
Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)
Vol. XVIII (2018), 105-118

Finite time collapsing of the Kähler-Ricci flow on threefolds

VALENTINO TOSATTI AND YUGUANG ZHANG

Abstract. We show that if on a compact Kähler threefold there is a solution of
the Kähler-Ricci flow which has finite time collapsing, then the manifold admits
a Fano fibration. Furthermore, if there is finite time extinction then the manifold
is Fano and the initial class is a positive multiple of the first Chern class.
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1. Introduction

A Fano manifold is a compact complex manifold X with ample anticanonical bun-
dle �KX = 3dim XT 1,0X . Thanks to the Calabi-Yau Theorem [49], a compact
complex manifold is Fano if and only if it admits a Kähler metric with positive
Ricci curvature.

A compact Kähler manifold X is said to admit a Fano fibration if there exists
a surjective holomorphic map f : X ! Y with connected fibers, where Y is a
compact normal Kähler space with 0 6 dimY < dim X and such that �KX is
f -ample (see Definition 2.1 below for the definition of f -ampleness). In this case
the generic fiber of f is a Fano manifold of dimension dim X � dimY .

The simplest example of a Fano fibration is when Y is a point, and X is a
Fano manifold. Other simple examples are obtained by taking X = F ⇥ Y where
F is a Fano manifold and Y is any compact Kähler manifold. Fano fibrations are
more general than Mori fiber spaces, where one requires in addition that the relative
Picard number of f be equal to 1.

It is easy to see that if X admits a Fano fibration then there exists a Kähler
metric !0 on X such that the (unnormalized) Kähler-Ricci flow
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starting at !0 has a solution defined only for a finite time T >0, and Vol(X,!(t)) !
0 as t ! T (see right after the proof of Lemma 2.2 for details). We say that the
Kähler-Ricci flow has finite time collapsing, by which we simply mean that the total
volume of the manifold approaches zero in some finite time. It is known that if this
happens then necessarily the Kodaira dimension of X is �1 (see [11, Proposition
4.2]). See also [11,14–16,25,29,35–37,39,40,43,44,50,51] and references therein
for more results on finite time singularities of the Kähler-Ricci flow.

In this article we study the converse question, and we formulate precisely the
following conjecture which has been part of the folklore of the subject:
Conjecture 1.1. Let Xn be a compact Kähler manifold. Then there exists a Kähler
metric !0 such that the Kähler-Ricci flow (1.1) has finite time collapsing if and only
if X admits a Fano fibration f : X ! Y . In this case, we can write

[!0] = �2⇡Tc1(KX ) + f ⇤[!Y ], (1.2)

for some Kähler metric !Y on Y , where T is the maximal existence time of the flow.
Since Y need not be smooth, in this statement a Kähler metric on Y is in the

sense of analytic spaces (see, e.g. [3, 18, 23, 48]). Also, the factor of 2⇡ in (1.2) is
due to our definition of Ricci form, locally given by Ric(!) = �

p
�1@@ log det(g),

so that [Ric(!)] = 2⇡c1(X).
Recall now that a (1, 1) class [↵] 2 H1,1(X, R) is called nef if it lies in the

closure of the Kähler cone, i.e. if it is a limit of Kähler classes. For example, if !(t)
is a solution of the Kähler-Ricci flow on X with 0 6 t < T < 1, then the limiting
class [↵] = limt!T [!(t)] is always nef.

We can now state the following conjecture in analytic geometry, which does
not mention the Kähler-Ricci flow, and which is in fact equivalent to Conjecture 1.1
(see Theorem 2.3):
Conjecture 1.2. Let Xn be a compact Kähler manifold. Then X admits a Fano
fibration f : X ! Y if and only if there exists a closed real (1, 1) form ↵ with
[↵] 2 H1,1(X, R) nef, with

R
X ↵n = 0 and with

[↵] + �c1(X)

a Kähler class, for some positive real number �. In this case, we can write

[↵] = f ⇤[!Y ], (1.3)

for some Kähler metric !Y on Y .
In particular, if this conjecture holds, then [↵] contains a smooth semipositive

representative (cf. [44, Conjecture 1], where it is conjectured that this holds even
without the assumption that

R
X ↵n = 0). As explained in Section 2, it is well-

known that Conjecture 1.2 is true if X is projective and [↵] 2 H2(X, Q), as a
simple consequence of the base-point-free theorem [26], and in fact more generally
when X is projective and [↵] belongs to the real Néron-Severi group NSR(X). So



FINITE TIME COLLAPSING 107

our main interest in this problem is when the manifold X is not projective, or when
the class [↵] is not in NSR(X).

