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On the Kodaira-Spencer map of Abelian schemes

YVES ANDRÉ

Abstract. Let A be an Abelian scheme over a smooth affine complex variety
S, ⌦A the OS-module of 1-forms of the first kind on A, DS⌦A the DS-module
spanned by ⌦A in the first algebraic De Rham cohomology module, and ✓@ :

⌦A ! DS⌦A/⌦A the Kodaira-Spencer map attached to a tangent vector field
@ on S. We compare the rank of DS⌦A/⌦A to the maximal rank of ✓@ when @
varies: we show that both ranks do not change when one passes to the “modular
case”, i.e. when one replaces S by the smallest weakly special subvariety of
Ag containing the image of S (assuming, as one may up to isogeny, that A/S
is principally polarized); we then analyse the “modular case” and deduce, for
instance, that for any Abelian pencil of relative dimension g with Zariski-dense
monodromy in Sp2g , the derivative with respect to a parameter of a non zero
Abelian integral of the first kind is never of the first kind.

Mathematics Subject Classification (2010): 14K20 (primary); 14G35, 32G20
(secondary).

This paper deals with Abelian integrals depending algebraically on parameters and
their derivatives with respect to the parameters. Since the nineteenth century, it
has been known that differentiation with respect to parameters does not preserve
Abelian integrals of the first kind in general.

We study this phenomenon in the language of modern algebraic geometry, i.e.
in terms of the algebraic De Rham cohomology OS-module H1dR(A/S) attached
to an Abelian scheme A of relative dimension g over a smooth C-scheme S, its
submodule ⌦A of forms of the first kind on A, the Gauss-Manin connection r
and the associated Kodaira-Spencer map ✓ , i.e. the OS-linear map TS ⌦ ⌦A

✓
!

H1dR(A/S)/⌦A induced by r.
We introduce and compare the following (generic) “ranks”:

• r = r(A/S) = rkDS⌦A/⌦A;
• r 0 = r 0(A/S) = rk ✓ ;
• r 00 = r 00(A/S) = max@ rk ✓@ ;

where @ runs over local tangent vector fields on S (of course, r 00 = r 0 when S is a
curve).
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One has r 00  r 0  r  g and these inequalities may be strict, even if there is
no isotrivial factor (Paragraph 4.1.2). On the other hand, these ranks are insensitive
to dominant base change, and depend only on the isogeny class of A/S (1.6). In
particular, one may assume that A/S is principally polarized and (replacing S by an
etale covering) admits a level n � 3 structure.

We prove that r and r 00 are unchanged if one passes to the “modular case”, i.e.
if one replaces S by the smallest weakly special (= totally geodesic) subvariety of
the moduli space Ag,n containing the image of S, and A by the universal Abelian
scheme on S (3.1).

We prove that r = r 0 in the “modular case”, i.e. when S is a weakly special
subvariety ofAg,n (3.2).

We then study the “PEM case”, i.e. the case when the connected algebraic
monodromy group is maximal with respect to the polarization and the endomor-
phisms, and emphasize the “restricted PEM case”, i.e. where we moreover assume
that if the center F of End A⌦Q is a CM field, then⌦A is a free F⌦QOS-module
(4.1, 4.3); this includes, of course, the case when the algebraic monodromy group
is Sp2g.

Building on the previous results, we show that one has r 00 = r 0 = r = g in
the restricted PEM case (4.4). If moreover S is a curve, we show that the derivative
(with respect to a parameter) of a non zero Abelian integral of the first kind is never
of the first kind (4.6).

Our methods are inspired by B. Moonen’s paper [18]; we exploit the “bi-
algebraic” properties of the Kodaira-Spencer map in the guise of a theorem of “log-
arithmic Ax-Schanuel type” for tangent vector bundles (2.2).

Since the problems under study occur in various parts of algebraic geometry
and diophantine geometry, we have tried to make the results more accessible by
including extended reminders: Section 1 about algebraic De Rham cohomology of
Abelian schemes, Gauss-Manin connections and Kodaira-Spencer maps; Subsec-
tions 3.1 to 3.4 about weakly special subvarieties of connected Shimura varieties,
relative period torsors, and automorphic bundles.

ACKNOWLEDGEMENTS. I thank D. Bertrand and B. Moonen for their careful read-
ing.

1. Preliminaries

1.1. Invariant differential forms

Let S be a smooth connected scheme over a field k of characteristic zero.
Let f : G!S be a smooth commutative group scheme; we denote by m :

G ⇥S G ! G the group law and by e : S ! G the unit section. The invariant
differential 1-forms on G are those satisfying m⇤! = p⇤1! + p⇤2! (where p1, p2
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denote the projections); they form a locally free OS-module denoted by ⌦G , natu-
rally isomorphic to e⇤�1G/S and to f⇤�1G/S , and OS-dual to the Lie algebra LieG.
One has f ⇤⌦G ⇠= �1G/S . Moreover, invariant differential 1-forms are closed [19,
3.5] [9, 1.2.1].

Let us consider the special case when G = A is an Abelian scheme of relative
dimension g, or G = A\ universal vectorial extension of A (Rosenlicht-Barsotti, cf.
e.g., [16, I]). Recall that Ext(A, Ga) ⇠= R1 f⇤OA (using the fact that any rigidified
Ga-torsor over an S-Abelian scheme has a canonical S-group structure), so that A\
is an extension of A by the vector group attached to the dual of R1 f⇤OA, which is
a locally free OS-module of rank g. The projection A\ ! A gives rise to an exact
sequence of locally freeOS-modules

0! ⌦A ! ⌦A\ ! R1 f⇤OA ! 0, (1.1)

in a way compatible with base change S0 ! S. On the other hand, if At := Pic0(A)
denotes the dual Abelian scheme, ⌦At is naturally dual to R1 f⇤OA (Cartier), and
⌦At\ is naturally dual to ⌦A\ in such a way that the exact sequence (1.1) is dual to
corresponding exact sequence for At [9, 1.1.1].

1.2. Algebraic De Rham cohomology

The first algebraic De Rham cohomology OS-module H1dR(G/S) is the hyperco-
homology sheaf R1 f⇤(�⇤G/S, d). Assuming S affine, it can be computed à la Čech
using an affine open cover U of G and taking as coboundary map on C p(U ,�

q
G/S)

the sum of the Čech coboundary and (�)p+1 times the exterior derivative d. In par-
ticular, since invariant differential forms are closed, there is a canonical OS-linear
map⌦G ! H1dR(G/S).

