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Extension property of semipositive invertible sheaves
over a non-archimedean field

HUAYI CHEN AND ATSUSHI MORIWAKI

Abstract. In this article, we prove an extension property of semipositively
metrized ample invertible sheaves on a projective scheme over a complete non-
archimedean valued field. As an application, we establish a Nakai-Moishezon
type criterion for adelically normed graded linear series.
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1. Introduction

Let k be a field and X be a reduced projective scheme over Spec k, equipped with
an ample invertible OX -module L . If Y is a reduced closed subscheme of X , then
for any sufficiently positive integer n, any section ` of L|⌦nY on Y extends to a
global section of L⌦n on X . In other words, the restriction map H0(X, L⌦n) !
H0(Y, L|⌦nY ) is surjective. A simple proof of this result relies on Serre’s vanishing
theorem, which ensures that H1(X,IY ⌦ L⌦n) = 0 for any sufficiently positive
integer n, where IY is the ideal sheaf of Y .

The metrized version (with k = C) of this result has been widely studied
in the literature and has divers applications in complex analytic geometry and in
arithmetic geometry. We assume that the ample invertible sheaf L is equipped with
a continuous (with respect to the analytic topology) metric |.|h , which induces a
continuous metric |.|hn on each tensor power sheaf L⌦n , where n 2 N, n � 1. The
metric |.|hn leads to a supremum norm k.khn on the global section space H0(X, L)
such that

kskhn = sup
x2X (C)

|s|hn (x) for all s 2 H0(X, L).
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Similarly, it induces a supremum norm k.kY,hn on the space H0(Y, L|⌦nY ) with

kskY,hn = sup
y2Y (C)

|s|hn (y).

Note that for any section s 2 H0(X, L⌦n) one has ks|Y kY,hn  kskhn . The metric
extension problem consists of studying the extension of global sections of L|Y to
those of L with an estimation on the supremum norms. Note that a positivity con-
dition on the metric h is in general necessary to obtain interesting upper bounds.
This problem has been studied by using Hörmander’s L2 estimates (see [9] for ex-
ample), under smoothness conditions on the metric. More recently, it has been
proved (without any regularity condition) that, if the metric |.|h is semi-positive,
then for any ✏ > 0 and any section l 2 H0(Y, L|Y ) there exist an integer n � 1 and
s 2 H0(X, L⌦n) such that s|Y = l⌦n and that kskhn  e✏nks|Y kY,hn . We refer the
readers to [17,19] for more details.

The purpose of this article is to study the non-archimedean counterpart of the
above problem. We will establish the following result (see Theorem 4.5 and Corol-
lary 2.17).

Theorem 1.1. Let k be a field equipped with a complete and non-archimedean ab-
solute value |.| (which could be trivial). Let X be a reduced projective scheme
over Spec k and L be an ample invertible sheaf on X , equipped with a continu-
ous and semi-positive metric |.|h . Let Y be a reduced closed subscheme of X and
l 2 H0(Y, L|Y ). For any ✏ > 0 there exists an integer n0 � 1 such that, for any
integer n � n0, the section l⌦n extends to a section s 2 H0(X, L⌦n) verifying
kskhn  e✏nklknY,h .

The semi-positivity condition of the metric means that the metric |.|h can be
written as a uniform limit of Fubini-Study metrics. We will show that, if the abso-
lute value |.| is non-trivial, then this condition is equivalent to the classical semi-
positivity condition (namely uniform limit of nef model metrics, see Proposition
3.14) of Zhang [21], see also [10, 16], and compare with the complex analytic
case [20]. The advantage of the new definition is that it also works in the trivial
valuation case, where the model metrics are too restrictive. We use an argument of
extension of scalars to the ring of formal Laurent series to obtain the result of the
above theorem in the trivial valuation case.

As an application, we establish an adelic version of the arithmetic Nakai-
Moishezon criterion as follows, see Theorem 5.6 and Corollary 5.9.

Theorem 1.2. Let X be a geometrically integral projective scheme over a number
field K and L be an invertible sheaf on X . For any place v of K , let hv be a con-
tinuous semipositive metric on the pull-back of L on the analytic space Xanv , such
that (H0(X, L⌦n), {k.kXv,hnv }) forms an adelically normed vector space over K for
any n 2 N (see Definition 5.1). Suppose that for any integral closed subscheme
Y of X , the restriction of L on Y is big and there exist a positive integer n and a
non-zero section s 2 H0(Y, L|⌦nY ) such that kskYv,hnv  1 for any place v of K ,
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and that the inequality is strict when v is an infinite place. Then for any sufficiently
positive integer n, the Q-vector space H0(X, L⌦n) has a basis (!1, . . . ,!rn ) with
k!ikXv,hnv  1 for any place v, where the inequality is strict if v is an infinite place.

This result generalizes simultaneously [21, Theorem 4.2] and [15, Theorem
4.2] since here we have a weaker assumption on the adelic metric on L . Indeed,
in the paper [21], the following conditions are assumed: hv is semipositive for all
places v of K ,ddeg( L

�
�dimY+1
Y ) > 0 for all integral subschemes Y of X , and there

exist a non-empty open set U of Spec(OK ) and a positive integer d such that the
metric hdv of L⌦d

v (8v 2 U ) is induced by a nef model (XU ,LU ) of (X, L⌦d) over
U . Obviously these assumptions imply our assumptions in Theorem 1.2. The main
idea for the proof is to combine the estimation on normed Noetherian graded linear
series developed in [15] and the non-archimedean extension property established in
the current paper. In the archimedean case we also use the archimedean extension
property proved in [17].

The article is organized as follows. In the first section we introduce the notation
of the article and prove some preliminary results, most of which concern finite-
dimensional normed vector spaces over a non-archimedean field. In the second
section, we study various properties of continuous metrics on an invertible sheaf,
where an emphasis is made on the positivity of such metrics. In the third section,
we prove the extension theorem. Finally, in the fourth and last section, we apply the
extension property to prove a generalized arithmetic Nakai-Moishezon’s criterion.

ACKNOWLEDGEMENTS. Huayi Chen has benefited from the visiting support of
Beijing International Center for Mathematical Research and would like to thank the
center for the hospitalities.

We are grateful to the anonymous referee for the careful reading and for the
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2. Notation and preliminaries

2.1. Notation

Throughout this paper, we fix the following notation.

2.1.1. Fix a field k with a non-archimedean absolute value |.| on k. Unless oth-
erwise stated, we assume that (k, |.|) is complete. The valuation ring of k and the
maximal ideal of the valuation ring are denoted by ok and mk , respectively, that is,

ok := {a 2 k | |a|  1} and mk := {x 2 k | |x | < 1}.

In the case where |.| is discrete, we fix a uniformizing parameter $ of mk , that is,
mk = $ok .
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2.1.2. A norm k.k of a finite-dimensional vector space V over the non-archime-
dean field k is always assumed to be ultrametric, that is, kx+ yk  max{kxk, kyk}.
The pair (V, k.k) is called a finite-dimensional normed vector space over k.

2.1.3. In Section 1-Section 4, we fix a reduced algebraic scheme X over Spec k,
that is, X is a reduced scheme of finite type over Spec(k). Let Xan be the analyti-
fication of X in the sense of Berkovich [2]. For any x 2 Xan, the residue field of
the associated scheme point of x is denoted by (x). Note that the seminorm |.|x
at x yields an absolute value of (x). By abuse of notation, it is denoted by |.|x .
Let ̂(x) be the completion of (x) with respect to |.|x . The extension of |.|x to
̂(x) is also denoted by the same symbol |.|x . The valuation ring of ̂(x) and the
maximal ideal of the valuation ring are denoted by ox and mx , respectively. Let L
be an invertible sheaf on X . For any x 2 Xan, the sheaf L ⌦OX ̂(x) is denoted by
L(x).

2.1.4. By continuous metric on L , we refer to a family h = {|.|h(x)}x2Xan , where
|.|h(x) is a norm on L ⌦OX ̂(x) over ̂(x) for each x 2 Xan, such that for any
local basis ! of L over a Zariski open subset U , |!|h(.) is a continuous function on
U an. We assume that X is projective. Given a continuous metric h on L , we define
a norm k.kh on H0(X, L) such that

kskh := sup
x2Xan

|s|h(x) for all s 2 H0(X, L).

Similarly, if Y is a reduced closed subscheme of X , we define a norm k.kY,h on
H0(Y, L) such that

klkY,h := sup
y2Y an

|l|h(y) for all l 2 H0(Y, L).

Clearly one has
kskh � ks|Y kY,h (2.1)

for any s 2 H0(X, L).

• In the following 2.1.5, 2.1.6 and 2.1.7, X is always assumed to be projective.

2.1.5. Given a continuous metric h on L , for each integer n � 1 the metric induces
a continuous metric on L⌦n which we denote by hn: for any point x 2 Xan and any
local basis ! of L over a Zariski open neighborhood of x one has

|!⌦n|hn (x) = |!|h(x)n.

Note that for any section s 2 H0(X, L) one has ks⌦nkhn = ksknh . By convention,
h0 denotes the trivial metric on L⌦0 = OX , namely |1|h0(x) = 1 for any x 2 Xan,
where 1 denotes the section of unity of OX .
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Conversely, given a continuous metric g = {|.|g(x)}x2Xan on L⌦n , there is a
unique continuous metric h on L such that hn = g. We denote by g1/n this metric.
This observation allows to define continuous metrics on an element in Pic(X) ⌦ Q
as follows. Given M 2 Pic(X) ⌦ Q, we denote by 0(M) the subsemigroup of N�1
of all positive integers n such that M⌦n 2 Pic(X). We call continuous metric on M
any family g = (gn)n20(M) with gn being a continuous metric on M⌦n , such that
gmn = gmn for any n 2 0(M) and any m 2 N�1. Note that the family

g = (gn)n20(M)

is uniquely determined by any of its elements. In fact, given an element n 2 0(M),
one has gm = g1/nmn = (gmn )1/n for any m 2 0(M). In particular, for any positive
rational number p/q, the family gp/q = (g1/NqNnp )n20(M⌦(p/q)) is a continuous metric
on M⌦(p/q), where N is a positive integer such that M⌦N 2 Pic(X), and the metric
gp/q does not depend on the choice of the positive integer N . If L is an element
of Pic(X), equipped with a continuous metric g, by abuse of notation, we use the
expression g to denote the metric family (gn)n2N�1 , viewed as a continuous metric
on the canonical image of L in Pic(X) ⌦ Q.

Let M be an element in Pic(X) ⌦ Q equipped with a continuous metric g =
(gn)n20(M). By abuse of notation, for any n 2 0(M) we also use the expression gn
to denote the continuous metric gn on M⌦n .

2.1.6. LetX ! Spec(ok) be a projective and flat ok-scheme such that the generic
fiber of X ! Spec(ok) is X . We call it a model of X . We denote by X� :=
X ⌦ok (ok/mk) the central fiber of X ! Spec(ok). By the valuative criterion
of properness, for any point x 2 Xan, the canonical k-morphism Spec ̂(x) ! X
extends in a unique way to an ok-morphism of schemes Px : Spec ox ! X. We
denote by rX (x) the image of mx 2 Spec ox by the map Px . Thus we obtain a
map rX from Xan toX�, called the reduction map ofX.

LetL be an element of Pic(X )⌦Q such that L
�
�
X = L in Pic(X)⌦Q. The

Q-invertible sheafL yields a continuous metric |.|L as follows.
First we assume thatL 2 Pic(X ) and L

�
�
X = L in Pic(X). For any x 2 Xan,

let !x be a local basis of L around rX (x) and !̄x the class of !x in L(x) :=
L ⌦OX ̂(x). For any l 2 L ⌦OX ̂(x), if we set l = ax !̄x (ax 2 ̂(x)), then
|l|L (x) := |ax |x . Here we set h := {|.|L (x)}x2Xan . Note that h is continuous
because, for a local basis ! of L over an open set U of X, |!|L (x) = 1 for all
x 2 r�1

X
(U�), whereU� = U ⌦ok (ok/mk) is the central fiber ofU. Moreover,

|.|hn (x) = |.|L n (x) (2.2)

for all n � 0 and x 2 Xan. Indeed, if we set l = ax !̄x for l 2 L(x), then
l⌦n = anx !̄⌦n

x . Thus

|l⌦n|hn (x) = (|l|h(x))n = |ax |nx = |l⌦n|L n (x).
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In general, there are anM 2 Pic(X ) and a positive integerm such thatL ⌦m = M
in Pic(X ) ⌦ Q and M

�
�
X = L⌦m in Pic(X). Then we set

|.|L := (|.|M)1/m .

Note that the above definition does not depend on the choice ofM and m. Indeed,
let M0 and m0 be another choice. As M⌦m0

= M0⌦m in Pic(X ) ⌦ Q, there is a
positive integer N such thatM⌦Nm0

= M0⌦Nm in Pic(X ), so that, by using (2.2),

(|.|M(x))Nm
0
= |.|

M⌦Nm0 (x) = |.|M0⌦Nm (x) = (|.|M0(x))Nm,

as desired.