As an aside, we remark that an analogous statement as in Conjecture 1.2 should
be true when the class [↵] satisfies instead

R
X ↵n > 0. In this case there should exist

a bimeromorphic morphism f : X ! Y to a compact normal Kähler space Y (of
dimension n) such that (1.3) holds. This statement follows from the results in [23]
if the extremal face in N A(X) of classes which intersect trivially with [↵] is in fact
a ray (see [23] for notation), but this is not the case in general.

We also consider the following related conjecture, raised by Tian [43, Conjec-
ture 4.4] (see also [35]).
Conjecture 1.3. Let (Xn,!0) be a compact Kähler manifold, let !(t) be the so-
lution of the Kähler-Ricci (1.1), defined on the maximal time interval [0, T ) with
T < 1. Then as t ! T we have

diam(X,!(t)) ! 0, (1.4)

if and only if
[!0] = �c1(X), (1.5)

for some � > 0.
Condition (1.4) is called finite time extinction, and Conjecture 1.3 states that

finite time extinction happens if and only if the manifold is Fano and the initial
class is a positive multiple of the first Chern class. Of course, as we will see in
Section 3, condition (1.4) implies that Vol(X,!(t)) ! 0 as t ! T , i.e. that finite
time extinction implies finite time collapsing. In the setting of Conjecture 1.1, finite
time extinction corresponds to the case when Y is just a point.

In general if (1.5) holds, then (1.4) holds thanks to work of Perelman (see [34]),
who proved the stronger result that under the volume-normalized flow the diameter
remains uniformly bounded above. If [!0] 2 H2(X, Q) (so X is projective), then
this conjecture was proved by Song [35].

Our main result is the following.

Theorem 1.4. If n 6 3 then Conjectures 1.1, 1.2 and 1.3 hold.

In fact, we will show in Section 2 that in general Conjectures 1.1 and 1.2 are
equivalent (this is essentially elementary), and that Conjecture 1.1 implies Conjec-
ture 1.3, by modifying the arguments in [35] to show that once we have a Fano
fibration, if the base Y is not a point then the diameter of (X,!(t)) does not go
to zero. We are then reduced to showing Conjecture 1.2. The case when n = 2
is not hard to deal with. For the case when n = 3, our main technical tool is the
very recent completion of the Minimal Model Program for Kähler threefolds by
Höring-Peternell [23, 24], especially their construction of Mori fiber spaces on a
bimeromorphic model of a uniruled Kähler threefold [24]. Using their results, to-
gether with some extra arguments due to the fact that the Fano fibrations that we
seek to construct are more general than Mori fiber spaces, in Section 3 we construct
the Fano fibration in the setting of Conjecture 1.2.
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In light of these results, it is desirable to study the behavior of the Kähler-Ricci
flow on the total space of a Fano fibration, with initial metric satisfying (1.2). This
is in general a very hard problem. When Y is a point this amounts to studying
the Kähler-Ricci flow on Fano manifolds in the anticanonical class. In general, it
is expected (see [38, 43, 44]) that as t ! T the evolving metrics !(t) converge
(in a suitable sense, away from the subvariety f �1(S) where S ⇢ Y is the critical
locus of f together with the singular set of Y ) to f ⇤!Y for some Kähler metric
on Y\S. Furthermore (X,!(t)) is expected to converge in the Gromov-Hausdorff
topology to the metric completion of (Y\S,!Y ), which should be homeomorphic
to Y . Lastly, for any given fiber Xy = f �1(y), with y 2 Y\S, the rescaled metrics
!(t)
T�t

�
�
Xy
should converge in a suitable sense to a (possibly singular) Kähler-Ricci

soliton. These results are essentially known when Y is a point (see [10,31,34]), and
some progress has been made in the case of projective bundles [15, 16, 37, 40], but
not much more is known in general.