If G = A is an Abelian scheme, and A\ its universal vectorial extension, it
turns out that the canonical morphisms

⌦A\ ! H1dR
�
A\/S

�
 H1dR(A/S)

are isomorphisms [9, 1.2.2]. The exact sequence (1.1) thus gives rise to an exact
sequence of locally freeOS-modules

0! ⌦A = f⇤�1A/S ! H1dR(A/S)! R1 f⇤OA = ⌦_At ! 0, (1.2)

in a way compatible with base change S0 ! S and with duality A 7! At (cf.
also [14, 8.0]; f⇤�1A/S and R

1 f⇤OA are the graded pieces gr1 and gr0 of the Hodge
filtration ofH1dR(A/S) respectively).

Any polarization of A endows the rank 2g vector bundle H1dR(A/S) with a
symplectic form, for which⌦A is a Lagrangian1 subbundle, and the exact sequence
(1.2) becomes autodual.

1 I.e. isotropic of rank g.
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When S = Spec k,H1dR(A/S) can also be interpreted as the space of differen-
tials of the second kind (i.e. closed rational 1-forms which are Zariski-locally sums
of a regular 1-form and an exact rational form) modulo exact rational 1-forms. For
any rational section ⌧ of A\ ! A and any ⌘ 2 ⌦A\ , ⌧⇤⌘ is of the second kind and
depends on ⌧ only up to the addition of an exact rational 1-form.

In the sequel, we abbreviateH1dR(A/S) byH.

1.3. Gauss-Manin connection

Since the nineteenth century, it has been known that differentiating Abelian inte-
grals with respect to parameters leads to linear differential equations, the prototype
being the Gauss hypergeometric equation in the variable t satisfied by

R
1

1 za�c(1�
z)c�b�1(1�t z)�adz. Manin gave an algebraic construction of this differential mod-
ule (in terms of differentials of the second kind), later generalized by Katz-Oda and
others to the construction of the Gauss-Manin connection on algebraic De Rham
cohomology of any smooth morphism X ! S.

Let as before A f
! S be an Abelian scheme of relative dimension g over a

smooth connected k-scheme S. If k = C, the Gauss-Manin connection is deter-
mined by its analytification ran , whose dual is the unique analytic connection on
(H_)an which kills the period lattice

ker expA ⇠= ker expA\ ⇢
�
Lie A\

�an
=

�
⌦_A\

�an
= (H_)an. (1.3)

The formation of (H,r) is compatible with base change S0 ! S and with duality
A 7! At . It is contravariant in A, and S-isogenies lead to isomorphisms between
Gauss-Manin connections.

If S is affine and ⌦A and ⌦At are free, let us take a basis !1, . . . ,!g of ⌦A
and complete it into a basis !1, . . . ,!g, ⌘1, . . . , ⌘g of H. Pairing with a basis
�1, . . . , �2g of the period lattice on a universal covering S̃ of San , one gets a full
solution matrix

Y =

✓
�2 N2
�1 N1

◆
2 M2g(O(S̃)) (1.4)

for r (with (�1)i j =

R
�i
! j , etc. . . ). This reflects into a family of differential

equations2

@Y = Y
✓
R@ S@
T@ U@

◆
, (1.5)

where R@ , S@ , T@ ,U@ 2 Mg(O(S))3 depend O(S)-linearly on the derivation @ 2
0TS.

2 We write the matrix of r@ on the right in order to let the monodromy act on the left on Y . This
convention has many advantages. In particular, it is independent of the choice of �1, . . . , �2g .
Writing Y with the indices 2 above the indices 1 will be justified in Subsection 2.2.2 below.
3 The fact that these matrices have entries inO(S) rather thanO(San) reflects the algebraic nature
of the Gauss-Manin connection. Alternatively, it can be deduced from the next sentence.
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It is well-known that the Gauss-Manin connection is regular at infinity (cf.,
e.g., [14, 14.1]), hence its D-module theoretic properties are faithfully reflected by
monodromy theoretic properties.
Remark 1.1. The Katz-Oda algebraic construction of r, in the case ofH1dR(A/S),
goes as follows [15, 1.4]. From the exact sequence

0! f ⇤�1S/k ! �1A/k ! �1A/S ! 0, (1.6)

passing to exterior powers, one gets the exact sequence of k-linear complexes of
OA-modules

0! f ⇤�1S/k ⌦�
⇤�1
A/S ! �⇤A/k/

⇣
f ⇤�2S/k ⌦�

⇤�2
A/S

⌘
! �⇤A/S ! 0. (1.7)

Then r is a coboundary map in the long exact sequence for R⇤ f⇤ applied to (1.7),
that is

R1 f⇤�⇤A/S
r

! R2 f⇤
⇣
f ⇤�1S/k ⌦�

⇤�1
A/S

⌘
= �1S/k ⌦ R1 f⇤�⇤A/S, (1.8)

and can be computed explicitly à la Čech, cf. [14, 3.4]. One checks that this map
satisfies the Leibniz rule and the associated map

TS =

⇣
�1S/k

⌘
_ @ 7!r@
! EndkH (1.9)

respects Lie brackets, so that r corresponds to a DS-module structure on H (here
DS denotes the sheaf of rings of differential operators on S, which is generated by
the tangent bundle TS). In fact, it can also be interpreted as the first higher direct
image ofOA in the D-module setting (cf. e.g., [6, 4] for an algebraic proof).

An alternative and more precise construction of r, which avoids homological
algebra, consists in endowing A\ with the structure of a commutative algebraic D-
group, which automatically provides a connection on (the dual of) its Lie algebra [3,
3.4, H5] [5, 6].

1.4. Kodaira-Spencer map

The Gauss-Manin connection does not preserve the subbundle⌦A ⇢ H in general.
The composed map

⌦A ,! H r

! �1S ⌦H!! �1S ⌦ (H/⌦A) = �1S ⌦⌦
_

At (1.10)

is the Kodaira-Spencer map (or Higgs field). Like the Gauss-Manin connection, its
formation commutes with base-change. Unlike the Gauss-Manin connection, it is
anOS-linear map (also called the Higgs field of A/S [22]).
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Remark 1.2. This map can be interpreted as a coboundary map in the long exact
sequence for R⇤ f⇤ applied to (1.6), and computed explicitly à la Čech, cf. [14,
3.4] [15, 1.3].

