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Monotonicity in half-spaces of positive solutions
to �1 pu = f (u) in the case p>2

ALBERTO FARINA, LUIGI MONTORO AND BERARDINO SCIUNZI

Abstract. We consider weak distributional solutions to the equation �1pu =

f (u) in half-spaces under zero Dirichlet boundary condition. We assume that
the nonlinearity is positive and superlinear at zero. For p > 2 (the case 1 <
p  2 is already known) we prove that any positive solution is strictly monotone
increasing in the direction orthogonal to the boundary of the half-space. As a
consequence we deduce some Liouville-type theorems for the Lane-Emden-type
equation. Furthermore any nonnegative solution turns out to be C2,↵ smooth.
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1. Introduction

We consider the problem
8><
>:

�1pu = f (u) in RN
+

u(x 0, y) > 0 in RN
+

u(x 0, 0) = 0 on @RN
+

,

(1.1)

where N � 2 and f (·) satisfies:

(h f ) the nonlinearity f is positive, i.e., f (t) > 0 for t > 0, it is locally Lipschitz
continuous in R+

[ {0}, and

lim
t!0+

f (t)
t p�1

= f0 2 R+

[ {0}.

In the following we denote a generic point in RN by (x 0, y) with x 0
= (x1, x2, . . .

. . . , xN�1) and y = xN , we assume with no loss of generality that RN
+

= {y > 0}.
Furthermore, according to the regularity results in [18, 32, 41] (see also the recent
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developments in [31, 40]), we assume that u 2 C1,↵loc (RN
+

) and that is fulfills the
equation in the weak distributional sense. Actually, in our case the regularity up to
the boundary does not follow directly from [32] and an argument by reflection is
needed. This is quite standard and will be described later on in this paper.

By the strong maximum principle (see [42]), it follows that any nonnegative
nontrivial solution is actually (strictly) positive. In this case we study the mono-
tonicity of the solution in the direction orthogonal to the boundary of the half-space.

The main tool is the Alexandrov-Serrin moving plane method that dates back
to [1, 39]. It is well known that the moving plane procedure allows one to prove
monotonicity and symmetry properties of the solutions to general PDE’s. In the
case of bounded domains and in the semilinear case p = 2, this study was started in
the celebrated papers [5,27]. In the case of unbounded domains the main examples,
arising from many applications, are provided by the whole space RN and by the
half-space RN

+
. We refer to [7, 27, 28] for the case of the whole space, where radial

symmetry of the solutions is expected. In this paper we will address the case when
the domain is a half-space. We refer the reader to [2–4, 10, 16, 17, 19, 25, 35] for
previous results concerning monotonicity of the solutions in half-spaces, in the non-
degenerate case.

The case of p-Laplace equations is really harder to study. In fact the p-
Laplacian is a nonlinear operator and, as a consequence, comparison principles are
not equivalent to maximum principles. The degenerate nature of the operator also
causes lack of regularity of the solutions. Furthermore, in the case p > 2 that we are
considering, the use of weighted Sobolev spaces is naturally associated to the study
of qualitative properties of the solutions. This issue is more delicate in unbounded
domains. We cannot describe here in full detail, this fact, that will be clarified in
the body the paper. Let us only say that the use of weighted Sobolev spaces is
necessary in the case p > 2, and it requires in turn the use of a weighted Poincaré
type inequality with weight ⇢ = |ru|p�2 (see [13]). The latter involves constants
that may blow up when the solution approaches zero, and thus may happen also
for positive solutions in unbounded domains. Once again the lack of compactness
plays an important role.

The first results in bounded domains and in the case 1 < p < 2 were obtained
in [12]. The case p > 2 requires the above-mentioned use of weighted Sobolev
spaces and was solved in [13], for positive nonlinearities ( f (t) > 0 for t > 0). In
the case of the whole space, we refer the reader to the recent results in [11, 38, 43].

The first results concerning the p-Laplace operator and problems in half-spaces
have been obtained in [15] in dimension two. The same techniques have been also
exploited in the fully nonlinear case in [8]. In higher dimension, the first results
have been obtained in the singular case 1 < p < 2 in [21, 23] (see also [26])
where positive locally Lipschitz continuous nonlinearities are considered. A partial
answer in the more difficult degenerate case p > 2 was obtained in [22], where
power-like nonlinearities are considered under the restriction 2 < p < 3. Here,
considering a larger class of nonlinearities, namely positive nonlinearities that are
superlinear at zero, we remove the condition 2 < p < 3 and prove the following:
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Theorem 1.1. Let p > 2 and let u 2 C1,↵loc (RN
+

) be a positive solution to (1.1) with
|ru| 2 L1(RN

+
). Then, under the assumption (h f ), it follows that

@u
@y

> 0 in RN
+

.

As a consequence u 2 C2,↵
0

loc (RN
+

) for some 0 < ↵0 < 1.

Our monotonicity result holds in particular for Lane-Emden type equations,
namely in the case f (u) = uq with q � p � 1. Note that, the case q  p � 1, or
more generally the case when, for some t0 > 0, it holds

f (t) � c t p�1 for t 2 [0, t0] ,

is already contained in [22, Theorem 3]. Furthermore Theorem 1.1 is proved with-
out a-priori assumptions on the behavior of the solution, that is, at infinity the
solution may decay at zero in some regions, while it can be far from zero in some
other regions. It is crucial that, in our result, only local regularity of the solution is
required. Indeed assuming that the solution has summability properties at infinity,
i.e., assuming that the solution belongs to some Sobolev space, the monotonicity re-
sult is somehow easier to deduce and it generally leads to the nonexistence of such
solutions (we refer to [33], see also [44]). Finally it is worth emphasizing that we
prove the first step of the moving plane procedure in a very general setting. Indeed,
in Theorem 3.1, we prove that any positive solution is monotone increasing near the
boundary for any 1 < p < 1 only assuming that the nonlinearity f is continuous
in R+

[ {0} and for some T > 0, it holds that | f (t)|  k̄ t p�1 for t 2 [0, T ] and
some k̄ = k̄(T ) > 0.

The technique developed to prove Theorem 1.1 also allows us to deduce a
monotonicity result for solutions to equations involving a different class of nonlin-
earities. We have the following

Theorem 1.2. Let p > 2 and let u 2 C1,↵loc (RN
+

)\W 1,1(RN
+

) be a positive solution
to (1.1). Suppose that f (·) is locally Lipschitz continuous inR+

[{0} and that there
exists t0 > 0 such that

f (s) > 0 for 0 < t < t0 , f (s) < 0 for t > t0 .

Assume furthermore that

lim
t!0+

f (t)
t p�1

= f02R+

[{0} , lim
t!t0

f (t)
(t0�t)|t0�t |p�2

= f 0 2 R+

[ {0} . (1.2)

Then
@u
@y

> 0 in RN
+

.

As a consequence, u 2 C2,↵
0

loc (RN
+

) for some 0 < ↵0 < 1.
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Theorem 1.2 is mainly a corollary of Theorem 1.1 and it extends to the degen-
erate case p > 2 earlier results in [23] (see Theorem 1.3 there and see also [21, The-
orem 1.8]). It applies, for instance, to solutions of

�1pu = u
�
1� u2

���1� u2
��q ,

where q � p � 2. When p = 2 and q = 0, the above equation reduces to

�1u = u
�
1� u2

�
,

which is the celebrated Allen-Cahn equation arising in a famous conjecture of De
Giorgi.

The monotonicity of the solution implies in particular stability its, see [9, 24].
This allows us to deduce some Liouville-type theorems. Following [9, 20], we set

qc(N ,p)=
[(p�1)N� p]2+ p2(p�2)� p2(p�1)N+2p2

p

(p�1)(N�1)
(N � p)[(p � 1)N � p(p + 3)]

.

We refer to [9,20] and the references therein for more details and we only note here
that the exponent qc(N , p) is larger than the classical critical Sobolev exponent.
Once that, we know that by Theorem 1.1, the solutions are monotone and therefore
stable, the same proof of [22, Theorem 4] provides the following Liouville-type
result:

Theorem 1.3. Let p > 2 and let u 2 C1,↵loc (RN
+

) be a non-negative weak solution
of (1.1) in RN

+
with |ru| 2 L1(RN

+
) and

f (u) = uq .

Assume that (
(p � 1) < q < 1 if N 6 p(p+3)

p�1

(p � 1) < q < qc(N , p) if N > p(p+3)
p�1 .

Then u = 0. If moreover we assume that u is bounded, then it follows that u = 0
assuming only that

(
(p � 1) < q < 1 if (N � 1) 6 p(p+3)

p�1

(p � 1) < q < qc((N � 1), p) if (N � 1) > p(p+3)
p�1 .

The paper is organized as follows. In Section 2 we recall some known results for
the reader’s covenience. In Section 3 we prove some preliminary results and then
we prove Theorems 1.1 and 1.2.
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2. Preliminaries

We start by stating some notation and preliminary results. Generic fixed and nu-
merical constants will be denoted by C (with subscript in some case) and they will
be allowed to vary within a single line or formula.

For 0  ↵ < �, we define the strip 6(↵,�) as

6(↵,�) := RN�1
⇥ (↵,�) (2.1)

and we will denote by 6� the strip

6� := RN�1
⇥ (0,�).

Then we define the cylinder

C(↵,�)(R) = C(R) := 6(↵,�) \

�
B0(0, R) ⇥ R

 
, (2.2)

where B0(0, R) is the ball in RN�1 of radius R and center at zero. Given � 2 R we
will define u�(x) by

u�(x) = u�(x 0, y) := u(x 0, 2� � y) in 62� . (2.3)

Finally we use the notation
u+

:= max{u, 0}.

In the sequel of the paper we will often use the strong maximum principle. We refer
to [42] (see also [34]) and we recall here the statement.

Theorem 2.1 (Strong maximum principle and Hopf’s lemma). Let � be a do-
main in RN and suppose that u 2 C1(�), u > 0 in �, weakly solves

�1pu + cuq = g > 0 in � ,

with 1 < p < 1, q > p � 1, c > 0 and g 2 L1

loc(�). If u 6= 0 then u > 0 in
�. Moreover for any point x0 2 @� where the interior sphere condition is satisfied,
and such that u 2 C1(�[ {x0}) and u(x0) = 0 we have that @u

@s > 0 for any inward
directional derivative, that is, if y approaches x0 in a ball B ✓ � that has x0 on its
boundary, then limy!x0

u(y)�u(x0)
|y�x0| > 0.

Let us recall that the linearized operator Lu(v,') for a fixed solution u of
�1p(u) = f (u) is well defined for every v , ' 2 H1,2⇢ (�) with ⇢ ⌘ |ru|p�2, by

Lu(v,')⌘

Z
�

⇥
|ru|p�2(rv,r')+(p�2)|ru|p�4(ru,rv)(ru,r')� f 0(u)v'

⇤
.
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We refer [13] for more details and in particular for the definition of the weighted
Sobolev spaces involved. Let us only recall here that the space H 1,2⇢ (�) can be
defined as the space of functions v such that kvkH1,2⇢ (�)

is bounded and

kvkH1,2⇢ (�)
:= kvkL2(�) + krvkL2(�,⇢) .

This is the same space obtained performing the completion of smooth functions
under the norm above. The space H1,20,⇢ (�) is obtained taking the closure of C1

c (�)

under the same norm and krvkL2(�,⇢) is an equivalent norm in H
1,2
0,⇢ (�).

Moreover, v 2 H1,2⇢ (�) is a weak solution of the linearized equation if

Lu(v,') = 0

for any ' 2 H1,20,⇢ (�). By [13] we have that uxi 2 H1,2⇢ (�) for i = 1, . . . , N , and
Lu(uxi ,') is well defined for every ' 2 H1,20,⇢ (�), with

Lu(uxi ,') = 0 8' 2 H1,20,⇢ (�).

In other words, the derivatives of u are weak solutions of the linearized equa-
tion. Consequently by the strong maximum principle for the linearized operator
(see [14]) we have the following

Theorem 2.2. Let u 2 C1(�) be a weak solution of�1p(u) = f (u) in a bounded
smooth domain � of RN with 2N+2

N+2 < p < 1, f positive ( f (s) > 0 for s > 0)
and locally Lipschitz continuous. Then, for any i 2 {1, . . . , N } and any domain
�0

⇢ � with uxi > 0 in �0, we have that either uxi ⌘ 0 in �0 or uxi > 0 in �0.

We now state the weighted Poincaré-type inequality proved in [13] that will be
useful in the sequel.

Theorem 2.3 (Weighted Poincaré-type inequality). Let w 2 H1,2⇢ (�) be such
that

|w(x)|  Ĉ
Z

�

|rw(y)|
|x � y|N�1 dy, (2.4)

with � a bounded domain and Ĉ a positive constant. Let ⇢ be a weight function
such that Z

�

1
⇢⌧

|x � y|�
dy  C⇤ for any x 2 �, (2.5)

with max{(p � 2) , 0} 6 ⌧ < p � 1, � < N � 2 (� = 0 if N = 2). ThenZ
�

w2  Cp

Z
�

⇢|rw|
2, (2.6)

where Cp = Cp(d,C⇤), with d = diam (�). Moreover, Cp ! 0 if d ! 0.



MONOTONICITY IN HALF-SPACES 1213

We remark that, for the sake of simplicity and for the reader’s convenience, we
make explicit the dependence of Cp on the parameters, which will play a crucial
role, in the sequel and that we need to control. The other parameters involved are
fixed in our application and we refer the reader to Theorem 8 and to [22, Corollary
2 in Section 5] (see also [13]).

We will use the weighted Poincaré-type inequality with ⇢ = |ru|p�2. The
next proposition gives some sufficient conditions for (2.5).

Proposition 2.4. Let 1 < p < 1 and u 2 C1,↵(�) be a weak solution to

�1pu = h(x) in �,

with h 2 W 1,1(�). Let �0
⇢⇢ � and 0 < � < dist(�0, @�) and assume that

h > 0 in �0

� , where

�0

� = {x 2 � : d
�
x,�0

�
< �} b �.

Let us fix �1,�2 such that

inf
x2�0

�

h(x) � �1 > 0 and � � �2 > 0.

Then there exits a positive constant C⇤
= C⇤(�1,�2) such thatZ

�0

1
|ru|⌧

1
|x � y|�

6 C⇤,

with max{(p � 2) , 0} 6 ⌧ < p � 1.

Remark 2.5. The proof of Proposition 2.4 follows from [13] (see also [36, 37]),
however we refer to [22, Proposition 1 in Section 4] for the version stated here. Let
us also point out that, as above, we prefer to omit the dependence of the constant
C⇤ on other parameters that are fixed and therefore not relevant in our application.

Later we will frequently exploit the classical Harnack inequality for p-Laplace
equations. We refer to [34, Theorem 7.2.1] and the references therein. At some
point, as it will be clear later, it will be crucial the use of a boundary-type Harnack
inequality. We thus state here an adapted version of the more general and deep
result of M.F. Bidaut-Véron, R. Borghol and L. Véron, see [6, Theorem 2.8].

Theorem 2.6 (Boundary Harnack inequality). Let R0 > 0 define the cylinder
C(0,L)(2R0) as in (2.2) and let u be such that

�1pu = c(x)u p�1 in C(0,L)(2R0),

with u vanishing on C(0,L)(2R0) \ {y = 0} and with kc(x)kL1(C(0,L)(2R0))  C0.
Then
1
C
u(z2)
⇢(z2)



u(z1)
⇢(z1)

C
u(z2)
⇢(z2)

, 8 z1, z22 BR0 \C(0,L)(2R0) : 0<
|z2|
2

 |z1|2|z2| ,

where C = C(p, N ,C0) and ⇢(·) is the distance function to @RN
+
.
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Finally, we state a lemma that will be useful in the proof of Proposition 3.3
below, see [21, Lemma 2.1].

Lemma 2.7. Let ✓ > 0 and ⌫ > 0 such that ✓ < 2�⌫ . Let

L : (1,+1) ! R

be a non-negative and non-decreasing function such that
(
L(R)  ✓L(2R) 8R > 1
L(R)  CR⌫

8R > 1 .

Then L(R) = 0.

3. Proof of Theorem 1.1

We will give the proof of Theorem 1.1 at the end of this section. Let us begin by
showing that any positive solution to (1.1) is increasing in the y-direction near the
boundary @RN

+
. We prove such a result for problems involving a more general class

of nonlinearities and for any 1 < p < 1. We have the following:

Theorem 3.1. Let 1 < p < 1 and let u 2 C1,↵loc (RN
+

) be a positive weak solution
to (1.1) with |ru| 2 L1(RN

+
). Assume that the nonlinearity f is continuous in

R+
[ {0} and, for some T > 0, it holds that

| f (t)|  k̄ t p�1 for t 2 [0, T ]

for some k̄ = k̄(T ) > 0. Then it follows that there exists � > 0 such that

@u
@y

�
x 0, y

�
> 0 in 6�. (3.1)

In particular the result holds true under the condition (h f ).

Proof. We argue by contradiction and we assume that there exists a sequence of
points Pn = (x 0

n, yn) such that

@u
@y

�
x 0

n, yn
�

 0 and yn �!

n!+1

0. (3.2)

We consider the sequence x̂n defined by x̂n =

�
x 0

n, 1
�
.We set ↵n = u

�
x 0

n, 1
�
, and

wn
�
x 0, y

�
=

u
�
x 0

+ x 0

n, y
�

↵n
. (3.3)
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We remark that wn(0, 1) = 1 and we have

�1pwn(x) =

1
↵
p�1
n

f
�
u(x 0

+ x 0

n, y)
�

=

1
↵
p�1
n

f
�
u(x 0

+ x 0

n, y)
�

u p�1
�
x 0

+ x 0

n, y
�u p�1(x 0

+ x 0

n, y) = cn(x)w
p�1
n (x),

(3.4)

for

cn(x) =

f
�
u(x 0

+ x 0

n, y)
�

u p�1
�
x 0

+ x 0

n, y
� . (3.5)

Since for any L > 0 we have that u 2 L1(6(L)) (by the Dirichlet condition and
because |ru| is bounded in RN

+
), by the assumption on the nonlinearity f , we

obtain that
kcn(x)kL1(6L )  kcn(x)kL1(62L )  C0(L). (3.6)

Now we consider real numbers L , R and R0 satisfying

0 < 2R0 < 1 < R < L . (3.7)

We claim that:
kwnkL1(C(0,L)(R))  C(L , R, R0) .

Since wn(0, 1) = 1, by the classical Harnack inequality, see [34, Theorem 7.2.1],
we have that

kwnkL1(C(0,L)(R)\{y� R0
4 })

 Ci
H (L , R, R0) . (3.8)

Now we apply Theorem 2.6 to deduce that

kwnkL1(C(0,L)(R)\{y R0
4 })

 Cb
H (L , R, R0). (3.9)

To this end, let P̃ = (x̃ 0, ỹ) be such that x̃ 0
2 B0

R(0) and 0 < ỹ < R0
4 and consider

a corresponding point Q̌ =

�
x̌ 0, 0

�
such that

x̌ 0

2 B0(0, R) and P̃ 2 @BR0(Q̌) .

Recalling the choice 2R0 < R < L , it is easy to check that such a point exists (and
in general is not unique), see Figure 3.1.

By [6] (see Theorem 2.6) and recalling (3.6), we infer that

wn(P̃)

ỹ
 C

wn(x̌ 0, R0)
R0

,

and, recalling also that wn(x, 0) = 0, we deduce that

kwnkL1(C(0,L)(R)\{y R0
4 }))



C
4

· Ci
H (L , R, R0),



1216 ALBERTO FARINA, LUIGI MONTORO AND BERARDINO SCIUNZI

R0

R0

4

L
y

R x

(x′, R0)ˇ

∂BR0
(Q)ˇ

Q = (x′, 0)ˇ ˇ
P = (x′, y)̃ ̃̃ 0

C0,L(R)
RN

+

Figure 3.1.

that is (3.9) holds, with Cb
H (L , R, R0) = C ·Ci

H (L , R, R0). Finally using (3.8) and
(3.9) it follows that

kwnkL1(C(0,L)(R))  C(L , R, R0).

Now consider u (and consequently u(x 0
+ x 0

n, y) in (3.3)), defined on the entire
space RN by odd reflection. That is

u
�
x 0, y

�
= �u

�
x 0,�y

�
in {y < 0},

and consequently
f (t) = � f (�t) if t < 0.

In this case we will refer to the cylinder

C(�L ,L)(R) = B0

R(0) ⇥ (�L , L).

By standard regularity theory, see, e.g., [41, Theorem 1], since kwnkL1(C(�L ,L)(R)) 

C(L , R, R0), we have that

kwnkC1,↵loc (C(�L ,L)(R))
6 C(L , R, R0)

for some 0 < ↵ < 1. This allows us to use the Ascoli-Arzelà theorem to get

wn
C1,↵

0

loc (C(�L ,L)(R))
�! w0

up to subsequences, for ↵0 < ↵. Furthermore, thanks to (3.6), we infer that

cn(·) ! c0(·) (3.10)
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weakly star in L1(C(�L ,L)(R)) up to subsequences. This and the fact that w0 2

C1,↵0

(C(�L ,L)(R)) allows us to deduce easily that
8><
>:

�1pw0 = c0(x)w
p�1
0 in C(0,L)(R)

w0(x 0, y) > 0 in C(0,L)(R)

w0(x 0, 0) = 0 on @C(0,L)(R) \ @RN
+

.

By the strong maximum principle, and recalling that wn(0, 1) = 1 for all n 2 N,
we deduce that w0 > 0 in C(0,L)(R) and, by Hopf’s lemma, we infer that

@w0
@y

(0, 0) > 0 .

We conclude the proof noticing that a contradiction occurs since by (3.2) we should
have that @w0

@y (0, 0)  0.

Corollary 3.2. Under the hypotheses of Theorem 3.1, there exists � > 0 such that,
for all 0 < ✓ 

�
2 , it holds that

u  u✓ in 6✓ .

Proof. Given � from Theorem 3.1, using (3.1), it is sufficient to recall the definition
of u✓ in (2.3).

We now prove a technical result we are going to use in the sequel to prove our
main result; we may refer to it as a weak comparison principle in narrow domains.
We define the projection P as

P : RN
�! RN�1

(x 0, y) �! x 0 .

In the proof of the next proposition, we will use the following inequalities: 8⌘, ⌘0
2

RN with |⌘| + |⌘0
| > 0 there exists positive constants Ċ, Č depending on p such

that
⇥
|⌘|

p�2⌘ � |⌘0

|
p�2⌘0

⇤⇥
⌘ � ⌘0

⇤
� Ċ

�
|⌘| + |⌘0

|

�p�2��⌘ � ⌘0

��2,��
|⌘|

p�2⌘ �

��⌘0

��p�2⌘0

��
 Č

�
|⌘| +

��⌘0

���p�2��⌘ � ⌘0

��. (3.11)

Proposition 3.3. Let p > 2 and let u 2 C1,↵loc (RN
+

) be a positive weak solution to
(1.1) with |ru| 2 L1(RN

+
). For 0  ↵ < �  �, let 6(↵,�) be the strip defined in

(2.1) and assume that
u  u� on @6(↵,�) . (3.12)
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Assume furthermore that, setting

I+

(�) =

n
(x 0, �) : x 0

2 P
�
supp (u � u�)

+
�o

,

it holds that
u(x) � � > 0 on I+

(�). (3.13)

Then, for fixed 3 > 0 such that 3 � 2� + 1 , there exists h0 = h0( f, p, � , N ,
krukL1(63)) such that if � � ↵  h0 we have u  u� in 6(↵,�).

Proof. Recalling that u�(x 0, y) = u(x 0, 2� � y), we remark that (u � u�)
+

2

L1(6(↵,�)) since we assumed |ru| is bounded. Let us now define

9 = (u � u�)
+'2R,

where 'R(x 0, y) = 'R(x 0) 2 C1

c (RN�1), 'R � 0 such that
8><
>:

'R ⌘ 1 in B0(0, R) ⇢ RN�1

'R ⌘ 0 in RN�1
\ B0(0, 2R)

|r'R| 
C
R in B0(0, 2R) \ B0(0, R) ⇢ RN�1,

(3.14)

where B0(0, R) denotes the ball in RN�1 with center 0 and radius R > 0. From
now on, for the sake of simplicity, we set 'R(x 0, y) := '(x 0, y). By (3.14) and
since u  u� on @6(�,�) (see (3.12)), it follows that 9 2 W 1,p

0 (C(↵,�)(2R)). Since
u is a solution to problem (1.1), then it follows that u, u� are solutions to

8><
>:

�1pu = f (u) in 6(↵,�)

�1pu� = f (u�) in 6(↵,�)

u  u� on @6(↵,�).

(3.15)

Then using9 as a test function in both equations of problem (3.15) and substracting
we get

Z
C(2R)

�
|ru|p�2ru � |ru�|

p�2
ru�,r(u � u�)

+
�
'2

+

Z
C(2R)

�
|ru|p�2ru � |ru�|

p�2
ru�,r'2

�
(u � u�)

+

=

Z
C(2R)

�
f (u) � f (u�)

�
(u � u�)

+'2,

(3.16)
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where C(·) denotes the cylinder defined in (2.2). By (3.11) and the fact that p � 2,
from (3.16) we deduce that

Ċ
Z
C(2R)

(|ru| + |ru�|)
p�2

|r(u � u�)
+

|
2'2



Z
C(2R)

�
|ru|p�2ru � |ru�|

p�2
ru�,r(u � u�)

+
�
'2

= �

Z
C(2R)

�
|ru|p�2ru � |ru�|

p�2
ru�,r'2

�
(u � u�)

+

+

Z
C(2R)

�
f (u) � f (u�)

�
(u � u�)

+'2



Z
C(2R)

����|ru|p�2ru � |ru�|
p�2

ru�,r'2
���� (u � u�)

+

+

Z
C(2R)

�
f (u) � f (u�)

�
(u � u�)

+'2

 Č
Z
C(2R)

(|ru| + |ru�|)
p�2

|r(u � u�)
+

||r'2|(u � u�)
+

+

Z
C(2R)

�
f (u) � f (u�)

�
(u � u�)

+'2,

(3.17)

where in the last line we used the Schwarz inequality and the second of (3.11).
Setting

I1 := Č
Z
C(2R)

(|ru| + |ru�|)
p�2��

r(u � u�)
+

����
r'2

��(u � u�)
+ (3.18)

and
I2 :=

Z
C(2R)

�
f (u) � f (u�)

�
(u � u�)

+'2, (3.19)

equation (3.17) becomes

Ċ
Z
C(2R)

(|ru| + |ru�|)
p�2��

r(u � u�)
+

��2'2  I1 + I2. (3.20)

In order to estimate the terms I1 and I2 in (3.20) we will use the weighted Poincaré-
type inequality (2.6) (see [13]) and a covering argument that goes back to [22]. Let
us consider the hypercubes Qi of RN defined by

Qi = Q0

i ⇥ [↵,�],

where Q0

i ⇢ RN�1 are hypercubes of RN�1 with edge � � ↵ and such that
[
i
Q0

i = RN�1.
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Moreover we assume that Qi \ Q j = ; for i 6= j and

N[
i=1

Qi � C(2R). (3.21)

It follows that each set Qi has diameter

diam(Qi ) = dQ =

p

N (� � ↵), i = 1, . . . , N . (3.22)

The covering in (3.21) will allow us to use in each Qi the weighted Poincaré-type
inequality and to take advantage of the constant Cp in Theorem 2.3, that turns out
not to be depending on the index i of (3.21). We will recollect the estimates later.

Let us define

w(x) =

8<
:
⇣
u � u�

⌘
+

(x 0, y) if (x 0, y) 2 Qi

�

⇣
u � u�

⌘
+

(x 0, 2� � y) if (x 0, y) 2 Qr
i ,

(3.23)

where (x 0, y) 2 Qr
i if and only if (x 0, 2� � y) 2 Qi . We claim thatZ
Qi

w2  Cp(Qi )

Z
Qi

(|ru| + |ru�|)
p�2

|rw|
2 (3.24)

where Cp(Qi ) is given by Theorem 2.3 and it goes to zero if the diameter of Qi
does. Actually, since p � 2, we will deduce (3.24) fromZ

Qi

w2  Cp(Qi )

Z
Qi

|ru�|
p�2

|rw|
2 . (3.25)

The fact that Theorem 2.3 can be applied to deduce (3.25) is somewhat technical
and we describe the procedure below.

We have
R
Qi[Qr

i
w(x)dx = 0 and therefore, see [29, Lemma 7.14, Lemma

7.16], it follows that

w(x) = Ĉ
Z
Qi[Qr

i

(xi � zi )Diw(z)
|x � z|N

dz a.e. x 2 Qi [ Qr
i ,

where Ĉ = Ĉ(dQ, N ), is a positive constant. Then for almost every x 2 Qi we
have

|w(x)|  Ĉ
Z
Qi[Qr

i

|rw(z)|
|x � z|N�1 dz

= Ĉ
Z
Qi

|rw(z)|
|x � z|N�1 dz + Ĉ

Z
Qr
i

|rw(z)|
|x � z|N�1 dz

 2Ĉ
Z
Qi

|rw(z)|
|x � z|N�1 dz ,
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where in the last inequality we used the following standard changing of variables

(zt )0 = z0 and ztN = 2� � zN ,

the fact that for x 2 Qi it holds that (|x � z|)
��
z2Qi

 (|x � zt |)
��
z2Qi

, and that by
(3.23) it holds that |rw(z)| = |rw(zt )|.

Hence (2.4) holds and, in order to prove (3.25), we need to show that (2.5)
holds with

⇢ = |ru�|
p�2 .

Note now that if w vanishes identically in Qi , then there is nothing to prove. Oth-
erwise it is easy to see that from our assumptions (see (3.13)) and the classical
Harnack inequality, it follows that there exists �̄ > 0 such that

u � �̄ > 0 in Q̃0

i ⇥ [�/2 , 4�], (3.26)

where
Q̃0

i :=

�
x 2 RN�1

: dist(x, Q0

i ) < 1
 
.

Let us consider QR�
i obtained by the reflection of Qi with respect to the hyperplane

T� = {(x 0, y) 2 RN
: y = �}. Since QR�

i is bounded away from the boundary
RN , namely

dist
⇣
QR�
i , {y = 0}

⌘
� � > 0

because of (3.26), then Proposition 2.4 applies with

�1 = min
t2[�̄ ,kukL1(63)]

f (t) and �2 = �,

and we obtain that
Z
QR�
i

1
|ru|p�2

1
|x � y|�

dy  C⇤

1 (�1,�2) for any x 2 QR�
i .

By symmetry we deduce that

Z
Qi

1
|ru�|

p�2
1

|x � y|�
dy  C⇤

1 (�1,�2) for any x 2 Qi ,

so that we can exploit Theorem 2.3 to obtain (3.25) and consequently (3.24).
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Let us now estimate the right-hand side of (3.20). Recalling (3.18) we get

I1 = 2Č
Z
C(2R)

(|ru| + |ru�|)
p�2

|r(u � u�)
+

|'|r'|(u � u�)
+

= 2Č
Z
C(2R)

(|ru|+|ru�|)
p�2
2 |r(u � u�)

+

|'(|ru| + |ru�|)
p�2
2 |r'|(u � u�)

+

 �0Č
Z
C(2R)

(|ru| + |ru�|)
p�2

|r(u � u�)
+

|
2'2

+

Č
�0

Z
C(2R)

(|ru| + |ru�|)
p�2

|r'|
2
[(u � u�)

+

]
2,

where in the last inequality we used the weighted Young inequality, with �0 to be
chosen later. Hence

I1  I a1 + I b1 , (3.27)

where

I a1 = �0Č
Z
C(2R)

(|ru| + |ru�|)
p�2��

r(u � u�)
+

��2'2,
I b1 =

Č
�0

Z
C(2R)

(|ru| + |ru�|)
p�2

|r'|
2⇥(u � u�)

+
⇤2

.

(3.28)

Using the covering in (3.21), the properties of the cut-off function in (3.14) and the
fact that |ru| and |ru�| are bounded, by (3.24) we deduce that

I b1 

NX
i=1

C
�0R2

Z
C(2R)\Qi

⇥
(u � u�)

+
⇤2

 max
i
CP(Qi )

NX
i=1

C
�0R2

Z
C(2R)\Qi

(|ru| + |ru�|)
p�2��

r(u � u�)
+

��2

 C⇤

P
C

�0R2

Z
C(2R)

(|ru| + |ru�|)
p�2��

r(u � u�)
+

��2
(3.29)

where C⇤

P = maxi CP(Qi ) and C = C(p, krukL1(63)).
Now we estimate the term I2 in (3.20). Since f is locally Lipschitz continuous

because of (3.19), arguing as in (3.29), we get that

I2 

Z
C(2R)

f (u) � f (u�)

u � u�

⇥
(u � u�)

+
⇤2

 C⇤

P · C
Z
C(2R)

(|ru| + |ru�|)
p�2��

r(u � u�)
+

��2,
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whereC⇤

P is as in (3.29) andC=C( f, �, krukL1(63)). The constantC will depend
on the Lipschitz constant of f in the interval

⇥
0,max

�
kukL1(63), ku�kL1(63)]

 ⇤
.

By (3.20), (3.27), (3.28) and (3.29), up to redefining the constants, we obtain

C
Z
C(2R)

(|ru| + |ru�|)
p�2��

r(u � u�)
+

��2'2

 �0

Z
C(2R)

(|ru| + |ru�|)
p�2��

r(u � v)+
��2

+

C⇤

P
R

Z
C(2R)

(|ru| + |ru�|)
p�2��

r(u � u�)
+

��2

+ C⇤

P

Z
C(2R)

(|ru| + |ru�|)
p�2��

r(u � u�)
+

��2.

(3.30)

Let us choose �0 small in (3.30) such that C � �0 > C/2 and fix R > 1. Then we
obtain Z

C(2R)
(|ru| + |ru�|)

p�2��
r(u � u�)

+

��2'2

 4
C⇤

P
C

Z
C(2R)

(|ru| + |ru�|)
p�2��

r(u � u�)
+

��2.
(3.31)

To conclude we set now

L(R) :=

Z
C(R)

(|ru| + |ru�|)
p�2��

r(u � u�)
+

��2. (3.32)

We can fix h0 = h0( f, p, � , �, N , krukL1(63)) positive, such that if

� � ↵  h0,

(recall that C⇤

P ! 0 in this case since diam(Qi ) ! 0, see (3.22)) then

✓ := 4
C⇤

P
C

< 2�N .

Then, by (3.31) and (3.32), we have
(
L(R)  ✓L(2R) 8R > 1
L(R)  CRN 8R > 1.

From Lemma 2.7 with ⌫ = N and ✓ < 2�N , we get

L(R) ⌘ 0

and consequently that (u � u�)
+

⌘ 0.



1224 ALBERTO FARINA, LUIGI MONTORO AND BERARDINO SCIUNZI

The proof of our main result will follow by the moving-plane procedure,
strongly based on Proposition 3.3. As it will be clear later, it will be needed to
substitute � by � + " in order to proceed further from the maximal position. To do
this we need to be very accurate in the estimate of the constants involved, namely
we need to control the role of h0 in Proposition 3.3. This is the reason why we
introduced the larger strip 63, that allows us to control |ru|. But we still need to
control the dependence of h0 on � (see (3.13)). Equivalently we need a uniform
control (with respect to ") on the infimum of u far from the boundary, and in the set
where u is greater than u�. This motivates the following:

Lemma 3.4. Let � > 0 and let u be a solution to (1.1), with |ru| 2 L1(RN
+

) and
u� defined as in (2.3). Assume here that (h f ) is fulfilled with f0 = 0 and define

I+

(�,") =

n
(x 0, �) : x 0

2 P
�
supp (u � u�+")

+
�o

.

Then there exist "0 > 0 and � > 0 such that

u(x) � � on I+

(�,"),

for all 0  "  "0.

Proof. By contradiction, given "0 > 0 and � > 0, we find 0  "  "0 and a point
Q" = (x 0

", �) with Q" 2 I+

(�,") such that

u
�
x 0

", �
�

 � .

It is convenient to consider "0 = � = 1/n and the corresponding " = "n  "0
defined by contradiction as above, that obviously approaches zero as n tends to
infinity. Also we use the notation Q"n 2 I+

(�,"n)
. On a corresponding sequence

Pn = (x 0

n, yn) we have that

u
�
x 0

n, yn
�

� u�+"n

�
x 0

n, yn
�

with
�
x 0

n, yn
�

2 6�+"n , (3.33)

where the existence of the sequence (x 0

n, yn) follows by the fact that Q"n 2 I+

(�,"n)

and (up to subsequences) yn ! y0 2 [0, �]. Moreover limn!+1 u
�
x 0

n, �
�

! 0.
Let us set

wn
�
x 0, y

�
=

u
�
x 0

+ x 0

n, y
�

↵n
(3.34)

and ↵n = u
�
x 0

n, �
�
, with lim

n!+1

↵n = 0. We remark that wn(0, �) = 1. Then we
have

�1pwn(x) = cn(x)w
p�1
n (x), (3.35)

for

cn(x) =

f
�
u(x 0

+ x 0

n, y)
�

u p�1
�
x 0

+ x 0

n, y
� . (3.36)
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Since for any L > 0 we have that u 2 L1(6(L)) (by the Dirichlet condition and
because |ru| is bounded in RN

+
), by (h f ) we obtain that

kcn(x)kL1(6L )  C(L). (3.37)

For L > � we consider the cylinder C(0,L)(R) and, arguing as in the proof of
Theorem 3.1 (see the first claim there), we deduce that

kwnkL1(C(0,L)(R))  C(L) .

Now, as in the proof of Theorem 3.1, we consider u defined on the entire space RN

by odd reflection and, by standard regularity theory (see [18,41]), we deduce that

kwnkC1,↵loc (C(�L ,L)(R))
6 C(L)

for some 0 < ↵ < 1. This allows us to use the Ascoli-Arzelà theorem and get

wn
C1,↵

0

loc (C(�L ,L)(R))
�! wL ,R

up to subsequences, for ↵0 < ↵. Replacing L by L + n (n 2 N), and R by R + n,
we can repeat the argument above and then perform a standard diagonal process
to define w in the entire space RN in such a way that w is locally the limit of
subsequences of wn . It turns out that, by construction, setting

w+(x) = w(x) · �RN
+

we have that 8><
>:

�1pw+ = 0 in RN
+

w+(x 0, y) > 0 in RN
+

w+(x 0, 0) = 0 on @RN
+

.

This is a simple computation where in (3.35) we need to use the fact that cn(x) ! 0
as n ! +1 uniformly on compact sets. This follows considering that wn is uni-
formly bounded on compact sets and then, by (3.34), it follows that u(x+ x 0

n, y) !

0 as n ! +1. By (3.36) and recalling that

lim
t!0

f (t)
t p�1

= 0,

finally it follows that cn(x) ! 0 on compact sets.
By the strong maximum principle we have now that w+ > 0, in view of the

fact that (by uniform convergence of wn) w+(0, �) = 1. By [30, Theorem 3.1], it
follows that w+ must be affine linear, i.e., w+(x 0, y) = ky, for some k > 0 by the
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Dirichlet condition. If y0 2 [0, �), by (3.33) and by the uniform convergence of
wn ! w+, we would have

w+(0, y0) � (w+)�(0, y0).

This is a contradiction since w+(x 0, y) = ky for some k > 0.
Therefore let us assume that yn ! � and note that, by the mean value theorem,

at some point ⇠n lying on the segment from (0, yn) to (0, 2(� + "n) � yn), it should
hold that

@wn
@y

(0, ⇠n)  0 .

Since wn ! w+ in C1,↵loc (RN
+

) we would have that

@w+

@y
(0, �)  0 .

Again this is a contradiction since w+(x 0, y) = ky, for some k > 0, and the result
is proved.

The results proved above allow us to conclude the proof of our main result.

Proof of Theorem 1.1. We consider here the case when (h f ) is fulfilled with f0 = 0
since in the simpler case f0 > 0 the result follows directly by [22, Theorem 3].
Thanks to Corollary 3.2 we have that the set

3 ⌘ {t > 0 : u 6 u↵ in 6↵ 8↵ 6 t}

is not empty. To conclude the proof, if we set

�̄ = sup3,

which now is well defined, we have to show that �̄ = +1. By contradiction assume
that �̄ < +1 and set

W+

" :=

�
u � u�̄+"

�
+

�6�̄+"
.

We point out that given 0 < � < �̄/2, there exists "0 such that for all 0 < "  "0 it
follows that

suppW+

" ⇢ 6� [ 6(�̄��,�̄+").

This follows by an analysis of the limiting profile at infinity. We do not add the
details since the proof is exactly the one in [21, Proposition 4.1]. For � and "0
sufficiently small Proposition 3.3 applies in6� and in6(�̄��,�̄+") with � = �̄+" and
3 = 2�̄ + 1. It is crucial here the fact that, thanks to Lemma 3.4, the parameter h0
in the statement of Proposition 3.3 can be chosen independently of " since there �
does not depend on ". Then we conclude that W+

" ⌘ 0. This is a contradiction with
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the definition of �̄, so we have proved that �̄ = 1. This implies the monotonicity
of u in the half-space, that is @u

@y (x) > 0 in RN
+
. By Theorem 2.2, since u is not

trivial, it follows
@u
@y

(x) > 0 in RN
+

.