ACKNOWLEDGEMENTS. We thank Andreas Höring for his crucial help with the
proof of Theorem 2.7, Aaron Naber for useful discussions, and the referee for help-
ful comments. This work was carried out while the first-named author was visiting
the Yau Mathematical Sciences Center of Tsinghua University in Beijing, which he
would like to thank for the hospitality.

2. Finite time collapsing

In this section we prove Conjectures 1.1 and 1.2 when n 6 3.
For the moment we work in general dimension n, and will restrict to n 6 3

later on. Recall the following standard definition (see, e.g. [2, page 140]):

Definition 2.1. Let f : X ! Y be a holomorphic map between compact complex
analytic spaces. We say that a holomorphic line bundle L on X is f -ample if there
exists ` > 1 such that if we consider the coherent sheaf F = f⇤(`L) on Y , then
the natural map f ⇤ f⇤(`L) ! `L is surjective and defines an embedding 8 : X ,!
P(F) := ProjY (Sym(F)), such that f = ⇡ � 8 where ⇡ : P(F) ! Y is the
projection, and so that `L ⇠= 8⇤OP(F)(1).

To start, we make the following useful observation, which is well-known in
the projective case (see [22, Proposition II.7.10]). We refer the reader for example
to [3, 18, 23, 48] for the definition and basic properties of Kähler metrics on com-
pact complex analytic spaces. Unless otherwise stated, the analytic spaces that we
consider are reduced, irreducible, but not necessarily normal.

Lemma 2.2. Let f : X ! Y be a surjective holomorphic map with connected
fibers, where X is a compact Kähler manifold and Y is a compact normal Kähler
space with 0 6 dimY < dim X . Then �KX is f -ample if and only if there exists a
Kähler metric !Y on Y such that f ⇤[!Y ] � c1(KX ) is a Kähler class on X .
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Proof. Assume that �KX is f -ample. This clearly implies that the map f is pro-
jective, and this in turns implies that f is a Kähler morphism (in the sense of [18]).
More precisely we can find a metric h on�`KX whose curvature form ! is positive
definite on all the fibers, see e.g. [3, Lemma 4.19], [18, Lemma 4.4] or [48, Proposi-
tion II.1.3.1], and then it follows that given any Kähler metric !Y on Y there exists
A > 0 large enough so that A f ⇤!Y + ! is a Kähler metric on X (see again [18,
Lemma 4.4] or [48, Proposition II.1.3.1]), which is in the class f ⇤[A!Y ]�`c1(KX ).

Conversely, if we have that f ⇤[!Y ] � c1(KX ) is a Kähler class on X , for some
Kähler class [!Y ] on Y , then �KX is f -ample. Indeed, for every fiber F of f
(which may be singular) we have that �KX |F is a holomorphic line bundle with a
smooth metric with strictly positive curvature form (in the sense of analytic spaces).
Grauert’s version of the Kodaira embedding theorem for analytic spaces [20] (see
also [4, Theorem 1.1]) implies that �KX |F is ample, and this is equivalent to �KX
being f -ample, see e.g. [4, Proposition 1.4].

We can now show the easy direction of Conjecture 1.1, namely that on every
Fano fibration there always exists a solution of the Kähler-Ricci flow (1.1) which
collapses in finite time. Given f : X ! Y a Fano fibration, by Lemma 2.2 there
exists a Kähler metric !Y on Y such that [!0] = f ⇤[!Y ]�c1(KX ) is a Kähler class
on X . Then the Kähler-Ricci flow starting at any Kähler metric !0 in this class has
a finite time singularity at time 1

2⇡ (thanks to the cohomological characterization
of the maximal existence time of (1.1) given in [45–47]) and the total volume of X
goes to zero as time approaches 1

2⇡ , because the limiting class [!0] + c1(KX ) =
f ⇤[!Y ] satisfies

R
X ( f ⇤!Y )n = 0.