It can be rewritten as the map

✓ : TS ⌦OS ⌦A ! ⌦_At = Lie At . (1.11)

If D1S ⇢ DS denotes the subsheaf of differential operators of order  1 on S, and
DS⌦A ⇢ H the sub-DS-module generated by⌦A inH = H1dR(A/S). One has

Im ✓ = D1S ⌦A/⌦A ⇢ DS⌦A/⌦A ⇢ H/⌦A = Lie At . (1.12)

The Kodaira-Spencer map can also be rewritten as the map

TS
@ 7!✓@
! Lie A⌦ Lie At , (1.13)

which is invariant by duality A 7! At [7, 9.1]; if A is polarized, it thus gives rise to
a map

TS
@ 7!✓@
! S2Lie A ⇠= Homsym

�
⌦A,⌦

_

A
�
. (1.14)

In the situation and notation of the end of Subsection 1.3, the matrix of ✓@ is T@
(which is a symmetric matrix if one chooses the basis !1, . . . , ⌘g to be symplectic).
Remarks 1.3.

i) Here is another interpretation of ✓@ in terms of the universal vectorial extension
A\, assuming S affine [7, 9]: for any ! 2 0⌦A, pull-back the exact sequence
of vector bundles associated to (1.6) by the morphism OA ! �1A/S corre-
sponding to ! and get an extension of A by the vector group attached to �1S ,
so that the morphism from A\ to this vectorial extension gives rise, at the level
of invariant differential forms, to a morphism ⌦At ! �1S; thus to any ! and
any @ 2 0TS = Hom(�1S,OS), one gets an element of ⌦_At , which is nothing
but ✓@ · !;

ii) The following equivalences are well-known:
– A/S is isotrivial , ✓ = 0 , DS⌦A = ⌦A , r is isotrivial (i.e. has
finite monodromy).

Remembering that the Kodaira-Spencer map commutes to base-change, the
only non trivial implications are: r isotrivial) DS⌦A = ⌦A, and ✓ = 0)
A/S isotrivial. The first implication comes from Deligne’s “théorème de la
partie fixe” [10, 4.1.2]. An elementary proof of the second one will be given
below (Paragraph 2.1.1);

iii) In contrast to DS⌦A, D1S ⌦A is not locally a direct factor ofH in general: at
some points s 2 S the rank of ✓s may drop (see however Theorem 3.2). In fact,
the condition that the rank of ✓s is constant is very restrictive: for instance,
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if S is a proper curve, the condition that ✓ is everywhere an isomorphism is
equivalent to the condition that the Arakelov inequality deg⌦A 

g
2 deg�

1
S

is an equality, and implies that A/S is a modular family, parametrized by a
Shimura curve [22].

1.4.1. Since the OS-module H/DS⌦A carries a DS-module structure, it is lo-
cally free [14, 8.8], hence DS⌦A is locally a direct summand of H. In fact, by
Deligne’s semisimplicity theorem [10, 4.2.6], DS⌦A is even a direct factor of H
(as a DS-module, hence as a vector bundle).

Lemma 1.4. The formation of DS⌦A commutes with dominant base change S0
⇡
!

S (with S0 smooth connected).

Proof. Since H commutes with base-change and DS⌦A is locally a direct sum-
mand, it suffices to prove the statement after restricting S to a dense affine open
subset. In particular, one may assume that ⇡ is a flat submersion, so that TS0 !
⇡⇤TS and DS0 ! ⇡⇤DS are epimorphisms, and DS0⌦AS0 = ⇡⇤DS⇡

⇤⌦A =

⇡⇤(DS⌦A).

1.4.2. As in the introduction, let us define

r = r(A/S) := rkDS⌦A/⌦A, (1.15)

r 0 = r 0(A/S) := rk ✓ = rkD1S ⌦A/⌦A, (1.16)
r 00 = r 00(A/S) := max

@
rk ✓@ , (1.17)

where @ runs over local tangent vector fields on S (and rk denotes a generic rank).

Lemma 1.5. These are invariant by dominant base change S0 ⇡! S (with S0 smooth
connected), and depend only on the isogeny class of A/S.

Proof. For r , this follows from the previous lemma. Its proof also shows that
D1S ⌦A commutes with base change by flat submersions, which settles the case of
r 0. For r 00, we may assume that S and S0 are affine, that TS is free and TS0 = ⇡⇤TS ,
and pick a basis @1, . . . , @d of tangent vector fields; the point is that max�i rk

P
�i✓@i

is the same when the �i ’s run in O(S) or in O(S0) (consider the ✓@i ’s as matrices
and note that each minor determinant is a polynomial in the �i ’s).

The second assertion is clear since any isogeny induces an isomorphism at the
level of (H,r).

Lemma 1.6.

(1) r 00 = g holds if and only if there exists a local vector field @ such that ✓@ .! 6= 0
for every non-zero ! 2 0⌦A;

(2) r 0 = g holds if and only if for every non-zero ! 2 0⌦A, there exists a local
vector field @ such that ✓@ .! 6= 0.
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Proof. The first equivalence is immediate, while the second uses the symmetry of
(1.13): assuming A polarized, and after restricting S to a dense open affine subset,
one has r 0 = g , 8! 2 0⌦A \ 0, 9⌘ 2 0⌦A, 9@ 2 0TS, (✓@ .!) · ⌘ 6= 0.
Since (✓@ .⌘)·! = (✓@ .!)·⌘, one gets 8! 2 0⌦A\0, 9⌘ 2 0⌦A, 9@ 2 0TS, (✓@ .⌘)·
! 6= 0.

2. Automorphic vector bundles and bi-algebraicity

2.1. Bi-algebraicity of the Kodaira-Spencer map

2.1.1. Let Ag,n be the moduli scheme of principally polarized Abelian varieties
of dimension g with level n structure (n � 3), and let X ! Ag,n be the universal
Abelian scheme.

The universal covering of Aan
g,n is the Siegel upper half space Hg. We denote

by jg,n : Hg ! Aan
g,n the uniformizing map (for g = n = 1, this is the usual

j-function). The pull-back of the dual of the period lattice ker expX on Hg is a
constant symplectic lattice 3. On Hg, the Gauss-Manin connection of X /Ag,n
becomes a trivial connection with solution space 3C.