Finally, to prove that u 2 C2,↵
0

loc (RN
+

) just note that from the fact that @u
@y > 0

we deduce that the set of critical points {r u = 0} is empty and consequently the
equation is no more degenerate. The C2,↵0 regularity follows therefore by standard
regularity results, see [29].

Proof of Theorem 1.2. By [21, Theorem 1.7] it follows that 0 < u  t0. Thanks to
the behaviour of the nonlinearity near t0 (see (1.2)), the strong maximum principle
applies and implies that actually 0 < u < t0 in the half space. Arguing now as in
the proof of [23, Theorem 1.3] it follows that u is strictly bounded away from t0 in
6� for any � > 0. Now the monotonicity of the solution follows by our Theorem
1.1 (in the case f0 > 0 the result follows also directly by [22, Theorem 3]). Note
in fact that the condition (h f ) is satisfied in the range of values that the solutions
takes in any strip and this is sufficient in order to run over again the moving plane
procedure.
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[43] J. VÉTOIS, A priori estimates and application to the symmetry of solutions for critical p-

Laplace equations, J. Differential Equations 260 (2016), 149–161.
[44] H. H. ZOU, A priori estimates and existence for quasi-linear elliptic equations, Calc. Var.

Partial Differential Equations 33 (2008), 417–437.
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Classification of Kähler homogeneous
manifolds of non-compact dimension two

RU AHMADI AND BRUCE GILLIGAN

Abstract. Suppose G is a connected complex Lie group and H is a closed
complex subgroup such that X := G/H is Kähler and the codimension of the top
non-vanishing homology group of X with coefficients in Z2 is equal to two. We
show that such an X has the structure of a holomorphic fiber bundle whose fiber
and base are constructed from certain “basic building blocks”, i.e., C, C⇤, Cousin
groups, and flag manifolds.

Mathematics Subject Classification (2010): 32M10 (primary); 32Q15 (sec-
ondary).

1. Introduction

In this paper we consider complex homogeneous manifolds of the form G/H ,
where G is a connected complex Lie group and H is a closed complex subgroup
of G. The existence of complex analytic objects on such a G/H , like non-constant
holomorphic functions, plurisubharmonic functions and analytic hypersurfaces, is
related to when G/H could be Kähler. So the first question one might consider con-
cerns the existence of Kähler structures and we restrict ourselves to that question
here. The structure of compact Kähler homogeneous manifolds is now classical [32]
and [13] and the structure in the case of G-invariant metrics is also known [16]. Our
investigations here concern non-compact complex homogeneous manifolds having
a Kähler metric that is not necessarily G-invariant.

Some results are known under restrictions on the type of group G that is act-
ing. The base of the holomorphic reduction of any complex solvmanifold is always
Stein [28], where the proof uses some fundamental ideas in [31]. For G a solvable
complex Lie group and G/H Kähler the fiber of the holomorphic reduction of G/H
is a Cousin group, see [37] and the holomorphic reduction of a finite covering of
G/H is a principal Cousin group bundle, see [20]. If G is semisimple, then G/H
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Received October 6, 2015; accepted in revised form June 12, 2016.
Published online December 2017.
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admits a Kähler structure if and only if H is algebraic [11]. For G reductive there is
the characterization that G/H is Kähler if and only if S ·H is closed in G and S\H
is an algebraic subgroup of S, a maximal semisimple subgroup of G, see [23, Theo-
rem 5.1]. There is also a result if G is the direct product of its radical and a maximal
semisimple subgroup under some additional assumptions on the isotropy subgroup
and on the structure of G/H [36].

One way to proceed is to impose some topological restraints on X := G/H .
In [18] we classified Kähler homogeneous manifolds X having more than one end
by showing that X is either the product of a Cousin group of hypersurface type and a
flag manifold or X admits a homogeneous fibration as a C⇤-bundle over the product
of a compact complex torus and a flag manifold. Now in the setting of proper
actions of Lie groups Abels introduced the notion of non-compact dimension, see
[2] and [3, Section 2]. We do not wish to assume that our Lie group actions are
necessarily proper ones, so we take a dual approach and define the non-compact
dimension dX of a connected smooth manifold X to be the codimension of the top
non-vanishing homology group of X with coefficients inZ2, see Section 2. Our goal
in this paper is to classify Kähler homogeneous manifolds G/H with dG/H = 2.
All such spaces are holomorphic fiber bundles where the fibers and the bases of
the bundles involved consist of Cousin groups, flag manifolds, C, and C⇤. We now
present the statement of our main result, where T denotes a compact complex torus,
C a Cousin group, and Q a flag manifold. Throughout the rest of this paper, if G is
a mixed group, i.e., is neither solvable nor semisimple, then S denotes a maximal
semisimple subgroup of G. In particular, if G is simply connected, one has its
Levi-Malcev decomposition G = S n R, where R is the radical of G.
Theorem 1.1 (Main theorem). Suppose X := G/H with dX = 2, where G is a
connected complex Lie group and H is a closed complex subgroup of G. Then X is
Kähler if and only if X is one of the following:
Case I. H discrete: A finite covering of X is biholomorphic to a product C ⇥ A,
with C a Cousin group, A a Stein Abelian Lie group and dC + dA = 2.
Case II: H is not discrete:
(1) SupposeO(X) = C and let G/H ! G/N be its normalizer fibration;
(a) X is a (C⇤)k-bundle over C ⇥ Q with dC + k = dX = 2;
(b) X is T⇥G/N withO(G/N ) = C andG/N fibers as aC-bundle over a flag

manifold; there are two subcases depending on whether S acts transitively
on G/N or not;

(2) Suppose O(X) 6= C and let G/H ! G/J be its holomorphic reduction;
(a) dG/J = 2 and G/J is Stein. Then

(i) G/J = C or
(ii) G/J is the 2-dimensional affine quadric, and in both of these cases

X = T ⇥ Q ⇥ G/J or
(iii) G/J is the complement of a quadric curve in P2, and X or a two-to-one

covering of X is a product T ⇥ Q ⇥ G/J or
(iv) G/J = (C⇤)2 and a finite covering of X is T ⇥ Q ⇥ G/J ;
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(b) dG/J = 2 and G/J is not Stein. Then a finite covering of X is biholomor-
phic to T⇥Y with Y a flag manifold bundle over the holomorphic reduction
G/J , a C⇤-bundle over an affine cone minus its vertex;

(c) dG/J = 1 and G/J is Stein. Then a finite covering of X is biholomorphic
to C ⇥ Q ⇥ C⇤, where dC = 1;

(d) dG/J = 1 and G/J is not Stein. Then a finite covering of X is a C⇤-
bundle over T ⇥

eY , where eY is the universal covering of Y which is a flag
manifold bundle over the holomorphic reduction G/J , an affine cone minus
its vertex. Moreover, dJ/H = 1 andO(J/H) = C.

The paper is organized as follows. In section two we gather a number of technical
tools. In particular, we note that Proposition 2.11 deals with the setting where the
fiber of the normalizer fibration is a Cousin group and its base is a flag manifold. It
is essential for Case II (1) (a) in the Main theorem and can be used to simplify the
proof when dX = 1 given in [18], see Remark 2.12. Section three is devoted to the
case when the isotropy subgroup is discrete. Sections four and five deal with general
isotropy and contain the proof of the classification when there are no non-constant
holomorphic functions and when there are non-constant holomorphic functions, re-
spectively. In section six we note that the manifolds listed in the classification are
indeed Kähler. In the last section we present some examples.

ACKNOWLEDGEMENTS. We thank Prof. A. T. Huckleberry and the referees for
their comments that led to significant improvements. We also thank the Arbeits-
gruppe Transformationsgruppen at the Ruhr-Universität Bochum for their kind hos-
pitality during a sojourn at which time part of this paper was written.

For H discrete this classification was presented in the first author’s disserta-
tion [4].

2. Technical tools

The purpose of this section is to collect a number of definitions and basic tools that
are needed in the following.

2.1. Basic notions

Definition 2.1. A Cousin group is a complex Lie group G with O(G) = C. The
terminology toroidal group is also found in the literature. Every Cousin group is
Abelian and is the quotient ofCn by a discrete subgroup having rank n+k for some
k with 1  k  n. For details, we refer the reader to [1].
Definition 2.2. A flag manifold (the terminology homogeneous rational manifold
is also in common usage) is a homogeneous manifold of the form S/P , where S
is a connected semisimple complex Lie group and P is a parabolic subgroup of S.
One source concerning the structure of flag manifolds is [8, Section 3.1].
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Definition 2.3. For X a connected (real) smooth manifold we define

dX := dimR X �min{r | Hk(X, Z2) = 0 8 k > r},

i.e., dX is the codimension of the top non-vanishing homology group of X with
coefficients in Z2. We call dX the non-compact dimension of X .
Remark 2.4. For later purposes we note that dX = 0 if and only if X is compact.

Proposition 2.5. Suppose X is a connected Stein manifold. Then dimC X  dX .

Proof. For X Stein one has Hk(X, Z2) = 0 for all k > dimC X by [39].

2.2. Fibration methods

Throughout the paragraph we make use of a number of fibrations that are now
classical.

(1) Normalizer fibration: Given G/H let N = NG(H0) be the normalizer in G
of the connected component of the identity H0 of H . Since H normalizes H0,
we have H ⇢ N and the normalizer fibration is given by G/H ! G/N ;

(2) Holomorphic reduction: Given G/H we set J := {g 2 G| f (gH) = f (eH)
for all f 2 O(G/H)}. Then J is a closed complex subgroup of G containing
H and we call the fibration p : G/H ! G/J the holomorphic reduction of
G/H . By construction G/J is holomorphically separable and O(G/H) ⇠

=

p⇤(O(G/J )).

Suppose a manifold X admits a locally trivial fiber bundle X F
! B with F and

B connected smooth manifolds. One would then like to know how dF and dB are
related to dX whenever possible. The following result was proved in [7, Section 2]
using spectral sequences.

Lemma 2.6 (The fibration lemma). Suppose X F
! B is a locally trivial fiber bun-

dle with X, F, B smooth manifolds. Then

(1) if the bundle is orientable (e.g., if ⇡1(B) = 0), then dX = dF + dB;
(2) if B has the homotopy type of a q-dimensional CW complex, then dX � dF +

(dim B � q);
(3) if B is homotopy equivalent to a compact manifold, then dX � dF + dB .

Remark 2.7. If B is homogeneous, then one knows that B is homotopy equivalent
to a compact manifold if:

(1) the isotropy subgroup of B has finitely many connected components [35]; e.g.,
in an algebraic setting;

(2) if B is a solvmanifold [34]; indeed, every solvmanifold is a vector bundle over
a compact solvmanifold [9].
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2.3. Special case of a question of Akhiezer

Later we will need a result that is based on [7, Lemma 8]. Since that lemma was
stated in a way suitable for its particular application in [7], we reformulate it in a
form suitable for the present context.

Lemma 2.8 ([7, Lemma 8]). Let G be a connected, simply connected complex Lie
group with Levi-Malcev decomposition G = S n R with dimC R = 2 and 0 a
discrete subgroup of G such that X = G/0 is Kähler. Then 0 is contained in a
subgroup of G of the form A n R, where A is a proper algebraic subgroup of S.

This has the following consequence which we use later.

Theorem 2.9. Suppose G is a connected, simply connected, complex Lie group
with Levi-Malcev decomposition G = S n R with dimC R = 2. Let 0 be a discrete
subgroup of G such that X = G/0 is Kähler, 0 is not contained in a proper
parabolic subgroup of G and O(G/0) ' C. Then S = {e}, i.e., G is solvable.

Proof. By Lemma 2.8 the subgroup 0 is contained in a proper subgroup of G of
the form An R, where A is a proper algebraic subgroup of S. Since R · 0 is closed
in G, e.g., see [19], there are fibrations

G/0 �! G/R · 0 �! S/A,

where G/R · 0 = S/3 with 3 := S \ R · 0. If A is reductive, then S/A is Stein
and we get non-constant holomorphic functions on X as pullbacks using the above
fibrations. But this contradicts the assumption thatO(X) ' C. If A is not reductive
then [29, Theorem 30.1] applies and A is contained in a proper parabolic subgroup
of S. But this implies 0 is also contained in a proper parabolic subgroup of G, thus
contradicting the assumption that this is not the case.

2.4. The algebraic setting revisited

Throughout this paragraph we repeatedly use two results of Akhiezer concerning
the invariant dX in the setting where X = G/H and G is a connected linear alge-
braic group over C and H is an algebraic subgroup of G. For the convenience of
the reader we now state these here.

Theorem 2.10 (d = 1 in [5]; d = 2 in [6]). Suppose G is a connected linear alge-
braic group over C, H is an algebraic subgroup of G and X := G/H .

(1) dX = 1 =) H is contained in a parabolic subgroup P of G with P/H = C⇤;
(2) dX = 2 =) H is contained in a parabolic subgroup P of G with P/H being:
(a) C;
(b) the affine quadric Q2;
(c) the complement of a quadric curve in P2;
(d) (C⇤)2.
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2.5. Cousin group bundles over flag manifolds

In this section we prove a result concerning the structure of Kähler homogeneous
manifolds whose normalizer fibrations are Cousin group bundles over flag mani-
folds, without assumptions on the invariant d. We show that one can reduce the
problem to the case where a complex reductive group is acting transitively and em-
ploy some now classical details about the structure of parabolic subgroups, see [8]
or [17]. A crucial point occurs in diagram (2.1) below, where the right vertical arrow
is a holomorphic fiber bundle and the left vertical one is algebraic as a consequence
of [23, Theorem 5.1].

Proposition 2.11. Suppose X := G/H is a Kähler homogeneous manifold whose
normalizer fibration G/H ! G/N has fiber N/H a Cousin group and base
Q := G/N a flag manifold. Then there exists a closed complex subgroup I of
N containing H such that the fibration G/H ! G/I realizes X as a (C⇤)k-bundle
over a product G/I = Q ⇥ C , where C is a Cousin group with dC = dX � k.

Proof. Our first task is to show that there is a reductive complex Lie group acting
holomorphically and transitively on X . Write N/H = Cq/0 and note that there
exists a subgroup b0 < 0 such that [N/H := Cq/b0 is isomorphic to (C⇤)q and is a
covering group of N/H , see [1, Section 1.1]. In particular, the reductive complex
Lie group bG := S ⇥ [N/H acts transitively on X . We drop the hats from now
on and assume, by considering a finite covering, if necessary, that G = S ⇥ Z is
a reductive complex Lie group, where Z ⇠

= (C⇤)q is the center of G and S is a
maximal semisimple subgroup.

Since X is Kähler, the S-orbit S · H/H = S/S \ H is closed in X and S \ H
is an algebraic subgroup of S [23, Theorem 5.1]. Consider the induced fibration on
the left hand side of the following diagram

S/S \ H ,! G/H = X

F
???y

???yN/H

S/P = G/N

(2.1)

where F := P/S \ H is the induced fiber. The bundle G/H ! G/N is defined
by a representation ⇢ : N �! Aut0(N/H) ⇠

= N/H with the group ⇢(N ) lying in
the connected component of the identity of the automorphism group of N/H since
N is connected. Since N/H is Abelian, ⇢ factors through the canonical projection
from N to N/N 0 ⇠

= P/P 0
⇥ Z . Note that P/P 0 ⇠

= (C⇤)p, see [8, Proposition
8, Section 3.1]. Since P/P 0

⇥ Z ⇠
= (C⇤)p+q is reductive, the factorized homo-

morphism is algebraic and the image ⇢(N ) is a closed subgroup of N/H that is
isomorphic to an algebraic torus (C⇤)k given as the quotient of P/P 0

⇥ Z by an
algebraic subgroup. Let � : N ! N/H0 ! (N/H0)/(H/H0) = N/H be the
composition of the quotient homomorphisms. The subgroup I := ��1

� ⇢(N ) is
a closed, complex subgroup of N , and therefore of G, that contains H . Thus one
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has the fibration G/H ! G/I whose typical fiber F is biholomorphic to (C⇤)k .
We claim that the bundle G/I ! G/N is holomorphically trivial. This follows
from the fact that the N -action on the neutral fiber of the bundle G/I ! G/N is
trivial. Otherwise, the dimension of the N -orbit in N/H would be bigger than k,
as we assumed above, and this would give a contradiction. Finally, since N/H is a
Cousin group, C := N/I is also a Cousin group and the statement about the topo-
logical invariant follows because dN/I = dG/I , since S/P is compact and simply
connected, and dG/I = dX � k.

Remark 2.12. The case dX = 1 is treated in [18, Proposition 5], where X is as-
sumed to have more than one end. For X Kähler this is equivalent to dX = 1.

3. The discrete case

Throughout this section we assume that X = G/0 is Kähler with dX = 2, where G
is a connected, simply connected, complex Lie group and 0 is a discrete subgroup
of G. We first show that G is solvable. Then we prove that a finite covering of such
an X is biholomorphic to a product C ⇥ A, where C is a Cousin group and A is a
holomorphically separable complex Abelian Lie group.

3.1. The reduction to solvable groups

We first handle the case when the Kähler homogeneous manifold has no non-
constant holomorphic functions.

Lemma 3.1. Assume 0 is a discrete subgroup of a connected, simply connected
complex Lie group G that is not contained in a proper parabolic subgroup of G,
with X := G/0 Kähler, O(X) = C, and dX  2. Then G is solvable.

Proof. Assume G = Sn R is a Levi decomposition. Since the R-orbits are closed,
we have a fibration

G/0 �! G/R · 0 = S/3,

where 3 := S \ R · 0 is Zariski dense and discrete in S, see [19]. Now if O(R ·

0/0) = C, then the result was proved in [19]. Otherwise, let

R · 0/0 �! R · 0/J =: Y

be the holomorphic reduction. Then Y is holomorphically separable and since
R acts transitively on Y , it follows that Y is Stein [28]. One has 2 = dX �

dY � dimC Y . Further we claim that J 0 is a normal subgroup of G. In or-
der to see this, note first that O(G/NG(J 0)) = C because one has the fibration
G/0 ! G/NG(J 0). If NG(J 0) 6= G, then it follows from [27, Corollary 6] that
NG(J 0) is contained in a proper parabolic subgroup of G. However, this implies
that 0 is also contained in the same proper parabolic subgroup, which contradicts
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our assumptions. As a consequence, the quotient group bR := R/J 0 has complex
dimension one or two. If dim bR = 1, then bG := G/J 0 is a product S ⇥

bR and this
implies S = {e} by [36]. If dim bR = 2, then bG is either a product, see [36] again,
or it is a non-trivial semidirect product. In the latter case the result follows from
Theorem 2.9.

In the next Proposition we reduce ourselves to the case when the maximal
semisimple factor is SL(2, C). We first prove a technical lemma in that setting.

Lemma 3.2. Suppose G/0 is Kähler and dG/0  2, where 0 is a discrete sub-
group of a connected, complex Lie group of the form G = SL(2, C)n R with R the
radical of G. Then 0 is not contained in a proper parabolic subgroup of G.

Proof. Assume the contrary, i.e., that 0 is contained in a proper parabolic subgroup
and let P be a maximal such subgroup of G. Note that P is isomorphic to B n R,
where B is a Borel subgroup of SL(2, C). Let P/0 ! P/J be the holomorphic
reduction. Then P/0 is a Cousin group [37] and P/J is Stein [28]. Note that
J 6= P , since otherwise P would be Abelian, giving a contradiction. The Fibration
lemma and Proposition 2.5 imply dimC P/J = 1 or 2. So P/J is biholomorphic to
C, C⇤, C⇤

⇥ C⇤, or the complex Klein bottle.
In the first two cases P/J is equivariantly embeddable in P1 and by [30] it

follows that G/J is Kähler. In the latter two cases the fiber J/0 is compact by the
Fibration lemma and we can push down the Kähler metric on X to obtain a Kähler
metric on G/J , see [12]. In particular, the S-orbit S/(S \ J ) in G/J is Kähler and
so its isotropy S \ J is algebraic [11]. Now consider the diagram

G/0
F

�! G/J Y
�! G/P

||

[ [ P1
||

S/S \ 0
FS

�! S/S \ J Z
�! S/B.

Note that since Y := P/J is noncompact and dG/0 = 2, it follows from the
Fibration lemma that either dF = 1 or F is compact. Since F is an Abelian Lie
group, it is clear that dFS  dF .

We list below, up to isomorphism, the algebraic subgroups of B and in each
case we derive a contradiction.

(1) dimC S \ J = 2. Then S \ J = B. This yields the contradiction dS/S\0 

dFS + dS/B = 1+ 0 = 1 < 3 = dS/S\0 , since S \ 0 is finite;
(2) dimC S \ J = 1. There are two possible cases.
(a) If S \ J = C⇤, then S/S \ J is an affine quadric or the complement of a

quadric curve in P2 and thus Z = C. So P/J 6= C⇤ and it is either C or
(C⇤)2, i.e., dP/J = 2. Then the Fibration lemma implies that F is compact
and, since the fiber FS is closed in F , it must also be compact. But this
forces S \ 0 to be an infinite subgroup of S \ J which is a contradiction;
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(b) If S \ J = C, then S/S \ J is a finite quotient of C2 \ {(0, 0)} and so
Z = C⇤. Now P/J = C, (C⇤)2 or C⇤. In the first two instances F would
be compact and we get the same contradiction as in (a). In the last case
dF = 1 by the Fibration lemma and FS is either compact or C⇤. Again
S \ 0 is infinite with the same contradiction as in (a);

(3) dimC S \ J = 0. Here S \ J is finite, since it is an algebraic subgroup of
B. Then dim S/S \ J = 3 and we see that dimG/J = 3, since we know
dimG/P = 1 and dim P/J  2. Then P/J = (C⇤)2 and, since the fiber
S/S \ J is both open and closed in G/J , it follows that S/S \ J = G/J and
dS/S\J = 2. But F is compact and thus so is FS and we get the contradiction
that dS/S\0 = 2 < 3 = dS/S\0 .

As a consequence, 0 is not contained in a proper parabolic subgroup of G.

Proposition 3.3. Suppose G/0 is Kähler with dG/0  2. Then G is solvable.

Proof. First note that G cannot be semisimple. If that were so, then 0 would be
algebraic, hence finite and thus G/0 would be Stein. But then 2 = dG/0 �

dimC G/0 = dimC G which is a contradiction, since necessarily dimC G � 3
for any complex semisimple Lie group G.

So assume G = Sn R is mixed. The proof is by induction on the dimension of
G. Now if a proper parabolic subgroup of G contains 0, then a maximal one does
too, it is solvable by induction and thus it has the special form B n R, where B is
isomorphic to a Borel subgroup of S = SL(2, C). But this is impossible because
of Lemma 3.2.

Lemma 3.1 handles the caseO(G/0) = C. So we assumeO(G/0) 6= Cwith
holomorphic reduction G/0 ! G/J . The Main Result in [7] gives the following
possibilities for the base G/J :

(1) C;
(2) affine quadric Q2;
(3) P2 \ Q, where Q is quadric curve;
(4) an affine cone minus its vertex;
(5) C⇤-bundle over an affine cone minus its vertex.

In case (1) the bundle is holomorphically trivial, its compact fiber being a torus,
and the group that is acting effectively is solvable. In cases (2) and (3) we have
fibrations G/0 ! G/J ! G/P = P1 and so 0 is contained in a proper parabolic
subgroup of G, contradicting what was shown in the previous paragraph.

In order to handle cases (4) and (5) we recall that an affine cone minus its vertex
fibers equivariantly as a C⇤-bundle over a flag manifold. Thus we get fibrations

G/0 �! G/J �! G/P.
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Note that it cannot be the case that G 6= P , since then 0 would be contained in a
proper parabolic subgroup, a possibility that has been ruled out. So G = P and
there is no flag manifold involved in this setting. Thus G/J (or a 2-1 covering) is
biholomorphic toC⇤ or (C⇤)2. In the second case the fiber J/0 is compact and thus
a torus, so G is solvable. If G/J = C⇤, then J/0 is Kähler with dim J < dimG
and dJ/0 = 1 by the Fibration lemma. By induction J is solvable and so G is
solvable too, because G/J = C⇤.

3.2. A product decomposition

In order to prove the classification we need the following splitting result.

Proposition 3.4. Suppose G is a connected, simply connected solvable complex
Lie group that contains a discrete subgroup 0 such that G/0 is Kähler and has
holomorphic reduction G/0 ! G/J with base (C⇤)2 and fiber a torus. Then a
finite covering of G/0 is biholomorphic to a product.

Proof. First assume that J 0 is normal in G and let ↵ : G ! G/J 0 be the quotient
homomorphism with differential d↵ : g ! g/j. Then G/J 0 is a two dimensional
complex Lie group that is either Abelian or solvable. In the Abelian case G0 :=

↵�1(S1⇥S1) is a subgroup ofG that has compact orbits in X , since these orbits fiber
as torus bundles over S1⇥S1 in the base. The result now follows from [22, Theorem
6.14].

Next assume that J 0 is normal and G/J 0 is isomorphic to the two dimen-
sional Borel group B with Lie algebra b. Let nb denote the nilradical of b. Then
n := d↵�1(nb) is the nilradical of G. Let N denote the corresponding connected
Lie subgroup of G. Now choose �N 2 0N := N \ 0 such that ↵(�N ) 6= eJ 0.
There exists x 2 n such that exp(x) = �N . Let U be the connected Lie group
corresponding to h�N iC. Since 0 centralizes J 0 (see [20, Theorem 1]), it follows
that n = u � j and N = U ⇥ J 0 is Abelian. Set 0U := 0 \U and 0J := 0 \ J 0.
Then N/0N = U/0U ⇥ J 0/0J .

Since 0/0N = Z, we may choose � 2 0 such that � projects to a generator
of 0/0N . Also set A := exp(hwiC) for fixed w 2 g \ n. Since A is complementary
to N , we have G = A n N . Now there exist �A 2 A and �N 2 N such that
� = �A · �N . Both � and �N centralize J 0 and thus �A does too. Also �A = exp(h)
for some h = sw with s 2 C. Therefore,

[h, j] = 0. (3.1)

Since a + u is isomorphic to b = g/j as a vector space, there exists e 2 u such that

[d↵(h), d↵(e)] = 2d↵(e).
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Let {e1, . . . , en�2} be a basis for j. There exist structure constants ai such that

[h, e] = 2e +

n�2X
i=1

ai ei ,

and the remaining structure constants are all 0 by (3.1). Note that, conversely, any
choice of the structure constants ai determines a solvable Lie algebra g and the
corresponding connected simply-connected complex Lie group G = A n N .

We now compute the action of �A 2 A on N by conjugation. In order to do
this note that the restriction adh : n ! n of adh to n is expressed by the matrix

M := [adh] =

0
BB@

2 0 . . . 0
a1 0 . . . 0
...

...
. . .

...
an�2 0 . . . 0

1
CCA .

So the action of A on N is through the one parameter group of linear transforma-
tions t 7! etM for t 2 C. For k � 1

(tM)k =

1
2
(2t)kM,

and it follows that
etM =

1
2

⇣
e2t � 1

⌘
M + Id.

Since �A 2 0 and 0 is a subgroup of J , the element ↵(�A), where ↵ : G ! G/J 0
is the quotient homomorphism defined above, acts trivially on the base Y = G/J .
So t = ⇡ ik where k 2 Z. Hence �A acts trivially on U. Also �N acts trivially on
N , since N is Abelian. Thus � acts trivially on N and as a consequence, although
G is a non-Abelian solvable group the manifold X = G/0 is just the quotient of
Cn by a discrete additive subgroup of rank 2n � 2. Its holomorphic reduction is
the original torus bundle which, since we are now dealing with the Abelian case, is
trivial.

Now assume J 0 is not normal in G, set N := NG(J 0), and let G/J
N/J
��!

G/N be the normalizer fibration. Since the base G/N of the normalizer fibration
is an orbit in some projective space, G/N is holomorphically separable and thus
Stein [28]. Since we also have 2 � dG/N � dimC G/N we see that G/N ⇠

= C, C⇤

or C⇤
⇥ C⇤. We claim that we must have G/N = C⇤, i.e., we have to eliminate

the other two possiblities. Assume G/N ⇠
= C. Since dX  2 the Fibration lemma

implies dN/J = 0, i.e., N/J is biholomorphic to a torus T . Thus G/J = T ⇥ C.
However, G/J = C⇤

⇥ C⇤ giving a contradiction. Now assume G/N ⇠
= C⇤

⇥ C⇤.
By Chevalley’s theorem [15] the commutator group G 0 acts algebraically. Hence
the G 0-orbits are closed and one gets the commutator fibration G/N C

�! G/G 0

· N .
Since G is solvable, it follows that G 0 is unipotent and the G 0-orbits are cells, i.e.,
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G 0
· N/N ⇠

= C. By the Fibration lemma the base of the commutator fibration is
a torus. But it is proved in [26] that the base of a commutator fibration is always
Stein which is a contradiction. This proves the claim that G/N ⇠

= C⇤ and by the
Fibration lemma dN/J = 1 and hence N/J = C⇤.

Since G is simply connected, G admits a Hochschild-Mostow hull [25], i.e.,
there exists a solvable linear algebraic group

Ga = (C⇤)k n G

that contains G as a Zariski dense, topologically closed, normal complex subgroup.
By passing to a subgroup of finite index we may, without loss of generality, assume
the Zariski closure Ga(0) of 0 in Ga is connected. Then Ga(0) ◆ J 0 and Ga(0)
is nilpotent [20]. Let ⇡ :

cGa(0) ! Ga(0) be the universal covering and set b0 :=

⇡�1(0). Since cGa(0) is a simply connected, nilpotent, complex Lie group, the
exponential map from the Lie algebra ga(0) to cGa(0) is bijective. For any subset
of cGa(0) and, in particular for the subgroup b0, the smallest closed, connected,
complex (respectively real) subgroup cG1 (respectively cG0) of cGa(0) containingb0 is well-defined. By construction cG0/b0 is compact, see [38, Theorem 2.1]. Set
G1 := ⇡(cG1) and G0 := ⇡(cG0) and consider the CRS manifold (G1,G0,0).
Note that the homogeneous CR-manifold G0/0 fibers as a T -bundle over S1 ⇥ S1.
In order to understand the complex structure on the base S1 ⇥ S1 of this fibration
consider the diagram

bG0/b0 ⇢
bG1/b0 ✓

bGa(0)/b0��� ��� ���
G0/0 ⇢ G1/0 ✓ Ga(0)/0

T
???y T

???y
???yT

S1 ⇥ S1 = G0/G0 \ (J 0 · 0) ⇢ G1/J 0 · 0 ✓ Ga/J 0 · 0 .

As observed in [20, Theorem 1], the manifold Ga/J 0 · 0 is a holomorphically
separable solvmanifold and thus is Stein [28]. So G1/J 0 · 0 is also Stein and thus
G0/G0 \ (J 0 · 0) is totally real in G1/J 0 · 0. The corresponding complex orbit
G1/J 0 ·0 is then biholomorphic toC⇤

⇥C⇤. It now follows by [20, Theorem 6.14]
that a finite covering of G1/0 splits as a product of a torus with C⇤

⇥ C⇤ and, in
particular, that a subgroup of finite index in 0 is Abelian.

Now set A := { exp t⇠ | t 2 C }, where ⇠ 2 g \ n and n is the Lie algebra
of N0. Then G = A n N0 and any � 2 0 can be written as � = �A.�N with
�A 2 A and �N 2 N . The fiber G/0 ! G/N is the N0-orbit of the neutral point
and 0 acts on it by conjugation. Since N/0 is Kähler and has two ends, it follows
by [18, Proposition 1] that a finite covering of N/0 is biholomorphic to a product
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of the torus and C⇤. (By abuse of language we still call the subgroup having finite
index 0.) Now the bundle G/0 ! G/N is associated to the bundle

C = G/N0 �! G/N = C⇤

and thus G/0 = C ⇥⇢ (T ⇥ C⇤), where ⇢ : N/N0 ! Aut(T ⇥ C⇤) is the
adjoint representation. Since 0 is Abelian, this implies that �A acts trivially on
0N := 0 \ N0. Now suppose J has complex dimension k. Then �A is acting as
a linear map on N 0 = C n J 0 = Ck+1 and commutes with the additive subgroup
0N that has rank 2k + 1 and spans N 0 as a linear space. This implies �A that
acts trivially on N 0 and, as a consequence, the triviality of a finite covering of the
bundle, as required.

3.3. The classification for discrete isotropy

In the following we classify Kähler G/0 when 0 is discrete and dX  2. Note
that dX = 0 means X is compact and this is the now classical result of Borel-
Remmert [13]; the case dX = 1 corresponds to X having more than one end and
was handled in [18].

Theorem 3.5 ([4]). Let G be a connected simply connected complex Lie group and
0 a discrete subgroup of G such that X := G/0 is Kähler and dX  2. Then G is
solvable and a finite covering of X is biholomorphic to a product C ⇥ A, where C
is a Cousin group and A is {e}, C⇤, C, or (C⇤)2. Moreover, dX = dC + dA.

Proof. By Proposition 3.3 G is solvable. If O(X) ⇠
= C, then X is a Cousin group

[37]. Otherwise,O(X) 6= C and let

G/0
J/0 // G/J

be the holomorphic reduction. Its base G/J is Stein [28], its fiber J/0 is biholo-
morphic to a Cousin group [37], and a finite covering of the bundle is principal [20].
Since G/J is Stein, by Proposition 2.5 one has

dimC G/J  dG/J  dX  2.

If dX = 1, then dG/J = 1 and G/J is biholomorphic to C⇤. A finite covering of
this bundle is principal, with the connected Cousin group as structure group, and so
is holomorphically trivial [24]. If dX = 2, the Fibration lemma implies G/J ⇠

= C,
C⇤, C⇤

⇥ C⇤ or a complex Klein bottle [7]. The case of C⇤ is handled as above
and a torus bundle over C is trivial by Grauert’s Oka Principle [24]. Finally, since
a Klein bottle is a 2-1 cover of C⇤

⇥ C⇤, it suffices to consider the case C⇤
⇥ C⇤.

That case is handled by Proposition 3.4.

Remark 3.6. This theorem proves the classification in Case I in the Main theorem.
i.e., if the isotropy is discrete. One should note that any complex manifold X that
has a finite covering biholomorphic to C ⇥ A, where C is a Cousin group and A a
Stein Abelian Lie group, is Kähler.
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4. The classification whenO(X) = C

Proof. Let ⇡ : G/H ! G/N be the normalizer fibration and recall that its base
G/N is equivariantly embedded in some complex projective space Pq . Let G de-
note the algebraic closure of the image of G in PGL(q + 1, C) and G 0 be the
commutator group of G. Chevalley showed that G 0

= G 0 (see [15, Theorem 13,
page 173] or [14, Corollary II.7.9]) and, as a consequence, G 0 is acting as an al-
gebraic group on G/N . This fact and the fact that G 0 is normal in G imply the
existence of the fibration G/N ! G/N · G 0. Now the base G/N · G 0 of the com-
mutator fibration is an Abelian affine algebraic group that is Stein [26] and thus,
because of the assumption O(G/H) = C, we also have O(G/N ) = C and the
base G/N · G 0 must be a point. Otherwise, one could pullback non-constant holo-
morphic functions to G/N in order to obtain a contradiction. Since G 0 acts on G/N
as an algebraic group of transformations and dG/N  dX = 2, there is a parabolic
subgroup P of G 0 containing N\G 0 (see [6] or Theorem 2.10) and we now consider
the fibrations

G/H �! G/N = G 0/N \ G 0

�! G 0/P.

Our strategy in the remainder of the proof is to use the Fibration lemma 2.6 ap-
plied to each of the above fibrations and the information we know on the fiber
N/H = (N/H0)/(H/H0) of the normalizer fibration. Note that H/H0 is a dis-
crete subgroup of the complex Lie group N/H0. Since 2 = dG/H � dN/H and
N/H is Kähler whenever G/H is, Theorem 3.5 applies and a finite covering of
N/H is biholomorphic to a product C ⇥ A, where C is a Cousin group and A is a
Stein Abelian Lie group with dC + dA = dN/H . In particular, A = Cp

⇥ (C⇤)q

by the classification of complex Abelian Lie groups, see [33, Theorem 3.2], and
dA = 2p + q. In addition, we have 2 = dG/H � dG/N and we look at the cases
dG/N = 0 (i.e., G/N compact, see Remark 2.4), dG/N = 1, and dG/N = 2.

First we assume G/N is compact and thus a flag manifold, i.e., N \ G 0
= P

is a parabolic subgroup of G 0, and suppose O(N/H) = C. The fact that N/H
is a Cousin group follows from the observations in the previous paragraph. The
structure in this case is given in Proposition 2.11: X fibers as a (C⇤)k-bundle over a
product Q⇥C , where Q a flag manifold and C is a Cousin group with dC + k = 2.

Next suppose G/N compact and O(N/H) 6= C with holomorphic reduction
N/H ! N/I . Recall that I is a closed complex subgroup of G containing H and
thus we get an intermediate fibration G/H ! G/I . In each case below we will
show thatO(G/I ) 6= C and this will contradict the assumption thatO(G/H) = C.
Fromwhat we noted above there are three possibilities for a finite covering of N/H :

(i) N/I = C⇤ and I/H =: C is a Cousin group of hypersurface type;
(ii) N/I = (C⇤)2 and I/H = T is a torus;
(iii) N/I = C and I/H = T is a torus.

In case (i) the space G/I fibers as a C⇤-bundle over the flag manifold G/N . Either
this bundle is non-trivial and G/I is an affine cone minus its vertex or the bundle
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is trivial, and so a product C⇤
⇥ G/N . In either case one has O(G/I ) 6= C, the

desired contradiction.
In case (ii) the space G/I fibers over the flag manifold G/N with typical fiber

N/I = C⇤
⇥ C⇤. We consider the possibilities for the S-orbits in G/I . First

suppose that S acts transitively on G/I = S/S \ I . Then S \ I is algebraic, since
G/I is Kähler, [11]. By the main result in [6] the bundle S/S \ I ! S/S \ P is
principal. Let J := C⇤ be a subgroup of the structure group, e.g., J := C⇤

⇥ {e},
and consider the right J -action on S/S\ I . This action equivariantly fibers S/S\ I
as a C⇤-bundle over a C⇤-bundle over S/S \ P . We then proceed as in the previous
paragraph. If the S-orbits have complex codimension one in G/I , then we have
again a C⇤-bundle over a C⇤-bundle over G/N , where the latter space still has
non-constant holomorphic functions.

Finally, if any S-orbit has complex codimension two in G/I , then it is a section
of this bundle because the flag manifold G/N is simply connected. Indeed, we
claim that all S-orbits are sections in this setting. As a consequence, G/I splits as
a product C⇤

⇥ C⇤
⇥ G/N and again O(G/I ) 6= C.

In (iii) the group action on the fiber C is by affine transformations [6] and the
S-action on the space G/I is transitive. This gives us the following diagram

G/I = S/S \ I = G/I??y ??y
G/N = S/S \ P = G/N .

By [10, Proposition 1 in Section 5.2] the group S \ I contains a maximal torus
of S \ P . This implies S \ I is normal in S \ P if and only if S \ I coincides
with S \ P and this is not the case in our setting, since dimC N/I = 1 > 0. Now
the S-orbits are transversal to this one dimensional fiber and thus are coverings of
the flag manifold G/N . Again, the fact that G/N is simply connected implies that
these orbits are sections and the bundle G/I ! G/N is a product. Once more we
have O(G/I ) 6= C.

Now suppose dG/N = 1. As noted above, G 0 acts algebraically and transitively
on G/N . It then follows that G/N is an affine cone minus its vertex by [5] or
as recalled in Theorem 2.10, and consequently O(G/N ) 6= C contradicting the
assumption that O(G/H) = C.

Suppose dG/N = 2 and a finite covering of P/N \ G 0 is biholomorphic to
(C⇤)2. An argument analogous to the one given above in (ii) now yields a contra-
diction.

Finally, suppose dG/N = 2 and P/N \ G 0
= C. There are two possibilities

depending on whether S is transitive on G/N or not, and we first suppose S acts
transitively on G/N . By the Fibration lemma N/H is compact, and thus a com-
pact complex torus since G/H is Kähler. Since N/H is a Cousin group, as in the
proof of Proposition 2.11 we may assume that G is a reductive complex Lie group.
Thus the S-orbits are closed in G/H [23, Theorem 5.1] and one has the following
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diagram
S/S \ H ,! G/H

F
???y

???yN/H

S/I = G/N .

So F is a closed subgroup of N/H and it is compact. However, F = I/S \ H is
the quotient of algebraic groups. This is only possible if I/S \ H is finite. Since
we have the fibration S/I ! S/P with P/I = C and S/P a flag manifold, we see
that S/I is simply connected. Every S-orbit in X is a holomorphic section of the
bundle G/H ! G/N and X = T ⇥ S/I is a product. This is Case II (1) (b) in the
Main theorem when S is transitive on G/N .