We can also show the easy direction of Conjecture 1.2. Let f : X ! Y be a
Fano fibration, and fix !Y a Kähler metric on Y (in the sense of analytic spaces) as
in Lemma 2.2, so that f ⇤[!Y ]� c1(KX ) is a Kähler class on X . Then ↵ = f ⇤!Y is
a smooth nonnegative real (1, 1) form on X , and so its cohomology class is nef (it
is the limit of the Kähler classes [↵+"!X ] as " # 0, where !X is any Kähler metric
on X), and satisfies

R
X ↵n = 0 and [↵] + c1(X) is a Kähler class, as required.

Next we show:

Theorem 2.3. Conjectures 1.1 and 1.2 are equivalent.

Proof. Since we have just shown that the easy directions of both conjectures always
hold, it is enough to show that the other directions are equivalent. Assume first that
Conjecture 1.1 holds, and let [↵] 2 H1,1(X, R) be a nef class with

R
X ↵n = 0 and

with [↵] + �c1(X) Kähler for some � > 0. Fix a Kähler metric !0 in this class,
and consider its evolution by the Kähler-Ricci flow (1.1). The class of the evolved
metric !(t) is

[!(t)] = [!0]�2⇡ tc1(X) = [↵]+ (��2⇡ t)c1(X) =

✓
1�

2⇡ t
�

◆
[!0]+

2⇡ t
�

[↵].

For 0 6 t < �
2⇡ this is a sum of a Kähler class and a nef class, and so it is Kähler,

while for t = �
2⇡ this equals [↵] which is nef but not Kähler since

R
X ↵n = 0. Then
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the cohomological characterization of the maximal existence time T of (1.1) given
in [45–47] shows that T = �

2⇡ < 1 and the limiting class is [↵]. Therefore the
Kähler-Ricci flow !(t) has finite time collapsing, and by Conjecture 1.1, X admits
a Fano fibration. Also by (1.2) we can write [!0] = ��c1(KX )+ f ⇤[!Y ], for some
Kähler metric !Y on Y , and so [↵] = f ⇤[!Y ], i.e. (1.3) holds.

Assume conversely that Conjecture 1.2 holds, and let !0 be a Kähler metric on
X such that the Kähler-Ricci flow (1.1) has finite time collapsing at time T < 1.
The limiting class of the flow is

[↵] = [!0] � 2⇡Tc1(X),

which is nef, satisfies
R
X ↵n = 0, and [↵]+2⇡Tc1(X) is Kähler. Therefore Conjec-

ture 1.2 gives us a Fano fibration f : X ! Y , and [↵] = f ⇤[!Y ] for some Kähler
metric !Y on Y , which shows (1.2).

So we are left to we consider the converse implication in Conjecture 1.2, and
so we assume we have a nef class [↵]with

R
X ↵n = 0 and with [↵]+�c1(X)Kähler

for some � > 0. Recall that a (1, 1) class is called pseudoeffective if it contains a
closed positive current, and that a holomorphic line bundle is called pseudoeffective
if its first Chern class is (see, e.g. [12]). We have the following simple remark
(cf. [11, Proposition 4.2]).

Lemma 2.4. If Xn is a compact Kähler manifold which has a nef class [↵] withR
X ↵n = 0 and with [↵] + �c1(X) Kähler for some � > 0. Then KX is not pseudo-
effective, and therefore (X) = �1.

Proof. If KX is pseudoeffective, then so is the class ��c1(X). The class [↵] is
therefore the sum of a Kähler class and a pseudoeffective class, and so it is big (in
the sense that it contains a Kähler current [12]). But a nef and big class always
has

R
X ↵n > 0, by [5, Theorems 4.1 and 4.7], and this contradicts our assumption.

Also, in general KX not pseudoeffective implies (X) = �1, since if (X) > 0
then some power K⌦`

X (` > 1) is effective, and so KX is pseudoeffective.

A well-known conjecture says that if KX is not pseudoeffective, then X is
uniruled (i.e. covered by rational curves). This is proved in [6] in the projective
case, and is also known in the Kähler case if n 6 3 by [7].