2.1.7. Let X be a model of X . As X is flat over ok , the natural homomorphism
OX ! OX is injective. Let Y be a closed subscheme of X and IY ✓ OX the
defining ideal sheaf of Y . Let IY be the kernel of OX ! OX/IY , that is, IY :=
IY \ OX. Obviously IY ⌦ok k = IY , so that if we set Y = Spec(OX/IY ),
then Y ⇥Spec(ok) Spec(k) = Y . Moreover, Y is flat over ok because OY ! OY is
injective. Therefore, Y is a model of Y . We say that Y is the Zariski closure of Y in
X.

2.2. Normed vector space over a non-archimedean field

In this subsection, we recall several facts on (ultrametric) norms over a non-archi-
medean field. Throughout this subsection, a norm on a vector space over a non-
archimedean field is always assumed to be ultrametric. We also assume that k is
complete except in Subsections 2.2.1-2.2.2.

2.2.1. Topology. In this subsubsection, k is not necessarily complete. Let V be a
finite-dimensional vector space over k and k.k be a norm of V over (k, |.|). Let r
be the rank of V . We assume that k.k extends by continuity to a norm on V ⌦k bk,
wherebk denotes the completion of (k, |.|), on which the absolute value extends in a
unique way. In particular, any k-linear isomorphism kr ! V is a homeomorphism,
where we consider the product topology on kr (see [3, Section I.2, n. 3, Theorem
2 and the remark on the page I.15]), and for any vector subspace W of V , W is
closed in V and is dense in W ⌦k bk ⇢ V ⌦k bk.

For a basis eee = (e1, . . . , er ) of V , we set

ka1e1 + · · · + arerkeee := max{|a1|, . . . , |ar |} for all (a1, . . . , ar ) 2bkr

which yields an ultrametric norm on V ⌦k bk. Note that the norms k.ke and k.k on
V are equivalent. In particular, if the valuation |.| is discrete and non-trivial, then
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there exists an integer n such that the unit ball (V, k.k)1 := {x 2 V | kxk  1} is
contained in the free ok-module

$ noke1 + · · · + $ noker ,

where$ is a uniformizing parameter of ok as in 2.1.1. Since ok is a discrete valua-
tion ring, we obtain that (V, k.k1) is an ok-module of finite type, and hence a free
ok-module of rank r .

Let (xi )ni=1 be a family of vectors in V , where n � 2. Assume that (ai )ni=1 2 kn
is such that the numbers (kai xik)ni=1 are distinct, then one has

ka1x1 + · · · + anxnk = max
i2{1,...,n}

kai xik.

In particular, a1x1 + · · · + anxn is non-zero. Therefore, the image of V \ {0} by the
composed map

V \ {0}
k.k

// R⇥
+

// R⇥
+/|k⇥|

is a finite set, whose cardinality does not exceed the rank of V over k. In particular,
if the valuation |.| is discrete, then the image of V \ {0} by k.k is a discrete subset
of R⇥

+; if the valuation |.| is trivial, then the image of V \ {0} by k.k is a finite set,
whose cardinality does not exceed the rank of V over k.

Proposition 2.1. Assume that |.| is discrete. Let W be a quotient vector space of V
and ⇡ : V ! W be the projection map. We equip W ⌦k bk with the quotient norm
k.kW . Then for any y 2 W there is an x 2 V such that ⇡(x) = y and kykW = kxk.

Proof. We may assume that y 6= 0 (the case where y = 0 is trivial). We set
M = Ker(⇡). Since M is dense in M ⌦k k̂ = Ker(⇡k̂), we obtain that ⇡

�1({y}) is
dense in ⇡�1

bk ({y}). Hence there exists a sequence (xn)n�0 in V such that ⇡(xn) = y
for any n and that lim

n!+1
kxnk = kykW . Since the image of V \ {0} by k.k is

discrete, we obtain that kxnk = kykW for sufficiently positive n. The proposition is
thus proved.

2.2.2. Orthogonality of bases. For ↵ 2 (0, 1], a basis (e1, . . . , er ) of V is called
an ↵-orthogonal basis of V with respect to k.k if

↵max{|a1|ke1k, . . . , |ar |kerk}  ka1e1 + · · · + arerk 8 a1, . . . , ar 2 k.

If ↵ = 1 (respectively ↵ = 1 and ke1k = · · · = kerk = 1), then the above
basis is called an orthogonal basis of V (respectively an orthonormal basis of V ).
We refer the readers to [18, Section 2.3] for more details on the orthogonality in
the non-archimedean setting. Let (e01, . . . , e

0
r ) be another basis of V . We say that

(e1, . . . , er ) is compatible with (e01, . . . , e
0
r ) if ke1+· · ·+ kei = ke01+· · ·+ ke0i for

i = 1, . . . , r .
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Proposition 2.2. Fix a basis (e01, . . . , e
0
r ) of V . For any ↵ 2 (0, 1), there exists an

↵-orthogonal basis (e1, . . . , er ) of V with respect to k.k such that (e1, . . . , er ) is
compatible with (e01, . . . , e

0
r ). Moreover, if the absolute value |.| is discrete, then

there exists an orthogonal basis (e1, . . . , er ) of V compatible with (e01, . . . , e
0
r ) (see

[7, Proposition 2.5]).

Proof. We prove it by induction on dimk V . If dimk V = 1, then the assertion is ob-
vious. By the hypothesis of induction, there is a

p
↵-orthogonal basis (e1, . . . , er�1)

of V 0 := ke01 + · · · + ke0r�1 with respect to k.k such that

ke1 + · · · + kei = ke01 + · · · + ke0i

for i = 1, . . . , r � 1. Choose v 2 V \ V 0. Since V 0 is a closed subset of V , one has

dist(v, V 0) := inf{kv � xk : x 2 V 0} > 0.

There then exists y 2 V 0 such that kv � yk  (
p

↵)�1dist(v, V 0). We set er =
v � y. Clearly (e1, . . . , er�1, er ) forms a basis of V , which is compatible with
(e01, . . . , e

0
r ). It is sufficient to see that

ka1e1 + · · · + ar�1er�1 + erk � ↵max{|a1|ke1k, . . . , |ar�1|ker�1k, kerk}

for all a1, . . . , ar�1 2 k. Indeed, as kerk  (
p

↵)�1ka1e1 + · · · + ar�1er�1 + erk,
we have

↵kerk 
p

↵kerk  ka1e1 + · · · + ar�1er�1 + erk.

If ka1e1 + · · · + ar�1er�1k  kerk, then

ka1e1 + · · · + ar�1er�1 + erk �
p

↵kerk �
p

↵ka1e1 + · · · + ar�1er�1k
�

p
↵
�p

↵max{|a1|ke1k, . . . , |ar�1|ker�1k}
�

= ↵max{|a1|ke1k, . . . , |ar�1|ker�1k}.

Otherwise,

ka1e1 + · · · + ar�1er�1 + erk = ka1e1 + · · · + ar�1er�1k
�

p
↵max{|a1|ke1k, . . . , |ar�1|ker�1k}

� ↵max{|a1|ke1k, . . . , |ar�1|ker�1k},

as required.
For the second assertion, it is sufficient to use the discreteness of the set

{kv � xk | x 2 V 0}

to show that it has the minimal value (see Section 2.2.1).
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Remark 2.3. We assume that k is not complete. Let � 2 bk \ k, we define a norm
k.k� on k2 by

8(a, b) 2 k2, k(a, b)k� := |a + b� |.

Then there is no positive constant C such that k(a, b)k� � C max{|a|, |b|} for all
a, b 2 k. In particular, for any ↵ 2 (0, 1], there is no ↵-orthogonal basis of k2 with
respect to k.k� . Indeed, let us assume the contrary. We can find a sequence {an} in
k with limn!1 |an � � | = 0. On the other hand,

|an � � | = k(an,�1)k� � C max{|an|, 1} � C

for all n. This is a contradiction. Note that the norm k.k� extends by continuity
to a map bk2 ! R�0 sending (a, b) 2 bk2 to |a + b� |. But this map is a semi-
norm instead of a norm. Therefore, the hypothesis that the k.k extends to a norm on
V ⌦k bk is essential.

2.2.3. Dual norm. From now on and until the end of the section, we assume that
(k, |.|) is complete. Let (V, k.k) and (V 0, k.k0) be finite-dimensional normed vector
spaces over k, and � : V ! V 0 be a k-linear map. By the topological property of V
that we resumed in Subsection 2.2.1 we obtain that the linear map � is continuous,
which implies that

k�kHomk(V,V 0) := sup
v2V \{0}

k�(v)k0

kvk

is finite (in the case where |.| is trivial, we also use the fact that k.k and k.k0 only
takes finitely many values). Note that k.kHomk(V,V 0) yields an ultrametric norm on
Homk(V, V 0), called the operator norm. We denote k.kHomk(V,k) by k.k_ (i.e., the
case where V 0 = k and k.k0 = |.|), called the dual norm of k.k. By definition, one
has

|�(x)|  k�k_kxk

for any x 2 V and � 2 V_. In particular, one has

kxk__  kxk for all x 2 V, (2.3)

where we identify V with (V_)_ via the natural isomorphism.
Let (ei )ri=1 be an ↵-orthogonal basis of V , ↵ 2 (0, 1], and (e_i )ri=1 be its

dual basis of V_. By definition one has e_i (�1e1 + · · · + �r er ) = �i for any
(�1, . . . , �r ) 2 kr . Hence

ke_i k_ = sup
(�1,...,�r )6=(0,...,0)

|�i |

k�1e1 + · · · + �r erk
 ↵�1keik�1. (2.4)

Therefore, for any � = a1e_1 + · · · + are_r 2 V_, where (a1, . . . , ar ) 2 kr , one has

k�k >
|�(ei )|
keik

=
|ai |
keik

� ↵|ai |ke_i k_.
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Namely the dual basis (e_i )ri=1 is ↵-orthogonal with respect to the dual norm k.k_.
By the same reason, the basis (ei )ri=1 is also ↵-orthogonal with respect to the double
dual norm k.k__, and for any x = �1e1 + · · · + �r er 2 V one has

kxk__ �
e_i (x)
ke_i k_

=
|�i |

ke_i k_
� ↵|�i |keik for all i 2 {1, . . . , r}

where the second inequality comes from (2.4). We then deduce that

kxk__ � ↵ max
i2{1,...,r}

|�i |keik � ↵kxk.

By Proposition 2.2 and (2.3), we obtain that the natural isomorphism V ! (V_)_

is actually an isometry, where we consider the double dual norm k.k__ on (V_)_.

2.2.4. Scalar extension of norms. In this subsubsection, we fix a finite-dimensional
normed vector space (V, k.k) over k.
Definition 2.4. Let k0 be an extension field of k, and let |.|0 be a complete absolute
value of k0 which is an extension of |.| (we call (k0, |.|0) a complete valued extension
of (k, |.|)). We set Vk0 := V ⌦k k0. Identifying Vk0 with

Homk(Homk(V, k), k0),

we define k.kk0 as the operator norm on Vk0 , that is,

kv0kk0 := sup
⇢

|(� ⌦ 1)(v0)|0

k�k_

�
�
�� 2 V_

�
for all v0 2 Vk0 .

The norm k.kk0 is called the scalar extension of k.k.
By definition, if k.k1 and k.k2 are two norms on V such that k.k1  k.k2, then

one has k.k_
1 � k.k_

2 and hence k.k1,k0  k.k2,k0 . Moreover,

kv ⌦ 1kk0 = sup
⇢

|�(v)|

k�k_

�
�
�� 2 V_

�
= kvk__ = kvk for all v 2 V,

see Subsection 2.2.3 for the last equality. In other words, k.kk0 extends the norm k.k
on V . It is actually the largest ultrametric norm on Vk0 extending k.k. In fact, by
an argument similar to that in Subsection 2.2.3 we can show that, if (ei )ri=1 is an ↵-
orthogonal basis of (V, k.k), where ↵ 2 (0, 1], then (ei ⌦ 1)ri=1 is an ↵-orthogonal
basis of (V, k.kk0). Assume that k.k0 is another ultrametric norm on Vk0 extending
k.k. If (e1, . . . , er ) is an ↵-orthogonal basis of V , where ↵ 2 (0, 1), then we have
for all (a0

1, . . . , a
0
r ) 2 k0

↵ka0
1e1 + · · · + a0

r erk
0  ↵ max

i2{1,...,r}
(|ai |0keik0)

= ↵ max
i2{1,...,r}

(|ai |0keik)  ka0
1e1 + · · · + a0

r erkk0 .
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This maximality property implies that, if (k00, |.|00) is a complete valued extension
of (k0, |.|0), then one has

k.kk00 = k.kk0,k00 on Vk00 = V ⌦k k00 ⇠= Vk0 ⌦k0 k00. (2.5)

Lemma 2.5. Let f : V ! W be a surjective homomorphism of finite-dimensional
vector spaces over k. We assume that dimk W = 1 and let k.kW be the quotient
norm of k.k induced by the surjective map f : V ! W . Then the norm k.kW,k0

identifies with the quotient norm of k.kk0 induced by the surjective map fk0 :=
f ⌦ idk0 : Vk0 ! Wk0 .

