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Abstract. In this paper we introduce a new method to produce lower bounds
for the Waring rank of symmetric tensors. We also introduce the notion of e-
computability and we use it to prove that Strassen’s conjecture holds in infinitely
many new cases.

Mathematics Subject Classification (2010): 14Q20 (primary); 14M10, 15A21
(secondary).

1. Introduction

Let k be a field of characteristic zero and let F 2 k[x0, x1, . . . , xn] = S = �Si (i �
0 and n � 1) be a homogeneous polynomial (form) of degree d, i.e., F 2 Sd . It is
well known that in this case each Si has a basis consisting of i th powers of linear
forms. Thus we may write

F =
rX

i=1
↵i Ldi ↵i 2 k, Li 2 S1.

If k is algebraically closed (which we now assume for the rest of the paper) then
each ↵i = �di for some �i 2 k and so we can write

F =
rX

i=1
(�i Li )d =

rX

i=1
L̃di . (1.1)

We call a description of F as in (1.1), a Waring decomposition of F . The least
integer r such that F has a Waring decomposition with exactly r summands is
called theWaring Rank (or simply the rank) of F .
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There are several variants on this notion in the literature (see, e.g., [1, 7, 10]).
In this paper we will only be interested in the notion of rank described above.

It is easy to see that F has rank one if and only if [F] 2 P(Sd) is a point of the
Veronese variety, V ⇢ P(Sd). If F has rank r then [F] 2 P(Sd) is on �r (V), the
(r � 1)st secant variety of V.

Given a Waring decomposition of F

F = Ld1 + . . . + Ld` with Li = ai0x0 + . . . + ainxn,

we can associate a set of ` points in Pn to this decomposition, namely

X =
�
[a10 : . . . : a1n], . . . , [a`0 : . . . : a`n]

 
.

The importance of this set will be explained a bit further on.
Let T = k[X0, . . . , Xn] = �Ti (i � 0) be another polynomial ring and let T

act on S by setting
Xi � F = (@/@xi )(F)

and extending linearly (see [5] or [6]). With respect to this action we write

F? = {g 2 T | g � F = 0}.

If F is a form of degree d, then every form in T of degree � d + 1 is in F? and
so F? is an Artinian ideal of T . It is a classical theorem of Macaulay that T/F? is
also a Gorenstein ring with socle in degree d. Moreover, every Gorenstein Artinian
quotient of T with socle in degree d is of the form T/F?, with F a form of degree d.

Suppose that F = Ld where L = a0x0 + . . . + anxn and g 2 T� . Then

g � Ld = (d!/�!)g(a0, . . . , an)Ld��.

It follows that if F 2 Sd has a Waring decomposition

F = Ld1 + . . . + Ld` where Li $ pi 2 Pn and Y = {p1, . . . p`}

then for all g 2 T such that g(pi ) = 0, i = 1, . . . , `, g 2 F?, that is

IY ⇢ F?

where IY ⇢ T is the ideal of the set Y.
The opposite implication is also true, namely if IY ⇢ F?, with Y a finite set

of ` points in Pn , then F = Ld1 + . . . + Ld` , where the Li correspond to the points
in Y, as described above.

These containments are referred to as the apolarity lemma and one can find
proofs in [6, 9].

Having a particular Waring decomposition of F , or equivalently the ideal of a
set of distinct points in F?, will thus give us upper bounds for the rank of F . We
also need some good lower bounds for the rank of F . The importance of finding
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such lower bounds was underscored in the papers of [8] and in further work [12].
In [8], generalizing a result of Sylvester, a lower bound was found in terms of ranks
of catalecticant matrices and dimensions of the singularity loci in the spaces defined
by varieties coming from catalecticant ideals. In [10] the authors found a new lower
bound on the rank and using it they computed rk((x0 · . . . · xn)a), that is the rank of
a monomial with all the exponents equal to each other. In [3] a generalized bound
produced the rank of all monomials. Theorem 3.3 uses different invariants of F to
further generalizes the ranks of [10] and of [3].

Our new approach to the study of the rank is particularly effective in the di-
rection of Strassen’s conjecture. This famous conjecture was stated in the 1973
paper [11] and is still open (for some recent progress see [2]). The symmetric ver-
sion of Strassen’s conjecture can be stated as follows: the rank is additive on the
sum of forms in different sets of variables, that is

rk(F1 + . . . + Fm) = rk(F1) + . . . + rk(Fm)

if the forms Fi are in distinct sets of variables. In [3] it was proved that the con-
jecture holds if the forms Fi are monomials. In Theorem 6.1 we find several other
families of summands for which Strassens’s conjecture is true.

The paper is organized in the following way. In Section 2 we recall some of
the basic ideas we will use. In Section 3 we introduce the notion of e-computability
and use it to establish our new lower bound for the rank of F . In Section 4 we find
several infinite families of forms which are e-computable and thus compute their
rank. In Sections 5 and 6 we show how useful the notion of e-computability is in
dealing with Strassens’s conjecture by giving many new examples of families of
forms for which Strassens’s conjecture is true. In Section 7 we give an example of
an infinite family of forms whose rank is computable by ad hoc methods. We show
that the first member of this family is not 1-computable.

ACKNOWLEDGEMENTS. The first, second, and third authors wish to thank Queens
University, in the person of the fourth author, for their kind hospitality during the
preparation of this work.

2. Basic facts

Let
S = k[x0, . . . , xn] and T = k[X0, . . . , Xn],

where k is an algebraically closed field of characteristic zero. We let T act via
differentiation on S as above.

Given a homogeneous ideal I ✓ T we denote by

HF(T/I, i) = dimk Ti � dimk Ii
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theHilbert function of T/I in degree i . It is well known that the function HF(T/I, i)
is eventually a polynomial function with rational coefficients, and this polynomial
is called the Hilbert polynomial of T/I . We say that an ideal I ✓ T is one dimen-
sional if the Krull dimension of T/I is one, equivalently the Hilbert polynomial of
T/I is some integer constant, say `. In the case that I ✓ T is one dimensional,
then this eventually constant value of the Hilbert function of T/I is called the mul-
tiplicity of T/I . If, in addition, I is a radical ideal, then I is the ideal of a set of `
distinct points in Pn . We will use the fact that if I is a saturated ideal and T/I is
one dimensional of multiplicity `, then HF(T/I, i) is always at most `.

Our main tool is the apolarity lemma, whose proof can be found in [6, Lemma
1.31].

Lemma 2.1 (Apolarity lemma). Let X = {[L1], . . . , [L`]} ⇢ P(S1) be a set of `
distinct points, corresponding to the linear forms L1, . . . , L` 2 S1. If F 2 Sd , then

F = c1Ld1 + . . . + c`Ld` ,

for c1, . . . , c` 2 k, if and only if

IX ⇢ F?.

Note that the coefficients ci are necessary even if k is algebraically closed since
some of them could be zero; this is not a minimal decomposition. With the apolarity
lemma in mind, we make the following definition.
Definition 2.2.

a) If F is a form in S and X ⇢ Pn is a set of reduced points for which IX ⇢ F?,
then we say that X is apolar to F ;

b) If X is apolar to F and |X|  |Y| for any other Y apolar to F , then we say that
X minimally decomposes F .

We conclude with the following trivial, but useful, remark (see [3, Remark 2.3]).
Remark 2.3. The computation of the rank of F is independent of the polynomial
ring in which we consider F .

More precisely, consider a rank r form F 2 k[x0, . . . , xn]. Then F has rank r
also if we consider F as a form in k[x0, . . . , xn, xn+1, . . . , xn+t ].

