
Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)
Vol. XVIII (2018), 283-311

On flops and canonical metrics

IVAN A. CHELTSOV AND YANIR A. RUBINSTEIN

Abstract. This article is concerned with an observation for proving non-existence
of canonical Kähler metrics. The idea is to use a rather explicit type of degenera-
tion that applies in many situations. Namely, in a variation on a theme introduced
by Ross-Thomas, we consider flops of the deformation to the normal cone. This
yields a rather widely applicable notion of stability that is still completely explicit
and readily computable, but with wider scope. We describe some applications in
dimension two, among them, a proof of one direction of the Calabi conjecture for
asymptotically logarithmic Del Pezzo surfaces.

Mathematics Subject Classification (2010): 14J45 (primary); 14E30, 32Q20
(secondary).

1. Motivation and results

A variety is slope stable in the sense of Ross-Thomas if, roughly, it is K-stable
with respect to degenerations to the normal cone of its subvarieties. This notion
has been studied extensively by a number of authors and has yielded many non-
existence results for canonical metrics on projective Kähler manifolds. Our main
purpose in this article is to introduce a slight variation on this theme by considering
a somewhat more involved notion of stability that involves additional flops on the
degeneration to the normal cone but that is still geometric and computable, and is
partly inspired by the work of Arezzo-Della Vedova-La Nave and Li-Xu.

In this article we only develop the details of this idea in the two-dimensional
case.

This already gives many new non-existence results, and most notably allows
us to resolve one direction of the Calabi conjecture for asymptotically logarithmic
Del Pezzo surfaces.
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1.1. Existence theorem for KEE metrics

Kähler-Einstein edge (KEE) metrics are a natural generalization of Kähler-Einstein
metrics: they are smooth metrics on the complement of a divisor, and have a conical
singularity of angle 2⇡� transverse to that “complex edge”. When � = 1, of course,
this is just an ordinary Kähler-Einstein metric, that extends smoothly across the
divisor. One can think of the metric as being “bent” at an angle 2⇡� along the
divisor. In the case of Riemann surfaces, KEE metrics are just the familiar constant
curvature metrics with isolated cone singularities, that have been studied since the
late 19th century, e.g., by Picard [26].

A basic question, whose origins trace back to Tian’s 1994 lectures in the set-
ting of nonpositive curvature [33], extended in Donaldson’s 2009 lectures to the
setting of anticanonical divisors on Fano manifolds [10], and further extended in
our previous work [6] (see also the survey [28, Section 8]), is the following:
Problem 1.1. Under what analytic conditions on the triple (X, D,�) does a KEE
metric exist on the Kähler manifold X bent at an angle 2⇡� along the divisor
D ⇢ X?

This is partly motivated by Troyanov’s solution in the Riemann surface case
[36], and was settled by Jeffres-Mazzeo-Rubinstein (sufficient condition) and
Darvas-Rubinstein (sufficient and necessary conditions) in higher dimensions for
smooth D [7, 18]. These results give an analytic criterion characterizing existence,
once the cohomological condition

�KX � (1� �)D is µ times an ample class, for some µ 2 R, (1.1)

is satisfied.
Remark 1.2. The analytic condition of [7, Theorem 9.1] is optimal and in particu-
lar improves on that of [18, Theorem 2] in the presence of automorphisms. An alter-
native proof of the sufficient condition of [18] was later also given by Guenancia-
Paun [14], who treated the more general case of a simple normal crossing (snc)
D, based on work of Berman et al. [4]; we refer to the survey [28] for a thorough
discussion and many more references.

1.2. Angle increasing to 2⇡

The existence theorem of [18] coupled with Berman’s work [3] showed that KEE
metrics always exist for (X, D,�) when X is a Fano manifold admitting a smooth
anticanonical divisor D and � is small [18, Corollary 1].

Following these results, considerable amount of work about KEE metrics in
recent years has concerned the behavior of such metrics when the cone angle in-
creases towards 2⇡ , the two main issues being to show that when X is Fano admit-
ting a smooth anticanonical divisor D, then:

(a) X admits KEE metrics with angle 2⇡� along a smooth anticanonical divisor
for all angles � < 1 sufficiently close to 1 iff X is K-semistable;
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(b) the limit of these KEE metrics as � tends to 1 is a smooth KE metric iff X is
K-stable.

Problems (a)-(b) attracted a good deal of work building on combined efforts of
many researchers in the past two decades, culminating in a solution (see, e.g., the
survey [28]).

1.3. Angle decreasing to 0

In [6], we initiated a systematic study of the behavior in the other extreme when
the cone angle � goes to zero. In partial analogy with the previous paragraph, the
program initiated in [6] concerns:

(a) Determining all triples (X, D,�) satisfying (1.1) with sufficiently small �;
(b) Obtaining a condition equivalent to existence of KEE metrics for such triples;
(c) Understanding the limit, when such exists, of these KEE metrics as � tends to

zero.

This program is largely open. In [6] we established (a) in dimension two under
the technical assumption that the pair (X, D) is strongly asymptotically log Fano
(see Definition 1.3; this is satisfied, e.g., when D is smooth), and made some initial
progress towards (b). One of our goals in the present article is to establish one
direction of the equivalence in part (b) in dimension two.

To make the notion of “sufficiently small �” more precise, we introduce some
terminology. Consider a pair (X, D) where D =

Pm
i=1 Di is a snc divisor. Denote

Amp(X, D) :=

(

� 2 Rm
+ s.t. � KX �

mX

i=1
(1� �i )Di is ample

)

. (1.2)

Definition 1.3 ([6, Definition 1.1]). We say (X, D) is asymptotically log Fano if
0 2 Amp(X, D), and strongly asymptotically log Fano if Amp(X, D) contains a
punctured neighborhood of 0 in Rm

+ \ {0}.
When m = 1 these two notions coincide. Understanding which pairs (X, D)

admit a KEE metric with a small angle along D requires understanding the class of
asymptotically log Fano varieties. Recall that by Kawamata-Shokurov’s Basepoint-
free Theorem if (X, D) is asymptotically log Fano, then |a(KX + D)| (for some
a 2 N) is free from base points and gives a morphism

⌘ : X ! Z ,

so that Z is a point if and only if D ⇠ �KX [31, Theorem 2.1] (see also [6, Theorem
1.9]), since Pic(X) has no torsion [17, Proposition 2.1.2]. The following conjecture,
posed in our earlier work, gives a rather complete picture concerning (b)-(c) when
D is smooth:
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Conjecture 1.4 ([6, Conjecture 1.11]). Suppose that (X, D) is asymptotically log
Fano manifold with D smooth and irreducible.

(i) If ⌘ is birational, there exist no KEE metrics for sufficiently small �;
(ii) If ⌘ is not birational, then there exist KEE metrics !� with angle 2⇡� along

D for all sufficiently small � > 0. Moreover, as � tends to zero (X, D,!�)
converges in an appropriate sense to a generalized KE metric !1 on X \ D
that is Calabi-Yau along generic fibers of ⌘.

This conjecture suggests that the existence problem for KEE metrics in the small
angle regime boils down to computing a single intersection number; namely, check-
ing whether

(KX + D)n = 0.

This is a rather far-reaching simplification as compared to checking the much harder
condition of K-stability. Indeed, the easier direction of the Yau-Tian-Donaldson
conjecture implies that a KEE metric exists only if the pair (X, D) is log K-stable
[3]. However, even in dimension two, it is a very difficult problem to check (log)
K-stability as it involves, in theory, computing the Futaki invariant of an infinite
number of test configurations.

1.4. Flop-slope stability and non-existence

When n = 2, Conjecture 1.4 (i) amounts to:
Conjecture 1.5 ([6, Conjecture 1.6]). Let S be a smooth surface, and let C be a
smooth irreducible curve on S. Suppose that (S,C) is asymptotically log Del Pezzo.
Then S admits KEE metrics with angle � along C for all sufficiently small � only
if (KS + C)2 = 0.

Our main result is a verification of Conjecture 1.5.

Theorem 1.6. Let S be a smooth surface, and let C be a smooth irreducible curve
on S. Suppose that (S,C) is asymptotically log Del Pezzo and (KS + C)2 6= 0.
Then S does not admit KEE metrics with angle � along C for all sufficiently small
�.

