and for all d1 2 @ I1,�1

G1(d1)  G1(d̄1) � � . (6.1)

Clearly as � ! 0 we can choose �1 so that �1 ! 0.
We set G2 : R2+ ! R by G2(d1, d2) := a3d1d2

3
2 � a4d22 , where a3, a4 are the

positive constant appearing in Proposition 5.4, statement (ii). If we fix d1 = d̄1 then

Ĝ2(d2) := G(d̄1, d2) has a strictly local maximum point at d̄2 :=
⇣
3
4
a3
a4 d̄1

⌘2
. As

in the previous case there exists an open interval I2,�2 such that I 2,�2 ⇢ R+, with
diameter �2, such that d̄2 2 I1,�1 and for all d2 2 @ I2,�2

Ĝ2(d2)  Ĝ2(d̄2) � � . (6.2)

As � ! 0 we can choose �2 so that �2 ! 0.
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Let us set K := I1,�1 ⇥ I2,�2 and let ⌘ > 0 be small enough so that K ⇢
]⌘, 1⌘ [⇥]⌘, 1⌘ [. Thanks to Propositions 4.8 and 4.9, for all sufficiently small ✏, J̃� :

R2+ ! R is defined and it is of class C1, where we recall that ✏ = �1 � �. By
Weierstrass theorem we know there exists a global maximum point for J̃� in K .
Let (d1,�, d2,�) be that point, it remains to show that there exists ✏1 such that, for
all ✏ < ✏1, (d1,�, d2,�) lies in the interior of K . This can be done as in the proof
of [33, Theorem 1.1] and so we skip this part. At the end by (i) of Lemma 5.3 we
obtain a solution u� of problem 1.1.

It remains to prove that the solution obtained is sign-changing. Let us set
8 = 8� := �̄1 + �̄2. Since u� = V� +8 is a solution of (1.1) then, by elementary
computations, taking into account that by definition �1V� = U p

� � �1⌧e1 (see
(3.13)), we see that 8 solves

(
�18 = �8+ �PU� + ✏⌧e1 � U p

� + f (u�) in �
8 = 0 on @�.

(6.3)

Since 8 solves (6.3), then, arguing as in the proof in [33, Lemma 3.9] (see also the
proofs of Lemma 5.2, Proposition 6.1 in the present paper), we have that |8|1,� =

o(��
N�2
2 ) = o(✏�9/4), 1 for all sufficiently small ✏ > 0. Hence, evaluating u� at

the origin, we have

u�(0) = c(N )��
N�2
2 � ⌧e1(0) + o

⇣
��

N�2
2
⌘

= c(N )d�3/2
2,� ✏�9/4 + o

⇣
✏�9/4

⌘
> 0

for all sufficiently small ✏ > 0. On the other hand, thanks to Proposition 6.1, if we
fix a small ball B⇢ centered at the origin, then, in � \ B⇢ , we have

u� = O(�
N�2
2 ) � ⌧e1 + o(⌧ ) = �d1,�✏3/4e1 + o(✏3/4) < 0,

for all sufficiently small ✏ > 0. Hence u� is sign-changing and the proof is com-
plete.

Proposition 6.1. Let 8� be the remainder term appearing in Theorem 1.2. Then,
for any compact subset K of � \ {0} we have

|8�|1,K = o
⇣
(�1 � �)3/4

⌘
,

as � ! ��
1 .

Proof. Let us set ✏ := �1 � �, and let 8 = 8✏ := �̄1 + �̄2 be the remainder term
obtained in the proof of Theorem 1.2. We want to show that |8|1,K = o(✏3/4), as
✏ ! 0. To this end, let us fix a positive number ⇢ such that B⇢ = B⇢(0) ⇢⇢ �.

1 Thanks to the definition of � and ⌧ (see (3.7)) and since d1 = d1,� ! d̄1 > 0 and d2 = d2,� !

d̄2 > 0, as ✏ ! 0, we have � = O(✏3/2), ⌧ = O(✏3/4), as ✏ ! 0.



34 ALESSANDRO IACOPETTI AND GIUSI VAIRA

As observed in the proof of Theorem 1.2 since u� = V� + 8 is a solution of
(1.1), then, 8 solves (6.3). We also point out that 8 is a smooth function since it is
the difference between the two smooth functions u� and V�. Let us set 9 = 9✏ :=
8

⌧ 1+�
, where � is a small positive number and ⌧ is defined in (3.7) (see also the

footnote 1). We want to prove that |9|1,�\B⇢ = O(1), for all sufficiently small
✏ > 0. By elementary computations we get that 9 solves
8
<

:
�19 = �9 + �

PU�
⌧ 1+�

+
✏

⌧ 1+�
e1 �

U p
�

⌧ 1+�
+ ⌧ p�1�� f

⇣u�
⌧

⌘
in � \ B⇢

9 = 0 on @�.
(6.4)

We observe that in� \ B⇢ it holds |PU�|1,�\B⇢  c(N , ⇢)�
N�2
2 , and hence, taking

into account the choice of ⌧ and � we get that |PU� |1,�\B⇢
⌧1+�

= o(1), as ✏ ! 0. By

analogous computations we get that |U p
� |1,�\B⇢
⌧1+�

= o(1) and clearly it also holds

✏

⌧ 1+�
ke1k1,�\B⇢ 

✏

⌧ 1+�
ke1k1,� = o(1), as ✏ ! 0.

Let us set M✏ := |9|1,�\B⇢ and let a✏ 2 � \ B⇢ such that |9(a✏)| = |9|1,�\B⇢ .
Assume by contradiction that there exists a subsequence ✏k ! 0 (and consequently
a sequence of points a✏k 2 � \ B⇢) such that

M✏k = |9✏k |1,�\B⇢ = |9✏k (a✏k )| ! +1, as k ! +1.