3. Lower bound for rank

It is useful to recall the following well known results.
Remark 3.1. Let J ⇢ T be the ideal of a zero-dimensional scheme and t 2 Te
a homogeneous differentiation of degree e. If t is not a zero divisor in T/J , then
from the exact sequence

0 �! (T/J )i�e
·t

�! (T/J )i �! (T/(J + (t)))i �! 0, (3.1)
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we get, for s � 0,

e · HF(T/J, s) =
sX

i=0
HF(T/(J + (t)), i). (3.2)

Lemma 3.2. Let F(x0, . . . , xn) 2 Sd , then

F? : Xi = (Xi � F)?.

Proof. Let g 2 T and suppose that we have g 2 F? : Xi . Now

g 2 F? : Xi () (gXi ) � F = 0 () g � (Xi � F) = 0 () g 2 (Xi � F)?,

and the conclusion follows.

We are now ready to state and prove our first theorem.

Theorem 3.3. Let F 2 Sd and let X ⇢ P(S1) be apolar to F (so IX ⇢ F?). Let
I ⇢ T be any ideal generated in degree e > 0 and let t 2 Ie. If t is not a zero
divisor in T/(IX : I ), then for s � 0 we have

e · |X| �
sX

i=0
HF(T/(IX : I + (t)), i) �

sX

i=0
HF

⇣
T/
⇣
F? : I + (t)

⌘
, i
⌘

.

Proof. Note that IX : I is the saturated ideal of Y ✓ X consisting of all points of X
not lying on the zero set of I . Thus, by Remark 3.1, we have

1
e

·
sX

i=0
HF(T/(IX : I + (t)), i) = |Y|

for s � 0. Moreover for any s,

sX

i=0
HF(T/(IX : I + (t)), i) �

sX

i=0
HF(T/(F? : I + (t)), i),

since IX is contained in F?, and so we are done.

The following corollary gives a useful lower bound for the rank of F .

Corollary 3.4. Let F 2 Sd . Let I ⇢ T be any ideal generated in degree e > 0 and
let t be a general form in Ie. For s � 0 we have

rk(F) �

✓
1
e

◆ sX

i=0
HF

⇣
T/
⇣
F? : I + (t)

⌘
, i
⌘

.
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Proof. Let X minimally decompose F , so |X| = rk(F). If I ⇢ IX the statement is
trivially true. So assume I 6⇢ IX. Since t 2 Ie is a general form, then t is not a zero
divisor in T/IX : I . So by Theorem 3.3 we are done.

Notice that the summation on the right side cannot decrease as s increases
and, indeed, the summands are all zero for s big enough. Hence we often use the
corollary above with s = 1.
Definition 3.5. Let F 2 Sd and e > 0 be an integer. We say that F is e-computable
if there exists an ideal I ⇢ T generated in degree e such that for general t 2 Ie we
have

rk(F) =

✓
1
e

◆ 1X

i=0
HF

⇣
T/
⇣
F? : I + (t)

⌘
, i
⌘

.

In this case we say that the rank of F is computed by I and t . In case I = (t), we
simply say that the rank of F is computed by t .

Proposition 3.6. Let F 2 Sd and assume that rk(F) is computed by I and t . If X
minimally decomposes F and if we let IX0 = IX : I , then X = X0 and IX + (t) =
F? + (t).

Proof. Since rk(F) > 0, then IX : I 6= T and, since t is general, we may assume
that t is a non-zero divisor in T/IX : I . By (3.2) we get

|X0| =

✓
1
e

◆ 1X

i=0
HF(T/(IX : I + (t)), i).

Hence we have

rk(F) = |X| � |X0| =

✓
1
e

◆ 1X

i=0
HF(T/(IX : I + (t)), i)

�

✓
1
e

◆ 1X

i=0
HF

⇣
T/
⇣
F? : I + (t)

⌘
, i
⌘

= rk(F).

It follows that X = X0 and IX : I + (t) = F? : I + (t). Hence

F? + (t) ✓ F? : I + (t) = IX : I + (t) = IX0 + (t) ⇢ IX + (t) ✓ F? + (t),

and the conclusion follows.

4. Forms which are e-computable

In this section we give several examples of forms which are e-computable for vari-
ous values of e.
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We start by considering forms in two variables, that is F 2 S = k[x0, x1], and
we recall Sylvester’s algorithm to compute the rank of F , see [4]. Since F? is a
Gorenstein Artinian ideal and F? ⇢ T = k[X0, X1], we have that

F? = (h1, h2)

where deg h1 = d1  deg h2 = d2 and d1 + d2 = deg F + 2 with h1 and h2 having
no common factor. If h1 is square free then rk(F) = d1, otherwise rk(F) = d2.

Proposition 4.1. If F 2 S = k[x0, x1] and F? = (h1, h2) as above, then

(i) if h1 is not square free and h1 = t2eh1, then F is e-computable, where e =
deg t;

(ii) if h1 is square free and d1 < d2, then F is e-computable for any e  d2�d1+1
2 ;

(iii) if d1 = d2 we can assume we are in case (i).

Proof.

(i) h1 is not square free, so rk(F) = d2;
Since in this case, h1 = t2eh1, it is easy to see that F? : (t) = (teh1, h2).
It follows that F? : (t) + (t) = (t, h2). Noting that (t, h2) is a complete
intersection of degree e · d2, we have

P1
i=0 HF(T/(F? : (t) + (t)), i) =

e · d2 = e · rk(F), and this completes the proof of (i);
(ii) h1 is square free and d1 < d2, so rk(F) = d1.

Let t be a form of degree e  d2�d1+1
2 such that t |h2. We claim that

F? : (t) + (t) = (t, h1).

It is easy to show that F? : (t) = (h1, h2/t), hence F? : (t) + (t) =
(t, h1, h2/t). But (t, h1) contains all forms of degree at least e + d1 � 1,
and deg h2/t = d2�e � e+d1�1. Thus (t, h1, h2/t) = (t, h1), and we have
proved the claim. Hence,

1X

i=0
HF(T/(F? : (t) + (t)), i) = e · d1 = e · rk(F);

(iii) If d1 = d2 then, using the discriminant of a general combination of h1 and h2,
we can assume that h1 is not square free.

We now consider monomials in S = k[x0, . . . , xn]. It is shown in [3] that any
monomial is 1-computable. In the next proposition we generalize this fact.

Proposition 4.2. Let F = xa00 x
a1
1 · · · xann where 0 < a0  a1  . . .  an . Then F

is e-computable for

1  e 
a0 + 1
2

.
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Proof. We know that rk(F) = 5n
i=1(ai + 1) (see [3]). Now

F? :
�
Xe0
�
+
�
Xe0
�

=
⇣
xa0�e0 xa11 · · · xann

⌘?
+
�
Xe0
�

=
⇣
Xa0�e+10 , Xa1+11 , . . . , Xan+1n , Xe0

⌘

=
⇣
Xa1+11 , . . . , Xan+1n , Xe0

⌘
.

Hence
1X

i=0
HF

⇣
T/
⇣
F? :

�
Xe0
�
+
�
Xe0
�⌘

, i
⌘

= e ·5n
i=1(ai + 1) = e · rk(F).

Remark 4.3. It would be interesting to know if the forms of Propositions 4.1 and
4.2 are e-computable for e’s different from those described in the two propositions.

In the following propositions we exhibit several other families of e-computable
forms.

Consider
F = xa0

⇣
xb1 + . . . + xbn

⌘
.