Remark 1.7. In fact, the proof of Theorem 1.6 gives a quantitative estimate. More
precisely, S does not admit KEEmetrics with angle � alongC for all � 2Amp(S,C)
for which (5.3) is negative.

In other words, we give a completely elementary and verifiable criterion that
is equivalent to log K-unstability in the small angle regime. The proof involves a
modification of the notion of slope stability due to Ross and Thomas [27], where we
additionally perform flops on the deformation to the normal cone. After posting our
paper, Fujita was able to generalize Theorem 1.6 to any dimension for rational val-
ues of � using a non-explicit construction of flag ideals [11]. It would be interesting
to compare our work with his. We note that we believe our methods do generalize to
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higher dimensions, but such an extension is certainly highly non-trivial. We believe
the interest of the notion of flop-slope stability goes beyond its application to the
study of Conjecture 1.5. In Arezzo-Della Vedova-La Nave and Li-Xu [1, 22] it was
shown that the generalized Futaki invariant decreases under certain modifications
and our construction is partly inspired by those general results, although we do not
make use of them. This construction using flops occupies most of this article, and
we believe it is of independent interest. Indeed, following Ross-Thomas’ definition
of a slope destabilizing subvariety [27, Definition 3.8], we can define flop-slope
stability in a similar manner.

Let D be a divisor in X , L an ample line bundle over X , and � 2 (0, 1].
We note that destabilizing test configurations for (X, L , D,�) are defined in Sec-
tion 2.
Definition 1.8. We say (X, L , D,�) is flop-slope unstable with respect to a sub-
scheme Z in X if there exists a destabilizing test configuration for (X, L , D,�)
obtained by the degeneration to the normal cone of Z composed with a sequence of
flops of subvarieties of the central fiber.

This flop-slope construction is essential to the proof of Theorem 1.6 since for
asymptotically logarithmic Del Pezzo surfaces the more traditional obstructions of
Matsushima, Futaki, and Ross-Thomas [12, 23, 27] are not sufficient, as examples
in this article and in [6] show. We expect the method developed in this article to
yield many more new examples of non-existence in different settings and in higher
dimensions.

We remark that the converse to Conjecture 1.5 is open: we refer to [28, Sec-
tion 9] for a discussion of partial results.

1.5. Organization

In Section 2 we review some preliminaries: the intersection-theoretic formula for
the generalized Futaki invariant, (log) slope stability, and also derive some related
useful formulas for asymptotically log Del Pezzo surfaces. In Section 3 we apply
these formulas to prove Theorem 1.6 for the simplest subclass of asymptotically
log Del Pezzo surfaces: the Maeda class for which 0 2 Amp(M, D). Section 4
is the heart of the article, and contains our modification of slope stability, which
we call flop-slope stability. The main result here is Proposition 4.9 that gives a
formula for the Futaki invariant for the flopped test configuration. Some technical
intersection-theoretic result needed here is proved in Appendix A. The proof of
Theorem 1.6 is then carried out in Section 5. In Section 6 we collect some further
examples.

ACKNOWLEDGEMENTS. The authors thank J. Martı́nez-Garcı́a and R. Thomas for
comments. The authors are grateful to R. J. Berman and Chalmers University of
Technology for the hospitality and financial support during Summer 2014.
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2. Preliminaries

2.1. Generalized Futaki invariant

Let � = (�1, . . . ,�m) 2 (0, 1]m be a vector. Let X be a normal Q-factorial variety
(of complex dimension n), let D =

Pm
i=1 Di be a divisor (where the Di are distinct

Q-Cartier prime Weil divisors) on X , and let L� be an ample R-divisor on X (that
a priori may depend on �). Put

D� =
mX

i=1
(1� �i )Di .

Let (X ,L�,D,�) be a quadruple consisting of a normal Q-factorial variety X of
dimension n + 1, equipped with a flat surjective map p : X ! P1, R-divisor L�

1;
a divisor D =

Pm
i=1Di (where the Di are distinct Q-Cartier prime Weil divisors)

on X . Suppose that all fibers of p except the fiber over [0 : 1] (which we call the
central fiber) are isomorphic to X , and the divisors L� and Di restricted to these
fibers are L� and Di , respectively. Thus, Supp(D) does not contain components of
the fibers of p (if it did, Di restricted to different fibers would be different, but we
assume the restriction is always the same, namely, Di ), and so in particular it does
not contain components of the central fiber. The generalized Futaki invariant is

F(X ,L�,D,�) := n
�

✓
KX +

mP

i=1
(1� �i )Di

◆
.Ln�1�

Ln�
Ln+1�

+ (n + 1)

 

KX � p?(KP1) +
mX

i=1
(1� �i )Di

!

.Ln� .

(2.1)

Whenever the triple (X ,L�,D) is a test configuration in the sense of Tian [34]
and Donaldson [9], then F(X ,L�,D) equals its Futaki invariant in the sense of
Ding-Tian or Donaldson [3, 8, 9, 22, 24, 35, 37]. If

L� ⇠R �

 

KX +
mX

i=1
(1� �i )Di

!

(2.2)

(so that (X,
Pm

i=1(1��i )Di ) is a log Fano variety), the formula for F(X ,L�,D,�)
simplifies to

F(X ,L�,D,�) = nLn+1� + (n + 1)
✓
KX � p?KP1 +

mX

i=1
(1� �i )Di

◆
.Ln� . (2.3)

1 We do not assume L� is p-ample in the definition of F(X ,L� ,D,�). An R-Cartier divisor A
on X is p-ample (respectively, p-big) if A+ p?B is ample (respectively, big) for some divisor B
on P1.
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We recall the following result [3, Theorem 4.8].

Theorem 2.1 ([3, Theorem 4.8]). Suppose that X is smooth, D =
Pm

i=1 Di is a
simple normal crossing divisor, and (2.2) holds. Let (X ,L�,D,�) be a test config-
uration for (X, L�, D�). Assume that L� is p-ample. If F(X ,L�,D,�) < 0, then
(X, D,�) does not admit a KEE metric.

Test configurations for which L� is p-ample and F(X ,L�,D,�) < 0 are
called destabilizing test configurations for (X, L , D,�).

The simplest possible case (beyond a product configuration) when we can ef-
fectively apply this theorem is when X is smooth and the triple (X ,L�,D) is a
very particular test configuration obtained via deformation to the normal cone of a
smooth subvariety in X . This construction is originally due to Ross-Thomas [27].
We now turn to describe it.

2.2. Slope stability

Let X be a smooth variety, and let Z be a smooth subvariety in X . Consider the
blow-up of Z ⇥ {[0 : 1]} in X ⇥ P1. We denote the resulting space (of complex
dimension n + 1) by X and denote the blow-down map by ⇡Z . Denote the ⇡Z -
exceptional divisor by EZ . Let pP1 : X ⇥ P1 ! P1 and pX : X ⇥ P1 ! X denote
the natural projections.

Put
p := pP1 � ⇡Z .

The morphism p : X ! P1 is flat, see [15, Proposition 9.7]. Its fibers over every
point that is different from [0 : 1] are isomorphic to X . The fiber X0 over [0 : 1] 2
P1 is the union EZ [ X0, where X0 is the proper transform of X ⇥ {[0 : 1]}, and

EZ = P(⌫Z �OZ ) (2.4)

is a smooth ruled variety. Here ⌫Z denotes the normal bundle of Z in X , and OZ
denotes the trivial line bundle over Z . Of course, ⌫Z �OZ is the normal bundle of
Z ⇥ {[0 : 1]} in X ⇥ P1. Note that X0 is the blow-up of X at Z . Thus, if Z is a
divisor in X , then X0 is simply a copy of X .

Denote by ⇡0 the morphism pX � ⇡Z |X0 : X0 ! X , which is just the blow-
down map of Z in X . In fact, EZ intersect X0 exactly at the exceptional locus of
⇡0 (here we slightly abuse language, since when Z is a divisor this locus is not
exceptional, but is just a copy of Z , the proper transform of Z ).

Let � = (�1, . . . ,�m) 2 (0, 1]m be a vector, and let L� be an ample R-divisor
on X that may depend on the vector �. Put

L�,c := (pX � ⇡Z )?L� � cEZ (2.5)

for some c > 0. Recall the definition of the Seshadri constant of (X, Z)with respect
to L� ,

✏(X, Z , L�) = sup
�
c > 0 : ⇡?