In order to simplify the notation we shall omit the index k and use the notation ✏ to
denote that subsequence. We consider the rescaled function

e9(y) :=
1
M✏
9

 

a✏ +
y
M�
✏

!

with � =
2

N � 2
,

defined for y 2 eA✏ := M
2

N�2
✏ [(�\ B⇢)�a✏]. Let us also set e�✏ := M

2
N�2
✏ (��a✏)

By elementary computations we see that e9 solves

8
>>>>>>>>><

>>>>>>>>>:

�1e9= �
e9

M2�
✏

+ �
PU�

⇣
a✏+ y

M�
✏

⌘

⌧ 1+�M2�+1
✏

+
✏

⌧ 1+�M2�+1
✏

e1

 

a✏+
y
M�
✏

!

�
U p
�

⇣
a✏ + y

M�
✏

⌘

⌧ 1+�M2�+1
✏

+ ⌧ p�1�� f

0

B
@
u�

⇣
a✏ + y

M�
✏

⌘

⌧M✏

1

C
A in eA✏

e9 = 0 on @e�✏,

(6.5)
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As observed before, since we are assuming that M✏ ! +1, we have
�
�
�PU�

⇣
a✏ + y

M�
✏

⌘��
�
1, eA✏

⌧ 1+�M2�+1
✏

= o(1)

|U p
�

⇣
a✏ + y

M�
✏

⌘
|1, eA✏

⌧ 1+�M2�+1
✏

= o(1)

✏

⌧ 1+�M2�+1
✏

e1

 

a✏ +
y
M�
✏

!

= o(1)

as ✏ ! 0. In particular, since e9 is uniformly bounded we get that
�
�
�
��

e9
M2�
✏

�
�
�
�
1, eA✏

=

o(1), and

⌧ p�1��

�
�
�
�
�
�
�
f

0

B
@
u�

⇣
a✏ + y

M�
✏

⌘

⌧M✏

1

C
A

�
�
�
�
�
�
�
1, eA✏

= ⌧ p�1��

�
�
�
�
�
�
�
f

0

B
@
PU�

⇣
a✏ + y

M�
✏

⌘

⌧M✏
�
⌧e1

⇣
a✏ + y

M�
✏

⌘

⌧M✏
+ ⌧�e9

1

C
A

�
�
�
�
�
�
�
1, eA✏

= o(1),

as ✏ ! 0. Now, up to a subequence, by standard elliptic theory e9 converges in
C2loc(5) to some function 9̂ which satisfies �19̂ = 0 in 5, where 5 is the limit
domain of eA✏ . There are only three possibilities:

(i) 5 = RN ;
(ii) 5 is an half-space and 0 lies in the interior of5;
(iii) 5 is an half-space and 0 2 @5.

We will show that (i), (ii) and (iii) bring to a contradiction.
Assume (i) or (ii). By construction we have that k9k� ! 0 as ✏ ! 0, and

hence, since |e9|2⇤, eA✏ = |9|2⇤,�\B⇢  |9|2⇤,�  ck9k� ! 0, as ✏ ! 0, by
Fatou’s Lemma we deduce that

|9̂|2⇤,5  lim inf
✏!0

|e9|2⇤, eA✏ = 0.

Since 9̂ is smooth, we deduce that 9̂ ⌘ 0, but, since we are assuming (i) or (ii)
then 0 lies in the interior of 5, and by definition e9(0) = 1 (or e9(0) = �1), and
hence 9̂(0) = 1 (or 9̂(0) = �1), and we get a contradiction.

Assume (iii). Then @5 is an hyperplane and 0 2 @5. We consider a closed
ball B such that B ⇢ 5 and @B is tangent at 5 in 0. Since the limit domain of eA✏
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is5 and thanks to the choice of B we get that eA✏ \ B = B for all sufficiently small
✏ > 0. Since e9 is smooth and uniformly bounded and thanks to the estimates made
before, we deduce that the right-hand side of the equation in (6.5) is smooth (it is
sufficient it is of class C0,↵) and uniformly bounded. Hence, by standard elliptic
theory (see [27, Theorem 6.6 and Lemma 6.36]), we get that, up to a subsequence,
the restriction of e9 to B converges inC2(B) to a function 9̂. As before we have that
9̂ ⌘ 0 in B, but, since we have the convergence in C2(B), we also have 9̂(0) = 1
(or 9̂(0) = �1) which contradicts the smoothness of 9̂. Hence, we have that M✏ is
uniformly bounded and hence |8|1,�\B⇢ = o(⌧ ) = o(✏3/4), as ✏ ! 0. The proof
is complete.

Remark 6.2. We point out that, even for N = 4, we can prove that for any compact
subset K of � \ {0}, the remainder term 8� (appearing in Theorem 1.1) verifies
|8�|1,K = o(e�

1
���1 ), as � ! �+

1 . The key ingredient of the proof is that the
remainder term verifies k8�k = O(✏e�

1
✏ ), as ✏ ! 0 (see Proposition 4.3), and

hence, considering, 9 := 8�

✏↵e�
1
✏
, where ↵ is any fixed number in (0, 1), then, it

still holds k9k ! 0. Hence, arguing as in the previous proof, we get the same
conclusion.
Remark 6.3. We believe that in the case N = 6 the limit profile of a sign-changing
solution of the problem (2.2) is given by

u�(x) = PU� � v�(x) +8�

as � ! �̄ 2 (0, �1), where v� is a positive solution of (2.2) whose existence is
garanteed by [14] and 8� is a remainder term such that k8�k ! 0 as � ! �̄.
Moreover we have that

�̄ = 2v�̄(0)

and
� ! �̄+.
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