Since, both for n = 1 and, by a change of coordinates, for b = 1, F is a monomial,
we skip those known cases (see [3]).

Proposition 4.4. Let b � 2, n � 2 and let

F = xa0
⇣
xb1 + . . . + xbn

⌘
2 S = k[x0, . . . , xn].

If a+1 � b, then F is 1-computable, the rank of F is computed by I =(X1, . . . , Xn)
and a general linear form t 2 I , and we have

rk(F) = (a + 1)n.

Proof. Consider the ideal I = (X1, . . . , Xn) ⇢ T . We first calculate F? : I .

F? : I =
⇣
F? : (X1, . . . , Xn)

⌘
=
⇣
F? : (X1)

⌘
\ · · · \

⇣
F? : (Xn)

⌘
.

Thus, by Lemma 3.2,

F? : I =
⇣
xa0 x

b�1
1

⌘?
\ · · · \

⇣
xa0 x

b�1
n

⌘?

=
⇣
Xa+10 , Xb1, X2, . . . , Xn

⌘
\ · · · \

⇣
Xa+10 , X1, . . . , Xn�1, Xbn

⌘

=
⇣
Xa+10 , Xb1, . . . , X

b
n, X1X2, . . . , Xn�1Xn

⌘
.



SYMMETRIC TENSORS: RANK, STRASSEN’S CONJECTURE AND e-COMPUTABILITY 371

Now consider eI = F? : I + (t), where t = ↵1X1 + . . . + ↵n Xn 2 I1 is a general
form. We have

eI = F? : I +
�
↵1X1 + . . . + ↵n Xn

�

=
⇣
Xa+10 , X21, . . . , X

2
n, X1X2, . . . , Xn�1Xn,↵1X1 + . . . + ↵n Xn

⌘
.

We want to apply Corollary 3.4, so we compute
Ps

i=0 HF(T/eI , i) for s large
enough.

For a + 1 = 2 and b = 2, we have F = x0(x21 + . . . + x2n) and

eI =
⇣
X20, X

2
1, . . . , X

2
n, X1X2, X1X3, . . . , Xn�1Xn,↵1X1 + . . . + ↵n Xn

⌘
.

So we can easily see that the following table holds true:
i 0 1 2 3

HF(T/eI , i) 1 n n � 1 0 .

From this we get
Ps

i=0 HF(T/eI , i) = 2n.
For a + 1 > 2 we have

eI =
⇣
Xa+10 , X21, . . . , X

2
n, X1X2, X1X3 . . . , Xn�1Xn,↵1X1 + . . . + ↵n Xn

⌘
.

A simple computation shows that:
i 0 1 2 . . . a a + 1 a + 2

HF(T/eI , i) 1 n n . . . n n � 1 0.

From this we get
Ps

i=0 HF(T/eI , i) = (a + 1)n.
Hence, we get rk(F) � (a + 1)n in both cases using Corollary 3.4.
Now consider F?. Since

F? ◆
⇣
Xa+10 , Xb1 � Xb2, . . . , X

b
1 � Xbn, X1X2, X1X3, . . . , Xn�1Xn

⌘
,

then the ideal
⇣
Xa+10 +

⇣
Xa+1�b1 + . . . + Xa+1�bn

⌘ ⇣
(n � 1)Xb1 � . . . � Xbn

⌘
,

X1X2, X1X3, . . . , Xn�1Xn
⌘

is contained in F?. This last is the ideal of (a + 1)n distinct points lying on the n
lines whose defining ideal is (X1X2, X1X3, . . . , Xn�1Xn).

By the apolarity lemma, it follows that rk(F)  (a+1)n, and we are done.
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Remark 4.5. For some special F in Proposition 4.4 the rank of F can be computed
by t , instead of by I and t . For instance, if F = x(y2 + z2) we have rk(F) = 4.
Note that in the proof of Proposition 4.4 we showed that the rank was computed by
I = (Y, Z) and t = ↵1Y + ↵2Z . However, the rank is also computed by t = X , in
other words:

1X

i=0
HF

⇣
T/
⇣
F? : (X) + (X)

⌘
, i
⌘

= 4.

We do not know if the rank of F can always be computed by t . For instance, if
F = x2(y2+ z2+w2) we have rk(F) = 9 (see Proposition 4.9 below). In the proof
of Proposition 4.4 we showed that the rank was computed by I = (Y, Z ,W ) and
t = ↵1Y + ↵2Z + ↵3W . Note that

1X

i=0
HF

⇣
T/
⇣
F? : (Y + Z + W ) + (Y + Z + W )

⌘
, i
⌘

= 3,

and that
1X

i=0
HF

⇣
T/
⇣
F? : (X) + (X)

⌘
, i
⌘

= 5,

that is, neither t = Y + Z + W , nor t = X compute the rank. We do not know if
there is a t which computes the rank of this F.

Remark 4.6. Let Mi = xa0 x
b
i , so the polynomial F of the previous proposition,

becomes
F = xa0

⇣
xb1 + . . . + xbn

⌘
= M1 + . . . + Mn.

In case a + 1 = b we have (see [3] for the rank of the Mi )

rk(F) = (a + 1)n < rk(M1) + · · · + rk(Mn) = (a + 2)n.

Thus, an analogue of Strassen’s conjecture is certainly not true if a form is the sum
of forms which have a common factor. On the other hand, when a+1 > b, we have

(a + 1)n = rk(F)  rk(M1) + . . . + rk(Mn) = (a + 1)n.

Thus, in some cases, the rank is additive over summands, even when the summands
have a common factor.

Proposition 4.7. Let b � 2, a � 1, and let

F = xa0
⇣
xb1 + xb2

⌘
.

(i) If a + 1 � b, then the rank of F is computed by I = (X1, X2) and t and
rk(F) = 2(a + 1);

(ii) If a + 1  b, then the rank of F is computed by t = X0 and rk(F) = 2b.
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Proof.

(i) Follows from Proposition 4.4.
(ii) In this case let I = (X0) ⇢ T . Obviously t is a general form in I1. Hence we

consider the ideal eI = F? : (X0) + (X0), and we have

eI = (X0 � F)? + (X0) =
⇣
xa�10

⇣
xb1 + xb2

⌘⌘?
+ (X0)

=
⇣
X0, X1X2, Xb1 � Xb2

⌘
.

Since
i 0 1 2 . . . b � 1 b

HF(T/eI , i) 1 2 2 . . . 2 1

we have
bP

i=0
HF(T/eI , i)=2b. Hence from Corollary 3.4, we get rk(F) � 2b.

Since ⇣
X1X2, Xb0 + Xb1 � Xb2

⌘

is the ideal of 2b points apolar to F , by the apolarity lemma we are done.

Remark 4.8. Note that for a + 1  b and F = xa0 (x
b
1 + xb2 ) we have

rk(F) = 2b < rk
⇣
xa0 x

b
1

⌘
+ rk

⇣
xa0 x

b
2

⌘
= 2b + 2.

Now we study the rank of the forms G = F + xa+b0 , where F is as in Proposi-
tions 4.4 and 4.7, that is,

G = xa0
⇣
xb1 + . . . + xbn

⌘
+ xa+b0 .

We will show that F and G have the same rank.

Proposition 4.9. Let b � 2, n � 2 and let

G = xa0
⇣
xb1 + . . . + xbn

⌘
+ xa+b0 = xa0

⇣
xb0 + xb1 + . . . + xbn

⌘
2 S.

