Multiplicative relations among singular moduli

Jonathan Pila and Jacob Tsimerman

Abstract

We consider some Diophantine problems of mixed modular-multiplicative type. In particular, we prove, for each $n \geq 1$, a finiteness result for n-tuples of singular moduli minimally satisfying a non-trivial multiplicative relation.

Mathematics Subject Classification (2010): 14G18 (primary); 03C64 (secondary).

1. Introduction

We consider some Diophantine problems of mixed modular-multiplicative type associated with the Zilber-Pink conjecture (ZP; see $[4,26,35]$ and Section 2). Our results rely on the "modular Ax-Schanuel" theorem recently established by us [24].

Recall that a singular modulus is a complex number which is the j-invariant of an elliptic curve with complex multiplication; equivalently it is a number of the form $\sigma=j(\tau)$ where $j: \mathbb{H} \rightarrow \mathbb{C}$ is the elliptic modular function, $\mathbb{H}=\{z \in \mathbb{C}$: $\operatorname{Im}(z)>0\}$ is the complex upper-half plane, and $\tau \in \mathbb{H}$ is a quadratic point (i.e. $[\mathbb{Q}(\tau): \mathbb{Q}]=2)$.
Definition 1.1. An n-tuple $\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ of distinct singular moduli will be called a singular-dependent n-tuple if the set $\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ is multiplicatively dependent (i.e. $\prod \sigma_{i}^{a_{i}}=1$ for some integers a_{i} not all zero), but no proper subset is multiplicatively dependent.

Theorem 1.2. Let $n \geq 1$. There exist only finitely many singular-dependent n tuples.

The independence of proper subsets is clearly needed to avoid trivialities. The result is ineffective. Some examples (including a singular-dependent 5-tuple) can be found among the rational singular moduli (listed in [29, A.4]; see 6.3). Bilu-Masser-Zannier [3] show that there are no singular moduli with $\sigma_{1} \sigma_{2}=1$. This

JP was supported by an EPSRC grant entitled "O-minimality and Diophantine geometry", reference EP/J019232/1. JT was supported by an NSERC discovery grant.
Received February 3, 2015; accepted in revised form June 14, 2016.
Published online December 2017.
result is generalised by Bilu-Luca-Pizarro-Madariaga [2] to classify all solutions of $\sigma_{1} \sigma_{2} \in \mathbb{Q}^{\times}$. Habegger [12] shows that only finitely many singular moduli are algebraic units.

In addition to the "modular Ax-Schanuel", we make use of isogeny estimates and other arithmetic ingredients, gathered in Section 6, and we require the following result showing that distinct rational "translates" of the j-function are multiplicatively independent modulo constants. To formulate it, recall that, for $g_{1}, g_{2} \in$ $\mathrm{GL}_{2}^{+}(\mathbb{Q})$, the functions $j\left(g_{1} z\right), j\left(g_{2} z\right)$ are identically equal if and only if $\left[g_{1}\right]=$ [g_{2}] in $\operatorname{PSL}_{2}(\mathbb{Z}) \backslash \mathrm{PGL}_{2}^{+}(\mathbb{Q})$; functions $f_{1}, \ldots, f_{k}: \mathbb{H} \rightarrow \mathbb{C}$ will be called multiplicatively independent modulo constants if there is no relation $\prod_{i=1}^{k} f_{i}^{n_{i}}=c$ where n_{i} are integers, not all zero, and $c \in \mathbb{C}$.

Theorem 1.3. Let $g_{1}, \ldots, g_{k} \in \mathrm{GL}_{2}^{+}(\mathbb{Q})$. If the functions $j\left(g_{1} z\right), \ldots, j\left(g_{k} z\right)$ are pairwise distinct then they are multiplicatively independent modulo constants.

Theorem 1.3 is not predicted by ZP, nor would it follow from "Ax-Schanuel" for \exp and j (see Section 3). But in view of Theorem 1.3, Theorem 1.2 is implied by ZP.

The Zilber-Pink setting is introduced in Section 2. After the proofs of 1.3 and 1.2 in Section 4 and Section 6, we discuss further ZP problems in the same setting in Section 7, Section 8, and Section 9, obtaining some partial results and some results conditional on certain "weakly bounded height conjectures" which we formulate in this setting. These are along the lines of a conjecture of Habegger [10] (see also [11, Appendix B]) in the modular setting, itself an analogue of the "Bounded Height Conjecture" for $\left(\mathbb{C}^{\times}\right)^{n}$ formulated by Bombieri-Masser-Zannier [4] and proved by Habegger [9].

Acknowledgements. We thank Gareth Jones for comments. We are grateful to the referee for corrections and careful comments as well as for raising the question addressed in Section 9.

2. The Zilber-Pink setting

We identify varieties and subvarieties with their sets of complex points (thus $Y(1)(\mathbb{C})=\mathbb{C}$ and $\mathbb{G}_{\mathrm{m}}(\mathbb{C})=\mathbb{C}^{\times}$). Varieties and subvarieties are assumed irreducible over \mathbb{C}.

For $m, n \in \mathbb{N}=\{0,1,2, \ldots\}$ set

$$
X=X_{m, n}=Y(1)^{m} \times \mathbb{G}_{\mathrm{m}}^{n}
$$

Definition 2.1.

1. A weakly special subvariety of $Y(1)^{m}=X_{m, 0}=\mathbb{C}^{m}$ is a subvariety of the following form. There is a "partition" m_{0}, \ldots, m_{k} of $\{1, \ldots, m\}$, in which only
m_{0} is permitted to be 0 , but $k=0$ is permitted such that $M=M_{0} \times M_{1} \times$ $\ldots \times M_{k}$ where M_{0} is a point in $\mathbb{C}^{m_{0}}$ (here $\mathbb{C}^{m_{i}}$ refers to the cartesian product of the coordinates contained in m_{i}, which is a subset of $\{1, \ldots, m\}$) and, for $i=1, \ldots, k, M_{i} \subset \mathbb{C}^{m_{i}}$ is a modular curve;
2. A special point of \mathbb{C}^{m} is a weakly special subvariety M of dimension zero (so $n_{0}=\{1, \ldots, n\}$ and $M=M_{0}$) such that each coordinate of M is a singular modulus;
3. A special subvariety of \mathbb{C}^{m} is a weakly special subvariety such that $m_{0}=\emptyset$ or $M_{0} \in \mathbb{C}^{m_{0}}$ is a special point. It is strongly special if $m_{0}=\emptyset$;
4. A weakly special subvariety of $\mathbb{G}_{\mathrm{m}}^{n}=X_{0, n}=\left(\mathbb{C}^{\times}\right)^{n}$ is a coset of a subtorus, i.e. a subvariety defined by a finite system of equations $\prod x_{i}^{a_{i j}}=\xi_{j}, j=1, \ldots, k$ where, for each $j, a_{i j} \in \mathbb{Z}$ are not all zero, $\xi_{j} \in \mathbb{C}^{\times}$and the lattice generated by the exponent vectors $\left(a_{1 j}, \ldots, a_{n j}\right), j=1, \ldots, k$ is primitive;
5. A special point of $\mathbb{G}_{\mathrm{m}}^{n}$ is a torsion point;
6. A special subvariety of $\mathbb{G}_{\mathrm{m}}^{n}$ is a weakly special subvariety such that each ξ_{j} is a root of unity; i.e. it is a coset of a subtorus by a torsion point;
7. A weakly special subvariety of X is a product $M \times T$ where M, T are weakly special subvarieties of $Y(1)^{m}, \mathbb{G}_{\mathrm{m}}^{n}$, respectively, and likewise for a special point of X and special subvariety of X.

Definition 2.2. Let $W \subset X$ be a subvariety. A subvariety $A \subset W$ is called an atypical component (of W in X) if there is a special subvariety $T \subset X$ such that $A \subset W \cap T$ and

$$
\operatorname{dim} A>\operatorname{dim} W+\operatorname{dim} T-\operatorname{dim} X
$$

The atypical set of W (in X) is the union of all atypical components (of W in X), and is denoted $\operatorname{Atyp}(W, X)$, or $\operatorname{Atyp}(W)$ if X is implicit from the context.

Variants of the following conjecture, in different settings, were made independently by Zilber [35], Bombieri-Masser-Zannier [4], and Pink [26].
Conjecture 2.3 (Zilber-Pink for X). Let $W \subset X$. Then $\operatorname{Atyp}(W)$ is a finite union of atypical components; equivalently, there are only finitely many maximal atypical components.

The full Zilber-Pink conjecture is the same statement about an arbitrary mixed Shimura variety (with its special subvarieties), and an algebraic subvariety $W \subset X$. In fact the above is the analogue of the statements in $[4,35]$ in the general setting considered by Pink, and is notionally stronger than the statement in [26]. For a general discussion of the conjecture see [34].
Definition 2.4. Let $A \subset X$ be a subvariety. We denote by $\langle A\rangle$ the smallest special subvariety containing A (which exists as it is just the intersection of all special subvarities containing A), and define the defect of A by

$$
\delta(A)=\operatorname{dim}\langle A\rangle-\operatorname{dim} A
$$

Thus $A \subset W$ is atypical if $\delta(A)<\operatorname{dim} X-\operatorname{dim} W$, and W itself is atypical if $\langle W\rangle \neq X$.

Now in Conjecture 2.3 we only look for maximal atypical components, and we do not care if a larger atypical component contains a smaller but more atypical (i.e. smaller defect) one. But in fact the conjecture (taken over all special subvarieties of X) implies a formally stronger version (see [14, Proposition 2.4]).
Definition 2.5. A subvariety $W \subset V$ is called optimal for V if there is no strictly larger subvariety $W \subset W^{\prime} \subset V$ with $\delta\left(W^{\prime}\right) \leq \delta(W)$.
Conjecture 2.6. Let $V \subset X$. Then V has only finitely many optimal subvarieties.
For a particular V and X, finding (or establishing the finiteness of) all optimal subvarieties could be more difficult than finding (or establishing the finiteness of) all maximal atypical subvarieties.

Now (as in [14]) we can repeat the same pattern of definitions with weakly special subvarieties instead of special ones. The smallest weakly special subvariety containing W we denote $\langle W\rangle_{\text {geo }}$, and we define the geodesic defect to be

$$
\delta_{\mathrm{geo}}(W)=\operatorname{dim}\langle W\rangle_{\mathrm{geo}}-\operatorname{dim} W .
$$

A subvariety $W \subset V$ is called geodesic-optimal if there is no strictly larger subvariety $W^{\prime} \subset V$ with $\delta_{\text {geo }}\left(W^{\prime}\right) \leq \delta_{\text {geo }}(W)$. (This property is termed "cd-maximal" in the multiplicative setting in [27]). The following fact was established for modular, multiplicative and Abelian varieties separately in [14].

Proposition 2.7. Let $V \subset X_{m, n}$. An optimal subvariety of V is geodesic-optimal.
Proof. It is easy to adapt the proof of [14, Proposition 4.3] to show that $X_{m, n}$ has the "defect condition", and then the above follows from the formal properties of weakly special and special subvarieties, as in [14, Proposition 4.5].