0 (L�) � cEZ |X0 is ample
 
. (2.6)
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Thus, if c � ✏(X, Z , L�), then L� is not p-ample. The following is a special case
of [27, Lemma 4.1]. We give a simple direct proof for the reader’s convenience. We
make use of the following simple fact more than once in this article, so we record it
here:

if C is a curve contained in the central fiber then C.X0 = �C.EZ . (2.7)

Indeed, since C is contained in a fiber of p : X ! P1 and X0 [ EZ is such a fiber
(the central fiber) then C.(X0 + EZ ) = 0.

Lemma 2.2. Suppose that c 2 (0, ✏(X, Z , L�)). Then L�,c is p-ample.

Proof. Since L� is ample, by Kleiman’s criterion there is a positive constant �0
depending only on L� such that

L� .C � �0

for every curve C in X . Similarly, there is a positive constant �1 depending on L�

and c alone such that �
⇡?
0 (L�) � cEZ |X0

�
.C � �1

for every curve C ⇢ X0, because c < ✏(X, Z , L�).
Put

� := min{c, �0, �1}.

We claim that L�,c.C � � for every curve C ⇢ X such that p(C) is a point. The
latter implies p-ampleness of the divisor L�,c.

Let C be a curve in X such that p(C) is a point (so that C lies in some fiber).
If C is not in the central fiber EZ [ X0, then

L�,c.C = L� .pX � ⇡Z (C) � �0 � � .

If C is in the central fiber and is contracted by ⇡Z to a point, i.e., C is contained
in a fiber of EZ 7! Z (a Pn�1 bundle), then L�,c.C = �cEZ .C � c � � , since
�EZ .C � 1 in this case, as �EZ restricts to the hyperplane bundle on each fiber.
If C ⇢ EZ and C 6⇢ X0 and C is not contracted by ⇡Z to a point, then using (2.7),

L�,c.C = L� .pX � ⇡Z (C) � cEZ .C = L� .pX � ⇡Z (C) + cX0.C
� L� .pX � ⇡Z (C) � �0 � � .

If C ⇢ X0, then

L�,c.C=
�
(pX � ⇡Z )?(L�) � cEZ

�
|X0 .C=

�
⇡?
0 (L�) � cEZ |X0

�
.⇡Z (C)��1�� ,

concluding the proof.
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Let D =
Pm

i=1 Di be a simple normal crossing divisor on X , where the Di are
distinct smooth prime divisors on X . We assume that Di is the proper transform of
Di ⇥ P1 in X (recall Subsection 2.1).

For every c 2 (0, ✏(X, Z , L�) ), (X ,L�,c,D�) is a test configuration
for (X, L�, D�). Recall the following definition due to Ross-Thomas and Li-Sun.
Definition 2.3. The triple (X, L�, D�) is slope unstable with respect to Z if
F(X ,L�,c,D,�) < 0 for some c 2 (0, ✏(X, Z , L�)).

Note that according to (2.6) and Lemma 2.2, the assumption on c in Definition
2.3 guarantees that Theorem 2.1 is applicable.

Corollary 2.4. If (X, L�, D�) is slope unstable with respect to Z , then (X, D,�)
does not admit a KEE metric.

The importance of this corollary is that the number F(X ,L�,c,D,�) is readily
computable for the test configuration described in this subsection (compared to a
general test configuration).
Remark 2.5. In all cases we considered so far, if F(X ,L�,c,D,�) < 0 for some
c 2 (0, ✏(X, Z , L�)), then F(X ,L�,c,D,�) < 0 for c = ✏(X, Z , L�).

In the next section, we compute F(X ,L�,c,D,�) in a particular situation.

2.3. Slope stability for logarithmic surfaces

Let us use the notation and assumptions of Subsection 2.2. Suppose, in addition,
that D is a smooth curve in a smooth surface X , i.e., m = 1, n = 2, and D =
D1,D = D1, and Z is a smooth curve in X . For transparency, we put

S = X, S0 = X0, pX = pS,C = D = D1,� = �1, D� = (1� �)C.

Then X is a threefold, and the fiber over [0 : 1] 2 P1 is the union of two surfaces
EZ [ S0, where S0 is the proper transform of the fiber of pP1 over [0 : 1]. Since C
is a curve, we have S0 ⇠= S. Note that the exceptional divisor EZ ⇠= P(⌫Z �OZ )
is a smooth ruled surface, where ⌫Z denotes the normal bundle of Z in S, and OZ
denotes the trivial line bundle over Z .

In the case when L� ⇠R �KS � (1 � �)C , there is an explicit formula for
F(X ,D,L�,�). First, recall some intersection formulas.

Lemma 2.6. It holds,

E3Z = �deg(NZ/X ) = �Z2, (2.8)

and

(p?
SL�)3 = 0 and ((pS � ⇡Z )?L�).E2Z = �(p?

SL�).Z = �L� .Z . (2.9)
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Proof. The first equality in (2.8) follows from [13, page 608] while the second
equality follows from the fact that NZ/X decomposes as ⌫Z � OZ . Since EZ
is the projectivization of NZ/X , the previous decomposition also implies (2.9) as
⇡Z (EZ ) = Z .

Proposition 2.7. Suppose that (2.2) holds. Then,

F(X ,L�,c,D,�) =

8
<

:

⇣
6�c � 3c2

⌘
L� .Z +

⇣
2c3 � 3c2�

⌘
Z2 if Z = C

⇣
6c � 3c2

⌘
L� .Z +

⇣
2c3 � 3c2

⌘
Z2 if Z 6= C.

Proof. First, using Lemma 2.6,

L3�,c =
⇣
(pS � ⇡Z )?L� � cEZ

⌘3

= ((pS � ⇡Z )?L�)3 � 3c
⇣
(pS � ⇡Z )?L�

⌘2
.EZ

+ 3c2
⇣
(pS � ⇡Z )?L�

⌘
.E2Z � c3E3Z

= (p?
SL�)3 + 3c2

⇣
(pS � ⇡Z )?L�

⌘
.E2Z � c3E3Z

= 3c2
⇣
(pS � ⇡Z )?L�

⌘
.E2Z � c3E3Z

= �3c2(p?
SL�).Z � c3E3Z = �3c2L� .Z + c3Z2.

For the second term in (2.3), suppose first that Z = C (this is only used in the
second line in computing D). Using Lemma 2.6 and the formula for the canonical
bundle and a general divisor under a blow-up, see [13, pages 187, 476],

⇣
KX � p?KP1 + (1� �)D

⌘
.L2�,c

=
⇣
(pS � ⇡Z )?KS + EZ + (1� �)⇡?

Z (C ⇥ P1) � (1� �)EZ
⌘

.
⇣
(pS � ⇡Z )?L� � cEZ

⌘2

=
⇣
(pS � ⇡Z )?KS + (1� �)(pS � ⇡Z )?C + �EZ

⌘

.
⇣
((pS � ⇡Z )?L�)2 � 2cEZ .(pS � ⇡Z )?L� + c2E2Z

⌘

= c2(pS � ⇡Z )?KS.E2Z + (1� �)c2(pS � ⇡Z )?C.E2Z
� 2�c(pS � ⇡Z )?L� .E2Z + �c2E3Z

= �c2 p?
SKS.Z � (1� �)c2⇡?

ZC.Z + 2�cL� .Z � �c2Z2

= �c2KS.Z � (1� �)c2C.Z + 2�cL� .Z � �c2Z2.
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If Z 6= C , then D = (1� �)⇡?
Z (C ⇥ P1), so the previous calculation gives

�
KX� p?KP1+(1��)D

�
.L2�,c=�c2KS.Z�(1��)c2C.Z + 2cL� .Z�c2Z2.

Thus, if Z = C , we have

F(X ,L�,c,D,�)=2
⇥
� 3c2L� .Z + c3Z2

⇤
+3

⇥
� c2KS.Z + 2�cL� .Z � c2Z2

⇤
,

while if Z 6= C , we have

F(X ,L�,c,D,�) = 2
⇥
� 3c2L� .Z + c3Z2

⇤

+ 3
⇥
� c2KS.Z � (1� �)c2C.Z + 2cL� .Z � c2Z2

⇤
.

