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Isoperimetric inequality on CR-manifolds
with nonnegative Q’-curvature

Y1 WANG AND PAUL YANG

Abstract. In this paper we study contact forms on the three-dimensional Heisen-
berg manifold with its standard CR structure. We discover that the Q’-curvature,
introduced by Branson, Fontana and Morpurgo [3] on the CR three-sphere and
then generalized to any pseudo-Einstein CR three-manifold by Case and Yang [6],
controls the isoperimetric inequality on such a CR-manifold. As the first and im-
portant step to show this, we prove that the nonnegative Webster curvature at
infinity implies that the metric is normal, which is analogous to the behavior on a
Riemannian four-manifold.

Mathematics Subject Classification (2010): 32VO0S5 (primary); 32V20, 35H20,
53C21 (secondary).

1. Introduction

On a four-dimensional manifold, the Paneitz operator P4 and Branson’s Q-curva-
ture [2] have many properties analogous to those of the Laplacian operator A, and
the Gaussian curvature K, on surfaces. The Paneitz operator is defined as

2
Po=A% 43 (gRg —2Ric) d,

where § is the divergence, d is the differential, R is the scalar curvature of g, and
Ric is the Ricci curvature tensor. The Q-curvature is defined as
0o = — AR+ IR2 _3iEp
) 4 ’
where E is the traceless part of Ric, and |- | is taken with respect to the metric g. The
two most important properties for the pair (P,, Q) are that under the conformal
change g, = ¢*“go,
1. P; transforms by P, (-) = et Py, ()5
2. Qg satisfies the fourth-order equation
Pgyw +20¢, = 2nge4w'
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As proved by Beckner [1] and Chang-Yang [4], the pair (Pg, Q) also appears
in the Moser-Trudinger inequality for higher order operators.

On CR manifolds, it is a fundamental problem to study the existence and
properties of CR invariant pairs analogous to (Pg, Qg). Graham and Lee [14]
have studied a fourth-order CR covariant operator with leading term Alzj + T2 and
Hirachi [16] has identified the Q-curvature which is related to P through a change
of contact form. However, although the integral of the Q-curvature on a compact
three-dimensional CR manifold is a CR invariant, it is always equal to zero. And
in many interesting cases when the CR three-manifold is the boundary of a strictly
pseudoconvex domain, by [11] the Q-curvature vanishes everywhere. As a conse-
quence, it is desirable to search for some other invariant operators and curvature
invariants on a CR manifold that are more sensitive to the CR geometry. The work
of Branson, Fontana and Morpurgo [3] aims to find such a pair (P’, Q") on the CR
sphere. Later, the definition of Q’-curvature is generalized to all pseudo-Einstein
CR manifolds by the work of Case-Yang [4] and that of Hirachi [17]. The con-
struction uses the strategy of analytic continuation in dimension by Branson [2],
restricted to the subspace of the CR pluriharmonic functions:

2
P, := lim ——P . 1.1
4= lim ——— Pyl (1.1)
Here P4, is the fourth-order CR covariant operator that exists for every contact
form 6 by the work of Gover and Graham [13]. By [14], the space of CR pluri-
harmonic functions P is always contained in the kernel of P4 ;. On the Heisenberg
spaces with its standard contact structure, the expression of P’ simplifies to be

P'u=2A3u. (12)

In this paper, we want explore the geometric meaning of this newly introduced
conformal invariant Q’-curvature.

In Riemannian geometry, a classical isoperimetric inequality on a complete
simply connected surface M?, called Fiala-Huber’s [12, 18] isoperimetric inequal-
ity, states that

Vol() < Area(d2)?, (13)

221 — [,2 Kg dvg)

where K" is the positive part of the Gaussian curvature K. Also [» Kfdvg < 27
is the sharp bound for the isoperimetric inequality to hold.

In [20], the first author generalizes the Fiala-Huber’s isoperimetric inequality
to all even dimensions, replacing the role of the Gaussian curvature in dimension
two by that of the Q-curvature in higher dimensions.

Let (M", g) = (R", ¢*|dx|?) be a complete noncompact even dimensional
manifold. Let QT and O~ denote the positive and negative part of Q ¢ respectively,
and let dvg denote the volume form of M. Suppose g = e?|dx|? is a normal
metric, i.e.