On the other hand, Hg is an (analytic) open subset of its “compact dual” H_g ,
which is the Grassmannian of Lagrangian subspaces V ⇢ 3_C (i.e. isotropic sub-
spaces of dimension g): the Lagrangian subspace V⌧ corresponding to a point
⌧ 2 Hg is ⌦X jg,n (⌧ ) ⇢ H1dR(X jg,n(⌧ ))

⇠
= 3_C (note that the latter isomorphism

depends on ⌧ , not only on jg,n(⌧ )). The Grassmannian H_g is a homogeneous space

for Sp(3C) (in block form
✓
A B
C D

◆
sends ⌧ 2 Hg to (A⌧ + B)(C⌧ + D)�1). The

vector bundle j⇤g,nLieX is the restriction to Hg of the tautological vector bundle L
on the Lagrangian Grassmannian H_g .
2.1.2. In this universal situation, the Kodaira-Spencer map (in the form of (1.14))
is an isomorphism

TAg,n
⇠

! S2LieX , (2.1)

and its pull-back to Hg is the restriction of the canonical isomorphism

TH_g
⇠

! S2L (2.2)

cf. e.g., [8, 12].
Any principally polarized Abelian scheme with level n structure A/S is iso-

morphic to the pull-back of X by a morphism S µ
! Ag,n , and the Kodaira-Spencer

map of A/S (in the form of (1.14)) is the pull-back by µ of the isomorphism (2.1)
composed with dµ : TS ! µ⇤TAg,n . In particular, the Kodaira-Spencer map ✓ of
A/S vanishes if and only if the image of S! Ag,n is a point, i.e. A/S is constant;
moreover, if A/S is not constant, µ is generically finite, and @ is a non zero section
of TS , then ✓@ is non zero.
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2.2. Relative period torsor

2.2.1. The bi-algebraicity mentioned above refers to the pair of algebraic struc-
turesAg,n,H_g , which are transcendentally related via Hg and jg,n .

On the other hand, there is a purely algebraic relation between these two alge-
braic structures, through the relative period torsor. This is the Sp(3C)Ag,n -torsor
5g,n

⇡
! Ag,n of solutions of the Gauss-Manin connection r of X . More formally,

this is the torsor of isomorphismsH! 3_C⌦OAg,n which respect ther-horizontal
tensors4. Its generic fiber is the spectrum of the Picard-Vessiot algebra5 attached to
r, namely Spec C(Ag,n)[Yi j ]i, j=1,...,2g (with the notation of Subsection 1.3).

2.2.2. The canonical horizontal isomorphism H ⌦OAg,n OHg
⇠

! 3_C ⌦C OHg
gives rise to an analytic map

k : Hg ! 5g,n (2.3)

with ⇡ � k = jg,n . In local bases and with the notation of Subsection 1.3, k sends

⌧ 2 Hg to the point Y (⌧ ) =

✓
�2(⌧ ) N2(⌧ )
�1(⌧ ) N1(⌧ )

◆
of 5 jg,n(⌧ ). In particular, the image

of k is Zariski-dense in5g,n .
On the other hand there is an algebraic Sp(3C)-equivariant map

⇢ : 5g,n!H_g , (2.4)

which sends a point p 2 5g,n(C) viewed as an isomorphism H⇡(p) ! 3_ to the
image of ⌦X⇡(p) in 3_C. In local bases and with the notation of Subsection 1.3, ⇢

sends
✓
�2 N2
�1 N1

◆
to ⌧ = �2�

�1
1 ; ⇢ � k is the Borel embedding Hg ,! H_g .

One thus has the following diagram

Hg ! 5g,n
(⇡,⇢)
!! Ag,n ⇥H_g , (2.5)

in which the first map has Zariski-dense image, and the second map (⇡, ⇢) is sur-
jective (of relative dimension g(3g+1)

2 ) since the restriction of ⇢ to any fiber of ⇡
is Sp(3C)-equivariant and H_g is homogeneous. It follows that the graph of jg,n is
Zariski-dense6 in H_g ⇥Ag,n .

The function field of5g,n is studied in detail in [4]: it is a differential field both
for the derivations of Ag,n and for the derivations @/@⌧i j of H_g . Over C(H_g ) =

C(⌧i j )i jg, it is generated by (iterated) derivatives with respect to the @/@⌧i j ’s of
the modular functions (the field of modular functions being C(Ag,n)).

4 This is a reduction from GSp to Sp of the standard principal bundle considered in [17, III.3].
5 In general, one has to adjoin the inverse of the wronskian together with the entries of a full
solution matrix in order to build a Picard-Vessiot algebra, but here the wronskian is a rational
function, since the monodromy is contained in Sp.
6 This property does not extend to m-jets for m � 3.
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2.3. Connected Shimura varieties and weakly special subvarieties

2.3.1. Let G be a reductive group over Q, Gad the quotient by the center, and
Gad(R)+ the connected component of identity of the Lie group Gad(R).

Let X be a connected component of a conjugacy class X of real-algebraic ho-
momorphisms C⇤ ! GR. For any rational representation G ! GL(W ), one then
has a collection of real Hodge structures (WR, hx )x2X on WR parametrized by X .
If the weight is defined over Q (which is the case if G = Gad since the weight is 0
in this case), one even has a collection of rational Hodge structures (W, hx )x2X .

In the sequel, we assume that (G,X) satisfies Deligne’s axioms for a Shimura
datum; these axioms ensure that X has a Gad(R)+-invariant metric, which makes
X into a hermitian symmetric domain, and that the (WR, hx ) (respectively (W, hx ))
come from variations of polarized Hodge structures on the analytic variety X (re-
spectively if the weight is defined over Q, for instance if G = Gad ); moreover, in
the case of the adjoint representation on g = LieG, the variation of Hodge struc-
tures is of type (�1, 1) + (0, 0) + (1,�1) (cf. e.g., [17, II]).

2.3.2. Let 0 be a discrete subgroup of Gad(Q)+, quotient of a torsion-free con-
gruence subgroup ofG(Q). Then 0\X has a canonical structure of algebraic variety
(Baily-Borel): the connected Shimura variety attached to (G, X,0). The variation
of Hodge structures descends to it, with monodromy group 0. The situation of Sub-
section 2.1 corresponds to the case G = GSp2g, X = Hg, 0 = the congruence
subgroup of level n � 3 (cf. e.g., [17, II]).