Proof. Let k.k0
Wk0

be the quotient norm of k.kk0 induced by the surjective map fk0 :
Vk0 ! Wk0 . Let ` be an non-zero element ofW . As k`kW,k0 = k`kW , it is sufficient
to show that k`k0

Wk0
= k`kW . Note that

{v 2 V | f (v) = `} ✓ {v0 2 Vk0 | fk0(v0) = `},

so that we have k`kW � k`k0
Wk0
. In the following, we prove the inequality k`kW 

k`k0
Wk0
. For ↵ 2 (0, 1), let (e1, . . . , er ) be an ↵-orthogonal basis of V such that

(e2, . . . , er ) forms a basis of Ker( f ) and that f (e1) = `. Then

k`k0
Wk0

= inf{ke1 + a0
2e2 + · · · + a0

r erkV,k0 | a0
2, . . . , a

0
r 2 k0}

� inf{↵max{ke1k, |a0
2|

0ke2k, . . . , |a0
r |

0kerk} | a0
2, . . . , a

0
r 2 k0}

= ↵ke1k � ↵k`kW .

Therefore, we have k`k0
Wk0

� k`kW by taking ↵ ! 1.

Lemma 2.6. We assume that the absolute value |.| of k is trivial. Let (k0, |.|0) be
a complete valued extension of (k, |.|) such that |.|0 is non-trivial. Let ok0 be the
valuation ring of (k0, |.|0) and mk0 the maximal ideal of ok0 . Suppose that

(1) The natural map k ! ok0 induces an isomorphism k ⇠
�! ok0/mk0;

(2) For all elements v and v0 in V \{0} such that kvk 6= kv0k, the quotient kv0k/kvk
does not belong to |k0⇥|0.

Then k.kk0 is the only ultrametric norm on Vk0 extending k.k.

Proof. We prove the assertion by induction on the rank r of V over k. The case
where r = 1 is trivial. In the following, we suppose that the assertion has been
proved for normed vector spaces of rank < r over k.

Let k.k0 be another ultrametric norm on Vk0 extending k.k. Since k.kk0 is the
largest ultrametric norm on Vk0 extending k.k, we obtain that k.kk0 > k.k0. If the
equality k.k0 = k.kk0 does not hold, then there exists a vector x 2 Vk0 such that
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kxk0 < kxkk0 . Let (ei )ri=1 be an orthogonal basis of (V, k.k), which is also an
orthogonal basis of (Vk0, k.kk0). Suppose that x is written in the form x = a1e1 +
· · · + arer , with (a1, . . . , ar ) 2 k0r . We will prove that |ai |0keik are the same for
i 2 {1, . . . , r} arguing by contradiction. Without loss of generality, we assume on
the contrary that

|a1|0ke1k  · · ·  |a j |0ke jk < |a j+1|0ke j+1k = · · · = |ar |0kerk
with j 2 {1, . . . , r � 1}. Note that

kxk0 < kxkk0 = max
i2{1,...,r}

|ai |0keik = |ar |0kerk.

Moreover, by the induction hypothesis, the norms k.k0 and k.kk0 coincide on
k0e j+1 + · · · + k0er . In particular, one has

ka j+1e j+1+ · · · + arerk0 = |ar |0kerk.
Therefore, if we let y = a1e1 + · · · + a j e j , then we have
kyk0 =kx�(a j+1e j+1 + · · · + arer )k0 = |ar |0kerk > max

i2{1,..., j}
|ai |0keik = kykk0,

which leads to a contradiction since k.k0  k.kk0 . Hence we should have
|a1|0ke1k = · · · = |ar |0kerk.

By the condition (2), we have ke1k = · · · = kerk (namely the function k.k is
constant on V \ {0}) and hence |a1|0 = · · · = |ar |0 > 0. By the assumption (1), we
obtain that, for any i 2 {1, . . . , r} there exists a bi 2 k⇥ such that |ai � biar |0 <
|ar |0. Thus

kxk0 =

�
�
�
�ar

rX

i=1
bi ei +

rX

i=1
(ai � biar )ei

�
�
�
�

0

= |ar |0kerk = kxkk0

since
�
�
�
�ar

rX

i=1
bi ei

�
�
�
�

0

=|ar |0
�
�
�
�

rX

i=1
bi ei

�
�
�
�

0

=|ar |0kerk and
�
�
�
�

rX

i=1
(ai � biar )ei

�
�
�
�

0

< |ar |0kerk.

This leads to a contradiction. The lemma is thus proved.

Remark 2.7. We assume that |.|0 is discrete and
|a0|0 = exp(�↵ ordok0 (a

0)) a0 2 k0

for ↵ 2 R>0. If
↵ 62

[

v,v02V \{0}
Q(log kvk � log kv0k),

then the assumption (2) holds. Indeed, we suppose that |a0|0 = kvk/kv0k for some
a0 2 k0⇥ and v, v0 2 V \ {0}. Then

�↵ ordok0 (a
0) = log kvk � log kv0k,

so that ordok0 (a
0) = 0, and hence kvk = kv0k, as required.
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2.2.5. Lattices and norms. From now on and until the end of the subsection, we
assume that |.| is non-trivial. Let V be an ok-submodule of V . We say that V is a
lattice of V if V ⌦ok k = V and

sup{kvk0 | v 2 V } < 1

for some norm k.k0 of V . Note that the condition sup{kvk0 | v 2 V } < 1 does
not depend on the choice of the norm k.k0 since all norms on V are equivalent. For
any lattice V of V , we define k.kV to be

kvkV := inf{|a|�1 | a 2 k⇥ and av 2 V }.

Note that k.kV forms a norm of V . Moreover, for a norm k.k of V ,

(V, k.k)1 := {v 2 V | kvk  1}

is a lattice of V .
Proposition 2.8. Let V be a lattice of V . We assume that, as an ok-module, V
admits a free basis (e1, . . . , er ). Then (e1, . . . , er ) is an orthonormal basis of V
with respect to k.kV.

Proof. For v = a1e1 + · · · + arer 2 V and a 2 k⇥, it holds

av 2 V () aai 2 ok for all i = 1, . . . , r
() |ai |  |a|�1 for all i = 1, . . . , r
() max{|a1|, . . . , |ar |}  |a|�1,

so that kvkV = max{|a1|, . . . , |ar |}.

Lemma 2.9. Let k.k be a norm of V and V := (V, k.k)1. Then

kvkV = inf{|b| | b 2 k⇥ and kvk  |b|}.

Moreover, k.k  k.kV and kvkV < |↵|kvk for all ↵ 2 k⇥ with |↵| > 1 and
v 2 V \ {0}.
Proof. The first assertion is obvious because, for a 2 k⇥, av 2 V if and only if
kvk  |a|�1.

For v 2 V , let a 2 k⇥ with av 2 V. Then kavk  1, that is, kvk  |a|�1, and
hence kvk  kvkV.

Finally we consider the second inequality, that is, kvkV < |↵|kvk for v 2
V \ {0}. As |↵|�1 < 1, there is an ✏ > 0 with |↵|�1e✏ < 1. By the first assertion,
we can choose b 2 k⇥ such that kvk  |b|  e✏kvkV. If kvk  |b↵�1|, then

kvkV  |b||↵|�1  e✏kvkV|↵|�1.

Thus 1  e✏ |↵|�1. This is a contradiction, so that kvk > |b↵�1|. Therefore,

kvkV  |b| < |↵|kvk,

as required.
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Proposition 2.10. We assume that |.| is discrete. Then we have the following:

(1) Every lattice V of V is a finitely generated ok-module;
(2) If we set V := (V, k.k)1 for a norm of k.k of V , then kvk  kvkV <

|$ |�1kvk for v 2 V \ {0}.

Proof. (1) By Subsection 2.2.1, (V, k.kV)1 is a finitely generated ok-module.
Moreover, note that V ✓ (V, k.kV)1. Thus we have (1) because ok is Noethe-
rian.

Part (2) follows from Lemma 2.9.

Proposition 2.11. We assume that |.| is not discrete. If we set V := (V, k.k)1 for
a norm of k.k of V , then k.k = k.kV.

Proof. Since |.| is not discrete, |k⇥| is a dense subgroup of R⇥
+ (see [5, Chapter V,

Section 1, no. 1 and Section 4, no. 1]). We can thus find a sequence {�n}1n=1 such
that |�n| > 1 and limn!1 |�n| = 1. On the other hand, by Lemma 2.9, it holds

k.k  k.kV  |�n|k.k.

Therefore the assertion follows.

Proposition 2.12. We assume that the absolute value |.| is not discrete. Let k.k be
a norm of V and V := (V, k.k)1. For any ✏ > 0, there is a sub-lattice V0 of V
such that V0 is finitely generated over ok and k.k  k.kV0  e✏k.k.

Proof. Let (e1, . . . , er ) be an e�✏/2-orthogonal basis of V with respect to k.k (cf.
Proposition 2.2). We can find a �i 2 k⇥ such that keik  |�i |  e✏/2keik for each
i . We set !i := ��1

i ei (i = 1, . . . , r) and V0 := ok!1 + · · · + ok!r . Note that
!i 2 V for all i , that is, V0 is a sub-lattice of V and V0 is finitely generated over
ok . By Proposition 2.11, one has k.k = k.kV, and hence k.k  k.kV0 . Moreover, for
c1, . . . , cr 2 k, by Proposition 2.8,

kc1e1 + · · · + cr erkV0 = kc1�1!1 + · · · + cr�r!rkV0 = max{|c1�1|, . . . , |cr�r |}
 e✏/2max{|c1|ke1k, . . . , |cr |kerk}
 e✏kc1e1 + · · · + cr erk,

hence we have k.kV0  e✏k.k.

2.3. Seminorm and integral extension

Let A be a finitely generated ok-algebra, which contains ok as a subring. We set
A := A ⌦ok k. Note that A coincides with the localization of A with respect to
S := ok \ {0}. Let Spec(A)an be the analytification of Spec(A), that is, the set of
all seminorms of A over the absolute value of k. For x 2 Spec(A)an, let ox and mx
be the valuation ring of (̂(x), |.|x ) and the maximal ideal of ox , respectively (see
Subsection 2.1.3 for the definition of ̂(x)). We denote the natural homomorphism
A ! ̂(x) by 'x . It is easy to see that the following are equivalent:
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(1) Spec(̂(x)) ! Spec(A) extends to Spec(ox ) ! Spec(A ), that is, there is a
ring homomorphism '̃x : A ! ox such that the following diagram is commu-
tative:

A
'̃x

����! ox
?
?
y

?
?
y

A
'x

����! ̂(x) ;

(2) |a|x  1 for all a 2 A.

Moreover, under the above conditions, the image of mx of Spec(ox ) is given by
'̃�1
x (mx ) = (A, |.|x )<1, and (A, |.|x )<1 2 Spec(A )�, where

(
(A, |.|x )<1 := {a 2 A | |a|x < 1},
Spec(A )� := {P 2 Spec(A ) | P \ ok = mk}.

Let Spec(A)an
A
be the set of all x 2 Spec(A)an such that the above condition (2) is

satisfied. The map rA : Spec(A)an
A

! Spec(A )� given by

x 7! (A, |.|x )<1

is called the reduction map (cf. Subsection 2.1.6). Note that the reduction map is
surjective (cf. [2, Proposition 2.4.4] or [11, 4.13 and Proposition 4.14]).

Theorem 2.13. If we set B := {↵ 2 A | ↵ is integral over A }, then

B =
\

x2Spec(A)anA

(A, |.|x )1,

where (A, |.|x )1 := {↵ 2 A | |↵|x  1}.

Proof. Let us first see that B ✓ (A, |.|x )1 for all x 2 Spec(A)an
A
. If a 2 B, then

there are a1, . . . , an 2 A such that an + a1an�1 + · · · + an = 0. We assume that
|a|x > 1. Then

|a|nx = |an|x = |a1an�1 + · · · + an|x  max
i=1,...,n

{|ai |x |a|n�ix }

 max
i=1,...,n

{|a|n�ix } = |a|n�1x ,

so that |a|x  1, which is a contradiction.
Let a 2 A such that a is not integral overA. We show that there exists a prime

ideal q of A such that the canonical image of a in A/S�1q is not integral over
A/q. In fact, since A is a k-algebra of finite type, it is a noetherian ring. In partic-
ular, it admits only finitely many minimal prime ideals S�1p1, . . . , S�1pn , where
p1, . . . , pn are prime ideals ofA which do not intersect S = ok \ {0}. Assume that,
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for any i 2 {1, . . . , n}, there is a monic polynomial fi in (A/pi )[T ] on such that
fi (�i ) = 0, where �i is the class of a in A/S�1pi . Let Fi be a monic polynomial in
A [T ]whose reduction modulo pi [T ] coincides with fi . One has Fi (a) 2 S�1pi for
any i 2 {1, . . . , n}. Let F be the product of the polynomials F1, . . . , Fn . Then F(a)
belongs to the intersection

Tn
i=1 S�1pi , hence is nilpotent, which implies that a is

integral over A. To show that there exists an x 2 Spec(A)an
A
such that |a|x > 1 we

may replace A (respectively A) by A/q (respectively A/S�1q) and hence assume
thatA is an integral domain without loss of generality.

We set b = a�1. Let us see that

bA [b] \ ok 6= {0} and 1 62 bA [b].