1
u(x) = —'/Rn log i Qs (Mdvg(y) + C, (14

Cn lx — yl
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n .
where ¢, = 2”_2(”—;2)!71 2,and C is some constant. If

Bt = Qtdvg < ¢y, (1.5)
Mn

and
B~ = QO dvg < 00, (1.6)
Mﬂ
then (M", g) satisfies the isoperimetric inequality with isoperimetric constant de-
pending only on n, 81 and B~. Namely, for any bounded domain Q C M" with
smooth boundary,

11y < C(n, g%, B7)10R1g " (1.7)
It is well known that if the scalar curvature is nonnegative at infinity, then one can
show that the metric is a normal metric. For interested readers, the proof of such a
fact when n = 4 was given in [5]. For higher even dimensions, one can prove by a
similar manner.

In the main result of this paper, we prove that the Q’-curvature and P’ op-
erator are the relevant CR scalar invariant and CR covariant operator to study the
isoperimetric inequalities in the CR setting. The Webster [21] curvature at infin-
ity imposes important geometric rigidity on the CR manifold. We also notice that
the class of pluriharmonic functions P is the relevant subspace of functions for the
conformal factor u. We derive the following isoperimetric inequality on any CR
three-manifold with Q’ curvature assumptions.

Theorem 1.1. Let (H] , €"0) be a complete CR manifold, where 6 denotes the stan-
dard contact form on the Heisenberg group H' and u is a pluriharmonic funcion
on H'. Suppose additionally the Q' curvature is nonnegative, the Webster scalar
curvature is nonnegative at infinity and

y Q'e* o A do < ¢. (1.8)

Then the isoperimetric inequality is valid, i.e. for any bounded domain €2,
Vol(2) < CArea(32)*/>. (19)

Here C depends only on the integral of the Q'-curvature, and c| is the constant in
the fundamental solution of P’ operator. (See Section 2.)

Remark 1.2. It is worth noting that the homogeneous dimension N of M? is 4.
Therefore the power on the right-hand side of the isoperimetric inequality is equal
to g = 4/3.

Remark 1.3. We also remark that ¢/ is the critical constant for the validity of the
isoperimetric inequality. In fact, there is a CR contact form e“6 with le Q'e™o A
d6 = ¢/, that does not satisfy the isoperimetric inequality. We give this example in
Example 4.6.

In fact, we have proved a stronger result.
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Theorem 1.4. Suppose the Q'-curvature of (H', €"0) is nonnegative. Suppose ad-
ditionally the metric is normal and u is a pluriharmonic function on H'. If

. Q'e™o ndb < ¢}, (1.10)

then e™ is an A weight.

We will introduce the meaning of A; weight in Section 4.

ACKNOWLEDGEMENTS. We would like to thank the referee for valuable sugges-
tions to improve the presentation of the paper.

2. Fundamental solution of P’ operator

In this section we compute the fundamental solution of the Paneitz operator P’ on
the Heisenberg group H'. Let p, ¢ be two points on H!. Let p denotes the distance
function on H!. We show that P’(log p(¢~!p)) is equal to the real part of Szegd
kernel. Therefore, P’ restricted to the space of pluriharmonic functions has the
fundamental solution log p (g ~1p).

Let us first consider the case for p = (z,¢) € H!, and ¢ = (0,0) € H!. Note
that

1
Aplogp(g~" p) = Aplog(lz|* +17)3

1
= 5 (0 +2y0) (3 +2yd,) log(|z|* + %) 2.1)

1
+ 5 By = 2x0,) By — 2x8) log(|z|* +12).