If we assume now that X is projective and [↵] 2 H2(X, Q), so there is an
integer m > 1 such that [m↵] = c1(L) for some holomorphic line bundle L , then
it is well-known that Conjecture 1.2 holds. Indeed, by assumption we have that
[↵] + �c1(X) is a Kähler class, and since this is an open condition we may assume
that � = p

q > 0 is positive and rational. Up to increasing m we may assume that
m� > 1 is an integer, and we fix !0 a Kähler metric in the class [m↵] + m�c1(X).
Then we have that

c1(L � KX ) = [!0] + (m� � 1)c1(KX ) =
1
m�

[!0] +

✓
1�

1
m�

◆
c1(L),
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is a Kähler class (since it is sum of a Kähler and a nef class), i.e. L � KX is ample.
The base-point-free theorem (see [26]) then shows that kL is base-point-free for
some k > 1, and so it induces a holomorphic map f : X ! Y onto a normal
projective variety Y , so that f has connected fibers and kL is linearly equivalent
to the pullback of an ample divisor under f . This implies that [↵] = f ⇤[!Y ] for
some Kähler metric !Y on Y , and since we have that

R
X ↵n = 0, this implies that

0 6 dimY < dim X . By construction, a multiple of �KX is linearly equivalent to
the sum of an ample line bundle and the pullback of a line bundle from Y , and so f
is a Fano fibration and (1.3) holds.

An extension of this argument deals with the more general case when [↵] be-
longs to the real Néron-Severi group

NSR(X) = (H1,1(X, R) \ H2(X, Q)) ⌦ R.

This is identified with the space of R-divisors modulo numerical equivalence, and
is a subspace of H1,1(X, R), in general of smaller dimension.

Proposition 2.5. Conjecture 1.2 holds if X is projective and [↵] 2 NSR(X). In
particular, Conjecture 1.2 holds if

H2,0(X) = 0.

Proof. By assumption we have ↵ = c1(D) where D is a nef R-divisor, and c1(D�
�KX ) is a Kähler class for some positive real number �, i.e. A := D � �KX is
an ample R-divisor. Then the base-point free theorem for R-divisors [21, Theorem
7.1] shows that D is semiample, in the sense that there exists a surjective morphism
f : X ! Y to a normal projective variety Y , with connected fibers, and such that
D is R-linearly equivalent to f ⇤H where H is an ample R-divisor on Y . Therefore
[↵] is the pullback of a Kähler class on Y , and as before this implies that dimY <
dim X . We also have that �KX is R-linearly equivalent to 1

� (A � f ⇤H), and so
�KX is f -ample.

For the last statement, it is enough to remark that H2,0(X) = 0 implies that X
is projective (an old result of Kodaira), and that H1,1(X, R) = NSR(X) (thanks to
the Hodge decomposition on H2(X, C)).

Corollary 2.6. Conjecture 1.2 holds when n = 2.

Proof. Indeed we have (X) = �1 by Lemma 2.4, and when n = 2 this implies
that H0(X, KX ) = H2,0(X) = 0, and we conclude by Proposition 2.5.

Finally we deal with the case when n = 3.

Theorem 2.7. Conjecture 1.2 holds when n = 3.

Proof. We have a nef class [↵] with
R
X ↵3 = 0 and with [↵] + �c1(X) = [!0] for

some Kähler metric !0 and some � > 0. Recall that KX is not pseudoeffective by
Lemma 2.4. Thanks to the main theorem of [7] it follows that X is uniruled, i.e.
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covered by rational curves. Let X 99K B be the MRC fibration of X (constructed
in [8], see also [9, 27]), which satisfies dim B < 3 because X is uniruled.

If dim B = 0 then X is rationally connected (and since it is Kähler, it must be
projective thanks to [8, Corollaire, page 212]), and so H2,0(X) = 0 and Conjecture
1.2 holds thanks to Proposition 2.5. If dim B = 1 then X ! B is holomorphic
everywhere, B is a compact Riemann surface of genus at least 1, and the general
fiber F is rationally connected (and hence again projective). Therefore we have
H1,0(F) = H2,0(F) = 0 and this easily implies that H2,0(X) = 0 and so Conjec-
ture 1.2 holds in this case as well.