Now we consider

$$
V=V_{n}=\left\{\left(x_{1}, \ldots, x_{n}, t_{1}, \ldots, t_{n}\right): x_{i}=t_{i}, i=1, \ldots, n\right\} \subset X_{n}=X_{n, n}
$$

We see that if a tuple $\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ of singular moduli satisfies a non-trivial multiplicative relation then the point

$$
\Sigma=\left(\sigma_{1}, \ldots, \sigma_{n}, \sigma_{1}, \ldots, \sigma_{n}\right) \in V
$$

lies in the intersection of V with a special subvariety of X of codimension $n+1$.
So such a point is an atypical component of V_{n}.

3. Mixed Ax-Schanuel

We now take again

$$
X=X_{m, n}=Y(1)^{m} \times \mathbb{G}_{\mathrm{m}}^{n}, \quad U=U_{m, n}=\mathbb{H}^{m} \times \mathbb{C}^{n}, \quad \text { and } \quad \pi: U \rightarrow X
$$

given by

$$
\pi\left(z_{1}, \ldots, z_{m}, u_{1}, \ldots, u_{n}\right)=\left(j\left(z_{1}\right), \ldots, j\left(z_{m}\right), \exp \left(u_{1}\right), \ldots, \exp \left(u_{n}\right)\right)
$$

Definition 3.1.

1. An algebraic subvariety of U will mean a complex-analytically irreducible component of $Y \cap U$ where $Y \subset \mathbb{C}^{m} \times \mathbb{C}^{n}$ is an algebraic subvariety;
2. A weakly special subvariety of U is an irreducible component of $\pi^{-1}(W)$ where W is a weakly special subvariety of X. Likewise for special subvariety of U.

The following result leads to the analogue of the "Weak Complex Ax" (WCA; [14, Conjecture 5.10]) in this mixed modular-multiplicative setting. It is deduced from the same statement in the two extreme special cases: WCA for $Y(1)^{n}$, which is a consequence of the full modular Ax-Schanuel result established in [24], and WCA for $\mathbb{G}_{\mathrm{m}}^{n}$, which is a consequence of Ax-Schanuel [1].

Note that we could avoid talking about "algebraic subvarieties of U " by taking Y to be an algebraic subvariety of $\mathbb{C}^{m} \times \mathbb{C}^{n}$ and A to be a complex-analytically irreducible component of $Y \cap \pi^{-1}(V)$.

Theorem 3.2. Let $V \subset X$ and $W \subset U$ be algebraic subvarieties and $A \subset W \cap$ $\pi^{-1}(V)$ a complex-analytically irreducible component. Then

$$
\operatorname{dim} A=\operatorname{dim} V+\operatorname{dim} W-\operatorname{dim} X
$$

unless A is contained in a proper weakly special subvariety of U.
Proof. We suppose that A is not contained in a proper weakly special subvariety of U, and prove the dimension statement. We may suppose that A is Zariski-dense in W and that $\pi(A)$ is Zariski-dense in V.

Let V_{0} be the image of V under the projection $X \rightarrow \mathbb{G}_{\mathrm{m}}^{n}$, and W_{0} the image of W under the projection $p_{0}: U \rightarrow \mathbb{C}^{n}$. Then the image A^{*} of A under p_{0}, being connected, is contained in some complex-analytically irreducible component $A_{0} \subset$ $W_{0} \cap \exp ^{-1}\left(V_{0}\right)$. Then A_{0} is not contained in a proper weakly special subvariety of \mathbb{C}^{n}, otherwise A would be contained in a proper weakly special subvariety of U. So by Ax-Schanuel ([1]; see also [32]) we have

$$
\operatorname{dim} A_{0} \leq \operatorname{dim} W_{0}+\operatorname{dim} V_{0}-\operatorname{dim} \mathbb{C}^{n}
$$

Now we look at fibres in \mathbb{H}^{m} and \mathbb{C}^{m}. We let $A_{u}, W_{u} \subset \mathbb{H}^{m}, V_{t} \subset \mathbb{C}^{m}$ be the fibres (of A, W, V respectively) over $u=\left(u_{1}, \ldots, u_{n}\right) \in A_{0}, u \in W_{0}, t=\left(t_{1}, \ldots, t_{n}\right) \in$ V_{0}, respectively. Now A_{0} must be Zariski-dense in W_{0}, else A could not be Zariskidense in W, and similarly $\exp \left(A_{0}\right)$ must be Zariski-dense in V_{0}.

Since A is irreducible, the image A^{*} has constant dimension (see [16, V. 3.2, Corollary 2]) equal to the rank $\operatorname{rk}\left(p_{0}\right)$ of $p_{0}: A \rightarrow A_{0}$, and $\operatorname{dim} A^{*} \leq \operatorname{dim} A_{0}$. Further we have [16, V.3.3] that $\operatorname{dim} A=\operatorname{rk}\left(p_{0}\right)+\lambda\left(p_{0}\right)=\operatorname{dim} A^{*}+\lambda\left(p_{0}\right)$ where $\lambda\left(p_{0}\right)$ is the generic (i.e. minimal) fibre dimension of p_{0}.

The projection $W \rightarrow W_{0}$ has a generic fibre dimension away from a locus $W^{\prime} \subset W$ of lower dimension, which does not contain A. So a generic fibre over A^{*} outside the image of W^{\prime} is generic for A^{*} as well as W_{0}, and likewise for the corresponding fibre over V_{0}.

For $u \in A^{*}$, if A_{u} is not contained in a proper weakly special subvariety of \mathbb{H}^{m}, then by Ax-Schanuel for the j-function [24] we have,

$$
\operatorname{dim} A_{u} \leq \operatorname{dim} W_{u}+\operatorname{dim} V_{u}-\operatorname{dim} \mathbb{H}^{m}
$$

If this holds generically, adding up the two last displays gives us the statement we want.

So we consider what happens when this fails generically. If the A_{u} were contained in a fixed proper weakly special, than A would be, which we have precluded. So the fibres must belong to a "moving family" of proper weakly specials. As elements of $\mathrm{GL}_{2}^{+}(\mathbb{Q})$ can't vary analytically, the only possibility is that some coordinates are constant on the fibres (though not constant on A).

Without loss of generality, we can suppose that these coordinates are z_{1}, \ldots, z_{k}. For $1 \leq \ell \leq k$, let V_{ℓ} be the image of V under the projection $X \rightarrow \mathbb{C}^{\ell} \times \mathbb{G}_{\mathrm{m}}^{n}$, and W_{ℓ} the image of W under the projection $p_{\ell}: U \rightarrow \mathbb{H}^{\ell} \times \mathbb{C}^{n}$. Then the image of A under p_{ℓ}, being connected, is contained in some complex-analytically irreducible component $A_{\ell} \subset W_{\ell} \cap \pi_{\ell, n}^{-1}\left(V_{\ell}\right)$. Note that this is consistent with the earlier definition of A_{0}, W_{0}, V_{0}.

Now we prove inductively that the dimension inequality holds at "level" ℓ, and once it holds at level k we are done. We assume that, for some $0 \leq h<k$:
(A) A_{h} is Zariski-dense in W_{h} and $\pi_{h}\left(A_{h}\right)$ is Zariski-dense in V_{h};
(B) $\operatorname{dim} A_{h} \leq \operatorname{dim} W_{h}+\operatorname{dim} V_{h}-(n+h)$.

We know that these both hold for $h=0$, and that (A) holds for all h.
Now z_{h+1} is constant on the fibres, so $\operatorname{dim} A_{h+1}=\operatorname{dim} A_{h}$. To show (B) we need only show that either $\operatorname{dim} W_{h+1}>\operatorname{dim} W_{h}$ or $\operatorname{dim} V_{h+1}>\operatorname{dim} V_{h}$.

Suppose that $\operatorname{dim} W_{h+1}=\operatorname{dim} W_{h}$. This means that, as functions on W, z_{h+1} is algebraic over $z_{1}, \ldots, z_{h}, u_{1}, \ldots, u_{n}$. But, as W is not contained in a proper weakly special subvariety, z_{h+1} is not constant on W nor does it satisfy any relation $z_{h+1}=g z_{i}$ where $1 \leq i \leq h$ and $g \in \mathrm{GL}_{2}^{+}(\mathbb{Q})$. But then, by the "AxLindemann" result of [22] for the j-function, $j\left(z_{h+1}\right)$ is algebraically independent of $j\left(z_{1}\right), \ldots, j\left(z_{h}\right), \exp \left(u_{1}\right), \ldots, \exp \left(u_{n}\right)$ as functions on W. Hence by the Zariski density these functions are independent as functions on A_{h+1}, and hence, by the Zariski-density of $\pi_{h+1}\left(A_{h+1}\right)$ in V_{h+1}, we must have that $\operatorname{dim} V_{h+1}=$ $\operatorname{dim} V_{h}+1$.

From this statement one may deduce, as explained in [23, above 5.7], the analogue of [14, Conjecture 5.10] (for j itself this follows from [24]).

Theorem 3.3. Let $U^{\prime} \subset U$ be a weakly special subvariety, and put $X^{\prime}=\pi\left(U^{\prime}\right)$. Let $V \subset X^{\prime}$ and $W \subset U^{\prime}$ be subvarieties, and A a complex-analytically irreducible component of $W \cap \pi^{-1}(V)$. Then

$$
\operatorname{dim} A=\operatorname{dim} V+\operatorname{dim} W-\operatorname{dim} X^{\prime}
$$

unless A is contained in a proper weakly special subvariety of U^{\prime}.

It is shown in [14] that Theorem 3.2 is equivalent by arguments using only the formal properties of the collection of weakly special subvarieties to the following version. We need the following definition from [14].
Definition 3.4. Fix a subvariety $V \subset X$.

1. A component with respect to V is a complex analytically irreducible component of $W \cap \pi^{-1}(V)$ for some algebraic subvariety $W \subset U$;
2. If A is a component with respect to V we define its defect to be $\partial(A)=$ $\operatorname{dim} \operatorname{Zcl}(A)-\operatorname{dim} A$, where $\operatorname{Zcl}(A)$ denotes the Zariski closure of A;
3. A component A with respect to V is called optimal for V if there is no structly larger component B with respect to V with $\partial(B) \leq \partial(A)$;
4. A component A with respect to V is called geodesic if it is a component of $W \cap \pi^{-1}(V)$ for some weakly special subvariety W.

Proposition 3.5. Let $V \subset X$. An optimal component with respect to V is geodesic.
Proof. The same as the proof that "Formulation A" implies "Formulation B" in [14]. (The proof of the reverse implication is also the same as given there.)

4. Proof of Theorem 1.3

We start by recalling some background on trees and lattices associated to $\mathrm{GL}_{2}^{+}(\mathbb{Q})$. Let $T_{\mathbb{Q}}=\mathrm{PSL}_{2}(\mathbb{Z}) \backslash \mathrm{PGL}_{2}^{+}(\mathbb{Q})$, where we assume their images are distinct. For a prime number $p, T_{\mathbb{Q}}$ maps into $T_{p}=\operatorname{PSL}_{2}\left(\mathbb{Z}_{p}\right) \backslash \mathrm{PGL}_{2}\left(\mathbb{Q}_{p}\right)$, and embeds into the product of the T_{p} over all p.