(3 +2Y3,)(x + 2yd) log(|z|* + %)

= (3 +2y3) [;«mm2 +4yr>}

(z|* 412
-1 1 2.2)
= (4x|z)® + 4y1)> + ——— (4]z|* + 8x> + 8y
(|Z|4+t2)2( |z yr) |Z|4thz( || y9)
1
=— | =162 z* + 2xyt|z)? + y212) + 12]z)? z4—|—t2].
(|Z|4+t2)2[ @21zl + 2xytlz? + y202) + 121z (12l + 1)
Similarly, one can see
(dy — 2x0;)(dy — 2x0;) log(lz|* + 1%)
2.3)

1
= i [ 160 = 2l ) 4+ 120l 4 )]
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Thus, we obtain

1
Aplog(lz|* + 113 = —16(|z[® + 1zI°?) + 24|z (|z* + 12>]

w7 |

(2.4)
_ 2|z|?
Tzt 42
|z|?
We now need to compute A ————.
P Pl + 2
|z|?
O +2y0;)(0y +2y0;) —————
(0x ¥0;) (0 y t)|z|4—i—l‘2
— (3 +2y9 2x P P 44
= (0x +2y9) Es + (|z|4+t2)2( x|z|” +4yt)
2
2
= (4x|z)? + Ayt + ———
= Gy AE el 4+
20z 2 2 25
e+ 7 L 490 -
—lzl? 2 2 2 - 2
2 1
- —8x2|7)% — 16xyr — 12|z]* — 8x2 2]
et e 8~ 16wt = 12kl -8
32lz? 2 2
_— 1),
+ (2l + 123 (xlz|” + y1)
Similarly,
|z|?
0y — 2x0;)(0y — 2x0;) ————
( y t)( y t)|Z|4+t2
— (9, —2x8y) | —22 P (4ylz)* — 4xt)
g Nirre G+ o2
—2y 2 2 2|z)? 5
= G e W A0 e iy @R 0t
—lz)? 2 2
+m(4|zl +8x + 8y )+(||4—t2)2(4y|z| —4xt)
2 2012 4 2,12
_ |z|4+t2 + LA [—Sy 2% + 16xy7 — 12]2]* — 82|z] )]
2
+ 321z] | —xt)z.

Ok
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Therefore, by (2.5) and (2.6) we have

S A T B IR B
21t +12 fzlt 12 (2t 41?2
32|z|?
+ ———= (2l + 121
(Iz|* 4+ 12)
.7
4 8|z|*
ozt 12 (I 4122
t2—|Z|4
(Jz* +12)?
So we have show that
/ 4, 2.1 2|2
lz|* 4+t 2.8)
B t2_|Z|4
(Jz* + 12)2

Note that this is equal to the real part of the Szegd kernel Re(Syi(p, g)), up to a

multiplicative constant. So we have proved that log(|z|* + tz)flt is proportional to
the fundamental solution of the operator P’ on the space of pluriharmonic functions
at point p = (z,¢) and g = (0, 0). Since the norm p and P’ are both left invari-
ant, this computation is also valid for arbitrary value of ¢g. Thus we have proved
that log(p(g~'p)) is proportional to the fundamental solution of P’. We denote

Gy (u,v) = ¢} logp(g~'p).

3. Nonnegative Webster scalar curvature at co

In this section we describe the property of CR-manifolds with nonnegative Web-
ster scalar curvature at infinity. We will see this geometric condition has a strong
analytic implication. We denote the volume form 6 A d6 of H! by dv.

Proposition 3.1. Let 6 be the standard contact form of the Heisenberg group H',
and 60 = e“0 be the conformal change of it. Suppose u € P is a pluriharmonic
function on H', Aiu e L'(H") and 6 has nonnegative Webster scalar curvature

near oo, i.e. —Apu > |V1,u|2. Then 0 is a normal, i.e.

u(p) =/Hl G (p, @) P'u(q)dv(q) + C, 3.1

where C is a constant.
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It is proved by [3] that the Green function for PS’3 is given by
Ggs(8,m) =log|l = ¢ -1l (32
It satisifes the equation

1

Vol S (3.3)

PéSGS_s (u,v) = Sg3(u, v) —
where Sg3 (1, v) is the real part of the Szegd kernel. We proved in section 2 that the
fundamental solution for P’ is given by log p(v~'u). We recall that the homoge-

Hl
neous norm on H' is given by p(z, 1) = (|z|* 4+ 12)!/4.

Definition 3.2. Let u € P such that P'u € L'(H"). Define
v(p) == /Hl Gy (p. @) P'u(q)dv(q).

This is well-defined when P'u € L'(H!). We want to prove that w ;= u —visa
linear function in ¢.