We set a = a0/s for some a0 2 A and s 2 S. Then s = ba0 2 bA [b] \ ok , so that
bA [b] \ ok 6= {0}. Next we assume that 1 2 bA [b]. Then

1 = a0
1b + a0

2b
2 + · · · + a0

n0bn
0

for some a0
1, . . . , a

0
n0 2 A, so that an0

= a0
1a

n0�1+· · ·+a0
n0 , which is a contradiction.

Let p be the maximal ideal ofA [b] such that bA [b] ✓ p. As p\ok 6= {0} and
p\ok ✓ mk , we have p\ok = mk , and hence p 2 Spec(A [b])�. Note thatA [b] is
finitely generated over ok andA [b] ⌦ok k = A[b]. Thus, since the reduction map

rA [b] : Spec(A[b])anA [b] ! Spec(A [b])�

is surjective, there is an x 2 Spec(A[b])an
A [b] such that rA [b](x) = p. Clearly

x 2 Spec(A)an
A
. As b 2 p, we have |b|x < 1, so that |a|x > 1 because ab = 1.

Therefore,
a 62

\

x2Spec(A)anA

(A, |.|x )1,

as required.

We assume that X is projective. Let X ! Spec(ok) be a flat and projective
scheme over Spec ok such that the generic fiber of X ! Spec(ok) is X . Let L be
an invertible sheaf onX such that L

�
�
X = L . We set h := {|.|L (x)}x2Xan . For the

definition of the metric |.|L (x) at x , see Subsection 2.1.6.

Corollary 2.14. Fix l 2 H0(X, L). If |l|L (x)  1 for all x 2 Xan, then there is an
s 2 ok \ {0} such that sl⌦n 2 H0(X,L ⌦n) for all n � 0.

Proof. LetX =
SN

i=1 Spec(Ai ) be an affine open covering ofX with the follow-
ing properties:

(1) Ai is a finitely generated algebra over ok for every i ;
(2) Spec(Ai )� 6= ; for all i ;
(3) There is a basis !i ofL over Spec(Ai ) for every i .
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We set l = ai!i for some ai 2 Ai := Ai ⌦ok k. By our assumption, |ai |x  1 for
all x 2 Spec(Ai )anAi

. Therefore, by Theorem 2.13, ai is integral overAi , so that, by
the following Lemma 2.15, we can find si 2 S such that siani 2 Ai for all n � 0.
We set s = s1 · · · sN . Then, as sani 2 Ai for all n � 0 and i = 1, . . . , N , we have
the assertion.

Lemma 2.15. Let A be a commutative ring and S be a multiplicatively closed sub-
set of A, which consists of regular elements of A. If t 2 S�1A and t is integral over
A, then there is an s 2 S such that stn 2 A for all n � 0.

Proof. As t is integral over A, there are a1, . . . , ar�1 2 A such that

tr = a1tr�1 + · · · + ar�1t + ar .

We choose s 2 S such that st i 2 A for i = 0, . . . , r � 1. By induction on n, we
prove that stn 2 A for all n � 0. Note that

tn = a1tn�1 + · · · + ar�1tn�r+1 + ar tn�r .

Thus, if st i 2 A for i = 0, . . . , n � 1, then stn 2 A because

stn = a1
�
stn�1

�
+ · · · + ar�1

�
stn�r+1

�
+ ar

�
stn�r

�
.

2.4. Extension obstruction index

In this subsection, we introduce an invariant to describe the obstruction to the exten-
sion property. Let X be a reduced projective scheme over Spec k, L be an invertible
sheaf on X equipped with a continuous metric h, and Y be a reduced closed sub-
scheme of X . For any non-zero element l of H0(Y, L|Y ), we denote by �h(l) the
following number (if there does not exist any section s 2 H0(X, L⌦n) extending
l⌦n , then the infimum in the formula is defined to be +1 by convention)

�h(l) = lim sup
n!+1

inf
s2H0(X,L⌦n)

s|Y=l⌦n

✓
log kskhn

n
� log klkY,h

◆
2 [0,+1]. (2.6)

This invariant allows to describe in a numerically way the obstruction to the metric
extendability of the section l. In fact, the following assertions are equivalent:

(a) �h(l) = 0;
(b) for any ✏ > 0, there exists an n0 2 N�1 such that, for any integer n � n0, the

element l⌦n extends to a section s 2 H0(X, L⌦n) such that kskhn  e✏nklknY,h .

The following proposition shows that, if l⌦n extends to a global section of L⌦n for
sufficiently positive n (notably this happens when the line bundle L is ample), then
the limsup defining �h(l) is actually a limit.
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Proposition 2.16. For any integer n � 1, let

an = inf
s2H0(X,L⌦n)

s|Y=l⌦n

✓
log kskhn � n log klkY,h

◆
.

Then the sequence (an)n�1 is sub-additive, namely one has am+n  am + an for
any (m, n) 2 N�1. In particular, if for sufficiently positive integer n, the section
l⌦n lies in the image of the restriction map H0(X, L⌦n) ! H0(Y, L|⌦nY ), then the
limit superior in (2.6) is actually a limit.

Proof. By (2.1), one has an � 0 for any integer n � 1. Moreover, an < +1 if and
only if ln lies in the image of the restriction map H0(X, L⌦n) ! H0(Y, L|⌦nY ). To
verify the inequality am+n  am + an , it suffices to consider the case where both
am and an are finite. Let sm and sn be respectively sections in H0(X, L⌦m) and
H0(X, L⌦n) such that sm |Y = l⌦m and sn|Y = l⌦n , then the section s = sm ⌦ sn 2
H0(X, L⌦(m+n)) verifies the relation s|Y = l⌦(n+m). Moreover, one has

kskhm+n = sup
x2Xan

|s|hm+n (x) = sup
x2Xan

(|sm |hm (x) · |sn|hn (x))  ksmkhm · ksnkhn .

Since sm and sn are arbitrary, one has am+n  am +an . Finally, by Fekete’s lemma,
if an < +1 for sufficiently positive integer n, then the sequence (an/n)n�1 actually
converges in R+. The proposition is thus proved.

Corollary 2.17. Assume that the invertible sheaf L is ample, then the following
conditions are equivalent.

(a) �h(l) = 0;
(b) for any ✏ > 0, there exists an n 2 N�1 and a section s 2 H0(X, L⌦n) such

that s|Y = ln and that kskhn  e✏nklknY,h .

Proof. We keep the notation of the previous proposition. By definition the second
condition is equivalent to

lim inf
n!+1

an
n

= 0. (2.7)

Since L is ample, Proposition 2.16 leads to the convergence of the sequence
(an/n)n�1 in R+. Hence the condition (2.7) is equivalent to �h(l) = 0.

3. Continuous metrics of invertible sheaves

In this section, we consider several properties of continuous metrics of invertible
sheaves. Throughout this section, let X be a reduced scheme of finite type over
Spec k and L be an invertible OX -module.
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3.1. Quotient metric

Let V be a finite-dimensional vector space over k. We assume that there is a surjec-
tive homomorphism

⇡ : V ⌦k OX ! L .

For each e 2 V , ⇡(e⌦1) yields a global section of L , that is, ⇡(e⌦1) 2 H0(X, L).
We denote it by ẽ. Let k.k be a norm of V and V := (V, k.k). Let k.k̂(x) be a
norm of V ⌦k ̂(x) obtained by the scalar extension of k.k (cf. Definition 2.4). Let
|.|quot
V

(x) be the quotient norm of L(x) := L ⌦ ̂(x) induced by k.k̂(x) and the
surjective homomorphism V ⌦k ̂(x) ! L(x).

Proposition 3.1. The family
n
|.|quot
V

(x)
o

x2Xan
defines a continuous metric on Lan.

Proof. The problem is local for the Zariski topology. Hence we may assume with-
out loss of generality that L is the trivial OX -module. Denote by s0 the global
section of L which trivializes L on X . It suffices to show that the function |s0|

quot
V

is continuous on Xan.
For any point x 2 Xan and any element s 2 V ⌦k ̂(x), there exists a unique

element fx (s) 2 b(x) such that s(x) = fx (s)s0(x), where s(x) denotes the image
of s by the natural (surjective) homomorphism ⇡(x) : V ⌦k ̂(x) ! L ⌦OX ̂(x).

The map fx is a linear form on V ⌦k ̂(x), and one has |s0|
quot
V

(x) =
⇣
k fxk_

̂(x)

⌘�1
,

where k.k_
̂(x) denotes the dual norm of k.k̂(x) (see Subsection 2.2.3).

It remains to prove that the function (x 2 Xan) 7! k fxk_
̂(x) is continuous. We

first treat the case where (V, k.k) admits an orthogonal basis (ei )ri=1 (see Subsec-
tion 2.2.2 for the notion of orthogonality). Let (e_i )ri=1 be its dual basis. For any
x 2 Xan, (e_i )ri=1 is an orthogonal basis of (V ⌦k ̂(x))_ (see Subsections 2.2.3-
2.2.4). Moreover, by construction there exist regular functions g1, . . . , gr on X
such that fx = g1(x)e_1 + · · · + gr (x)e_r . Note that

k fxk_
̂(x) = max

i2{1,...,r}
|gi (x)|x ·

�
�e_i

�
�_

̂(x) = max
i2{1,...,r}

|gi (x)|x ·
�
�e_i

�
�_

,

where k.k_ denotes the dual norm of k.k. Therefore the function x 7! k fxk_
̂(x) is

continuous.
We now consider the general case. By Proposition 2.2, for any integer n > 2,

there exists a basis (e(n)i )ri=1 of V which is (1� 1
n )-orthogonal. Let k.kn be the norm

on V such that
�
�
��1e(n)1 + · · · + �r e(n)

�
�
�
n

= max
i2{1,...,n}

|�i | ·
�
�
�e(n)i

�
�
� for all (�1, . . . , �r ) 2 kr .

Since the basis (e(n)i )ri=1 is (1� 1
n )-orthogonal, we obtain that

✓
1�

1
n

◆
k.kn  k.k  k.kn.
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Therefore, if we denote by |.|quot(V,k.kn)(x) the quotient norm on L(x) induced by
k.kn,̂(x), where x 2 Xan, one has

�
�
� log |s0|

quot
(V,k.kn)(x) � log |s0|

quot
V

(x)
�
�
�  � log

✓
1�

1
n

◆
for all x 2 Xan.

By the particular case we have proved above, each function log |s0|
quot
(V,k.kn) is contin-

uous. Therefore, the function log |s0|
quot
V
, which is the uniform limit of a sequence

of continuous functions, is also continuous. Thus we obtain the continuity of the
function |s0|

quot
(V,k.kn) and the proposition is proved.

From now on and until the end of the subsection, we assume that X is projective
and L is generated by global sections. Let h = {|.|h(x)}x2Xan be a continuous metric
of Lan. As H0(X, L) ⌦k OX ! L is surjective, by Proposition 3.1,

hquot =
n
|.|quot

(H0(X,L),k.kh)(x)
o

x2Xan

yields a continuous metric of Lan. For simplicity, we denote |.|quot
(H0(X,L),k.kh)(x) by

|.|quoth (x). Moreover, the supremum norm of H0(X, L) arising from hquot is denoted
by k.kquoth , that is, k.kquoth := k.khquot .

Lemma 3.2. The following statements hold:

(1) We have |.|h(x)  |.|quoth (x) for all x 2 Xan;
(2) We have k.kh = k.kquoth ;
(3) Let (L 0, h0) be a pair of an invertible sheaf L 0 on X and a continuous metric

h0 = {|.|h0(x)}x2Xan of L 0an such that L 0 is generated by global sections. Then

|l · l 0|quoth⌦h0(x)  |l|quoth (x)|l 0|quoth0 (x)

for l 2 L(x) and l 0 2 L 0(x).

Proof. (1) Fix l 2 L(x) \ {0}. For ✏ > 0, let (e1, . . . , en) be an e�✏-orthogonal
basis of H0(X, L)with respect to k.kh . There is an s 2 H0(X, L)⌦k ̂(x) such that
s(x) = l and kskh,̂(x)  e✏ |l|quoth (x). We set s = a1e1 + · · · + anen (a1, . . . , an 2
̂(x)). Then, by Subsection 2.2.4,

kskh,̂(x) � e�✏ max{|a1|xke1kh, . . . , |an|xkenkh}
� e�✏ max{|a1|x |e1|h(x), . . . , |an|x |en|h(x)} � e�✏ |l|h(x),

so that |l|h(x)  e2✏ |l|quoth (x), and hence the assertion follows because ✏ is an
arbitrary positive number.
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(2) By (1), we have k.kh  k.kquoth . On the other hand, as |s|quoth (x)  kskh for
s 2 H0(X, L), we have kskquoth  kskh .

(3) For ✏ > 0, there are an s 2 H0(X, L) ⌦k ̂(x) and an s0 2 H0(X, L 0) ⌦k
̂(x) such that

s(x) = l, s0(x) = l 0, kskh,̂(x)  e✏ |l|quoth (x) and ks0kh0,̂(x)  e✏ |l 0|quoth0 (x).