Therefore we can assume that dim B = 2, and the general fiber F of the MRC
fibration is isomorphic to CP1. Following [24], we call a Kähler class [!] on X
normalized if

R
F ! = 2. We will apply the results of Höring-Peternell in [23, 24],

and we are grateful to Andreas Höring for his help with the following arguments.
We consider the Kähler class [!] = 1

� [!0], so that c1(KX ) + [!] = 1
� [↵] is a

nef class. Let
µ =

2
R
F !

> 0,

so that µ[!] is normalized. By adjunction we have
R
F c1(KX ) = �2, and since

c1(KX ) + [!] is nef we also have
Z

F
(c1(KX ) + !) > 0,

and so µ 6 1.
Assume that [!] is not normalized, i.e. that µ < 1. Thanks to [24, Lemma 3.3]

the class c1(KX ) + µ[!] is pseudoeffective, and so c1(KX ) + [!] = (c1(KX ) +
µ[!]) + (1� µ)[!] is big. Since this equals [↵], we get a contradiction to the fact
that

R
X ↵3 = 0 (using again [5, Theorems 4.1 and 4.7] as in Lemma 2.4).
Therefore [!] is normalized, and we can then apply [24, Theorem 1.4] and

obtain a holomorphic map f : X ! Y onto a normal compact complex surface
Y , such that f has connected fibers and a curve C ⇢ X satisfies f (C) is a point
if and only if

R
C(c1(KX ) + !) = 0. Therefore �KX is f -nef and its restriction

to a generic fiber of f is big. Relative Kawamata-Viehweg vanishing for complex
spaces [1, Theorem 2.1] (cf. [30]) implies that Ri f⇤OX ⇠= OY for all i > 0, and
then [28, Theorem 1] gives that Y has at worst rational singularities (the proof there
uses Grothendieck duality and Grauert-Riemenschneider vanishing, but these have
been extended to the analytic setting in [32, 33] and [42] respectively). This in turn
implies that Y is a Kähler space, for example by [19].

From the construction of f in the proof of [24, Theorem 1.4], we obtain a
commutative diagram

0
q

����! Z

p
?
?
y

?
?
y⌫

X
f

����! Y

(2.1)
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where 0 is a compact Kähler manifold (in [24] 0 is just a compact analytic space in
class C, but we may replace it with a resolution of singularities), p is a modification,
Z is a smooth Kähler surface, and ⌫ is the contraction of an effective divisor E ⇢ Z ,
which is the null locus of a nef and big (1, 1) class [�] on Z , such that q⇤[�] =
p⇤[↵].

Since Y has rational singularities, it follows from [23, Lemma 3.3] that [�] =
⌫⇤[� ] for a (1, 1) class [� ] on Y (see, e.g. [23] for the definition of (1, 1) classes
on normal analytic spaces). In fact, [� ] is a Kähler class (in the sense of analytic
spaces). To see this, let K be a Kähler current on Z in the class [�] which is
singular only along the null locus of [�], which exists thanks to [11, Theorem 1.1]
(the proof there simplifies vastly in the case at hand, since dim Z = 2). Then the
pushforward current ⌫⇤K has local potentials everywhere on Y and belongs to the
class [� ] thanks to [23, Lemma 3.4], and it is a smooth Kähler metric away from
⌫(Exc(⌫)), which is a finite set. It is then easy to produce a Kähler metric in the
class [� ], by modifying the local potentials of ⌫⇤K near each point in ⌫(Exc(⌫)) by
taking the regularized maximum of the local potential and |z|2 � C in a local chart
(C is a sufficiently large constant), see, e.g. [11, Lemma 3.1] or [23, Remark 3.5].

Since p⇤( f ⇤[� ]�[↵]) = 0, and p⇤ is injective, we conclude that f ⇤[� ] = [↵],
i.e. (1.3) holds. In other words, we have obtained that

��c1(KX ) = [!0] � f ⇤[� ],

which implies that �KX is f -ample.

3. Finite time extinction

In this section we prove Conjecture 1.3 when n 6 3. As we remarked in the
introduction, it suffices to show that (1.4) implies (1.5).

First, we make the following general observation.

Lemma 3.1. (Xn,!0) be a compact Kähler manifold, let !(t) be the solution of
the Kähler-Ricci (1.1), defined on the maximal time interval [0, T ) with T < 1,
and such that

diam(X,!(t)) ! 0, (3.1)

as t ! T . Then we have that

Vol(X,!(t)) ! 0, (3.2)

as well, so that the flow exhibits finite time collapsing.