Lemma 3.3. Under the same assumption as Proposition 3.1, we have Apw =
constant.

Proof. First, we observe that
P'w=Pu— Pv=0.

We can then apply the mean value property to the function Apw which satisfies the
equation Ap(Apw) = 0. Let K, (x, y) denotes the Poisson kernel. We apply the
Poisson integral formula to Apw and derive

Apw(p) = f Apw(g)K, (p, q)dv(q), 34
dB(p,r)

for arbitrary sphere B(p,r) of radius r. Here the radius is with respect to the
distance given by p(-) on H'!. Note that Apu < —|Vpu|?> < 0, and Apv tends
to zero for large spheres d B(p, r). Thus by taking r — oo,

Apw <0,

at co. Thus Apw is bounded from above by (3.4) and the fact that the Poisson
kernel is nonnegative.
Now Apw is bounded from above and Ap(Apw) = 0. Thus, analogously to
the harmonic function on the Euclidean spaces, by the Liouville’s theorem for A,
operator, we have
Apw = cj. 3.5)

O
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Next, besides Apw = ¢, we observe that Tw is also a constant, because Aiw +
T?w = 0. We denote the constant of 7w by c;. This allows us to show that

Lemma 34. w,(x, y, t) is independent of variable the t, i.e.
wx(x, y, 1) = wx(x, y,0).
Proof. We recall that
X =0y +2y0, Y=0,—2x0, T=020d.
Since X and T commute, we have

0=XTw=TXw =T (w, +2yw,)

3.6
=T wy. (3.6)

Thus w, is independent of 7 variable. In other words, for any (x, y, t),
wy(x,y,t) = wy(x,y,0). ]

Similarly since Y and T commute, wy is independent of ¢ variable.
Lemma 3.5. wyy + wy,y is independent of t variable, i.c.

Wyx (X, ¥, 1) + wyy (X, ¥, 1) = Wex (x, ¥, 0) + wyy(x, y,0).
Proof. This can be seen from the following computation

0=TApw
=T[(XX +YY)]w
= T[(3x +2yT)(0x + 2yT) + (9y — 2xT)(dy — 2xT)]w (3.7)
= T[wxy +2yT 0w + 0, 2yTw) +2yT 2yTw)
+ wyy — dy(2xTw) — 2xT (Byw) + 2xT (2xTw)].

By the fact that Tw is a constant, and that 7 commutes with both 9, and 9y, we
obtain the above is equal to

T (wyy + U)yy)-
Thus the lemma holds. O

Lemma 3.6. It holds Apdyw = 0 and Apdyw = 0.
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Proof. If Ap and 9, commute, then since Apw = ¢y, we have proved the lemma.
In general, A and 9, might not commute. However, we will use the fact that 7w
is a constant to achieve the goal.

Apdyw = [(dx + 2yT)(0x + 2yT)0yw + (3y — 2xT)(dy — 2xT)dw]
= Wyxx + 0 2yT oyw) + 2yT 0, (0xw) + 2yT (2yT 3, w)
+ Wyyy — 2xT 0y 0y w — 3y (2xT o w) + 2xT (2xT 3y w)

= Wxxx T+ Wxyy-

(3.8)

The last equality uses the fact that 7 commutes with both d, and 9y, and the fact
that 7w is a constant: thus cross terms

Ox2yToxw);  2yTox(0yw); 2yT(2yToyw);
2xToy0,w;  3y(2xToxw); 2xT(2xTdyw)
vanish. O

Lemma 3.7. The functions |wy| and |wy| are at most of linear growth.