If a + 1 � b, then the rank of G is computed by I = (X1, . . . , Xn) and t and

rk(G) = (a + 1)n.
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Proof. As in the proof of Proposition 4.4, we consider the ideal I =(X1, . . . , Xn)⇢
T and the linear general form t = ↵1X1 + . . . + ↵n Xn . Let eI = G? : I + (t). We
have

eI = G? : (X1, . . . , Xn) + (↵1X1 + . . . + ↵n Xn)

=
⇣
G? : (X1)

⌘
\ · · · \

⇣
G? : (Xn)

⌘
+ (↵1X1 + . . . + ↵n Xn).

Hence, by Lemma 3.2,

eI =
⇣
xa0 x

b�1
1

⌘?
\ · · · \

⇣
xa0 x

b�1
n

⌘?
+ (↵1X1 + . . . + ↵n Xn).

Note that this is exactly the ideal eI that we constructed in the proof of Proposi-
tion 4.4, thus we may proceed in the same way and we get rk(G) � (a + 1)n.

Now consider G?. It is easy to show that G? contains the ideal
✓
nXa+10 �

✓
a + b
b

◆⇣
Xb1 + . . . + Xbn

⌘
Xa+1�b0 , Xb+11 , . . . , Xb+1n ,

X1X2, X1X3, . . . , Xn�1Xn
◆

.

If a + 1 = b, then the ideal
✓
nXa+10 �

✓
a + b
b

◆⇣
Xb1 + . . . + Xbn

⌘
Xa+1�b0 , X1X2, X1X3, . . . , Xn�1Xn

◆
,

is contained in G? and defines (a + 1)n points apolar to G lying on the n lines
whose defining ideal is (X1X2, X1X3, . . . , Xn�1Xn). Hence, we conclude using
the apolarity lemma.

If a + 1 > b, then consider the ideal

A=

✓
↵

✓
nXa+10 �

✓
a + b
b

◆
Xa+1�b0

⇣
Xb1 + . . . + Xbn

⌘◆
+�Xa+11 + . . . + �Xa+1n ,

X1X2, X1X3, . . . , Xn�1Xn
◆

,

where ↵,� 2 k. It is easy to see that A is contained in G?. Moreover, for generic
values of ↵ and �,A is the ideal of (a+1)n distinct points lying on the n lines whose
defining ideal is (X1X2, X1X3, . . . , Xn�1Xn). In fact, consider the line whose ideal
is (X2, . . . , Xn) (and analogously for the other n � 1 lines). We have

A+ (X2, . . . , Xn)=
✓
↵

✓
nXa+10 �

✓
a + b
b

◆
Xa+1�b0 Xb1

◆
+ �Xa+11 , X2, . . . , Xn

◆
,
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hence, in order to find the a + 1 points, we have to solve the equation

↵

✓
nXa+10 �

✓
a + b
b

◆
Xa+1�b0 Xb1

◆
+ �Xa+11 = 0,

or, in other words, we have to consider the linear series cut out on P1 by the linear
system

6 =

⌧
nXa+10 �

✓
a + b
b

◆
Xa+1�b0 Xb1, X

a+1
1

�
,

whose general element is reduced by Bertini’s theorem.
Thus, using the apolarity lemma, it follows that rk(G) � (a + 1)n, and we are

done.

Remark 4.10. The lower bound in [8, Proposition 4.7] can only prove the case
a = 1 and b = 2 of our Proposition 4.9.

Proposition 4.11. Let b � 2 and

G = xa0
⇣
xb1 + xb2

⌘
+ xa+b0 = xa0

⇣
xb0 + xb1 + xb2

⌘
2 S.

(i) If a + 1 � b, then the rank of G is computed by I = (X1, X2) and a general
t 2 I1, and rk(G) = 2(a + 1);

(ii) If a + 1  b, then the rank of G is computed by t = (X0) and rk(G) = 2b.

Proof.

(i) This is a particular case of Proposition 4.9;
(ii) As in Proposition 4.7, let I = (X0) and t = X0. Consider the ideal eI = G? :

(X0) + (X0). We have

eI = (X0 � G)? + (X0) =
⇣
xa�10

⇣
xb1 + xb2

⌘⌘?
+ (X0)

=
⇣
X0, X1X2, Xb1 � Xb2

⌘
,

which is the same ideal we found in the proof of Proposition 4.7. So rk(G) �
2b follows in the same way.
Now notice that

✓
2Xb0 �

✓
a + b
b

◆⇣
Xb1 + Xb2

⌘
, X1X2

◆

is the ideal of 2b points which are apolar to G. Thus, by the apolarity lemma,
rk(G)  2b, and we are done.
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Remark 4.12. With a bit more effort one can show the following:

a) In Propositions 4.4, 4.7 (i), 4.9 and 4.11 (i) the forms are e-computable if
2e  b. The rank is computed by I = (Xe1, . . . , X

e
n) and a general form

t 2 Ie;
b) In Propositions 4.7 (ii) and 4.11 (ii) the forms are e-computable if 2e  a + 1
and the rank of F is computed by I = (Xe0) and t = Xe0.

Now we study forms F 2 S = k[x0, . . . , xn] for which

F? =
�
qa, g1, . . . , gn

�
⇢ T

is a complete intersection such that

a � 2 and ae  d1  . . .  dn,

where e = deg q, d1 = deg g1, . . . , dn = deg gn.
We need the following lemma:

Lemma 4.13. Let J = (qa, g1, . . . , gn) be a complete intersection as above. Then
there exist f1, . . . , fn such that

J = (qa, f1, . . . , fn),

where deg fi = deg gi and, for all j, 1  j  n the ideal ( f j , f j+1, . . . , fn)
defines a smooth complete intersection in Pn of codimension n � j + 1 and having
degree5d

i= j di .

Proof. Consider the linear system of forms of degree dn in J . This system has
no base points and so by Bertini’s theorem, the general element is smooth. Since
the general element is a linear combination of gn and other forms of degree dn in
J , there is no loss of generality in choosing a generator for J of the type fn =
gn + (other forms of degree dn). We call this new generator fn . Now consider
the linear system of codimension two varieties cut out on V ( fn) by all the other
hypersurfaces in J of degree dn�1. This linear system is clearly base point free in
V ( fn) and so the general element of this system cuts out a smooth variety on V ( fn)
of codimension 2 in Pn . We can then replace gn�1 by a general element of this
system. Continuing in this same way we arrive at hypersurfaces f1, . . . , fn where
deg fi = deg gi and ( f1, . . . , fn) describes a set of5n

i=1di points.

We have the following result.

Theorem 4.14. Let F 2 S be a homogeneous polynomial. If

F? = (qa, g1, . . . , gn)

is a complete intersection such that

a � 2 and both e = deg q > 0 and ae  d1 = deg g1  . . .  dn = deg gn,
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then F is e-computable, the rank of F is computed by q and we have

rk(F) = 5n
i=1di = (1/e)

1X

i=0
HF

⇣
T/
⇣
F? : (q) + (q)

⌘
, i
⌘

.

Proof. Using Lemma 4.13 we know that rk(F)  5n
i=1di .

Since {qa, g1, . . . , gn} is a regular sequence, F? : (q) = (qa�1, g1, . . . , gn).
Hence

F? : (q) + (q) = (q, g1, . . . , gn).

So by Corollary 3.4 we have

rk(F) �

✓
1
e

◆ 1X

i=0
HF(T/(q, g1, . . . , gn), i) = 5n

i=1di ,

and the conclusion follows.