Now $T_{\mathbb{Q}}$ may be identified with the space of \mathbb{Z}-lattices in \mathbb{Q}^{2} up to scaling, by sending g to the lattice spanned by $e_{1} g, e_{2} g$, where $e_{1}=(1,0), e_{2}=(0,1)$. Likewise, T_{p} may be identified with the space of \mathbb{Z}_{p}-lattices in \mathbb{Q}_{p}^{2} up to scale. Moreover, T_{p} may be given the structure of a connected $(p+1)$-regular tree by saying that two lattices L, L^{\prime} are adjacent if one can scale L^{\prime} to be inside L with index p. There is a natural right action of $\mathrm{PGL}_{2}\left(\mathbb{Q}_{p}\right)$ on T_{p} : it acts on \mathbb{Q}_{p}^{2} (up to scaling) in the natural way and thus on the lattices in it.

Since T_{p} is a tree there is a unique shortest path between any two nodes, and any path between those nodes traverses that path.

Our proof will study curves isogenous to the curve E_{0} whose j-invariant is 0 . These curves have CM by $\mathbb{Z}[\zeta]$, where $\zeta=\exp (2 \pi i / 3)$. A point $z \in \mathbb{H}$ with $j(z)=0$ corresponds to the elliptic curve E_{0} together with a basis v_{1}, v_{2} for its integral homology $H_{1}\left(E_{0}, \mathbb{Z}\right)$. For any sub-lattice $L \subset H_{1}\left(E_{0}, \mathbb{Q}\right)$ we can define an elliptic curve E_{L} isogenous to E_{0} which only depends on L up to scale. To do this, scale L until it contains $H_{1}\left(E_{0}, \mathbb{Z}\right)$ and the quotient is cyclic. We can identify $Q_{L}=L / H_{1}\left(E_{0}, \mathbb{Z}\right)$ with a subgroup of the torsion group of E_{0} and take the quotient. Define $T_{\mathbb{Q}}^{\prime}$ to be the space of lattices in $H_{1}\left(E_{0}, \mathbb{Q}\right)$, up to scaling, and correspondingly T_{p}^{\prime} the space of \mathbb{Z}_{p}-lattices in $H_{1}\left(E_{0}, \mathbb{Q}_{p}\right)$, up to scaling.

Now suppose that E_{L} is isomorphic to E_{0}. This implies that the quotient Q_{L} is the same as that of the kernel of an endomorphism x of E_{0}. If we identify $H_{1}(E, \mathbb{Z})$ with $\mathbb{Z}[\zeta]$, then the kernel of multiplication by x is $\left(x^{-1}\right) / \mathbb{Z}[\zeta]$, where (m) denotes the fractional ideal generated by m. These correspond to elements of the fractional ideal group of $\mathbb{Z}_{p}[\zeta]$ (providing the endomorphisms giving the kernels) quotiented out by \mathbb{Q}_{p}^{\times}(scaling). Explicitly we find the following.

1. If $p \equiv 1 \bmod 3$ then (p) has two disctinct primes above it, whose product is (p). Then $\mathbb{Z}_{p}[\zeta]=\mathbb{Z}_{p} \oplus \mathbb{Z}_{p}$ with ideal group \mathbb{Z}^{2}, which we quotient by the diagonal \mathbb{Z}. These nodes give a line in the tree: each such node being adjacent to two other such nodes for which the edges correspond to the two primes over (p);
2. If $p \equiv 2 \bmod 3$ then $\mathbb{Z}_{p}[\zeta]=\mathbb{Z}_{p^{2}}$, with ideal group \mathbb{Z} which we quotient by \mathbb{Z}. Thus in this case there is just one node coming from curves isomorphic to E_{0};
3. If $p=3$ we get a ramified extension of \mathbb{Z}_{3}, which still has ideal group \mathbb{Z} (generated by powers of the uniformiser) but now we quotient by $2 \mathbb{Z}$ since 3 has valuation 2 . We thus have two nodes coming from curves isomorphic to E_{0}, which are adjacent in the tree.

Note that in every case there is at least one node N^{\prime} of T_{p}^{\prime} adjacent to $H_{1}\left(E_{0}, \mathbb{Z}\right)$ such that any lattice L for which the shortest path from $H_{1}\left(E_{0}, \mathbb{Z}\right)$ to L goes through N^{\prime} is not isomorphic to E_{0}.

Proposition 4.1. Let $g_{1}, \ldots, g_{k} \in \mathrm{GL}_{2}^{+}(\mathbb{Q})$ and suppose that the functions $j\left(g_{i} z\right)$ are distinct. Then there exists $z \in \mathbb{H}$ such that $j\left(g_{i} z\right)=0$ for exactly one i.

Proof. Suppose first that there exists a prime number p such that the images u_{i} of the g_{i} in T_{p}^{\prime} are distinct. Without loss of generality we may assume that g_{1}, g_{2} have images u_{1}, u_{2} in T_{p}^{\prime} whose distance is at least as large as that between the images of any distinct g_{i}, g_{k}. This implies there is a unique node N adjacent to u_{1} such that the shortest path from u_{1} to any other u_{i} goes through N. We may further suppose without loss of generality that $g_{1}=1$.

Fixing a basis v_{1}, v_{2} for $H_{1}\left(E_{0}, \mathbb{Z}\right)$ gives a map from T_{p} to T_{p}^{\prime}, sending \mathbb{Z}^{2} to $H_{1}\left(E_{0}, \mathbb{Z}\right)$. By choosing v_{1}, v_{2} appropriately we can send N to N^{\prime}. It follows that the z with $j(z)=0$ corresponding to this choice has $j\left(g_{i} z\right) \neq 0$ for all $i>1$.

Now we give the proof without the simplifying assumption. While no single p may separate all the g_{i}, finitely many p do. Let $S=\left\{g_{1}, \ldots, g_{k}\right\}$. Consider the image of S in T_{2} and pick two nodes with maximal distance among images of pairs from S. Let u_{2} be one of these "extremal" nodes, and let S_{2} be the subset of S whose image in T_{2} is u_{2}.

Now consider the image of S_{2} in T_{3}, choose an extremal node u_{3} and let S_{3} be the subset of S_{2} whose image in T_{3} is u_{3}. After finitely many steps we arrive at a set S_{p} with only a single element. We may assume this element is g_{1} and that $g_{1}=1$.

For each prime $q \leq p$ we let N_{q} be the unique node adjacent to u_{q} through which all paths from u_{q} to other images S_{r} go, where r is the prime preceding q (or $r=0$ for $p=2$).

Choose a basis v_{1}, v_{2} of $H_{1}\left(E_{0}, \mathbb{Z}\right)$ such that the induced map from T_{q} to T_{q}^{\prime} takes N_{q} to N_{q}^{\prime} for all $q \leq p$. The fact that this is possible amounts to the fact that $\mathrm{SL}_{2}(\mathbb{Z})$ subjects onto $\mathrm{SL}_{2}(\mathbb{Z} / n \mathbb{Z})$ for every n.

The claim now is that, for each $i>1, j\left(g_{i} z\right) \neq 0$. To see this, let $q<p$ be the largest prime such that $g_{i} \in S_{q}$, and $q^{\prime} \leq p$ the next prime after q. The above argument in the tree $T_{q^{\prime}}^{\prime}$ shows that $g_{i} z$ does not represent E_{0}. This proves the claim and the proposition follows.

Proof of Theorem 1.3. Theorem 1.3 follows directly from Proposition 4.1

5. Arithmetic estimates

The proof of Theorem 1.2, and further results considered in the sequel, use some basic arithmetic estimates which are gathered here. Several of them were used for similar purposes in [13]. The absolute logarithmic Weil height of a non-zero algebraic number α is denoted $h(\alpha)$; the absolute Weil height is $H(\alpha)=\exp h(\alpha)$.

Constants $c_{0}, c_{1}, c_{2} \ldots$ here and in the sequel are positive and absolute (though not necessarily effective), and have only the indicated dependencies.

Weak Lehmer inequality

A lower bound for the height by any fixed negative power of the degree suffices for our purposes. Loher has proved (see [17]): if $[K: \mathbb{Q}]=d \geq 2$ and $0 \neq \alpha \in K$ is not a root of unity then

$$
\begin{equation*}
h(\alpha) \geq \frac{1}{37} d^{-2}(\log d)^{-1} \tag{5.1}
\end{equation*}
$$

Singular moduli

For a singular modulus σ, we denote by R_{σ} the associated quadratic order and $D_{\sigma}=D\left(R_{\sigma}\right)$ its discriminant. Habegger [12, Lemma 1] shows that

$$
\begin{equation*}
h(\sigma) \geq c_{1} \log \left|D_{\sigma}\right|-c_{0} \tag{5.2}
\end{equation*}
$$

based on results of Colmez and Nakkajima-Taguchi.
No singular modulus is a root of unity (we thank Gareth Jones for pointing this out: a singular modulus has a Galois conjugate which is real, but ± 1 are not singular moduli by inspecting the list of rational singular moduli, e.g., in [29, A. 4]). This together with Kronecker's theorem imply, for a non-zero singular modulus σ,

$$
\begin{equation*}
h(\sigma)>c_{2} \tag{5.3}
\end{equation*}
$$

In the other direction [13, Lemma 4.3], for all $\epsilon>0$,

$$
\begin{equation*}
h(\sigma) \leq c_{3}(\epsilon)\left|D_{\sigma}\right|^{\epsilon} \tag{5.4}
\end{equation*}
$$

Finally, we note that if τ is a pre-image of a singular modulus σ in the classical fundamental domain for the $\mathrm{SL}_{2}(\mathbb{Z})$ action then (see [22, 5.7])

$$
\begin{equation*}
H(\tau) \leq 2 D_{\sigma} \tag{5.5}
\end{equation*}
$$

Class numbers of imaginary quadratic fields

The class number of an imaginary quadratic order R will be denoted $\mathrm{Cl}(R)$. Recall that, for a singular modulus $\sigma,[\mathbb{Q}(\sigma): \mathbb{Q}]=\mathrm{Cl}\left(R_{\sigma}\right)$. By Landau-Siegel, for every $\epsilon>0$,

$$
\begin{equation*}
\mathrm{Cl}(R) \geq c_{4}(\epsilon)|D(R)|^{\frac{1}{2}-\epsilon} . \tag{5.6}
\end{equation*}
$$

In the other direction,

$$
\begin{equation*}
\mathrm{Cl}(R) \leq c_{5}(\epsilon)|D(R)|^{\frac{1}{2}+\epsilon} \tag{5.7}
\end{equation*}
$$

with $c_{5}(\epsilon)$ explicit (see, e.g., Paulin [20, Proposition 2.2], for a precise statement).