Otherwise, S does not act transitively on G/N . The radical RG0 of G 0 is a
unipotent group acting algebraically on G/N yielding a fibration

G/N F
�! G/N · RG0

where F = Cp with p > 0. The Fibration lemma and the assumption dX = 2 imply
that N/H is compact, thus a torus, F = C and Z := G/N ·RG0 is compact and thus
a flag manifold. Now G/N 6= C ⇥ Z because one would then haveO(G/N ) 6= C,
contradictingO(X) = C. So G/N is a non-trivial line bundle over Z and there are
two S-orbits in G/N , a compact one Y1 which is the zero section of the line bundle
and is biholomorphic to Z and an open one Y2. The latter holds, since the existence
of another closed orbit would imply the triviality of the C⇤-bundle G/N \ Y1 over
Z . We write X as a disjoint union X1 [ X2 with Xi := ⇡�1(Yi ) for i = 1, 2. Then
X1 is a Kähler torus bundle over Z and it is trivial by [13]. A finite covering of X2
is also trivial since X2 is Kähler and satisfies dX2 = 1 [18, Main theorem, case (b)].
Note that the S-orbits in X1 (respectively X2) are holomorphic sections of the torus
bundle lying over the corresponding S-orbit Y1 (respectively Y2).

Let x2 2 X2 and M2 := S.x2. Since X is Kähler, the boundary of M2 consists
of S-orbits of strictly smaller dimension [23, Theorem 3.6], and for dimension rea-
sons, these necessarily lie in X1. Let M1 ⇢ M2 be such an S-orbit in X1 and let
p 2 M1. As observed in the previous paragraph, M1 is biholomorphic to Y1 which
is a flag manifold. Therefore, M1 = K · p = K/L , where K is a maximal compact
subgroup of S and L is the corresponding isotropy subgroup at the point p and is
compact. The L-action at the L-fixed point p can be linearized. This means that
there exist an L-invariant open neighbourhoodU of p in X , an open neighbourhood
V of 0 in Tp(X), a linear map8 : Tp(X) ! Tp(X), and a biholomorphic map ↵ of
U onto V with ↵(p) = 0 such that ↵�1

�8�↵ gives the L-action onU . In this setup
8 leaves invariant the complex vector subspaces Tp(K/L) and Tp(⇡�1(⇡(p))) and
thus also a complementary complex vector subspace W of Tp(X). So we have the
following decomposition:

Tp(X) = Tp
⇣
⇡�1(⇡(p))

⌘
� W � Tp(K/L).
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Let (t, w, v) be the corresponding coordinates in Tp(X). Set bM1 := S ·bx1 for somebx1 2 U \ X1 with ↵( bM1 \ U) \ Tp(⇡�1(⇡(p))) = {(t0w0, v0)}, where t0 6= 0.
Since L is a subgroup of S and the S-orbits are transversal to the complex torus
⇡�1(⇡(p)), it follows that 8 acts as the identity on the subspace Tp(⇡�1(⇡(p))).
So every point of8�↵( bM1\U) has t-coordinate equal to t0 6= 0. As a consequence,bM1 does not intersect M2 inside the set U . Now for any other point of M1 its
isotropy subgroup for the K -action is a conjugate of the group L and the argument
just given applied to that conjugate of the group L at that fixed point shows that M2
is the unique S-orbit that contains M1 in its closure and also that M2 = M2 [ M1 is
a complex submanifold of X that is a holomorphic section of the bundle ⇡ : X =

G/H ! G/N . This bundle is thus trivial and X is biholomorphic to T ⇥ G/N .
This is Case II (1) (b) in the Main theorem when S is not transitive on G/N .

This completes the classification if O(X) = C.

5. The classification whenO(X) 6= C

We first prove a generalization of Proposition 3.4 for arbitrary isotropy.

Proposition 5.1. Let G be a connected, simply connected, solvable complex Lie
group, H a closed complex subgroup of G with G/H Kähler, G/H ! G/J its
holomorphic reduction with fiber T = J/H a compact complex torus and base
G/J = (C⇤)2. Then a finite covering of G/H is biholomorphic to T ⇥ (C⇤)2.

Proof. If H0 is normal in G, then this is Proposition 3.4. Otherwise, let N :=

NG(H0) and consider G/H ! G/N . Since G/N is an orbit in some projec-
tive space, G/N is holomorphically separable and the map G/H ! G/N factors
through the holomorphic reduction, i.e., J ⇢ N . We first assume that J = N
and consider bN := NG(J 0). Then the argument given in the third paragraph of
the proof of Proposition 3.4 shows that G/bN = C⇤ and bN/J = C⇤. But then
(a finite covering of) bN/H is isomorphic to C⇤

⇥ T , see [18, Proposition1], im-
plying that H0 is normal in bN . This gives the contradiction that bN = N while
dim bN > dim J = dim N .

So we are reduced to the case where J 6= N and, after going to a finite covering
if necessary, G/N = C⇤ and N/H ⇠

= C⇤
⇥ T is an Abelian complex Lie group,

since N/H is Kähler with two ends, see [18, Proposition 1]. We have the diagram

X = G/H T
�! G/J = C⇤

⇥ C⇤

& .

G/N = C⇤.

Since the top line is the holomorphic reduction and X is Kähler, a finite covering
of this bundle is a T -principal bundle, see [20, Theorem 1]. Choose ⇠ 2 g \ n and
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set A := exph⇠iC and B := N/H ⇠
= C⇤

⇥ T . Then the group bG := A n B acts
holomorphically and transitively on X , where A acts from the left and B acts from
the right on the principal C⇤

⇥T -bundle G/H ! G/N . For dimension reasons the
isotropy of this action is discrete and the result now follows by Proposition 3.4.

Proof. Let G/H ! G/J be the holomorphic reduction. By the Fibration lemma
one has dG/J  2 and we first consider the case when dG/J = 2. In [7] there is a list
of the possibilities for G/J which was also given above in the proof of Proposition
3.3. We now employ that list to determine the structure of X .

Suppose G/J = C. By the Fibration lemma J/H is compact, Kähler, and
so biholomorphic to the product of a torus T and a flag manifold Q. Thus X =

T ⇥ Q ⇥ C by [24]; this is case (2) (a) (i) in the Main theorem.
Suppose G/J is an affine quadric. By the Fibration lemma we again have

J/H = T ⇥ Q. Then X is biholomorphic to a product, since G/J is Stein and it is
simply connected [24]; this is case (2) (a) (ii) in the Main theorem.

If G/J is the complement of the quadric curve in P2, then a two-to-one cov-
ering of G/J is the affine quadric and the pullback of X to that space is again a
product, as in the previous case; this is case (2) (a) (iii) in the Main theorem.

Suppose the base of the holomorphic reduction of G/H is G/J = (C⇤)2.
Since G/H is Kähler, every fiber of the fibration G/H ! G/J is Kähler, and it
is compact by the Fibration lemma and thus biholomorphic to T ⇥ Q [13], where
T is a compact, complex torus and Q is a flag manifold. The S-orbits in the base
G/N of the normalizer fibration G/H ! G/N are compact and biholomorphic
to the S-orbits in X . This follows from the fact that the fibers of the fibration of
any flag manifold have to be flag submanifolds. But, since the isotropy of the fiber
of the normalizer fibration is discrete and no positive dimensional flag manifold is
parallelizable, the fibers of the induced fibration of the S-orbits by the normalizer
fibration must be discrete, i.e., the S-orbits in X cover the S-orbits in G/N and
the latter is simply connected, so the covering is one-to-one. Next we consider the
commutator fibration G/N ! G/G 0

· N of the base G/N of the normalizer fibra-
tion. Since G/G 0

· N is an Abelian, Stein Lie group [26], it follows that G/G 0
· N

is isomorphic to {e}, C, C⇤ or (C⇤)2 by the Fibration lemma and Proposition 2.5.
Note that G/G 0

· N 6= C, since, otherwise, the space X would be biholomorphic to
a product T ⇥ Q ⇥ C by the Oka principle [24], with the base of its holomorphic
reduction being C, and this would contradict the assumption that this base is (C⇤)2.
Let � : G ! G/G 0

· N be the quotient homomorphism and set G0 := ��1(K ),
where K is the maximal compact subgroup of G/G 0

· N . Note that G0 contains
G 0 and thus also S. It then follows that the G0-orbits in G/N are compact, ho-
mogeneous CR-manifolds that are products Q ⇥ (S1)k by [21, Proposition 4.4],
where k := dimR K is equal to 0, 1, or 2. As a consequence, G/N = Q ⇥ (C⇤)k .
Since S is acting trivially on the fiber N/H of the normalizer fibration and on the
second factor in the last product decomposition, the composition of the projection
map of the normalizer fibration and the projection of G/N onto Q is the fibration
G/H ! G/R · H by the orbits of the radical R of G, i.e., the R-orbits in G/H are
closed. Since the base G/R · H = Q of the radical fibration is simply connected
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and the S-orbits in G/H cover this base, we see that the radical fibration has holo-
morphic sections and hence G/H = Q⇥ Z , where Z := R ·H/H = R/R\H is a
complex solvmanifold. Then Z fibers as a Kähler T -bundle over (C⇤)2 and a finite
covering of Z is a product by Proposition 5.1. Putting this together one sees that a
finite covering of X is a product T ⇥ Q ⇥ (C⇤)2. This gives Case II (2) (a) (iv) in
the Main theorem.

SupposeG/J is aC⇤-bundle over an affine cone minus its vertex. Here dG/J =

2 and G/J is not Stein. By the Fibration lemma J/H is compact and J/H inherits
a Kähler structure from X . If we set N := NJ (H0), then the normalizer fibration
J/H ! J/N is a product with N/H = T and J/N = Q [13]. Since the fiber
of the fibration G/H ! G/N is compact, G/N is Kähler [12] and dG/N = 2
by the Fibration lemma. First assume that G/N = S/I , where I is an algebraic
subgroup of S [11]. Then the principal T -bundle G/H ! S/I is of the form
G/H = S ⇥⇢ T , where the representation ⇢ : I ! Aut0(T ) ⇠

= T factors through
I/I 0. As in the proof of Proposition 2.11, we may assume that G is reductive
and that the image ⇢(I ) is, on the one hand, an algebraic subtorus (C⇤)k of the
algebraic manifold S/S\ H which is closed in G/H [23, Theorem 5.1] and, on the
other hand, a closed subgroup of the compact complex torus T . Hence ⇢(I ) = {e}
and, as a consequence, the bundle G/H ! S/I is trivial. Example 7.4 shows that
the Q-bundle S/I ! S/S \ J is not necessarily trivial. The setting where S is not
transitive on G/N occurs if G/J is a product of C⇤ with an affine cone minus its
vertex. As in the last part of the previous paragraph, one again has closed R-orbits
and the radical fibration G/H ! G/R · H . A finite covering splits as a product
with the typical radical orbit R/R \ H being a Kähler T -bundle over C⇤ that has
a finite covering that splits as a product [22, Theorem 6.14]. These considerations
yield the possibilities in Case II (2) (b) in the Main theorem.

Suppose next that dG/J = 1. By the Fibration lemma dJ/H = 1 and either
O(J/H) = C or O(J/H) 6= C. We first assume the former and show below that
the latter gives a contradiction and thus it does not occur. Since J/H is Kähler,
the classification given in [18, Proposition 5] applies and the normalizer fibration
J/H ! J/N , where N := NJ (H0), realizes J/H as a Cousin bundle over a flag
manifold.

The first case occurs if G/J is Stein. By Proposition 2.5 we have dimC G/J =

1 and thus G/J = C⇤. Since S acts trivially on the Cousin group J/H and on G/J ,
the radical orbits are closed and one has the fibration G/H ! G/R · H . Its base
is biholomorphic to Q and the S-orbits in G/H are holomorphic sections. So this
bundle is holomorphically trivial. Thus X is biholomorphic to Q ⇥ Z , where Z is
a hypersurface Cousin group bundle over C⇤. A finite covering of this splits as a
product by [22, Theorem 6.14]. This is Case II (2) (c) in the Main theorem.

The other possibility is that G/J is not Stein and then G/J is an affine cone
minus its vertex. By Proposition 2.11 there is a closed complex subgroup I of N
containing H with I/H = C⇤ and J/I = N/I ⇥ J/N , where N/I =: T is a
torus and J/N =: Q is a flag manifold. Consider the T -bundle G/I ! G/N , set
Y := G/N , and observe that Y is a Q-bundle over G/J . As such, Y has a finite
fundamental group. This follows from the exact homotopy sequence of the bundle
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G/N ! G/J and the facts that a flag manifold is connected and simply connected
and an affine cone minus its vertex has finite fundamental group. Consider the finite
covering ⇡ :

eY ! Y , where eY is the universal covering of Y and let ⇡⇤(G/I ) be the
pullback of G/I via the map ⇡ . The S-orbits in ⇡⇤(G/I ) are sections and the torus
bundle splits as a product ⇡⇤(G/I ) = T ⇥

eY . Thus a finite covering of X fibers as
a C⇤-bundle over T ⇥

eY ; this is Case II (2) (d) in the Main theorem. Example 7.3
shows that Y itself need not be a product.

Finally we assume that O(J/H) 6= C when dG/J = 1. Let J/H ! J/I
be its holomorphic reduction. Since O(J/H) 6= C, one has dim J/I > 0 and
thus dim J > dim I and in all cases we will produce the contradiction that I and
J have the same dimension. By [18, Proposition 3] a finite covering of J/H is
biholomorphic to I/H ⇥ J/I , where I/H = T is a torus and Z := J/I is an affine
cone minus its vertex. Since the fibration G/H ! G/I has T as fiber and T is
compact, there is a Kähler structure on G/I , see [12] and by the Fibration lemma
we have dG/I = 2. First assume that a solvable subgroup of G acts transitively on
G/I . Then G/I ! G/J is aC⇤-bundle overC⇤ and G/I is Stein, e.g., see [7, page
904]. Thus G/I is the base of the holomorphic reduction of G/H and this gives
the contradiction that I = J . Next suppose that a maximal semisimple subgroup S
of G acts transitively on G/I . Since S/S \ I is Kähler, S \ I is algebraic by [11].
Thus there exists a parabolic subgroup P of S containing S\ I such that P/I \ S is
isomorphic to (C⇤)2, see [6] or Theorem 2.10. Then G/I or a two-to-one covering
of G/I is a homogeneous algebraic principal C⇤-bundle over an affine cone minus
its vertex and is quasi-affine and thus holomorphically separable, see [7, Proposition
2]. So G/I is the base of the holomorphic reduction of G/H . But this again gives
the contradiction I = J . The remaining case occurs when G is a mixed group,
i.e., G is neither solvable nor semisimple. First suppose G/J = C⇤ and J/I is
an affine cone minus its vertex. Let N := NG(I 0) and consider the normalizer
fibration G/I ! G/N which we first assume to be a covering. As in the case when
G/J = (C⇤)2 handled above, by using the commutator fibration of G/N and [21,
Proposition 4.4] we see that G/N is a product and so is holomorphically separable.
Therefore, dim I = dim N = dim J gives the desired contradiction. In all the other
cases we get a C⇤-bundle over an affine cone minus its vertex with codimension
one S-orbits. Since an affine cone minus its vertex has a finite fundamental group,
by passing to a finite covering we find that the S-orbits are holomorphic sections of
the bundle G/I ! G/J , and G/I is a product and thus holomorphically separable.
So we again get the contradiction that I = J . Thus the case O(J/H) 6= C does
not occur if dG/J = 1.

This completes the classification when O(X) 6= C.

6. Proof of the converse

The only component manifolds in the Main theorem that are not immediately rec-
ognizable as Kähler are the Y ’s that occur in II (2) (b) and II (2) (d). Since these are
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flag manifold bundles over holomorphically separable bases, these manifolds are
Kähler by [30]. The proof of the converse follows from the following observations:

(1) The product of Kähler manifolds is a Kähler manifold;
(2) A connected, complex manifold X that is a finite, unramified covering of a

complex maniold Y is Kähler if and only if Y is Kähler.

7. Examples

We now give non-trivial examples that can occur in the classification.
Example 7.1. The manifolds that occur in Proposition 2.11 need not be biholo-
morphic to a product of an S-orbit times an orbit of the center. For k = dX = 1,
let � : B ! C⇤ be a non-trivial character, where B is a Borel subgroup of
S := SL(2, C). Let C be a non-compact 2-dimensional Cousin group. Then C
fibers as a C⇤-bundle over an elliptic curve T and let B act on C via the character
� . Set X := S⇥BC . Then X fibers as a principal C-bundle over S/B and is Kähler,
but neither this bundle nor the corresponding C⇤-bundle is trivial.
Example 7.2. Let S := SL(3, C) and

I :=

8<
:

0
@⇤ 0 ⇤

0 ⇤ ⇤

0 0 ⇤

1
A

9=
; ⇢ B ⇢ P :=

8<
:

0
@⇤ ⇤ ⇤

0 ⇤ ⇤

0 ⇤ ⇤

1
A

9=
; ,

where B is the Borel subgroup of S consisting of upper triangular matrices. Then
S/I ! S/B is an affine C-bundle over the flag manifold S/B. Now consider the
fibration S/I ! S/P . Its fiber is P/I = P2\{point} and all holomorphic functions
on S/I are constant along the fibers by Hartogs’ principle and so must come from
the base S/P = P2. But the latter is compact and so O(S/P) = C and, as a
consequence, we see thatO(S/I ) = C. Thus S/I is an example of a space that can
be the base of the normalizer fibration as in the Main theorem II (1) (b) when S is
transitive on that base.
Example 7.3. Consider the subgroups of S := SL(5, C) defined by

I :=

8>>><
>>>:

0
BBB@
1 ⇤ ⇤ ⇤ ⇤

0 ⇤ ⇤ ⇤ ⇤

0 0 ⇤ ⇤ ⇤

0 0 0 ⇤ ⇤

0 0 0 ⇤ ⇤

1
CCCA

9>>>=
>>>;

⇢ P :=

8>>><
>>>:

0
BBB@

⇤ ⇤ ⇤ ⇤ ⇤

0 ⇤ ⇤ ⇤ ⇤

0 ⇤ ⇤ ⇤ ⇤

0 0 0 ⇤ ⇤

0 0 0 ⇤ ⇤

1
CCCA

9>>>=
>>>;

and

J := P 0

=

8>>><
>>>:

0
BBB@
1 ⇤ ⇤ ⇤ ⇤

0 ⇤ ⇤ ⇤ ⇤

0 ⇤ ⇤ ⇤ ⇤

0 0 0 ⇤ ⇤

0 0 0 ⇤ ⇤

1
CCCA

9>>>=
>>>;

.
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Then J/I = P1, P/J = C⇤, and S/P = Q is a flag manifold that can be fibered
as a Gr(2, 4)-bundle over P4. We have the fibrations

S/I P1
�! S/J C⇤

�! S/P = Q.

Note that S/J is holomorphically separable due to the fact that it can be equiv-
ariantly embedded as an affine cone minus its vertex in some projective space and
since J/H is compact, S/J is the base of the holomorphic reduction of S/I . Since
the fibration of S/I is not trivial, the spaces Y that occur in the Main theorem II
(2) (d) need not split as the products of flag manifolds and affine cones minus their
vertices.

Example 7.4. Using the groups defined in the previous example set bS := S ⇥ S
and bI := I ⇥ I . Then Y :=

bS/bI = S/I ⇥ S/I is an example that can occur in
the Main theorem II (2) (b). Such a Y fibers as a non-trivial flag manifold over a
(C⇤)2-bundle over a flag manifold.
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CLASSIFICATION OF KÄHLER G/H WITH dG/H = 2 1253

[14] A. BOREL, “Linear Algebraic Groups”, Second edition, Graduate Texts in Mathematics,
126, Springer-Verlag, New York, 1991, xii+288.

[15] C. CHEVALLEY, “Théorie des Groupes de Lie II. Groupes Algébriques”, Hermann, Paris,
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[31] J.-J. LOEB, Action d’une forme réelle d’un groupe de Lie complexe sur les fonctions
plurisousharmoniques, Ann. Inst. Fourier (Grenoble) 35 (1985), 59–97.

[32] Y. MATSUSHIMA, Sur les espaces homogènes kählériens d’un groupe de Lie réductif,
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Volume and self-intersection of differences of two nef classes

DAN POPOVICI

Abstract. Let {↵} and {�} be nef cohomology classes of bidegree (1, 1) on
a compact n-dimensional Kähler manifold X such that the difference of inter-
section numbers {↵}

n
� n {↵}

n�1. {�} is positive. We solve in a number of
special but rather inclusive cases the quantitative part of Demailly’s Transcen-
dental Morse Inequalities Conjecture for this context predicting the lower bound
{↵}

n
� n {↵}

n�1. {�} for the volume of the difference class {↵ � �}. We com-
pletely solved the qualitative part in an earlier work. We also give general lower
bounds for the volume of {↵ � �} and show that the self-intersection number
{↵ � �}

n is always bounded below by {↵}
n

� n {↵}
n�1. {�}. We also describe

and estimate the relative psef and nef thresholds of {↵} with respect to {�} and
relate them to the volume of {↵ � �}. Finally, broadening the scope beyond the
Kähler realm, we propose a conjecture relating the balanced and the Gauduchon
cones of @@̄-manifolds which, if proved to hold, would imply the existence of a
balanced metric on any @@̄-manifold.

Mathematics Subject Classification (2010): 32J27 (primary); 32U40, 32Q25,
32J25, 53C55 (secondary).

1. Introduction

Let X be a compact Kähler manifold with dimC X = n and let {↵}, {�} 2

H1, 1BC (X, R) be nef Bott-Chern cohomology classes such that

{↵}
n

� n {↵}
n�1. {�} > 0. (1.1)

A (possibly transcendental) class {↵} 2 H1, 1BC (X, R) being nef means (cf. [11,
Definition 1.3]) that for some (hence all) fixed Hermitian metric ! on X and for
every " > 0, there exists a C1 form ↵" 2 {↵} such that ↵" � �" !.

We have proved in [20, Theorem 1.1] that the class {↵��} is big (i.e. contains
a Kähler current T ). This solved the qualitative part of Demailly’s Transcendental
Morse Inequalities Conjecture for differences of two nef classes (cf. [6, Conjecture
10.1, (i i)]) on compact Kähler (and even more general) manifolds. This special

Received March 16, 2016; accepted in revised form June 12, 2016.
Published online December 2017.
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form of the conjecture was originally motivated by attempts at extending to tran-
scendental classes and to compact Kähler (not necessarily projective) manifolds the
cone duality theorem of Boucksom, Demailly, Paun and Peternell [6, Theorem 2.2.]
that plays a major role in the theory of classification of projective manifolds. Recall
that T being a Kähler current means that T is a d-closed positive (1, 1)-current
with the property that for some (hence all) fixed Hermitian metric ! on X , there
exists " > 0 such that T � " ! on X . Nefness and bigness are quite different pos-
itivity properties for real (possibly transcendental) (1, 1)-classes and the by-now
standard definitions just recalled extend classical algebraic definitions for integral
classes on projective manifolds.

In this paper we give a partial answer to the quantitative part of Demailly’s
Transcendental Morse Inequalities Conjecture for differences of two nef classes:

Conjecture 1.1 ([6, Conjecture 10.1, (ii)]). Let {↵}, {�} 2 H1, 1BC (X, R) be nef
classes satisfying condition (1.1) on a compact Kähler manifold X with dimC X =

n. Then
Vol({↵ � �}) � {↵}

n
� n {↵}

n�1. {�}. (1.2)

This is stated for arbitrary (i.e. possibly non-Kähler) compact complex manifolds
in [6], but the volume is currently only known to be meaningful when X is of class
C, a case reducible to the Kähler case by modifications. Thus, we may assume
without loss of generality that X is Kähler.

Recall that the volume is a way of gauging the “amount” of positivity of a class
{� } 2 H1, 1BC (X, R) when X is Kähler (or merely of class C) and was introduced
in [5, Definition 1.3] as

Vol({� }) := sup
T2{� }, T�0

Z
X
T nac (1.3)

if {� } is pseudo-effective (psef), i.e. if {� } contains a positive (1, 1)-current T � 0,
where Tac denotes the absolutely continuous part of T in the Lebesgue decomposi-
tion of its coefficients (which are complex measures when T � 0). If the class {� }

is not psef, then its volume is set to be zero. It was proved in [5, Theorem 1.2] that
this volume (which is always a finite non-negative quantity thanks to the Kähler, or
more generally class C, assumption on X) coincides with the standard volume of a
holomorphic line bundle L if the class {� } is integral (i.e. the first Chern class of
some L). Moreover, the class {� } is big (i.e. contains a Kähler current) if and only
if its volume is positive, by [5, Theorem 4.7].

Thus, under the assumptions of Conjecture 1.1, the main result in [20] ensures
that Vol({↵��}) > 0. In other words, {↵��} is positive in the big sense. The spe-
cial case when {�} = 0 had been proved in [14, Theorem 2.12] and had served there
as the main ingredient in the proof of the numerical characterisation of the Kähler
cone. (In particular, the proof of the more general statement in [20] reproves in a
much simpler way the main technical result in [14].) The thrust of Conjecture 1.1
is to estimate from below the “amount” of positivity of the class {↵ � �}.
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A first group of results that we obtain in the present paper can be summed
up in the following positive answer to Conjecture 1.1 under an extra assumption.
Recall that for nef classes {� }, the volume equals the top self-intersection {� }

n

(cf. [5, Theorem 4.1]), but for arbitrary classes, any order may occur between these
two quantities.

Theorem 1.2. Let X be a compact Kähler manifold with dimC X = n and let {↵},
{�} 2 H1, 1BC (X, R) be nef classes such that {↵}

n
� n{↵}

n�1.{�} > 0. Suppose,
moreover, that

Vol ({↵ � �}) � {↵ � �}
n. (1.4)

Then Vol({↵ � �}) � {↵}
n

� n {↵}
n�1. {�}.

Although there are examples when the volume of {↵ � �} is strictly less than
the top self-intersection, the assumption (1.4), that we hope to be able to remove in
future work, is satisfied in quite a number of cases, e.g., when the class {↵ � �} is
nef (treated in Section 2).

Actually, we prove in full generality in Section 5 the analogue of Conjec-
ture 1.1 for the top self-intersection number {↵ � �}

n in place of the volume of
{↵ � �}.

Theorem 1.3. Let X be a compact Kähler manifold with dimC X = n and let
{↵}, {�} 2 H1, 1BC (X, R) be nef classes such that {↵}

n
� n {↵}

n�1. {�} > 0. Then

{↵ � �}
n

� {↵}
n

� n {↵}
n�1. {�}.

Theorem 1.2 follows immediately from Theorem 1.3. Since the nef cone is the clo-
sure of the Kähler cone, we may assume without loss of generality that the classes
{↵} and {�} are actually Kähler. As for the volume of {↵ � �} in the general case
(i.e. without assumption (1.4)), we prove a lower bound that is weaker than the
expected lower bound (1.2) in a way that depends explicitly on how far the class
{↵ � �} is from being nef. The nefness defect of {↵ � �} is defined explicitly and
investigated in relation to the volume in Subsections 4.2, 4.3 and 4.4. We call it the
nef threshold (a term that is already present in the literature) of {↵} with respect to
{�} and discuss it together with the analogous psef threshold of {↵} with respect to
{�} in Section 4. In Section 4.4, we prove the following general lower bound for
the volume of {↵ � �}.

Theorem 1.4. Let X be a compact Kähler manifold with dimC X = n and let {↵},
{�} 2 H1, 1BC (X, R) be Kähler classes such that {↵}

n
� n {↵}

n�1. {�} > 0. Let
s0 := N (�)(↵) > 0 be the nef threshold of {↵} with respect to {�}. Then:

(i) if s0 � 1, the class {↵��} is nef and the optimal volume estimate (1.2) holds;
(ii) if s0 < 1, the class {↵ � �} is not nef and the next volume estimate holds:

Vol({↵��})�
⇣
{↵}

n
� n {↵}

n�1. {�}

⌘ 
{↵}

n
� n {↵}

n�1. {�}

{↵}
n

� ns0 {↵}
n�1. {�}

!n�1
. (1.5)
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A very special case of this result was also observed independently in [23] using the
technique introduced in [20].

Taking our cue from the estimates we obtain in Section 3 for the supremum
of t � 0 such that the class {↵} � t {�} is psef in the setting of Conjecture 1.1,
we define the psef and nef thresholds of {↵} with respect to {�} as the functions
P (�), N (�)

: H1, 1BC (X, R) ! R,

(i) P(�)(↵) := inf
R
X ↵ ^ � n�1;

(ii) N (�)(↵) := inf
R
Y ↵ ^ !n�p�1;

where in (i) the infimum is taken over all the Gauduchon metrics � on X normalised
by

[�]BC .
⇥
� n�1

⇤
A =

Z
X
� ^ � n�1 = 1,

while in (ii) the infimum is taken over all p = 0, 1, . . . , n�1, over all the irreducible
analytic subsets Y ⇢ X such that codim Y = p and over all Kähler classes {!}

normalised by
R
Y � ^ !n�p�1

= 1. The class {�} is supposed to be big in the
case of P(�) and Kähler in the case of N (�). (The subscripts BC and A will stand
throughout for the Bott-Chern, respectively Aeppli cohomologies.) In Subsection
4, we prove the following formulae that justify the terminology and make it match
existing notions in the literature:

P (�)(↵) = sup {t 2 R / the class {↵} � t {�} is psef},
N (�)(↵) = sup{s 2 R / the class {↵} � s{�} is nef }.

The psef/nef thresholds of {↵}with respect to {�} turn out to gauge quite effectively
the amount of positivity that the class {↵} has in the “direction” of the class {�}. We
study their various properties in Section 4, estimate them in terms of intersection
numbers as

{↵}
n

n {↵}
n�1.{�}

 P(�)(↵) 

{↵}
n

{↵}
n�1.{�}

,

and by similar, more involved inequalities for N (�)(↵), and relate them to the vol-
ume of {↵ � �} as

Vol({↵ � �}) �

✓
1�

1
P(�)(↵)

◆n
{↵}

n,

whenever the classes {↵} and {�} are Kähler.
Using these thresholds, we prove Conjecture 1.1 in yet another special case:

when the psef and the nef thresholds of {↵} with respect to {�} are sufficiently
close to each other (cf. Proposition 4.12). Of course, we always have: N (�)(↵) 

P(�)(↵).
As in our earlier work [20] and as in [25] that preceded it, we will repeatedly

make use of two ingredients. The first one is Lamari’s positivity criterion.
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Lemma 1.5 ([18, Lemme 3.3]). Let {↵} 2 H1, 1BC (X, R) be any real Bott-Chern co-
homology class on an n-dimensional compact complex manifold X . The following
two statements are equivalent.
(i) There exists a (1, 1)-current T in {↵} such that T � 0 on X (i.e. {↵} is psef);
(ii)

R
X ↵ ^ � n�1 � 0 for all Gauduchon metrics � on X.

In fact, Lamari’s result holds more generally for any (i.e. not necessarily d-closed)
C1 real (1, 1)-form ↵ on X , but we will not use this here. The second ingredient
that we will often use is Yau’s solution of the Calabi conjecture.
Theorem 1.6 ([26]). LetX be a compact complexn-dimensional manifold endowed
with a Kähler metric !. Let dV > 0 be any C1 positive volume form on X such
that

R
X !

n
=

R
X dV . Then, there exists a unique Kähler metric e! in the Kähler

class {!} such that e!n = dV .
There is a non-Kähler analogue of Yau’s theorem by Tosatti andWeinkove [24]

that will not be used in this work. Moreover, most of the techniques that follow are
still meaningful or can be extended to the non-Kähler context. This is part of the
reason why we believe that a future development of the matters dealt with in this
paper may be possible in the more general setting of @@̄-manifolds. The conjecture
we propose in Section 6 is an apt illustration of this idea.

We will make repeated use of the technique introduced in [20] based on the
Cauchy-Schwarz inequality for estimating from below certain integrals of traces of
Kähler metrics introduced in [20]. Moreover, there are mainly two new techniques
that we introduce in the current paper: (i) the observation, proof and use of certain
pointwise inequalities involving products of positive smooth forms (cf. Appendix)
reminiscent of the Hovanskii-Teissier inequalities and generalising [20, Lemma
3.1]; (ii) a technique for constructing what we call approximate fixed points for
Monge-Ampère equations when we allow the right-hand side to vary (cf. proof of
Proposition 5.1) whose rough idea originates in and was suggested by discussions
the author had several years ago in a completely different context with different
equations and for very different purposes with J.-P. Demailly to whom we are very
grateful.

2. Special case of Conjecture 1.1 when {↵ � �} is nef

We start by noticing the following elementary inequality.
Lemma 2.1. Let ↵ > 0 and � � 0 be C1 (1, 1)-forms on a complex manifold X
with dimC X = n such that ↵ � � � 0. Then:

(↵ � �)n � ↵n � n ↵n�1 ^ � at every point in X. (2.1)

If d↵ = d� = 0 and if X is compact, then taking integrals we get:

Vol({↵��})=

Z
X
(↵��)n �

Z
X
↵n�n

Z
X
↵n�1^�={↵}

n
�n {↵}

n�1. {�}. (2.2)
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Proof. Let x0 2 X be an arbitrary point and let z1, . . . , zn be local holomorphic
coordinates centred at x0 such that at x0 we have:

↵ =

nX
j=1

idz j ^ dz̄ j and � =

nX
j=1

� j idz j ^ dz̄ j .

Then ↵ � � =

Pn
j=1(1� � j ) idz j ^ dz̄ j at x0, while � j � 0 and 1� � j � 0 at x0

for all j . Thus inequality (2.1) at x0 translates to
(1��1) · · · (1��n) � 1�(�1+· · ·+�n) for all �1, . . . ,�n 2 [0, 1]. (2.3)
This elementary inequality is easily proved by induction on n � 1. Indeed, (2.3) is
an identity for n = 1, while if (2.3) has been proved for n, then we have:

(1��1) · · · (1��n)(1��n+1)
(i)
� (1� (�1 + · · · + �n)) (1� �n+1)

=1�(�1+ · · · + �n+�n+1)+�n+1(�1+ · · · + �n)

�1� (�1 + · · · + �n + �n+1),

since � j � 0 for all j . (We used 1 � �n+1 � 0 to get (i) from the induction
hypothesis.) Thus (2.3) is proved and (2.1) follows from it.

Now, if ↵ and � are d-closed, they define Bott-Chern cohomology classes.
Since ↵ � � is a semi-positive C1 (1, 1)-form, its Bott-Chern class is nef (and
even a bit more), hence its volume equals

R
X (↵ � �)n by [5, Theorem 4.1] if X

is compact. (Note that X is compact Kähler since ↵ is a Kähler metric under the
present assumptions.) The remaining part of (2.2) follows at once from (2.1) by
integration.

An immediate consequence of Lemma 2.1 is the desired volume lower bound
(1.2) in the special case when the class {↵ � �} is assumed to be nef. Note, how-
ever, that {↵ � �} need not be nef in general even a posteriori in the setting of
Conjecture 1.1.
Proposition 2.2. Let X be a compact Kähler manifold with dimC X = n and let
{↵}, {�} 2 H1, 1BC (X, R) be nef Bott-Chern cohomology classes such that the class
{↵ � �} is nef. Then

Vol({↵ � �}) � {↵}
n

� n {↵}
n�1. {�}. (2.4)

Proof. It suffices to prove inequality (2.4) in the case when the classes {↵}, {�} and
{↵ � �} are all Kähler. (Otherwise, we can add 2"{!} to {↵} and "{!} to {�} for a
fixed Kähler class {!} and let " # 0 in the end. The volume function is known to
be continuous by [5, Corollary 4.11].) If we define the form ↵ as the sum of any
Kähler metric in the class {↵ � �} with any Kähler metric � in the class {�}, the
forms ↵, � and ↵ � � obtained in this way satisfy the hypotheses of Lemma 2.1,
hence also the elementary inequality (2.1) and its consequence (2.2).

Recall that the class {↵ � �} is big under the assumptions of Conjecture 1.1
by the main result in [20]. However, big positivity is quite different in nature to nef
positivity. The general (i.e. possibly non-nef) case is discussed in the next sections.
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3. Applications of Monge-Ampère equations

In this section we rewrite in a more effective way and observe certain consequences
of the arguments in [20, Section 3].

Lemma 3.1. Let X be any compact complex manifold with dimC X = n. With any
C1 (1, 1)-forms ↵,� > 0 and any Gauduchon metric � , we associate the C1

(1, 1)-forme↵ = ↵ + i@@̄u > 0 defined as the unique normalised solution (whose
existence is guaranteed by the Tosatti-Weinkove theorem in [24]) of the Monge-
Ampère equation:

(↵ + i@@̄u)n = c � ^ � n�1 such that sup
X
u = 0, (3.1)

where c > 0 is the unique constant for which the above equation admits a solution
u : X ! R. (Of course, a posteriori, c = (

R
X (↵ + i@@̄u)n)/(

R
X � ^ � n�1), while

if d↵ = 0 then c =

R
X ↵

n
= {↵}

n > 0.)
Then the following inequality holds:✓Z

X
e↵ ^ � n�1

◆
·

✓Z
X
e↵n�1 ^ �

◆
�

1
n

✓Z
X
e↵n

◆✓Z
X
� ^ � n�1

◆
. (3.2)

Proof. Let us define det� e↵ by requiringe↵n = (det� e↵) � n on X . Since �^� n�1 =

(1/n) (3��) � n , the Monge-Ampére equation (3.1) translates to

det
�

e↵ =

c
n
3��. (3.3)

Hence, we get the following identities and inequalities:✓Z
X
e↵ ^ � n�1

◆✓Z
X
e↵n�1^�

◆
=

✓Z
X

1
n

(3�e↵) � n
◆✓Z

X

1
n

(3e↵�) (det
�

e↵) � n
◆

(a)
�

1
n2

✓Z
X
[(3�e↵) (3e↵�)]

1
2 (det

�
e↵)

1
2 � n

◆2 (b)
�

1
n2

✓Z
X
(3��)

1
2 (det

�
e↵)

1
2 � n

◆2

(c)
=

1
n2

✓r
c
n

Z
X
(3��) � n

◆2
=

1
n2

✓r
c
n
n
Z
X
� ^ � n�1

◆2
=

c
n

✓Z
X
� ^ � n�1

◆2
,

which prove (3.2) since c = (
R
X e↵n)/(RX � ^ � n�1) > 0, where (a) is the Cauchy-

Schwarz inequality, (b) follows from the inequality (3�e↵) (3e↵�) � 3�� proved
in [20, Lemma 3.1], while (c) follows from (3.3).

Corollary 3.2. Let X be a compact Kähler manifold with dimC X = n. Then,
for every Kähler metrics ↵,� and every Gauduchon metric � on X , the following
inequality holds:✓Z

X
↵ ^ � n�1

◆
·

✓Z
X
↵n�1 ^ �

◆
�

1
n

✓Z
X
↵n

◆ ✓Z
X
� ^ � n�1

◆
. (3.4)
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Proof. It is clear that (3.4) follows immediately from (3.2) since the assumption
d↵ = d� = 0 ensures that

R
X e↵^� n�1 =

R
X ↵^� n�1,

R
X e↵n�1^� =

R
X ↵

n�1
^�

and
R
X e↵n =

R
X ↵

n .

Remark 3.3. Under the hypotheses of Corollary 3.2, for any � satisfying the
inequality (3�e↵) (3e↵�) � n3�� (an improved version of [20, Lemma 3.1]
which need not hold in general, but holds for some special choices of � – cf.
proof of Lemma 7.2), the lower bound on the right-hand side of (3.4) improves
to (

R
X ↵

n) (
R
X � ^ � n�1). If this improved lower bound held for all Gauduchon

metrics � , Conjecture 1.1 would follow immediately (see Theorem 3.5 below).
We first notice a consequence of Corollary 3.2 for nef classes.

Corollary 3.4. If {↵} and {�} 2 H1, 1BC (X, R) are nef classes on a compact Kähler
manifold X with dimC X = n such that {↵}

n
�n{↵}

n�1.{�} > 0, then {↵}
n > 0 and,

unless {�}=0, the following non-orthogonality property holds: {↵}
n�1.{�}> 0.

Proof. The nef hypothesis on {↵} and {�} ensures that {↵}
n�1. {�} � 0, hence

{↵}
n > 0 since {↵}

n > n {↵}
n�1. {�} by assumption. For the rest of the proof, we

reason by contradiction: suppose that {↵}
n�1. {�} = 0 and that {�} 6= 0. By the nef

hypothesis on {↵} and {�}, for every " > 0, there exist C1 forms ↵" 2 {↵},�" 2

{�} such that ↵" + " ! > 0 and �" + " ! > 0 for some arbitrary fixed Kähler metric
! on X . Applying (3.4) to the Kähler metrics ↵" + " ! and �" + " ! in place of ↵
and � and letting " # 0, we get

R
X � ^ � n�1 = 0 for every Gauduchon metric �

on X . (Note that
R
X ↵" ^ � n�1 =

R
X ↵ ^ � n�1,

R
X �" ^ � n�1 =

R
X � ^ � n�1 andR

X ↵
n�1
" ^ �" = {↵}

n�1.{�} = 0.) If we fix a d-closed positive current T � 0 in
the class {�} (such a current exists since the nef class {�} is, in particular, pseudo-
effective), this means that

R
X T ^ � n�1 = 0 for every Gauduchon metric � on X .