Proof. As usual let [↵] = [!0] � 2⇡Tc1(X) be the limiting class along the flow. If
we had Z

X
↵n > 0,
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then [11, Theorem 1.5] shows that on the Zariski open set X\Null(↵) we have
smooth convergence of !(t) to a limiting Kähler metric !T on this set. In particular,
the diameter of (X,!(t)) cannot go to zero.

From now on we assume that (1.4) holds. In particular, thanks to [11, Propo-
sition 4.2] (or Lemma 2.4), we have that KX is not pseudoeffective. Of course the
content of Conjecture 1.3 is to show that the limiting class ↵ is zero.

The following is the main result of this section:

Theorem 3.2. If Conjecture 1.1 holds for X , then Conjecture 1.3 holds as well.

In particular, combining this with Theorem 2.3, Corollary 2.6 and Theorem
2.7, we obtain the proof of Theorem 1.4. We also see that Conjecture 1.3 holds
under the same hypotheses of Proposition 2.5 (a fact which was already mentioned
in [35, Remark 1.1]). The proof of this theorem is a modification of the arguments
in [35].

Proof. Thanks to Lemma 3.1 we are in the setup of Conjecture 1.1, and so we have
a Fano fibration f : X ! Y such that [!0] = ��c1(KX )+ f ⇤[!Y ], for some � > 0
and some Kähler metric !Y on Y (in the sense of analytic spaces). The maximal
existence time for the flow is thus T = �

2⇡ , and the limiting class is [↵] = f ⇤[!Y ].
Then f ⇤!Y is a smooth semipositive (1, 1) form on X (this follows easily from the
definition of Kähler metrics and holomorphic maps between analytic spaces), in the
limiting class [↵]. We then write

!̂t =
1
T

((T � t)!0 + t f ⇤!Y ),

which are Kähler metrics for all 0 6 t < T , and we have

!(t) =
1
T

((T � t)!0 + t f ⇤!Y ) +
p

�1@@'(t),

where '(t) solves the parabolic complex Monge-Ampère equation
8
<

:

@

@t
'(t) = log

(!̂t +
p

�1@@'(t))n

�
'(0) = 0

(3.3)

and � is a smooth positive volume form with
p

�1@@ log� = 1
T ( f ⇤!Y � !0). A

simple maximum principle argument gives |'(t)| 6 C on X⇥[0, T ). We now want
to use the usual Schwarz Lemma argument to show that on X ⇥ [0, T ) we have

!(t) > C�1 f ⇤!Y . (3.4)

To prove this, we first claim that at every point where tr!(t)( f ⇤!Y ) > 0 we have
✓

@

@t
� 1

◆
log tr!(t)( f ⇤!Y ) 6 C tr!(t)( f ⇤!Y ). (3.5)
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To see this, recall that by definition of a Kähler metric on a compact Kähler space,
given every point y 2 Y there exists an open neighborhood U of y in Y with an
embedding U ,! CN , and a smooth and strictly plurisubharmonic function ⌘ on
CN , such that !Y equals the restriction of

p
�1@@⌘ to U . Clearly if y is a smooth

point of Y this just says that !Y is a usual Kähler metric near y. Therefore if
x 2 X is a point with tr!(t)( f ⇤!Y )(x) > 0 and f (x) is a smooth point of Y ,
then (3.5) holds near x thanks to a standard “Schwarz Lemma” calculation (see,
e.g. [41, Theorem 3.2.6]).

If on the other hand we have tr!(t)( f ⇤!Y )(x) > 0 but f (x) is a singular point
of Y , then we choose a neighborhood U of f (x) as above, so that !Y equals the
restriction of

p
�1@@⌘ to U . On f �1(U) we then have the composite holomorphic

map f̃ : f �1(U) ! CN of f and the local embedding, such that on f �1(U) we
have f ⇤!Y = f̃ ⇤

p
�1@@⌘. Then we can apply the same Schwarz Lemma calcula-

tion as in [41, Theorem 3.2.6], to the holomorphic map between Kähler manifolds
f̃ : ( f �1(U),!(t)) ! (CN ,

p
�1@@⌘), and (3.5) then holds on f �1(U).