Plugging in (2.2) now yields the desired formulas.

In the next section, we will show how to apply Proposition 2.7 to compute
F(X ,L�,D,�) in some cases (cf. Li-Sun [21, Proposition 3.15, Example 3.16]).
Before doing so, we illustrate a simple example.
Example 2.8. Suppose that S = F1 and C is a smooth rational curve in |E + F |,
where F is a fiber of the natural projection S ! P1, and E is the unique �1-
curve in S. Then L� is ample for every � 2 (0, 1]. The automorphism group
of the pair (S,C) is reductive [6, Proposition 7.1] so the edge version of Mat-
sushima’s obstruction [6, Theorem 1.12] is not applicable. If Z = C or Z = E ,
then ✏(S, L�, Z) = 1+ �. In addition, if Z = C , Proposition 2.7 gives

F(X ,L�,c,D,�) = 2(1+ �)
�
�2 + 2� � 2

�

for c = 1 + �, so F(X ,L�,c,D,�) < 0 for � <
p
3 � 1. Similarly, if Z = E ,

Proposition 2.7 gives

F(X ,L�,c,D,�) = (1+ �)
�
2� �2 � 2�

�
,

for c = 1+ �, so F(X ,L�,c,D,�) < 0 for all � >
p
3� 1.

3. Maeda’s class

Let C be a smooth curve on a smooth surface S. Suppose that (S,C) is asymptoti-
cally log Del Pezzo. Put

L� ⇠R �KS � (1� �)C,

where � 2 (0, 1] is such that L� is ample.
We say (S,C) belongs to the Maeda class when �KS � C is ample. The

following result proves in a unified manner than whenever (S,C) belongs to the
Maeda class, Conjecture 1.5 holds.

Alternatively, this result also follows by combining [6, Proposition 7.1] with
[21] and Example 2.8.
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Proposition 3.1. Suppose that �KS � C is ample. Then (S,C,�) does not admit
a KEE metric for all sufficiently small �.

Remark 3.2. By [6, Corollary 2.3] C is rational.

Proof. Pick any positive � < ✏(S, Z ,�KS � C). By definition,

�KS � C ⇠R � Z + H

for some ample R-divisor H . Letting Z := C then

L� ⇠R �KS � C + �C ⇠R
⇣
� + �

⌘
C + H,

which implies that ✏(S, L�, Z) � � + � > � .
Pick some c 2 (0, � ]. Let us use notation and assumptions of Subsection 2.3.

Then L�,c is p-ample by Lemma 2.2. By Remark 3.2, L� .C = �(KS + (1 �
�)C).C = 2+ �C2. Therefore, using Proposition 2.7, with c = � ,

F(X ,L�,c,D,�) = �3� 2L� .C + 2� 3C2 + �(6� L� .C � 3� 2C2)
= �� 2L� .C � 2� 2(L� � �C).C + �(6� L� .C � 3� 2C2)
= �� 2(2+ �C2) � 2� 2(L� � �C).C + �(6� L� .C � 3� 2C2)
< �2� 2 + �(6� L� .C � 4� 2C2),

so lim�!0+ F(X ,L�,c,D,�)  �2� 2 < 0. Thus, Theorem 2.1 implies the desired
result.

Remark 3.3. One cannot drop the ampleness condition in Proposition 3.1. Indeed,
if�KS�C is not ample, then it follows from the classification in [6] and Lemma 4.3
(i) below that ✏(S, L�,C)  � so the arguments used in the proof of Proposition 3.1
are no longer valid.

4. Flop-slope stability

We follow the notation and assumptions of Subsection 2.3. In addition, denote by
O1, . . . , Or , distinct points on the curve Z , and let

⇡O : S0 ! S

be the blow-up of the union of these points, whose exceptional curves are

C 0
1, . . . ,C

0
r ⇢ S0,

with ⇡O(C 0
i ) = Oi . Denote by

C 0, Z 0 ⇢ S0
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the ⇡O -proper transforms of the curves C, Z ⇢ S, respectively. Let

pS0 : S0 ⇥ P1 ! S0, p0
P1 : S

0 ⇥ P1 ! P1,

be the natural projections. Put

Li := {Oi } ⇥ P1 ⇢ S ⇥ P1, (4.1)

and let
⇡L : S0 ⇥ P1 ! S ⇥ P1

be the blow-up of the union of the smooth disjoint curves L1, . . . , Lr . From now
on, by abuse of notation, we identify S and S0 with the fibers of pP1 and p0

P1 over
the point [0 : 1] 2 P1, respectively. The blow-up ⇡O : S0 ! S is induced by the
blow-up ⇡L . In sum, there exists a commutative diagram

S0
� _

✏✏

⇡O
// S� _

✏✏

S0 ⇥ P1

p0
P1 ##

H

H

H

H

H

H

H

H

H

⇡L
// S ⇥ P1

pP1
{{w

w

w

w

w

w

w

w

w

P1.
Let

⇡Z 0 : X 0 ! S0 ⇥ P1

be the blow-up of the curve Z 0 ⇢ S0 ⇢ S0 ⇥ P1, and let

EZ 0 ⇢ X 0

be the ⇡Z 0-exceptional divisor. If Z is rational, then EZ 0 ⇠= Fk where k = |Z 02| (to
see this recall (2.4)). Denote by

S0
0 ⇢ X 0

the ⇡Z 0-proper transform of the surface S0 ⇢ S0 ⇥ P1. Put

p0 := p0
P1 � ⇡Z 0 : X 0 ! P1. (4.2)

Then, it holds
S0
0

⇠= S0 (4.3)
and

S0
0 [ EZ 0

is the fiber of p0 over the point [0 : 1] (the “central fiber”). Denote by

C1, . . . ,Cr ⇢ X 0

the ⇡Z 0-proper transform on of the curves C 0
1, . . . ,C

0
r ⇢ S0 ⇢ S0 ⇥P1, respectively.

Then Ci ⇠= P1.
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Lemma 4.1. The normal bundle of Ci inX 0 is isomorphic toOP1(�1)�OP1(�1).

Proof. Since Ci is rational, by Grothendieck’s lemma [13, page 516] it holds
NCi |X 0 = O(a) �O(b). Thus,

0 ! TCi ! TX 0 |Ci ! O(a) �O(b) ! 0,

implies (considering the first Chern classes) that

a + b + 2� 2g(Ci ) = c1(X 0).Ci = �KX 0 .Ci . (4.4)

Note that Ci .EZ 0 = 1 since C 0
i and Z

0 intersect transversally at one point downstairs
(in S0 ⇢ S0 ⇥ P1). In addition, KX 0 = ⇡?

Z 0KS0⇥P1 + EZ 0 . Thus,

KX 0 .Ci = ⇡?
Z 0KS0⇥P1 .Ci + 1 = KS0⇥P1 .C

0
i + 1 = KS0⇥.C 0

i + 1
= 2g(C 0

i ) � 2� (C 0
i )
2 + 1 = 0.

Thus, from (4.4) we conclude that a + b = �2. Next,

0 ! NCi |S0
0

! NCi |X 0 ! NS0
0|X 0 |Ci ! 0. (4.5)

Observe that NCi |S0
0

= OP1(�1) since Ci is a �1-curve in S0
0. Thus, taking

first Chern classes and using the previous paragraph, we must have NS0
0|X 0 |Ci =

OP1(�1). The long exact sequence associated to (4.5) gives

0 = H0(P1,OP1(�1)) ! H0(P1,OP1(a) �OP1(b)) ! H0(P1,OP1(�1)) = 0,

implying that a, b < 0; thus, a = b = �1.