Let us show ks · s0kh⌦h0,̂(x)  e2✏kskh,̂(x)ks0kh0,̂(x). Let (s1, . . . , sm) and
(s01, . . . , s

0
m0) be e�✏-orthogonal bases of H0(X, L) and H0(X, L 0), respectively. If

we set s = t1s1+· · ·+tmsm and s0 = t 01s
0
1+· · ·+t 0m0s0m0 (with t1, . . . , tm, t 01, . . . , t

0
m0 2

̂(x)), then
s · s0 =

X

i, j
ti t 0j si · s0j .

Thus,

ks · s0kh⌦h0,̂(x)  max
i, j

n
|ti |x |t 0j |xksi · s0jkh⌦h0

o
 max

i, j

n
|ti |x |t 0j |xksikhks

0
jkh0

o

 max
i

{|ti |xksikh}max
j

n
|t 0j |xks

0
jkh0

o

 e2✏kskh,̂(x)ks0kh0,̂(x).

Therefore, we have (s · s0)(x) = l · l 0 and

|l · l 0|quoth⌦h0(x)ks · s0kh⌦h0,̂(x)  e2✏kskh,̂(x)ks0kh0,̂(x) e4✏ |l|quoth (x)|l 0|quoth0 (x),

as required.

Proposition 3.3. If there are a normed finite-dimensional vector space (V, k.k) and
a surjective homomorphismV⌦kOX!L such that h is given by

�
|.|quot(V,k.k)(x)

 
x2Xan ,

then |.|hn (x) = |.|quothn (x) for all n � 1.

Proof. First we consider the case n = 1. Fix l 2 L(x) \ {0}. For ✏ > 0, there is an
s 2 V ⌦k ̂(x) such that s(x) = l and ksk̂(x)  e✏ |l|h(x).

Note that kukh  kuk for all u 2 V . Let (e1, . . . , er ) be an e�✏-orthogonal
basis of V with respect to k.k. If we set s = a1e1 + · · · + arer (with a1, . . . , ar 2
̂(x)), then, by Subsection 2.2.4,

kskh,̂(x)  max{|a1|xke1kh, . . . , |ar |xkerkh}
 max{|a1|xke1k, . . . , |ar |xkerk}
 e✏ksk̂(x),

so that
|l|quoth (x)  kskh,̂(x)  e✏ksk̂(x)  e2✏ |l|h(x),
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and hence |l|quoth (x)  |l|h(x) by taking ✏ ! 0. Thus the assertion for n = 1
follows from (1) in Lemma 3.2.

In general, by using (3) in Lemma 3.2,

|ln|hn (x) = (|l|h(x))n =
⇣
|l|quoth (x)

⌘n
� |ln|quothn (x),

and hence we have the assertion by (1) in Lemma 3.2.

Lemma 3.4. We assume that there are a normed finite-dimensional vector space
(V, k.k) and a surjective homomorphism V ⌦k OX ! L such that h is given byn
|.|quot(V,k.k)(x)

o

x2Xan
. Let k0 be a separable extension field of k, and let |.|0 be a

complete absolute value of k0 as an extension of |.|. We set

X 0 := X ⇥Spec(k) Spec(k0), L 0 = L ⌦k k0 and V 0 := V ⌦k k0.

Let k.k0 be a norm of V 0 obtained by the scalar extension of k.k. Moreover, let h0

be a continuous metric of L 0an given by the scalar extension of h. Then h0 coincides
with

n
|.|quot(V 0,k.k0)(x

0)
o

x 02X 0an
.

Proof. Let f : X 0 ! X be the projection. For x 0 2 X 0an, we set x = f an(x 0).
Then ̂(x) ✓ ̂(x 0) and (L ⌦k ̂(x))⌦̂(x) ̂(x 0) = L 0 ⌦k0 ̂(x 0), that is, L(x)⌦̂(x)
̂(x 0) = L 0(x 0). Moreover, V 0 ⌦k0 ̂(x 0) = (V ⌦k ̂(x)) ⌦̂(x) ̂(x 0), and by (2.5),
k.k0

̂(x 0)
= k.k̂(x 0) = k.k̂(x),̂(x 0). Thus the assertion follows from Lemma 2.5.

Proposition 3.5. We assume that there is a subspace H of H0(X, L) such that
H ⌦k OX ! L is surjective and the morphism �H : X ! P(H) induced by H is
a closed embedding. We identify X with �H (X), so that L = OP(H)(1)

�
�
X . Let k.k

be a norm of H such that H has an orthonormal basis (e1, . . . , er ) with respect to
k.k. We set

h :=
n
|.|quot(H,k.k)(x)

o

x2Xan
and H := oke1 + · · · + oker = (H, k.k)1.

Let X be the Zariski closure of X in P(H ) (cf. Subsection 2.1.7) and L :=
OP(H )(1)

�
�
X
. Then |.|h(x) = |.|L (x) for all x 2 Xan.

Proof. First let us see that |s|h(x)  |s|L (x) for s 2 H . Let !⇠ be a local basis of
L at ⇠ = rX (x). If we set s = s⇠!⇠ , then

|s|L (x) = |s⇠ |x .

As s�1⇠ s 2 L⇠ andH ⌦ok OX,⇠ ! L⇠ is surjective, there are l1, . . . , lr 2 H and
a1, . . . , ar 2 OX,⇠ such that s�1⇠ s = a1l1 + · · · + ar lr . Therefore,

�
�
�s�1⇠ s

�
�
�
h
(x)  max {|a1l1|h(x), . . . , |ar lr |h(x)}

= max {|a1|x |l1|h(x), . . . , |ar |x |lr |h(x)}  1,

so that |s|h(x)  |s⇠ |x = |s|L (x), as required.
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Next let us see that |l|L (x)  klk̂(x) for all l 2 H ⌦ ̂(x). By Subsec-
tion 2.2.4, (e1, . . . , er ) is an orthonormal basis of H ⌦ ̂(x) with respect to k.k̂(x).
Thus, if we set l = a1e1 + · · · + arer (a1, . . . , ar 2 ̂(x)), then

|l|L (x)  max{|a1|x |e1|L (x), . . . , |ar |x |er |L (x)}
 max{|a1|x , . . . , |ar |x } = klk̂(x).

Finally let us see that |s|L (x)  |s|h(x) for s 2 H . For ✏ > 0, we choose l 2
H ⌦ ̂(x) such that l(x) = s(x) and klk̂(x)  e✏ |s|h(x). Then, by the previous
observation,

|s|L (x) = |l|L (x)  klk̂(x)  e✏ |s|h(x).

Thus the assertion follows.

Remark 3.6. We assume that |.| is non-trivial and k.k = k.kH for some finitely
generated lattice H of H . Then a free basis (e1, . . . , er ) of H yields an or-
thonormal basis of H with respect to k.k (cf. Proposition 2.8). Moreover, H =
(H, k.k)1.

3.2. Semipositive metric

We assume that L is semiample, namely certain tensor power of L is generated by
global sections. We say that a continuous metric h = {|.|h(x)}x2Xan is semipos-
itive if there are a sequence {en} of positive integers and a sequence {(Vn, k.kn)}
of normed finite-dimensional vector spaces over k such that there is a surjective
homomorphism Vn ⌦k OX ! L⌦en for every n, and that the sequence

(
1
en
log

|.|quot(Vn,k.kn)(x)
|.|hen (x)

)1

n=1

converges to 0 uniformly on Xan.

Proposition 3.7. If X is projective, L is generated by global sections, and h is
semipositive, then the sequence

(
1
m
log

|.|quothm (x)
|.|hm (x)

)1

m=1

converges to 0 uniformly on Xan.

Proof. We set

am = max
x2Xan

(

log
|.|quothm (x)
|.|hm (x)

)

.
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Then am+m0 am+am0 by (3) in Lemma 3.2, and hence limm!1 am/m= inf{am/m}
by Fekete’s lemma. For ✏ > 0, there is an en > 0 such that

e�en✏ |.|hen (x)  |.|hn (x)  een✏ |.|hen (x)

for all x 2 Xan, where hn =
�
|.|quot(Vn,k.kn)(x)

 
x2Xan . Thus

e�en✏k.khen  k.khn  een✏k.khen ,

so that e�en✏ |.|quothen (x)  |.|quothn (x)  een✏ |.|quothen (x). Thus, by Proposition 3.3,

e�en✏ |.|quothen (x)  |.|hn (x)  een✏ |.|quothen (x).

Therefore,

1 
|.|quothen (x)
|.|hen (x)

=
|.|hn (x)
|.|hen (x)

|.|quothen (x)
|.|hn (x)

 e2en✏,

that is, 0  aen/en  2✏, and hence 0  limm!1 am/m  2✏, as required.

Corollary 3.8. A continuous metric h is semipositive if and only if, for any
✏ > 0, there is a positive integer n such that, for all x 2 Xan, we can find
s 2 H0(X, L⌦n)̂(x) \ {0} with kskhn,̂(x)  en✏ |s|hn (x).

Proof. First we assume that h is semipositive. By using Proposition 3.7, we can
find a positive integer n such that L⌦n is generated by global sections and

|.|hn (x)  |.|quothn (x)  en✏/2|.|hn (x)

for all x 2 Xan. On the other hand, there is an s 2 H0(X, L⌦n)̂(x) \ {0} such that
kskhn,̂(x)  en✏/2|s|quothn (x). Thus,

kskhn,̂(x)  en✏/2|s|quothn (x)  en✏ |s|hn (x).

Next we consider the converse. For a positive integer m, there is a positive inte-
ger em such that, for any x 2 Xan, we can find s 2 H0(X, L⌦em )̂(x) \ {0} with
kskhem ,̂(x)  eem/m |s|hem (x). Clearly L⌦em is generated by global sections. More-
over,

|s|hem (x)  |s|quot
(H0(X,L⌦em ),k.khem )

(x)  eem/m |s|hem (x),

that is,

0 
1
em
log

0

@
|.|quot

(H0(X,L⌦em ),k.khem )
(x)

|.|hem (x)

1

A 
1
m

.

Thus h is semipositive.
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Corollary 3.9. Let h be a continuous metric of Lan. If there are a sequence {en}
of positive integers and a sequence {hn} of metrics such that hn is a semipositive
metric of (L⌦en )an for each n and

1
en
log

|.|hn (x)
|.|hen (x)

converges to 0 uniformly as n ! 1, then h is semipositive.

Proof. For a positive number ✏ > 0, choose a positive integer n such that

e�✏en/3hen  hn  e✏en/3hen .

As hn is semipositive, by Corollary 3.8, there is a positive integer m such that,
for all x 2 Xan, we can find s 2 H0(X, L⌦men )̂(x) \ {0} with kskhmn ,̂(x) 

emen✏/3|s|hmn (x), so that

kskhmen ,̂(x)  e✏men/3kskhmn ,̂(x)  e2men✏/3|s|hmn (x)  emen✏ |s|hmen (x).

Therefore, the assertion follows from Corollary 3.8.

3.3. The functions � and µ on Xan

Throughout this subsection, we assume that X is projective. Let cPicC0(X) denote
the group of isomorphism classes of pairs (L , h) consisting of an invertible sheaf L
on X and a continuous metric h of Lan. Fix L = (L , h) 2 cPicC0(X). We assume
that L is generated by global sections. We define �L(x) to be

�L(x) := log

 
|.|quoth (x)
|.|h(x)

!

.

Lemma 3.10. For L and L 0
2 cPicC0(X) such that both L and L 0 are generated by

global sections, we have the following:

(1) �L � 0 on Xan;
(2) �L⌦L 0(x)  �L(x) + �L 0(x) for x 2 Xan;
(3) If L ' L 0, then �L = �L 0 on Xan.

Proof. (1) and (3) are obvious. (2) follows from (3) in Lemma 3.2.

We assume that L is semiample. We set

N(L) :=
�
n 2 Z�1 | L⌦n is generated by global sections

 
.
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Note that N(L) 6= ; and N(L) forms a subsemigroup of Z�1 with respect to the
addition of Z�1. For x 2 Xan, we define µL(x) to be

µL(x) := inf
⇢

�L⌦n (x)
n

�
�
�
� n 2 N(L)

�
.

Note that µL is upper-semicontinuous on X
an because �L⌦n is continuous for all

n 2 N(L). We set

cPic+C0(X) := {(L , h) 2 cPicC0(X) | L is semiample}.

Note that cPic+C0(X) forms a semigroup with respect to ⌦.

Lemma 3.11. Let L = (L , h) and L 0
= (L 0, h0) be elements of cPic+C0(X). Then we

have the following:

(1) It holds µL � 0 on Xan;

(2) It holds µL(x) = lim
n!1
n2N(L)

�L⌦n (x)
n

for x 2 Xan;

(3) It holds µL⌦L 0(x)  µL(x) + µL 0(x) for x 2 Xan;
(4) If L ' L 0, then µL = µL 0 on Xan;
(5) For n � 0, µL⌦n = nµL on X

an.

Proof. (1) follows from (1) in Lemma 3.10.
(2) Since �

L⌦(n+n0) (x)  �L⌦n (x) + �
L⌦n0 (x) for n, n0 2 N(L) by (2) in

Lemma 3.10, the assertion follows from Fekete’s lemma.
(3) and (4) follow from (2) and (3) in Lemma 3.10 together with (2), respec-

tively.
(5) If n = 0, then the assertion is obvious, so that we may assume that n � 1.