2.3.3. Let S be the connected Shimura variety attached to (G, X,0), and j :

X ! S the uniformizing map. An irreducible subvariety S1 ⇢ S is weakly special
if there is a sub-Shimura datum (H,Y)! (G,X), a decomposition (Had ,Yad) =

(H1,Y1)⇥ (H2,Y2), and a point y 2 Y2 such that S1 is the image of Y1 ⇥ y in S
(here Y1 is a connected component ofY1 contained in X) [21]7; in particular, S1 is
isomorphic to the connected Shimura variety attached to (H1,Y1,0ad \ H1).

2.4. Automorphic vector bundles

2.4.1. Given a faithful rational representation W of G, the associated family of
Hodge filtrations on WC is parametrized by a certain flag variety X_, the compact
dual of X , which is a Gad

C -homogeneous space.
The isotropy group of a point x 2 X_ is a parabolic subgroup Px , Kx :=

Px \Gad(R)+ is a maximal compact subgroup, and there is a Gad(R)+-equivariant
Borel embedding

X = Gad(R)+/Kx
i
,! X_ = Gad

C /Px . (2.6)

7 This is a special subvariety if y is a special point.
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2.4.2. Associated to W , there is a variation of polarized Hodge structures on
S = 0\X , hence an integrable connection r with regular singularities at infinity
on the underlying vector bundleW . There is again a relative period torsor in this
situation.

Assume for simplicity thatG = Gad . The monodromy group0 is then Zariski-
dense in G. The relative period torsor

5
⇡
! S (2.7)

is the GS-torsor of isomorphismsW ! WC ⌦OS which respects the r-horizontal
tensors8. Its generic fiber is the Picard-Vessiot algebra attached to r.

The canonical horizontal isomorphismW ⌦OS OX
⇠

! WC ⌦ OX gives rise
to an analytic map k : X ! 5 with ⇡ � k = j . There is an algebraic GC-
equivariant map 5 ⇢

! X_ (which sends a point p 2 5(C) viewed as an isomor-
phismW⇡(p)! W to the point of X_ which parametrizes the image of the Hodge
filtration ofW⇡(p)); one has ⇢ � k = i .

One thus has the following factorization:

( j, i) : X ! 5
(⇡,⇢)
!! S ⇥ X_ (2.8)

in which the first map has dense image, the second map (⇡, ⇢) is surjective (since
the restriction of ⇢ to any fiber of ⇡ is GC-equivariant with homogeneous target).

Since any faithful rational representation of G lies in the tannakian category
generated by W and conversely, neither X_ nor 5 depend on the auxiliary W . On
the other hand, ⇡⇤ provides an equivalence between the category of vector bundles
on S and the category of GC-vector bundles on5 [17, III.3.1].

2.4.3. A GC-equivariant vector bundle ˘V on X_ = GC/Px is completely deter-
mined by its fiber at x 2 X together with the induced Px -action (or else, the induced
Kx -action). The quotient V := 0\i⇤ ˘V has a canonical structure of algebraic vector
bundle on S = 0\X , the automorphic vector bundle attached to ˘V [17, III.2.1, 3.6].
One has the equality of analytic vector bundles on X :

j⇤V = i⇤ ˘V . (2.9)

There is also a purely algebraic relation between V and ˘V , through the relative
period torsor [17, III.3.5]: one has the equality of algebraic GC-vector bundles on
5:

⇡⇤V = ⇢⇤ ˘V . (2.10)

8 It coincides with the standard principal bundle considered in [17, III.3].
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2.4.4. Any representation of GC gives rise to a GC-equivariant vector bundle on
X_, hence to an automorphic vector bundle (which carries an integrable connec-
tion).

On the other hand, TX_ is a GC-equivariant vector bundle on X_, and the
corresponding automorphic vector bundle is nothing but TS .

In the situation of Paragraph 2.1.2, the tangent bundle TH_g and its tautological
bundle L are equivariant vector bundles, and the universal Kodaira-Spencer map
(2.1) is an isomorphism of automorphic vector bundles onAg,n .

2.5. A theorem of logarithmic Ax-Schanuel type for tangent bundles

2.5.1. The theorem of logarithmic Ax-Schanuel type for connected Shimura va-
rieties is the following [11, 2.3.1] (cf. also [21])9:

Theorem 2.1. Let S be a connected Shimura variety (San = 0\X). Let Z ⇢ S
be an irreducible locally closed subset, and let Z̃ be an analytic component of the
inverse image of Z in X .

Then the image in S of the intersection with X of the Zariski closure of Z̃ in the
compact dual X_ is the smallest weakly special subvariety S1 ⇢ S containing Z .

Here is a sketch of proof. One can replace S by the smallest special subvariety
containing Z . Fix a point s 2 Z(C) and a faithful rational representation of G, and
consider the associated vector bundle W with integrable connection r on S. Let
Ĝ1 ⇢ G be the Zariski closure of the monodromy group 0Z of (W|Z ,r|Z ) at s. Up
to replacing 0 by a subgroup of finite index, Ĝ1 is connected and a normal subgroup
of G (by [2, 5]). This gives rise to a weakly special subvariety S1 ⇢ S associated to
a factor G1 = Ĝad

1 of Gad , which is in fact the smallest weakly special subvariety
of S containing Z (cf. [18, 3.6], [21, 4.1] for details). On the other hand, since Z̃
is stable under 0Z , its Zariski closure in the GC-homogeneous space X_1 is stable
under G1, hence equal to X_1 .

Here is the analog for tangent vector bundles, assuming Z smooth:

Theorem 2.2. In this situation, TZ̃ is Zariski-dense in TX_1 .