We now give an example of a form which is 2-computable but not 1-computa-
ble.
Example 4.15. If

F = x11 � 22x9y2 + 33x7y4 � 22x9z2 + 396x7y2z2 � 462x5y4z2

+ 33x7z4 � 462x5y2z4 + 385x3y4z4,

then F is 2-computable and rk(F) = 25. In fact, using the software CoCoA1 we
get

F? =

✓⇣
X2 + Y 2 + Z2

⌘2
,G1,G2

◆
,

where G1 = Y 5 + Z(X2 + Y 2 + Z2)2 and G2 = Z5 + X (X2 + Y 2 + Z2)2.
Hence

rk(F) � (1/2)
1X

i=0
HF

⇣
T/
⇣
F? :

⇣
X2 + Y 2 + Z2

⌘
+
⇣
X2 + Y 2 + Z2

⌘⌘
, i
⌘

= 25,

and the ideal (G1,G2) ⇢ F? is the ideal of 25 distinct points.
We will see, in Example 4.23, that this form is not 1-computable.

Proposition 4.16. Let F = xa0G 2 S for some a and some form G 2 k[x1, . . . , xn].
The following hold:

1 COCOA TEAM, A system for doing Computations, In: “Commutative Algebra”, available at
http://cocoa.dima.unige.it, 2004.
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(i) F? = (Xa+10 ,G?), where G? is considered in k[X1, . . . , Xn];
(ii) If G? is a complete intersection and all generators of G? have degree at least

a + 1, then F is 1-computable.

Proof. First of all, let g 2 F?. We can write g = h0+ X0h1+· · ·+ Xa0ha+ Xa+10 eg
where h0, . . . , ha 2 k[X1, . . . , Xn] andeg 2 k[X0, . . . Xn]. By assumption,

0 = g · F

=
⇣
h0 + X0h1 + · · · + Xa0ha + Xa+10 eg

⌘
· xa0G(x1, . . . , xn)

= xa0 (h0 · G) + axa�10 (h1 · G) + · · · + (a!)(ha · G).

Since h0 ·G, h1 ·G, . . . , ha ·G 2 C[x1, . . . , xn], we have h0 ·G = h1 ·G = . . . =
ha · G = 0 and hence h0, . . . , ha 2 G?. This proves that F? = (Xa+10 ,G?).

(ii) Obvious from Theorem 4.14.

Let Vn =
Q
1i< jn(xi � x j ) 2 k[x1, . . . , xn] be the Vandermonde deter-

minant. Since Vn is the fundamental skew-symmetric invariant of the symmetric
group, it is known that the perp ideal V?

n = (�1, �2, . . . , �n) ⇢ k[X1, . . . , Xn]
where �i is the i-th elementary symmetric polynomial in X1, . . . , Xn for i =
1, . . . , n (see [13] and its bibliography). For later use, let � 0

i be the i-th elemen-
tary symmetric polynomial on the variables X2, . . . , Xn for i = 1, . . . , (n � 1).
One can see that

• �1 = X1 + � 0
1;

• �2 = X1� 0
1 + � 0

2;
• · · ·
• �n�1 = X1� 0

n�2 + � 0
n�1;

• �n = X1� 0
n�1.

Proposition 4.17 ([13]). rk(Vn) = (n � 1)!.

Proof. We give a different proof from the one in [13] in order to illustrate the use of
e-computable forms. We have rk(Vn) � (n � 1)! by the Ranested-Schreyer bound
(see [10]). For the upper bound, take I = (�1, . . . , �n�1) ⇢ V?

n . By the apolarity
lemma, it remains to show that I is the homogenous ideal of a set of (n�1)! distinct
points. To this end, we will show that on the affine piece X1 6= 0, the zero locus of
the ideal I consists of exactly (n � 1)! distinct points. This is enough because I is
a complete intersection of forms of degrees 1, 2, . . . , (n � 1). Now letting X1 = 1,
we have
�
(X2, . . . , Xn)|�1(1, X2, . . . , Xn) = · · · = �n�1(1, X2, . . . , Xn) = 0

 

=
�
(X2, . . . , Xn)|1+ � 0

1(X2, . . . , Xn) = · · · = � 0
n�2(X2, . . . , Xn) + � 0

n�1 = 0
 

=
�
(X2, . . . , Xn)|� 0

1 = �1, . . . , � 0
i = (�1)i , . . . , � 0

n�1 = (�1)n�1
 

=
�
(X2, . . . , Xn)|X2, . . . , Xn are the distinct (n � 1) solutions of the equation

tn�1 + · · · + t+ 1 = 0
 
.
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This proves that the ideal I defines a set of (n � 1)! distinct points.

Proposition 4.18. The rank of the Vandermonde determinant Vn is computed by
the linear form X1.

Proof. Due to Proposition 4.17 it will be enough to show that the length of T/(V?
n :

(X1) + (X1)) is (n � 1)!. We first observe that since �1, . . . , �n form a regular
sequence and �n = X1� 0

n we have that both �1, . . . , �n�1,X1 and �1, . . . , �n�1, � 0
n

form regular sequences. It is also clear that

V?
n + (X1) = (X1, �1, . . . , �n�1, �n) =

�
X1, � 0

1, . . . , �
0
n�1

�
.

Obviously X1, � 0
1, . . . , �

0
n�1 is a regular sequence and so

1X

i=0
HF

⇣
T/
⇣
V?
n + (X1)

⌘
, i
⌘

= (n � 1)!.

Thus from the exact sequence

0 ! T/
⇣
V?
n : (X1)

⌘
! T/V?

n ! T/
⇣
V?
n + (X1)

⌘
! 0

we obtain

1X

i=0
HF

⇣
T/
⇣
V?
n : (X1)

⌘
, i
⌘

= n! � (n � 1)! = (n � 1)! · (n � 1).

Now notice that
V?
n : (X1) ◆ (�1, . . . , �n�1, �

0
n�1).

But the length of T/(V?
n : (X1)) is (n � 1)(n � 1)! and this is exactly the length of

T/(�1, . . . , �n�1, �
0
n�1). It follows that

V?
n : (X1) =

�
�1, . . . , �n�1, �

0
n�1

�
.

Hence V?
n : (X1) + (X1) = (X1, �1, . . . , �n�1, � 0

n�1) and this is easily seen to
be V?

n + (X1). But we have already shown that
P1

i=0 HF(T/(V?
n + (X1)), i) =

(n � 1)! and thus we are done.

Note that the Vandermonde determinant is 1-computable and in V?
n there is a

form of degree one. A natural question arises: does there exist a change of coordi-
nates such that, after this change, we may consider Vn in a smaller polynomial ring,
in which Vn is still 1-computable and (V?

n )1 = 0?
In Proposition 4.21 we give a positive answer to this question, but first we

observe the following:
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Remark 4.19. Recall that T = k[X0, . . . , Xn] and suppose that Y0, . . . ,Yn is an-
other basis for T1, where

Yi =
nX

i=0
↵i, j X j .

We can write T as a polynomial ring in the new variables Y0, . . . ,Yn . To avoid con-
fusion we set eT = k[Y0, . . . ,Yn], even though eT = T . The change of coordinates
transformation on T can be considered as

 : T ! eT

where
Xi =  i (Y0, . . . ,Yn).

It follows that, for a form G(X0, . . . , Xn) 2 T ,

 (G) = G( 0(Y0, . . . ,Yn), . . . , n(Y0, . . . ,Yn)) 2 eT .