Faltings height of an elliptic curve

Let E be an elliptic curve defined over a number field. Let $h_{\mathrm{F}}(E)$ denote the semistable Faltings height of E, and j_{E} its j-invariant. Then ([31, 2.1]; see also [10])

$$
\begin{equation*}
\left|h\left(j_{E}\right)-\frac{1}{12} h_{\mathrm{F}}(E)\right| \leq c_{6} \log \max \left\{2, h\left(j_{E}\right)\right\} \tag{5.8}
\end{equation*}
$$

with an absolute constant c_{6}.
Further, if E_{1}, E_{2} are elliptic curves defined over a number field with a cyclic isogney of order N between them (i.e. $\left.\Phi_{N}\left(j_{E_{1}}, j_{E_{2}}\right)=0\right)$ then ([28, 2.1.4]; see also [13, proof of Lemma 4.2])

$$
\begin{equation*}
\left|h_{\mathrm{F}}\left(E_{1}\right)-h_{\mathrm{F}}\left(E_{2}\right)\right| \leq \frac{1}{2} \log N . \tag{5.9}
\end{equation*}
$$

Isogeny estimate

Let K be a number field with $d=\max \{2,[K: \mathbb{Q}]\}$. Let E, E^{\prime} be elliptic curves defined over K, with $h_{\mathrm{F}}(E)$ and $h_{\mathrm{F}}\left(E^{\prime}\right)$ their semi-stable Faltings heights. When E and E^{\prime} are isogenous, the fundamental results of Masser and Wüstholz [19] give an estimate for the degree of as minimal isogeny between E, E^{\prime} in terms of $[K: \mathbb{Q}]$ and the height of one of them. Gaudron and Rémond [8] prove the following explicit result improving that of Pellarin [21].

If E, E^{\prime} are isogenous then there exists an isogeny $E \rightarrow E^{\prime}$ of degree N satisfying

$$
\begin{equation*}
N \leq 10^{13} d^{2} \max \left\{h_{\mathrm{F}}(E), \log d, 1\right\}^{2} \tag{5.10}
\end{equation*}
$$

In particular there exists a cyclic isogeny with the same degree bound.

Estimate for the height of a multiplicative dependence

The following result, due to Yu (see [17]), allows us to get control of the height of a multiplicative relation on our singular moduli in terms of their height. It is thus a kind of "multiplicative isogeny estimate".

Let $\alpha_{1}, \ldots, \alpha_{n}$ be multiplicatively dependent non-zero elements of a number field K of degree $d \geq 2$. Suppose that any proper subset of the α_{i} is multiplicatively independent. Then there exist rational integers b_{1}, \ldots, b_{n} with $\alpha_{1}^{b_{1}} \ldots \alpha_{n}^{b_{n}}=1$ and

$$
\begin{equation*}
\left|b_{i}\right| \leq c_{7}(n) d^{n} \log d h\left(\alpha_{1}\right) \ldots h\left(\alpha_{n}\right) / h\left(\alpha_{i}\right), \quad i=1, \ldots, n . \tag{5.11}
\end{equation*}
$$

6. Proof of Theorem 1.2

Fix n. Let $X=X_{n}=X_{n, n}=Y(1)^{n} \times \mathbb{G}_{\mathrm{m}}^{n}$, and let

$$
V=V_{n}=\left\{\left(x_{1}, \ldots, x_{n}, t_{1}, \ldots, t_{n}\right) \in X: t_{i}=x_{i}, i=1, \ldots, n\right\} .
$$

So $\operatorname{dim} V=\operatorname{codim} V=n$ and a singular-dependent n tuple $\left(x_{1}, \ldots, x_{n}\right)$ gives rise to an atypical point $\left(x_{1}, \ldots, x_{n}, x_{1}, \ldots, x_{n}\right) \in V$.

Lemma 6.1. A singular-dependent n-tuple may not be contained in an atypical component of V of positive dimension.

Proof. A singular-dependent tuple can never be contained in a special subvariety of X defined by two (independent) multiplicative conditions, for between them we could eliminate one coordinate, contradicting the minimality.

Now a special subvariety of the form $M \times \mathbb{G}_{\mathrm{m}}^{n}$, where M is a special subvariety of $Y(1)^{n}$, can never intersect V atypically; neither can one of the form $Y(1)^{n} \times T$ where T is a special subvariety of $\mathbb{G}_{\mathrm{m}}^{n}$.

Let us consider a special subvariety of the form $M \times T$ where T is defined by one multiplicative condition. The intersection of $M \times T$ with V consists of those n-tuples of M which belong to T. This would typically have dimension $\operatorname{dim} M-1$, and so to be atypical we must have $M \cap \mathbb{G}_{\mathrm{m}}^{n} \subset T$. Now Theorem 1.3 implies that M has two identically equal coordinates, but then cannot contain a singular-dependent tuple.

Proof of Theorem 1.2. If $\sigma=j(\tau)$ is a singular modulus, so that $\tau \in \mathbb{H}$ is quadratic over \mathbb{Q}, we define its complexity $\Delta(\sigma)$ to be the absolute value of the discriminant of τ i.e. $\Delta(\sigma)=\left|D_{\sigma}\right|=\left|b^{2}-4 a c\right|$ where $a x^{2}+b x+c \in \mathbb{Z}[x]$ with $(a, b, c)=1$ has τ as a root. For a tuple $\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ of singular moduli we define the complexity of σ to be $\Delta(\sigma)=\max \left(\Delta\left(\sigma_{1}\right), \ldots, \Delta\left(\sigma_{n}\right)\right)$.

Now suppose that V contains a point corresponding to a singular-dependent n-tuple of sufficiently large complexity, Δ. By Landau-Siegel (5.6) with $\epsilon=1 / 4$, such a tuple has, for sufficiently large (though ineffective) Δ, at least $c_{5} \Delta^{1 / 4}$ conjugates over \mathbb{Q}. Each is a singular-dependent n-tuple, and they give rise to distinct points in V.

Let F_{j} be the standard fundamental domain for the action of $\mathrm{SL}_{2}(\mathbb{Z})$ on \mathbb{H}, and $F_{\text {exp }}$ the standard fundamental domain for the action of $2 \pi i \mathbb{Z}$ (by translation) on \mathbb{C}.

We now consider the sets

$$
Y=\left\{(z, u, r, s) \in F_{j}^{n} \times F_{\mathrm{exp}}^{n} \times \mathbb{R}^{n} \times \mathbb{R}: j(z)=\exp (u), r \cdot u=2 \pi i s\right\}
$$

so that $(j(z), \exp (u)) \in V$ for $(z, u, r, s) \in Y$ and

$$
Z=\left\{(z, r, s) \in F_{j}^{n} \times \mathbb{R}^{n} \times \mathbb{R}: \exists u,(z, u, r, s) \in Y\right\}
$$

Then Z is a definable set in the o-minimal structure $\mathbb{R}_{\mathrm{an}} \exp$.
A singular-dependent n-tuple $\sigma \in V$ has a pre-image

$$
\tau=\left(z_{1}, \ldots, z_{n}, u_{1}, \ldots, u_{n}\right) \in F_{j}^{n} \times F_{\exp }^{n}
$$

and this gives rise to a point in Z, where the coordinates in \mathbb{R}^{n+1} register the multiplicative dependence of the tuple, as follows. The F_{j} coordinates are the z_{i}, so they are quadratic points, and as recalled in (5.5) their absolute height is bounded by $2 \Delta\left(\sigma_{i}\right)$. The point in \mathbb{R}^{n+1} has integer coordinates $\left(b_{1}, \ldots, b_{n}, b\right)$, not all zero, such that

$$
\sum_{i=1}^{n} b_{i} u_{i}=2 \pi i b
$$

Now in view of the height estimate (5.4), and degree estimate (5.7) on the $j\left(z_{i}\right)$, (5.11) gives that the b_{i} in a multiplicative relation among the σ_{i} may be taken to be bounded in size by $c_{8}(n) \Delta^{n}$. With this bound on the $\left|b_{i}\right|$, and since the imaginary parts of the u_{i} are bounded by $2 \pi i$, we get an upper bound on $|b|$. We find that the height of $\left(z_{1}, \ldots, z_{n}, b_{1}, \ldots, b_{n}, b\right)$ is bounded by $c_{9}(n) \Delta^{n}$.

In view of the Galois lower bound, a singular-dependent n-tuple of complexity Δ gives rise to at least

$$
T^{\frac{1}{4 n}} \text { quadratic points on } Z \text { with absolute height at most } T=c_{10}(n) \Delta^{n}
$$

For sufficiently large Δ, the Counting Theorem [25] applied to quadratic points on Z (considered in real coordinates) implies that it contains a semi-algebraic set of positive dimension. This implies (by the arguments used in [13,14]: the corresponding points (z, u) in $\mathbb{H}^{n} \times \mathbb{C}^{n}$ cannot be constant on all such semi-algebraic sets) that there is a complex algebraic $Y \subset U$ which intersects Z in a positive-dimensional component A which is atypical in dimension and contains singular-dependent n tuples.

By the mixed Ax-Schanuel of Section 3 this implies that there is a positivedimensional weakly special subvariety W containing Y containing a component B with $A \subset B$ and $\partial(B) \leq \partial(A)$. Moreover, it contains the special subvarieties that contain (some of) the singular-dependent points, so W is a special subvariety of positive dimension containing singular-dependent points of V, which we have seen is impossible.

So Δ is bounded, giving the finiteness.

Example 6.2. An example of a singular-dependent 5-tuple is (see [29, A. 4]):

$$
\left(-2^{15} 3^{3} 5^{3} 11^{3}, \quad-2^{15}, \quad 2^{3} 3^{3} 11^{3}, \quad 2^{6} 3^{3}, \quad 2^{15} 3^{1} 5^{3}\right)
$$

One also has a 3-tuple $\left(-2^{15},-2^{15} 3^{3}, 2^{6} 3^{3}\right)$ and 4-tuple $\left(2^{4} 3^{3} 5^{3},-2^{15} 3^{1} 5^{3},-3^{3} 5^{3}\right.$, $2^{6} 5^{3}$).

7. On the atypical set of $\boldsymbol{V}_{\boldsymbol{n}}$

The atypical set of V_{n} is the union of its proper optimal components (V_{n} itself is always optimal but never atypical). Since optimal components are geodesic-optimal Proposition 2.7, we will investigate the possibilities for these.

We observe that any geodesic-optimal components which dominate every coordinate can only come from an optimal strongly special subvariety. The finiteness of these, even if we cannot identify them, is guaranteed by o-minimality.
Definition 7.1. Complex numbers x, y will be called Hecke equivalent if $\Phi_{N}(x, y)=$ 0 for some $N \geq 1$. I.e., if the elliptic curves with j-invariants x and y are isogenous.

7.1. Geodesic-optimal components of dimension \boldsymbol{n}

As already observed, V_{n} is not atypical since it dominates both $Y(1)^{n}$ and $\mathbb{G}_{\mathrm{m}}^{n}$. In other words, the defect of V_{n} is equal to its codimension.

7.2. Geodesic-optimal components of dimension $\boldsymbol{n}-1$

Let $T \subset X$ be a geodesic subvariety of co-dimension 2. Can $T \cap V$ have dimension $n-1$? There are two equations defining T, each being one of four possible types: a single modular relation, a constant modular coordinate, a single multiplicative relation, a constant multiplicative coordinate.

Now if both equations are of modular (respectively multiplicative) type we never get an atypical component, because V dominates $Y(1)^{n}$ (respectively $\mathbb{G}_{\mathrm{m}}^{n}$). The same is true for any T which is defined purely by modular (respectively multiplicative) relations.

So we consider T defined by one condition of each type. Let us call T_{1} the projection of T to the $Y(1)^{n}$ factor, which is a geodesic subvariety of codimension 1 , and T_{2} its projection to $\mathbb{G}_{\mathrm{m}}^{n}$. We get an atypical component of dimension $n-1$ if either $T_{1} \cap \mathbb{G}_{\mathrm{m}}^{n}$ is contained in T_{2}, or if T_{2} is contained in T_{1} (i.e. when both are considered in the same copy of $\left.\left(\mathbb{C}^{\times}\right)^{n}\right)$.