We fix n0 2 N(L). Then n0 2 N(L⌦n). Thus, by (2),

µL⌦n (x) = lim
m!1

�L⌦mn0n (x)
mn0

= n lim
m!1

�L⌦mn0n (x)
mn0n

= nµL(x).

We let cPicC0(X)Q be the quotient space of cPicC0(X) ⌦Z Q by the Q-vector
subspace generated by (OX , {e��|.|0x }) � �(OX , {|.|0x }), where {|.|0x } denotes the
trivial continuous metric on OX . Note that cPicC0(X)Q can be identified with the
Q-vector space of all pairs (L , h), where L is an element of Pic(X) ⌦ Q and h is a
continuous metric on L (see Subsection 2.1.5). Moreover, we set

cPic+C0(X)Q :=
�
(L , h) 2 cPicC0(X)Q | L is semiample

 
.

Let ◆ :cPicC0(X)!cPicC0(X)Qbe the canonical homomorphism. For L2cPic+C0(X)Q,
we choose a positive integer n and Ln 2 cPic+C0(X) with ◆(Ln) = L⌦n . Then
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µLn (x)/n does not depend on the choice of n and Ln . Indeed, let us choose another

n0 2 Z�1 and Ln0 2 cPic+C0(X) with ◆(Ln0) = L⌦n0

. As ◆(L⌦n0

n ) = ◆(L⌦n
n0 ) = L⌦nn0

,
there is a positive integer m such that L⌦mn0

n = L⌦mn
n0 . By (5) in Lemma 3.11,

mn0µLn (x) = µ
L⌦mn0
n

(x) = µL⌦mn
n0

(x) = mnµLn0
(x),

that is,µLn (x)/n = µLn0
(x)/n0, as required. By abuse of notation, it is also denoted

by µL(x).

Lemma 3.12. For L, L 0
2 cPic+C0(X)Q, we have the following:

(1) It holds µL⌦L 0(x)  µL(x) + µL 0(x) for x 2 Xan;
(2) For a 2 Q�0, µL⌦a = aµL on X

an;
(3) Let L1, . . . , Lr be elements of cPicC0(X)Q. We assume that there are open

intervals I1, . . . , Ir of R such that

L ⌦ L⌦t1
1 ⌦ · · · ⌦ L⌦tr

r 2 cPic+C0(X)Q

for all (t1, . . . , tr ) 2 (I1 ⇥ · · · ⇥ Ir ) \ Qr . Then, for a fixed x 2 Xan, there is
a continuous function f : I1 ⇥ · · · ⇥ Ir ! R such that

f (t1, . . . , tr ) = µL⌦L⌦t1
1 ⌦···⌦L⌦tr

r
(x)

for all (t1, . . . , tr ) 2 (I1 ⇥ · · · ⇥ Ir ) \ Qr .

Proof. (1) and (2) are consequences of (3) and (5) in Lemma 3.11, respectively.
(3) We set

f0(t1, . . . , tr ) := µL⌦L⌦t1
1 ⌦···⌦L⌦tr

r
(x)

for (t1, . . . , tr ) 2 (I1 ⇥ · · · ⇥ Ir ) \ Qr . By (1) and (2), for � 2 [0, 1] \ Q and
(t1, . . . , tr ), (t 01, . . . , t

0
r ) 2 (I1 ⇥ · · · ⇥ Ir ) \ Qr , we have

f0(�(t1, . . . , tr ) + (1� �)(t 01, . . . , t
0
r ))

= µ
(L⌦L⌦t1

1 ⌦···⌦L⌦tr
r )⌦�⌦(L⌦L

⌦t 01
1 ⌦···⌦L⌦t 0r

r )⌦(1��)
(x)

 �µL⌦L⌦t1
1 ⌦···⌦L⌦tr

r
(x) + (1� �)µ

L⌦L
⌦t 01
1 ⌦···⌦L⌦t 0r

r
(x)

= � f0(t1, . . . , tr ) + (1� �) f0(t 01, . . . , t
0
r ),

that is, f0 is concave on (I1 ⇥ · · · ⇥ Ir ) \ Qr . Therefore, the assertion (3) follows
from [14, Corollary 1.3.2].

Let (L , h) be an element ofcPic+C0(X)Q. We say that h is semipositive if there is
a positive integer n such that L⌦n 2 Pic(X) and hn is semipositive. The following
characterization of the semipositivity of h is a consequence of Proposition 3.7.
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Proposition 3.13. For L = (L , h) 2 cPic+C0(X)Q, h is semipositive if and only if
µL = 0 on Xan.

We assume that |.| is non-trivial. Let X be a model of X over Spec(ok). Let
L 2 Pic(X)⌦Q andL 2 Pic(X )⌦Q with L

�
�
X = L . Let m be a positive integer

such that L⌦m 2 Pic(X). Then we define L = (L , h) to be

(L , h) :=
�
L⌦m,

�
|.|L ⌦m (x)

 
x2Xan

�⌦1/m
.

Proposition 3.14. If L is ample and L is nef, then h is semipositive.

Proof. First we assume that L is ample. We choose a positive integer n such that
L ⌦n 2 Pic(X ) and L ⌦n is very ample. Then we have an embedding ◆ : X !
P(H0(X,L ⌦n)) and L ⌦n = ◆⇤(OP(H0(X,L ⌦n))(1)). Let (e1, . . . , er ) be a free
basis of H0(X,L ⌦n). We define a norm k.k of H0(X, L⌦n) to be

ka1e1 + · · · + arerk := max{|a1|, . . . , |ar |}.

Note that (H0(X, L⌦n), k.k)1 = H0(X,L ⌦n), so that, by Proposition 3.5, we
have |.|quot

(H0(X,L⌦n),k.k)(x) = |.|L ⌦n (x) for x 2 Xan. Thus h is semipositive.

In general, let A be an ample invertible sheaf on X and A := A
�
�
X . We

choose � 2 Q>0 such that L ⌦ A⌦a is ample for all a 2 (��, �) \ Q. Note that

L ⌦
�
A, |.|A

�⌦✏
=
�
L ⌦ A⌦✏, |.|L⌦A⌦✏

�
,

so that µL⌦(A,|.|A)⌦✏ = 0 for ✏ 2 (0, �) \ Q by the previous observation together
with Proposition 3.13. On the other hand, by (3) in Lemma 3.12,

µL(x) = lim
✏#0
✏2Q

µL⌦(A,|.|A)⌦✏ (x).

Therefore, µL = 0, and hence h is semipositive by Proposition 3.13.

Remark 3.15. Assume that the absolute value |.| is non-trivial. Let L be an am-
ple invertible sheaf on X , equipped with a semipositive continuous metric h. Then
there exists a sequence {(Xn,Ln)}n�1, whereXn is a model of X andLn is a nef
invertible sheaf on Xn such that Ln|X = L⌦n and that hn = (|.|Ln (x)1/n)x2Xan
converges uniformly to h. This follows from Proposition 3.7 and the comparison
between quotient metrics and model metrics (via the embedding into the projective
spaces of lattices). Combining with Proposition 3.14 and Corollary 3.8, we ob-
tain that, in the non-trivial valuation case, our semipositivity coincides with that of
Zhang [21] and Moriwaki [16]. We refer the readers to [12, Section 6] and to [8,
Section 6.8] for the descriptions of the semipositivity in terms of plurisubharmonic
currents. Note that their semipositivity is also equivalent to our semipositivity.
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4. Extension theorem

Throughout this section, we assume that X is projective and reduced. Let us begin
with a special case of the extension theorem. The general extension theorem is a
consequence of the special case.

4.1. Extension theorem for a metric arising from a model

LetX ! Spec ok be a model of X . We letL be an invertible sheaf onX such that
L
�
�
X = L . We have seen in Subsection 2.1.6 that L induces a continuous metric

h = {|.|L (x)}x2Xan of Lan.

Theorem 4.1. We assume that |.| is non-trivial and L is an ample invertible sheaf.
Fix a reduced closed subscheme Y of X , a section l 2 H0(Y, L|Y ) and a positive
number ✏. Then there are a positive integer n and an s 2 H0(X, L⌦n) such that
s|Y = l⌦n and

kskhn  en✏
�
klkY,h

�n
.

Proof. Clearly, we may assume that l 6= 0. Let Y be the Zariski closure of Y inX
(cf. Section 2.1.7).

Claim 4.2. There are a positive integer a and an ↵ 2 k⇥ such that

e�a✏/2  k↵l⌦akY,ha  1.

Proof. Since the absolute value |.| is not trivial, there exists a non-zero element �
of k such that log |� | < 0. Hence there exists a rational number b/a (with a 2 Z>0
and b 2 Z) such that

�
log klkY,h

log |� |

b
a

 �
log klkY,h

log |� |
�

✏

2 log |� |
,

that is, e�✏a/2  |� |bklkaY,h  1. By the equality kl⌦akY,ha = klkaY,h it suffices to
take ↵ = � b to conclude the claim.

By Corollary 2.14, there is a � 2 oK \ {0} such that

�
�
↵l⌦a

�⌦m
2 H0

⇣
Y, L ⌦am��

Y

⌘

for all m � 0. We choose a positive integer m such that |�|�1  eam✏/2 and

H0
�
X,L ⌦am� ! H0

⇣
Y, L ⌦am��

Y

⌘
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is surjective, so that we can find an lm2H0(X,L ⌦am) such that lm |Y =�(↵l⌦a)⌦m .
Note that klmkham  1. Thus, if we set s = ��1↵�mlm , then s|Y = l⌦am and

kskham = |�|�1|↵|�mklmkham  eam✏/2|↵|�m

 eam✏/2|↵|�m
⇣
ea✏/2k↵l⌦akY,ha

⌘m
= eam✏

�
klkY,h

�am
,

as required.

4.2. Extension theorem for quotient metrics

Theorem 4.3. We assume that L is very ample. Let k.k be a norm of H0(X, L)

and h a continuous metric of Lan given by
�
|.|quot

(H0(X,L),k.k)(x)
 
x2Xan . Let Y be

a reduced closed subscheme of X and l 2 H0(Y, L|Y ). Then, for any ✏ > 0,
there are a positive integer n and an s 2 H0(X, L⌦n) such that s|Y = l⌦n and
kskhn  en✏(klkY,h)

n .

Proof. First we assume that |.| is non-trivial. Let us begin with the following:

Claim 4.4. There are a positive integer a and a finitely generated lattice H of
H0(X, L⌦a) such that

k.kha  k.kH  ea✏/2k.kha .

Proof. First we assume that |.| is discrete. We choose a positive integer a such that
|$ |�1  ea✏/2. We set H := {s 2 H0(X, L⌦a) | kskha  1}. Note that H is a
finitely generated lattice of H0(X, L⌦a) by Proposition 2.10. As k.kha  k.kH 
|$ |�1k.kha by Proposition 2.10, we have the assertion.

Next we assume that |.| is not discrete. By Proposition 2.11, there is a lattice
V of H0(X, L) such that k.kh = k.kV. By Proposition 2.12, there is a finitely
generated latticeH of H0(X, L) such thatH ✓ V and k.kh  k.kH  e✏/2k.kh , as
desired.

Let X be the Zariski closure of X in P(H ) (cf. Subsection 2.1.7) and L =
OP(H )(1)

�
�
X
. Moreover, let h0 be a continuous metric of (L⌦a)an given by

n
|.|quot(H,k.kH)(x)

o

x2Xan
.

Then, by Proposition 3.5 and Remark 3.6, |.|h0 = |.|L. Therefore, by virtue of
Theorem 4.1, there are a positive integer m and an s 2 H0(X, L⌦am) such that
s|Y = l⌦am and

kskh0m  eam✏/2(kl⌦akY,h0)m . (4.1)

As k.kha  k.kH  ea✏/2k.kha , we have

|.|quotha (x)  |.|h0(x)  ea✏/2|.|quotha (x)
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for all x 2 Xan. Therefore, by Proposition 3.3,

|.|ha (x)  |.|h0(x)  ea✏/2|.|ha (x) (4.2)

for all x 2 Xan. In particular, |.|ham (x)  |.|h0m (x). Therefore,

kskham  kskh0m . (4.3)

On the other hand, by using (4.2),

kl⌦akY,h0  ea✏/2 sup{|l⌦a|ha (y) | y 2 Y an}  ea✏/2(klkY,h)
a. (4.4)

Thus the assertion follows from (4.1), (4.3) and (4.4).
Next we assume that |.| is trivial. Clearly we may assume that l 6= 0. Let k0 be

the field k((T )) of formal Laurent power series over k, that is, the quotient field of
the ring k[[T ]] of formal power series over k. Note that k0 is separable over k. We
set

6 :=
1[

i=0

0

@
[

s,s02H0(X,L⌦i )\{0}
Q
�
log kskhi � log ks0khi

�
1

A .

As
�
kskhi | s 2 H0(X, L⌦i ) \ {0}

 
is a finite set by virtue of Subsection 2.2.1, we

have #(6)  @0. Therefore, we can find ↵ 2 R>0 \ 6. Here we consider an
absolute value |.|0 of k0 given by

|�(T )|0 := exp(�↵ ord(�(T ))) (�(T ) 2 k0).

We set

X 0 := X ⇥Spec(k) Spec(k0), Y 0 := Y ⇥Spec(k) Spec(k0) and L 0 = L ⌦k k0.