Now let y0, . . . , yn 2 S1 be the dual basis to Y0, . . . ,Yn . As with the discussion
above we can consider

' : S = k[x0, . . . , xn] ! eS = k[y0, . . . , yn]

the isomorphism which extends the isomorphism induced by  from S1 ! eS1.
Since Xi � x j = �i, j and Yi � y j = �i, j , we have, for G 2 T and F 2 S,

'(G � F) =  (G) � '(F).

Lemma 4.20. Let Y0, . . . ,Yn be a basis for T1 and let y0, . . . , yn 2 S1 be the dual
basis. Let eT = k[Y0, . . . ,Yn], and eS = k[y0, . . . , yn], and let  : T ! eT and
' : S ! eS be the changes of coordinates.

If F(x0, . . . , xn) 2 S then

 
⇣
F?
⌘

= '(F)?.

Proof. Let F? =(G1, . . . ,Gs), so  (F?) = ( (G1), . . . , (Gs)). Since  (Gi )�
'(F) = '(Gi � F) = 0, we get  (Gi ) 2 '(F)?. For the opposite inclusion, let
eG 2 '(F)?, and G =  �1(eG). We have that  (G) � '(F) = 0. But  (G) �
'(F) = '(G � F), hence G � F = 0, that is, G 2 F?, and so eG 2  (F?).

Proposition 4.21. Let F 2 S = k[x0, . . . , xn] and assume that
⇣
F?
⌘

1
= (Yn�s+1, . . . ,Yn) ⇢ T1,

where the Yi are linearly independent linear forms in the Xi .
Let Y0, . . . ,Yn�s,Yn�s+1, . . . ,Yn be a basis of T1 and let y0, . . . , yn 2 S1

be its dual basis. There exists a change of coordinates ' such that '(F) involves
only the variables y0, . . . , yn�s , and considering '(F) in k[y0, . . . , yn�s], we have
('(F)?)1 = 0. Moreover, if F is 1-computable, then '(F) also is 1-computable.
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Proof. Let ' and  be as in Lemma 4.20, then we get
⇣
 
⇣
F?
⌘⌘

1
=
⇣
'(F)?

⌘

1
.

Since ( (F?))1 = (Yn�s+1, . . . ,Yn) ⇢ eT1, we have that Yi � '(F) = 0 for n �
s + 1  i  n. It follows that '(F) 2 k[y0, . . . , yn�s]. Now assume that F is
1-computable, and that the rank of F is computed by I and t , that is,

rk(F) =
1X

i=0
HF

⇣
T/
⇣
F? : I + (t)

⌘⌘
.

Since  (F? : I + (t)) =  (F?) :  (I ) +  (t) = '(F)? :  (I ) +  (t) and
T/(F? : I + (t)) ' eT /( (F? : I + (t))) = rk'(F), then '(F) is 1-computable,
and we are done.

Remark 4.22. By a change of coordinates ' as in Proposition 4.21, we may assume
that the form '(Vn), where Vn is the Vandermonde determinant, is 1-computable
and ('(Vn)?)1 = 0.

We close this section by exhibiting a family of forms which are e-computable
(e > 1) but are not 1-computable.

Example 4.23. Let T be a polynomial ring in three variables. Let Q 2 T be an
irreducible quadratic form and let G1,G2 2 T be two general forms of degree d,
d > 4. By Macaulay duality, there exists a form F in the dual ring S whose apolar
ideal is

F? =
⇣
Q2,G1,G2

⌘
.

By Theorem 4.14 we know that F is 2-computable and rk(F) = d2.
We claim that F is not 1-computable.
Note that (G1,G2) ⇢ F? is the ideal of a set of d2 distinct points, say X. By

Proposition 3.6, if F were 1-computable by I and t (t general in I ), then

IX + (t) = F? + (t).

Thus, we would have then (G1,G2, t) = (Q2,G1,G2, t), which is impossible
since t does not divide Q. Hence F is not 1-computable.

Remark 4.24. Following example 4.23, Proposition 3.6 allows us to construct ex-
amples of forms which are e-computable but which are not 1-computable. It is
enough to take a general form Q of degree e and to increase the degrees of G1,G2
accordingly.

Example 4.25. In Section 7 we exhibit a form F whose rank we can compute using
ad hoc methods. We show it is not 1-computable and wonder if it is e-computable
for some e > 1.
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5. Strassen’s conjecture for e-computable forms

Fix the following notation:

S = k
⇥
x1,0, . . . , x1,n1, . . . , xm,0, . . . , xm,nm

⇤
,

T = k
⇥
X1,0, . . . , X1,n1, . . . , Xm,0, . . . , Xm,nm

⇤
.

For i = 1, . . . ,m, we let

S[i] = k[xi,0, . . . , xi,ni ],

T [i] = k[Xi,0, . . . , Xi,ni ],

Fi 2 S[i]
d ,

and
F = F1 + · · · + Fm 2 Sd .

If we consider Fi 2 S, then we write

F?
i = {g 2 T | g � Fi = 0} .

On the other hand, if we consider Fi 2 S[i], then we also write

F?
i =

n
g 2 T [i] | g � Fi = 0

o
.

Given this notation, it is important to know precisely in which ring we are consid-
ering Fi .

So, for instance, if we consider F1 2 S then

F?
1 =

n
g 2 T [1] | g � F1 = 0

o
[ (X2,0, . . . , X2,n2, . . . , Xm,0, . . . , Xm,nm ),

while if we consider F1 2 S[1] then

F?
1 =

n
g 2 T [1] | g � F1 = 0

o
.

Remark 5.1. We assume that each Fi essentially involves ni variables, thus F?
i

does not have linear forms involving the variables of T [i], and in F? there are no
linear forms.

Moreover, we let I [i] ⇢ T [i] be ideals with ti 2 I [i] (i = 1, · · · ,m) all of the
same degree and we set

Ji =
⇣
F?
i : I [i]

⌘
+ (ti ) ⇢ T ;

where we consider each Fi as a form in S.
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Lemma 5.2. With the notation above and ai 2 k we have
⇣
F? :

⇣
I [1] + · · · + I [m]

⌘⌘
+ (a1t1 + · · · + amtm) ✓ J1 \ · · · \ Jm .

Proof. Since Fi 2 S[i] (although we are considering it in S) we always have that
X j,0, . . . , X j,n j are in F?

i for all j 6= i . Hence t j 2 F?
i for j 6= i . So t1, . . . , tm 2

J1 \ · · · \ Jm and it is enough to prove that
⇣
F? :

⇣
I [1] + · · · + I [m]

⌘⌘
✓ J1 \ · · · \ Jm,

that is, ⇣
F? : I [1]

⌘
\ · · · \

⇣
F? : I [m]

⌘
✓ J1 \ · · · \ Jm .

Let g 2 F? : I [i], ( 1  i  m), so gl � F = 0, for any l 2 I [i]. Since for j 6= i ,
l � Fj = 0, then gl � Fi = 0, that is, gl 2 F?

i , by considering Fi 2 S. It follows
that g 2 F?

i : I [i] ✓ Ji , for i = 1, . . . ,m, that is, g 2 J1 \ · · · \ Jm .

Lemma 5.3. Let ti 2 I [i] be a general form and assume that the rank of Fi is
computed by I [i] and ti . Set Ji = (F?

i : I [i]) + (ti ) ⇢ T . If s � 0, then

(i)
sX

i=0
HF(T/J1\. . .\Jm, i)=

sX

i=0
HF(T/J1, i)+. . .+

sX

i=0
HF(T/Jm, i)�m+1,

and

(ii)
sX

i=0
HF(T/J1 \ . . . \ Jm, i) = e(rk(F1) + · · · + rk(Fm)) � m + 1.