Consequently, T = 0, hence {�} = {T } = 0, a contradiction.

An immediate consequence of Corollary 3.2 is the following result in which
the volume lower bound (3.6) falls short of the expected inequality (1.2). However,
(3.6) solves the qualitative part of [6, Conjecture 10.1, (ii)] already solved in [20],
while (3.5) gives moreover an effective estimate of the largest t > 0 for which the
class {↵ � t�} remains pseudo-effective. This estimate will prompt the discussion
of the psef and nef thresholds in the next section.

Theorem 3.5. Let X be a compact Kähler manifold with dimC X = n and let
↵,� > 0 be Kähler metrics such that {↵}

n
� n {↵}

n�1. {�} > 0.
Then, for every t 2 [0, +1), there exists a real (1, 1)-current Tt 2 {↵ � t�}

such that

Tt �

 
1� nt

{↵}
n�1. {�}

{↵}
n

!
↵ on X. (3.5)

In particular, Tt is a Kähler current for all 0  t < {↵}
n

n {↵}
n�1. {�}

, so taking t = 1
(which is allowed by the assumption {↵}

n
�n {↵}

n�1. {�} > 0) we get that the class
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{↵ � �} contains a Kähler current. Moreover, its volume satisfies:

Vol({↵ � �}) �

�
{↵}

n
� n {↵}

n�1. {�}

�  {↵}
n

� n {↵}
n�1. {�}

{↵}
n

!n�1

� {↵}
n

� n2 {↵}
n�1. {�}.

(3.6)

Proof. Thanks to Lamari’s positivity criterion (Lemma 1.5), the existence of a cur-
rent Tt 2 {↵ � t�} satisfying (3.5) is equivalent to

Z
X

 
↵ � t � � ↵ + nt

{↵}
n�1. {�}

{↵}
n ↵

!
^ � n�1 � 0

for every Gauduchon metric � on X . This, in turn, is equivalent to

nt
{↵}

n�1.{�}

{↵}
n

Z
X
↵ ^ � n�1 � t

Z
X
� ^ � n�1 for every Gauduchon metric � .

The last inequality is nothing but (3.4) which was proved in Corollary 3.2. This
completes the proof of the existence of a current Tt 2 {↵ � t�} satisfying (3.5).

Now, (3.5) implies that the absolutely continuous part Tac of T := T1 2 {↵��}

has the same lower bound as T . Moreover, if {↵}
n

� n {↵}
n�1. {�} > 0, then

Vol({↵ � �})�

Z
X
T nac�

 
1� n

{↵}
n�1.{�}

{↵}
n

!nZ
X
↵n

(i)
�

 
1�n2

{↵}
n�1. {�}

{↵}
n

!
{↵}

n,

which proves the claim (3.6). To obtain (i), we have used the elementary inequality
(1� �)n � 1� n� which holds for every � 2 [0, 1].

The above proof shows that a current Tt 2 {↵ � t�} satisfying (3.5) exists
even if we do not assume {↵}

n
� n {↵}

n�1. {�} > 0, although this information will
be of use only under this assumption. Note that the non-orthogonality property
{↵}

n�1. {�} > 0 ensured by Corollary 3.4 constitutes the obstruction to the volume
lower estimate (3.6) being optimal (i.e. coinciding with the expected estimate (1.2)).
We now point out an alternative way of inferring the same suboptimal volume lower
bound (3.6) from the proof of Theorem 3.5.

Alternative wording of the proof of the volume lower estimate (3.6). By Lamari’s
positivity criterion (Lemma 1.5), the existence of a current T in the class {↵ � �}

such that T � �↵ for some constant � > 0 (which must be such that � < 1) is
equivalent to

Z
X

((1� �)↵ � �) ^ � n�1 � 0, i.e. to
Z
X

✓
(↵ �

1
1� �

�

◆
^ � n�1 � 0,
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for all Gauduchon metrics � on X . Applying again Lamari’s positivity criterion,
this is still equivalent to the class {↵} � (1/(1 � �)) {�} being pseudo-effective.
Inequality (3.5) shows that the largest � we can choose with this property is larger
than or equal to

�0 = 1� n
{↵}

n�1.{�}

{↵}
n , which gives 1� �0 = n

{↵}
n�1.{�}

{↵}
n . (3.7)

On the other hand, we can write:

Vol({↵ � �}) = Vol
✓

(1� t) {↵} + t
✓

{↵} �

1
t

{�}

◆◆

(a)
� Vol((1� t) {↵}) = (1� t)n {↵}

n,

(3.8)

where inequality (a) holds for every t 2 [0, 1] for which the class {↵}� (1/t) {�} is
pseudo-effective. By (3.7), t := 1� �0 = n {↵}

n�1.{�}/{↵}
n satisfies this property.

With this choice of t , inequality (3.8) translates to the first inequality in (3.6).

Corollary 3.6. Let {↵}, {�} 2 H1, 1BC (X, R) be nef classes on a compact Kähler
manifold X with dimC X = n such that {↵}

n
� n {↵}

n�1.{�} > 0. If {�} = 0, then
{↵} is big, while if {�} 6= 0, then {↵} � t {�} is big for all 0  t < {↵}

n

n {↵}
n�1. {�}

.
Moreover, the volume lower bound (3.6) holds.

The case when {�} = 0 is the key Theorem 2.12 in [14]. So, in particular,
our method produces a much quicker proof of this fundamental result of [14]. The
case when {�} 6= 0 is new, although the case t = 1 and the method of proof are
those of [20]. Notice that the quantity {↵}

n/n {↵}
n�1. {�} > 0 is well defined when

{�} 6= 0 by Corollary 3.4.

Proof. We fix an arbitrary Kähler metric ! on X and a constant t � 0 that will
be specified shortly. The nefness assumption on {↵}, {�} means that for every
" > 0, smooth forms ↵ 2 {↵} and � 2 {�} depending on " can be found such
that ↵" := ↵ + " ! and �" := � +

"
t ! are Kähler metrics. Notice that the

class {↵" � t�"} = {↵ � t�} is independent of ". On the other hand, the quan-
tities {↵"}

n
= {↵}

n
+

Pn
k=1 "

k �n
k
�
{↵}

n�k .{!}
k and {↵"}

n�1. {�"} = ({↵}
n�1

+Pn�1
l=1 "

l �n�1
l
�
{↵}

n�1�l .{!}
l).({�} +

"
t {!}) converge to {↵}

n and respectively
{↵}

n�1.{�} when " ! 0. Thus, {↵"}
n

� n {↵"}
n�1.{�"} > 0 if " > 0 is small

enough. Applying Theorem 3.5 to the Kähler metrics ↵" and �", we infer that the
class {↵" � t�"} = {↵� t�} is big whenever 0  t < {↵"}

n/n {↵"}
n�1. {�"}. In par-

ticular, if {�} = 0, this means that the class {↵} is big (since we can fix " > 0 and
choose t = 0). Meanwhile, if {�} 6= 0 and if we choose t < {↵}

n/n {↵}
n�1.{�},

then t < {↵"}
n/n {↵"}

n�1.{�"} for all " > 0 small enough and we conclude that
{↵ � t�} is big. The volume lower bound (3.6) holds for {↵"} and {�"} for t = 1
and all sufficiently small " > 0, so letting " ! 0 and using the continuity of the
volume, we get it for {↵} and {�}.
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4. Trace and volume of (1, 1)-cohomology classes

The implicit discussion of the relative positivity thresholds of a cohomology class
with respect to another in Theorem 3.5 and in Corollary 3.6 prompts a further in-
vestigation of their relationships with the volume that we undertake to study in this
section.

4.1. The psef threshold

Let X be a compact complex manifold in Fujiki’s class C, n := dimC X .
Definition 4.1. For every big Bott-Chern class {�} = [�]BC 2 H1, 1BC (X, R), we
define the �-directed trace (or the psef threshold in the �-direction) to be the func-
tion:

P(�)
: H1, 1BC (X, R) ! R, P(�)(↵) := inf

Z
X
↵ ^ � n�1, (4.1)

for all Bott-Chern classes {↵} = [↵]BC 2 H1, 1BC (X, R), where the infimum is taken
over all the Gauduchon metrics � on X normalised such that

[�]BC .[� n�1]A =

Z
X
� ^ � n�1 = 1. (4.2)

All the integrals involved in the above definition are clearly independent of the rep-
resentatives ↵, � of the Bott-Chern classes [↵]BC , [�]BC and of the representative
� n�1 of the Aeppli-Gauduchon class [� n�1]A 2 Hn�1, n�1

A (X, R). Thus the infi-
mum is taken over the subset S� of the Gauduchon cone GX consisting of classes
[� n�1]A normalised by [�]BC .[� n�1]A = 1. The bigness assumption on [�]BC has
been imposed to ensure that [�]BC .[� n�1]A > 0, so that [� n�1]A can be normalised
with respect to [�]BC as in (4.2), for every class [� n�1]A 2 GX .

This definition is motivated in part by the next observation which is an immedi-
ate consequence of Lamari’s positivity criterion: the �-directed trace P (�) coincides
with the slope function introduced for big classes {↵} in [8, Definition 3.7] and thus
gauges the positivity of real (1, 1)-classes {↵} with respect to a reference big class
{�}. The quantity on the right-hand side of (4.3) below (i.e. the slope) may well
be called the psef threshold of {↵} in the {�}-direction (a term already used in the
literature).

Proposition 4.2. Suppose that {�} 2 H1, 1BC (X, R) is a fixed big class. Then

P(�)(↵)=sup{t 2 R/the class {↵} � t{�} is psef }
=sup{t 2 R/9T 2{↵} current, 9

e� 2 {�}C1-form so thatT � te�}

=sup{t 2 R/8e�2{�}C1-form, 9 T 2{↵} current so that T � te�},

(4.3)

for every class {↵} 2 H1, 1BC (X, R). In particular, the set {t 2 R / the class {↵} �

t {�} is psef} equals the interval (�1, P(�)(↵)].
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Proof. Let A�↵ := {t 2 R / the class {↵} � t {�} is psef} and let t�↵ := sup A�↵ . By
Lamari’s positivity criterion, the class {↵} � t {�} is psef if and only ifZ

X
↵ ^ � n�1 � t

Z
X
� ^ � n�1 for all [� n�1]A 2 GX ()

Z
X
↵ ^ � n�1 � t

for all [� n�1]A 2 GX normalised such that
R
X � ^ � n�1 = 1. This proves the

inequality P(�)(↵) � t�↵ . To prove that equality holds, we reason by contradiction.
Suppose that P(�)(↵) > t�↵ . Pick any t1 such that P(�)(↵) > t1 > t�↵ . ThenR
X ↵ ^ � n�1 > t1 for all Gauduchon metrics � such that [�]BC .[� n�1]A = 1. This
is equivalent to

R
X ↵^ � n�1 > t1

R
X � ^ � n�1 for all Gauduchon metrics � , which

thanks to Lamari’s positivity criterion implies 9 T 2 {↵} � t1 {�} such that T � 0,
i.e. the class {↵} � t1 {�} is psef.

Thus t1 2 A�↵ , contradicting the choice t1 > t�↵ = sup A�↵ .

An immediate consequence is the next statement showing that the �-directed
trace (i.e. the psef threshold) gauges the positivity of real Bott-Chern (1, 1)-classes
much as the volume does.

Corollary 4.3. Suppose that {�} 2 H 1, 1
BC (X, R) is a fixed big class. For any class

{↵} 2 H1, 1BC (X, R), the following equivalences hold:

(i) {↵} is psef () P(�)(↵) � 0;
(ii) {↵} is big () P(�)(↵) > 0.

Proof. (i) follows at once from (4.3) and so does (ii) after we (trivially) notice that
the class {↵} is big if and only if there exists " > 0 such that {↵} � "{�} is psef.
Indeed, this is a consequence of the fixed class {�} being supposed big.

Next, we observe some easy but useful properties of the �-directed trace.

Proposition 4.4. Suppose that {�} 2 H1, 1BC (X, R) is a fixed big class.

(i) For all classes {↵1}, {↵2} 2 H1, 1BC (X, R), we have

P(�)(↵1 + ↵2) � P(�)(↵1) + P(�)(↵2). (4.4)

In particular, P(�)(↵1) � P(�)(↵2) whenever {↵1} �pse f {↵2} (in the sense
that {↵1 � ↵2} is psef);

(ii) For any class {↵} 2 H1, 1BC (X, R) and any t 2 R, we have

P(�)(t ↵) = t P(�)(↵) and, if t > 0, P(t �)(↵) =

1
t
P(�)(↵); (4.5)

(iii) For every big class {↵} 2 H1, 1BC (X, R), we have

P(↵)(↵) = 1. (4.6)
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Proof. Let {↵1}, {↵2} 2 H1, 1BC (X, R). Since
R
X (↵1+↵2)^� n�1 =

R
X ↵1^�

n�1
+R

X ↵2 ^ � n�1 for every [� n�1]A 2 Hn�1, n�1
A (X, R), we get

inf
Z
X
(↵1 + ↵2) ^ � n�1 � inf

Z
X
↵1 ^ � n�1 + inf

Z
X
↵1 ^ � n�1,

where the infima are taken over all [� n�1] 2 S� . This proves (i).

(ii) Follows immediately from
R
X t↵ ^ � n�1 = t

R
X ↵ ^ � n�1 and from the fact

that [� n�1]A is (t�)-normalised if and only if t[� n�1]A is �-normalised.
(iii) Follows from

R
X ↵^� n�1=1 for all [� n�1]A such that [↵]BC .[� n�1]A=1.

The next observation deals with the variation of P(�) when {�} varies. As usual, an
inequality {↵} �pse f {�} between real (1, 1)-classes will mean that the difference
class {↵ � �} is psef.

Proposition 4.5. Let {�1}, {�2} 2 H1, 1BC (X, R) be big classes.

(i) If {�1} �pse f C {�2} for some constant C > 0, then

P(�1)


1
C
P(�2) on the psef cone EX ⇢ H1, 1BC (X, R); (4.7)

(ii) The following inequality holds:

P(�2)(�1) P(�1)
 P(�2) on the psef cone EX ⇢ H1, 1BC (X, R). (4.8)

Proof. If {�1�C �2} is psef, then
R
X (�1�C �2)^� n�1 � 0, i.e. [�1]BC .[� n�1]A �

C [�2]BC .[� n�1]A, for all classes [� n�1]A 2 GX . It follows that, for every psef
class {↵} 2 H1, 1BC (X, R), we have:

Z
X
↵ ^

� n�1R
X �1 ^ � n�1



1
C

Z
X
↵ ^

� n�1R
X �2 ^ � n�1

for all [� n�1]A 2 GX .

Taking infima over all [� n�1]A 2 GX , we get (4.7). On the other hand, it follows
from (4.3) that

{�1} �pse f P(�2)(�1) {�2},

which in turn implies (4.8) thanks to (4.7) applied with C = P(�2)(�1).
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4.2. The nef threshold

We now observe that the discussion of the psef threshold in Subsection 4.1 can
be run analogously in the nef context using the following important result of [14,
Corollary 0.4].

Theorem 4.6 (Demailly-Paun 2004). Let X be a compact Kähler manifold,
dimC X = n. Then the dual of the nef cone KX ⇢ H1, 1(X, R) under the Serre
duality is the closed convex cone NX ⇢ Hn�1, n�1(X, R) generated by classes of
currents of the shape [Y ] ^ !n�p�1, where Y runs over the irreducible analytic
subsets of X of any codimension p = 0, 1, . . . , n � 1 and {!} runs over the Kähler
classes of X .

Let {↵}, {�} 2 H1, 1(X, R) be arbitrary classes on a compact Kähler n-fold X .
By Theorem 4.6, for any s 2 R, the class {↵ � s�} is nef if and only if
Z
Y
↵^!n�p�1

� s
Z
Y
�^!n�p�1, p=0, 1, . . . , n�1, codimX Y = p, {!}2KX .

(As usual, KX denotes the Kähler cone of X .) This immediately implies the fol-
lowing statement.

Proposition 4.7. Let {�} 2 H1, 1BC (X, R) be any Kähler class on a compact Kähler
n-fold X . The nef threshold of any {↵} 2 H1, 1BC (X, R) in the {�}-direction, defined
by the first identity below, also satisfies the second identity:

N (�)(↵) := inf
Z
Y
↵^!n�p�1

= sup{s 2 R / the class {↵}� s{�} is nef }, (4.9)

where the infimum is taken over all p = 0, 1, . . . , n�1, over all the irreducible an-
alytic subsets Y ⇢ X such that codim Y = p and over all Kähler classes {!} nor-
malised such that

R
Y �^!n�p�1

= 1. In particular, the set {s 2 R / the class {↵}�

s{�} is nef } equals the interval (�1, N (�)(↵)].
Thus, we obtain a function N (�)

: H1, 1BC (X, R) ! R. It is clear that

N (�)(↵)  P(�)(↵) for all {↵} 2 H1, 1BC (X, R) (4.10)

thanks to the supremum characterisations of the two thresholds and to the well-
known implication “nef =) psef”.

It is precisely in order to ensure that
R
Y � ^ !n�p�1 > 0, hence that {!} can

be normalised as stated, for any Kähler class {!} and any Y ⇢ X that we assumed
{�} to be Kähler. The two-fold characterisations of the nef and the psef thresholds
yield at once the following consequence.
Observation 4.8. Suppose that no analytic subset Y ⇢ X exists except in codi-
mensions 0 and n. Then N (�)(↵) = P(�)(↵) for all Kähler classes {↵}, {�}.
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Proof. If Y = X is the only analytic subset of X of codimension p < n, then
N (�)(↵) = inf

R
X ↵ ^ !n�1 where the infimum is taken over all the Kähler classes

{!}, i.e. over all the Aeppli-Gauduchon classes [!n�1]A representable by the (n �

1)st power of a Kähler metric, normalised such that
R
X � ^ !n�1 = 1. Since these

classes form a subset of all the Aeppli-Gauduchon classes [� n�1]A normalised byR
X � ^ � n�1 = 1, we get N (�)(↵) � P(�)(↵). However, the reverse inequality
always holds, hence equality holds.

An immediate consequence of Proposition 4.7 is the following analogue of
Corollary 4.3 for the nef/Kähler context.

Corollary 4.9. Suppose that {�} 2 H 1, 1BC (X, R) is a fixed Kähler class. For any
class {↵} 2 H1, 1BC (X, R), the following equivalences hold:

(i) {↵} is nef () N (�)(↵) � 0;
(ii) {↵} is Kähler () N (�)(↵) > 0.

In particular, if no analytic subset Y ⇢ X exists except in codimensions 0 and n,
then the following (actually known, see [11]) equivalences hold:

(a) {↵} is nef () {↵}is psef;
(b) {↵} is Kähler () {↵} is big.

Proof. (i) follows at once from (4.9) and so does (ii) after we (trivially) notice that
the class {↵} is Kähler if and only if there exists " > 0 such that {↵} � "{�} is nef.
Indeed, this is a consequence of the fixed class {�} being supposed Kähler and of
the Kähler cone being the interior of the nef cone.

We immediately get analogues of Propositios 4.4 and 4.5 for N (�)(↵) in place
of P(�)(↵) and for the order relation �ne f in place of �pse f , where {↵} �ne f {�}

means that the class {↵ � �} is nef.

4.3. Relations of the psef/nef threshold to the volume

We now relate the �-directed trace of a Kähler class {↵} to the volume of {↵ � �}.

Proposition 4.10.

(i) For any Kähler classes {↵}, {�} on a compact Kähler n-fold X , we have:

{↵}
n

n {↵}
n�1.{�}

(a)
 P(�)(↵)

(b)


{↵}
n

{↵}
n�1.{�}

. (4.11)

In fact, it suffices to suppose that {�} is big in the inequality (b). In particular,
if {↵}

n
�n {↵}

n�1.{�} > 0, then P(�)(↵) > 1 (hence we find again that {↵��}

is big in this case);
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(ii) For any Kähler classes {↵}, {�} such that {↵}
n
� n {↵}

n�1.{�} > 0, we have:

Vol({↵ � �}) �

✓
1�

1
P(�)(↵)

◆n
{↵}

n. (4.12)

Note that the combination of (4.12) and part (a) of (4.11) is the volume lower bound
(3.6).

Proof. (i) Inequality (b) is trivial: it suffices to choose [� n�1]A = t [↵n�1]A for the
constant t > 0 satisfying the �-normalisation condition [�]BC .t [↵n�1]A = 1, i.e.
t = 1/{↵}

n�1.{�}, and to use the definition of P(�)(↵) as an infimum.
Inequality (a) follows from Corollary 3.2 by taking the infimum over all the

Gauduchon metrics � normalised by
R
X � ^ � n�1 = 1 in (3.4).

(ii) We saw in the second proof of the lower estimate (3.6) that (3.8) holds for
every t 2 [0, 1] such that {↵}�(1/t) {�} is psef. Now, (4.3) shows that the infimum
of all these t is 1/P(�)(↵). Thus (3.8) holds for t = 1/P(�)(↵), yielding (4.12).

A similar link between the volume and the nef threshold is given in the next
result by considering Monge-Ampère equations on analytic subsets Y ⇢ X .

Proposition 4.11. For every Kähler classes {↵}, {�} on a compact Kähler n-fold
X , we have:

inf
p=0,1,...,n�1,

Y⇢X, codim Y=p

VolY (↵)

(n � p) {↵}
n�p�1.{�}.{[Y ]}

(a)
 N (�)(↵)

(b)
 inf

p=0,1,...,n�1,
Y⇢X, codim Y=p

VolY (↵)

{↵}
n�p�1.{�}.{[Y ]}

(4.13)

where the infima are taken over the analytic subsets Y ⇢ X . We have setVolY (↵) :=R
Y ↵

n�p
=

R
X ↵

n�p
^[Y ] and {↵}

n�p�1.{�}.{[Y ]} :=

R
Y ↵

n�p�1
^�=

R
X ↵

n�p�1
^

� ^ [Y ] (both quantities depending only on p and the classes {↵}, {�}, {[Y ]}).

Proof. Pick any Kähler metrics ↵ 2 {↵} and � 2 {�}. Let Y ⇢ X be any analytic
subset of arbitrary codimension p 2 {0, 1, . . . , n � 1} and let ! be any Kähler
metric on X normalised such that

R
Y � ^ !n�p�1

= 1. We can solve the following
Monge-Ampère equation:

e↵n�p
Y = VolY (↵)� ^ !n�p�1 on Y, (4.14)

in the sense that there exists a d-closed (weakly) positive (1, 1)-current e↵Y on Y
(cf. [10, Definition 1.2]) lying in the restricted class {↵}|Y such that e↵Y is C1 on
the regular part Yreg of Y . We defer to the end of the proof the explanation of
how this follows from results in the literature. We adopt the standard point of view
(see [10, Section 1]) according to which C1 forms on a singular variety Y are
defined locally as restrictions to Yreg of C1 forms on an open subset of some CN
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into which Y locally embeds. In what follows, the exterior powers and products
involvinge↵Y are to be understood on Yreg even when we write Y .

If we define det!e↵Y by requiring e↵n�p
Y = (det!e↵Y )!n�p on Y , then (4.14)

translates to the identity:

det
!

e↵Y =

VolY (↵)

n � p
3!�|Y on Y. (4.15)

Thus, the argument in the proof of Lemma 3.1 can be rerun on Y as follows:✓Z
Y
e↵Y ^ !n�p�1

◆ ✓Z
Y
e↵n�p�1
Y ^ �

◆

=

1
(n � p)2

✓Z
Y
(3!e↵Y )!n�p

◆ ✓Z
Y
(3e↵Y �|Y ) (det

!
e↵Y )!n�p

◆

(a)
�

1
(n � p)2

✓Z
Y
[(3!e↵Y ) (3e↵Y �|Y )]

1
2 (det

!
e↵Y )

1
2 !n�p

◆2

(b)
�

1
(n � p)2

 Z
Y
(3!�|Y )

1
2

✓
VolY (↵)

n � p

◆ 1
2

(3!�|Y )
1
2 !n�p

!2

=

VolY (↵)

n � p

✓
1

(n � p)

Z
Y
(3!�|Y )!n�p

◆2
=

VolY (↵)

n � p

✓Z
Y
� ^ !n�p�1

◆2

(c)
=

VolY (↵)

n � p
,

where (a) is an application of the Cauchy-Schwarz inequality, (b) follows from
the pointwise inequality (3!e↵Y ) (3e↵Y �) � 3!� (cf. [20, Lemma 3.1]) and from
(4.15), while (c) follows from the normalisation

R
X � ^ !n�p�1

= 1.
Thus, since

R
Y e↵Y^!n�p�1

=

R
Y ↵^!n�p�1 and

R
Y e↵n�p�1

Y ^�=

R
Y ↵

n�p�1
^

�, we get: Z
Y
↵ ^ !n�p�1

�

VolY (↵)

(n � p) {↵}
n�p�1.{�}.{[Y ]}

for every analytic subset Y ⇢ X and every Kähler metric ! normalised by
R
Y � ^

!n�p�1
= 1. This proves inequality (a) in (4.13).

The proof of inequality (b) in (4.13) follows immediately by choosing the
Kähler metric ! to be proportional to ↵, i.e. ! = t↵ for the constant t = tY > 0 de-
termined by the normalisation condition

R
Y � ^!n�p�1

= 1 once Y ⇢ X has been
chosen. Indeed, for every p = 0, 1, . . . , n � 1 and every analytic subset Y ⇢ X ,
we immediately get:

inf
!

Z
Y
↵ ^ !n�p�1



Z
Y
↵ ^ (t↵)n�p�1

=

R
Y ↵

n�pR
Y � ^ ↵n�p�1

which implies part (b) of (4.13) after taking the infimum over p and Y .
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It remains to explain how the solution of equation (4.14) is obtained. If Y is
smooth, Yau’s classical theorem in [26] ensures the existence and uniqueness of
a Kähler metric e↵Y in {↵}|Y which solves (4.14). If Y is singular, we choose a
desingularisation eY of Y that is a finite sequence of blow-ups with smooth centres
in X :

µ :
eY �! Y, which is the restriction of µ :

eX �! X.

Thus, µ :
eX \ µ�1(Z) �! X \ Z is a biholomorphism above the complement of

the analytic subset Z := Ysing and eX is a compact Kähler manifold, hence so is the
submanifold eY . Moreover, µ?(� ^!n�p�1) is a C1 semi-positive (n� p, n� p)-
form on eX that is strictly positive on eX \ µ�1(Z). Clearly, µ?{↵} = {µ?↵} is a
semi-positive (hence also nef) big class on eX and

VoleY
�
µ?{↵}

�
=

Z
eX
�
µ?↵

�n�p
^ [

eY ] =

Z
X
↵n�p

^ [Y ] = VolY (↵) > 0.

We consider the following Monge-Ampère equation on the (smooth) compact
Kähler manifold eY :

e↵n�peY = VoleY
�
µ?{↵}

�
µ?

⇣
� ^ !n�p�1

⌘
on eY . (4.16)

If the class µ?{↵} were Kähler, Yau’s Theorem 3 in [26] on solutions of the Monge-
Ampère equation with a degenerate (i.e., semi-positive) smooth right-hand side
would yield a unique d-closed (1, 1)-currente↵eY 2 µ?{↵}

|
eY solving equation (4.16)

such that e↵eY � 0 on eY , e↵eY is C1 on eY \ µ�1(Z) and e↵eY has locally bounded
coefficients on eY . In our more general case where the class µ?{↵} is only semi-
positive and big, Theorems A, B, C in [7] yield a unique d-closed (1, 1)-currente↵eY 2 µ?{↵}

|
eY such thate↵eY � 0 on eY and

De↵n�peY
E
= VoleY

�
µ?{↵}

�
µ?

�
� ^ !n�p�1� on eY ,

where h i stands for the non-pluripolar product introduced in [7]. Moreover, e↵eY
is C1 on the ample locus of the class µ?{↵}

|
eY (cf. [7, Theorem C]), which in our

case coincides with eY \ µ�1(Z), ande↵eY has minimal singularities (cf. [7, Theorem
B]) among the positive currents in the class µ?{↵}

|
eY . Since this class contains

C1 semi-positive forms (e.g., (µ?↵)
|
eY ), its currents with minimal singularties have

locally bounded potentials. Thus, e↵eY has locally bounded (and even continuous)
potentials, so he↵n�peY i equals the exterior power e↵n�peY in the sense of Bedford and
Taylor [3]. In particular, [e↵keY ]BC = [µ?↵k]BC for all k, so

R
eY e↵n�p�1eY ^ µ?� =R

eY µ?↵n�p�1
^ µ?�. It remains to set

e↵Y := µ?e↵eY .

We thus get a d-closed positive (1, 1)-current e↵Y 2 {↵}|Y whose restriction to
Yreg = Y \ Z is C1 and which solves the Monge-Ampère equation (4.14).
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We can now relate both the psef and the nef thresholds P(�)(↵), N (�)(↵) to the
volume of {↵ � �}. The next result confirms Conjecture 1.1 in the case when these
thresholds are sufficiently close to each other.

Proposition 4.12. Let X be a compact Kähler manifold, dimC X = n, and let
{↵}, {�} 2 H1, 1BC (X, R) be Kähler classes such that

{↵}
n

� n {↵}
n�1. {�} > 0. (4.17)

If either of the following two conditions is satisfied:

(i) N (�)(↵) � 1 or (i i) N (�)(↵) �

{↵}
n

{↵}
n�1.{�}

� P(�)(↵)

n � 1
, (4.18)

then
Vol({↵ � �}) � {↵}

n
� n {↵}

n�1. {�}. (4.19)

Note that P(�)(↵) �

{↵}
n

{↵}
n�1.{�}

�P(�)(↵)

n�1 thanks to inequality (a) in (4.11). Since
P(�)(↵) � N (�)(↵) (cf. (4.10)), this shows that condition (ii) requires N (�)(↵) to
be “close” to P(�)(↵). In particular, (ii) holds if N (�)(↵) and P(�)(↵) coincide.

Proof of Proposition 4.12. If N (�)(↵) � 1, then the class {↵� �} is nef (cf. Propo-
sition 4.7), so (4.19) follows from Proposition 2.2 in this case.

Let us now suppose that N (�)(↵) < 1 and that condition (ii) is satisfied. We
set s0 := N (�)(↵) and t0 := P(�)(↵), so s0 < 1 < t0 (where the last inequality
follows from {↵ � �} being big – the main result in [20]). We have

{↵ � �} =

t0 � 1
t0 � s0

{↵ � s0�} +

1� s0
t0 � s0

{↵ � t0�}. (4.20)

Since the class (1�s0)/(t0�s0) · {↵� t0�} is psef, we get the first inequality below:

Vol({↵ � �}) �

✓
t0 � 1
t0 � s0

◆n
Vol({↵ � s0 �})

�

✓
1�

1� s0
t0 � s0

◆n ⇣
{↵}

n
� ns0{↵}

n�1.{�}

⌘
,

(4.21)

where the second inequality follows from Proposition 2.2 since the class {↵� s0 �}

is nef. Let

f : [0, 1] ! [0, +1), f (s) :=
✓
1�

1� s
t0 � s

◆n ⇣
{↵}

n
� ns{↵}

n�1.{�}

⌘
. (4.22)

Thus f (1) = {↵}
n

� n{↵}
n�1.{�} and (4.21) translates to Vol({↵ � �}) � f (s0).
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We will now show that f is non-increasing on the interval [ R�t0
n�1 , 1], where we

set:

R :=

{↵}
n

{↵}
n�1.{�}

or equivalently R=sup
�
r>0/{↵}

n
�r{↵}

n�1.{�}>0
 
. (4.23)

Assumption (4.17) means that R > n. Deriving f , we get:

f 0(s)=�n
(t0 � 1)n

(t0 � s)n
{↵}

n�1.{�} + n
(t0 � 1)n�1

(t0 � s)n�1
t0 � 1

(t0 � s)2
⇣
{↵}

n
� ns{↵}

n�1.{�}

⌘

=n
(t0 � 1)n

(t0 � s)n+1
⇣
{↵}

n
� ((n � 1)s + t0) {↵}

n�1.{�}

⌘
, s 2 [0, 1].

Since t0 � 1 > 0 and t0 � s > 0, the definition of R implies that f 0(s)  0 for all s
such that (n � 1)s + t0 � R, i.e. for all s �

R�t0
n�1 .

Recall that we are working under the assumption s0 2 [
R�t0
n�1 , 1), so from f be-

ing non-increasing on [
R�t0
n�1 , 1] we infer that f (s0) � f (1) = {↵}

n
�n{↵}

n�1.{�}.
Since Vol({↵ � �}) � f (s0) by (4.21), we get (4.19).

4.4. Nef/psef thresholds and volume revisited

We now prove Theorem 1.4. In so doing, we use a different method for obtaining a
lower bound for the volume of {↵��} that takes into account the “angles” between
{↵ � s0 �} and {↵ � t �} when t varies in a subinterval of [1, t0).

We start with a useful observation in linear algebra generalising inequality
(2.1).

Lemma 4.13. Let ↵ > 0 and � � 0 be C1 (1, 1)-forms on an arbitrary complex
manifold X with dimC X = n such that ↵�� � 0. Then, for every k 2 {0, 1, . . . , n},
the following inequality holds:

(↵ � �)n�k ^ ↵k � ↵n � (n � k)↵n�1 ^ �. (4.24)

Proof. Let x0 2 X be any point and z1, . . . , zn local holomorphic coordinates about
x0 such that

↵ =

nX
j=1

i dz j ^ dz̄ j and � =

nX
j=1

� j i dz j ^ dz̄ j , hence

↵ � � =

nX
j=1

(1� � j ) i dz j ^ dz̄ j at x0.

Thus � j 2 [0, 1] for all j = 1, . . . , n by our assumptions and inequality (4.24) at
x0 translates to

k! (n � k)!
n!

X
1 j1<···< jn�kn

�
1� � j1

�
. . .

�
1� � jn�k

�
� 1�

n � k
n

nX
l=1

�l ,
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which, in turn, translates to the following inequality after we set � j := 1 � � j 2

[0, 1]:

k! (n � k)!
n!

 X
1 j1<···< jkn

1
� j1 . . . � jk

!
�1 . . . �n �

n � k
n

nX
l=1

�l+k+1�n. (4.25)

Note that the left hand side of (4.25) is meaningful even if some � j vanishes because
it reappears in �1 . . . �n . We will prove inequality (4.25) by induction on n � 1
(where k 2 {1, . . . , n} is fixed arbitrarily).

If n = 1, (4.25) reads 1 � 1. Although it is not required by the induction
procedure, we now prove (4.25) for n = 3 and k = 1 since this case will be used
further down, i.e. we prove

1
3

(�1�2+�2�3+�3�1) �

2
3

(�1+�2+�3)�1 for all �1, �2, �3 2 [0, 1]. (4.26)

It is clear that (4.26) is equivalent to (�1 � 1) (�2 � 1) + (�2 � 1) (�3 � 1) + (�3 �

1) (�1 � 1) � 0 which clearly holds since � j � 1  0 for all j .
Now we perform the induction step. Suppose that we have proved (4.25) for all

1  m  n. Proving (4.25) for n + 1 amounts to proving the following inequality:

Ak, n+1 :=

k! (n + 1� k)!
(n + 1)!

X
1 j1<···< jkn+1

�1 . . . �n+1
� j1 . . . � jk

�

n + 1� k
n + 1

n+1X
l=1

�l + k � n.
(4.27)

The left-hand term Ak, n+1 of (4.27) can be re-written as

k! (n + 1� k)!
(n + 1)!

1
n + 1� k

·

0
BB@�1

X
6=1

1r1<···<rn�kn+1

�r1 . . . �rn�k + · · · + �n+1
X
6=n+1

1r1<···<rn�kn+1

�r1 . . . �rn�k

1
CCA ,

where the meaning of the notation is that the sum whose coefficient is �s runs over
all the ordered indices r1 < · · · < rn�k selected from the set {1, . . . , n + 1} \

{s}. Now, using inequality (4.25) for n (the induction hypothesis), for every s 2

{1, . . . , n + 1} we get:

X
6=s

1r1<···<rn�kn+1

�r1 . . . �rn�k �
n!

k!(n � k)!

 
n � k
n

X
l2{1,...,n+1}\{s}

�l + k + 1� n

!
.
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Plugging these inequalities into the last (re-written) expression for Ak, n+1, we get:

Ak, n+1 �

n � k
n(n + 1)

 X
l2{1,...,n+1}\{1}

�1 �l + · · · +

X
l2{1,...,n+1}\{n+1}

�n+1 �l

!

+

k + 1� n
n + 1

(�1 + · · · + �n+1),

hence

Ak, n+1�
2(n � k)
n(n + 1)

X
1 j<kn+1

� j �k +

k + 1� n
n + 1

n+1X
l=1

�l

=

2(n � k)
n(n + 1)

P
1 j<k<ln+1

(� j �k + �k �l + �l � j )

n � 1
+

k + 1� n
n + 1

n+1X
l=1

�l

(a)
�

2(n � k)
(n � 1)n(n + 1)

 
2

X
1 j<k<ln+1

(� j + �k + �l) � 3
✓
n + 1
3

◆!

+

k + 1� n
n + 1

n+1X
l=1

�l

=

2(n � k)
(n � 1)n(n + 1)

 
2
✓
n
2

◆ n+1X
l=1

�l � 3
✓
n + 1
3

◆!
+

k + 1� n
n + 1

n+1X
l=1

�l

=

1
n + 1

✓
4(n � k)
n(n � 1)

n(n � 1)
2

+ k + 1� n
◆ n+1X

l=1
�l

�

2(n � k)
(n � 1)n(n + 1)

3
(n � 1)n(n + 1)

2 · 3
=

n � k + 1
n + 1

n+1X
l=1

�l � (n � k),

where inequality (a) above follows from (4.26) applied to each sum � j�k + �k�l +

�l� j . Thus we have got precisely the inequality (4.27) that we set out to prove. The
proof of Lemma 4.13 is complete.

Now suppose we are in the setting of Conjecture 1.1. We keep the notation
of Subsection 4.3. Recall that s0 := N (�)(↵) and t0 := P(�)(↵). We assume that
s0 < 1 (since Conjecture 1.1 has been proved in the case when s0 � 1).

We express the class {↵��} as a convex combination of the nef class {↵�s0 �}

and the big class {↵ � t �} for every t 2 [1, t0) (cf. Theorem 3.5) in the following
more flexible version of (4.20):

{↵ � �} =

t � 1
t � s0

{↵ � s0�} +

1� s0
t � s0

{↵ � t�}, t 2 [1, t0). (4.28)
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We know from Theorem 3.5 that for every t < R
n (cf. notation (4.23)) there exists a

Kähler current Tt in the class {↵ � t�} such that Tt � (1�
n
R t)↵. Thus we get the

following Kähler current in the class {↵ � �}:

St :=

t � 1
t � s0

(↵ � s0�) +

1� s0
t � s0

Tt

�

t � 1
t � s0

(↵ � s0�) +

1� s0
t � s0

⇣
1�

n
R
t
⌘
↵, t 2


1,

R
n

�
,

(4.29)

since the class {↵ � s0 �} being nef allows us to assume without loss of generality
that ↵ � s0� � 0 (after possibly adding "! and letting " # 0 in the end). Since the
right-hand side of (4.29) is smooth, it also provides a lower bound for the absolutely
continuous part of St , so we get the following lower bound for the volume for all
t 2 [1, R

n ]:

Vol({↵ � �}) �

Z
X
Snt, ac

�

1
(t � s0)n

nX
k=0

✓
n
k

◆
(t�1)n�k(1�s0)k

✓
1�

nt
R

◆kZ
X
(↵ � s0�)n�k ^ ↵k .

(4.30)

Since the class {↵ � s0�} is nef, using Lemma 4.13, we get the following:
Lemma 4.14. Let X be a compact Kähler manifold, dimC X = n, and let {↵}, {�}2

H1,1BC (X, R) be Kähler classes such that {↵}
n

� n{↵}
n�1.{�} > 0. Suppose that

s0 := N (�)(↵) < 1. Then the following estimate holds:

Vol({↵ � �}) �

✓
A t � s0
t � s0

◆n ✓
{↵}

n
�

s0(t � 1)
A t � s0

n {↵}
n�1. {�}

◆
,

for all t 2


1,

R
n

�
,

(4.31)

where we denote R := {↵}
n/{↵}

n�1. {�} > n and A := 1�
n
R (1� s0) 2 (s0, 1).