If the modular condition is a modular relation (rather than a constant coordinate) then the first is excluded by Theorem 1.3, unless it is of the form $x_{i}=x_{j}$. If the multiplicative relation is not a fixed coordinate, the other inclusion is also impossible unless it is of the form $t_{i}=t_{j}$.

So we are reduced to considering constant coordinate conditions on both sides. This obviously leads to a component of dimension $n-1$ if the conditions coincide:
$x_{i}=\xi=t_{i}$. However such a component can only be atypical (i.e. arise from the intersection of V_{n} with a special subvariety of codimension (at most) 2 if ξ is both a singular modulus and a root of unity. But this never occurs, as remarked in Section 5.

This establishes ZP for V_{1}, which is the curve defined by $x_{1}=t_{1}$ in $\mathbb{C} \times \mathbb{C}^{\times}$. And it shows that V_{2} has no atypical subvarieties of positive dimension apart from the "diagonal" $x_{1}=x_{2}$.

Proposition 7.2. ZP holds for V_{2}.
Proof. In view of the fact that the only atypical component of positive dimension is the "diagonal", which has defect zero, we are reduced to showing that V_{2} has only finitely many optimal points, i.e. points which are atypical but not contained in the "diagonal". A point $\left(x_{1}, x_{2}, x_{1}, x_{2}\right) \in V_{2}$ is atypical if it lies on a special subvariety of codimension 3. There are then two cases: we have two independent modular conditions and one multiplicative, or two multiplicative and one modular relation.

The former case is exactly the question of singular-dependent 2 tuples, whose finiteness we have already established. The latter leads to the question of two (unequal) roots of unity which satisfy a modular relation. This is established in the following proposition, by a similar argument to that used in (5.2); and with this the proof is complete.

We may observe that the optimal points of V_{2} satisfy 3 special relations (never 4), so have "defect" 1 .

Definition 7.3. A pair of distinct roots of unity is called a modular pair if they satisfy a modular relation.

Proposition 7.4. There exist only finitely many modular pairs.
Proof. Let $\left(\zeta_{1}, \zeta_{2}\right)$ be such a point, where the order of ζ_{i} is M_{i} and $\Phi_{L}\left(\zeta_{1}, \zeta_{2}\right)=0$. The point is that the order of the root of unity, and their bounded height, leads to a bound on the degree of the modular relation. Specifically, by (5.8), the semistable Faltings height of the corresponding elliptic curves E_{1}, E_{2} with j-invariants ζ_{1}, ζ_{2} are bounded, and so by the isogeny estimate (5.10) there is a modular relation $\Phi_{N}\left(\zeta_{1}, \zeta_{2}\right)=0$ with $N \leq c_{11} \max \left\{M_{1}, M_{2}\right\}^{5}$. Thus such a point leads to a rational point on a suitable definable set whose height is bounded by a polynomial in the orders of the two roots, and if it is of sufficiently large complexity it forces the existence of a higher dimensional atypical intersection containing such points. But the only atypical set of dimension 1 is given by $x_{1}=x_{2}, t_{1}=t_{2}$.

As modular relations always subsist between two numbers, there is no notion of "modular-multiplicative n-tuples" analogous to singular-dependent tuples. However, an immediate consequence of the above is that, for any n, there exists only finitely many n-tuples of distinct roots of unity which are pairwise Hecke equivalent (and none for sufficiently large n).

7.3. Geodesic-optimal components of dimension $\boldsymbol{n} \mathbf{- 2}$

These arise from intersecting V_{n} with a geodesic subvariety T of codimension (at least) 3 . We must have at least 1 relation of each type, and if they are all of "nonconstant" type (no fixed coordinates) then we get finiteness by o-minimality.

If there is one constant condition, this immediately gives a second such condition of the other type, and then any additional non-constant condition (i.e. not forcing any further constant coordinates) will give a component of dimension $n-2$. However, no such component can be atypical.

Consider the case of 3 constant conditions. First the case of two fixed modular coordinates. This will give rise to an atypical intersection if the two fixed values are multiplicatively related. Next the case of two fixed multiplicative coordinates. This will give rise to an atypical component if the two fixed values are Hecke equivalent. The finiteness of such components follows from ZP for V_{2}, and they all have defect 2. Thus:

Proposition 7.5. For $n \geq 1, V_{n}$ has only finitely many maximal atypical components of dimension $n-2$.

But for $n=3$ we can in fact exclude "strongly atypical" altogether. Such a component has one of two shapes.

1. Two modular relations and one multiplicative relation. This would be atypical if the resulting modular curve satisfied the multiplicative relation, but this is impossible by Theorem 1.3;
2. Two multiplicative relations and one modular relation. This gives a "multiplicative curve", which can be parameterised as $\left(\zeta_{1} t^{a_{1}}, \zeta_{2} t^{a_{2}}, \zeta_{3} t^{a_{3}}\right)$, where ζ_{i} are roots of unity and a_{i} integers. As the $\Phi_{N}, N \geq 2$ are symmetric, two coordinates cannot satisfy a modular equation unless $a_{i}=a_{j}$ (so that $N=1$ and $\left.\Phi_{1}=X-Y\right)$ and $\zeta_{i}=\zeta_{j}$.

Proposition 7.6. The positive dimensional atypical components of V_{3} and their defects may be described as follows:

1. The intersection of V_{3} with $x_{i}=x_{j}, i \neq j$ is a copy of V_{2} contained in X_{2} (hence of defect 2) and has some atypical points in it, which have defect 1 . It contains also the subvariety with $x_{1}=x_{2}=x_{3}$, which has defect 0 ;
2. A singular-dependent 2-tuple $\sigma=\left(\sigma_{1}, \sigma_{2}\right)$ gives rise to an atypical component A_{σ} of dimension 1 and defect 2. (There may exist singular moduli which belong to two distinct such pairs σ, σ^{\prime}. Then we get a point $\left(A_{\sigma} \cap A_{\sigma^{\prime}}\right)$ of defect 1$)$;
3. A modular pair $\zeta=\left(\zeta_{1}, \zeta_{2}\right)$ gives rise to an atypical component B_{ζ} of dimension 1 and defect 2 . (There may exist roots of unity belonging to two distinct modular pairs ζ, ζ^{\prime}. Then we get a point ($B_{\zeta} \cap B_{\zeta^{\prime}}$) of defect 1.)

In particular, there are no positive dimensional "strongly atypical" components (i.e., with no constant coordinates).

Thus ZP for V_{3} depends on the finiteness of its atypical points off all the above positive dimensional atypical components. This leads to some Diophantine questions which would establish ZP for V_{3}, which we study in the next section.

Remark 7.7. Note that X contains families of weakly special subvarieties which intersect V_{n} atypically, namely those defined be relations the form $x_{i}=x_{j}$ (and $t_{i}=t_{j}$) or $x_{k}=t_{k}=c_{k} \in \mathbb{C}^{\times}$for various choices of $(i, j), i \neq j, k$. If m such conditions are imposed, the resulting weakly special subvariety has dimension $2 n-2 m$ and intersects V_{n} in a component of dimension $n-m$, so has geodesic defect $n-m$.

Conjecture 7.8. The atypical geodesic components described in Remark 7.7 give all geodesic optimal subvarieties of V_{n} for any n; in particular, apart from components defined by "diagonal" equations $x_{i}=x_{j}$ there are no "strongly optimal" geodesic optimal components (i.e. with no constant coordinates).

8. Optimal points in V_{3}

The optimal points in $\left(x_{1}, x_{2}, x_{3}, x_{1}, x_{2}, x_{3}\right) \in V_{3}$ fall into two classes. Those which are atypical in satisfying at least 4 special conditions, but are not contained in atypical component of higher dimension. And those which are "more atypical", satisfying 5 special conditions (it is not possible to have 6: only a triple of singular moduli which were also roots of unity could achieve this), though lying in an atypical set of larger dimension but larger defect. Those lying on diagonals $x_{i}=x_{j}, i \neq j$ are easy to describe, we consider here those that do not.

Let us first consider points satisfying 5 special conditions. These also fall into two types: 3 modular, 2 multiplicative, or the other way around. If there are 3 modular conditions then each x_{i} is a singular modulus. The two multiplicative conditions mean either than one x_{j} is torsion, and the other two multiplicatively related, or the three are pairwise multiplicatively related. The former is impossible. Now only finitely many pairs of singular moduli have a multiplicative relation, so x_{1}, x_{2} comes from a finite set, and x_{3} comes also from a finite set. If there are three multiplicative relations then each x_{i} is torsion. Only finitely many pairs of (distinct) roots of unity satisfy isogenies, and we get finiteness (there are no "Hecke equivalences" involving three points!). All these points have defect 1 .

Now we consider points $\left(x_{1}, x_{2}, x_{3}, x_{1}, x_{2}, x_{3}\right) \in V_{3}$, away from positive dimensional atypical subvarieties, satisfying 4 special conditions. The "generic" situation involves no singular moduli or roots of unity.

Problem 8.1. Prove that there exist only finitely many triples x_{1}, x_{2}, x_{3} of distinct non-zero algebraic numbers, which are not roots of unity and not singular moduli, such that they are pairwise Hecke equivalent, and also pairwise multiplicatively dependent.

The various arithmetic estimates seem insufficient to get a lower degree bound in terms of the "complexity": the degrees of the two isogenies and the heights of
the two multiplicative relations. This seems to be a problem of a similar nature to that encountered in [13] dealing with curves which are not "asymmetric" (see [13, Section 1]).

There are three "non-generic" variations of which we can resolve two. The multiplicative relations may take the form that one coordinate is a root of unity, the other two coordinates being multiplicatively dependent. Similarly, the modular relations may take the form that one coordinate is singular, the other two Hecke equivalent. Or both. Note that if two coordinates are singular the point is not optimal, but lies on one of the atypical components in Propositions 7.6(3); if two coordinates are roots of unity, the point is on a component as in Proposition 7.6(2).

We consider the non-generic multiplicative condition first. Up to permutations we may assume the singular coordinate is x_{1}

Proposition 8.2. There exist only finitely many triples x_{1}, x_{2}, x_{3} of distinct nonzero algebraic numbers such that:

1. x_{3} is a root of unity, x_{1}, x_{2} are multiplicatively dependent but not roots of unity;
2. The three points are pairwise Hecke equivalent, but are not singular moduli.

Proof. Define the complexity Δ of such a triple to be the maximum of: the order M of the root of unity x_{3} and the minimum degrees of isogenies N_{1}, N_{2} between x_{3} and x_{1}, x_{2}, respectively. By (5.8), the stable Faltings height of an elliptic curves whose j-invariant is a root of unity is absolutely bounded. Now by (5.9), $h\left(x_{j}\right) \ll(1+$ $\left.\log \max \left\{N_{j}\right\}\right), j=1,2$, so by (5.10) the degrees $d_{j}=\left[\mathbb{Q}\left(x_{3}, x_{j}\right): \mathbb{Q}\right] \gg N_{j}^{1 / 5}$. By (5.11) and (5.1) (to get a lower bound for $h\left(x_{i}\right)$) the height of a multiplicative relation between x_{1}, x_{2} is bounded by some $c_{12} \Delta^{c_{13}}$. And $\left[\mathbb{Q}\left(x_{3}\right): \mathbb{Q}\right]=\phi(M) \ggg_{\epsilon}$ $M^{1-\epsilon}$, where ϕ is the Euler ϕ-function. We may take $\epsilon=1 / 2$ say.