Proof. To prove (i) we proceed by induction onm. Ifm = 1 the equality is obvious.
Let m > 1 and consider the following short exact sequence:

0 �! T/(J1 \ . . . \ Jm) �! T/J1 � T/(J2 \ . . . \ Jm)

�! T/(J1 + (J2 \ . . . \ Jm)) �! 0.

Since J1 + J2 \ . . . \ Jm is the irrelevant ideal of T we get the conclusion by the
inductive hypothesis.

Part (ii) follows from (i) since T/Ji ' T (i)/F?
i : I [i] + (ti ), where now Fi is

considered as a form in S[i] (so F?
i =

�
g 2 T [i] | g � Fi = 0

 
). Hence, for s � 0,

we have

e · rk(Fi ) =
sX

j=0
HF

⇣
T [i]/

⇣
F?
i : I [i] + (ti )

⌘
, j
⌘

.
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Remark 5.4. Recall that in [2, Proposition 3.1], it was shown that Strassen’s con-
jecture holds for forms of the type

F(x0, . . . , xn) + yd ,

where F is a form of degree d. In other terms, adding the power of a new variable
increases the rank by exactly one.

Because of this remark, in the following theorem we may assume that the poly-
nomial rings all have at least two variables.

Theorem 5.5. Let F = F1 + · · · + Fm 2 S, where Fi 2 S[i] with ni � 1. If all the
forms Fi are e-computable and (F?

i )e = 0 then

rk(F) = rk(F1) + · · · + rk(Fm),

that is the Strassen conjecture is true for F .

Proof. Let I [i] ⇢ T [i] and ti (deg ti = e) compute the rank of Fi and let Vi be the
zero set of I [i]. It is enough to prove that

rk(F) � rk(F1) + · · · + rk(Fm),

since the opposite inequality is obvious.
If X minimally decomposes F , then the ideal IX : (I [1] + · · · + I [m]) is the

homogeneous ideal of the subset X0 of X not lying on V1 \ · · · \ Vm .
For a general choice of ai 2 k, the form a1t1+· · ·+amtm is a non zero divisor

for T/IX0 . Now consider IX0 + (a1t1 + · · · + amtm). We have

IX0 + (a1t1 + · · · + amtm) =
⇣
IX :

⇣
I [1] + · · · + I [m]

⌘⌘
+ (a1t1 + · · · + amtm)

✓
⇣
F? :

⇣
I [1] + · · · + I [m]

⌘⌘
+ (a1t1 + · · · + amtm).

Hence, by Lemma 5.2,

IX0 + (a1t1 + · · · + amtm) ✓ J1 \ · · · \ Jm,

where Ji = (F?
i : I [i]) + (ti ) ⇢ T , considering Fi 2 S.

We say that a degree e form h 2 IX0 is uniform if

h = h1 + . . . + hm,

and hi (i = 1, . . . ,m) is zero or a degree e form in T [i], that is hi 2 T [i]
e .
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Claim 1: If h 2 (IX0)e is uniform, then h = 0.
Assume that h 2 (IX0)e is uniform. Since IX0 = IX : (I [1] + · · · + I [m]), and

IX ⇢ F?, then hli 2 F?, for any li 2 I [i]. Hence, for every i = 1, . . . ,m,

hli 2 F? ) hli � F = 0 ) hli � Fi = 0 ) hi li � Fi = 0.

Now, considering Fi 2 S[i], the last equality implies hi 2 F?
i : li , so that hi 2

(F?
i : I [i]) and hi 2 (F?

i : I [i]) + (ti ) ⇢ T [i].
Hence, by Proposition 3.6, hi 2 IXi + (ti ), where Xi minimally decomposes

Fi . By hypothesis (F?
i )e = 0, hence there are no degree e forms in IXi . Thus we

have hi = µi ti , and
h = µ1t1 + . . . + µmtm .

Recall that h 2 IX0 and hence it vanishes on all the points of X0, that is the points
of X not lying on V1 \ · · · \ Vm . Since ti 2 I [i], we have that h vanishes also on
V1 \ · · · \ Vm . It follows that h 2 IX ⇢ F?. Thus h � F = 0. Now

h � F = h � (F1 + · · · + Fm) = (µ1t1 + . . . + µmtm) � (F1 + · · · + Fm)

= µ1t1 � F1 + . . . + µmtm � Fm .

Since ni � 1 for all i = 1, . . . ,m, the hypothesis (Fi )?e = 0 implies that deg Fi >
e, and hence deg ti � Fi > 0. It follows that µi ti � Fi = 0 for all i = 1, . . . ,m,
that is µi ti 2 F?

i (considering Fi 2 S[i]). Since (Fi )?e = 0, we get that µi = 0 for
every i , and hence h = 0. This completes the proof of Claim 1.

Claim 2: If B is a basis of (IX0)e, then B [ {t1, . . . , tm} is a set of linearly indepen-
dent forms.

For e = 1 Claim 2 follows immediately from Claim 1, so assume e > 1.
Let

B = {↵1 +e↵1, . . . ,↵l +e↵l},

where the ↵i are uniform and the e↵i are not uniform. Now if t1 (and analogously
for t2, . . . , tm) satisfies:

t1 = µ1(↵1 +e↵1) + · · · + µl(↵l +e↵l) + ⌫2t2 + · · · + ⌫mtm,

we get µ1e↵1 + · · · + µle↵l = 0. Hence

µ1(↵1 +e↵1) + · · · + µl(↵l +e↵l) = µ1↵1 + · · · + µl↵l 2 (IX0)e.

Claim 1 yields µ1↵1 + · · · + µl↵l = 0. It follows that t1 is a linear combination of
t2, . . . , tm , thus a contradiction. This finishes the proof of Claim 2.

Recall that, by Lemma 5.2, we have

IX0 + (a1t1 + · · · + amtm) ✓ J1 \ . . . \ Jm .
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Since B [ {a1t1 + · · · + amtm} is a basis of (IX0 + (a1t1 + · · · + amtm))e and, by
Claim 2, B [ {t1, . . . , tm} ✓ J1 \ · · · \ Jm is a set of linearly independent forms,
then we have

HF(T/IX0 + (a1t1 + · · · + amtm), e) � HF(T/J1 \ · · · \ Jm, e) � m � 1.

Since a1t1 + · · · + amtm is a non zero divisor for T/IX0 , for s � 0 we have
rk(F) = |X| � |X0| = HF(T/IX0, s)

=

✓
1
e

◆ sX

i=0
HF(T/(IX0 + (a1t1 + · · · + amtm)), i)

�

✓
1
e

◆ e�1X

i=0
HF(T/J1\ · · · \ Jm, i)+(HF(T/J1\ · · · \ Jm, e)+m�1)

+
sX

i=e+1
HF(T/J1 \ · · · \ Jm, i)

!

.

Hence, for s � 0, by Lemma 5.3, we get

rk(F)�

✓
1
e

◆ sX

i=0
HF(T/J1\ . . . \ Jm, i)+m�1

!

= rk(F1)+ · · · + rk(Fm).