Proof. From A� s0 = (1� s0) (1�
n
R ) 2 (0, 1) (because s0 2 (0, 1) and 1�

n
R 2

(0, 1)), we infer that A > s0. That A < 1, is obvious.
Without loss of generality, we may assume that ↵� s0� � 0, so (4.24) applies

to ↵ and s0� and from (4.30) we get:
Vol({↵ � �})

�

1
(t � s0)n

nX
k=0

✓
n
k

◆
(t�1)n�k(1�s0)k

✓
1�

nt
R

◆k ⇣
{↵}

n
� (n � k)s0{↵}

n�1.{�}

⌘

=

1
(t � s0)n


t � 1+ (1� s0)

✓
1�

nt
R

◆�n
{↵}

n

�

t � 1
(t � s0)n


t � 1+ (1� s0)

✓
1�

nt
R

◆�n�1
ns0 {↵}

n�1. {�},

which proves (4.31) since t � 1+ (1� s0) (1�
nt
R ) = At � s0.
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Thus, it becomes necessary to study the variation of the following function:

g :


1,
R
n

�
!R, g(t) :=

✓
At � s0
t � s0

◆n✓
{↵}

n
�

s0(t � 1)
At � s0

n{↵}
n�1. {�}

◆
, (4.32)

since Vol({↵ � �}) � g(t) for all t 2 [1, R
n ]. From A � s0 = (1 � s0) (1 �

n
R ) 2

(0, 1), we get:

g(1) =

⇣
1�

n
R

⌘n
{↵}

n,

while g
✓
R
n

◆
=

✓
R � n
R � ns0

◆n ⇣
{↵}

n
� ns0 {↵}

n�1. {�}

⌘
.

(4.33)

We see that g(1) is precisely the lower bound obtained for the volume of {↵��} in
(3.6), so this lower bound will be improved if g(t) > g(1) for some t 2 (1, R/n].

Variation of g. Since [(t � 1)/(At � s0)]0 = (A � s0)/(At � s0)2 and [(At �

s0)/(t � s0)]0 = (1� A) s0/(t � s0)2, for the derivative of g(t) we get:

g0(t) = n(1� A) s0
(At � s0)n�1

(t � s0)n+1

⇥

✓
{↵}

n
�

(ns0�ns0A+A�s0)t�ns0(1� A)�s0 (A � s0)
(1� A) (At � s0)

{↵}
n�1. {�}

◆
.

Now, At�s0 > 0 for all t 2 [1, R/n] since At�s0 � A�s0 = (1�s0)(1� n
R ) > 0.

Since t � 1 > s0, from the definition (4.23) of R, we get the equivalences:

g0(t)�0 () [ns0 (1� A) + A � s0] t � ns0 (1� A) � s0 (A � s0)
(1�A)(At�s0)R () �

⇥
RA2 � (ns0 � 1+ R) A + (n � 1) s0

⇤
t

+ s0
⇥
A � s0 + (n � R) (1� A)

⇤
� 0.

(4.34)

• Sign of RA2� (ns0�1+ R) A+ (n�1) s0. The discriminant of this 2nd degree
polynomial in A is

1R = R2 � 2 ((n � 2) s0 + 1) R + (ns0 � 1)2. (4.35)

The discriminant of 1R (viewed as a polynomial in R) is

10

= 16(n � 1) s0(1� s0) > 0 since s0 2 (0, 1). (4.36)

Thus, the 1R vanishes at R1 = (n � 2)s0 + 1 � 2
p

(n � 1)s0(1� s0) and R2 =

(n � 2)s0 + 1+ 2
p

(n � 1)s0(1� s0).

Lemma 4.15. With our usual notation R := {↵}
n/{↵}

n�1. {�}, we have: R1 <
R2  n < R.
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Proof. Only the inequality R2  n needs a proof. It is equivalent to

(n � 2)s0 + 2
p

(n � 1)s0(1� s0)  n � 1

() 2
p

(n � 1)s0(1� s0)  (n � 1)(1� s0) + s0
() (

p
(n � 1) (1� s0) �

p

s0)2 � 0,
which clearly holds.

The upshot is that 1R > 0, so RA2 � (ns0 � 1+ R) A + (n � 1) s0 vanishes
at A1 = (ns0 � 1+ R �

p

1R)/2R and A2 = (ns0 � 1+ R +

p

1R)/2R.
Lemma 4.16. With our notation A := 1 �

n
R (1 � s0) 2 [0, 1), we have: A1 <

A < A2.
Proof. The inequality A1 < A is equivalent to
ns0 � 1+ R �

p

1R
2R

<
R � n + ns0

R
() n(2� s0) � 1� R <

p
1R . (4.37)

If n(2� s0) � 1� R  0, (4.37) is obvious. If n(2� s0) � 1� R > 0, inequality
(4.37) is equivalent to

R2+[n(2� s0) � 1]2�2[n(2� s0) � 1]R< R2�2[(n � 2)s0+1]R+(ns0 � 1)2

() [n(2� s0) � ns0] [n(2� s0) + ns0 + 2]
< 2[n(2� s0) � (n � 2)s0 � 2] Rn(n � 1)(1� s0)
< (1� s0)(n � 1)R () n < R,

where the last inequality holds thanks to our assumption {↵}
n

� n{↵}
n�1. {�} > 0.

The inequality A < A2 is equivalent to
R � n + ns0

R
<
ns0 � 1+ R +

p

1R
2R

() R + 1� (2� s0)n <
p
1R . (4.38)

If R + 1� (2� s0)n  0, (4.38) is obvious. If R + 1� (2� s0)n > 0, inequality
(4.38) is equivalent to

R2+[1�(2�s0)n]2+2[1�(2�s0)n]R < R2 � 2 [(n � 2)s0 + 1] R + (ns0 � 1)2

() 2[2� (2� s0)n + (n � 2)s0] R < [ns0 � (2� s0)n] [ns0 � 2+ (2� s0)n]
() (n � 1) (s0 � 1) R < n(n � 1)(s0 � 1) () R > n since s0 � 1 < 0,

where the last inequality holds thanks to our assumption {↵}
n
�n{↵}

n�1.{�}>0.

The obvious corollary of Lemma 4.16 is the following inequality:

RA2 � (ns0 � 1+ R) A + (n � 1) s0 < 0. (4.39)
• Monotonicity of g : [1, R

n ] ! R. Picking up where we left off in (4.34), we
get the equivalence:

g0(t) � 0 () t � s0
A � s0 + (n � R) (1� A)

RA2 � (ns0 � 1+ R) A + (n � 1) s0
. (4.40)
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Lemma 4.17. The following inequalities hold:
(a) A� s0 + (n� R) (1� A) < 0;

(4.41)
(b) 1 > s0

A� s0 + (n� R) (1� A)

RA2 � (ns0 � 1+ R)A+ (n� 1) s0
.

Proof. (a) We have:

A � s0 + (n � R) (1� A) = (1� s0) (1�

n
R

) +

n
R

(1� s0) (n � R)

=

(1� s0)(n � R)(n � 1)
R

and the last expression is negative since n� R < 0 while 1� s0 > 0 and n�1 > 0.

(b) Thanks to (4.39), inequality (b) in (4.41) is equivalent to

RA2�(ns0�1+R)A+(n�1)s0<s0[A � s0 + (n � R)(1� A)]

() RA2 � (Rs0 + R + s0 � 1) A + s0 (s0 + R � 1) < 0.
(4.42)

The discriminant of the left hand side in (4.42), viewed as a 2nd degree polynomial
in A, is 100

= (R � 1)2(1� s0)2, so the left hand side of (4.42) vanishes at

A3 =

R(s0 + 1) + s0 � 1� (R � 1)(1� s0)
2R

= s0

and A4 = 1�

1� s0
R

, where clearly A3 < A4.

Thus, inequality (4.42) is equivalent to s0 < A < 1 �
1�s0
R . We have seen in

Lemma 4.14 that A > s0. On the other hand, proving A < 1 �
1�s0
R amounts to

proving

1�

n
R

(1� s0) < 1�

1� s0
R

() 1 < n (since 1� s0 > 0 and R > 0).

The last inequality being obvious, the proof of (b) in (4.41) is complete.

Conclusion 4.18. Inequality (4.40) holds strictly for every t � 1 thanks to part
(b) of (4.41). So, in particular, g0(t) > 0 for all t 2 [1, R

n ], i.e. the function
g : [1, R

n ] ! R is increasing.
Since Vol({↵ � �}) � g(t) for all t 2 [1, R

n ] (cf. Lemma 4.14), the best
lower bound for Vol({↵ � �}) that we get through this method in the case when
s0 := N (�)(↵) < 1 is

Vol({↵ � �}) � g
✓
R
n

◆

= ({↵}
n

� n {↵}
n�1. {�})

 
{↵}

n
� n {↵}

n�1. {�}

{↵}
n

� ns0 {↵}
n�1. {�}

!n�1
.

(4.43)
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This proves Theorem 1.4. Note that this lower bound for the volume improves on
the lower bound g(1) (cf. (4.33)) obtained in (3.6).

5. Intersection numbers

In this section we prove Theorem 1.3. We start by deriving analogues in bidegree
(p, p) with p � 2 of the inequalities established in Section 3. We will use the
standard notion of positivity for (q, q)-forms whose definition is recalled at the
beginning of the Appendix before Lemma 7.1.

Proposition 5.1. Let X be a compact Kähler manifold with dimC X = n and let
↵,� be Kähler metrics on X . Then, for every t 2 [0, +1), every p 2 {1, . . . , n}
and every C1 positive (n � p, n � p)-form �n�p, n�p

� 0 on X such that
@@̄�n�p, n�p

= 0, we have:
Z
X

�
↵ p � tp ↵ p�1 ^ �

�
^�n�p, n�p

�

⇣
1� t

n
R

⌘ Z
X
↵ p ^�n�p, n�p, (5.1)

where, as usual, we let R :=
{↵}

n

{↵}
n�1.{�}

. We also have:

Z
X

�
↵ p � t p� p

�
^�n�p, n�p

�

 
1� t p

�n
p
�

Rp

! Z
X
↵ p ^�n�p, n�p, (5.2)

where we let Rp :=
{↵}

n

{↵}
n�p .{�}

p .

Proof. Wemay and will assume without loss of generality that�n�p, n�p is strictly
positive. Inequality (5.1) is equivalent to

t
n
R

Z
X
↵ p ^�n�p, n�p

� tp
Z
X
↵ p�1 ^ � ^�n�p, n�p,

which, in turn, after the simplification of t � 0 and the unravelling of R, is equiva-
lent to

n
p

✓Z
X
↵ p ^�n�p, n�p

◆
·

✓Z
X
↵n�1 ^ �

◆
� {↵}

n
Z
X
↵ p�1^�^�n�p, n�p. (5.3)

This inequality can be proved using the method in the proof of Lemma 3.1, the
pointwise inequality (7.5) proved in the Appendix and an approximate fixed point
technique that we now describe. Here are the details.
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Approximate fixed point technique

We consider the following Monge-Ampère equation whose unique C1 solution in
the Kähler class {↵} is denoted bye↵ := ↵ + i@@̄' > 0:

e↵n =

{↵}
n

{↵}
p�1.{�}.[�n�p, n�p

]A
↵ p�1 ^ � ^�n�p, n�p. (5.4)

By {↵}
p�1.{�}.[�n�p, n�p

]A we mean the positive real number
R
X ↵

p�1
^ � ^

�n�p, n�p which clearly depends only on the Bott-Chern classes {↵}, {�} 2

H1, 1(X, R) and on the Aeppli class [�n�p, n�p
]A 2 Hn�p, n�p

A (X, R).
We will vary the form ↵ on the right-hand side of (5.4) in its Kähler class {↵}.

Let E↵ := {T 2 {↵} / T � 0} be the set of d-closed positive (1, 1)-currents in the
Kähler class {↵}. Thus E↵ is a compact convex subset of the locally convex space
D01, 1(X, R) endowed with the weak topology of currents. (The compactness is a
consequence of the existence of Gauduchon metrics and holds for any psef class
{↵} even if X is not Kähler.) Fix an arbitrary Kähler metric ! in {↵}. For every
" > 0, we associate with equation (5.4) the map:

R" : E↵ ! E↵, R"(T ) = ↵T, ", (5.5)
defined in three steps as follows. Let T 2 E↵ be arbitrary.
(i) By the Blocki-Kolodziej version [4] for Kähler classes of Demailly’s
regularisation-of-currents theorem [11, Theorem 1.1], there exist C1 d-closed
(1, 1)-forms !" 2 {↵} = {T } for " > 0 such that !" � �"! and !" ! T in
the weak topology of currents as " ! 0. (The Kähler assumption on the class {↵}

crucially ensures that the possible negative part of !" does not exceed "!, see [4].)
Note that for every sequence of currents Tj 2 E↵ converging weakly to a

current T 2 E↵ and for every fixed " > 0, the sequence of C1 forms (! j, ") j
(obtained by applying to each Tj the Blocki-Kolodziej regularisation procedure just
described producing a family ! j, " ! Tj as " ! 0) converges in the C1 topology
to the C1 form !" (obtained by applying to T the Blocki-Kolodziej regularisation
procedure producing a family !" ! T as " ! 0). In other words, for every fixed
" > 0, the map E↵ 3 T 7! !" 2 C1

1, 1(X, C) is continuous if E↵ has been equipped
with the weak topology of currents and the space of smooth (1, 1)-forms has been
given the C1 topology.

To see this, it suffices to work locally with currents Tj = i@@̄ j � 0 and
T = i@@̄ � 0 for which the psh potentials have the property that  j �!  in
the L1 topology as j ! +1, and to show that for every fixed " > 0 we have
i@@̄ j ? ⇢" �! i@@̄ ? ⇢" in the C0 topology as j ! +1. (The convergence
in the C1 topology follows from this by taking derivatives.) Indeed, currents are
regularised in [4] by convolution of their local potentials with regularising kernels
⇢". Since i@@̄ j ? ⇢" =  j ? i@@̄⇢" and i@@̄ ? ⇢" =  ? i@@̄⇢", we have to ensure,
for every fixed " > 0, thatZ
U 0

( j� )(y), u"(x � y) �!

j!+1

0 locally uniformly with respect to x 2 U 0 bU
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for every C1 function u" (which is an arbitrary coefficient of i@@̄⇢" in this case)
defined on the open subset U ⇢ X on which we work. This is clear from the L1
convergence  j �!  on U .

(ii) Set uT, " := (1� ")!"+ "!. Thus uT, " is a Kähler metric in the class {↵} since
it is C1 and uT, " � �(1� ") " ! + " ! = "2 ! > 0. Moreover, uT, " ! T in the
weak topology of currents as " ! 0.

(iii) Solve equation (5.4) with right-hand term defined by uT, " instead of ↵:

↵nT, " =

{↵}
n

{↵}
p�1.{�}.[�n�p, n�p

]A
u p�1T, " ^ � ^�n�p, n�p. (5.6)

This means that we denote by ↵T, " the unique Kähler metric in the Kähler class {↵}

solving equation (5.6) whose existence is ensured by Yau’s theorem [26]. We put
R"(T ) := ↵T, ". Thus, in particular, the image of R" consists of (smooth) Kähler
metrics in {↵}.
Now, R" is a continuous self-map of the compact convex subset E↵ of the locally
convex space D01, 1(X, R), so by the Schauder fixed point theorem, there exists
a current T" 2 E↵ such that T" = R"(T") = ↵T", ". Since ↵T", " := e↵" is C1,
by construction, the fixed-point current T" must be a C1 form, so T" = e↵" and
!" � e↵" � �"! for some �" # 0 when " ! 0. (The last statement follows from the
fact that !" converges in the C1 topology to T if T is C1 – see the explanations
under (3) below.) Hence uT", " = (1� ")!"+ "! � (1� ")e↵"+["� (1� ") �"]!.
We put ⌘" := " � (1� ") �", so ⌘" ! 0 when " ! 0.

To conclude, for every " > 0, we have got a Kähler metric e↵" in the Kähler
class {↵} such that

e↵n" =

{↵}
n

{↵}
p�1.{�}.[�n�p,n�p

]A
[(1� ")!" + "!]

p�1
^ � ^�n�p, n�p

�(1� ")p�1
{↵}

n

{↵}
p�1.{�}.[�n�p,n�p

]A
e↵ p�1" ^�^�n�p,n�p

�O(|⌘"|),

(5.7)

where ! is an arbitrary, fixed Kähler metric in the class {↵} and O(|⌘"|) is a quan-
tity that converges to zero as " ! 0. The Kähler metric e↵" can be viewed as an
approximate fixed point in the class {↵} of equation (5.4).

Explanations. Here are a few additional comments on the choice of a continuous
regularising operator R" for every " > 0. We are indebted to J.-P. Demailly and to
A. Zeriahi for many of the ensuing remarks that were left out of the first version of
this paper.

(1) The existence of a continuous regularising operator is an easy consequence of
the regularisation theorem (whatever version of it may be used, be it Demailly’s
regularisation of currents [11, Theorem 1.1] or the Blocki-Kolodziej one [4] or
any other one) applied to finitely many currents. The argument for this statement,
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which has been very kindly and effectively explained to the author by J.-P. De-
mailly, makes use of the compactness and convexity of E↵ in D

01, 1(X, R). Indeed,
the cone of positive currents has a compact and metrisable, hence countable, base.
For this reason, there are several different topologies that induce the same topology
on this cone (= the weak topology of currents). If we fix a smooth representative
↵ of the class {↵} (and ↵ can be chosen to be a Kähler metric in this case, but this
is irrelevant here), any current T 2 E↵ can be written as T = ↵ + i@@̄' � 0 for a
global quasi-psh (hence L2 and indeed L p for every p 2 [1, +1)) potential ' that
is unique up to a constant. We can equip the space of potentials {' / i@@̄' � �↵}

with the topology induced by the L2 Hilbert space topology, which is separable,
hence has a countable orthonormal base. This topology induces on E↵ the weak
topology of currents.

Now, by compactness of E↵ , for every ", there is a finite covering of E↵ by
open balls of radius ". Let T1, . . . , TN" 2 E↵ be the centres of these balls and let
E↵, " be the convex polyhedron generated by T1, . . . , TN" . We can take " = 1/m for
m 2 N? and by convexity of E↵ we get

E↵ =

+1[
m=1

E↵, 1m .

Thus, it suffices to regularise the finitely many currents T1, . . . , TN" and to extend
the regularisation to all the currents T 2 E↵, " by mere convex combinations. This
clearly produces a continuous regularising operator.
(2) The main result of [4], namely that in a Kähler class positive currents can be
regularised with only an O(") loss of positivity (so, ultimately, with no loss at all,
as explained above – hence the Kähler metrics in a given Kähler class are dense
in the positive currents of that class) can also be obtained as an easy consequence
of Demailly’s regularisation theorem [11]. The argument for this statement, which
was very kindly explained to the author by A. Zeriahi, proceeds by first regularising
by a mere cut-off operation. Indeed, let T = ↵ + i@@̄' � 0 be an arbitrary positive
current in the Kähler class {↵}, where ↵ > 0 is a Kähler metric in this class. For
every " > 0, put T" := ↵ + i@@̄ max(', �

1
" ) � 0. The current T" is still positive

since the maximum of any two ↵-psh functions is still ↵-psh when ↵ is a Kähler
metric ( [17, Proposition 2.3, (4)]). We have max(', �

1
" ) # ' pointwise and T" !

T weakly as " ! 0. Moreover, the currents T" have bounded potentials, so we
can apply Demailly’s regularisation theorem [11] to each of them to write T" as the
weak limit of a sequence of C1 forms T", � 2 {↵} as � ! 0. Since all the Lelong
numbers of T" vanish (because the potential is bounded), Demailly’s theorem [11]
ensures that only a loss of positivity of O(�) is introduced by the regularisation
process. Taking the diagonal sequence with " = �, we get an approximation of the
original current T by C1 forms in its class with only an O(") loss of positivity.

The interest in the Blocki-Kolodziej regularisation procedure [4] lies in its giv-
ing a much simpler proof of the existence of a good regularisation of currents (which
is by no means unique) for the special case of a Kähler class than Demailly’s proof
of the general case.
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(3) The Blocki-Kolodziej regularisation [4] proceeds by convolution of the local
potentials of the current T with regularising kernels ⇢". This method produces a
continuous regularising operator R" for every ". Moreover, if T is a C1 form in
the class {↵}, the C1 forms T" obtained by regularising T converge to T in the
C1 topology as " ! 0. This is because locally, if  is a C1 function defined
on an open subset � ⇢ Cn containing the origin, then all the derivatives of the
convolutions ⇢" ?  converge uniformly on all the compact subsets K ⇢ � to the
corresponding derivatives of  and the (standard) patching procedure used in [4]
does not destroy this property. On the other hand, Yau’s theorem [26] gives uniform
estimates in all the Cl norms of the solution of the Monge-Ampère equation in
terms of the right-hand side term of this equation. Putting these facts together,
we get that the regularising operator R" obtained by regularisation followed by an
application of Yau’s theorem is indeed continuous in the weak topology of currents
and, moreover, R"(T ) converges in the C1 topology to T whenever T 2 E↵ is C1.

Use of the approximate fixed point

Let us fix any smooth volume form dV > 0 on X . The left hand side term in (5.3)
reads:
n
p

✓Z
X
↵ p ^�n�p, n�p

◆
·

✓Z
X
↵n�1 ^ �

◆

=

n
p

✓Z
X

e↵ p" ^�n�p, n�p

dV
dV

◆
·

 Z
X

e↵n�1" ^ �

e↵n"
e↵n"
dV

dV

!

(a)
�

2
4Z

X

 
n
p
e↵ p" ^�n�p, n�p

dV
e↵n�1" ^ �

e↵n"
! 1
2 ✓e↵n"

dV

◆ 1
2
dV

3
5
2

(b)
�

2
4Z

X

 e↵ p�1" ^ � ^�n�p, n�p

dV

! 1
2 ✓e↵n"

dV

◆ 1
2
dV

3
5
2

(c)
� (1� ")p�1

{↵}
n

{↵}
p�1.{�}.[�n�p, n�p

]A

·

2
4Z

X

 e↵ p�1" ^ � ^�n�p, n�p

dV

! 1
2
 e↵ p�1" ^ � ^�n�p, n�p

dV

! 1
2

dV

3
5
2

� O(|⌘"|)

(d)
= (1�")p�1

{↵}
n

{↵}
p�1.{�}.[�n�p, n�p

]A

Z
X
↵ p�1 ^ � ^�n�p, n�p

�2
� O(|⌘"|)

= (1� ")p�1 {↵}
n
Z
X
↵ p�1 ^ � ^�n�p, n�p

� O(|⌘"|),

for every " > 0. Letting " ! 0, we get the desired inequality (5.3) since ⌘" ! 0.
Inequality (a) was an application of the Cauchy-Schwarz inequality, (b) was an
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application of the pointwise inequality (7.5) of Lemma 7.1 in the Appendix, (c)
followed from (5.7), while identity (d) followed frome↵" belonging to the class {↵}.
The proof of (5.1), which is equivalent to (5.3), is complete.

The proof of (5.2) runs along the same lines. Indeed, (5.2) is equivalent to

t p
�n
p
�

Rp

Z
X
↵ p ^�n�p, n�p

� t p
Z
X
� p ^�n�p, n�p,

which, in turn, after the simplification of t p � 0 and the unravelling of Rp, is
equivalent to✓
n
p

◆ ✓Z
X
↵ p ^�n�p, n�p

◆
·

✓Z
X
↵n�p

^ � p
◆

� {↵}
n
Z
X
� p^�n�p, n�p. (5.8)

The proof of (5.8) is almost identical to that of (5.3) spelt out above except for the
replacement of equation (5.4) with the following Monge-Ampère equation:

e↵n =

{↵}
n

{�}
p.[�n�p, n�p

]A
� p ^�n�p, n�p, (5.9)

and for the replacement of the pointwise inequality (7.5) with (7.4). Note that, since
↵ does not feature on the right-hand side of equation (5.9), the approximate fixed
point technique is no longer necessary in this case. It suffices to work with the
unique Kähler-metric solutione↵ of (5.9).
Remark 5.2. If an exact (rather than an approximate) fixed point for equation (5.4)
had been sought, we would have needed to consider the following equation in which
the Kähler-metric solutione↵ 2 {↵} features on both sides:

↵n =

{↵}
n

{↵}
p�1.{�}.[�n�p, n�p

]A
e↵ p�1 ^ � ^�n�p, n�p.

Equations of this type, going back to Donaldson’s J -flow and to work by Chen,
admit a solution under a certain assumption on the class {↵}. See [15] and the ref-
erences therein for details. Our approximate fixed point technique does not require
any particular assumption on {↵}.

We can now prove the main result of this section which subsumes Theorem 1.3.

Theorem 5.3. Let X be a compact Kähler manifold with dimC X = n and let
{↵}, {�} be Kähler classes such that {↵}

n
� n {↵}

n�1.{�} > 0. Then, for every
k 2 {1, 2, . . . , n} and every smooth positive (n � k, n � k)-form �n�k, n�k

� 0
such that @@̄�n�k, n�k

= 0, the following inequalities hold:

{↵k � �k}.
⇥
�n�k, n�k⇤

A
(Ik)
� {↵ � �}

k .
⇥
�n�k, n�k⇤

A
(I Ik)
�

�
↵k � k ↵k�1 ^ �

 
.
⇥
�n�k, n�k⇤

A
(I I Ik)
�

⇣
1�

n
R

⌘
{↵}

k .
⇥
�n�k, n�k⇤

A � 0,

(5.10)



VOLUME AND SELF-INTERSECTION OF DIFFERENCES OF TWO NEF CLASSES 1287

where, as usual, R :=
{↵}

n

{↵}
n�1.{�}

. (Thus R > n by assumption.) In particular, (I In)
and (I I In) read:

{↵ � �}
n

� {↵}
n

� n {↵}
n�1.{�} =

⇣
1�

n
R

⌘
{↵}

n > 0. (5.11)

Proof. We may and will assume without loss of generality that �n�k, n�k is strictly
positive.
Inequality (I I Ik) is nothing but (5.1) for t = 1 and p = k.
We will now prove (I Ik) by induction on k 2 {1, . . . , n}. Let us fix Kähler metrics
↵,� in the classes {↵}, respectively {�}. For k = 1, (I I1) is obviously an identity.
Now, proving (I Ik) for an arbitrary k amounts to proving that the quantity

Sk :=

Z
X

⇣
(↵ � �)k � ↵k + k ↵k�1 ^ �

⌘
^�n�k, n�k (5.12)

is non-negative. To this end, we first prove the identity:

Sk =

k�1X
l=1

l
Z
X
(↵ � �)k�l�1 ^ ↵l�1 ^ �2 ^�n�k, n�k, k = 1, . . . , n. (5.13)

This follows immediately by writing the next pointwise identities:

(↵ � �)k � ↵k + k ↵k�1 ^ � = �� ^

kX
l=1

(↵ � �)k�l ^ ↵l�1 + k ↵k�1 ^ �

=

k�1X
l=1

↵l�1^�^

⇣
↵k�l � (↵ � �)k�l

⌘
=

k�1X
l=1

↵l�1^�2^
k�l�1X
r=0

↵k�l�1�r^(↵��)r

=

k�1X
l=1

k�l�1X
r=0

↵k�r�2 ^ �2 ^ (↵ � �)r

=

k�2X
r=0

↵k�r�2 ^ �2 ^ (↵ � �)r + . . .

+

k�l�1X
r=0

↵k�r�2 ^ �2 ^ (↵ � �)r + · · · + ↵k�2 ^ �2

= �2 ^ (↵ � �)k�2 + 2↵ ^ �2 ^ (↵ � �)k�3 + . . .

+ l ↵l�1 ^ �2 ^ (↵ � �)k�l�1 + · · · + (k � 1)↵k�2 ^ �2

=

k�1X
l=1

l (↵ � �)k�l�1 ^ ↵l�1 ^ �2.

This clearly proves (5.13).
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Now we can run the induction on k 2 {1, . . . , n} to prove (I Ik). Suppose that
(I I1), . . . , (I Ik�1) have been proved. Combining them with (I I Ik) that was proved
in (5.1) for all k 2 {1, . . . , n}, we deduce that the classes {↵� �}

k�r are positive in
the following sense:

{↵ � �}
k�r .

⇥
�n�k+r, n�k+r ⇤

A � 0

for all r 2 {1, . . . , k} and for all C1 strictly positive (n � k + r, n � k + r)-forms
�n�k+r, n�k+r > 0 such that @@̄�n�k+r, n�k+r

= 0.
Choosing forms of the shape �n�k+r, n�k+r

:= ↵r�2 ^ �2 ^ �n�k, n�k with
�n�k, n�k > 0 of bidegree (n � k, n � k) satisfying @@̄�n�k, n�k

= 0, we get:

{↵ � �}
k�r .{↵}

r�2.{�}
2.
⇥
�n�k, n�k⇤

A � 0, r 2 {2, . . . , k}.

Setting r := l + 1, this translates toZ
X
(↵ � �)k�l�1 ^ ↵l�1 ^ �2 ^�n�k, n�k

� 0, l 2 {1, . . . , k � 1},

which means precisely that all the terms in the sum expressing Sk in (5.13) are
non-negative. Hence, Sk � 0, which proves (I Ik) (see 5.12).

Let us now prove (Ik) as a consequence of (I Ik) and (I I Ik). For every k 2

{1, . . . , n}, the following pointwise identities are obvious:

↵k��k�(↵ � �)k =� ^

k�1X
l=0

↵k�l�1 ^ (↵ � �)l � �k

=�^

 
↵k�1 � �k�1 +

k�1X
l=1

↵k�l�1 ^ (↵ � �)l

!

=�^

 
(↵ � �) ^

k�2X
r=0

↵k�r�2 ^ �r +

k�1X
l=1

↵k�l�1 ^ (↵ � �)l

!
.

Hence, for every smooth (n�k, n�k)-form�n�k, n�k
� 0 such that @@̄�n�k, n�k

=

0, we have: ⇣�
↵k � �k

 
� {↵ � �}

k
⌘
.
⇥
�n�k, n�k⇤

A

=

k�2X
r=0

Z
X
(↵ � �) ^ ↵k�r�2 ^ �r+1 ^�n�k, n�k

+

k�1X
l=1

Z
X
(↵ � �)l ^ ↵k�l�1 ^ � ^�n�k, n�k

=

k�2X
r=0

{↵ � �}.
h
�n�1, n�1
r

i
A

+

k�1X
l=1

{↵ � �}
l .
h
0n�l, n�ll

i
A

� 0,
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where we have put �n�1, n�1
r := ↵k�r�2 ^ �r+1 ^ �n�k, n�k and 0n�l, n�ll :=

↵k�l�1 ^ � ^ �n�k, n�k . It is clear that �n�1, n�1
r and 0n�l, n�ll are positive

@@̄-closed forms of bidegree (n � 1, n � 1), respectively (n � l, n � l), so the
last inequality follows from the combination of (I Ik) and (I I Ik). Thus (Ik) is
proved.

We immediately get the following consequence of Theorem 5.3 which is the
analogue of Theorem 3.5 in bidegree (k, k) for an arbitrary k.

Corollary 5.4. Let X be a compact Kähler manifold with dimC X = n and let
↵,� > 0 be Kähler metrics such that {↵}

n
� n {↵}

n�1.{�} > 0. Then, for every
k 2 {1, 2, . . . , n}, there exist closed positive (k, k)-currents Uk 2 {↵k � �k} and
Sk 2 {(↵ � �)k} such that

Uk �

⇣
1�

n
R

⌘
↵k and Sk �

⇣
1�

n
R

⌘
↵k (5.14)

on X , where, as usual, we let R :=
{↵}

n

{↵}
n�1.{�}

. (So R > n by assumption.)

Proof. This follows immediately from Theorem 5.3 by using the analogue of La-
mari’s positivity criterion [18, Lemme 3.3] in bidegree (k, k) for every k.

6. A conjecture in the non-Kähler context

Let X be a compact complex manifold with dimC X = n. It is standard that if X is
of class C, then X is both balanced (i.e. it admits a balanced metric: a Hermitian
metric ! such that d!n�1 = 0) by [1, Corollary 4.5] and a @@̄-manifold (i.e. the
@@̄-lemma holds on X). On the other hand, there are a great deal of examples
of balanced manifolds that are not @@̄-manifolds (e.g., the Iwasawa manifold), but
it is still an open problem to find out whether or not every @@̄-manifold admits
a balanced metric. To the author’s knowledge, all the examples of @@̄-manifolds
known so far are also balanced. We now briefly indicate how a generalised version
of Demailly’s Transcendental Morse Inequalities Conjecture for a difference of two
nef classes might answer a stronger version of this question. The main idea is
borrowed from Toma’s work [22] in the projective setting and was also exploited
in [9] in the Kähler setting.

It is standard that the canonical linear map induced in cohomology by the iden-
tity:

In�1 : Hn�1, n�1
BC (X, C) ! Hn�1, n�1

A (X, C), [�]BC 7! [�]A, (6.1)

is well defined on every X , but it is neither injective, nor surjective in general.
Moreover, the balanced cone of X consisting of Bott-Chern cohomology classes of
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bidegree (n � 1, n � 1) representable by balanced metrics !n�1:

BX =

�
[!n�1]BC /! > 0, C1 (1, 1)-form such that d!n�1 = 0 on X

 
⇢ Hn�1, n�1

BC (X, R),

maps under In�1 to a subset of the Gauduchon cone of X (introduced in [19]) con-
sisting of Aeppli cohomology classes of bidegree (n � 1, n � 1) representable by
Gauduchon metrics !n�1:

GX =

�
[!n�1]A /! > 0, C1 (1, 1)-form such that @@̄!n�1 = 0 on X

 
⇢ Hn�1, n�1

A (X, R).

Clearly, the inclusion In�1(BX ) ⇢ GX is strict in general. So is the inclusion
In�1(BX ) ⇢ GX involving the closures of these two open convex cones.

Now, if X is a @@̄-manifold, In�1 is an isomorphism of the vector spaces
Hn�1, n�1
BC (X, C) and Hn�1, n�1

A (X, C), as is well known. It is tempting to make
the following:
Conjecture 6.1. If X is a compact @@̄-manifold of dimension n, then In�1(BX )=

GX .
If proved to hold, this conjecture would imply that every @@̄-manifold is ac-

tually balanced since the Gauduchon cone is never empty (due to the existence of
Gauduchon metrics by [16]), so the balanced cone would also have to be non-empty
in this case. Moreover, a positive answer to this conjecture would have far-reaching
implications for a possible future non-Kähler mirror symmetry theory since it would
remove the ambiguity of choice between the balanced and the Gauduchon cones on
@@̄-manifolds. These two cones would be canonically equivalent on @@̄-manifolds
in this event.

One piece of evidence supporting Conjecture 6.1 is that it holds on every class
C manifold X if the whole of Demailly’s Transcendental Morse Inequalities Con-
jecture for a difference of two nef classes is confirmed when X is Kähler. This is
the gist of the observations made in [22] and in [9] alluded to above. Indeed, if
X is of class C, we may assume without loss of generality that X is actually com-
pact Kähler. As proved in [6], a complete positive answer to Conjecture 1.1 would
imply that the pseudo-effective cone EX ⇢ H1, 1(X, R) of classes of d-closed pos-
itive (1, 1)-currents T is the dual of the coneMX ⇢ Hn�1, n�1(X, R) of movable
classes (i.e. the closure of the cone generated by classes of currents of the shape
µ?(e!1^· · ·^e!n�1), whereµ :

eX ! X is any modification of compact Kähler man-
ifolds and the e! j are any Kähler metrics on eX – see [6, Definition 1.3]). Since on
@@̄-manifolds (hence, in particular, on compact Kähler ones) the Bott-Chern, Dol-
beault and Aeppli cohomologies are canonically equivalent, it is irrelevant in which
of these cohomologies the groups H 1, 1(X, R) and Hn�1, n�1(X, R) are considered.

The closure GX ⇢ Hn�1, n�1(X, R) of the Gauduchon cone is dual to the
pseudo-effective cone EX ⇢ H1, 1(X, R) by Lamari’s positivity criterion (Lemma
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1.5), while the same kind of argument (i.e. duality and Hahn-Banach) going back
to Sullivan shows that the closure BX ⇢ Hn�1, n�1(X, R) of the balanced cone is
dual to the cone

SX =

�
[T ]A / T � 0, T is a (1, 1)-current such that @@̄T = 0 on X

 
⇢ H1, 1A (X, R).

Note that SX is closed if X admits a balanced metric !n�1 (against which the
masses of positive @@̄-closed (1, 1)-currents T can be considered), hence so is it
when X is Kähler. Thus, by duality, the identity In�1(BX ) = GX is equivalent to
I1(EX ) = SX , where I1 is the canonical linear map induced in cohomology by the
identity:

I1 : H1, 1BC (X, C) ! H1, 1A (X, C), [� ]BC 7! [� ]A. (6.2)

In general, I1 is neither injective, nor surjective, but it is an isomorphism when X
is a @@̄-manifold.

With these facts understood, the identity I1(EX ) = SX can be proved when
X is Kähler (provided that Conjecture 1.1 can be solved in the affirmative) as ex-
plained in [9, Proposition 2.5] by an argument generalising to transcendental classes
an earlier argument from [22] that we now recall for the reader’s convenience.

The inclusion I1(EX ) ⇢ SX is obvious. To prove the reverse inclusion, let
[T ]A 2 SX , i.e. T � 0 is a (1, 1)-current such that @@̄T = 0. Since I1 is an iso-
morphism, there exists a unique class [� ]BC 2 H1, 1BC (X, R) such that I1([� ]BC) =

[T ]A. This means that [� ]A = [T ]A. We will show that [� ]BC 2 EX . If the [6]
conjecture (predicated on Conjecture 1.1) predicting that EX is dual toMX is con-
firmed, showing that [� ]BC 2 EX amounts to showing that

[� ]BC . [µ?(e!1 ^ · · · ^ e!n�1)]A � 0 (6.3)

for all modifications µ :
eX ! X and all Kähler metrics e! j on eX . On the other

hand, Alessandrini and Bassanelli proved in [2, Theorem 5.6] the existence and
uniqueness of the inverse image under proper modifications µ :

eX! X of arbitrary
complex manifolds of any positive @@̄-closed (1, 1)-current T � 0 in such a way
that the Aeppli cohomology class [T ]A is preserved:

9 ! (1, 1)-current µ?T � 0 on eX such that @@̄ (µ?T ) = 0,
[µ?T ]A = µ?([T ]A) and µ?(µ

?T ) = T .

(Note that the inverse image µ?([T ]A) of any Aeppli class is trivially well defined
by taking smooth representatives of the class and pulling them back. Indeed, @@̄-
closedness is preserved, while pullbacks of Aeppli-cohomologous smooth forms
are trivially seen to be Aeppli-cohomologous.) Using this key ingredient from [2],



1292 DAN POPOVICI

we get:

[� ]BC . [µ?(e!1 ^ · · · ^ e!n�1)]A
=

Z
X
� ^ µ?(e!1 ^ · · · ^ e!n�1) =

Z
eX (µ?� ) ^ (e!1 ^ · · · ^ e!n�1)

= [µ?� ]A . [e!1 ^ · · · ^ e!n�1]BC =

Z
eX (µ?T ) ^ (e!1 ^ · · · ^ e!n�1) � 0,

which proves (6.3). Note that � and µ?� have no sign, so the key point has been the
replacement in the integral over eX of µ?� by µ?T � 0 which was made possible bye!1^ · · ·^e!n�1 being d-closed (so we could switch the roles of the Bott-Chern and
the Aeppli cohomologies) and by the identity [µ?� ]A = [µ?T ]A following from
[� ]A = [T ]A (see above) and from [µ?T ]A = µ?([T ]A).

The techniques employed in this paper do not seem to be using the full force of
the Kähler assumption on X and many of the arguments are valid in a more general
context. This is part of the justification for proposing Conjecture 6.1.

7. Appendix: Hovanskii-Teissier-type inequalities

In this section we prove the pointwise inequalities for Hermitian metrics that were
used in earlier sections. They generalise the inequality in [20, Lemma 3.1].

For the sake of enhanced flexibility, we shall deal with positive (q, q)-forms
that are not necessarily the qth power of a positive (1, 1)-form. Given any q 2

{0, . . . , n} and any C1 real (q, q)-form �q, q on X , we make use of the standard
notion of (weak) positivity (see, e.g., [13, III.1.1]): �q, q is said to be positive (re-
spectively strictly positive) if for any (1, 0)-forms ↵1, . . .↵n�q , the (n, n)-form
�q, q

^ i↵1 ^ ↵1 ^ · · · ^ i↵n�q ^ ↵n�q is non-negative (respectively positive). We
write �q, q

� 0 (respectively �q, q > 0) in this case. If, in local holomorphic
coordinates z1, . . . , zn , we write

�q, q

q!