Proof. We have
IVow|* = w} + w} +4c3 (x> + y?) — dea(xwy — ywy). (3.9)

The right-hand side is greater than
2 2 2 1 2., .2
(A =)y +wy) +dep [ —— + 1) 7+,

for any o > 0. Let us fix « = 1/2. Note that |V,w|*> < 2|Vyu|?> + 2|V,v|? and
|Vpul|* < —Apu

near co. Also, |V,v| tends to 0 near co. Thus |Vyw|? < —2¢; + 1 near oo, where
c1 < 0 is the constant value of function Apw. Thus |V,w| has an upper bound. It
follows that |3, w| and |3y w| are at most of linear growth. O

This together with Lemma 3.6 implies that 9, w is a linear function. Similarly,
dyw is also a linear function. Suppose both d,w and d,w are not constant, then w
is a quadratic function. Since ¢; < 0, we see that €0 gives rise to an incomplete
metric. This is a contradiction. Thus both d,w and d,w are constant. So w is linear
in both x and y. Again, e“6 is incomplete unless w is a constant in both x and y.
In other words, w only depends on ¢. On the other hand, we also have Tw = c;.
So w is a linear function of . We now use the assumption that the Webster scalar
curvature R is nonnegative to show that w must be a constant.
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To do this, we first note that by a simple computation,

—Ap(e®?) = —4c%(x2 +yH)e? < 0.

Also
Re? = —Ap(e")
=— Ap(e'™)
= — Ap(e?)e’ —2X ()X (e¥) — 2Y ()Y (e¥) — Ap(e)e®?! (3.10)
= —4c3(x? + y?)e? e’ — dcaye X (V) + dcaxe Y (eV)
— (Apv + |Vpv|P)eVe? .
Lemma 3.8.
1 1
/ [Vpv|(x)do (x) = O (—> as r — oo. 3.11)
0B | JaB, r
Proof. By direct computation, we have
1 z 1
X (log(lzt* +2)') = (x4 oy < G < L
o P> T p

1
Y (log(lel' +2)!7) = 5 (1zPy o),

and |

193 (log(lzt* +2)V4) 1= 2 < 2

p2 = p
Therefore

1

0By |

< / ! / ! 10’ (e dv(y)dv(x).
~Jm 10B] Jyp, p(y~1x)

Now we need to show

1 1 1
—1 do(x) = 0 <_)
[0B| Jap, p(y~x) r

where C is independent of y.
This is true because we can dilate and take the integration over the unit sphere.

1 1 1 f 1
0B, Jap, p(y~'x) r10B1l Jap, p((r=1y)~lx)
If [r~'y] > 1+ 8 or|r~'y| <1 — 6, then it is easy to see that

/ [Vpv|(x)do (x)
9B (3.12)

do(x) = do (x).

1 1
d C
9B1] /aBl P Ty 7=

for a constant C independent of x.
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If 1 — 8 < |r~'y| <14 68, then we need to use spherical coordinates to prove

do(x) <C. (3.13)

1
|0B| /331 p((r='y)~1x)

It is obvious that we only need to deal with the limiting case when r~'y is on the
unit sphere dB;. Letr 'y = (y1, y2, s) and x = (x1, x2, ¢). Let (+’, 8") be the polar
coordinates centered at (y1, y») in the xy-plane (by our notation x = (x1, x2, 1), it
is the x1x2-plane).

(O, y2,8), (x1,x2, 1)) > \/(xl —y)2 4+ (2 =) =r'. (3.14)

The area form of the unit sphere is given by

do = \/(u"l — x2)% + (uy, + x1)%dx1dxz,

where u(x1,x2) =t ==+£,/1— (xl2 + x%)z. One can directly compute that

2 4
do = Mrdrd@.
(=1 +r2)

Here (r, 6) are polar coordinates of (x1, xp) centered at (0, 0). It is obvious that
rdrd6 = r'dr’'d@’. Therefore,

1
R
faBl o Ty 7

) 21+ 34 (3.15)
52/ _\/&,ﬁdﬂd@/_

x12+x%§l r'y (- r2)(1 +r2)
Case 1: 1/yl2 +y§ < 1.

We can denote ,/ y12 + y% = 1—n, where n > 0. Then the integral (3.15) is bounded
by

r2(1+3r)
c+2/ dr'do’. (3.16)
1 <r<1\/ 1—r)(1+r?)

Here r is a function of (+’, 6") by the change of variable formula. The last inequality
in (3.15) is because r = 1 is the only singularity of such an integration.
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Now, since ,/ylz—i—y% =1-nand1—7 <r < 1,wehaver > 1. Thus
dr'd9’ = Ldrd9 < 2rdrdo. Therefore

2 1 3 4
f (2+ r )2 dr'de.
1-<r<1 { (L =r) (A +7r9)

2 1 3 4
/ _rAESIY e,
1-1<r<1§ (1 —r3)(1+r?)