Thus, as described in Appendix A, we can simultaneously flop the curves
C1, . . . ,Cr ⇢ X 0. Denote this composition of simple flops by f : X 0 ! X̂ 0.
Moreover, there exists a surjective morphism

p̂0 : X̂ 0 ! P1

that makes the diagram

X 0

p0

✏✏

⇡Z 0

{{x

x

x

x

x

x

x

x

x

f
//______ X̂ 0

p̂0

✏✏

S0 ⇥ P1

p0
P1 ##

G

G

G

G

G

G

G

G

G

P1 P1

commute. Note that p̂0 is flat [15, Proposition 9.7]. Let us show how to obtain X̂ 0

even more explicitly by blowing up the threefold X . This will also show that X̂ 0 is
projective.
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Remark 4.2. Recall from Subsection 2.3 that we have a blow up ⇡Z : X ! S⇥P1
of the curve Z ⇢ S ⇢ S ⇥ P1, and we denoted the ⇡Z -exceptional divisor by EZ .
If Z is rational, then EZ ⇠= F|Z2|.

Denote by
L̃1, . . . , L̃r ⇢ X

the ⇡Z -proper transforms of the curves L1, . . . , Lr (defined in (4.1)). Then, each
L̃i intersects EZ in a unique point, because each curve Li intersects the curve Z
transversally by the point Oi . Then there exists a birational morphism

⇡L̃ : X̂ 0 ! X

that is in fact the blow-up of the union of disjoint smooth curves L̃1 [ . . . [ L̃r . In
particular, the threefold X̂ 0 is projective.

Denote by
Ĉ1, . . . , Ĉr ⇢ X̂ 0

the ⇡L̃ -proper transform of the fibers of the morphism ⇡Z |EZ : EZ ! Z over the
points O1, . . . , Or in Z , respectively. Then there exists a commutative diagram

X 0

⇡Z 0

��⌘

⌘

⌘

⌘

⌘

⌘

⌘

⌘

⌘

⌘

⌘

⌘

⌘

⌘

⌘

⌘

⌘

⌘

⌘

⌘

⌘

⌘

⌘

f
//________

cC
��

?

?

?

?

?

?

?

?

X̂ 0

cĈ
||y

y

y

y

y

y

y

y

y

⇡L̃

✏✏

p

}}

X

q

##

X
⇡Z

✏✏

S0 ⇥ P1
pS0

##

G

G

G

G

G

G

G

G

G

p0
P1

⇢⇢

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

⇡L
// S ⇥ P1

pS
||x

x

x

x

x

x

x

x

x

pP1

✏✏

S0
⇡O

// S

P1 P1

(4.6)

such that q is the blow-up of the (singular curve) Z + L1 + · · · + Lr , cC is the con-
traction of the curves C1, . . . ,Cr to the r singular points (ordinary double points)
of the threefold X̄ , cĈ contracts the curves Ĉ1, . . . , Ĉr on the threefold X̂ 0 to the
same points.
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Recall from Subsection 2.3 that S is equipped with an ample divisor L� . Let
L 0

� be an ample R-divisor on the surface S0 such that

L 0
� ⇠R ⇡⇤

O(L�) �
rX

i=1
�iC 0

i (4.7)

for some real numbers �1, . . . , �r . Then all numbers �1, . . . , �r must be positive.
Denote by ✏(S0, Z 0, L 0

�) the Seshadri constant of (S0, Z 0) with respect to L 0
� . De-

note by ⌧ (S0, Z 0, L 0
�) the pseudoeffective threshold of (S0, Z 0) with respect to L 0

� ,
i.e., the number

sup
�
c > 0 : L 0

� � cZ 0 is big
 
.

Let c be a positive real number.

Lemma 4.3.

(i) One has ✏(S, Z , L�) � ✏(S0, Z 0, L 0
�) and ✏(S0, Z 0, L 0

�)  �i for every i;
(ii) If c < ✏(S, Z , L�) and c � �i for every i , then the divisor L 0

� �cZ 0 is big and,
in particular, ⌧ (S0, Z 0, L 0

�) > ✏(S0, Z 0, L 0
�).

Proof. The inequality ✏(S, Z , L�) � ✏(S0, Z 0, L 0
�) is obvious. The inequality

✏(S0, Z 0, L 0
�)  �i follows from L 0

� .C 0
i = �i and Z 0.C 0

i = 1. Suppose that
c < ✏(S, Z , L�). Then L� � cZ is ample. Since

L 0
� � cZ 0 ⇠R ⇡⇤

O
�
L� � cZ

�
+

rX

i=1
(c � �i )C 0

i ,

we see that the divisor L 0
� � cZ 0 is big provided that c � �i for every i .

Let D0 be the proper transform of the divisor D on X 0. Put

L0
�,c := (pS0 � ⇡Z 0)?

�
L 0

�

�
� cEZ 0 . (4.8)

If c < ✏(S0, Z 0, L 0
�), L0

�,c is p
0-ample by Lemma 2.2.

Remark 4.4. If L0
�,c is p

0-ample, then the triple (X 0,L0
�,c,D0) is the test configu-

ration obtained via deformation to the normal cone of Z 0 in S0.
Definition 4.5. Denote by R0 ⇢ S0 ⇥ P1, RX 0 ⇢ X 0, and RX̂ 0 ⇢ X̂ 0 the proper
transforms of the surface Z ⇥ P1 ⇢ S ⇥ P1 with respect to the maps ⇡L , and
⇡L � ⇡Z 0 and ⇡L̃ � ⇡Z , respectively.

Lemma 4.6. Suppose that ✏(S0, Z 0, L 0
�) < c < ✏(S, Z , L�) and c � �i for every

i . Then L0
�,c is p

0-big. Moreover, the curves C1, . . . ,Cr are the only curves in X 0

that are mapped by p0 to points and have negative intersections with L0
�,c.
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Proof. One has

L0
�,c ⇠R (pS0 � ⇡Z 0)?

�
L 0

�

�
� cEZ 0

⇠R (pS0 � ⇡Z 0)?
�
L 0

� � cZ 0� + c(pS0 � ⇡Z 0)?(Z 0) � cEZ 0

⇠R (pS0 � ⇡Z 0)?
�
L 0

� � cZ
�
+ c⇡?

Z 0(R0) � cEZ 0

⇠R (pS0 � ⇡Z 0)?(L 0
� � cZ) + cRX 0 .

Since L 0
� � cZ 0 is big by Lemma 4.3, we see that (pS0 �⇡Z 0)?L 0

� � cEZ 0 is pP1 �⇡-
big.

Let 0 be an irreducible curve in X 0 such that p(0) is the point [0 : 1] and
L0

�,c.0 < 0. Let us show that 0 is one of the curves C1, . . . ,Cr . If ⇡Z 0(0) is a
point, then

L0
�,c.0 =

⇣
(pS0 � ⇡Z 0)?(L 0

�) � cEZ 0

⌘
.0 = �cEZ 0 .0 > 0.

So, ⇡Z 0(0) is not a point. Thus, if 0 ⇢ EZ 0 , then

0 > L0
�,c.0 =

⇣
(pS0 � ⇡Z 0)?(L 0

�) � cEZ 0

⌘
.0 � L 0

� .Z 0 � cEZ 0 .0

= L 0
� .Z 0 + cS0

0.0 > cS0
0.0,

which implies that S0
0.0 < 0. Thus, 0 ⇢ S0

0. Then,

L0
�,c.0 =

⇣
(pS0 � ⇡Z 0)?(L 0

�) � cEZ 0

⌘
.0 = (L 0

� � cZ 0).0,

where we used that S0
0

⇠= S0. On the other hand, (4.7) gives

L 0
� � cZ 0 ⇠R ⇡⇤

O

⇣
L� � cZ

⌘
+

rX

i=1
(c � �i )C 0

i ,

where L� � cZ is ample on S. Since c � �i for every i by assumption, we see that
the curve 0 must be one of the curves C 0

1, . . . ,C
0
r .

Let L̂0
� be the proper transform of (the class in Pic(X̂ 0) ⌦ R of) the divisor

L0
� on the threefold X̂ 0 (note that L̂0

� is well-defined, since f is an isomorphism in
codimension one).

A sufficient condition for the p̂0-ampleness of the divisor L̂0
� is given by the

next result.

Lemma 4.7. Suppose that ✏(S0, Z 0, L 0
�) < c < ✏(S, Z , L�) and c � �i for every

i . Then L̂0
� is p̂

0-ample.
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Proof. Since L 0
� is ample, there is a constant �0 > 0 (that depend only on L 0

�) such
that

L 0
� .�0 � �0

for every curve �0 in S0. Similarly, there is a constant �1 > 0 (that depend on L 0
�

and c alone) such that ⇣
L� � cZ

⌘
.� � �1

for every curve � ⇢ S, because c < ✏(X, Z , L�). Put

� = min
�
c, �0, �1, �1, . . . , �r , c � �1, . . . , c � �r

 
.