=

X
|L|=|R|=q

�L R̄ idzL ^ dz̄R, (7.1)

then it is clear by considering �q, q
^ idzs1 ^ dz̄s1 ^ · · · ^ idzsn�q ^ dz̄sn�q that

�q, q
� 0 implies �L L̄ � 0 for all L with |L| = q. (7.2)

(We have used the usual notation: L and R stand for ordered multi-indices L =

(1  l1 < · · · < lq  n), respectively R = (1  r1 < · · · < rq  n) of length q
and idzL ^ dz̄R := idzl1 ^ dz̄r1 ^ · · · ^ idzlq ^ dz̄rq .)

In the special case when �q, q
= � q for some positive definite smooth (1, 1)-

form (= Hermitian metric) � on X , if we write

� =

nX
j,k=1

� j k̄ idz j ^ dz̄k, (7.3)
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then Sylvester’s criterion ensures that MLL̄(� ) > 0 for all multi-indices L ⇢

{1, . . . , n} of any length l 2 {1, . . . , n}. (For any multi-indices L , K ⇢ {1, . . . , n}
of equal lengths, MK L̄(� ) denotes the minor of the matrix (� j k̄) j, k corresponding
to the rows with index in K and the columns with index in L .) Clearly, MLL̄(� ) =

�L L̄ for all L with |L| = q.

Lemma 7.1. Let ↵, � be arbitrary Hermitian metrics on a complex manifold X
with dimC X = n.

The following pointwise inequalities hold for every p 2 {1, . . . , n} and for
every smooth form �n�p, n�p

� 0 of bidegree (n � p, n � p) on X:✓
n
p

◆
↵n�p

^ � p

↵n
·

↵ p ^�n�p, n�p

↵n
�

� p ^�n�p, n�p

↵n
(7.4)

and
n
p
↵n�1 ^ �

↵n
·

↵ p ^�n�p, n�p

↵n
�

↵ p�1 ^ � ^�n�p, n�p

↵n
. (7.5)

Proof. Let us first prove (7.4). The special case when p = 1 and�n�1, n�1
= � n�1

for some (1, 1)-form � > 0 was proved in [20, Lemma 3.1]. We fix any point
x 2 X and choose local coordinates z1, . . . , zn about x such that

↵(x) =

nX
j=1

idz j ^ dz̄ j and �(x) =

nX
j=1

� j idz j ^ dz̄ j . (7.6)

Thus � j > 0 for all j . At x we get: �
p

p! =

P
j1<···< jp � j1 . . .� jp

V
l2{ j1,..., jp}(idzl^

dz̄l), hence

↵n�p
^ � p

↵n
=

1�n
p
� X
j1<···< jp

� j1 . . .� jp =

�1 . . .�n�n
p
�

 X
|K |=n�p

1
�K

!
at x, (7.7)

where �K := �k1 . . .�kn�p whenever K = (1  k1 < . . . kn�p  n). On the other
hand, using (7.1) with q = n � p, we get at x :

↵ p ^�n�p, n�p

↵n
=

1�n
p
� X

|L|=n�p
�L L̄

and
� p ^�n�p, n�p

↵n
=

�1 . . .�n�n
p
� X

|L|=n�p

�L L̄
�L

.

Thus, inequality (7.4) at x is equivalent to: X
|L|=n�p

�L L̄

!
�1 . . .�n�n

p
�

 X
|K |=n�p

1
�K

!
�

�1 . . .�n�n
p
� X

|L|=n�p

�L L̄
�L

,

which clearly holds since �L L̄ � 0 and �K > 0 for all multi-indices K , L .
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Let us now prove (7.5). With the above notation, we have at x :

↵n�1 ^ �

↵n
=

1
n

nX
j=1

� j and
↵ p�1

(p � 1)!
=

X
|J |=p�1

idzJ ^ dz̄ J ,

and the second identity yields at x :

↵ p�1 ^ �

(p � 1)!
=

X
|J |=p�1

X
j2{1,...,n}\J

� j idz j ^ dz̄ j ^ idzJ ^ dz̄ J ,

which, in turn, implies the following identity at x :

↵ p�1 ^ � ^�n�p, n�p

(p � 1)! (n � p)!
=

X
|J |=p�1

X
j2{1,...,n}\J

� j �L j J L̄ j J

↵n

n!
,

where we have set �L j J L̄ j J
:= �L L̄ with L := {1, . . . , n} \ ({ j} [ J ) ordered

increasingly. Thus, { j}, J and L form a partition of {1, . . . , n}, so any two of them
uniquely determine the third.

Consequently, inequality (7.5) at x translates to

n
p

1�n
p
�
n

 X
|L|=n�p

�L L̄

!  
nX
j=1

� j

!

�

(p � 1)! (n � p)!
n!

X
|J |=p�1

X
j2{1,...,n}\J

� j �L j J L̄ j J
,

which is clear since n
p

1
(np) n

=
(p�1)! (n�p)!

n! , �L L̄ � 0 for every L , � j > 0 for every
j and the terms in the double sum on the right-hand side of the above inequality are
precisely all the products of the shape �L L̄ � j with j /2 L , so they form a subset of
the terms on the left hand side

Note that inequalities (7.4) and (7.5) of Lemma 7.1 allow a kind of “simpli-
fication” of ↵n between the numerators and the denominators. For possible future
use, we notice a simultaneous reinforcement of inequalities (7.4) and (7.5) that has
not been used in this paper. For this reason and since the proof of the general case
involves rather lengthy calculations, we will only prove a special case.

Lemma 7.2. Let ↵, � be arbitrary Hermitian metrics on a complex manifold X
with dimC X = n. Let p 2 {1, . . . , n} be arbitrary.

If�n�p, n�p is proportional to ↵k ^�n�p�k for some k 2 {0, . . . , n� p}, then
the factor

�n
p
�
can be omitted from (7.4). In other words, for all p, k 2 {0, . . . , n}

such that p + k  n we have:

↵n�p
^ � p

↵n
·

↵ p+k ^ �n�p�k

↵n
�

↵k ^ �n�k

↵n
on X. (7.8)
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Proof. We will only prove here the case when p + k = n � 1, i.e.

↵n�p
^ � p

↵n
·

� ^ ↵n�1

↵n
�

↵n�p�1
^ � p+1

↵n
on X, (7.9)

which is equivalent to (3�↵) (3↵�) � n3�� when � n�1 = t ↵n�p�1
^ � p for

some constant t > 0. Notice that this last inequality improves by a factor n in
the special case when � n�1 = t ↵n�p�1

^ � p the general lower bound proved
in [20, Lemma 3.1].

We fix an arbitrary point x 2 X and choose local coordinates as in (7.6). Using
identities analogous to those in the proof of Lemma 7.1, we see that (7.9) translates
at x to

n � p
n

0
@ X
j1<···< jp

� j1 . . .� jp

1
A

 
nX
l=1

�l

!
� (p+1)

X
k1<···<kp+1

�k1 . . .�kp+1 . (7.10)

Now, the left hand side of inequality (7.10) equals

n � p
n

0
@(p + 1)

X
k1<···<kp+1

�k1 . . .�kp+1 +

X
j1<···< jp

� j1 . . .� jp (� j1 + · · · + � jp )

1
A ,

so (7.10) is equivalent to

(n� p)
X

j1<···< jp
� j1 . . .� jp (� j1+. . .+� jp )� p(p+1)

X
k1<···<kp+1

�k1 . . .�kp+1 . (7.11)

We will now prove (7.11). Let us fix an arbitrary ordered sequence 1  k1 < · · · <
kp+1  n. For every r, s 2 {k1, . . . , kp+1} with r < s, we have:

2�k1 . . .�kp+1 = (2�r �s)
Y
l /2{r,s}

�l  �2r
Y
l /2{r,s}

�l + �2s
Y
l /2{r,s}

�l , (7.12)

where all the products above bear on the indices l 2 {k1, . . . , kp+1} \ {r, s}. Note
that �2r

Q
l /2{r,s} �l is obtained from �k1 . . .�kp+1 by omitting �s and counting �r

twice. Summing up these inequalities over all the
�p+1
2
�
pairs of indices r < s

selected from k1, . . . , kp+1, we get
✓
p + 1
2

◆
2�k1 . . .�kp+1  �k2 . . .�kp+1

�
�k2 + · · · + �kp+1

�
+ �k1 �k3 . . .�kp+1

�
�k1 + �k3 + · · · + �kp+1

�
+ . . . . . . . . .

+ �k1 . . .�kp
�
�k1 + · · · + �kp

�
.

(7.13)
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Note that for every s 2 {1, . . . , p + 1}, �ks does not feature in the sth line on
the right-hand side of (7.13). Adding up these inequalities over all the ordered
sequences 1  k1 < · · · < kp+1  n, we get the desired inequality (7.11) because
any ordered sequence 1  j1 < · · · < jp  n occurs inside exactly (n� p) ordered
sequences 1  k1 < · · · < kp+1  n. Indeed, the extra index for 1  k1 < · · · <
kp+1  n can be chosen arbitrarily in {1, . . . , n} \ { j1, . . . , jp}, so there are (n� p)
choices for it.

This completes the proof of (7.11), hence the proof of (7.8) when p + k =

n � 1.

Again for the record, we notice that an application of Lemma 7.2 is an in-
equality between intersection numbers of cohomology classes reminiscent of the
Hovanskii-Teissier inequalities (cf., e.g., [12, Proposition 5.2]). It has an interest of
its own.

Proposition 7.3. Let X be a compact Kähler manifold with dimC X = n and let
{↵}, {�} 2 H1, 1BC (X, R) be nef Bott-Chern cohomology classes. Then

�
{↵}

n�p.{�}
p��

{↵}
p+k .{�}

n�p�k�
�

�
{↵}

n��
{↵}

k .{�}
n�k� (7.14)

for all p, k 2 {0, . . . , n} such that p + k  n.

By the density of the nef cone in the Kähler cone, we may assume without loss
of generality that {↵} and {�} are Kähler classes in which we fix respective Kähler
metrics ↵,�.

Proof 1 (deduced from a known result).1 For every j 2 {0, . . . n}, let

c j := log
�
{↵}

j .{�}
n� j �.

It is a standard result that the function j 7! c j is concave. Now, k  n � p  n
and

n � p =

p
n � k

k +

n � k � p
n � k

n,

hence, by concavity, cn�p �

p
n � k

ck +

n � k � p
n � k

cn.
(7.15)

Similarly, k  p + k  n and

p + k =

n � p � k
n � k

k +

p
n � k

n,

hence, by concavity, cp+k �

n � p � k
n � k

ck +

p
n � k

cn.
(7.16)

Taking the sum of (7.15) and (7.16), we get: cn�p + cp+k � cn + ck, which is
nothing but (7.14).

1 This argument was kindly pointed out to the author by S. Boucksom.
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Proof 2. It uses the pointwise inequality (7.8) via the technique introduced in [20]
and the approximate fixed point technique introduced in the proof of Proposition
5.1. The arguments are essentially a repetition of some of those used above, so we
will only indicate the main points.

First notice that the case when k = 0 is an immediate consequence of the
Hovanskii-Teissier inequalities (cf. [12, Proposition 5.2]) which spell:

{↵}
n�p.{�}

p
�

�
{↵}

n� n�p
n
�
{�}

n� p
n and {↵}

p.{�}
n�p

�

�
{↵}

n� p
n
�
{�}

n� n�p
n .

Multiplying these two inequalities, we get (7.14) for k = 0.
For the general case of an arbitrary k, we consider the Monge-Ampère equa-

tion:

e↵n =

{↵}
n

{↵}
k .{�}

n�k ↵
k
^ �n�k,

or equivalently det
�

e↵ =

{↵}
n

{↵}
k .{�}

n�k
↵k ^ �n�k

�n
,

(7.17)

for which the approximate fixed point technique introduced in the proof of Propo-
sition 5.1 produces, for every " > 0, a Kähler metrice↵" in the Kähler class {↵} (in
which we have fixed beforehand a Kähler metric !) such that

e↵n" =

{↵}
n

{↵}
k .{�}

n�k [(1�")!"+"!]
k̂ �n�k�(1�")k

{↵}
n

{↵}
k .{�}

n�ke↵k"^�n�k�O(|⌘"|),

for some constant ⌘" ! 0 as " ! 0. Hence

det
�

e↵" � (1� ")k
{↵}

n

{↵}
k .{�}

n�k
e↵k" ^ �n�k

�n
� O(|⌘"|). (7.18)

We can now rerun the argument used several times above. For every " > 0, we
have:

({↵}
n�p.{�}

p)
⇣
{↵}

p+k .{�}
n�p�k

⌘

=

 Z
X

e↵n�p
" ^ � p

�n
�n

!  Z
X

e↵ p+k" ^ �n�p�k

e↵n" (det
�

e↵")�n
!

(a)
�

2
4Z

X

 e↵n�p
" ^ � p

�n
e↵ p+k" ^ �n�p�k

e↵n"
! 1
2

(det
�

e↵") 12 �n
3
5
2

(b)
�

2
4Z

X

✓e↵k" ^ �n�k

�n

◆ 1
2

(det
�

e↵") 12 �n
3
5
2

(c)
� (1� ")k

{↵}
n

{↵}
k .{�}

n�k

✓Z
X
e↵k" ^ �n�k

◆2
� O(|⌘"|)

= (1� ")k {↵}
n �

{↵}
k .{�}

n�k�
� O(|⌘"|).
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As usual, (a) follows from the Cauchy-Schwarz inequality, (b) follows from the
pointwise inequality (7.8), while (c) follows from the inequality (7.18). Letting
" ! 0, we get (7.14).
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A problem about Mahler functions

BORIS ADAMCZEWSKI AND JASON P. BELL

In memory of Alf van der Poorten

Abstract. Let K be a field of characteristic zero and k and l be two multi-
plicatively independent positive integers. We prove the following result that was
conjectured by Loxton and van der Poorten during the Eighties: a power series
F(z) 2 K [[z]] satisfies both a k- and a l-Mahler-type functional equation if and
only if it is a rational function.

Mathematics Subject Classification (2010): 11J81 (primary); 11B85, 65Q20
(secondary).

1. Introduction

In a series of three papers [27–29] published in 1929 and 1930, Mahler initiated a
totally new direction in transcendence theory. Mahler’s method, a term coined much
later by Loxton and van der Poorten, aims at proving transcendence and algebraic
independence of values at algebraic points of locally analytic functions satisfying a
certain type of functional equations. In its original form, it concerns equations of
the form

F
�
zk
�

= R(z, F(z)) , (1.1)
where R(z, x) denotes a bivariate rational function with coefficients in a number
field and k � 2 is an integer. For instance, using the fact that F(z) =

P
1

n=0 z2
n

satisfies the basic functional equation

F
�
z2
�

= F(z) � z ,

Mahler was able to prove that F(↵) is a transcendental number for every algebraic
number ↵ with 0 < |↵| < 1. As observed by Mahler himself, his approach allows

This project has received funding from the European Research Council (ERC) under the Euro-
pean Union’s Horizon 2020 research and innovation programme under the Grant Agreement No
648132. The second author was supported by NSERC grant 31-611456.
Received June 16, 2016; accepted in revised form September 23, 2016.
Published online December 2017.
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one to deal with functions of several variables and systems of functional equations
as well. It also leads to algebraic independence results, transcendence measures,
measures of algebraic independence, and so forth. Mahler’s method was later de-
veloped by various authors, including Becker, Kubota, Loxton and van der Poorten,
Masser, Nishioka, Töpfer, among others. For classical aspects of Mahler’s theory,
we refer the reader to the monograph of Ku. Nishioka [35] and the reference therein.
However, a major deficiency of Mahler’s method is that, contrary to Siegel E- and
G-functions, there is not a single classical transcendental constant that is known to
be the value at an algebraic point of an analytic function solution to a Mahler-type
functional equation1. This may explain why it was somewhat neglected for almost
fifty years.

At the beginning of the Eighties, Mahler’s method really took on a new sig-
nificance after Mendès France popularized the fact that some Mahler-type systems
of functional equations naturally arise in the study of automata theory (see for in-
stance [31]). Though already noticed in 1968 by Cobham [11], this connection
remained relatively unknown at that time, probably because Cobham’s work was
never published in an academic journal. Cobham claimed that Mahler’s method has
the following nice consequence for the Hartmanis-Stearns problem about the com-
putational complexity of algebraic irrational real numbers [21]: the expansion of an
algebraic irrational number in an integer base cannot be generated by a finite au-
tomaton. His idea was to derive this result by applying Mahler’s method to systems
of functional equations of the form

0
B@
F1(zk)

...

Fn(zk)

1
CA = A(z)

0
B@
F1(z)

...
Fn(z)

1
CA + B(z) , (1.2)

where A(z) is an n ⇥ n matrix and B(z) is an n-dimensional vector, both having
entries that are rational functions with algebraic coefficients. Though Cobham’s
conjecture is proved in [1] by means of a completely different approach, it still re-
mained a challenging problem to complete the proof he envisaged. In this direction,
a great deal of work has been done by Loxton and van der Poorten [25, 26] and a
particular attention was then paid to systems of functional equations as in (1.2) (see
for instance [9,32,33,35,38]). Very recently, another proof of Cobham’s conjecture
using Mahler’s method is finally obtained in [4, 38], thus solving a long-standing
problem in Mahler’s method.

Let K be a field. We observe that a power series F(z) 2 K [[z]] is a component
of a vector satisfying a system of functional equations of the form (1.2)2 if and only

1 A remarkable discovery of Denis (see [13]), which deserves to be better understood, is that
Mahler’s method can be also applied to prove transcendence and algebraic independence results
involving periods of t-modules which are variants of the more classical periods of abelian vari-
eties, in the framework of the arithmetic of function fields of positive characteristic. For a detailed
discussion on this topic, we refer the reader to the recent survey by Pellarin [37], see also [36].
2 We assume here that the entries of A(z) and B(z) are in K (z).
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if the family
1, F(z), F

�
zk
�
, F

⇣
zk
2
⌘
, . . .

is linearly dependent over the field K (z), that is, if there exist a natural number n
and polynomials Q(z), P0(z), . . . , Pn(z) 2 K [z], not all of which are zero, such
that

Q(z) +

nX
i=0

Pi (z)F
⇣
zk

i
⌘

= 0. (1.3)

Following Loxton and van der Poorten [26], we use the following definition.
Definition 1.1. Let K be a field and k � 2 be an integer. A power series F(z) 2

K [[z]] is a k-Mahler function, or for short is k-Mahler, if it satisfies a functional
equation of the form (1.3).

Beyond transcendence, Mahler’s method and automata theory, it is worth men-
tioning that Mahler functions naturally occur as generating functions in various
other topics such as combinatorics of partitions, numeration and the analysis of al-
gorithms (see [15] and the references therein and also dozens of examples in [7, 8]
and [19, Chapter 14]). A specially intriguing appearance of Mahler functions is
related to the study of Siegel G-functions and in particular of diagonals of ratio-
nal functions3. Though no general result confirms this claim, one observes that
many generating series associated with the p-adic valuation of the coefficients of
G-functions with rational coefficients turn out to be p-Mahler functions.

As a simple illustration, we give the following example. Let us consider the
algebraic function

f(z) :=

1
(1� z)

p

1� 4z
=

1X
n=0

nX
k=0

✓
2k
k

◆
zn .

Note that f is a G-function which satisfies the following minimal differential equa-
tion:

f0(z) =

(3� 6z)
(1� z)(1� 4z)

f(z) .

Let us define the sequence

a(n) := ⌫3

 
nX

k=0

✓
2k
k

◆!
,

where ⌫3 denotes the 3-adic valuation. We claim that the function

f1(z) :=

X
n�0

a(n)zn 2 Q[[z]]

3 See for instance [3] for a discussion of the links between diagonals of rational functions with
algebraic coefficients and G-functions.
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is a 3-Mahler function4. This actually comes from the following nice equality

⌫3

 
nX

k=0

✓
2k
k

◆!
= ⌫3

✓
n2

✓
2n
n

◆◆
, (1.4)

independently proved by Allouche and Shallit in 1989 (unpublished) and by Zagier
[45]. Indeed, setting f2(z) :=

P
n�0 a(3n)zn and f3(z) :=

P
n�0 a(3n + 1)zn , we

infer from Equality (1.4) that
0
B@

f1(z3)
f2(z3)
f3(z3)

1
CA = A(z)

0
B@

f1(z)
f2(z)
f3(z)

1
CA + B(z) ,

with

A(z) :=

1
z3(1+ z + z2)

0
B@
z(1+ z + z2) �z2 �z

0 z2(1+ z) �z4

0 �z2 z2(1+ z)

1
CA

and

B(z) :=

1
z3(1+ z + z2)

0
BBBBBBB@

z(2z2 � 1)
z � 1

�

z4

z � 1
z2(1+ z)
z � 1

1
CCCCCCCA

.

A simple computation then gives the relation

a0(z) + a1(z)f1(z) + a2(z)f1
�
z3
�
+ a3(z)f1

�
z9
�
+ a4(z)f1

�
z27

�
= 0 ,

where

a0(z) := z + 2z2 � z3 + z4 + 3z5 � z7 + 3z8 + z9 � z11 + 3z12 � 2z14
�z15 + 2z16 � 2z17 � 2z18 + 2z21,

a1(z) := �1� z4 � z8 + z9 + z13 + z17,
a2(z) := 1+ z + z2 + z3 + z4 + z5 + z6 + z7 + z8 � z13 � z14 � z15 � z16

�z17 � z18 � z19 � z20 � z21,
a3(z) := �z3 � z6 � z7 � z9 � z10 � z11 � z13 � z14 + z16 � z17 + z19

+z20 + z22 + z23 + z24 + z26 + z27 + z30,
a4(z) := z21 � z48 .

4 It would be interesting to know the set of primes p for which
P

n�0 ⌫p
⇣Pn

k=0
�2k
k
�⌘
zn is a

p-Mahler function.
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Of course, one could produce similar examples associated with transcendental G-
functions by considering the Hadamard product (denoted by � below) of several
well-chosen algebraic functions. For instance, the elliptic integral

g(z) :=

2
⇡

Z ⇡/2

0

d✓p
1� 16z sin2 ✓

=

1
p

1� 4z
�

1
p

1� 4z
=

1X
n=0

✓
2n
n

◆2
zn

is a transcendental G-function which satisfies the following minimal differential
equation �

z2 � 16z3
�
g00(z) +

�
z � 32z2

�
g0(z) � 4zg(z) = 0 ,

and it is not hard to see that, for every prime p,

gp(z) :=

1X
n=0

⌫p

 ✓
2n
n

◆2!
zn

is a p-Mahler function. More precisely, one can show that gp satisfies a relation of
the form

a0(z) + a1(z)gp(z) + a2(z)gp(z p) + a3(z)gp
⇣
z p

2
⌘

+ a4(z)gp
⇣
z p

3
⌘

= 0 ,

where the ai (z) are polynomials of degree O(p3) too long to be reproduced here.
Regarding (1.1), (1.2) or (1.3), it is tempting to ask about the significance of

the integer parameter k. Already in 1976, van der Poorten [40] suggested that two
solutions of Mahler-type functional equations associated with essentially distinct
parameters should be completely different. For instance, one may naturally expect
[40] (and it is now proved [34]) that the two functions

1X
n=0

z2
n
and

1X
n=0

z3
n

are algebraically independent over C(z). This idea was later formalized by Loxton
and van der Poorten who made a general conjecture whose one-dimensional version
can be stated as follows5.
Conjecture 1.2 (Loxton and van der Poorten). Let k and l be two multiplica-
tively independent positive integers and L be a number field. Let F(z) 2 L[[z]]
be a locally analytic function that is both k- and `-Mahler. Then F(z) is a rational
function.

5 Note that in fact this conjecture does not imply any statement concerning algebraic indepen-
dence. It does, however, cover linear independence. Indeed, say that F(z) and G(z) are irrational
power series such that F is 2-Mahler and G is 3-Mahler, then 1, F and G are linearly independent
over C(z) (otherwise F is at once 2- and 3-Mahler, and thus rational).



1306 BORIS ADAMCZEWSKI AND JASON P. BELL

We recall that two integers k and l larger than 1 are multiplicatively indepen-
dent if there is no pair of positive integers (n,m) such that kn = `m , or equivalently,
if log(k)/ log(`) 62 Q. Conjecture 1.2 first appeared in a 1987 paper of van der
Poorten [41]. Since then it was explicitly studied in a number of different contexts
including some papers of Loxton [24], Becker [9], Randé [42], Bell [10] and the
monograph of Everest et al. [19]. Independently, Zannier also considered a similar
question in [46].

In this paper, our aim is to prove the following result, which has been proven
independently by Schäfke and Singer [39].

Theorem 1.3. Let K be a field of characteristic zero and let k and l be two mul-
tiplicatively independent positive integers. Then a power series F(z) 2 K [[z]] is
both k- and `-Mahler if and only if it is a rational function.

Let us make few comments.

• Taking K to be a number field in Theorem 1.3 gives Conjecture 1.2;
• If k and ` denote two multiplicatively dependent natural numbers, then it is easy
to see that a power series is k-Mahler if and only if it is also `-Mahler (see
Remark 8.2);

• As explained in more detail in Section 2, one motivation for proving Theorem
1.3 is that it provides a far-reaching generalization of one fundamental result in
the theory of sets of integers recognizable by finite automata: Cobham’s the-
orem. Loxton and van der Poorten [24, 41] actually guessed that Conjecture
1.2 should be a consequence of some algebraic independence results for Mahler
functions of several variables. In particular, they hoped to obtain a totally new
proof of Cobham’s theorem by using Mahler’s method. Note, however, that our
proof of Theorem 1.3 follows a totally different way and ultimately relies on
Cobham’s theorem, so we do not obtain an independent derivation of that result;

• Another important motivation for establishing Theorem 1.3 comes from the fact
that this kind of statements, though highly natural and somewhat ubiquitous,
are usually very difficult to prove. In particular, similar independence phenom-
ena, involving two multiplicatively independent integers, are expected in various
contexts but only very few results have been obtained up to now. As an illustra-
tion, we cite below three interesting open problems that rest on such a principle,
all of them being widely open6. A long-standing question in dynamical systems
is the so-called ⇥ 2 ⇥ 3 problem addressed by Furstenberg [20]: prove that the
only Borel measures on [0, 1] that are simultaneously ergodic for T2(x) = 2x
(mod 1) and T3(x) = 3x (mod 1) are the Lebesgue measure and measures sup-
ported by those orbits that are periodic for both actions T2 and T3. The follow-
ing problem, sometimes attributed to Mahler, was suggested by Mendès France

6 In all of these problems, the integers 2 and 3 may of course be replaced by any two multiplica-
tively independent integers larger than 1.
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in [31] (see also [2]): given a binary sequence (an)n�0 2 {0, 1}N, prove that
1X
n=0

an
2n

and
1X
n=0

an
3n

are both algebraic numbers only if both are rational numbers. The third prob-
lem we mention appeared implicitly in work of Ramanujan (see [44]): prove
that both 2x and 3x are integers only if x is a natural number. This is a par-
ticular instance of the four exponentials conjecture, a famous open problem in
transcendence theory [43, Chapter 1, page 15].

The outline of the paper is as follows. In Section 2, we briefly discuss the connec-
tion between Theorem 1.3 and Cobham’s theorem. In Section 3, we describe our
strategy for proving Theorem 1.3. Then the remaining Sections 4-11 are devoted to
the different steps of the proof of Theorem 1.3. Throughout this paper, k and l will
denote integers larger than or equal to 2.

ACKNOWLEDGEMENTS. The authors would like to thank Michel Mendès France
for his comments and encouragements, as well as the anonymous referee for his
useful suggestions and careful reading. The first author is indebted to Éric Delaygue
for his help with Maple. He is also most grateful to Macha and Vadim for inspiring
discussions.

2. Connection with finite automata and Cobham’s theorem

One motivation for proving Theorem 1.3 is that it provides a far-reaching gener-
alization of a fundamental result in the theory of sets of integers recognizable by
finite automata. The aim of this section is to briefly describe this connection. For
more details and formal definitions on automatic sets and automatic sequences, we
refer the reader to the book of Allouche and Shallit [6].

Let k � 2 be a natural number. A set N ⇢ N is said to be k-automatic
if there is a finite automaton (more formally a k-deterministic finite automaton)
that accepts as input the expansion of n in base k and outputs 1 if n 2 N and
0 otherwise. For example, the set of Thue-Morse integers 1, 2, 4, 7, 8, 11, 13, . . .,
formed by the integers whose sum of binary digits is odd, is 2-automatic. The
associated automaton is given in Figure 1 below. It has two states. This automaton
successively reads the binary digits of n (starting, say, from the most significant
digit and the initial state q0) and thus ends the reading either in state q0 or in state
q1. The initial state q0 gives the output 0, while q1 gives the output 1.

Another typical 2-automatic set of integers is given by the powers of 2: 1, 2,
4, 8, 16, . . .. Though these integers have very simple expansions in base 2, one
can observe that this is not the case when writing them in base 3. One of the
most important results in the theory of automatic sets formalizes this idea. It says
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q0 /0 q1/1

0 0
1

1
Figure 2.1. The finite-state automaton recognizing the set of Thue-Morse integers.

that only very well-behaved sets of integers can be automatic with respect to two
multiplicatively independent numbers. Indeed, in 1969 Cobham [12] proved the
following result.

Theorem 2.1 (Cobham). Let k and ` be two multiplicatively independent integers.
Then a setN ✓ N is both k- and `-automatic if and only if it is the union of a finite
set and a finite number of arithmetic progressions.

The proof given by Cobham of his theorem is elementary but notoriously dif-
ficult, and it remains a challenging problem to find a more natural/conceptual proof
(see for instance the comment in Eilenberg [17, page 118]). There are many inter-
esting generalizations of this result. A very recent one is due to Durand [16] and we
refer the reader to the introduction of [16] for a brief but complete discussion about
such generalizations.

To conclude this section, let us briefly explain why Cobham’s Theorem is a
consequence of Theorem 1.3. Let us assume that N ✓ N is k-automatic. Set
F(x) :=

P
n2N xn 2 Z[[x]]. Then it is known that F(x) is k-Mahler (see for

instance [19, page 232]). In addition, let us assume thatN is also `-automatic where
k and ` are multiplicatively independent. Then by Theorem 1.3, it follows that F(x)
is a rational function and thus the sequence of coefficients of F(x) satisfies a linear
recurrence. Since the coefficients of F(x) take only two distinct values (0 and 1),
we see that this linear recurrence is ultimately periodic. This exactly means thatN
is the union of a finite set and a finite number of arithmetic progressions, as claimed
by Cobham’s theorem.

3. Sketch of proof of Theorem 1.3

In this section we describe the main steps of the proof of Theorem 1.3.
Let R be a ring and P be an ideal of R. If F(x) =

P
1

n=0 f (n)xn 2 R[[x]],
then we denote by FP(x) the reduction of F(x) moduloP, that is

FP(x) =

1X
n=0

( f (n) mod P)xn 2 (R/P)[[x]] .

Let K be a field of characteristic zero and F(x) 2 K [[x]] be both k- and `-Mahler.
Step 0. This is a preliminary step. In the introduction, we defined Mahler functions
as those satisfying Equation (1.3) but it is not always convenient to work with this
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general form of equations. In Sections 4 and 6 we show that there is no loss of
generality to work with some more restricted types of functional equations. Also in
Section 8, we prove that one can assume without loss of generality some additional
assumptions on k and `; namely that there are primes p and q such that p divides k
but does not divide ` and q divides ` but does not divide k.

Step 1. A first observation, proved in Section 5, is that the coefficients of the formal
power series F(x) only belong to some finitely generated Z-algebra R ✓ K . Then
we prove the following useful local-global principle: F(x) is a rational function
if it has rational reduction modulo a sufficiently large set of maximal ideals of R.
Using classical results of commutative algebra about Jacobson rings, we derive
from our local-global principle that there is no loss of generality to assume that K
is a number field and that R is a localization of the ring of integers of K formed
by inverting a positive integer (that is, R is of the formOK [1/N ] for some positive
integer N ).

Comment. Our strategy consists now in applying again our local-global principle.
Indeed, since R is of the form OK [1/N ], we have that the quotient ring R/P is a
finite field for every prime ideal P of R. Our plan is thus to exploit the fact that
FP(x) has coefficients in the finite set R/P to prove that FP(x) is both a k- and
an `-automatic power series (see Section 7 for a definition), for some prime ideals
P. If this is the case, then Cobham’s theorem applies and we get that FP(x) is a
rational function. The local-global principle actually implies that it is enough to
prove that FP(x) is both k- and `-automatic for infinitely many prime ideals P of
R.

Step 2. In Section 7, we underline the relation between k-Mahler, k-regular, and
k-automatic power series. The latter two notions are defined in that section. In
particular, we will use a result of Dumas [14] showing that every k-Mahler power
series can be decomposed as

F(x) = G(x) · 5(x) ,

where G(x) 2 R[[x]] is a k-regular power series and 5(x) 2 R[[x]] is the inverse
of an infinite product of polynomials. Since F(x) is also `-Mahler, we also have a
similar decomposition

F(x) = H(x) · 50(x) ,

where H(x) 2 R[[x]] is a `-regular power series and 50(x) 2 R[[x]] is the inverse
of an infinite product of polynomials. Furthermore, the theory of regular power
series implies that GP(x) is k-automatic and that HP(x) is `-automatic for every
prime idealP of R.

In Section 13 we will split both infinite products 5(x) and 50(x) and get an
expression of the form

F(x) = G(x) · 51(x) · 52(x) = H(x) · 50

1(x) · 50

2(x)
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where 51(x),52(x),50

1(x),5
0

2(x) 2 R[[x]] are inverses of some other infinite
products of polynomials.
Step 3. After proving preliminary results in Sections 9 and 10, we look at the
singularities of Mahler functions at roots of unity in Section 11. We use asymptotic
techniques to show that one can reduce to the case of considering Mahler equations
whose singularities at roots of unity have a restricted form. This ensures, using
some results of Section 7, that 51(x) is k-automatic and that 50

1(x) is `-automatic
when reduced modulo every prime idealP of R.
Step 4. In our last step, we use Chebotarev’s density theorem in order to ensure the
existence of an infinite set S of prime ideals of R such that 52(x) is k-automatic
and50

2(x) is `-automatic when reduced modulo every idealP 2 S .
Conclusion. Since the product of k-automatic power series is k-automatic, we infer
from Steps 2, 3 and 4 that for every prime ideals P 2 S the power series FP(x) is
both k- and `-automatic. By Cobham’s theorem, FP(x) is rational for every such
prime ideal. Then the local-global principle ensures that F(x) is rational, as desired.

4. Preliminary reduction for the form of Mahler equations

In the introduction, we defined k-Mahler functions as power series satisfying a func-
tional equation of the form given in (1.3). In the literature, they are sometimes de-
fined as solutions of a more restricted type of functional equations. We recall here
that these apparently stronger conditions on the functional equations actually lead
to the same class of functions. In the sequel, it will thus be possible to work without
loss of generality with these more restricted type of equations.

Lemma 4.1. Let us assume that F(x) satisfies a k-Mahler equation as in (1.3).
Then there exist polynomials P0(x), . . . , Pn(x) in K [x], with gcd(P0(x), . . .,
Pn(x)) = 1 and P0(x)Pn(x) 6= 0, and such that

nX
i=0

Pi (x)F
⇣
xk

i
⌘

= 0 . (4.1)

Proof. Let us assume that F(x) satisfies a k-Mahler equation as in (1.3). There
thus exist some nonnegative integer n and polynomials A(x), A0(x), . . . , An(x) in
K [x], with An(x) nonzero, such that

nX
i=0

Ai (x)F
⇣
xk

i
⌘

= A(x) .

We first show that we can assume that A(x) = 0. Indeed, let us assume that A(x) 6=

0. Applying the operator x 7! xk to this equation, we get that
nX
i=0

Ai
�
xk

�
F
⇣
xk

i+1
⌘

= A
⇣
xk

⌘
.
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Multiplying the first equation by A(xk) and the second by A(x) and subtracting, we
obtain the new equation

n+1X
i=0

Bi (x)F
⇣
xk

i
⌘

= 0 ,

where Bi (x) := Ai (x)A(xk)�Ai (xk)A(x) for every integer i , 1  i  n and where
Bn+1(x) := An(xk)A(x) 6= 0. We can thus assume without loss of generality that
A(x) = 0.

Now, among all such nontrivial relations of the form

nX
i=0

Pi (x)F
⇣
xk

i
⌘

= 0 , (4.2)

we choose one with n minimal. Thus Pn(x) is nonzero. We claim P0(x) is nonzero.
Let us assume this is not the case. Pick the smallest integer j such that Pj (x) is
nonzero. By assumption, j > 0. Then there is some nonnegative integer a such
that the coefficient of xa in Pj (x) is nonzero. Let b be the unique integer such that
a ⌘ b mod k and 0  b < k. Let us define the operator 3b from K [[x]] into itself
by

3b

 
1X
i=0

f (i)xi
!

:=

1X
i=0

f (ki + b)xi .

These types of operators are classically used for studying algebraic power series
over fields of characteristic p > 0, where one takes k = p (see for instance [6,
Chapter 12] and the references therein). In this context, these operators are often
referred to as Cartier operators. With this definition, every F(x) 2 K [[x]] has a
unique decomposition as

F(x) =

k�1X
b=0

xb3b(F)
�
xk

�
,

which implies that

3b
⇣
F(x)G

�
xk

�⌘
= 3b (F(x))G(x)

for every pair of power series F(x),G(x) 2 K [[x]]. Applying 3b to Equation
(4.2), we thus get that

0 = 3b

 
nX
i= j

Pi (x)F
⇣
xk

i
⌘!

=

n�1X
i= j�1

3b (Pi+1(x)) F
⇣
xk

i
⌘

.

By construction,3b(Pj (x)) is nonzero, which shows that this relation is nontrivial.
This contradicts the minimality of n. It follows that P0(x) is nonzero.
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Furthermore, if gcd(P0(x), . . . , Pn(x)) = D(x) 6= 0, it suffices to divide (4.2)
by D(x) to obtain an equation with the desired properties. This ends the proof.

5. Reduction to the number field case

In this section we show that we may restrict our attention to the case where the
base field K is replaced by a number field and more precisely by a localization of
the ring of integers of that number field formed by inverting a single integer. This
means a ring of the form OK [1/N ], where K denotes a number field, OK the ring
of integers of K , and N a positive integer.
Theorem 5.1. Let us assume that the conclusion of Theorem 1.3 holds whenever
the field K is replaced by a localization of the ring of integers of a number field of
the formOK [1/N ]. Then Theorem 1.3 is true.

We first observe that the coefficients of a Mahler function in K [[x]] actually
belong to some finitely generated Z-algebra R ✓ K .
Lemma 5.2. Let K be a field of characteristic zero, let k � 2 be an integer, and let
F(x) 2 K [[x]] be a k-Mahler power series. Then there exists a finitely generated
Z-algebra R ✓ K such that F(x) 2 R[[x]].
Proof. Let F(x) :=

P
1

n=0 f (n)xn 2 K [[x]] be a k-Mahler power series. We
first infer from Lemma 4.1 that there exist a natural number n and polynomials
P0(x), . . . , Pn(x) 2 K [x] with P0(x)Pn(x) 6= 0 such that

nX
i=0

Pi (x)F
⇣
xk

i
⌘

= 0 .

Let d be a natural number that is strictly greater than the degrees of the polynomials
P0(x), . . . , Pn(x). Let R denote the smallest Z-algebra containing:
• The coefficients of P0(x), . . . , Pn(x);
• The coefficients f (0), . . . , f (d);
• The multiplicative inverses of all nonzero coefficients of P0(x).
By definition, R ✓ K is a finitely generated Z-algebra. We claim that F(x) 2

R[[x]]. To see this, suppose that this is not the case. Let n0 be the smallest non-
negative integer such that f (n0) 62 R. By assumption, n0 > d. Consider the
equation

P0(x)F(x) = �

nX
i=1

Pi (x)F
⇣
xk

i
⌘

. (5.1)

Let j denote the order of P0(x) at x = 0 and let c 6= 0 denote the coefficient of
x j in P0(x). Then if we extract the coefficient of xn0+ j in Equation (5.1), we see
that c f (n0) can be expressed as an R-linear combination of f (0), . . . , f (n0 � 1).
Hence c f (n0) belongs to R by the minimality of n0. Since c�1 2 R we see that
f (n0) 2 R, a contradiction. This ends the proof.
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We now prove that the height of a rational function which satisfies a Mahler-
type equation can be bounded by the maximum of the degrees of the polynomials
defining the underlying equation.

Lemma 5.3. Let K be a field, let n and d be natural numbers, and let P0(x), . . .,
Pn(x) be polynomials in K [x] of degree at most d with P0(x)Pn(x) 6= 0. Suppose
that F(x) 2 K [[x]] satisfies the Mahler-type equation

nX
i=0

Pi (x)F(xk
i
) = 0 .

If F(x) is rational, then there exist polynomials A(x) and B(x) of degree at most d
with B(0) = 1 such that F(x) is the power series expansion of A(x)/B(x).

Proof. Without any loss of generality we can assume that F(x) is not identically
zero. If F(x) is rational, then there exist two polynomials A(x) and B(x) in K [x]
with gcd 1 and with B(0) = 1 such that F(x) = A(x)/B(x). Observe that

nX
i=0

Pi (x)A
⇣
xk

i
⌘
/B

⇣
xk

i
⌘

= 0 .