Thus, a triple of complexity Δ gives rise to "many" (i.e. at least $c_{14} \Delta^{c_{15}}$) quadratic points on a certain definable set, and so all but finitely many such points lie on atypical components of positive dimension.

But no such triples lie on positive dimensional atypical components: by Proposition 7.6, such components have either two singular coordinates or two modular coordinates, so the conditions on our triples would then force all x_{i} to be singular, which is impossible (as then x_{3} cannot be torsion) or all torsion, which leads to the same impossible requirement for x_{1}.

Symmetrically, we have the case where the modular relations are of the nongeneric form. We seem unable to establish finiteness here, so we pose it as a problem.

Problem 8.3. Prove that there exist only finitely many triples x_{1}, x_{2}, x_{3} of distinct non-zero algebraic numbers such that x_{1} is singular, x_{2}, x_{3} are Hecke equivalent, and the three are pairwise multiplicatively dependent.

Finally, we have the following.

Proposition 8.4. There exist only finitely many triples x_{1}, x_{2}, x_{3} of distinct nonzero algebraic numbers such that

1. x_{1} is a singular modulus, x_{2}, x_{3} are Hecke equivalent but are not singular mod$u l i$;
2. x_{3} is a root of unity, x_{1}, x_{2} are multiplicatively dependent but not roots of unity.

Proof. Let D be the discriminant of x_{1} (see Section 5), and M the (minimal) order of x_{3}. Take N minimal with $\Phi_{N}\left(x_{2}, x_{3}\right)=0$, and B minimal for a non-trivial multiplicative relation $x_{1}^{b_{1}} x_{2}^{b_{2}}=1$ with $B=\max \left\{b_{1}, b_{2}\right\}$. Set $\Delta=\max \{|D|, M, N\}$ to be the complexity of the tuple $\left(x_{1}, x_{2}, x_{3}\right)$. Set $d=\left[\mathbb{Q}\left(x_{1}, x_{2}, x_{3}\right): \mathbb{Q}\right]$.

Let E_{ξ} be the elliptic curve with j-invariant ξ. As in the proof of Proposition $8.2, h_{\mathrm{F}}\left(E_{x_{3}}\right)$ is bounded by some absolute c_{16}. Then, by the isogeny estimates (5.10), we have $N \leq c_{17}\left(\left[\mathbb{Q}\left(x_{2}, x_{3}\right): \mathbb{Q}\right]\right)^{5}$. Also $M^{1-\epsilon}<_{\epsilon} \phi(M)=\left[\mathbb{Q}\left(x_{3}\right): \mathbb{Q}\right]$, and $|D| \ll\left[\mathbb{Q}\left(x_{1}\right): \mathbb{Q}\right]^{4}$ by (5.6).

Arguing as in [13], the height inequalities (5.8), (5.9) imply that $h\left(x_{2}\right)$ is bounded above by $c_{18}(1+\log N)$. By the Weak Lehmer estimate (5.1) it is bounded below by $c_{19} d^{-3}$. Corresponding estimates for $h\left(x_{1}\right)$ are provided by (5.4) and (5.3). Therefore (5.11) ensures that

$$
B \leq c_{20} d^{3} D
$$

The rest of the proof is the same as the proof of Proposition 8.2.
Thus Problems 8.1 and 8.3 imply (and are implied by) ZP for V_{3}. If one takes two complex numbers and three conditions, then either two "modular" conditions or two "multiplicative" special conditions will force the points to be special, and one can prove finiteness. However one can consider two complex numbers satisfying a special condition of each of three (or more) different types.

Let S be a Shimura curve corresponding to a quaternion algebra over \mathbb{Q} (see, e.g., Elkies [6]). There is a notion of Hecke orbit of a point on S (see, e.g., [5]), an equivalence class of points under a certain equivalence relation. This relation is the existence of a "cyclic N-isogeny" between the corresponding parameterised objects for some N; see [6, Section 2.3, page 12]. If S has genus zero, there is an analogue $j_{S}: \mathbb{H} \rightarrow \mathbb{P}^{1}$ of the j-function (see $[7,30]$) which generates the function field of S, and we may speak of points in \mathbb{C} being "Hecke equivalent (for S)" if they are in the same Hecke orbit.
Problems 8.5. Prove that there are only finitely many pairs of distinct non-zero algebraic numbers x_{1}, x_{2} in each situation.

1. x_{1}, x_{2} are Hecke equivalent (in the sense of 7.1), and multiplicatively dependent, and are also Hecke equivalent for some other Shimura curve;
2. x_{1}, x_{2} are Hecke equivalent, and multiplicatively dependent, and the points with these x-coordinates are dependent in some specific elliptic curve;
3. As in the previous problems, but with more or different conditions: say the points are Hecke equivalent/dependent for 10 pairwise incommensurable Shimura curves.

Finally we state a "weakly bounded height conjecture" on the height of "just likely" intersections of mixed multiplicative-modular type under which Problems 8.1 and 8.3 are affirmed.
Definition 8.6. A modular-dependent pair is a point $(x, y) \in\left(\mathbb{C}^{\times}\right)^{2}$ such that there exists integers N, a, b, ℓ with $N \geq 2, \ell \geq 1$ and $\operatorname{gcd}(a, b)=1$ such that

$$
\Phi_{N}(x, y)=0, \quad\left(x^{a} y^{b}\right)^{\ell}=1
$$

The complexity $\Delta(x, y)$ of such a pair is the minimum of $\max (N,|a|,|b|, \ell)$ over all N, a, b, ℓ for which the above equations hold for x, y.
Conjecture 8.7. For $\epsilon>0$ we have $h(x), h(y) \leq c_{\epsilon} \Delta(x, y)^{\epsilon}$ for all modulardependent pairs (x, y).
Proposition 8.8. Assume Conjecture 8.7. Then finiteness holds in Problems 8.1 and 8.3.

Proof. Let (x, y) be a modular-dependent pair with complexity $\Delta=\Delta(x, y)=$ $\max (|a|,|b|, \ell)$ for suitable a, b, ℓ. Constants denoted c are absolute but may vary at each occurrence.

Let E_{x}, E_{y} be elliptic curves with j-invariants x, y and semistable Faltings heights $h_{\mathrm{F}}(x)=h_{\mathrm{F}}\left(E_{x}\right)$ and $h_{\mathrm{F}}(y)=h_{\mathrm{F}}\left(E_{y}\right)$ respectively. Then E_{x}, E_{y} may both be defined over $\mathbb{Q}(x, y)$, and we set $d=[\mathbb{Q}(x, y): \mathbb{Q}]$.

By the isogeny estimate (5.10), $N \leq c d^{2} \max \left\{h_{\mathrm{F}}(x), \log d, 1\right\}^{2}$. Now $h_{\mathrm{F}}(x)$ and $h(x)$ differ by at most $c \log \max (2, h(x))$. So

$$
N \leq c d^{2} \max (1, \log d)^{2}(1+h(x)+c \log \max (2, h(x)))^{2}
$$

We have $d^{2} \max (1, \log d)^{2} \leq d^{4}$, and under Conjecture 8.7 (with $\epsilon=1 / 20$ say) we have

$$
N \leq c d^{4} \Delta^{1 / 10}
$$

For the purposes of Proposition 8.1 and 8.3 we may assume that neither x nor y is a root of unity. By a Weak Lehmer inequality (5.1) we have $h(x) \geq c d^{-3}, \quad h(y) \geq$ $c d^{-3}$. Since neither x, y is a root of unity, we find (5.11) that there exists a nontrivial multiplicative relation $x^{\alpha} y^{\beta}=1$ with

$$
|\alpha| \leq c d^{3} h(y) \leq c d^{3} \Delta^{1 / 10}, \quad|\beta| \leq c d^{3} h(x) \leq c d^{3} \Delta^{1 / 10}
$$

Again since x, y are not roots of unity, we have that (α, β) is a multiple of $(\ell a, \ell b)$. So we find that $|a|,|b|, c \ell \leq c d^{3} \Delta^{1 / 10}$. Now $\Delta=\max (N,|a|,|b|,|\ell|)$ and so combining the various inequalities we find

$$
\Delta \leq c d^{7}
$$

Now points x_{1}, x_{2}, x_{3} as in Problem 8.1 give rise to rational points on some suitable definable set of height at most max $\left(\Delta\left(x_{1}, x_{2}\right), \Delta\left(x_{2}, x_{3}\right), \Delta\left(x_{1}, x_{3}\right)\right)$. This lower estimate for the degree is then suitable to complete a finiteness proof for isolated points of this form by point-counting and o-minimality as in the proofs of Theorem 1.2, Propositions 8.2, and 8.4. The argument for Problem 8.3 is similar.

9. On ZP for $V_{\boldsymbol{n}}$

The referee asked us whether there is a natural generalization of the height-theoretic Conjecture 8.7 which would imply ZP for $V_{n}, n \geq 3$. We thank the referee for raising this question, to which we offer an affirmative answer here. As this Conjecture 9.5 is rather more speculative than the very special case in Conjecture 8.7 we have preferred to keep this section separate.

We continue to let $X_{n}=Y(1)^{n} \times \mathbb{G}_{\mathrm{m}}^{n}$ and $U_{n}=\mathbb{H}^{n} \times \mathbb{C}^{n}$, and F a standard fundamental domain for the action on U_{n} by $\mathrm{SL}_{2}(\mathbb{Z})^{n} \times \mathbb{Z}^{n}$ where $m \in \mathbb{Z}$ acts on \mathbb{C} be translation by $2 \pi i m$. Constants $c, c(n), c(n, \epsilon), \ldots$ depend only on the indicated quantities, but may differ at each occurence.

First, we will assume Conjecture 7.8. This seems to be necessary, in view of the following. We have seen that an optimal component with respect to $V_{n} \subset X_{n}$ is geodesic optimal. Now weakly special subvarieties of U_{n} are contained in larger definable families of "Mobius varieties" which are defined by some finite number of relations of the form $z_{i}=g_{i j} z_{j}, g_{i j} \in \mathrm{SL}_{2}(\mathbb{R})$ or of the form $z_{k}=c_{k} \in \mathbb{C}$ on the \mathbb{H}^{n} variables and of the form $\sigma_{j=1}^{n} r_{i j} u_{j}=0$ with $\left(r_{1}, \ldots, r_{n}\right) \in \mathbb{R}^{n}$ on the \mathbb{C}^{n} variables (see Mobius varieties in [14, Section 6.2] and "linear varieties" in [22, 10.1]). Then the set of Mobius varieties which intersect $Z=\pi^{-1}\left(V_{n}\right) \cap F$ optimally among Mobius varieties gives the full set of weakly special varieties intersecting Z optimally. By o-minimality, the set of relations among non-constant coordinates is then finite, since the corresponding coefficients $r_{i j}$ and group elements $g_{i j}$ must in fact be rational (see [14, Proposition 6.6; 22, 10.2]).