Let 0 be an irreducible curve in X̂ 0 that is contracted by p̂0 to a point. To show that
L̂0

� is p̂
0-ample, it is enough to prove that L̂� .0 � � .

Denote by Ŝ0 and ÊZ the proper transforms of the surfaces S0 and EZ on the
threefold X̂ 0, respectively. If 0 6⇢ ÊZ [ Ŝ0, then

L̂0
� .0 � �0 � � .

Thus, we may assume that 0 ⇢ ÊZ [ Ŝ0. One the other hand, it follows from (4.6)
that

Ŝ0 ⇠= S

and L̂0
� |Ŝ0 ⇠R L� � cZ . Thus, if 0 ⇢ Ŝ0, then

L̂0
� .0 � �1 � � .

Hence, we may assume that 0 ⇢ ÊZ .
Denote by F̂1, . . . , F̂r the exceptional divisors of ⇡L̃ . We may assume that

⇡L̃(F̂i ) = L̃i for every i . Using (4.8) and (4.7) gives

L̂0
� ⇠R

�
pS � ⇡Z � ⇡L̃

�?
(L�) �

rX

i=1
�i F̂i � cÊZ . (4.9)

If ⇡L̃(0) is a point L̃i \ EZ , then

L̂0
� .0 = �i � � .

If 0 = Ĉi , then
L̂0

� .0 = c � �i � � .

If 0 is contracted by ⇡Z �⇡L̃ to a point in Z that is different from O1, . . . , Or , then

L̂0
� .0 = c � � .
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Thus, we may assume that ⇡L̃ � ⇡Z (0) = Z . In particular, we see that

0 is not contained in any divisor F̂i . (4.10)

Rewriting (4.9) and using the fact that ÊZ [i F̂i is the exceptional divisor of ⇡Z �⇡L̃
gives (recall Definition 4.5),

L̂0
� ⇠R (pS � ⇡Z � ⇡L̃)

?(L� � cZ) + c
�
pS � ⇡Z � ⇡L̃

�?Z �
rX

i=1
�i F̂i � cÊZ

⇠R (pS � ⇡Z � ⇡L̃)
?(L� � cZ) + c

�
⇡Z � ⇡L̃

�?�Z ⇥ P1
�
�

rX

i=1
�i F̂i � cÊZ

⇠R
�
pS � ⇡Z � ⇡L̃

�?
(L� � cZ) + cRX̂ 0 +

rX

i=1
(c � �i )F̂i .

Thus, if 0 6⇢ RX̂ 0 , then since 0 is a finite cover of Z , degree consideration give

L̂0
� .0 =

�
pS � ⇡Z � ⇡L̃

�?
(L� � cZ).0 + cRX̂ 0 .0 +

rX

i=1
(c � �i )F̂i .0

� (L� � cZ).Z + cRX̂ 0 .0 +
rX

i=1
(c � �i )F̂i .0

� (L� � cZ).Z � �1 � � ,

where we also used (4.10). Thus, we may assume that 0 ⇢ RX̂ 0 . Then 0 is the
proper transform of the curve EZ \ RX . Since the surfaces S0 and RX are disjoint,
we have S0.⇡L̃(0) = 0. Then

L̂0
� .0 = (pS � ⇡L̃ � ⇡Z )?(L�).0 �

rX

i=1
�i F̂i .0 � cÊZ .0

= L� .Z �
rX

i=1
�i F̂i .0 � cÊZ .0

= L� .Z �
rX

i=1
�i � cÊZ .0

= L� .Z �
rX

i=1
�i � cEZ .⇡L̃(0)

= L� .Z �
rX

i=1
�i + cS0.⇡L̃(0)

= L� .Z �
rX

i=1
�i = L 0

� .Z 0 � �0 � � .

This completes the proof of the lemma.
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Let D̂0 be the proper transform of the divisorD on the threefold X̂ 0, and let L̂0
�

be as defined before Lemma 4.7.

Corollary 4.8. Suppose that ✏(S0, Z 0, L 0
�) < c < ✏(S, Z , L�) and c � �i for every

i . Then the quadruple (X̂ 0, L̂0
�, D̂0,�) is a test configuration.

Next, we compute the generalized Futaki invariant of the flopped test configu-
ration.

Proposition 4.9. Suppose that

L 0
� ⇠R �KS0 � (1� �)C 0.

Then (recall (2.3)),

F
�
X̂ 0, L̂0

�, D̂0,�
�

= F
�
X 0,L0

�,c,D0,�
�
� 2

rX

i=1

�
L0

�,c.Ci
�3

� 3(1� �)
rX

i=1

�
L0

�,c.Ci
�2

(D0.Ci )

= 2(L0
�,c)

3 + 3
⇣
KX 0 � (p0)?

�
KP1

�
+ (1� �)D0

⌘
.
�
L0

�,c
�2

� 2
rX

i=1

�
L0

�,c.Ci
�3

� 3(1� �)
rX

i=1

�
L0

�,c.Ci
�2

(D0.Ci ).

Proof. Recall from Subsection 2.1 that

F
⇣
X̂ 0, L̂0

�, D̂0,�
⌘

= 2
⇣
L̂0

�

⌘3
+ 3

⇣
KX̂ 0 � ( p̂0)?

�
KP1

�
+ (1� �)D̂0

⌘
.
⇣
L̂0

�

⌘2
.

The assertion now follows from (2.3) and Lemma A.3, together with the fact that,
as in (4.4), KX 0 .C 0

i = 0, while p?KP1 .C 0
i = 0 since the Ci are contained in the

central fiber of p.

5. Proof of Theorem 1.6

According to [6, Theorem 1.4], all asymptotically log Fano surfaces (S,C) such
that �KS � C is big satify either �KS � C is ample, or S is obtained from an
asymptotically log Fano surface (s, c) such that �Ks � c is ample by blowing-up
s at r > 0 distinct points on c and letting C denote the proper transform of c.
Proposition 3.1 already established Theorem 1.6 in the first case. To complete the
proof of Theorem 1.6 it remains to handle the latter case.

To that end, we switch back to the notation and assumptions of Section 4. We
suppose that (S,C) is such that�KS�C is ample (hence asymptotically log Fano),
and that (S0,C 0) is still asymptotically log Fano, i.e.,

L 0
� := �KS0 � (1� �)C 0
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is ample for all sufficiently small �. Note that �KS0 � C 0 = ⇡?
O(�KS � C) is big

being the pull-back under a birational map of an ample class. Thus, (S0,C 0) satisfies
the assumptions of Theorem 1.6. However, it is not possible to slope destabilize this
latter pair in the same way as was done for (S,C) in Section 3. Indeed,

L 0
� ⇠R ⇡?

O(�KS � (1� �)C) � �
rX

i=1
C 0
i , (5.1)

so that by Lemma 4.3 (i) (putting �i = � and Z = C), ✏(S0, Z 0, L 0
�)  �, and

in particular using Proposition 2.7 one checks that the generalized Futaki invariant
F(X 0,L0

�,c,D,�) of the degeneration to the normal cone is positive for c 2 (0,�),
and so (S0,C 0) is not slope destabilized in this way. In what follows, we apply the
results of Section 4 to destabilize our pair nevertheless.

Before proving Theorem 1.6, let us consider a model example.

Example 5.1. Suppose that S = P2 and C is a smooth conic. Then ✏(S0, L 0
�, Z 0) =

�. Thus, if c < �, then L0
�,c is p

0-ample. By Proposition 2.7, we have

F
�
X 0,L0

�,c,D0,�
�

=
�
6�c � 3c2

��
2+ �(4� r)

�
+

�
2c3 � 3c2�

��
4� r

�
.

In particular, this invariant is always positive for � sufficiently small (depending on
r). On the other hand,

⌧
�
S0, L 0

�, Z 0� = ✏(S, L�, Z) =
1
2

+ �.