The last integral is bounded, because

r2(1 +3r4)
rdrdg =2 | do =13B| < . (3.18)
(1 =r2)(1+r2) r<l

(3.17)

Case 2: ,/ylz —|—y§ =1.

Without loss of generality, we can assume that (y1, y2) = (1,0). We adopt the
notation that 6 is the angle between the ray and the positive x;-axis. Since the
unit sphere on the xjx,-plane is completely on the left-hand side of (1, 0), we have
0" € [0, ].

Now

/ l, —r2(1+3r4) r'dr'de’
2e2<t P’V (L =rH(1+r?)

PR+ /ﬂ/ P21 43,
dr'do ————dr'de’.
/ /,>e/z\/(1—r2)<1+ AHTE ) a—marn Y

(3.19)

Note that

2 4
/ / A3 e <
rse\ (I —r2)(A +7r?)

because whenr’ > €/2, we can apply the argument in Case 1 again, using dr'd6’ =
Ldrdo < Zrdrdf.
For r’ < €/2, by a direct computation, for very small €, 1 —r ~ r’9’.

2
/ / SR ————————dr'dt’
<enp\ A =r2)(1 +r?)

b4 21 3r4 1
5/ / 03 L e
0 Jr'<e/2 (I =r5A +r2) /ro

(3.20)
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r2(1 +3r%) c
A+na+m =

1
/r/<e/2 N

/ —d@’ < 00,

the integration in the second line of (3.20) is finite. This completes the proof of
(3.13). O

Since we have

and

By a similar proof, one can show the average estimate of |A,v| and |v| as well.

Lemma 3.9.

9B, /{;Br |Apv|(x)do(x) = O (%) as r — oo. (3.21)

Lemma 3.10.

9B, | v|(x)do(x) = O(1) as r — oo. (3.22)

So there exists a sequence of points {p;}, |pi| — o0, such that
vl(pi) =C, (3.23)

IVl (pi) + [Apv|(pi) < €. (3.24)

Moreover, we can choose p;, such that they lie in the half space ¢t > 0,
and away from the f-axis. In other words, we can require that cxt(p;) > O,
and that (x(p;), y(p;)) does not tend to (0,0). Here we adopt the notation that

pi = (x(pi), y(pi), t(pi)).
When |x| + |y| > L for some L > 0, we have

[4caye X ()] < |yle eV |Vpu] < €lyle? e’ < e(x? + yP)ee?;  (3.25)

l4crxe Y (€¥)] < |x|e e’ |Vpu| < e|x|e e’ < e(x? + y2)e e’ (3.26)

and
|Ap(e)e | = |(Apv + |Vpv|P)ele?!| < eeve™.

Thus

12X (€)X (%) + 2Y (e2)Y (V) + Ap(e¥)e? | <Be(x? + yH)e'e”.  (3.27)



356 YI WANG AND PAUL YANG

We want to show ¢; = 0. We prove this by contradiction. Suppose c2 # 0. Then,
by applying (3.27) in (3.10), we obtain that

Re? (pi) = —4c5(x% 4 yH)e? eV — deyye X (eV)
+ 4C2X€CZIY(€U)d — (Apv + |va|2)e”eCZt (3.28)
< =33 (x(p)* + y(p) e Pev (py),

when € is small enough.
By our choice of {p;}, |v(p;)| < C and ¢zt (p;) > Oforalli. Thuse’ > n > 0,
and ¢“2/(P) > 1. Since ¢; # 0, we get

=33 (x(pi)” + y(pi) e Pe (py) < 0,
as i — oo. In fact, this quantity goes to —oo unless (x(p;), y(p;)) tends to (0, 0).
Because if (x (pi)2 —l—y(pi)z) is bounded, then ¢3¢ (p;) — +o00. This contradicts the

assumption on the nonnegativity of Webster scalar curvature R. Therefore ¢; = 0.
This completes the proof of Proposition 3.1.

4. Main results

To begin this section, we recall some preliminary Poincaré inequalities for Heisen-
berg groups H" of arbitrary dimension. Let us denote the homogenous dimension
by N. For H", N = 2n + 2.