Note that H0(X 0, L 0) = H0(X, L) ⌦k k0. Let h0 be a continuous metric of L 0an

given by the scalar extension of h. Then, by Lemma 3.4, h0 is given by
n
|.|quot

(H0(X 0,L 0),k.kk0 )(x
0)
o

x 02X 0an
,

where k.kk0 is the scalar extension of k.k. Moreover, for s 2 H0(X, L), it holds
|s|h0(x 0) = |s|h(pan(x 0)) for x 0 2 X 0an, where p : X 0 ! X is the projection. Note
that pan : X 0an ! Xan is surjective. Therefore, kskh0 = kskh for all s 2 H0(X, L).

By the previous observation, there are a positive integer n and an s02 H0(X 0,
L 0⌦n) such that

s0
�
�
Y 0 = l⌦n and ks0kh0n  en✏(klkY 0,h0)n = en✏(klkY,h)

n.

Note that, for a positive integer d, we have

s0⌦d 2 H0(X 0, L 0⌦dn), s0⌦d
�
�
�
Y 0

= l⌦dn and ks0⌦dkh0dn  edn✏(klkY,h)
dn.
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Thus we may assume that H0(X, L⌦n) ! H0(Y, L|⌦nY ) is surjective. Let
(e1, . . . , er ) be an orthogonal basis of H0(X, L⌦n) with respect to k.khn such that
(et+1, . . . , er ) forms a basis of Ker(H0(X, L⌦n) ! H0(Y, L|⌦nY )) (cf. Proposi-
tion 2.2). We set

s0 = a1(T )e1 + · · · + at (T )et + at+1(T )et+1 + · · · + ar (T )er

for some a1(T ), . . . , ar (T ) 2 k0 = k((T )). As s0
�
�
Y 0 = l⌦n 2 H0(Y, L|⌦nY ) and

(e1|Y , . . . , et |Y ) forms a basis of H0(Y, L|⌦nY ), we have a1(T ), . . . , at (T ) 2 k.
Note that

↵ 62
[

s,s02H0(X,L⌦n)\{0}
Q
�
log kskhn � log ks0khn

�
,

so that, by Lemma 2.6 and Remark 2.7 together with Subsection 2.2.4, (e1, . . . , er )
forms an orthogonal basis of H0(X 0, L 0⌦n) with respect to k.kh0n . Therefore, if we
set s = a1(T )e1 + · · · + at (T )et , then s 2 H0(X, L⌦n), we have s|Y = l⌦n and

kskhn = max{|a1(T )|ke1khn , . . . , |at (T )|ketkhn }

 max
n
|a1(T )|ke1khn , . . . , |at (T )|ketkhn , |at+1(T )|0ket+1khn , . . . ,

|ar (T )|0kerkhn
o

= ks0kh0n  en✏(klkY,h)
n,

as required.

4.3. General case

Theorem 4.5. We assume that L is ample and h is a semipositive continuous met-
ric of Lan. Fix a reduced closed subscheme Y , l 2 H0(Y, L|Y ) and ✏ 2 R>0.
Then there is a positive integer n0 such that, for all n � n0, we can find an
s 2 H0(X, L⌦n) with

s|Y = l⌦n and kskhn  en✏(klkY,h)
n.

Proof. Clearly we may assume that l 6= 0. Let us begin with the following claim:

Claim 4.6. For any ✏0 > 0, there are a positive integer N and an sN 2 H0(X, L⌦N )
such that

sN |Y = l⌦N and ksNkhN  eN✏0
(klkY,h)

N .

Proof. By using Proposition 3.7, we can find a positive integer a such that L⌦a is
very ample and

|.|ha (x)  |.|quotha (x)  ea✏
0/2|.|ha (x)
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for all x 2 Xan. We set h0 = {|.|quotha (x)}. Then, the above inequalities mean that

|.|ha (x)  |.|h0(x)  ea✏
0/2|.|ha (x) (4.5)

for all x 2 Xan. Furthermore, by Theorem 4.3, there are a positive integer b and an
sab 2 H0(X, L⌦ab) such that sab|Y = l⌦ab and

ksabkh0b  eab✏
0/2(kl⌦akY,h0)b.

By (4.5), it holds

kl⌦akY,h0  ea✏
0/2kl⌦akY,ha = ea✏

0/2(klkY,h)
a.

Moreover, as |.|hab(x)  |.|h0b(x) by (4.5), we have ksabkhab  ksabkh0b , so that

ksabkhab  ksabkh0b  eab✏
0/2(kl⌦akY,h0)b

 eab✏
0/2(ea✏

0/2(klkY,h)
a)b=eab✏

0
(klkY,h)

ab.

Therefore, if we set N = ab, then we have the assertion of the claim.

Since L is ample, by Corollary 2.17, the above claim is actually equivalent to
the assertion of the theorem. Thus the theorem is proved.

5. Arithmetic Nakai-Moishezon criterion over a number field

In this section as an application of the extension property (cf. [17] and Theorem 4.5),
we consider the arithmetic Nakai-Moishezon criterion over a number field under a
weaker assumption (adelically normed vector space) than Zhang’s paper [21].

5.1. Adelically normed vector space over a number field

Fix a number field K . LetOK be the ring of integers in K . We set
(
Mfin
K := Spec(OK ) \ {(0)}

M1
K := K (C) (i.e. the set of all embeddings K ,! C).

Moreover, MK := Mfin
K [ M1

K . For p 2 Mfin
K and � 2 M1

K , the absolute values |.|p
and |.|� of K are defined by

|x |p := #(OK /p)� ordp(x) and |x |� := |� (x)| (x 2 K ),

respectively. Furthermore, for p 2 Mfin
K , the completion of K with respect to |.|p

is denoted by Kp. In addition, K� and K ,! K� (� 2 M1
K ) are defined to be C
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and � , respectively. By abuse of notation, for v 2 MK , the extension absolute of
|.|v to Kv is also denoted by |.|v . In the case where v = � 2 M1

K , the absolute
value |.|� on K� = C is the usual absolute value. If p 2 Mfin

K , the valuation rings of
(K , |.|p) and (Kp, |.|p) are denoted byOp and bOp, respectively. Note thatOp is the
localization of OK with respect to OK \ p, and bOp is the completion of the local
ringOp.
Definition 5.1. Let H be a finite-dimensional vector space over K . For v 2 MK ,
H ⌦K Kv is denoted by Hv . For each v 2 MK , let k.kv be a norm of Hv over
(Kv, |.|v). In the case where v 2 Mfin

K , the norm k.kv is always assumed to be
ultrametric. Moreover, we assume that the family (k.k� )�2M1

K
is invariant under

complex conjugation, namely for any finite family of vectors (si )ni=1 in H and vec-
tor (�i )ni=1 of complex numbers, one has

k�1 ⌦ s1 + · · · + �n ⌦ snk� = k�1 ⌦ s1 + · · · + �n ⌦ snk� .

The family {k.kv}v2MK of norms is often denoted by k.k. We set
(

(H, k.k)fin1 :=
�
x 2 H | kxkp  1 for all p 2 Mfin

K
 

(H, k.k)p1 :=
�
x 2 H | kxkp  1

 
.

The pair (H, k.k) is called an adelically normed vector space over K if, for any
x 2 H , kxkp  1 except finitely many p 2 Mfin

K , and (H, k.k)fin1 is a finitely
generatedOK -module (cf. [6, Definition 2.1] and [7, Definition 2.10]).

Lemma 5.2. We will assume that (H, k.k) is an adelically normed vector space
over K . Then, the following hold:

(1) For p 2 Mfin
K , we have (H, k.k)p1 = (H, k.k)fin1 ⌦OK Op;

(2) We have (H, k.k)fin1 ⌦OK K = H . Moreover, (H, k.k)fin1 ⌦Z Q = H ;
(3) Let f : H ! H 0 be a surjective homomorphism of finite-dimensional vector

spaces over K . Let k.kquotv be the quotient norm of H 0
v induced by the surjection

fv : Hv ! H 0
v and the norm k.kv on Hv . Then (H 0, k.kquot) is an adelically

normed vector space over K and

f
⇣
(H, k.k)fin1

⌘
= (H 0, k.kquot)fin1,

where k.kquot = {k.kquotv }v2MK .

Proof. (1) Obviously (H, k.k)fin1 ⌦OK Op ✓ (H, k.k)p1. Conversely, we assume
that x 2 H and kxkp  1. We set

{q 2 Mfin
K | kxkq > 1} = {q1, . . . , qr }.
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By Lemma 5.3 as below, there is an ↵ 2 K⇥ such that

ordqi (↵) > 0 (8i = 1, . . . , r) and ordq(↵) = 0 (8q 2 Mfin
K \ {q1, . . . , qr }).

We choose a positive integer n such that k↵nxkqi  1 for all i = 1, . . . , r . Note
that ↵n 2 O⇥

p and ↵nx 2 (H, k.k)fin1, so that x = ↵�n↵nx 2 (H, k.k)fin1 ⌦OK Op.

(2) For x 2 H , by using Lemma 5.3, we can find a � 2 OK \ {0} with �x 2
(H, k.k)fin1, which means that the first assertion holds.

Let � 2 OK \ {0}. Then there are a1, . . . , an 2 Z such that

� n + a1� n�1 + · · · + an = 0.

Clearly we may assume that an 6= 0. Thus, if we set

� 0 = �(� n�1 + a1� n�1 + · · · + an�1),

then � 0 2 OK and � � 0 = an . Note that (H, k.k)fin1 ⌦OK K and (H, k.k)fin1 ⌦Z Q
are the localizations of (H, k.k)fin1 with respect toOK \{0} and Z\{0}, respectively.
Therefore the last assertion follows.

(3) Let us see that

f
⇣
(H, k.k)p1

⌘
= (H 0, k.kquot)p1 (5.1)

for all p 2 Mfin
K . Clearly one has f

⇣
(H, k.k)p1

⌘
✓ (H 0, k.kquot)p1. The converse

inclusion follows from Proposition 2.1. By using (1) together with the equation
(5.1), we obtain

f
⇣
(H, k.k)fin1

⌘
⌦OK Op = (H 0, k.kquot)fin1 ⌦OK Op.

Therefore f
⇣
(H, k.k)fin1

⌘
=(H 0, k.kquot)fin1 by [1, Proposition 3.8], as required.

Lemma 5.3. Let 6 be a finite subset of Mfin
K . Then there is an ↵ 2 K⇥ such that

ordp(↵)

(
> 0 if p 2 6

= 0 if p 2 Mfin
K \ 6.

Proof. We set 6 = {p1, . . . , pe}. As the class group of K is finite, for each i , there
are a positive integer ni and an ↵i 2 OK \ {0} with pnii = ↵iOK . Thus, if we set
↵ = ↵1 · · ·↵e, then the assertion follows.



276 HUAYI CHEN AND ATSUSHI MORIWAKI

5.2. Estimation of �Q for a graded algebra

A normed Z-module is a pair (M, k.k) of a finitely generated Z-module M and a
norm k.k of M ⌦Z R. We define �Q(M, k.k) and �Z(M, k.k) as follows. If M is
a torsion module, then

�Q(M, k.k) = �Z(M, k.k) = 0.

Otherwise, let �Q(M, k.k) (respectively �Z(M, k.k)) be the infimum of the set of
non-negative real numbers � such that we can find a Q-basis e1, . . . , er ofMQ :=
M ⌦Z Q which is contained in M (respectively a free basis of M/Mtor) with
keik  � for all i = 1, . . . , r . Note that

�Q(M, k.k)  �Z(M, k.k)  rk(M)�Q(M, k.k) (5.2)

(cf. [15, Lemma 1.2]).
Let R =

L1
n=0 Rn be a graded Q-algebra of finite type such that R is an

integral noetherian domain and dimQ Rn < 1 for all n � 0. Let R =
L1

n=0Rn
be a graded subalgebra of R such that Rn is a finitely generated Z-module and
Rn ⌦Z Q = Rn for all n � 0. For each n � 0, let k.kn be a norm of Rn ⌦Q R(=
Rn ⌦Z R). We assume that

�
R, k.k

�
=

1M

n=0

�
Rn, k.kn

�

is a normed graded Z-algebra, that is, for a 2 Rn and b 2 Rn0 , it holds ka ·
bkn+n0  kakn · kbkn0 .

Let X := Proj(R) and Y be a closed subvariety of X over Q, that is, Y is a
closed, reduced and irreducible subscheme of X over Q. Let P =

L1
n=0 Pn be the

corresponding homogeneous prime ideal of R to Y . We set

RY,n := Rn/Pn andRY,n := Rn/Pn \ Rn

RY :=
1M

n=0
RY,n andRY :=

1M

n=0
RY,n.

Let k.kquotY,n be the quotient norm of RY,n ⌦Q R induced by the surjective homo-
morphism Rn ⌦Q R ! RY,n ⌦Q R and the norm k.kn on Rn ⌦Q R. Note that
RY,n ⌦Z Q = RY,n for all n � 0 and

⇣
RY , k.kquotY

⌘
=

1M

n=0

⇣
RY,n, k.k

quot
Y,n

⌘

is a normed graded Z-algebra. Then we have the following:
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Theorem 5.4. LetSX be the set of all subvarieties of X and let � : SX ! R>0 be
a map. We assume that, for every Y 2 SX , there are a positive integer n(Y ) and an
sY 2 RY,n(Y ) \ {0} with ksY kquotY,n(Y )  �(Y )n(Y ). Then there are a positive number
B and a finite subset S of SX such that

�Q(Rn, k.kn)  Bnd(d+1)/2 (max{�(Y ) | Y 2 S})n

for all n � 1, where d = dim X .