We are thus led to consider, for example, the intersections of a fixed strongly special modular special subvariety M with a family of translates $\{a T: a \in A\}$ of a subtorus T, i.e. a family of weakly special multiplicative weakly special subvarieties. Here A can be taken to be a copy of some $\left(\mathbb{C}^{\times}\right)^{m}$. Since optimal components are geodesic-optimal, these components will correspond to those $a \in A$ for which $M \cap a T$ has atypical dimension, which give some subvarieties $A_{i} \subset A$. However, if the component is optimal, the corresponding special subvariety will in general be larger, and we will be led to consider atypical points in $A_{i} \subset\left(\mathbb{C}^{\times}\right)^{m}$, i.e. to some cases of ZP for the multiplicative group, which we do not know how to handle at present.

We will say that a point $C=\left(x_{1}, \ldots, x_{n}\right) \in\left(\mathbb{C}^{\times}\right)^{n}$ satisfies h special relations if the smallest special subvariety of X_{n} containing ($x_{1}, \ldots, x_{n}, x_{1}, \ldots, x_{n}$) has codimension h. On the modular side, the relation of being in the same Hecke orbit divides the non-special coordinates into k equivalence classes. Such equivalence classes of non-special points we call cliques. Then we see that if C satisfies h special relations we have

$$
h=n+m-k
$$

where m is the number of independent multiplicative relations satisfied by C, and k is the number of cliques. We set

$$
\partial(C)=n-h=k-m
$$

Definition 9.1. A tuple $C=\left(c_{1}, \ldots, c_{n}\right) \in\left(\mathbb{C}^{\times}\right)^{n}$ with pairwise distinct coordinates is called n-optimal if no proper subtuple C^{\prime} has $\partial\left(C^{\prime}\right) \leq \partial(C)$. I.e. removing any ℓ points from C loses at least $\ell+1$ special relations.

Proposition 9.2. Assuming Conjecture 7.8, ZP for all V_{n} is equivalent to the statement that, for all n, there are only finitely many n-optimal points.

Proof. Assuming Conjecture 7.8, all optimal components are, up to permutations of coordinates, of the form $\left\{(W, W) \in V_{n}\right\}$ where $W \subset \mathbb{C}^{n}$ is of the form

$$
\left\{\left(c_{1}, c_{2}, \ldots, c_{\ell}, x_{\ell+1}, \ldots, x_{n}\right): x_{i} \in \mathbb{C}^{*}, x_{i}=x_{j}:(i, j) \in I\right\}
$$

for some set I of pairs (i, j) with $\max (i, \ell)<j$ from $\{1, \ldots, n\}$, where c_{1}, \ldots, c_{ℓ} are distinct non-zero complex numbers.

If the tuple $C=\left(c_{1}, \ldots, c_{\ell}\right)$ satisfies h special relations, we have

$$
\operatorname{dim} W=n-\ell-|I|, \quad \operatorname{dim}\langle W\rangle=2 n-2|I|-h,
$$

whence

$$
\delta(W)=2 n-2|I|-h-(n-\ell-|I|)=n+(\ell-h)-|I|=n+\partial(C)-|I| .
$$

Therefore, the component W is optimal just if C is ℓ-optimal.

Suppose C is an n-optimal tuple, with (C, C) contained in some smallest special subvariety $T \subset X_{n}$. Then the component of $T \cap V_{n}$ containing (C, C) must be just the point $\{(C, C)\}$. Otherwise, the component is clearly not optimal. Thus, an n-optimal tuple is a tuple of algebraic numbers, and the degree $d(C)=\left[\mathbb{Q}\left(c_{1}, \ldots, c_{n}\right): \mathbb{Q}\right]$ is bounded in terms of the degrees of the equations defining T.

We now frame a "weakly bounded height conjecture" for certain "just likely" intersections that seems plausible and is sufficient to establish this finiteness (assuming Conjecture 7.8). Of course one only needs the conjecture to hold for optimal points, which must in fact be "unlikely".

Consider a point $C=\left(c_{1}, \ldots, c_{n}\right) \in\left(\mathbb{C}^{\times}\right)^{n}$ with c_{i} distinct, together with a \mathbb{Z} module Γ of exponents of multiplicative relations on C. That is, Γ is a \mathbb{Z}-submodule of the relation group

$$
\Gamma(C)=\left\{\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Z}^{n}: c_{1}^{a_{1}} \cdots c_{n}^{a_{n}}=1\right\}
$$

Suppose C has k cliques and $\operatorname{rank}(\Gamma)=m$. Removing some points from C yields a tuple C^{\prime}, and it inherits a submodule Γ^{\prime} of relations from Γ which are trivial on the points removed (i.e. Γ^{\prime} is the submodule of exponent vectors for which the coordinates corresponding to $C-C^{\prime}$ are zero). We call Γ^{\prime} the induced relations.

Definition 9.3. A pair (C, Γ) consisting of a tuple $C \in\left(\mathbb{C}^{\times}\right)^{n}$ with pairwise distinct coordinates having k cliques and a \mathbb{Z}-module of $\Gamma \subset \mathbb{Z}^{n}$ of exponent vectors of multiplicative relations on C is called grounded if, for any subtuple C^{\prime} formed by removing any κ cliques, where $0<\kappa<k$, together with any number of special points, the induced relation module Γ^{\prime} satisfies $\operatorname{rank}\left(\Gamma^{\prime}\right)<\operatorname{rank}(\Gamma)-\kappa . I . e$. losing κ cliques loses at least $\kappa+1$ multiplicative relations.

Note that a grounded tuple can never contain a singleton clique, for omitting such a clique will lead to the loss of at most one multiplicative relation.
Definition 9.4. We define the height of a tuple $C=\left(c_{1}, \ldots, c_{n}\right)$ to be

$$
h(C)=\max \left(h\left(c_{1}\right), \ldots, h\left(c_{n}\right)\right)
$$

The modular complexity of a tuple is

$$
\Delta_{\bmod }(C)=\max \{N\}
$$

over N such that there exists c_{i}, c_{j} (allowing $i=j$) with $\Phi_{N}\left(c_{i}, c_{j}\right)=0$, and $N \geq 2$ minimal for this pair i, j. We define the complexity of a \mathbb{Z}-submodule of \mathbb{Z}^{n} to be

$$
\Delta(\Gamma)=\min \{T\}
$$

over T such that there is a basis of Γ consisting of vectors with all entries of absolute value bounded by T. The complexity of a pair (C, Γ) is

$$
\Delta(C, \Gamma)=\max \left\{\Delta_{\bmod }(C), \Delta(\Gamma)\right\}
$$

Finally, the complexity of C is

$$
\Delta(C)=\Delta(C, \Gamma(C))
$$

Conjecture 9.5. Let (C, Γ) be grounded, where $C \in\left(\mathbb{C}^{\times}\right)^{n}$, and suppose that $\operatorname{rank}(\Gamma)$ equals the number k of cliques of C. Then

$$
h(C) \leq c(n, \epsilon) \Delta(C, \Gamma)^{\epsilon}
$$

for any $\epsilon>0$.
Note that such C is in the intersection of V_{n} with a special subvariety of dimension $n+k-\operatorname{rank}(\Gamma)=n$, hence is a "just likely" intersection, though this may not be the smallest special subvariety containing C.

It seems that one cannot hope to have a suitable weakly bounded height conjecture for tuples which are not grounded. For example, if one has a clique C^{\prime} satisfying some relations Γ^{\prime}, then imposing just one additional relation $\gamma \in \mathbb{Z}^{n}$ on $C=\left(C^{\prime}, C^{\prime \prime}\right)$ for an additional clique $C^{\prime \prime}$ would allow the height of $C^{\prime \prime}$ to be roughly $\Delta(\mathbb{Z} \gamma) h\left(C^{\prime}\right)$. An interesting question seems to be whether one should expect in fact an upper bound of the form $<_{n}(\log \Delta(C, \Gamma))^{c(n)}$ in Conjecture 9.5.

We now gather some further arithmetic estimates. Various forms of the following result, which we do not need in the sharpest forms, appear in the literature; see [17]. The following is extracted from [18].

Proposition 9.6. For an n-tuple C of degree $d=d(C)$ and height $h=h(C)$, there is a basis of $\Gamma(C)$ consisting of vectors of integers of size at most

$$
c(n) d^{n} \log (d+2)^{3 n} \max (h, 1)^{n}
$$

Proof. This is a weakened form of the bound in [18, page 253] together with the estimates for the quantities there established on page 254.

Lemma 9.7. Suppose $C \in\left(\mathbb{C}^{\times}\right)^{n}$ is n-optimal. Then $(C, \Gamma(C))$ is grounded. Moreover, if C has k cliques, then there is a submodule Γ of relations on C with $\operatorname{rank}(\Gamma)=k$ such that (C, Γ) is grounded and $\Delta(\Gamma) \leq c(n) \Delta(\Gamma(C))$.

Proof. For the first assertion, if we remove κ cliques (and some special points) from C to form C^{\prime} and lose only κ multiplicative relations then $\partial\left(C^{\prime}\right) \leq \partial(C)$, and C was not n-optimal. So n-optimal is stronger than grounded.

For the second assertion, we show how to find a suitable submodule Γ of $\Gamma(C)$ of rank equal to k, the number of cliques.

We first show that there is a vector $v_{1} \in \Gamma(C)$ with a height bound as in the assertion of the lemma which "involves" all special points and cliques, i.e. where the exponent is non-zero on every coordinate i where c_{i} is special, and for some coordinate in every clique.

Let B be a basis of $\Gamma(C)$ consisting of vectors of integers of size at most $\Delta(\Gamma(C))$. Since $(C, \Gamma(C))$ is n-optimal, such a vector w_{j} exists for each individual special coordinate, and for each individual clique; say there are J such vectors. Moreover, we can assume that each $w_{j} \in B$. We consider vectors of the form

$$
w=\sum_{j=1}^{J} a_{j} w_{j}, \quad a_{j} \in \mathbb{Q} .
$$

For each special coordinate or clique, the condition that w vanishes on that coordinate or clique gives a proper subspace of \mathbb{Q}^{n}. It therefore contains at most $c(n) T^{n-1}$ integer points in the box $[-T, T]^{n}$. We must avoid $J \leq n$ such subspaces, so $T=c(n)$ suffices.

We now construct $v_{2} \in \Gamma(C)$ such that, for every clique, v_{2} does not vanish modulo v_{1}. For each clique individually the existence of such a vector w_{j} is assured since $(C, \Gamma(C))$ is grounded, and so we can take $w_{j} \in B$. A similar box argument produces v_{2} (the number of subspaces to avoid is now at most the number of pairs of cliques), and we continue to produce v_{3}, \ldots, v_{k}, where v_{k} does not vanish modulo $\mathbb{Z}\left[v_{1}, \ldots, v_{k-1}\right]$ on any choice of $k-1$ cliques.

Proposition 9.8. Let σ be a singular modulus of discriminant D_{σ}. Then there exists $N \geq 2$ with $\Phi_{N}(\sigma, \sigma)=0$ satisfying $N \leq\left|D_{\sigma}\right|$. Conversely, if $\Phi_{N}(\sigma, \sigma)=0$ where $N \geq 2$ then $\left|D_{\sigma}\right| \leq c N^{20}$, with an explicit c.