Multiplying both sides of this equation by the product B(x)B(xk) · · · B(xkn ), we
see that B(xkn ) divides

Pn(x)A
⇣
xk

n
⌘
B(x) · · · B

⇣
xk

n�1
⌘

.

Since gcd(A(x), B(x)) = 1 and A(x) is nonzero, we actually have that B(xkn )
divides

Pn(x)B(x) · · · B
⇣
xk

n�1
⌘

.

Let d0 denote the degree of B(x). Then we have

knd0  deg(Pn(x)) +

n�1X
i=0

deg
⇣
B
⇣
xk

i
⌘⌘

 d + d0
⇣
1+ k + · · · + kn�1

⌘
= d + d0(kn � 1)/(k � 1) .

Thus
d0(kn+1 � 2kn + 1)/(k � 1)  d ,
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which implies d0  d since (kn+1 � 2kn + 1)/(k � 1) � 1 for every integer k � 2.
A similar argument gives the same upper bound for the degree of A(x).

We derive from Lemma 5.3 a useful local-global principle for the rationality of
Mahler functions with coefficients in a finitely generated Z-algebra.

Lemma 5.4. Let K be a field, let k � 2 be an integer, and let R ✓ K be a ring. Let
us assume that F(x) 2 R[[x]] has the following properties.

(i) There exist a natural number n and polynomials P0(x), . . . , Pn(x) 2 R[x]
with P0(x)Pn(x) 6= 0 such that

nX
i=0

Pi (x)F
⇣
xk

i
⌘

= 0 ;

(ii) There exists a set S of maximal ideals of R such that F(x) mod I is a rational
power series in (R/I )[[x]] for every I 2 S;

(iii) One has
T

I2S I = {0}.

Then F(x) is a rational function.

Proof. Let d be a natural number greater than the degrees of all polynomials
P0(x), . . . , Pn(x). By (ii), we have that for each maximal ideal I in S , F(x) mod I
is a rational function. Thus by (i) and Lemma 5.3, we see that for each maxi-
mal ideal I in S , there exist two polynomials AI (x) and BI (x) 2 (R/I ) [x] of
degree at most d with BI (0) = 1 and such that F(x) ⌘ AI (x)/BI (x) mod
I . In particular, if F(x) =

P
j�0 f ( j)x j , we see that the sequences in the set�

( f (d + 1+ i + j) mod I ) j�0 | i = 0, . . . , d
 
are linearly dependent over R/I .

Thus the determinant of each (d + 1) ⇥ (d + 1) submatrix of the infinite
matrix

M :=

0
BB@

f (d + 1) f (d + 2) f (d + 3) · · ·

f (d + 2) f (d + 3) f (d + 4) · · ·

...
...

... · · ·

f (2d + 1) f (2d + 2) f (2d + 3) · · ·

1
CCA

lies in the maximal ideal I . Since this holds for every maximal ideal I in S , we
infer from (iii) that every (d + 1) ⇥ (d + 1) minor of M vanishes. It follows that M
has rank at most d and thus the rows of M are linearly dependent over the field of
fractions of R. In particular, there exist c0, . . . , cd 2 R, not all zero, such that

dX
i=0

ci f (d + 1+ i + j) = 0
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for all j � 0. Letting B(x) := cd + cd�1x + · · · + c0xd , we see that B(x)F(x) is a
polynomial. Hence F(x) is a rational function. This ends the proof.

We are now ready to prove the main result of this section.

Proof of Theorem 5.1. Let K be a field of characteristic zero and let F(x) 2 K [[x]]
be a power series that is both k- and `-Mahler for some multiplicatively independent
natural numbers k and `. By Lemma 4.1, there are natural numbers n and m and
polynomials P0(x), . . . , Pn(x) and Q0(x), . . . , Qm(x) with

P0(x)Pn(x)Q0(x)Qm(x) 6= 0

and such that
nX
i=0

Pi (x)F
⇣
xk

i
⌘

=

mX
j=0

Q j (x)F
⇣
x` j

⌘
= 0 . (5.2)

Then by Lemma 5.2, there is a finitely generated Z-algebra R ✓ K such that
F(x) 2 R[[x]]. By adjoining all the coefficients of P0(x), . . . , Pn(x) and of
Q0(x), . . . , Qm(x) to R, we can assume that Pi (x) and Q j (x) are in R[x] for
(i, j) 2 {1, . . . , n} ⇥ {1, . . . ,m}. By localizing at the multiplicatively closed set
consisting of nonzero integers in R, we can assume that R is a finitely generated
Q-algebra.

LetM ✓ Spec(R) denote the collection of maximal ideals of R. Since R is a
finitely generatedQ-algebra, R is a Jacobson ring and R/I is a finite extension ofQ
for every I 2M (see [18, Theorem 4.19, page 132]). Thus, for each maximal ideal
I of R, the quotient field R/I is a number field. If we assume that the conclusion of
Theorem 1.3 holds when the base field is a number field, then we get that F(x) mod
I is a rational function in (R/I )[[x]] for it is clearly both k- and `-Mahler7. Since
R is a Jacobson ring that is also a domain, we have that

T
I2M I = {0} (cf. [18,

page 132]). Then Lemma 5.4 implies that F(x) is a rational function in R[[x]].
This shows it is sufficient to prove Theorem 1.3 in the case that K is a number
field.

We can thus assume that F(x) 2 K [[x]]where K is a number field. Now, if we
apply again Lemma 5.2, we see that there is a finitely generated Z-algebra R ✓ K
such that F(x) 2 R[[x]]. Furthermore, every finitely generated Z-subalgebra of
a number field K has a generating set of the form {a1/b, . . . , at/b}, where b is a
nonzero (rational) integer and a1, . . . , at are algebraic integers in K . Thus R is
a subalgebra of a localization of the ring of integers of a number field formed by
inverting a single nonzero integer, that is R ✓ OK [1/b], whereOK denotes the ring
of algebraic integers in K . Thus to establish Theorem 1.3 it is sufficient to prove the
following result: let k and ` be two multiplicatively independent natural numbers,

7 Note that since P0(0)Q0(0) 6= 0, we may assume that P0(0) = Q0(0) = 1 by multiplying the
left side of (5.2) by 1/P0(0) and the right side of (5.2) by 1/Q0(0). This ensures that, for each
functional equation, not all the coefficients vanish when reduced modulo a maximal ideal I of R.
Hence F(x) mod I is both k- and `-Mahler.
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let R be of the form OK [1/b] where K is a number field, and let F(x) 2 R[[x]],
then if F(x) is both k- and `-Mahler it is a rational function. This concludes the
proof.

6. Further reductions for the form of Mahler equations

In this section we refine the results of Section 4. We show that a power series
satisfying a Mahler equation of the form given in (4.1) is also solution of a more
restricted type of functional equations.

Lemma 6.1. Let K be a field and k � 2 be an integer. Let us assume that F(x) :=P
s�0 f (s)xs 2 K [[x]] satisfies a k-Mahler equation of the form

nX
i=0

Pi (x)F
⇣
xk

i
⌘

= 0 ,

where P0(x), . . . , Pn(x) 2 K [x], gcd(P0(x), . . . , Pn(x)) = 1 and P0(x)Pn(x) 6=

0. Then there exists a natural number N such that, for every integer a > N with
f (a) 6= 0, F(x) can be decomposed as

F(x) = Ta(x) + xaF0(x) ,

where Ta(x) 2 K [x] is the Taylor approximation of F(x) at x = 0 up to degree
a � 1 and F0(x) has nonzero constant term and satisfies a k-Mahler equation

n+1X
i=0

Qi (x)F0
⇣
xk

i
⌘

= 0

for some polynomials Q0, . . . , Qn+1 2 K [x] satisfying the following conditions.

(i) It holds Q0(0) = 1;
(ii) If ↵ 6= 0 and P0(↵) = 0, then Q0(↵) = 0;
(iii) If ↵ 6= 0, P0(↵) = 0 and ↵k = ↵, then Q j (↵) 6= 0 for some j 2 {1, . . . , n+1}.

Proof. By assumption, we have that F(x) satisfies a k-Mahler equation

nX
i=0

Pi (x)F
⇣
xk

i
⌘

= 0 ,

where P0(x)Pn(x) is nonzero. Let N denote the order of vanishing of P0(x) at
x = 0. Suppose that a � N and f (a) 6= 0. Then we have that

F(x) = Ta(x) + xaF0(x) ,
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where Ta(x) is the Taylor approximation of F(x) up to degree a � 1 and F0(x) is a
power series with nonzero constant term. Then we have

nX
i=0

Pi (x)
⇣
Ta

⇣
xk

i
⌘

+ xk
i
·a F0

⇣
xk

i
⌘⌘

= 0 ,

which we can write as
nX
i=0

Pi (x)xk
i
·a F0

⇣
xk

i
⌘

= C(x) , (6.1)

where C(x) denotes the polynomial

C(x) := �

nX
i=0

Pi (x)Ta
⇣
xk

i
⌘

.

Set S(x) := P0(x)x�N . By definition of N , S(x) is a polynomial with S(0) 6= 0.
Then if we divide both sides of Equation (6.1) by xa+N , we obtain that

S(x)F0(x) +

nX
i=1

Pi (x)xk
i a�a�N F0

⇣
xk

i
⌘

= x�a�NC(x) . (6.2)

Observe that the left side is a power series with constant term S(0)F0(0) 6= 0 and
thus C0(x) := x�a�NC(x) is a polynomial with C0(0) 6= 0. Applying the operator
x 7! xk , we also obtain that

S
�
xk

�
F0

�
xk

�
+

nX
i=1

Pi
�
xk

�
xk

i+1a�ka�kN F0
�
xk

i+1�
= C0

�
xk

�
. (6.3)

Multiplying (6.2) by C0(xk) and (6.3) by C0(x) and then subtracting, we get that

C0
�
xk

�
S(x)F0(x) +

nX
i=1

C0
�
xk

�
Pi (x)xk

i a�a�N F0
⇣
xk

i
⌘

�C0(x)S
�
xk

�
F0

�
xk

�
�

nX
i=1

C0(x)Pi
�
xk

�
xk

i+1a�ka�kN F0
⇣
xk

i+1
⌘

= 0 .

Since C0(0) and S(0) are nonzero, we see that F0(x) satisfies a non-trivial k-Mahler
equation

n+1X
i=0

Qi (x)F0
⇣
xk

i
⌘

= 0 ,

where

Q0(x) :=

C0
�
xk

�
S(x)

gcd
⇣
C0(x),C0

�
xk

�⌘
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and

Q1(x) :=

C0
�
xk

�
P1(x)xka�a�N � C0(x)S

�
xk

�
gcd

⇣
C0(x),C0

�
xk

�⌘ ,

and, for i 2 {2, . . . , n + 1},

Qi (x) :=

xki a�ka�N
⇣
C0

�
xk

�
x (k�1)a Pi (x) � C0(x)Pi�1

�
xk

�⌘

gcd
⇣
C0(x),C0

�
xk

�⌘ ,

with the convention that Pn+1(x) := 0. By construction, Q0(0) 6= 0, which we may
assume to be equal to 1 by multiplying our equation by 1/Q0(0). Since S(x) divides
Q0(x), we have that if P0(↵) = 0 for some nonzero ↵ then Q0(↵)=0. Finally, sup-
pose that P0(↵) = 0 for some nonzero ↵ such that ↵k = ↵. We claim that Qi (↵) is
nonzero for some i 2 {1, . . . , n + 1}. Note that since gcd(P0(x), . . . , Pn(x)) = 1,
there is smallest positive integer j such that Pj (↵) is nonzero. We claim that
Q j (↵) 6= 0. Indeed, otherwise ↵ would be a root of C0(x)/ gcd(C0(x),C0(xk)),
but this is impossible since ↵k = ↵. This ends the proof.

Corollary 6.2. Let K be a field and let k and ` be multiplicatively independent
natural numbers. Let F(x) :=

P
s�0 f (s)xs 2 K [[x]] be a power series that is

both k- and `-Mahler and that is not a polynomial. Then there is a natural number
a such that F(x) can be decomposed as

F(x) = Ta(x) + xaF0(x) ,

where Ta(x) is the Taylor approximation of F(x) up to degree a�1, F0(x) satisfies a
k-Mahler equation as in Lemma 6.1, and F0(x) also satisfies an `-Mahler equation
of the form

rX
i=0

Ri (x)F0
⇣
x`i

⌘
= 0

with R0(x), . . . , Rr (x) 2 K [x] and R0(0) = 1.

Proof. Applying Lemma 6.1 to F(x), viewed as a k-Mahler function, we obtain
the existence of a positive integer N1 (which corresponds to N in Lemma 6.1) for
which the conclusion of this lemma holds. Similarly, applying Lemma 6.1 to F(x),
viewed as a `-Mahler function, we obtain the existence of a positive integer N2.
Now, we can choose N3 := max(N1, N2) and pick a > N3 such that f (a) 6= 0 to
obtain the desired conclusion.

7. Links with automatic and regular power series

The aim of this section is to emphasize the relation between k-Mahler, k-regular,
and k-automatic power series. We gather some useful facts about automatic and
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regular power series that will turn out to be useful for proving Theorem 1.3. We
also recall a result of Dumas [14] showing that every k-Mahler power series can
be decomposed as the product of a k-regular power series of a special type and the
inverse of an infinite product of polynomials. Such a decomposition will play a key
role in the proof of Theorem 1.3.

7.1. Automatic and regular power series

We recall here basic facts about regular power series, which were introduced by Al-
louche and Shallit [7] (see also [8] and [6, Chapter 16]). They form a distinguished
class of k-Mahler power series as well as a natural generalization of k-automatic
power series.

A useful way to characterize k-automatic sequences, due to Eilenberg [17], is
given in terms of the so-called k-kernel.
Definition 7.1. Let k � 2 be an integer and let f = ( f (n))n�0 be a sequence with
values in a set E . The k-kernel of f is defined as the set

�
( f (kan + b))n�0 | a � 0, b 2 {0, . . . , ka � 1}

 
.

Theorem 7.2 (Eilenberg). A sequence is k-automatic if and only if its k-kernel is
finite.

This characterization gives rise to the following natural generalization of auto-
matic sequences introduced by Allouche and Shallit [7].
Definition 7.3. Let R be a commutative Noetherian ring and let f = ( f (n))n�0 be a
R-valued sequence. Then f is said to be k-regular if the dimension of the R-module
spanned by its k-kernel is finite.

In the sequel, we will say that a power series F(x) 2 R[[x]] is k-regular
(respectively k-automatic) if its sequence of coefficients is k-regular (respectively
k-automatic). Of course, with a subset E ofN, we can associate its characteristic se-
quence �(n), taking values in {0, 1}, and thus a power series FE(x) :=

P
�(n)xn 2

Z[[x]]. When the set E is k-automatic, FE(x) is a k-automatic power series. More
generally, a power series F(x) =

P
f (n)xn with coefficients in a finite set S is k-

automatic if and only if for every s 2 S the set {n 2 N | f (n) = s} is k-automatic.
In the following proposition, we collect some useful general facts about k-regular
power series.

Proposition 7.4. Let R be a commutative ring and k � 2 be an integer. Then the
following properties hold.

(i) If F(x) 2 R[[x]] is k-regular and I is an ideal of R, then F(x) mod I 2

(R/I )[[x]] is k-regular;
(ii) If F(x) 2 R[[x]] is k-regular, then the coefficients of F(x) take only finitely

many distinct values if and only if F(x) is k-automatic;
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(iii) If F(x) =

P
i�0 f (i)xi and G(x) =

P
i�0 g(i)xi are two k-regular power

series in R[[x]], then the Cauchy product

F(x)G(x) :=

1X
i=0

 
iX
j=0

✓
i
j

◆
f ( j)g(i � j)

!
xi

is k-regular.

Proof. The property (i) follows directly from the definition of a k-regular sequence,
while (ii) and (iii) correspond respectively to Theorem 16.1.5 and Corollary 16.4.2
in [6].

In Section 11, we will need to use that k-regular sequences with complex values
do have strict restrictions on the growth of their absolute values, a fact evidenced
by the following result.

Proposition 7.5. Let k � 2 be a natural number and let F(x) 2 C[[x]] be a k-
regular power series. Then F(x) is analytic in the open unit disk and there exist
two positive real numbers C and m such that

|F(x)| < C(1� |x |)�m ,

for all x 2 B(0, 1).

Proof. Let F(x) =

P
1

i=0 f (i)xi 2 C[[x]] be a k-regular power series. Then there
is some positive constant A and some integer d > 0 such that

| f (i)|  A(i + 1)d ,

for every nonnegative integer i (see [6, Theorem 16.3.1]). This immediately gives
that F(x) is analytic in the open unit disk. Moreover, for x 2 B(0, 1),

|F(x)| 

1X
i=0

A(i + 1)d |x |i 

1X
i=0

Ad!

✓
i + d
d

◆
|x |i = Ad!(1� |x |)�d�1 .

The result follows.

7.2. Becker power series

Becker [9, Theorem 1] showed that a k-regular power series is necessarily k-Mahler.
In addition to this, he proved [9, Theorem 2] the following partial converse (see
Theorem 7.6 below). The general converse does not hold. For example, the power
series in Q[[x]] defined by the k-Mahler equation

(1� x)F(x) = F
�
xk

�
and satisfying F(0) = 1 is not k-regular. This can easily be shown using Proposi-
tion 7.5.
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Theorem 7.6 (Becker). Let K be a field, let k be a natural number � 2, and let
F(x) 2 K [[x]] be a power series that satisfies a k-Mahler equation of the form

F(x) =

nX
i=1

Pi (x)F
⇣
xk

i
⌘

(7.1)

for some polynomials P1(x), . . . , Pn(x) 2 K [x]. Then F(x) is a k-regular power
series.

Definition 7.7. In honour of Becker’s result, a power series F(x) 2 K [[x]] that
satisfies an equation of the form given in Equation (7.1) will be called a k-Becker
power series.

Theorem 7.6 shows that the set of k-Becker power series is contained in the set
of k-regular power series. However, the converse is not true. As an example, we
provide the following result that will also be used in Section 13.

Proposition 7.8. Let k be a natural number, and let ! 2 C be a root of unity with
the property that if j � 1 then !k j

6= !. Then
 

1Y
j=0

⇣
1� !xk

j
⌘!�1

is k-regular but it is not k-Becker.

Proof. Since ! is a root of unity, the sequence !,!k,!k2, . . . is eventually periodic
and there is some smallest natural number N such that

!k2N
= !kN .

Set � := !kN and let us consider the polynomial

Q(x) = (1� �x)
�
1� �xk

�
· · ·

⇣
1� �xk

N�1
⌘

.

Then
Q
�
xk

�
Q(x)

=

1� �xkN

1� �x
·

Since
1� �xk

N
= 1�

�
�x

�kN
,

we see that Q(xk)/Q(x) is a polynomial.
Since

1� (�x)k
N

=

Q
�
xk

�
Q(x)

· (1� �x) ,
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we get that (1 � !x) divides the polynomial Q(xk)(1 � �x)/Q(x). Furthermore,
(1� !x) cannot divide (1� �x) since by assumption ! 6= �. By Euclid’s lemma,
we thus obtain that

Q
�
xk

�
Q(x)

= (1� !x)S(x)

for some polynomial S(x).
Set

F(x) :=

 
1Y
j=0

⇣
1� !xk

j
⌘!�1

and G(x) := Q(x)�1F(x). Since F(x) satisfies the k-Mahler recurrence

F
�
xk

�
= (1� !x)F(x) ,

we see that
G
�
xk

�
= Q

�
xk

�
�1

(1� !x)Q(x)G(x),

or equivalently,
G(x) = S(x)G

�
xk

�
.

Thus G(x) is a k-Becker power series. By Proposition 7.4, F(x) is k-regular as it
is a product of a polynomial (which is k-regular) and a k-regular power series.

On the other hand, F(x) cannot be a k-Becker power series. To see this, sup-
pose that F(x) satisfies an equation of the form

F(x) =

dX
i=1

Pi (x)F
⇣
xk

i
⌘

.

Now, dividing both sides by F(xk), the right side becomes a polynomial in x , while
the left side is (1� !x)�1, a contradiction. The result follows.

In Section 11, we will need the following basic result about k-Becker power
series.

Lemma 7.9. Let k � 2 and let us assume that F(x) 2 K [[x]] satisfies a k-Mahler
equation of the form

F(x) =

nX
i=1

ai F
⇣
xk

i
⌘

for some constants a1, . . . , an 2 K . Then F(x) is constant.

Proof. Let us denote by F(x) =

P
i�0 f (i)xi the power series expansion of F(x).

If F(x) were non-constant, there would be some smallest positive integer i0 such
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that f (i0) 6= 0. Thus F(x) = � + xi0F0(x) for some � in K and some F0(x) 2

K [[x]]. But taking the coefficient of xi0 in the right-hand side of the equation

F(x) =

nX
i=1

ai F
⇣
xk

i
⌘

,

we see that f (i0) = 0, a contradiction. The result follows.

Though there are some Mahler functions that are not Becker functions, the
following result shows that every k-Mahler power series can be decomposed as
the product of a k-Becker power series and the inverse of an infinite product of
polynomials. This decomposition will turn out to be very useful to prove Theorem
1.3. This result appears as Theorem 31 in the Thèse de Doctorat of Dumas [14].

Proposition 7.10. Let k be a natural number, let K be a field, and let F(x) 2

K [[x]] be a k-Mahler power series satisfying an equation of the form
nX
i=0

Pi (x)F
⇣
xk

i
⌘

= 0 ,

where P0(x), . . . , Pn(x) 2 K [x] and P0(0) = 1. Then there is a k-Becker power
series G(x) such that

F(x) =

 
1Y
i=0

P0
⇣
xk

i
⌘!�1

G(x) .

8. Conditions on k and `

In this section K will denote an arbitrary field. We consider power series in K [[x]]
that are both k- and `-Mahler with respect to two multiplicatively independent nat-
ural numbers k and `. More specifically, we look at the set of natural numbers m
for which such a power series is necessarily m-Mahler.

Proposition 8.1. Let k and ` be two integers� 2 and let F(x) 2 K [[x]] be a power
series that is both k- and `-Mahler. Let us assume that a and b are integers with the
property that m := ka`b is an integer and m > 1. Then F(x) is also m-Mahler.

Proof. Let V denote the K (x)-vector space spanned by all the power series that
belong to the set

n
F(xka`b) | a, b 2 N

o
. Recall that by Lemma 4.1, we can assume

that the corresponding Mahler equations are both homogeneous. Hence there ex-
ists some natural number N such that for every integer n � N we have F(xkn ) =PN�1

i=0 Pi,n(x)F(xki ) and F(x`n ) =

PN�1
i=0 Qi,n(x)F(x`i ) for some rational func-

tions P0,n(x), . . . , PN�1,n(x), Q0,n(x), . . . , Qn,N�1(x). Thus V is a K (x)-vector
space of dimension at most N2.



1324 BORIS ADAMCZEWSKI AND JASON P. BELL

Suppose that a and b are integers such that m := ka`b is an integer and m > 1.
If a and b are nonnegative, then F(xm j

) 2 V for every integer j � 0 and since the
dimension of V is finite, we see that F(x) is m-Mahler. Thus we may assume that
at least one of a or b is negative. Since m � 1, at least one of a or b must also be
positive. Without loss of generality, we may thus assume that a > 0 and b < 0.

We are now going to show that F(xm j
) 2 V for every nonnegative integer j .

To see this, we fix a nonnegative integer j . Then we observe that m j`�bj
= k ja

and thus F(xm j li ) belongs to V for every integer i � �bj . Since �bj � 0, there
exists a smallest nonnegative integer i0 such that F(xm j`i ) 2 V for every integer
i � i0. If i0 is zero, then we are done. We assume that i0 is positive and look for a
contradiction. By definition of i0, we note that F(xm j`i0�1) 62 V . By assumption,
F(x) satisfies a `-Mahler equation of the form

NX
i=0

Pi (x)F(x`i ) = 0 ,

with P0(x), . . . , PN (x) 2 K [x] and P0(x) 6= 0. Applying the operator x 7!

xm j`i0�1 , we get that

P0
⇣
xm

j`i0�1
⌘
F
⇣
xm

j`i0�1
⌘

= �

NX
i=1

Pi
⇣
xm

j`i0�1
⌘
F
⇣
xm

j`i0�1+i
⌘

.

By definition of i0, the right side of this equation is in V , and so F(xm j`i0�1) 2 V
since P0(x) is nonzero. This is a contradiction. It follows that F(xm j

) 2 V for
every nonnegative integer j .

Since V is a K (x)-vector space of dimension at most N 2, we see that
F(x), F(xm), . . . , F(xmN2

) are linearly dependent over K (x), which implies that
F(x) is m-Mahler. This ends the proof.

Remark 8.2. Taking k = ` and b = 0 in Proposition 8.1, we see that if a power
series F(x) is k-Mahler then it is also ka-Mahler for every a � 1. The converse is
obvious. Consequently, if k and ` are multiplicatively dependent natural numbers,
then F(x) is k-Mahler if and only if it is `-Mahler.

Corollary 8.3. Let k and ` be two multiplicatively independent natural numbers
and let F(x) 2 K [[x]] be a power series that is both k- and `-Mahler. Then
there exist two multiplicatively independent positive integers k0 and `0 such that
the following conditions hold.

(i) There is a prime number p that divides k 0 and does not divide `0;
(ii) There is a prime number q that divides `0 and does not divide k0;
(iii) F(x) is both k0- and `0-Mahler.
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Proof. There exist prime numbers p1, . . . , pm and nonnegative integers a1, . . . , am ,
b1, . . . , bm such that

k =

mY
i=1

paii and ` =

mY
i=1

pbii .

Moreover, we can assume that, for each i , at least one of ai or bi is positive.
Note that if there are i and j such that ai = 0 and b j = 0, then we can take

k0
:= k and `0

:= ` and set p := p j and q := pi to obtain the desired result. Thus
we can assume without loss of generality that bi > 0 for i 2 {1, . . . ,m}. Then
there is some i0 2 {1, . . . ,m} such that ai0/bi0  a j/b j for all j 2 {1, . . . ,m}.
In particular, c j := a jbi0 � b jai0 is a nonnegative integer for all j 2 {1, . . . ,m}.
Hence

k0

:= kbi0 `�ai0 =

mY
j=1

pc jj 2 N .

Furthermore, pi0 does not divide k0 and since k and ` are multiplicatively indepen-
dent, the ci ’s are not all equal to zero.

Now we pick i1 2 {1, . . . ,m} such that ci1/bi1 � c j/b j for all j 2 {1, . . . ,m}.
Note that ci1 > 0 since the ci ’s are not all equal to zero. Set

`0

:= `ci1 (k0)�bi1 =

mY
j=1

p
b j ci1�bi1c j
j 2 N .

Since ci0 = 0, ci1 > 0 and the bi ’s are positive, we get that pi0 divides `0. Moreover,
pi1 does not divide `0 while pi1 divides k0 for ci1 is positive. In particular, k0 and `0

are multiplicatively independent. Furthermore, Proposition 8.1 implies that F(x) is
both k 0- and `0-Mahler. Setting q := pi0 and p = pi1 , we obtain that k0 and `0 have
all the desired properties. This concludes the proof.

9. Asymptotic estimates for some infinite products

In this section, we study the behaviour around the unit circle of infinite products of
the form  

1Y
i=0

P(xk
i
)

!
�1

,

where P(x) 2 C[x] and P(0) = 1. We obtain some asymptotic estimates that will
be necessary in Section 11.

We will prove that when ↵ is a root of unity satisfying ↵k = ↵ that is not a root
of P , then this product is rather well-behaved when approaching ↵ through certain
well-chosen sets of points. Throughout Sections 9, 10, and 11, we make use of
certain subsets of the unit circle having 1 as a limit point. We define these sets now.
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Definition 9.1. Let " 2 (0, 1) and let ✓ 2 [�1, 1]. Then we define

X✓," := {exp((�1+ i✓)s) | s 2 (0, ")}. (9.1)

We take X✓ to be the set {0} [ {exp((�1+ i✓)s | s � 0}.
We note that each X✓ is a compact subset of the closed unit disk. In fact, X✓ is

homeomorphic to R�0 [ {+1}.

−0.5

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.5 1

Figure 9.1. This picture of the full set X✓ , with ✓ = 5, shows the spiral-like structure
of the curve.

−0.5

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.5 1

Figure 9.2. This picture shows the set X✓,", where we take ✓ = 5 and ✏ = 1.5.

Moreover, if ✓ 6= ✓ 0, two sets of the form X✓," and X✓ 0,"0 are always disjoint.
This can be seen by noting that if exp((�1 + i✓)s) = exp((�1 + i✓ 0)s0), with
✓, ✓ 0

2 [0, 1], then they have the same modulus and hence s = s0; next we must
have that exp(i✓s) = exp(i✓ 0s) and so (✓ � ✓ 0)s must be an integer multiple of
2⇡ , which can only occur if ✓ = ✓ 0 since |✓ � ✓ 0

|  2 and 0 < s < 1. Finally,
we remark that a set of the form X✓," has the property that if y 2 X✓," and k is a
positive integer then there is a unique point z 2 X✓," such that zk = y.
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Proposition 9.2. Let k � 2 be a natural number, let ↵ be root of unity that satisfies
↵k = ↵, and let P(x) be a nonzero polynomial with P(0) = 1 and P(↵) 6= 0. Then
for all but countably many ✓ 2 [�1, 1], there exist two positive real numbers A and
" 2 (0, 1), depending upon ✓ , such that

|1� t |A <

������
 

1Y
j=0

P
⇣
(t↵)k

j
⌘⌘!�1

������ < |1� t |�A

whenever t 2 X✓,✏ .
In contrast, the following result shows that such infinite products behave dif-

ferently when ↵ is a root of P . In the case where k = 2, we point out that a different
proof can be found in [5, Théorème 3]. Precise asymptotics for the coefficients of
the power series expansion of this infinite product has also been studied by Mahler,
de Bruijn, and Dumas and Flajolet (see [15] and the references therein). We give
the following proof for the sake of completeness.
Lemma 9.3. Let k � 2 be a natural number. Then if {tn} is a sequence of complex
numbers with |tn| < 1 for every n such that tn ! 1 as n ! 1 then

lim
n!1

�����
1Y
j=0

1
1� tk jn

����� · |1� tn|A = 1 ,

for every positive real number A.
Proof. By ignoring some initial terms of our sequence, we may assume that |1 �

tn| 2 (0, 1/k9) for every n. Now let t 2 B(0, 1) be such that |1 � t | 2 (0, 1/k9).
Let N � 2 be the largest natural number such that |1� t | 2 (0, k�(N+1)2). Then�����

1Y
j=0

⇣
1� tk

j
⌘

�1
����� �

�����
NY
j=0

⇣
1� tk

j
⌘

�1
�����

=

���(1� t)�(N+1)
���
�����
NY
j=0

⇣
1+ t + · · · + tk

j
�1

⌘
�1

�����
�

���(1� t)�(N+1)
��� NY
j=0

k� j

� |1� t |�(N+1)k�(N+1)2

> |1� t |�N .

By definition of N , we obtain that |1� t | > k�(N+2)2 , which easily gives that

N >

s
� log |1� t |
4 log k

·

This ends the proof, for the right-hand side tends to infinity when t tends to 1.
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We are now going to prove Proposition 9.2. We will need the following two
auxiliary results.

Lemma 9.4. Let k � 2 be a natural number. Then for t 2 (0, 1), we have

1X
i=1

t i/ i � (1� 1/k)
1X
i=0

tk
i
.

Proof. We have

1X
i=1

t i/ i = t +

1X
i=0

ki+1X
j=ki+1

t j/j

� t +

1X
i=0

ki+1X
j=ki+1

tk
i+1

/ki+1

= t +

1X
i=0

tk
i+1

⇣
ki+1 � ki

⌘
/ki+1

= t + (1� 1/k)
1X
i=0

tk
i+1

� (1� 1/k)
1X
i=0

tk
i
,

which ends the proof.

Lemma 9.5. Let k � 2 be a natural number and let � 6= 1 be a complex number.
Then for all but countably many ✓ 2 [�1, 1], there exist two positive real numbers
A and " 2 (0, 1), depending upon ✓ , such that

|1� t |A <

�����
1Y
j=0

1
1� �tk j

����� < |1� t |�A

whenever t 2 X✓,".

Proof. We first prove the inequality on the right-hand side.
We note that for each j � 0 there are only finitely many complex solutions

to the equation 1 � �t k j = 0, and thus there are at most countably many solutions
as j ranges over all nonnegative integers. As already observed, for ✓ 6= ✓ 0 with
✓, ✓ 0

2 [�1, 1] and for ", "0
2 (0, 1), one has X✓," \ X✓ 0,"0 = ;. It follows that

for all but countably many values of ✓ 2 [�1, 1] the equation 1� �t k j = 0 has no
solution on X✓," whenever " 2 (0, 1). Moreover, since � 6= 1, t = 1 and t = 0 are
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never a solution, this equation has no solution in X✓ . For the remainder of the proof
we assume that ✓ 2 [�1, 1] has this property.

Observe that X✓ is a compact set that is closed under the map t 7! tk and we
have that 1��t is nonzero for t 2 X✓ . By compactness, we see that there exist two
positive real numbers "0 and c0, c0 < 1 and depending upon ✓ , such that

inf
n���1� �tk

j
��� : t 2 X✓,"0, j � 0

o
> c0 . (9.2)

We fix t 2 X✓,"0 and we let N = N (t) to be the largest nonnegative integer such
that |tkN | � 1/2. Then for j � 1 we have

���tkN+ j
��� =

���(tkN+1
)k

j�1
��� < (1/2)k j�1 .

Hence ���1� �tk
N+ j

��� � 1� |�|(1/2)k
j�1

.

Since the series
P

j�0(1/2)k
j�1 converges, we get that the infinite product

1Y
j=N (t)+1

���� 1
1� �tk j

����
is uniformly bounded over X✓,"0 by some constant c1. (We note that � 6= 1 is fixed,
N = N (t) depends upon t , t 2 X✓,"0 , and it is necessary to begin the product at
N + 1 in order to achieve uniformity in our bound.) Then

�����
1Y
j=0

⇣
1� �tk

j
⌘

�1
����� =

NY
j=0

���1� �tk
j
����1 1Y

j=1

���1� �tk
N+ j

����1

 (1/c0)N+1c1

=

⇣
kN+1

⌘
� log c0/ log k

c1 .

Furthermore, we have by assumption that
��tkN+1�� < 1/2 and thus kN+1 <

� log 2/ log |t |. This implies that
�����

1Y
j=0

⇣
1� �tk

j
⌘

�1
�����  c1 (� log 2/ log |t |)� log c0/ log k .

Now we let t tend to 1 along X✓,"0 , that is we write t = exp((�1 + i✓)s) with
s 2 (0, "0) and we let s tend to 0. Then we have |t | = exp(�s) and so log |t | = �s.
Then when t ! 1 along the arc X✓,"0 we have that |1� t |/ log |t | tends to

lim
s!0

|1� exp((�1+ i✓)s)|
�s

= �| � 1+ i✓ | � �

p

2
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and hence there exists some positive real numbers " < "0 and c2 such that

c1 (� log 2/ log |t |)� log c0/ log k < c2|1� t |log c0/ log k ,

whenever t 2 X✓,". Since c0 < 1, we obtain that there exists a positive real number
A1 such that �����

1Y
j=0

⇣
1� �tk

j
⌘

�1
����� < |1� t |�A1 ,

for all t 2 X✓,". This gives the right-hand side bound in the statement of the lemma.
To get the left side, note that for all t 2 X✓ ,�����

1Y
j=0

1
1� �tk j

����� �

1Y
j=0

���1+ |�||t |k
j
����1 �

1Y
j=0
exp

⇣
� |�| · |t |k

j
⌘

.

By Lemma 9.4, we have

1Y
j=0
exp

⇣
� |�| · |t |k

j
⌘
�exp

 
�|�|(1� 1/k)�1

1X
i=1

|t |i/ i

!
= (1� |t |)|�|k/(k�1) .

We thus obtain that, for all t 2 X✓ ,�����
1Y
j=0

1
1� �tk j

����� � (1� |t |)A2 ,

where A2 := b|�|k/(k � 1)c + 1. Now we note that, when t ! 1 along the arc
X✓,"0 , we have |1� t |/(1� |t |) tends to | � 1+ i✓ | 2 [1,

p

2], which can be seen
by writing t = exp((�1+ i✓)s) and letting s ! 0 and taking limits. Since " < 1,
it follows that there is some positive constant A3 > A2 for which we have�����

1Y
j=0

1
1� �tk j

����� > |1� t |A3 ,

whenever t 2 X✓,".
Taking A to be equal to the maximum of A1 and A3, we get the desired re-

sult.

Proof of Proposition 9.2. Let �1, . . . ,�s denote the complex roots of P (consid-
ered with mutliplicities) so that we may factor P(x) as P(x) = (1���1

1 x) · · · (1�

��1
s x). We thus obtain

������
1Y
j=0

1

P
⇣
(t↵)k j

⌘
������ =

sY
i=1

�����
1Y
j=0

1
1� ��1

i ↵tk j

����� ,
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where ��1
i ↵ 6= 1 for every i 2 {1, . . . , s}. Then by Lemma 9.5, there are cocount-

able8 subsets Yi of [�1, 1] such that for a given i and a given ✓ 2 Yi , there exist a
natural number A and a positive real number ", 0 < " < 1, depending upon ✓ , such
that

|1� t |A <

�����
1Y
j=0

⇣
1� ��1

i ↵t
⌘

�1
����� < |1� t |�A

whenever t 2 X✓,". Since the finite intersection of cocountable sets is cocountable,
we see that taking Y = Y1 \ · · · \ Ys , that whenever ✓ 2 Y we have there exist
natural numbers Ai and positive real numbers "i , 0 < "i < 1, depending upon ✓ ,
such that

|1� t |Ai <

�����
1Y
j=0

⇣
1� ��1

i ↵t
⌘

�1
����� < |1� t |�Ai

whenever t 2 X✓,"i . Taking " := min("1, . . . , "s) and A :=

Ps
i=1 Ai , we obtain

the desired result.

10. Asymptotic estimates for solutions of analytic Mahler-type systems

In this section we fix a non-trivial norm k · k on Cd . We let B(x, r) (respectively
B(x, r)) denote the open (respectively closed) ball of radius r centered at x . Our
results will not depend on the choice of this norm. Throughout this section, we
make use of the sets X✓," and X✓ defined in Definition 9.1.

As defined in Section 7, a Becker function F(x) 2 C[[x]] is an analytic func-
tion on the open unit disk satisfying a functional equation of the form:

F(x) =

nX
i=1

Pi (x)F
⇣
xk

i
⌘

for some polynomials P1(x), . . . , Pn(x) 2 C[x]. Of course, such an equation leads
to a k-Mahler linear system

0
B@

F(x)
...

F(xkn�1)

1
CA = A(x)

0
B@

F(xk)
...

F(xkn )

1
CA ,

where A(x) is an n⇥n matrix with polynomial entries. In what follows, we provide
an asymptotic lower bound around certain points of the unit circle for solutions of
similar systems but associated with more general matrices. Indeed, we consider
matrices whose entries are only assumed to be analytic on B(0, 1) and continuous
on B(0, 1). This result will be used in Section 11.

8 This means, of course, that the complement of Yi in [�1, 1] is a countable set.
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Proposition 10.1. Let d and k be two natural numbers, let ↵ be a root of unity such
that ↵k = ↵ and let A : B(0, 1) ! Md(C) be a continuous matrix-valued function.
Let us assume that w(x) 2 C[[x]]d satisfies the equation

w(x) = A(x)w
�
xk

�
for all x 2 B(0, 1). Let us also assume that the following properties hold.

(i) The coordinates of w(x) are analytic in B(0, 1) and continuous on B(0, 1);
(ii) The matrix A(↵) is not nilpotent;
(iii) There exist two positive real numbers " and M such that | det(A(x))| > (1 �

|x |)M for every x with 1� " < |x | < 1;
(iv) The set {w(x) | x 2 B(0, 1)} is not contained in a proper vector subspace of

Cd .

If ⇣ is a root of unity such that ⇣ k j = 1 for some natural number j and ✓ 2 [�1, 1],
then there exist a positive real number C and a subset S ✓ X✓ that has 1 as a limit
point such that

||w(t↵⇣ )|| > |1� t |C

for all t 2 S.

Before proving Proposition 10.1, we will need two auxiliary results.

Lemma 10.2. Let d and k be two natural numbers, let ↵ be a root of unity such that
↵k = ↵, and let A : B(0, 1) ! Md(C) be a continuous matrix-valued function. Let
us assume that w(x) 2 C[[x]]d satisfies the equation

w(x) = A(x)w
�
xk

�
for all x 2 B(0, 1). Let us also assume that the following properties hold.