Proof. We may replace G by G1 and S by S1. Let TZ̃ be the Zariski closure of
TZ̃ = Z̃ ⇥Z TZ in TX_ . Let (W,r) be as above, and let 5 be the relative pe-
riod torsor of S (we take over the notation (2.3) (2.5)). Since (W|Z ,r|Z ) has
the same algebraic monodromy group as (W,r), namely G, the generic fiber of
the projection 5Z

⇡Z
! Z is the spectrum of the Picard-Vessiot algebra attached

9 Not to be confused with the (exponential) Ax-Schanuel theorem - a.k.a. hyperbolic Ax-
Lindemann - for connected Shimura varieties, which concerns the maximal irreducible algebraic
subvarieties of X_ whose intersection with X is contained in Z̃ , and which is a much deeper
result (Pila-Tsimerman, Klingler-Ullmo-Yafaev).
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to (W|Z ,r|Z ), and the image of k
|Z̃ (Z̃) is Zariski-dense in 5Z . It follows that

(k
|Z̃ ⇥ 1TZ )(TZ̃ ) = k

|Z̃ (Z̃)⇥Z TZ is Zariski-dense in5Z ⇥Z TZ .
In fact, r|Z induces a connection on the torsor 5Z , which amounts to a split-

ting of the natural exact sequence of GC-equivariant vector bundles on5Z :

T5Z /Z ! T5Z
(
! 5Z ⇥Z TZ ,

and since k
|Z̃ (Z̃) is horizontal, the Zariski-closure of k

|Z̃⇤(TZ̃ ) in T5Z is the GC-
equivariant vector subbundle5Z ⇥Z TZ .

On the other hand, TZ̃ ! TX_ factors through the map T5Z ! TX_ of
GC-equivariant vector bundles induced by ⇢, and one concludes that TZ̃ is a GC-
equivariant vector subbundle of TX_ . Hence TZ̃ =

˘V for some automorphic vector
subbundle V ⇢ TS .

It is known (see [13, VIII, 5]) that for any irreducible factor of X , the (real)
representation of the corresponding factor of k on the corresponding factor of Tx X
is irreducible, from which it follows that the automorphic vector subbundles of TS
are of the form S ⇥S1 TS1 for some factor S1 of the locally symmetric domain S.
Since V contains TZ and Z is not contained in any proper S1, one concludes that
V = TS and TZ̃ = TX_ .

Remark 2.3. In general, given an algebraic vector bundleM on an algebraic va-
riety Y , the Zariski closure of an analytic subbundle over some Zariski-dense ana-
lytic subspace of Y is not necessarily an algebraic subbundle ofM: for instance,
the Zariski closure in TC2 of the tangent bundle of the graph in C2 of a Weierstrass
} function is a quadric bundle over C2, not a vector subbundle of TC2 (a similar
counterexample holds for the graph of the usual j-function and its bundle of jets of
order  3, since j satisfies a rational non-linear differential equation of order 3).

On the other hand, Theorem 2.2 does not extend to arbitrary automorphic vec-
tor bundles, but one has the following easy consequence of Theorem 2.1:
Porism 2.4. In the same situation, let V be an automorphic vector bundle on S
with corresponding vector bundle ˘V on X_, and let F be a vector subbundle of the
restriction of V to Z . Then Z and F are bi-algebraic if and only if Z is a weakly
special subvariety and F is an automorphic vector bundle.

The assumption “Z is bi-algebraic” means that Z̃ is the intersection of Xwith an
algebraic subvariety of X_, and according to Theorem 2.1, this amounts to Z= S1.

The assumption “F is bi-algebraic” means that its pull-back ˜F in ˘V is an
algebraic subvariety. Since Z = S1, this amounts to say that this analytic subbundle
of V ⇥S X_1 =

˘V ⇥X_ X_1 is algebraic. It is in fact a G1C-vector subbundle, so that
F is an automorphic vector bundle on X_1 .

Using the relative period torsor, one can also prove the following stronger ver-
sion of Theorem 2.1:
Scholium 2.5. in the setting of Theorem 2.1, the graph of j

|Z̃ is Zariski-dense in
X_1 ⇥ Z .
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Indeed, it follows from (2.8) (with S1 in place of S) that the map 51|Z
(⇢,⇡Z )
!

X_1 ⇥ Z is surjective. On the other hand, the image of k
|Z̃ (Z̃) is Zariski-dense in

51|Z .

3. Transition to the modular case

We go back to the study of r(A/S), r 0(A/S), r 00(A/S) for an Abelian scheme A/S.
We may assume that the base field k is C. According to Lemma 1.6, these ranks
are invariant by dominant base change of S and by isogeny of A, hence one may
assume that A/S admits a principal polarization and a Jacobi level n structure for
some n � 3, and then replace S by the smooth locus Z ⇢ Ag,n of its image in the
moduli space of principally polarized Abelian varieties of dimension g with level n
structure, and A by the restriction XZ of the universal Abelian scheme X onAg,n .

3.1. From Z to the smallest weakly special subvariety ofAg,n containing Z

Let us consider again the situation of Paragraph 2.5.1, with S = Ag,n . Given a
(locally closed) subvariety Z ⇢ Ag,n , one constructs the smallest weakly special
subvariety S1 ⇢ Ag,n containing Z , taking (W,r) equal to H1dR(X /Ag,n) with
its Gauss-Manin connection. By construction, S1(C) = 01\X1 where X1 is a
hermitian symmetric domain attached to the adjoint group G1 of the connected
algebraic monodromy group of r|Z .

Theorem 3.1. One has r(XZ/Z) = r(XS1/S1) and r 00(XZ/Z) = r 00(XS1/S1).

Proof. Fix s 2 Z(C). By construction r|Z and r|S1 have the same connected alge-
braic monodromy group at s, namely Ĝ1 ⇢ Sp2g (up to replacing n by a multiple).
It follows that DZ⌦XZ = (DS1⌦XS1 )|Z , whence r(XZ/Z) = r(XS1/S1).

On the other hand, the inequality r 00(XZ/Z)  r 00(XS1/S1) is obvious. For
any natural integer h < g, let 1h be the closed subset of TH_g corresponding to
quadratic forms in S2LieX of rank  h (this is in fact a Sp(3C)-subvariety; 10
is the 0-section). Then r 00(XZ/Z) (respectively r 00(XS1/S1)) is the greatest integer
h such that dµ(@) in not contained in µ⇤1h�1. In order to prove the inequality
r 00(XZ/Z) � r 00(XS1/S1), it thus suffices to show that if TZ̃ is not contained in
1h , neither is TX_1 , which follows from the fact that TZ̃ is Zariski-dense in TX_1
(2.2).