Proof. It is a generalization of [15, Theorem 3.1]; however, it can be proved in a
similar way. For reader’s convenience, we give a sketch of the proof.
Step 1. For a positive integer h, we set

R(h)
n := Rhn, R(h)

n := Rhn, R(h) =
1M

n=0
R(h)
n and R(h) =

1M

n=0
R(h)
n .

By using [15, Lemma 2.2 and Lemma 2.4], we can see that if the theorem holds for
R(h) and �h , then it holds for R and �. Therefore, by [4, Chapter III, Section 1,
Proposition 3], we may assume that R is generated by R1 over R0 and s := sX 2
R1. Let OX (1) be the tautological invertible sheaf of X arising from R1.

We prove this theorem by induction on d.
Step 2. In the case where d = 0, X = Spec(K ) for some number field K , so that
Rn ✓ H0(X,OX (n)) ⇠= K . Therefore, dimQ Rn  [K : Q] for all n � 1, and
hence the assertion can be checked by the same arguments as in [15, Claim 3.1.2].
Step 3. We assume d > 0. Let I be the homogeneous ideal generated by s := sX ,
that is, I = Rs. By using the same ideas as in [13, Chapter I, Proposition 7.4], we
can find a sequence

I = I0 ( I1 ( · · · ( Ir = R
of homogeneous ideals of R and non-zero homogeneous prime ideals P1, . . . , Pr
of R such that Pi · Ii ✓ Ii�1 for i = 1, . . . , r .

Step 4. We setRn = (Rn, k.kn) andIi,n = (Ii,n, k.ki,n), whereIi,n := Rn\ Ii,n
and k.ki,n is the subnorm induced by k.kn and Ii,n ,! Rn . Here we consider the
following sequence:

R0
·s

�! I0,1 ,! · · · ,! Ii,1 ,! · · · ,! Ir,1 = R1
...

...
...

...
...

...

·s
�! I0, j ,! · · · ,! Ii, j ,! · · · ,! Ir, j = R j

·s
�! I0, j+1 ,! · · · ,! Ii, j+1 ,! · · · ,! Ir, j+1 = R j+1

...
...

...
...

...
...

·s
�! I0,n ,! · · · ,! Ii,n ,! · · · ,! Ir,n = Rn .
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Let k.kquoti,n be the quotient norm of Ii,n/Ii�1,n induced by k.ki,n and Ii,n !
Ii,n/Ii�1,n . Note thatI0,n/Rn�1s is a torsion module for all n � 1, so that, apply-
ing [15, Proposition 1.4] to the above sequence, we have

�Q(Rn) 
nX

j=1

 
rX

i=1
kskn� j

1 �Q(Ii, j/Ii�1, j , k.k
quot
i, j ) dimQ(Ii, j/Ii�1, j )

!

+ kskn1�Q(R0) dimQ R0.

(5.3)

Step 5. Here we claim the following:

Claim 5.5. The following facts hold:

(1) If Pi 2 Proj(R), then there are positive constants Bi and Ci , and a finite subset
Si ofSX such that

�Q(Ii,n/Ii�1,n, k.k
quot
i,n )  Bind(d�1)/2 (max{�(Y ) | Y 2 Si })n

and dimQ(Ii,n/Ii�1,n)  Cind�1 for all n � 1.
(2) If Pi 62 Proj(R), then there is a positive integer ni such that Ii,n/Ii�1,n = 0 for

n � ni . In particular, �Q(Ii,n/Ii�1,n, k.k
quot
i,n ) = 0 and dimQ(Ii,n/Ii�1,n) = 0

for all n � ni .

Proof. (1) follows from [15, Proposition 2.3] and the hypothesis of induction. In
the case (2), Pi =

L1
n=1 Rn because R0 is a number field. As Ii/Ii�1 is a finitely

generated (R/Pi )-module, we can find a positive integer ni such that Ii,n/Ii�1,n =
0 for n � ni .

Step 6. The assertion of the theorem follows from (5.3) by using (1) and (2) of
Claim 5.5.

5.3. Nakai-Moishezon’s criterion

Let X be a geometrically integral projective variety over a number field K . For a
closed subvariety Y of X and v 2 MK , we set Yv := Y ⇥Spec(K ) Spec(Kv). Let
L be an invertible sheaf on X . For v 2 MK , let hv be a continuous metric of Lanv
on Xanv , where Lv := L ⌦K Kv . Note that X (C) is canonically identified with`

�2M1
K
X� (C), so that h1 := {h� }�2M1

K
yields a metric on L1. We assume

that h1 is invariant by the complex conjugation map F1 on X (C). Moreover, for
s 2 H0(Y, L|Y ), we set

kskYv,hv := sup{|s|hv (x) | x 2 Y anv }.

Theorem 5.6. We will assume the following:
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(a) For any n 2 Z�0, the space
�
H0(X, L⌦n), {k.kXv,hnv }v2MK

�
is an adelically

normed vector space over K ;
(b) The sheaf L

�
�
Y is big for all subvarieties Y of X , that is, L|Y is big on Y and there

are a positive integer n and an s 2 H0(Y, L|⌦nY ) \ {0} such that kskYp,hnp  1
for all p 2 Mfin

K and kskY� ,hn� < 1 for all � 2 M1
K ;

(c) It holds that hv is semipositive1 for all v 2 MK .

Then there are positive numbers B and � such that � < 1 and

�Q

 
⇣
H0(X, L⌦n), k.khn

⌘fin

1
, max

�2M1
K

�
k.kX� ,hn�

 
!

 Bnd(d+1)/2�n

for all n � 1.

Proof. First note that L is nef because L|C is big for all curves C on X . Moreover,
as L|Y is big on Y and L is nef, we have ( L|dimYY ) > 0. Therefore, L is ample on
X by virtue of the Nakai-Moishezon criterion for projective algebraic varieties.

We set

Rn := H0(X, L⌦n), Rn := (Rn, k.khn )fin1 and k.kn := max
�2M1

K

{k.kX� ,hn� }.

Note that Rn is a finitely generated Z-module. We use the same notation as in
Subsection 5.2. Note that X = Proj(R) because L is ample. Fix a closed subvariety
Y . For v 2 MK , the norm k.kXv,hnv on H

0(Xv, L⌦n
v ) (respectively the norm k.kYv,hnv

on H0(Yv, L|⌦nYv
)) is denoted by k.kXv,n (respectively k.kYv,n). Note that k.kn =

max�2M1
K

{k.kX� ,n}. Let k.k
quot
Yv,n be the quotient norm of RY,n ⌦K Kv induced by

k.kXv,n and the surjective homomorphism Rn ⌦K Kv ! RY,n ⌦K Kv . We also
fix a positive integer n0 such that, for all n � n0, H0(X, L⌦n) ! H0(Y, L|⌦nY ) is
surjective.

By (3) in Lemma 5.2 and Theorem 5.4, it is sufficient to show that there are a
positive integer n(Y ) � n0 and an s 2 H0(Y, L|⌦n(Y )

Y )\{0} such that kskquotYp,n(Y )  1
for all p 2 Mfin

K and kskquotY� ,n(Y ) < 1 for all � 2 M1
K .

As L
�
�
Y is big, there are an n1 > 0 and an s0 2 H0(Y, L|⌦n1Y ) such that

ks0kYp,n1  1 for all p 2 Mfin
K and ks0kY� ,n1 < 1 for all � 2 M1

K . Since
H0(X, L⌦n0n1)!H0(Y, L|⌦n0n1Y ) is surjective, we can find an l 0 2H0(X, L⌦n0n1)

such that l 0
�
�
Y = s0⌦n0 , so that there are p1, . . . , pe 2 Mfin

K such that kl 0kXp,n0n1  1
for all p 2 Mfin

K \ {p1, . . . , pe}. In particular, ks0⌦n0kquotYp,n0n1  1 for all p 2

1 In the case where v 2 M1
K , the semipositivity of hv can be defined as the uniform limit of the

quotient metrics as described in Subsection 3.2. This semipositivity coincides with the positivity
of the first Chern current of (Lv, hv). For details, see [17].
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Mfin
K \ {p1, . . . , pe}. By Lemma 5.3, we can choose � 2 OK \ {0} such that

ordv(�)

(
> 0 if v 2 {p1, . . . , pe}
= 0 if v 2 MK \ {p1, . . . , pe}.

Since ks0kY� ,n1 < 1 for all � 2 M1
K , we can find a positive integer n2 such that

 

max
�2M1

K

{ks0kY� ,n1}

!n0n2
max

�
|� (�)| | � 2 M1

K
 

< 1. (5.4)

Claim 5.7. If we set s = �s0⌦n0n2 , then s satisfies the following properties:

(i) It holds kskquotYp,n2n1n0  1 for all p 2 Mfin
K \ {p1, . . . , pe};

(ii) It holds kskYpi ,n2n1n0 < 1 for all i = 1, . . . , e;
(iii) It holds kskY� ,n2n1n0 < 1 for all � 2 M1

K .

Proof. (i) is obvious. (iii) follows from (5.4). Let us consider (ii). As ordpi (�) > 0
and ks0kYpi ,n1  1, we have

kskYpi ,n2n1n0 = #(OK /pi )
� ordpi (�)ks0⌦n0n2kYpi ,n0n1n2

= #(OK /pi )
� ordpi (�)

⇣
ks0kYpi ,n1

⌘n0n2
< 1,

as required.

Next let us prove the following claim:

Claim 5.8. If ktkYv,m < 1 for v 2 MK and t 2 H0(Yv, Lv|
⌦m
Yv

), then there is an
m0 such that, for all m0 � m0, it holds

kt⌦m
0
kquotYv,mm0 < 1.

Proof. Choose an ✏ > 0 such that e✏ktkYv,m < 1. By virtue of the extension
property (cf. [17] and Theorem 4.5), there is an m0 such that, for all m0 � m0, we
can find t 0 2 H0(Xv, L⌦mm0

v ) with t 0
�
�
Yv

= t⌦m0 and kt 0kXv,mm0  em0✏(ktkYv,m)m
0 .

In particular, kt 0kXv,mm0 < 1, so that the assertion follows.

By the above claim, for each i = 1, . . . , e and � 2 M1
K , there is a positive

integer n3 such that

ks⌦n3kquotYpi ,n3n2n1n0
< 1 and ks⌦n3kquotY� ,n3n2n1n0 < 1.

If we set n(Y ) := n3n2n1n0 and sY := s⌦n3 , then ksY kquotYp,n(Y )  1 for all p 2 Mfin
K

and ksY kquotY� ,n(Y ) < 1 for all � 2 M1
K .
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Corollary 5.9. We will assume (a), (b) and (c) as in Theorem 5.6. Let (N , g) be
a pair of an invertible sheaf N on X and a family g = {gv}v2MK of continuous
metrics gv of N anv on Xanv . We will assume that g1 := {g� }�2M1

K
is compatible

with respect to F1 and
⇣
H0(X, L⌦n ⌦ N ), {k.kXv,hnvgv }v2MK

⌘

is an adelically normed vector space over K for all n � 0. Then there is a positive
integer n0 such that, for n � n0,

�
H0(X, L⌦n ⌦ N ), k.khng

�fin
1 has a free basis

(!1, . . . ,!rn ) over Z with k!ikhn� g� < 1 for all i = 1, . . . , rn and � 2 M1
K , where

rn is the rank of H0(X, L⌦n ⌦ N ) over Q.

Proof. We use the same notation in the proof of Theorem 5.6. Moreover, we set
8
>>>>>>>>><

>>>>>>>>>:

An := H0(X, L⌦n ⌦ N )

An :=
�
H0(X, L⌦n ⌦ N ), k.khng

�fin
1 and k.k0

n := max
�2M1

K

{k.kX� ,hn� g� }�2M1
K

A :=
1L

n=0
An

(A, k.k0) :=
1L

n=0
(An, k.k0

n).

Note that (A, k.k0) is a normed graded (R, k.k)-module (cf. [15, Section 2]), where

R =
1M

n=0
(H0(X, L⌦n), k.khn )fin1.

Furthermore A is a finitely generated over
L1

n=0 H0(X, L⌦n) because L is ample.
Therefore, by Theorem 5.6 together with [15, Lemma 2.2], there is a positive num-
ber B0 such that �Q

�
An, k.k0

n
�

 B0nd(d+1)/2�n for all n � 1, so that, by (5.2),

�Z
�
An, k.k0

n
�

 dimQ H0(X, L⌦n ⌦ N ) · B0nd(d+1)/2�n

for all n � 1. Thus we can find a positive integer n0 such that �Z
�
An, k.k0

n
�

< 1
for n � n0, as required.
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[3] N. BOURBAKI, “Éléments de Mathématique, Espaces Vectoriel Topologique”, Masson,
Paris, 1981.
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