6. Forms for which the Strassen conjecture holds

Theorem 6.1. Let F = F1 + · · · + Fm 2 Sd , where Fi 2 S[i]
d . If, for i = 1, . . . ,m,

Fi is of one of the following types:
• Fi is a monomial;
• Fi is a form in one or two variables;
• Fi = xa0 (x

b
1 + · · · + xbn ) with a + 1 � b;

• Fi = xa0 (x
b
1 + xb2 );

• Fi = xa0 (x
b
0 + xa1 + · · · + xbn ) with a + 1 � b;

• Fi = xa0 (x
b
0 + xb1 + xb2 );

• Fi = xa0G(x1, . . . , xn) where G? = (g1, . . . , gn) is a complete intersection and
a < deg(gi ) for i = 1, . . . , n;

• Fi is a Vandermonde determinant;
then the Strassen conjecture holds for F .

Proof. All the forms above are 1-computable, hence the conclusion follows from
Proposition 4.21, Remark 5.4, Theorem 5.5 with e = 1, and in the case of Vander-
monde determinant, Remark 4.22.

Remark 6.2. If F is a form which is e-computable, but not 1-computable, we can
only combine it with other e-computable forms to get a form satisfying Strassen’s
conjecture.
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For example, if F is the form of Example 4.15, then we know that F is 2-
computable and rk(F) = 25, but we know F is not 1-computable by Example 4.23.

If G1 = x0x41x
5
2 then we showed that G1 is 1-computable and rk(G1) = 30.

But we do not know if G1 is 2-computable.
Thus we cannot use the theorem to find the rank of F+G1, although Strassen’s

conjecture says that the rank should be 25+ 30.
However, if G2 = x30x

4
1x
5
2 , by Proposition 4.2, we know that G2 is 2-computa-

ble and rk(G2) = 30. Hence

rk(F + G2) = 25+ 30 = 55.

Remark 6.3. It would be interesting to have a characterization of those F 2
k[x0, x1] for which F? = (qa, h2) with a � 2. If we had that, we would have
examples which were deg q-computable. This would give us more forms for which
Strassen’s conjecture is true.

7. Some examples

Lemma 7.1. Let F = xa0 (x
b
1 + · · · + xbn ) with a + 1  b, n � 3. If X is apolar to

F , then |X \ {Xi = 0}| � b for all i = 1, . . . , n.

Proof. Since IX : (Xi ) ✓ F? : (Xi ) = (xa0 x
b�1
i )? and rk(xa0 x

b�1
i ) = b (see [3]),

the apolarity lemma, yields that the ideal IX : (Xi ) is the homogeneous ideal of a
set of at least b points. That is, |X \ {Xi = 0}| � b for all i = 1, . . . , n.

Proposition 7.2. If F = xa0 (x
b
1 + · · · + xbn ) with 2  a + 1  b and n � 3, then

bn � n + 3  rk(F)  bn.

In particular, we have rk(xa0 (x
b
1 + xb2 + xb3 )) = 3b.

Proof. Note that F?=(Xa+10 ,X1X2, X1X3, . . . , Xn�1Xn, Xb1�Xb2, . . . , X
b
1�Xbn).

We split the proof into four steps.
Step 1: rk(F)  bn.

It is easy to see that

I = (X1X2, X1X3, . . . , Xn�1Xn, (n � 1)Xb1 � Xb2 � · · · � Xbn � Xb0) ✓ F?

is the homogenous ideal of a set of bn distinct points. By the apolarity lemma
rk(F)  bn.
Step 2: bn � n + 2  rk(F).

Let Ĩ=F? : (X0)+(X0)=(X0, X1X2, X1X3, . . .,Xn�1Xn, Xb1�Xb2, . . . , X
b
1�

Xbn). Thus we have

i 0 1 · · · b � 1 b b + 1

HF(T/ Ĩ , i) 1 n · · · n 1 0 .
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Hence, by Corollary 3.4, we get rk(F) �
P

i�0 HF(T/ Ĩ , i) = bn � n + 2.

Step 3: Let X be apolar to F and a = 1. If Xi X j + ci j X20 2 IX for all 1  i <
j  n, then ci j = 0 for all i, j .

Suppose that ci j 6= 0 for some i < j . Say, c12 6= 0, then we have X1X2 +
c12X20, X1X3 + c13X20 2 IX. Thus X1(c13X2 � c12X3) 2 IX. Thus we have

X1 2 (IX : (c13X2 � c12X3))

and hence
c12X20 2 (IX : (c13X2 � c12X3)).

Since the ideal is radical we get

X0 2 (IX : (c13X2 � c12X3))

and thus
X0(c13X2 � c12X3) 2 IX

and this yields the contradiction c12 = 0 and c13 = 0.
Step 4: bn � n + 2 < rk(F).

Suppose that rk(F) = bn � n + 2 = |X|, where X minimally decomposes F .
By the proof of Step 2, the rank of F is computed by X0, hence by Proposition

3.6 we get IX + (X0) = F? + (X0). In particular we have Xi X j 2 IX + (X0) for
all 1  i < j  n, and so Xi X j + Li j X0 2 IX for some linear form Li j . Since
IX ⇢ F? and Xi X j 2 F?, then Li j X0 2 F?.

If a > 1, then Li j = 0.
Let a = 1. We get Li j = ci j X0 and hence Xi X j + ci j X20 2 IX. By Step 3, we

have ci j = 0.
Consequently, Xi X j 2 IX for all 1  i < j  n and for any a � 1. Now, since

the ideal (X1X2, X1X3, . . . , Xn�1n) is the homogeneous ideal of n lines l1, . . . , ln
where li = {X1 = X2 = · · · = X̂i = · · · = Xn = 0}, it follows that all the points
of X lie on the union of the lines li . Since X \ {Xi = 0} = X \ (li \ (1, 0, . . . , 0)),
by Lemma 7.1 we have that

bn � n + 2 = |X| �
nX

i=1
|X \ {Xi = 0}| � bn,

a contradiction.

Remark 7.3. The form F = w(x3 + y3 + z3) 2 k[x, y, z, w] is not 1-computable.
If F is 1-computable, then there exists an ideal I ⇢ T = k[X,Y, Z ,W ] of a

linear space L such that

rk(F) =
1X

i=0
HF

⇣
T/
⇣
F? : I + (t)

⌘
, i
⌘

,

where t = aX + bY + cZ + dW 2 I is a general linear form.
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If t has at least two of the coefficients a, b, c, d different from zero, since

F? =
⇣
W 2,Y Z , XZ , XY,Y 3 � Z3, X3 � Z3

⌘
,

we get that
HF(T/(F? + (t)), 0) = 1
HF(T/(F? + (t)), 1) = 3
HF(T/(F? + (t)), 2)  3
HF(T/(F? + (t)), 3)  1
HF(T/(F? + (t)), 4) = 0.

By Proposition 7.2 we know that rk(F) = 9 and since

F? + (t) ✓ F? : I + (t)

we get

8�
1X

i=0
HF

⇣
T/
⇣
F?+(t)

⌘
, i
⌘
�

1X

i=0
HF

⇣
T/
⇣
F? : I + (t)

⌘
, i
⌘
= rk(F)=9,

and this is a contradiction.
Now if L is a point or a line, and {t = 0} is a general plane through L , then

t has at least two of the coefficients a, b, c, d different from zero. If L is a plane,
then (t) = I , and the only planes with three coefficients zero between a, b, c, d are
the coordinate planes. Hence the only possibility for F to be 1-computable, is with
L = {X = 0}, {Y = 0}, {Z = 0}, {W = 0}, but

1X

i=0
HF

⇣
T/
⇣
F? : (X) + (X)

⌘
, i
⌘

= 2,

(analogously for Y and Z ) and
1X

i=0
HF

⇣
T/
⇣
F? : (W ) + (W )

⌘
, i
⌘

= 8.

Hence, F is not 1-computable.
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