Thus, if � < c < 1
2 + �, then L̂0

� is p̂
0-ample by Lemma 4.7. By Proposition 4.9,

one has

F(X̂ 0, L̂0
�,c, D̂0,�)=F(X 0,L0

�,c,D0,�) + 2r(c � �)3

=
�
6�c�3c2

��
2+�(4�r)

�
+
�
2c3�3c2�

��
4�r

�
+2r(c��)3

(see Appendix Appendix A). If we put c = 1
2 + �, then

lim
�!0+

F
⇣
X̂ 0, L̂0

�, D̂0,�
⌘

= �
1
2
.

Recalling the discussion at the beginning of this section, Theorem 1.6 follows from
the following result.

Proposition 5.2. The triple (S0,C 0,�) is flop-slope unstable for all sufficiently
small �.
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Proof. Let ✏(S, Z ,�KS � C) be the Seshadri constant of Z ⇢ S with respect to
�KS � C . Pick any positive � < ✏(S, Z ,�KS � C). Then

�KS � C ⇠R � Z + H

for some ample R-divisor H . Then

L� ⇠R �KS � C + �C ⇠R (� + �)C + H,

hence ✏(S, L�, Z) � � + �, so ✏(S, L�, Z) > � � ✏(S0, L 0
�, Z 0) by Lemma 4.3

(i). By taking � small, we may suppose that � > �. Letting c be a real number
such that

✏(S0, Z 0, L 0
�)  � < c  � < ✏(S, L�, Z), (5.2)

Lemma 4.7 implies that L̂0
�,c is p̂

0-ample. By Proposition 4.9, we have

F
⇣
X̂ 0, L̂0

�,c, D̂0,�
⌘

= F
⇣
X 0,L0

�,c,D0,�
⌘

� 2
rX

i=1

⇣
L0

�,c.Ci
⌘3

� 3
rX

i=1

⇣
L0

�,c.Ci
⌘2

(D0.Ci ).

Moreover, by Proposition 2.7

F
⇣
X 0,L0

�,c,D0,�
⌘

=
⇣
6�c � 3c2

⌘
L 0

� .C 0 +
⇣
2c3 � 3c2�

⌘
(C 0)2.

Note that using (4.8) and (5.1),

L0
�,c.Ci =

�
(pS0 � ⇡Z 0)?L 0

� � cEZ 0
�
.Ci = L 0

� .C 0
i � cZ 0.C 0

i = � � c.

In addition, before the blow-up ⇡Z 0 , the intersection of D = C 0 ⇥ P1 and S0 ⇢
S0⇥P1 is precisely Z 0 ⇢ S0 ⇢ S0⇥P1 (this is precisely where we use that Z 0 = C 0).
Thus, after blowing-up Z 0, the surfaces D0 and S0

0
⇠= S0 (recall (4.3)) no longer

intersect. Since Ci is contained in S0
0,

D0.Ci = 0.
Combining these facts,

F
⇣
X̂ 0, L̂0

�,c, D̂0,�
⌘

=
⇣
6�c � 3c2

⌘
L 0

� .C 0 +
⇣
2c3 � 3c2�

⌘
(C 0)2 + 2r(c � �)3.

By Remark 3.2, C and hence also C 0 are rational, so L 0
� .C 0 = �(KS0 � (1 �

�)C 0).C 0 = 2 + �C 02. Thus, putting c = � and grouping most terms of order �
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together yields,

F
⇣
X̂ 0, L̂0

�,� , D̂0,�
⌘

= �� 2L 0
� .C 0 � 2� 2

�
L 0

� � �C 0�.C 0 + 2r� 3

+ �
�
6� L 0

� .C 0 � 3� 2C 02 � 6r� 2 + 6r�� � 2r�2
�

= �� 2
�
2+ �C 02� � 2� 2

 

⇡?
O(L� � �C) + (� � �)

rX

i=1
C 0
i

!

.C 0 + 2r� 3

+ �
�
6� L 0

� .C 0 � 3� 2C 02 � 6r� 2 + 6r�� � 2r�2
�

= �� 2
�
2+ �C 02� � 2� 2

�
L� � �C

�
.C � 2� 2(� � �)r + 2r� 3

+ �
�
6� L 0

� .C 0 � 3� 2C 02 � 6r� 2 + 6r�� � 2r�2
�

= �2� 2 � 2� 2
�
L� � �C

�
.C

+ �
�
6� L 0

� .C 0 � 4� 2C 02 � 4r� 2 + 6r�� � 2r�2
�
,

(5.3)

so by (5.2),

F(X̂ 0, L̂0
�,c, D̂0,�) < �2� 2

+ �
�
6� L 0

� .C 0 � 4� 2C 02 � 4r� 2 + 6r�� � 2r�2
�
;
(5.4)

implying that lim�!0+ F(X̂ 0, L̂0
�,c, D̂0,�)  �2� 2 < 0.

6. Further examples

We conclude by illustrating the advantage of using flop-slope stability over slope
stability with two simple examples.

Example 6.1 (F1). According to Ross-Thomas [27, Examples 5.27, 5.35] (cf.
Panov-Ross [25, Example 3.8]), F1 is (for � = 1) slope destabilized by the �1-
curve. More generally, by Li-Sun [21], the Futaki invariant of the slope test con-
figuration of the triple (F1,C,�) with C smooth in | � KF1 | and with respect to
the �1-curve equals �3c2� � 2c3 + 3c2 + 6c�, which for c = 2� (the Seshadri
constant in this case), gives 4�2(6 � 7�), showing that there exists no KEE met-
ric when � 2 (6/7, 1]. However, F1 is not destabilized by any fiber of its natural
projection to P1 [25, Theorem 1.3]. We now show that F1 is destabilized by a fiber
after one flop, and this even holds for � 2 (12/13, 1].

To show this, it is most convenient to carry over the notation and assumptions
of Section 4. Thus, we let S be P2, C be a smooth cubic, and Z be a line. Then
S0 = F1 is the blow-up of S at a point O1 2 Z \C , C 0 is an elliptic (anticanonical)
curve, and Z 0 is a fiber of the natural projection F1 ! P1. In additionD is C 0 ⇥ P1
and D0 is its proper transform with respect to the blow-up of Z 0 ⇢ S0 ⇥ P1. Let
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L 0
� := �KS0 � (1 � �)C 0 = �C 0, so ✏(S0, L 0

�, Z 0) = �. As L 0
� .Z 0 = 2� and

Z 02 = 0, Proposition 2.7 gives

F
�
X 0,L0

�,c,D0,�
�

= 6c�(2� c). (6.1)

Thus, if c < �, then F(X 0,L0
�,c,D0,�) > 0. On the other hand, we have

⌧
�
S0, L 0

�, Z 0� = ✏(S, L�, Z) = 3�.

Thus, it follows from Lemma 4.7 that L̂� is ample for every c 2 (�, 3�). By
Proposition 4.9 and (6.1),

F
⇣
X̂ 0,L̂0

�,c,D̂0,�
⌘
=F

⇣
X 0,L0

�,c,D0,�
⌘

� 2(� � c)3 � 3(1� �)(� � c)2

= 6c�(2� c) � 2(� � c)3 � 3(1� �)(� � c)2.
(6.2)

If c = 3�, then F(X̂ 0, L̂0
�,c, D̂0,�) = 24�2 � 26�3, which implies that

F(X̂ 0, L̂0
�,c, D̂0,�) < 0 (for some c 2 (�, 3�)) provided that � > 12

13 .
In fact, one can show that (F1,C 0,�) does not admit a KEE metric for � 2

(45 , 1] [30]. On the other hand, (F1,C 0,�) admits a KEE metric for � 2 (0, 3
10 ),

and, moreover, if C 0 is a general curve in | � KF1 |, then (F1,C 0,�) admits a KEE
metric for � 2 (0, 37 ) [5, Corollary 1.16].

Example 6.2 (BlO1,O2P2). We take, as in the previous subsection, S = P2,C a
smooth cubic, and Z a line, but now blow-up two points O1, O2 2 C \ Z to obtain
S0, and let C 0, Z 0 be the proper transforms of C, Z , respectively. According to
Panov-Ross [25, Example 7.6], the surface S0 (with � = 1) is slope stable. We will
show that it is not flop-slope stable, and moreover this holds also for (S0,C 0,�)
with � 2 (21/25, 1]. By comparison, Székelyhidi [30] constructed a destabilizing
toric degeneration for � 2 (79 , 1] in the case when C

0 does not contain either of the
points Z 0 \ C 0

1 or Z
0 \ C 0

2, where C
0
i are the exceptional curves of the blow-down

map to P2. It is interesting to note that the value 21/25 also arises in the related
smooth continuity method [29, Proposition 10] and [20, Example 2].