Proposition 4.1. For any ball B in Heisenberg group,

//Ig(X)—g(y)Idv(X)dv(y)SCIBI%/ IVbgldv(x). 4.1)
BJB 2B

Here 2B denotes the concentric ball of B with double radius, and | - | denotes the
volume with respect to the Haar measure on H" .

In fact, the above inequality is a direct consequence of the following 1-Poincaré
inequality.

Proposition 4.2 ([19]). For any ball B in Heisenberg group,

/Ig(X)—gBldv(X) SCIBI%/ IVpgldv(x). (4.2)
B 2B

Here 2B denotes the concentric ball of B with double radius, gp denotes the av-
erage of g(x) on B, and | - | denotes the volume with respect to the Haar measure
on H".
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This implies Proposition 4.1 because

/ / 12(x) — g dv(X)dv(y)
B JB
< /B /B 18(¥) — g8] + 1g() — galdv()dv(y) 43)

N+1
SCIBINf Vpgldv(n).
2B

David Jerison [19] proved a stronger version of the 2-Poincaré inequality:

/B 18(x) — g5 [2dv(x) < C|B|¥ /B IVpgl?dv(x). (4.4)

The same method also implies a stronger version of 1-Poincaré inequality (see [15]).

/Blg(X)—gBIdv(X) SCIBIAI’/BIngldv(X)- (4.5)

For the purpose of this paper, we only need the weaker statement Proposition 4.1,
in which the integration is over 2B on the right-hand side of the inequality.

Given a bounded domain with smooth boundary, as a special case of the above
proposition, one can take g to be (a smooth approximation of) the characteristic
function xq, and derive

IBNQ|-|BNQ| < ClaQN2B|- B . (4.6)
This immediately gives rise to the following:

Corollary 4.3. For all balls B C H", such that,
1 1
IBﬁleilBl and IBﬂQCIEEIBI,

we have, by (4.6),
IBI'F < C|aQ2N2B|.

Theorem 4.4. Suppose w(x) > 0 is an Ay weight on H". Namely, there exists a
constant Cy (independent of B), so that for any ball B C H",

1
E/Bw(p)dv(p) =Co Ziglf;w(z)- 4.7)

Then the weighted isoperimetric inequality holds for w(x): for any domain Q C H"
with smooth boundary,

N—1 %
/ w(x)dv(x) < C (/ a)(x)TdG(x)> , 4.8)
Q 0Q

where C| only depends on the A bound Cy of w(x) and the homogeneous dimen-
sion N = 2n + 2.



358 YI WANG AND PAUL YANG

We now give the proof of this theorem by Proposition 4.1.
Proof. Consider a covering Uyep By of the domain Q2 such that each B, satisfies

the properties:

By N Q| > (4.9)

In other words, |%Ba N ] and |%Ba N €| are both comparable to |%Ba |. By Vitali
covering theorem, there exists a countable subset U,'OilBi such that Q C U;’i 1 Bi,

and {%Bi} are mutually disjoint. Therefore,

w(Q)z[ w((x)dv(x)
Q

3 /B o

= ng @(x)dv(x) (4.10)

o0

Z 0l Bilw(pi)

1
ZBi o(pi).
Here w(p;) = infyep; w(x).
By using Corollary 4.3 to B = %Bi,
N
1 |7
Q2N EBi o (pi)

N
o0 N1 N—1

<Gy / o(x) ¥ do(x)

i=1 390%3,‘
4.11)

N
oo N—1 N—-1

<C; Z/ w(x) N do(x)

=1 Jaanis;
N
N—1 N-T
<Cj (/ a)(x)Tda(x)) . 0
Ele}
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Lemma 4.5.
group H".

( E is an Ay weight for 0 < a < N = 2n + 2 on the Heisenberg

One can directly check this fact by estimating the maximal function of —~z ( -

In the following, we will give a proof of Theorem 1.4. Theorem 1.1 is then a
consequence of Theorem 1.4, because if e is an A; weight, by Theorem 4.4, on
such a conformal Heisenberg group, the isoperimetric inequality is valid. Moreover,
the isoperimetric constant depends only on the integral of the Q’-curvature.