On the other hand we also have
✓

@

@t
� 1

◆
'(t) = '̇(t)�n+tr!(t)!̂t > log

!(t)n

�
�n+

1
4
tr!(t)( f ⇤!Y )+

1
2
tr!(t)!̂t ,

provided that t is sufficiently close to T , which we may always assume. Therefore,
if we choose A large enough, we have that
✓

@

@t
� 1

◆
(log tr!(t)( f ⇤!Y ) � A'(t))

6 �tr!(t)( f ⇤!Y ) � tr!(t)!̂t � A log
!(t)n

�
+ An,

at all points where tr!(t)( f ⇤!Y ) > 0. Therefore
✓

@

@t
� 1

◆✓
log tr!(t)( f ⇤!Y ) � A'(t) � An(T � t)(log(T � t) � 1)

◆

6 �tr!(t)( f ⇤!Y ) � tr!(t)!̂t � A log
!(t)n

(T � t)n�
+ An,

which, combined with

tr!(t)!̂t >
T � t
T

tr!(t)!0 > C�1
✓

(T � t)n�
!(t)n

◆ 1
n

> A log
(T � t)n�

!(t)n
� C,

gives
✓

@

@t
� 1

◆✓
log tr!(t)( f ⇤!Y ) � A'(t) � An(T � t)(log(T � t) � 1)

◆

6 �tr!(t)( f ⇤!Y ) + C,

and a simple application of the maximum principle then gives (3.4).
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Lastly, using (3.4) we can use the same argument as in [35, Theorem 4.1] and
conclude that if B is a geodesic ball of !Y contained in the regular part of Y then the
diameter of f �1(B) (as a subset of X) with respect to !(t) is bounded below by a
small multiple of the diameter of B with respect to !Y , and hence remains bounded
uniformly away from zero as t ! T , a contradiction to our assumption (1.4).
To close, we make two simple observations.
Remark 3.3. Assuming that (1.4) holds, then the main result of [25] shows that
H1(X, R) = 0. This of course is consistent with Conjecture 1.3, since Fano mani-
folds have vanishing first Betti number.
Remark 3.4. To prove Conjecture 1.3 in general, it would be enough to show that
if (1.4) holds then the L1-type norm

Z

X
|!(t)|!0!

n
0 ,

or the equivalent quantity Z

X
!(t) ^ !n�1

0 ,

goes to zero as t ! T . Indeed, any of these would imply that
Z

X
↵ ^ !n�1

0 = 0,

and the Khovanskii-Teissier inequality for nef classes (see, e.g. [17])
Z

X
↵ ^ !n�1

0 >
✓Z

X
↵2 ^ !n�2

0

◆ 1
2
✓Z

X
!n
0

◆ 1
2
,

implies that
R
X ↵2 ^ !n�2

0 = 0. The result now follows from the Hodge-Riemann
bilinear relations on Kähler manifolds, proved in [13]. Indeed, following their no-
tation, we set !1 = · · · = !n�1 := !0, so that the condition

R
X ↵ ^ !n�1

0 = 0 says
that ↵ 2 P1,1(X), while the condition

R
X ↵2 ^ !n�2

0 = 0 says that Q(↵,↵) = 0.
Since by [13, Theorem A] the bilinear form Q is positive definite on P1,1(X), this
implies that ↵ = 0, as required.
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[28] S. J. KOVÁCS, A characterization of rational singularities, Duke Math. J. 102 (2000), 187–
191.

[29] G. LA NAVE and G. TIAN, Soliton-type metrics and Kähler-Ricci flow on symplectic quo-
tients, J. Reine Angew. Math. 711 (2016), 139–166.

[30] N. NAKAYAMA, The lower semicontinuity of the plurigenera of complex varieties, In: “Al-
gebraic Geometry, Sendai, 1985”, Adv. Stud. Pure Math., Vol. 10, North-Holland, Amster-
dam, 1987, 551–590.

[31] D. H. PHONG and J. STURM, On stability and the convergence of the Kähler-Ricci flow, J.
Differential Geom. 72 (2006), 149–168.

[32] J.-P. RAMIS and G. RUGET, Résidus et dualité, Invent. Math. 26 (1974), 89–131.
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