Proof. Let τ be a preimage of σ in the standard fundamental domain. Then τ satisfies a minimal quadratic equation over \mathbb{Z} of the form $A \tau^{2}+B \tau+C=0$ which is reduced, meaning $|B| \leq A \leq C$ and $B \geq 0$ if $A=|B|$ or $A=C$. Thus $4 A C=B^{2}-D_{\sigma} \leq A C-D_{\sigma}$ whence $3 A C \leq\left|D_{\sigma}\right|$. Now $g \tau=\tau$ for $g=\left(\begin{array}{cc}-B & -C \\ A & 0\end{array}\right)$, which is primitive of determinant $N=\bar{A} C \leq\left|D_{\sigma}\right|$.

In the other direction, suppose $\Phi_{N}(\sigma, \sigma)=0$. This means that $g \tau=h \tau$ for a matrix g of the form $g=\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right)$ with $0<a, 0 \leq b<d$, $a d=N$ (see [15, 5.1, page 52]), and $h \in \operatorname{SL}_{2}(\mathbb{Z})$. Now $|\operatorname{Re}(g \tau)| \leq 2 N$ and $\left|\operatorname{Im}(\tau)^{-1}\right| \leq 2 N$ so the matrix h has entries at most $c(2 N)^{9}$ by [13, Lemma 5.1]. Thus τ is fixed by $h^{-1} g$, an integer matrix with entries bounded by $c(2 N)^{10}$. This gives an integral quadratic polynomial satisfied by τ whose coefficients have size at most $2 c(2 N)^{10}$. The minimal equation for τ must divide this one, and so (with a new constant) $\left|D_{\sigma}\right| \leq c N^{20}$

Theorem 9.9. Assuming Conjectures 7.8 and $9.5, Z P$ holds for $V_{n} \subset X_{n}$ for all n.
Remark 9.10. One might hope to prove at this juncture that Conjecture 9.5 im plies finiteness of n-optimal tuples for each n (without assuming Conjecture 7.8). However, our proof will require Conjecture 7.8.

Proof. Suppose $C \in\left(\mathbb{C}^{\times}\right)^{n}$ is n-optimal. Then the point $(C, C) \in V_{n}$ is an optimal component. Thus C is grounded, and the relation group $\Gamma(C)$ has rank exceeding k, the number of cliques in C (because (C, C) must be an unlikely intersection).

By Lemma 9.7 we find a submodule Γ of relations on C with rank k and with $\Delta(\Gamma) \leq c(n) \Gamma(C)$. By Conjecture 9.8 with $\epsilon=(20 n)^{-1}$ we have

$$
h(C) \leq c(n) \Delta(C, \Gamma)^{1 /(20 n)}
$$

We now obtain a lower bound for $d(C)$ in terms of $\Delta(C)$. We start considering $\Delta_{\text {mod }}(C)$. If x, y are distinct and $\Phi_{N}(x, y)=0$ with N minimal then, as in the proof of Proposition 8.8,

$$
N \leq c(n)[\mathbb{Q}(x, y): \mathbb{Q}]^{4} \Delta(C, \Gamma)^{1 /(10 n)} .
$$

If x is special, then we have $\Phi_{N}(x, x)=0$ for some $N \leq\left|D_{x}\right|$, while $d(x) \ggg_{\epsilon}$ $\left|D_{x}\right|^{1 / 2-\epsilon}$ (ineffectively) by Landau-Siegel. Thus again $N \leq c[\mathbb{Q}(x): \mathbb{Q}]^{4}$, and we find

$$
\Delta_{\bmod }(C) \leq c(n) d(C)^{4} \Delta(C, \Gamma)^{1 /(10 n)}
$$

for some (ineffective if any c_{i} are special) positive $c(n)$.
Now by Proposition 9.6, there is a basis of $\Gamma(C)$ of height at most

$$
\Delta(\Gamma(C)) \leq c(n) d(C)^{4 n} \Delta(C, \Gamma)^{1 / 10}
$$

and since $\Delta(\Gamma) \leq c(n) \Delta(C)$ we have that $\Delta(C) \leq c(n) d(C)^{4 n} \Delta(C)^{1 / 10}$. Hence

$$
\Delta(C) \leq c(n) d(C)^{5 n}
$$

Now consider the uniformisation $\pi: F \rightarrow X$, which is definable in an o-minimal structure. As in the proof of 1.2 , the point C and each of its conjugates gives rise to a rational point P of height $H(P) \leq c \Delta(C)$ on a suitable definable subset of a suitable power of $\mathrm{GL}_{2}(\mathbb{R})$. We follow the argument in the proof of Theorem 1.2 (which follows that in $[13,14]$). If Δ is sufficiently large then the Counting Theorem implies that the above-mentioned definable set contains positive-dimensional real semi-algebraic sets.

Since there are many conjugates of C giving rise to rational points, some positive-dimensional semi-algebraic set must give rise to a moving component of the given dimension and defect. Complexifying the real parameter, there is a larger component of V_{n} with the same defect. The mixed Ax-Schanuel implies there is a larger geodesic component with the same defect so that (in virtue of Conjecture 7.8) the point C was not n-optimal. This contradiction shows that the complexity of an optimal n-tuple is bounded. Then the degree $d(C)$ and the height $h(C)$ are bounded by some $c(n)$, and so there are only finitely many such C.

References

[1] J. Ax, On Schanuel's conjectures, Ann. of Math. 93 (1971), 252-268.
[2] Y. Bilu, F. Luca and A. Pizarro-Madariaga, Rational products of singular moduli, J. Number Theory 168 (2016), 397-410.
[3] Y. Bilu, D. MASSER and U. ZANNIER, An effective "theorem of André" for CM-points on a plane curve, Math. Proc. Cambridge Philos. Soc. 154 (2013), 145-152.
[4] E. Bombieri, D. Masser and U. ZANNIER, Anomalous subvarieties - structure theorems and applications, Int. Math. Res. Not. IMRN 19 (2007).
[5] C. DAW and A. HARRIS, Categoricity of modular and Shimura curves, J. Inst. Math. Jussieu 16 (2017), 1075-1101.
[6] N. Elkies, Shimura curve computations, In: "Algorithmic Number Theory", Third International Symposium, ANTS-III, Portland, oregon, 1998, J. Buhler (ed.), Lecture Notes in Comp. Sci., Vol. 1423, Springer, Berlin, 1998, 1-47.
[7] E. ERrthum, Singular moduli of Shimura curves, Canad. J. Math. 63 (2011), 826-861.
[8] É. Gaudron and G. Rémond, Théorème des périodes et degrés minimaux d'isogénies, Comment. Math. Helv. 89 (2014), 343-403.
[9] P. Habegger, On the bounded height conjecture, Int. Math. Res. Not. IMRN 2009, 860886.
[10] P. Habeg ger, Weakly bounded height on modular curves, Acta Math. Vietnam. 35 (2010), 43-69.
[11] P. Habegger, Effective height upper bounds on algebraic tori, CIRM Luminy course notes, arXiv:1201.3255.
[12] P. Habegger, Singular moduli that are algebraic units, Algebra Number Theory 9 (2015), 1515-1524.
[13] P. Habegger and J. Pila, Some unlikely intersections beyond André-Oort, Compos. Math. 148 (2012), 1-27.
[14] P. Habegger and J. Pila, O-minimality and certain atypical intersections, Ann. Sci. École Norm. Sup. (4) 49 (2016), 813-858.
[15] S. Lang, "Elliptic Functions", Graduate Texts in Mathematics 112, second edition, Springer, New York, 1987.
[16] S. LoJASIEWICZ, "Introduction to Complex Analytic Geometry", Birkhäuser, Basel, 1991.
[17] T. LOHER and D. W. MASSER, Uniformly counting points of bounded height, Acta Arith. 111 (2004), 277-297.
[18] D. MASSER, Linear relations on algebraic groups, In: "New Advances in Transcendence Theory", Baker (ed.), CUP, 1988, 248-262.
[19] D. MASSER and G. WÜSTholz, Estimating isogenies on elliptic curves, Invent. Math. 100 (1990), 1-24.
[20] R. PaUlin, An explicit André-Oort type result for $\mathbb{P}^{1}(\mathbb{C}) \times \mathbb{G}_{m}(\mathbb{C})$ based on logarithmic forms, Publ. Math. Debrecen 88 (2016), 21-33.
[21] F. Pellarin, Sur une majoration explicite pour un degré d'isogénie liant deux courbes elliptiques, Acta Arith. 100 (2001), 203-243.
[22] J. Pila, O-minimality and the André-Oort conjecture for \mathbb{C}^{n}, Ann. of Math. 173 (2011), 1779-1840.
[23] J. Pila, Functional transcendence via o-minimality, lecture notes, LMS-EPSRC minicourse, 2013, In: "O-minimality and Diophantine Geometry", Jones and Wilkie (eds.), London Math. Soc. Lecture Note Series, Vol. 421, CUP, 2015.
[24] J. Pila and J. Tsimerman, Ax-Schanuel for the j-function, Duke Math. J. 165 (2016), 2587-2605.
[25] J. Pila and A. Wilkie, The rational points of a definable set, Duke Math. J. 133 (2006), 591-616.
[26] R. PInK, A common generalization of the conjectures of André-Oort, Manin-Mumford, and Mordell-Lang, 2005 preprint, available from the author's webpage.
[27] B . Poizat, L'egalité au cube, J. Symbolic Logic 66 (2001), 1647-1676.
[28] M. RAYnAUD, Hauteurs et isogénies, Seminaire sur les pinceaux arithmetiques: La conjecture de Mordell, Astérisque 127 (1985), 199-234.
[29] J.-P. SERRE, "Lectures on the Mordell-Weil Theorem", Aspects of Mathematics E15, Vieweg, Braunschweig, 1989.
[30] G. Shimura, Construction of class fields and zeta functions of algebraic curves, Ann. of Math. 85 (1967), 58-159.
[31] J. Silverman, Heights and elliptic curves, In: "Arithmetic Geometry", Cornell and Silverman (eds), Springer, New York, 1986, 253-265.
[32] J. Tsimerman, Ax-Schanuel and o-minimality, In: "O-minimality and Diophantine Geometry", Jones and Wilkie (eds.), London Math. Soc. Lecture Note Series, Vol. 421, CUP, 2015.
[33] D. ZAGIER, Elliptic modular functions and their applications, In: "The 1-2-3 of Modular Forms", J. Bruinier, G. van der Geer, G. Harder, and D. Zagier (eds.), Universitext, Springer, Berlin, 2008, 1-103.
[34] U. ZANNIER, "Some Problems of Unlikely Intersections in Arithmetic and Geometry", with appendices by D. Masser, Annals of Mathematics Studies, Vol. 181, Princeton University Press, 2012.
[35] B. Zilber, Exponential sums equations and the Schanuel conjecture, J. Lond. Math. Soc. (2) 65 (2002), 27-44.

Mathematical Institute University of Oxford Woodstock Road Oxford OX26GG, UK
pila@maths.ox.ac.uk
Department of Mathematics
University of Toronto
215 Huron Street
Toronto HU1001B, Canada
jacobt@math.toronto.edu