Proof of Theorem 1.4. The PDE that the conformal factor u satisfies is

Q/ 4M

Since u is a pluriharmonic function, one has A2 U= T?u. Recall that the fundamen-

tal solution of Paneitz operator P’ = 2A,27 is given by ¢ log By section 3,

1
. i p(y~lx)" 77
as the Webster scalar curvature at oo is nonnegative, we have the metric is normal.
Namely, u has an integral representation

1 ,
u(x) = — / log Lyl)Q’(y)e“”O)dv(y) +C. (4.12)
i Jm T p(yTx)
We now want to prove eMisan A weight. In other words, for any ball B C H!,
M) (x) < Cla)e™™, (4.13)
fora.e. x € H!, where
1
M(f)(x) :=sup ———— [f(WIdv(y).

r>0 |B( )| B(x,r)

Define « := fH‘ Q'e*dv(x). By assumption, a < c}. Note that we can assume
o # 0. As if @« = 0, then u is a constant. So the conclusion follows directly.

M(e™)(x)
etu(x)
4
el / exp | — f tog —2 2L 0/ (p)e Pt p) ) duy)
—sup‘ Ol Jper) ¢y Ju  p(pty)
- 4
=0 exp (—, f logLf’l)Q%p)e“"(P)dv(p))
cpJm T p(pTx)
1 4 -1 / 4u(p)
=sup ——— exp i log Plpx) . Q (p)e dv(p) | dv(y).
7 -1
r>0 |B(x,r)]| B(x,r) ¢ JH! p(p~'y) o

(4.14)
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This is bounded by
1 & 4u(p)
1 (p~'x)\ 1 Q' (p)et?
Sup ————— / / nr QW h(pydu(y)
r=0 |B(x,r)l B(x,r) JH! p(p~'y) %4
1 da o (4.15)
1 (p~'x)\ Q'(p)e*'?
—sup [ o [ (2R v S )
r>0Jmt [B(x, 1)l B(x,r) p(p~y) o
4a _4a

o
1

We know that by Lemma 4.5 p(x)_q is an A; weight. And so is (p(p_lx))
for each fixed p. This means

1
1
B, / g dv(y)
B(x,r)
p(p

< C(a), (4.16)

for each fixed p. Observe that C is independent of p, one can substitute this in-
equality to the estimate (4.15) and obtain that (4.15) is bounded by

/ 4u(p)
/ C(Q)Mdv(p) = C(a).
H! o

This shows that ¢* is an A; weight. Once we have the A; property of ¢**, we can
apply Theorem 4 4 to it. It completes the proof of Theorem 1.4. O

Finally, we give the example that shows c] is the critical constant for the valid-
ity of the isoperimetric inequality.

Example 4.6. Let ¢“6 be a contact form on H!. And suppose u is given by the
following integral formula.

u(x):i// logL_yl)c/l(Sodv(y), 4.17)
cJm T ey x)

where 8y denotes Dirac delta function. It is obvious that the volume form ¢*®) =
oo on H' is not an A; weight. Moreover, such a CR manifold does not satisfy

the isoperimetric inequality. This is because e“6 = %9 is the standard contact

form on the cylinder R x S = H! \ {(0,0,0)}. In particular, one can choose a
sequence of rotationally symmetric annular domains A(rg, 7) on H', » — oo. The
area of d A(rg, r) with respect to €6 is bounded in r. But the volume of A(rg, r)
with respect to e*6 tends to oo as r — oo. This gives a counterexample to the
isoperimetric inequality. In this construction, u is singular at the origin. But we
can use the approximation argument to deal with the issue. By choosing ¢.(y) to
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be a sequence of compactly supported smooth functions approximating ¢}y, and
defining

1
ue(x) = - / log Y. (»du(y), (.18)
cpJm T p(Tx)

we construct a sequence of u. that approximates u(x) = log ﬁ locally uniformly

away from the origin. Since ¢¢(y) are compactly supported, when the annular
domains A(rg,r),r — oo are chosen such that rg is big enough (but fixed), the CR
manifold (H', ¢*<@) does not satisfy the isoperimetric inequality.
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