By Proposition 2.7, we have

F
�
X 0,L0

�,c,D0,�
�

= 3�c(2� c) � c2(2c � 3).

Here c < ✏(S0, L 0
�, Z 0) = �. Thus, F(X 0,L0

�,c,D0,�) > 0 for every c 2 (0,�)

(i.e., slope stable). On the other hand, we have

⌧
�
S0, L 0

�, Z 0� = ✏(S, L�, Z) = 3�.

By Lemma 4.7, the divisor L̂0
� is ample for c 2 (�, 3�). Note that C 0

i .Z
0 = 1 and

as in (4.4) (see also (A.1)) KX 0 .C 0
i = 0. Therefore,

L0
�,c.Ci = ��KS0 .C 0

i � cZ 0.C 0
i = � � cZ 0.C 0

i = � � c,
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and by Proposition 4.9, one has

F
⇣
X̂ 0, L̂0

�, D̂0,�
⌘

= F
⇣
X 0,L0

�,c,D0,�
⌘

� 4(� � c)3 � 6(� � c)2(1� �).

Plugging-in c = 3� yields

F
⇣
X̂ 0, L̂0

�, D̂0,�
⌘

= 9�2(2� 3�) � 9�2(6� � 3) + 32�3 � 24�2(1� �)

= �2(21� 25�) < 0,

when � > 21
25 .

Note that (S0,C 0,�) admits a KEE metric for � 2 (0, 37 ), and, moreover, if C
0

does not contain neither of the points Z \C 0
1 and Z \C 0

2, then a KEE metric exists
for � 2 (0, 12 ) [5, Corollary 1.16].

Appendix A. Simple flops

Let V be a smooth projective variety, and let

C ⇢ V

be a smooth rational curve such that its normal bundle in V is isomorphic to
OP1(�1) �OP1(�1). Then there exists a commutative diagram

BlCV = W = BlĈ V̂
⇡C

ttj

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j ⇡Ĉ

**

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

V

cC
**

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

f
//________________________ V̂

cĈ
tti

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

X

such that the threefold V̂ is smooth, the threefold X has an isolated ordinary double
point, ⇡C is a blow-up of the curve C , ⇡Ĉ is the contraction of the ⇡C -exceptional
surface, let us call it E ⇠= P1 ⇥ P1, to a smooth rational curve, let us call it Ĉ . We
define the map f by declaring the diagram to be commutative. This defines f as a
birational map away from C . It is important in this construction that ⇡C 6= ⇡Ĉ , so
that the map f is not an isomorphism. Finally, cC and cĈ are (small) contractions
of the curves C and Ĉ , respectively, to the isolated ordinary double point of X .
Remark A.1. The birational map f : V 99K V̂ is called the simple flop of the curve
C . Sometimes it is called an Atiyah flop [2]. Later it was explicitly introduced by
Kulikov in [19, Section 4.2] as perestroika I.
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Note that the normal bundle of Ĉ in U is isomorphic toOP1(�1) �OP1(�1).
As in (4.4),

KV .C = 0. (A.1)
In fact, another way to see this equality is by noting that since cC is an isomorphism
away from codimension 2, then KV ⇠Q c?CKV , and of course c?C(KX ).C = 0 since
cC contracts C . Similarly, KV̂ .Ĉ = 0 by construction. Moreover, we have E |E
is a divisor on E ⇠= P1 ⇥ P1 of bi-degree (�1,�1). Furthermore, the morphism
cC �⇡C = cĈ �⇡Ĉ is just the contraction of the surface E to the the isolated ordinary
double point of X , i.e., its inverse map is the blow-up of this point.
Remark A.2. Note that in general V̂ is not necessarily projective. However, it is
not hard to see that V̂ is projective in many cases, either by explicit construction
or by using log MMP. In all our applications, V̂ is projective by construction, see
Section 4.

Given an irreducible reduced Weyl divisor D on V , we denote by D̂ the unique
divisor on V̂ such that

D̂ := f (D \ C).

By linearity, we extend the same notation to all R-divisors on V . The following
formula may be known, but we provide a proof since we were not able to find a
reference for it.

Lemma A.3. Let Hi , i = 1, 2, 3, be R-divisors on V . Then,

Ĥ1.Ĥ2.Ĥ3 = H1.H2.H3 � (H1.C)(H2.C)(H3.C).

Proof. Let H̃1, H̃2 and H̃3 be the proper transforms of the divisors H1, H2 and H3
on W , respectively. Recall that E = P1 ⇥ P1 denotes the exceptional divisor of ⇡C
(and of ⇡Ĉ ). Then,

8
><

>:

H̃1 ⇠R c?C H1 � m1E ⇠R c?
Ĉ
Ĥ1 � m̂1E

H̃2 ⇠R c?C H2 � m2E ⇠R c?
Ĉ
Ĥ2 � m̂2E

H̃3 ⇠R c?C H3 � m3E ⇠R c?
Ĉ
Ĥ3 � m̂3E,

for some real numbers mi , m̂i . Put

ri := Hi .C and r̂i := Ĥi .Ĉ .

Then each H̃i |E is a divisor (in P1 ⇥ P1) of bi-degree

(ri + mi ,mi ) = (m̂i , r̂i + m̂i );

this is because E |E = NE |V is a line bundle of bi-degree (�1,�1), while since
cC(E) = C and cĈ(E) = Ĉ ,

c?C Hi |E =Hi .cC(E)⇥(fiber of projection of ⇡C )=ri⇥(bi-degree (1,0) curve), (A.2)
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and

c?
Ĉ
Ĥi |E = Ĥi .cĈ(E) ⇥ (fiber of projection of ⇡Ĉ ) = r̂i ⇥ (bi-degree (0,1) curve).

Thus,
m̂i = ri + mi , and r̂i = �ri . (A.3)

Now, E3 = E |E .E |E = c1(OP1(�1) �OP1(�1))2 = 2, and by (A.2),

c?C Hi .E
2 = c?C Hi |E .E = �Hi |E .C = �ri .

On the other hand,

c?C Hi .c
?
C Hj .E = c?C Hi |E .c?C Hj |E = 0

since by (A.2), c?C Hi |E and c
?
C Hj |E are fibers of the same projection in P1 ⇥ P1 =

E . Altogether,

H̃1.H̃2.H̃3 =
�
c?C H1 � m1E

�
.
�
c?C H2 � m2E

�
.
�
c?C H3 � m3E

�

= H1.H2.H3 +
�
m1m2c?C H3 + m1m3c?C H2 + m2m3c?C H1

�
.E2 � m1m2m3E3

= H1.H2.H3 �
�
m1m2r3 + m1m3r2 + m2m3r1

�
� 2m1m2m3.

Similarly,

H̃1.H̃2.H̃3 =
�
c?
Ĉ
Ĥ1 � m̂1E

�
.
�
c?
Ĉ
Ĥ2 � m̂2E

�
.
�
c?
Ĉ
Ĥ3 � m̂3E

�

= Ĥ1.Ĥ2.Ĥ3 +
�
m̂1m̂2c?Ĉ Ĥ3 + m̂1m̂3c?Ĉ Ĥ2 + m̂2m̂3c?Ĉ Ĥ1

�
.E2 � m̂1m̂2m̂3E3

= Ĥ1.Ĥ2.Ĥ3 �
�
m̂1m̂2r̂3 + m̂1m̂3r̂2 + m̂2m̂3r̂1

�
� 2m̂1m̂2m̂3.

Thus,

H1.H2.H3 � m1m2r1 � m1m3r2 � m2m3r1 � 2m1m2m3
= Ĥ1.Ĥ2.Ĥ3 � m̂1m̂2r̂3 � m̂1m̂3r̂2 � m̂2m̂3r̂1 � 2m̂1m̂2m̂3.

By (A.3), this yields Ĥ1.Ĥ2.Ĥ3 = H1.H2.H3 � r1r2r3.
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