3.2. Case of a weakly special subvariety ofAg,n

We now assume that S is a weakly special subvariety ofAg,n , with associated group
G = Gad , and that there is a finite covering Ĝ of G contained in Sp(3Q).

Theorem 3.2. One has Im ✓ = DS⌦XS/⌦XS , hence r(XS/S) = r 0(XS/S).
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Proof. Fix an arbitrary point x 2 X and set s = j (x) 2 S. Then X = G(R)/Kx ,
and X_ = GC/Px can also be written ĜC/P̂x ⇢ H_g ; P̂x stabilizes the Lagrangian
subspace Vx := ⌦Xs ⇢ 3

_

C. We write

g = LieGC = Lie ĜC, kC = Lie Kx,C.

The Hodge decomposition of gwith respect to ad �hx takes the form u+
�kC�u�,

where u+, the Lie algebra of the unipotent radical of Px , is of type (�1, 1), kC is
of type (0, 0), and u� of type (1,�1). One has u+

� kC = Lie P̂x , kC � u� is the
Lie algebra of an opposite parabolic group P�x , and kC is the common (reductive)
Levi factor (cf. also [18, 5]).

Looking at the Hodge type, one finds that⇥
u+, u+

⇤
=

⇥
u�, u�

⇤
= 0,

⇥
kC, u+

⇤
⇢ u+,

⇥
kC, u�

⇤
⇢ u�,

⇥
u+, u�

⇤
⇢ kC. (3.1)

By the Jacobi identity, it follows that⇥
kC,

⇥
u+, u�

⇤⇤
⇢

⇥
u+, u�

⇤
, (3.2)

i.e. [u+, u�] is a Lie ideal of kC, hence a reductive Lie algebra.
We may identify Tx X_ = Ts S with u�. Note that 3_C is a faithful repre-

sentation of g and that Vx is stable under Lie Px = u+
+ kC. Using the Hodge

decomposition Vx � V̄x = 3_C
⇠
= H1dR(Xs), we can write the elements of g as ma-

trices in block form
� R S
T ◆(R)

�
, with R 2 kC, S 2 u+, T 2 u� and ◆ is the involution

exchanging Px and P�x . Identifying u+ with
�
0 u+

0 0
� �
respectively u� with

� 0 0
u� 0

��
,

one may write [u+, u�] =

�
u+

·u� 0
0 ◆(u+

·u�)

�
. Therefore u+

· u� is a reductive Lie
algebra acting on Vx . Accordingly, Vx decomposes as V0 � V 0, where V0 is the
kernel of this action, and (u� · u)V 0 = V 0.

The identifications u� = Ts S and Vx = (⌦XS )s lead to Vx � u�Vx =

(D1S ⌦XS )s .
Claim. Vx � u�Vx is the smallest g-submodule of 3_C containing Vx . Therefore, it
is the fiber at x of DS⌦XS .

The point is that Vx+u�Vx = Vx+u�V 0 is stable under u�, u� and kC, which
follows from (3.1) and from the fact that Vx is stable under u+

+ kC.

4. The case of maximal monodromy (subject to given polarization and
endomorphisms)

4.1. Abelian schemes of PEM type

Definition 4.1. A principally polarized Abelian scheme A/S is of PE-monodromy
type – or PEM type – if its geometric generic fibre is simple and the connected
algebraic monodromy is maximal with respect to the polarization  and the endo-
morphisms.
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In other words, the Zariski-closure of the monodromy group at s 2 S is the
maximal algebraic subgroup of Sp(H1(As), s) which commutes with the action
of End A/S (this condition is independent of s 2 S(C)).

Let us make this more explicit.The endomorphismQ-algebra D :=(EndA/S)⌦
Q is the same as the one of its generic fiber; since the latter is assumed to be geo-
metrically simple, D is also the endomorphism Q-algebra of the geometric generic
fibre. According to Albert’s classification, its falls into one of the following types:

I: a totally real field F = D;
II: a totally indefinite quaternion algebra D over a totally real field F ;
III: a totally indefinite quaternion algebra D over a totally real field F ;
IV: a division algebra D over a CM field F .

Let E � F be a maximal subfield of D, which we can take to be a CM field
except for type I, and let E+ be a maximal totally real subfield. For any embedding
� : E+ ,! R, let us order the embeddings �1, �2 : E ,! C above � if E 6= E+

(and set �1 = � otherwise). We identify � (respectively �1) with a homomorphism
E+
⌦C! C (respectively E ⌦C! C). Let us set

H� = H⌦E+
⌦C,� C (respectively H�1 = H⌦E⌦C,�1 C). (4.1)

By functoriality of the Gauss-Manin connection, these are direct factors of H as
DS-modules, and H� only depends (up to isomorphism) on the restriction [�] of �
to F+.

Then the maximal possible connected complex monodromy group at an arbi-
trary point s 2 S(C) is of the form 5[�] G[�] where G[�] and its representation on
H�,s are of the form

I: Sp(H�,s), St ;
II: Sp(H�1,s), St � St ;
III: SO(H�1,s), St � St ;
IV: SL(H�1,s), St � St_;

where St denotes the standard representation, and St_ its dual. Moreover, for types
I, II, III,H�1,s is an even-dimensional space, cf., e.g., [1, 5].
Remark 4.2. If A/S is endowed with a level n structure, it is of PEM type if and
only if the smallest weakly special subvariety of Ag,n containing the image of S is
a special subvariety of PEL type in the sense of Shimura, i.e. the image in Ag,n
of the moduli space for principally polarized Abelian varieties A such that D ⇢
(End A) ⌦ Q, equipped with level n structure [20] (for S = Spec k, A is of PEM
type if and only if A has complex multiplication).

One could also define the related (but weaker) notion of Abelian scheme A/S
of PE Hodge type, on replacing the monodromy group by the Mumford-Tate group,
cf., e.g., [1]. If A/S is endowed with a level n structure, it is of PE Hodge type if
and only if the smallest special subvariety of Ag,n containing the image of S is a
special subvariety of PEL type in the sense of Shimura.
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4.1.1. Parallel to (4.1), one has a decomposition

⌦A,� = ⌦A ⌦E+
⌦C,� C (respectively ⌦A,�1 = ⌦A ⌦E⌦C,�1 C). (4.2)

The sequence (1.2) induces an exact sequence

0! ⌦A,�1 ! H�1 ! H�1/⌦A,�1 ! 0. (4.3)

It turns out that for types I, II, III, H�1/⌦A,�1
⇠
= ⌦_A,�1

. This is not the case for
type IV, and the pair�

r[�] = dim⌦A,�1,s, s[�] = dimH�1,s/⌦A,�1,s
�

(4.4)

is an interesting invariant called the Shimura type (for type IV, the PEL families
depend not only on D, the polarization and the level structure, but also on these
pairs, when [�] runs among the real embeddings of F+). On the other hand,
⌦A,�2

⇠
= ⌦A,�1 for types I, II, III, while⌦A,�2

⇠
= (H�1/⌦A,�1)

_ for type IV.
4.1.2. By functoriality, the Kodaira-Spencer map induces a map

✓@,�1 : ⌦A,�1 ! H�1/⌦A,�1 . (4.5)

Therefore, rk ✓@,�1  min(r[�], s[�]). In particular, if for some [�], r[�] 6= s[�], then
r 0 < g.

Let us consider for example the Shimura family of PEL type of Abelian 3-
folds with multiplication by an imaginary quadratic field E (type IV) and invariant
(r[�] = 1, s[�] = 2) (it is non empty by [20]). The base is a Shimura surface, and
for this family one has r 00 = 2, r 0 = r = g = 3. Let A/S be the restriction of this
Abelian scheme to a general curve of this surface; then r 00 = r 0 = 2, r = g = 3.

One gets examples with r < g when r[�] · s[�] = 0 for some [�].

4.2. Abelian schemes of restricted PEM type

Definition 4.3. A principally polarized Abelian scheme A/S is of restricted PEM
type if it is of PEM type and for any (equivalently, for all) s 2 S(C), (⌦A)s is a free
E ⌦C-module.

In the latter condition, one could replace E by F . It is automatic for types I,
II, III. For type IV, it amounts to the equality r� = s� for every �; in that case,
��1
⇠
= �_�2 .

Theorem 4.4. In the restricted PEM case, one has r 00 = r 0 = r = g.
Proof. Thanks to Lemma 1.6 and Theorem 3.1, we are reduced to prove that r 00 = g
for a Shimura family of PEL type, provided r� = s� for every � in the type IV case.
This amounts in turn to showing that there exists @ such that ✓@,�1 has maximal rank,
equal to the rank ofH�1 which is twice the rankm of⌦A,�1 . Let g be one of the Lie
algebras sp(2m), so(2m), sl(2m). In the notation of the proof of Theorem 3.2, The
point is to show that u� contains an invertible element. But u+ consists of lower
left quadrants of elements of g viewed as a 2m-2m-matrices; and it is clear that the
lower left quadrant of a general element of g is an invertible m-m-matrix.
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Remarks 4.5.

i) One can be more precise and give an interpretation of the partial Kodaira-
Spencer map at the level of X_ as induced by isomorphisms

TG[�]/P
[�]

⇠

! S2L�1 (4.6)

for type I and II (the lower left quadrant of an element of g is symmetric),

TG[�]/P
[�]

⇠

! L⌦2�1 (4.7)

for type III and IV (the lower left quadrant of an element of g can be any
m-m-matrix).

ii) Of course one has r = g wheneverH is an irreducible DS-module.

Claim. If EndS A = Z and A/S is not isotrivial, then H is an irreducible DS-
module.

Indeed, the conclusion can be reformulated as: the local system R1 f an⇤ C is ir-
reducible. Since we know that it is semisimple [10, Section 4.2.6], this is also equiv-
alent, by Schur’s lemma, to End R1 f an⇤ C = C and also to End R1 f an⇤ Z = Z. This
equality then follows from the assumptions by the results of [10, Section 4.4]. More
precisely, let Z be as in loc. cit. the center of End R1 f an⇤ Q; then Z is contained in
(EndS A)⌦Q (loc. cit., 4.4.7), hence equal toQ, and by loc. cit. Proposition 4.4.11
(under conditions (a), (b), (c1) or (c2)), one deduces that End R1 f an⇤ Z = Z.

It would be interesting to determine whether r 00 = g in this case, beyond the
PEM case.

4.3. Differentiating Abelian integrals of the first kind with respect
to a parameter

From the above results about differentiating differential forms of the first kind with
respect to parameters, it is possible to draw results about differentiating their inte-
grals.

An Abelian integral of the first kind on A is a C-linear10 combination of
Abelian periods

R
� !, with ! 2 0⌦A and � in the period lattice on a universal

covering S̃ of San .

Theorem 4.6. Assume that A is an Abelian scheme of restricted PEM type over an
affine curve S. Let @ be a non-zero derivation ofO(S). Then the derivative of a non
zero Abelian integral of the first kind is never an Abelian integral of the first kind
(on A).

10 Or O(S)-linear, this amounts to the same.
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Proof. Let us first treat the case when the monodromy of A/S is Zariski-dense in
Sp2g for clarity. We may assume that ⌦A is free. Then an Abelian integral of
the first kind is an O(S)-linear combination

P
i j �i j

R
�i
! j of entries of

��2
�1

�
. By

(1.5),
P

i j �i j@
R
�i
! j =

P
i jk �i j (

R
�i
!k(R@)k j +

R
�i
!k(T@)k j ), i.e. anO(S)-linear

combination of entries of
��2R@+N2T@
�1R@+N1T@

�
.

Since the monodromy of A/S is Zariski-dense in Sp2g, Y =

��2 N2
�1 N1

�
is the

generic point of a Sp2g,C(S)-torsor, by differential Galois theory in the fuchsian case
(Picard-Vessiot-Schlesinger-Kolchin). Since there is no linear relations between the
entries of a generic element of Sp2g, there is no C(S)-linear relations between the
entries of

��2 N2
�1 N1

�
, or else between the entries of

��2 N2T@
�1 N1T@

�
since T@ is invertible

(4.4). One concludes that
P

i j �i j@
R
�i
! j =

P
µi j

R
�i
! j with �i j , µi j 2 O(S)

implies �i j = µi j = 0.
The other cases are treated similarly, decomposing H into pieces of rank 2m

indexed by � as above, and replacing Sp2g by Sp2m, SO2m or SL2m according to
the type.
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Institut de Mathématiques de Jussieu
4 place Jussieu
75005 Paris, France
yves.andre@imj-prg.fr