(i) The coordinates of w(x) are analytic in B(0, 1) and continuous on B(0, 1);
(ii) The matrix A(↵) is not nilpotent;
(iii) The set {w(x) | x 2 B(0, 1)} is not contained in a proper vector subspace of

Cd .

Then if ✓ 2 [�1, 1], then there exist a positive real number C and a subset S ✓ X✓

that has 1 as a limit point such that

||w(t↵)|| > |1� t |C

for all t 2 S.

Proof. Since A(↵) is not nilpotent, there is some natural number e such that the
kernel of A(↵)e and the kernel of A(↵)e+1 are equal to a same proper subspace of
Cd , say W . Then there is a nonzero vector subspace V such that A(↵)(V ) ✓ V
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and V � W = Cd . Moreover, by compactness, there is a positive real number c0,
c0 < 1, such that

||A(↵)(w)|| � c0 (10.1)

whenever w 2 V is a vector of norm 1.
Since every vector x has a unique decomposition of the form v � w with v in

V and w in W , we see that the map ⇡(x) := v gives a continuous linear projection
map ⇡ : Cd

! V with the property that u � ⇡(u) 2 W for all u 2 Cd . We infer
from Inequality (10.1) that

||⇡(A(↵)(u))|| = kA(↵)(⇡(u))k � c0||⇡(u)|| (10.2)

for all u 2 Cd . Since A is continuous on B(0, 1), Inequality (10.2) implies the
existence of a positive constant " > 0 such that

||⇡(A(x)(u))|| > (c0/2)||⇡(u)|| ,

for all u 2 Cd and all x 2 B(↵, ") \ B(0, 1). It follows by a simple induction that
if x1, . . . , xm 2 B(↵, ") \ B(0, 1) then

||⇡(A(x1) · · · A(xm)(u))| � (c0/2)m ||⇡(u)|| . (10.3)

Let ✓ 2 [�1, 1]. We claim that there exists a complex number t0 such that t0 2

X✓ \ B(1, ") and w(t0↵) 62 W . Otherwise, there would be a nonzero row vector
u such that u · w(t↵) = 0 for all t 2 X✓ \ B(1, "). But u · w(x) is analytic in
B(0, 1) forw(x) is and hence it would be identically zero on B(0, 1) by the identity
theorem since X✓ \ B(1, ") has accumulation points inside the open unit disk. This
would contradict assumption (iii).

From now on, we fix a complex number t0 with this property. For every i �

1, we then define ti to be the unique element in X✓ such that tki = ti�1. Since
w(t0↵) 62 W , there exists a positive real number c1 such that

||⇡(w(t0↵))|| = c1 > 0 .

Furthermore, by construction, the sequence t0, t1, t2, . . . belongs to X✓ \ B(1, ").
We thus infer from (10.3) that

||⇡(w(tn↵))|| = ||⇡(A(tn↵)A(tn�1↵) · · · A(t1↵)(w(t0↵))||

� (c0/2)n||⇡(w(t0↵)||

� c1(c0/2)n ,

for all n � 1. Furthermore, since the projection ⇡ is continuous, there is some
positive real number c2 such that ||⇡(u)|| < c2||u|| for all u 2 Cd . Thus

||w(tn↵)|| � c�12 ||⇡(w(tn↵))|| � c�12 c1(c0/2)n

for all n � 1.
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On the other hand, we note that we have a map log : X✓ \ {0} ! C given by
log(exp((�1 + i✓)s) = (�1 + i✓)s, and for each positive real number a, we have
an a-th power map X✓ ! X✓ given by t 7! exp(a log(t)). Since

lim
a!0+

ta0 � 1
a

= log(t0) ,

we have that |ta0 � 1|/a|t0 � 1| ! | log(t0)|/|t0 � 1|, as a ! 0+. Since t0 is fixed,
we let  denote the quantity | log(t0)|/|t0 � 1|.

Then there exists some "0 2 (0, 1) such that

|ta0 � 1| < 2a|1� t0|

for a 2 (0, "0). Thus if n is large enough, say n � n0, then kn > 1/"0 and we have
|tn � 1| = |(t0)1/k

n
� 1| < 2|1 � t0|/kn . Hence kn > 2|1 � t0|/|1 � tn|. Then

for n � n0 we have

||w(tn↵)|| > c�12 c1(c0/2)n

= c�12 c1kn logk(c0/2)

�

⇣
c�12 c1 (2|1� t0|)logk(c0/2)

⌘
|1� tn|� logk(c0/2).

Thus if we take C := �2 logk(c0/2) > 0, the fact that tn tends to 1 as n tends to
infinity implies the existence of a positive integer n1 � n0 such that

||w(tn↵)|| > |1� tn|C ,

for all n � n1. Taking S := {tn | n � n1}, we obtain the desired result.

Lemma 10.3. Let B : B(0, 1) ! Md(C) be a continuous matrix-valued function
whose entries are analytic inside the unit disk and continuous on the closed unit
disk. Let us assume that there exist two positive real numbers " and M such that
| det(B(x))| > (1� |x |)M for every x such that 1� " < |x | < 1. Then there exists
a positive real number C such that for every column vector u of norm 1, we have

||B(x)(u)|| � (1� |x |)C

for every x such that 1� " < |x | < 1.

Proof. Our assumption implies that B(x) is invertible for every x such that 1� " <
|x | < 1. Let 1(x) denote the determinant of B(x). Using the classical adjoint
formula for the inverse of B(x), we see that B(x)�1 has entries ci, j (x) that have
the property that they are expressible (up to sign) as the ratio of the determinant
of a submatrix of B(x) and 1(x). Since the entries of B(x) are continuous on
B(0, 1), each determinant of a submatrix of B(x) is also continuous on B(0, 1). By
compactness, we see that there is a positive real number  such that

|ci, j (x)|  /|1(x)|  (1� |x |)�M
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for every (i, j) 2 {1, . . . , d}
2 and every x such that 1 � " < |x | < 1. Thus there

exists a positive real number C such that

kB(x)�1k  (1� |x |)�C

for every x such that 1� " < |x | < 1. It follows that if u is a vector of norm 1, then

kB(x)(u)k � (1� |x |)C ,

for every x such that 1� " < |x | < 1. The result follows.

Proof of Proposition 10.1. Let ✓ 2 [�1, 1]. Since A(↵) is not nilpotent, we first
infer from Lemma 10.2 that there exist a positive real number C0 and a sequence
tn 2 X✓ , which tends to 1, such that ||w(tn↵)|| > |1� tn|C0 for every integer n � 1.
Let sn 2 X✓ be such that sk

j
n = tn . Then

w(sn↵⇣ ) = A(sn↵⇣ )A
⇣
skn↵⇣ k

⌘
· · · A

⇣
sk

j�1
n ↵⇣ k

j�1
⌘
(w(tn↵)) .

By assumption there exists a positive real number M such that | det(A(x))| > (1�

|x |)M for every x with 1� " < |x | < 1. Set

B(x) := A(x↵⇣ )A
⇣
xk↵⇣ k

⌘
· · · A

⇣
xk

j�1
↵⇣ k

j�1
⌘

.

Then there is a positive real number C1 such that if (1� ")1/k
j�1

< |x | < 1 then

det(B(x)) > (1� |x |)M · · ·

⇣
1� |x |k

j�1
⌘M

� (1� |x |) jM .

It follows from Lemma 10.3 that there exists a positive real number C1 such that
for n sufficiently large we have

||w(sn↵⇣ )|| = ||B(sn)(w(tn↵))|| > (1� |sn|)C1 ||w(tn↵)||

> (1� |sn|)C1 |1� tn|C0 .

We have that tn = exp((�1 + i✓)un) where un is a sequence of positive numbers
tending to 0. Taking limits, we then see that |1� tn|/(1� |sn|) ! | � 1+ i✓ | · k j
and |1� sn|/(1� |sn|) ! | � 1+ i✓ | as n ! 1. Hence there exists a positive real
number C such that

||w(sn↵⇣ )|| � |1� sn|C

for all n sufficiently large. The result follows.
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11. Elimination of singularities at certain roots of unity

In this section we look at the singularities of k-Mahler functions at roots of unity
of a certain form. Strictly speaking, we do not necessarily eliminate singularities,
and so the section title is perhaps misleading. We do, however, show that one can
reduce to the case of considering Mahler equations whose singularities at roots of
unity have a restricted form.

Assumption-Notation 11.1. Throughout this section we make the following as-
sumptions and use the following notation.

(a) We assume that k and l are integers, k, l � 2, for which: there exists a prime
p such that p|k and p does not divide `, and there exists a prime q such that
q|` and q does not divide k. In particular, k and ` are two multiplicatively
independent integers;

(b) We assume that F(x) is a k-Mahler complex power series that satisfies an
equation of the form

aX
i=0

Ai (x)F
⇣
xk

i
⌘

= 0

with A0, . . . , Aa 2 C[x] and A0(0) 6= 0;
(c) We assume that F(x) is an `-Mahler complex power series that satisfies an

equation of the form
bX
i=0

Bi (x)F
⇣
x`i

⌘
= 0

with B0, . . . , Bb 2 C[x] and B0(0) 6= 0.

In this section our aim is to prove the following result. It will be a key result for
proving Theorem 1.3.

Theorem 11.2. Let F(x) 2 C[[x]] be a power series that satisfies Assumption-
Notation 11.1 and that is not a polynomial. Then F(x) satisfies a non-trivial k-
Mahler equation of the form

cX
i=0

Pi (x)F
⇣
xk

i
⌘

= 0,

with the property that P0(0) = 1 and P0(↵) 6= 0 if ↵ is a root of unity satisfying
↵k

j
= ↵ for some positive integer j .

Though this result is of a purely algebraic nature, our proof relies heavily on
analytic methods. One may ask whether a purely algebraic proof exists.



A PROBLEM ABOUT MAHLER FUNCTIONS 1337

Strategy of proof. Using Assumptions (b) and (c), Proposition 7.10 leads to two
different expressions for F :

F(x) =

 
1Y
j=0

A0
⇣
xk

j
⌘!�1

H(x) and F(x) =

 
1Y
j=0

B0
⇣
x` j

⌘!�1

G(x) ,

where H is k-Becker and G is `-Becker. This gives:
 

1Y
j=0

A0
⇣
xk

j
⌘!�1

=

 
1Y
j=0

B0
⇣
x` j

⌘!�1

G(x)H(x)�1 .

Wewant to argue by contradiction assuming that A0 has a root ↵ satisfying ↵k
i0

= ↵
for some positive integer i0. The main idea is to use the asymptotics of Sections 7,
9, and 10 in order to show that the absolute values of the left-hand side and the right-
hand side of the above Equality behave really differently in some neighbourhood of
↵, providing a contradiction. However, there are several technical difficulties and
the proof will be divided into seven steps, as briefly described below.

In Step 1, we will first replace, for technical reasons, F by some function F0
and the Equality above will be consequently replaced by

 
1Y
j=0

eQ0⇣xki0 j⌘
!

�1

=

 
1Y
j=0

R0
⇣
x` j

⌘!�1

G(x)H(x)�1 , (11.1)

where eQ0 is a polynomial satisfying eQ0(↵) = 0 and ↵k
i0

= ↵. Again for technical
reasons, we will also have to replace the point ↵ by ↵⇣0, where ⇣0 is some well-
chosen pn-th root of unity (the choice of ⇣0 is made in Step 3). Here, p denotes the
prime from Assumption (a).

At this point, one could use the results of Sections 7 and 9 to derive upper

bounds showing that both
����
⇣Q

1

j=0 R0(x` j )
⌘

�1
���� and |G(x)| do not grow too fast in

some neighbourhood of the point ↵⇣0. In contrast, it follows from Lemma 9.3 and

Proposition 9.2 that
����
⇣Q

1

j=0
eQ0(xki0 j )⌘�1

���� becomes much bigger at certain well-
chosen points near this point since eQ0(↵) = 0 and ↵k

i0
= ↵. This would be enough

to derive a contradiction if we were able to obtain a lower bound for |H(x)| around
↵⇣0. Since H is a k-Becker function, it is easy to obtain a general upper bound (as
we will do for G in Step 5), but we cannot obtain a suitable lower bound because the
matrix associated with the underlying linear system of functional equations could
be nilpotent.

In order to overcome this difficulty, we will replace H by the function L(x) :=

H(x)
⇣Q

1

j=0(1� ↵�1xki0 j )r
⌘
, for some well-chosen rational parameter r . The
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choice of the parameter r will be given at Step 2. Once this last modification is
made, one obtains, instead of Equality (11.1), an equality of the form:

�����
1Y
j=0

⇣
1� ↵�1xk

i0 j
⌘

�b
�����=

������
 

1Y
j=0

R0
⇣
x` j

⌘!�1

G(x)

 
1Y
j=0

S0
⇣
xk

i0 j
⌘!

L(x)�1
������ ,

where S0 is some polynomial and b is positive. It corresponds to Equality (11.8) in
the proof.

In step 3, we will show that our choice of r allows to derive a suitable lower
bound for |L(x)| around ↵⇣0 by applying Proposition 10.1. On the other hand, in
Steps 4, 5, and 6, we will use the results of Sections 7 and 9 in order to provide suit-

able upper bounds for
����
⇣Q

1

j=0 R0(x` j )
⌘

�1
����, |G(x)|, and

���Q1

j=0 S0(xk
i0 j )

��� around
↵⇣0.

In step 7, we will finally gather all the bounds obtained in Steps 3, 4, 5, and 6
in order to deduce that, around ↵⇣0, the right-hand side of Equality (11.8) is much
smaller than the left-hand side should be according to Lemma 9.3. This will provide
the desired contradiction.

With the preliminary results of Sections 6, 7, 9, and 10, we are now almost
ready to prove Theorem 11.2. Before doing this, we give the following simple
lemma. We recall that the Kronecker symbol �i, j is defined, as usual, by �i, j = 1 if
i = j and �i, j = 0 otherwise.

Lemma 11.3. Let d be a natural number and let A be a d ⇥ d complex matrix
whose (i, j)-entry is �i, j+1 if i � 2. If there is an integer r such that the (1, r)-entry
of of A is nonzero, then A is not nilpotent.

Proof. Let (a1, . . . , ad) denote the first row of A. Then by the theory of companion
matrices, A has characteristic polynomial xd � a1xd�1

� a2xd�2
� · · · � ad . But

if A is nilpotent, its characteristic polynomial must be xd and hence the first row of
A must be zero.

Proof of Theorem 11.2. Consider the set I of all polynomials P(x) 2 C[x] for
which there exist positive integers a and b with 0 < a < b such that

P(x)F(x) 2

bX
j=a

C[x]F
⇣
xk

j
⌘

.

We note that I is an ideal of C[x]. Let P0(x) be a generator for I . It follows from
assumption (b) that P0(0) 6= 0 and we can assume without loss of generality that
P0(0) = 1. Let us assume that ↵ is a root of P0(x) with the property that ↵k

i0
= ↵

for some positive integer i0. We will obtain a contradiction from this assumption,
which will prove the theorem.
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Step 1 (preliminaries). Since F(x) is k-Mahler, it is also ki0-Mahler and hence
F(x) satisfies a non-trivial polynomial equation of the form

dX
j=0

Q j (x)F
⇣
xk

i0 j
⌘

= 0

with Q0, . . . , Qd polynomials and Q0(x)Qd(x) 6= 0. We pick such a nontrivial
relation with Q0 nonzero and the degree of Q0 minimal. By assumption P0 divides
Q0 and so ↵ is a root is of Q0(x). The minimality of the degree of Q0 also implies
that gcd(Q0(x), . . . , Qd(x)) = 1. By Lemma 6.1, there exists some natural number
N such that F(x) can be decomposed as F(x) = T (x) + x N F0(x), where T (x) is
a polynomial of degree N � 1 and F0(x) is a power series with nonzero constant
term such that F0(x) satisfies a ki0-Mahler equation of the form

eX
j=0

eQ j (x)F0
⇣
xk

i0 j
⌘

= 0 (11.2)

with eQ0(0) = 1, eQ0(↵) = 0 and eQ j0(↵) 6= 0 for some integer j0, 0 < j0  e.
Moreover, by picking N sufficiently large, we may assume that F0(x) satisfies a
nontrivial `-Mahler equation

fX
j=0

R j (x)F0
⇣
x` j

⌘
= 0

for some polynomials R j (x) with R0(0) = 1. Now, we infer from Proposition 7.10
that there is some `-Becker power series G(x) such that

F0(x) =

 
1Y
j=0

R0
⇣
x` j

⌘!�1

G(x), (11.3)

and that there is some k-Becker power series H(x) such that

F0(x) =

 
1Y
j=0

eQ0⇣xki0 j⌘
!

�1

H(x) . (11.4)

Step 2 (Choice of the parameter r). For j = 0, . . . , e, we let c j denote the order
of vanishing of eQ j (x) at ↵, with the convention that c j = 1 if eQ j (x) = 0. We
note that by assumption 0 < c0 < 1 and c j0 = 0 < c0. Let

b := max
⇢
c0 � c j

j
| j = 1, . . . , e

�
. (11.5)
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Since at least one of c1, . . . , cd is strictly less than c0, we have that b is positive.
Moreover, by definition there is some j1 2 {1, . . . , e} such that c j1 + bj1 � c0 = 0.
Then, for j 2 {0, . . . , e}, we set

S j (x) :=
eQ j (x)

 j�1Y
n=0

⇣
1� ↵�1xk

i0n
⌘b!⇣

1� ↵�1x
⌘

�c0
. (11.6)

Note that (11.5) implies that S0(x) is a polynomial in C[x] such that S0(0) = 1 and
S0(↵) 6= 0.

Now, we set

L(x) := H(x)

 
1Y
j=0

⇣
1� ↵�1xk

i0 j
⌘b�c0!

. (11.7)

In other words, we choose r := b�c0. Then we infer from Equalities (11.3), (11.4),
(11.6), and (11.7) that

1Y
j=0

⇣
1�↵�1xk

i0 j
⌘

�b
=

 
1Y
j=0

R0
⇣
x` j

⌘!�1

G(x)

 
1Y
j=0

S0
⇣
xk

i0 j
⌘!

L(x)�1 . (11.8)

Step 3 (Upper bound for |L(x)|�1). We first infer from (11.2) and (11.7) that the
function L satisfies the following relation:

eX
n=0

eQn(x)

 
1Y
j=n

S0
⇣
xk

i0 j
⌘

�1
! 

1Y
j=n

⇣
1� ↵�1xk

i0 j
⌘

�b
!
L
⇣
xk

i0n
⌘

= 0 ,

which gives by (11.6) that

L(x) = �

eX
n=1

 
eQn(x)eQ0(x)�1

n�1Y
j=0

S0
⇣
xk

i0 j
⌘ n�1Y
j=0

⇣
1� ↵�1xk

i0 j
⌘b!

L
⇣
xk

i0n
⌘

= �

eX
n=1

 
Sn(x)

n�1Y
j=1

S0
⇣
xk

i0 j
⌘!

L
⇣
xk

i0n
⌘

.

Let A(x) denote the e ⇥ e matrix whose (i, j)-entry is �i, j+1 if i � 2 and whose
(1, j)-entry is

C j (x) := �Sn(x)
n�1Y
j=1

S0
⇣
xk

i0 j
⌘

for j = 1, . . . , e. Then the previous computation gives us the following functional
equation:h

L(x), L
⇣
xk

i0
⌘
, . . . , L

⇣
xk

i0(e�1)
⌘iT

= A(x)
h
L
⇣
xk

i0
⌘
, . . . , L

⇣
xk

i0e
⌘iT

, (11.9)

where T denotes the transpose.
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In order to obtain the desired upper bound (namely, Inequality (11.11) that
will be stated in the sequel), we are going to apply Proposition 10.1. We thus start
by showing that the vector [L(x), L(xki0 ), . . . , L(xki0(e�1) )]T and the matrix A(x)
satisfy the assumptions (i), (ii), (iii), and (iv) of this proposition. We first note
that L(x) is not identically zero since F(x) is not a polynomial. Furthermore, we
assume that L is not a nonzero constant since otherwise the desired upper bound
(11.11) would be immediately satisfied.

(i) By definition,

Sn(x) =
eQn(x)

 
n�1Y
j=0

⇣
1� ↵�1xk

i0 j
⌘b!

(1� ↵�1x)�c0 .

Moreover, a simple computation gives that

n�1Y
j=0

⇣
1� ↵�1xk

i0 j
⌘b

=

⇣
1� ↵�1x

⌘bn
Pn(x)b,

for some polynomial Pn(x) that does not vanish at ↵. By definition of cn , this
shows that

Sn(x) =

⇣
1� ↵�1x

⌘cn+bn�c0
Pn(x)bRn(x) , (11.10)

where Pn(x) and Rn(x) are two polynomials that do not vanish at ↵. By the
definition of b in (11.5), we have cn +bn� c0 � 0 for n 2 {0, . . . , e}, and thus
Sn(x) is analytic in the open unit disk and continuous on the closed unit disk.
Since the finite product

Qn�1
j=1 S0(x

ki0 j ) is a polynomial, this shows that the
entries of the matrix A(x) are analytic on B(0, 1) and continuous on B(0, 1);

(ii) As already observed, there is some integer j1, 1  j1  e, such that c j1+bj1�
c0 = 0. Since Pj1(↵)R j1(↵) 6= 0, Equation (11.10) implies that S j1(↵) 6= 0.
On the other hand, we have that

Q j1�1
j=0 S0(xk

i0 j ) does not vanish at ↵ since
S0(↵) 6= 0 and ↵k

i0
= ↵. We thus obtain that the (1, j1)-entry of A(↵) is

nonzero. By Lemma 11.3, this implies that A(↵) is not nilpotent;
(iii) By definition of the matrix A, we get that

det A(x) = (�1)eCe(x) = (�1)e+1Se(x)
e�1Y
n=1

S0
⇣
xk

i0n
⌘

.

By (11.10), we have that Se(x) = (1 � ↵�1x)ce+be�c0Pe(x)bRe(x), where
Pe(x) and Re(x) are polynomials. It follows that there exist two positive real
numbers � and M such that

| det A(x)| > (1� |x |)M

for every x such that 1� � < |x | < 1;
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(iv) We claim that
⇢h
L(x), L

⇣
xk

i0
⌘
, . . . , L

⇣
xk

i0(e�1)
⌘iT

| x 2 B(0, 1)
�

cannot be contained in a proper subspace of Ce. Indeed, if it were, then there
would exist some nonzero row vector u such that

u
h
L(x), L

⇣
xk

i0
⌘
, . . . , L

⇣
xk

i0(e�1)
⌘iT

= 0

for all x 2 B(0, 1). But this would give that L(x), . . . , L(xki0(e�1) ) are linearly
dependent over C, and hence by Lemma 7.9, we would obtain that L(x) is a
constant function, a contradiction.

It follows from (i), (ii), (iii) and (iv) that we can apply Proposition 10.1 to the vector
[L(x), L(xki0 ), . . . , L(xki0(e�1) )]T . From now on, we fix a positive integer N0 that
will be assume to be large enough in step 4. Let µ be a primitive pn-th root of unity
with n � N0+i0(e�1)⌫p(k). Here, ⌫p(k) denotes the p-adic valuation of k and p is
the prime number from assumption (a). By Proposition 10.1, for every ✓ 2 [�1, 1],
there exist a positive integer M0 and an infinite sequence (t✓ (n))n�0 2 X✓ \ {1}
(denoted by (t (n))n�0 for short) which tends to 1 such that����
h
L(t (n)↵µ), L

⇣
t (n)k

i0
↵µki0

⌘
, . . . , L

⇣
t (n)k

i0(e�1)
↵µki0(e�1)

⌘iT ����> |1� t (n)|M0 ,

for every nonnegative integer n. By the pigeonhole principle, we can find an integer
n0 � N0, a primitive pn0-th root of unity ⇣0, such that for every ✓ 2 [�1, 1] there
exist a sequence (s✓ (n))n�0 in X✓ \ {1} which tends to 1, and a positive integer A1
(depending upon ✓) satisfying

|L(s✓ (n)↵⇣0)|
�1 < |1� s✓ (n)|�A1 (11.11)

for every positive integer n.
Remark 11.4. We fix the pn0-th root of unity ⇣0 once for all.

Step 4 (Upper bound for |(
Q

j�0 R0(x` j ))�1|). From assumption (a), we get that
if N0 is large enough, then R0((↵⇣0)`

j
) 6= 0 for every j � 0. Let n1 and n2,

n1 < n2, be two positive integers such that

(↵⇣0)
`n1

= (↵⇣0)
`n2 . (11.12)

Then for every ✓ 2 [�1, 1] and t 2 X✓ \ {0, 1} we have

1Y
j=0

R0
⇣
(t↵⇣0)

` j
⌘

=

n1�1Y
j=0

R0
⇣
(t↵⇣0)

` j
⌘ n2�1Y
i=n1

1Y
j=0

R0
✓⇣

(t↵⇣0)
`i
⌘` j (n2�n1)

◆
.
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Note that
Qn1�1

j=0 R0(x` j ) is a polynomial that does not vanish at any point of the

finite set
n
(↵⇣0)`

j
) | j � 0

o
. It follows that, for every ✓ 2 [�1, 1], there exist two

positive real numbers C1 and "1 such that

������
 n1�1Y

j=0
R0

⇣
t↵⇣0)

` j
⌘!�1

������ < C1 ,

for all t 2 X✓,"1 . Furthermore, Equality (11.12) implies that for every integer i ,
n1  i  n2 � 1, we have

⇣
(↵⇣0)

`i
⌘` j (n2�n1)

=

⇣
(↵⇣0)

`i
⌘

.

Thus, for every integer i , n1  i  n2 � 1, we can apply Proposition 9.2 to the
infinite product  

1Y
j=0

R0
✓⇣

(t↵⇣0)
`i
⌘` j (n2�n1)

◆!�1

.

This implies the existence of a cocountable subset Y1 of [�1, 1] such that for each
✓ 2 Y1, there is a positive real number "2 and a positive integer A2, both of which
depend upon ✓ , such that

������
 

1Y
j=0

R0
⇣
(t↵⇣0)

` j
⌘!�1

������ < |1� t |�A2 (11.13)

for every t 2 X✓,"2 .

Step 5 (Upper bound for |G(x)|). Note first that, since G(x) is a `-Becker power
series, Theorem 7.6 implies that G(x) is `-regular. By Proposition 7.5, there exist
two positive real numbers C and m such that

|G(x)| < C(1� |x |)�m ,

for every complex number x in the open unit disk. This implies that there exist two
positive real numbers "3 and A3 such that

|G(x)| < (1� |x |)�A3 (11.14)

for every complex number x with 1� "3 < 1� |x | < 1.
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Step 6 (Upper bound for |

Q
j�0 S0(xk

i0 j )|). First note that since ↵k
i0

=↵, S0(0)=
1 and ↵ is not a root of S0, we can apply Proposition 9.2. We thus obtain the
existence of a cocountable subset Y2 ✓ [�1, 1] such that for each ✓ 2 Y2, there is
some positive real numbers �0 and a positive integer M0 such that

�����
1Y
j=0

S0
⇣
(t↵)k

i0 j
⌘����� < |1� t |M0 (11.15)

for every t 2 X✓,�0 . Henceforth, we assume that we have selected ✓ 2 Y1 \ Y2
and we assume that Equations (11.13) and (11.15) hold – this holds precisely when
t 2 X✓,"2 \ X✓,�0 = X✓,min(✏2,�0).

We also note that (↵⇣0)k
i0 j

= ↵ for all j � n0. This implies that

1Y
j=0

S0
⇣
(t↵⇣0)

ki0 j
⌘

= R(t)
1Y
j=0

S0
⇣
(t↵)k

i0 j
⌘

, (11.16)

where

R(t) =

 n0�1Y
j=0

S0
⇣
(t↵⇣0)

ki0 j
⌘! n0�1Y

j=0
S0
⇣
(t↵)k

i0 j
⌘!�1

.

Since ↵k
i0 j

= ↵ and S0(↵) 6= 0, then, for every ✓ 2 Y2, there are two positive real
numbers �1 and C2 such that

|R(t)| < C2 (11.17)

for every t 2 X✓,�1 .
We thus infer from (11.15), (11.16), and (11.17) that for every ✓ 2 Y2 there

exist a positive real number "4 and a positive integer A4, both of which depend upon
✓ , such that �����

1Y
j=0

S0
⇣
(t↵⇣0)

` j
⌘����� < |1� t |�A4 (11.18)

for t 2 X✓,"4 .

Step 7 (Conclusion). Set

5(x) :=

 
1Y
j=0

R0
⇣
x` j

⌘!�1

G(x)

 
1Y
j=0

S0
⇣
xk

i0 j
⌘!

L(x)�1 .

Let us fix a real number ✓ 2 Y1 \ Y2. Collecting all the upper bounds obtained in
(11.14), (11.13), (11.18), and (11.11), we obtain that

|5(s✓ (n))↵⇣0)| < |1� s✓ (n))|�(A1+A2+A3+A4)
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for every integer n large enough. We thus infer from Equality (11.8) that
�����

1Y
j=0

⇣
1� (s✓ (n)⇣0)k

i0 j
⌘

�b
����� = |5(s✓ (n)↵⇣0)| < |1� s✓ (n)|�(A1+A2+A3+A4)

for every integer n large enough. But this contradicts Lemma 9.3, since ⇣ k
j

0 = 1 for
all sufficiently large j . This concludes the proof.

12. Existence of good prime ideals

In this section we prove the following result.

Theorem 12.1. Let R be a ring of the formOK [1/M], where K denotes a number
field and M denotes a positive integer. Let P(x), Q(x) 2 R[x] be two polynomials
with P(0) = Q(0) = 1 and such that none of the zeros of P(x)Q(x) are roots of
unity. Let k and l be two integers, k, l � 2, for which: there exists a prime p such
that p|k and p does not divide `, and there exists a prime q such that q|` and q
does not divide k. Then there are infinitely many prime ideals P in R such that

 
1Y
i=0

P
⇣
xk

i
⌘!�1

mod P and

 
1Y
i=0

Q
⇣
x`i

⌘!�1

mod P

are respectively k- and `-automatic power series in (R/P)[[x]].

We do not knowwhether the conclusion to the statement of Theorem 12.1 holds
if we allow P or Q to vanish at roots of unity, but we suspect that the statement is
false in this setting.

Our proof is based on Chebotarev’s density theorem for which we refer the
reader for example to [22] and to the informative survey [23]. We first prove three
auxiliary results.

Lemma 12.2. Let K be a number field and let ↵ be a nonzero element in K that is
not a root of unity. Then for all sufficiently large natural numbers n the equation
�n = ↵ has no solution � 2 K .

Proof. Let OK be the ring of integers of K . Each nonzero prime ideal ⇡ of OK
gives rise to a rank one discrete valuation ⌫⇡ of the field K . Notice that if �n = ↵
then ⌫⇡ (↵) = n⌫⇡ (�). In particular, if there exists some prime ⇡ for which ⌫⇡ (↵) is
nonzero then we see that, in the equation �n = ↵, n must divide ⌫⇡ (↵) and we get
the result. We may write ↵ = a/b with a, b 2 OK , nonzero. Notice that since OK
is a Dedekind domain, the ideals (a) and (b) must factor into prime ideals. Now if
(a) or (b) are different ideals, then there must be some nonzero prime ideal ⇡ of R
for which the induced valuation of ↵ = a/b is nonzero. The previous remark thus
shows that we must have (↵) = ↵OK = OK . We thus may assume without loss of
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generality that ↵ is a unit in R. But if �n = ↵ then, since OK is integrally closed,
we must have � 2 OK and � must be a unit. By Dirichlet’s unit theorem, the group
of units of OK is a finitely generated abelian group. Hence if �n = ↵ for infinitely
many n, then ↵ must be a torsion element of the units group. That is, ↵ must be a
root of unity, which ends the proof.

Lemma 12.3. Let m be a natural number and let d1, . . . , dm be positive integers.
Suppose that H is a subgroup of

Qm
i=1 (Z/diZ) with the property that there exist

natural numbers r1, . . . , rm with

1/r1 + · · · + 1/rm < 1

such that for each i 2 {1, . . . ,m}, there is an element hi 2 H whose i-th coordinate
has order ri . Then there is an element h 2 H such that no coordinate of h is equal
to zero.

Proof. For each i 2 {1, . . . ,m}, we let

⇡i :

mY
i=1

(Z/diZ) ! Z/diZ

denote the projection onto the i-th coordinate. Given (x1, . . . , xm) 2 Zm we have
that x1h1 + · · · + xmhm 2 H . Observe that the density of integers y for which

⇡i

 X
j 6=i

x j h j + yhi

!
= 0

is equal to 1/ri . Since this holds for all (x1, x2, . . . , xi�1, xi+1, . . . , xm) 2 Zm�1,
we see that the density of (x1, . . . , xm) 2 Zm for which

⇡i

 
mX
j=1

x j h j

!
= 0

is equal to 1/ri . Thus the density of (x1, . . . , xm) 2 Zm for which

⇡i

 
mX
j=1

x j h j

!
= 0

holds for some i 2 {1, . . . ,m} is at most

1/r1 + · · · + 1/rm < 1 .

In particular, we see that there is some (x1, . . . , xm) 2 Zm such that the element
h := x1h1 + · · · + xmhm 2 H has no coordinate equal to zero.
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Lemma 12.4. Let k � 2 be an integer, let R be a ring of the formOK [1/M], where
K denotes a number field and M denotes a positive integer, let P be a nonzero
prime ideal of R, and let a be an element of R. Suppose that for some natural
number n, the polynomial 1� axkn mod P has no roots in R/P. Then the infinite
product  

1Y
j=0

⇣
1� axk

j
⌘!�1

mod P

is a k-automatic power series in (R/P)[[x]].

Proof. Set F(x) :=

Q
1

j=0(1� axk j )�1 mod P. Without loss of generality we can
assume that a does not belong toP. Let us first note that the sequence a, ak, ak2, . . .
is necessarily eventually periodic modulo P. However, it cannot be periodic, as
otherwise the polynomial 1 � axkn would have a root for every natural number n.
Thus there exists a positive integer N such that

a 6⌘ ak
N

⌘ ak
2N
mod P .

Set b := akN and let us consider the polynomial

Q(x) := (1� bx)
�
1� bxk

�
· · ·

⇣
1� bxk

N�1
⌘

.

Now arguing exactly as in the proof of Proposition 7.8, we see that there exists a
polynomial S(x) 2 R[x] such that G(x) := Q(x)�1F(x) satisfies the equation

G(x) ⌘ S(x)G
�
xk

�
mod P .

Thus Theorem 7.6 implies that G(x) mod P is a k-regular power series in
(R/P)[[x]]. By Proposition 7.4, we see that F(x) mod P is a k-regular power
series since it is a product of a polynomial (which is k-regular) and a k-regular
power series. Since the base field is finite, Proposition 7.4 gives that F(x) mod P
is actually a k-automatic power series. This ends the proof.

Proof of Theorem 12.1. By assumption R is of the form OK [1/M], where K de-
notes a number field and M denotes a positive integer. Let L be the Galois ex-
tension of K generated by all complex roots of the polynomial P(x)Q(x). Thus
there are ↵1, . . . ,↵d ,�1, . . . ,�e 2 L such that P(x) = (1�↵1x) · · · (1�↵d x) and
Q(x) = (1 � �1x) · · · (1 � �ex). By assumption there is a prime p that divides k
but does not divide ` and a prime q that divides ` but does not divide k. Let s be a
natural number such that ps and qs are both larger than d + e. Since by assump-
tion none of the roots of P(x)Q(x) is a root of unity, Lemma 12.2 implies that, for
1  i  d and 1  j  e, there are largest nonnegative integers ni and m j with
the property that we can write ↵i = �

pni
i ui and � j = �

qm j

j v j for some elements
�i , � j 2 L(e2⇡ i/(psqs)) and ui , v j roots of unity in L(e2⇡ i/(psqs)).
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Next let n denote a natural number that is strictly larger than the maximum
of the ni and the m j for i and j such that 1  i  d and 1  j  e. Set
E := L(e2⇡ i/(pnqn)) and let F denote the Galois extension of E generated by all
complex roots of the polynomial

dY
i=1

eY
j=1

⇣
x p

n
� �i

⌘⇣
xq

n
� � j

⌘
.

For each i , 1  i  d, we pick a root �i,0 of x p
n
� �i , and for each j , 1  j  e,

we pick a root � j,0 of xq
n
� � j .

Claim. We claim that for every integer i , 1  i  d, there is an automorphism �i
in Gal(F/E) such that

�i (�i,0) = �i,0u ,

with u a primitive pr -th root of unity for some r greater than or equal to s. Similarly,
for every integer j , 1  j  e, there is an automorphism ⌧ j in Gal(F/E) that such
that

⌧ j (� j,0) = � j,0u0 ,

for some primitive qr 0-th root of unity u0 with r 0 greater than or equal to s.

Proof of the claim. Note that
⇢

� (�i,0)

�i,0
| � 2 Gal(F/E)

�

forms a subgroup of the pn-th roots of unity. To prove the claim we just have to
prove that this group cannot be contained in the group of ps�1-th roots of unity.
Let us assume that this is the case. Then the product of the Galois conjugates
of �i,0 must be �̃i := �

pt
i,0v for some t < s and some p(s�1)-th root of unity v.

Moreover, �̃i lies in L(e2⇡ i/(pnqn)). Note that the Galois group of L(e2⇡ i/(pnqn))
over L(e2⇡ i/(psqs)) has order dividing �(pnqn)/�(psqs) = pn�sqn�s . Since all
conjugates of �̃i are equal to �̃i times some root of unity, we see that the relative
norm of �̃i with respect to the subfield L(e2⇡ i/(psqs)) is of the form �̃i

dv0 for some
divisor d of pn�sqn�s and some root of unity v0. Moreover,

�̃i
dv0

2 L
⇣
e2⇡ i/(p

sqs)
⌘

.

Note that the gcd of d and pn�t is equal to pn�s0 for some integer s0 � s. Since
�
pn
i,0 = �̃i

pn�t v�pn�t
2 L(e2⇡ i/(psqs)), we see by expressing pn�s0 as an integer

linear combination of d and pn�t that

�̃i
pn�s0! = �

pn�s0+t
i,0 !0

2 L
⇣
e2⇡ i/(p

sqs)
⌘
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for some roots of unity ! and !0 and some s0 � s. But s0 � t � 1 and so we see
that ↵i is equal to a root of unity times

⇣
�
pn�s0+t
i,0 !0

⌘ps0�t+ni
,

contradicting the maximality of ni . This confirms the claim.

For an integer m, we let Um denote the subgroup of C⇤ consisting of all m-th
roots of unity. Note that we can define a group homomorhpism 8 from Gal(F/E)
to (Upn )

d
⇥ (Uqn )

e by

8(� ) := (� (�1,0)/�1,0, . . . , � (�d,0)/�d,0, � (�1,0)/�1,0, . . . , � (�e,0)/�e,0) .

We see that 8 is a group homomorphism since each � 2 Gal(F/E) fixes the pn-
th and qn-th roots of unity. Set H := 8(Gal(F/E)). The claim implies that the
i-th coordinate in (Upn )

d of 8(�i ) has order at least equal to ps . Similarly, it also
implies that the j-th coordinate in (Uqn )

e of 8(⌧ j ) has order at least equal to qs .
Since ps and qs are both greater than d + e, we have

d/ps + e/qs < 1 .

Now, since (Upn )
d
⇥ (Uqn )

e ⇠
= (Z/pnZ)d ⇥ (Z/qnZ)e, we infer from Lemma 12.3

that there exists an element h in H such that every coordinate of h is different from
the identity element. In other words, this means that there exists some element ⌧ of
Gal(F/E) that fixes no element in the set

{�i,0 | 1  i  d} [ {� j,0 | 1  j  e} .

Since by definition ⌧ fixes all pn-th and qn-th roots of unity, we see more generally
that no root of the polynomial

dY
i=1

eY
j=1

⇣
x p

n
� �i

⌘⇣
xq

n
� � j

⌘

is fixed by ⌧ . Since ⌧ belongs to Gal(F/E), we can see ⌧ as an element of
Gal(F/K ) that fixes all elements of E . We have thus produce an element ⌧ of
Gal(F/K ) that fixes all roots of P(x)Q(x) but that that does not fix any of the
roots of the polynomial

dY
i=1

eY
j=1

⇣
x p

n
� �i

⌘⇣
xq

n
� � j

⌘
.

It follows from Chebotarev’s density theorem (see for instance the discussion in
[23]) that there is an infinite set of nonzero prime ideals S ✓ Spec(R) such that if
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P 2 S then P(x)Q(x) mod P factors into linear terms while the minimal polyno-
mial of

dY
i=1

eY
j=1

⇣
x p

n
� �i

⌘⇣
xq

n
� � j

⌘

over K has no root moduloP. In particular, there is a natural number N larger than
n such that for all such prime ideals P, the polynomial P(x)Q(x) mod P splits
into linear factors, while the polynomial P(x pN )Q(xqN ) mod P does not have
any roots in R/P.

For such a prime ideal P, there thus exist a1, . . . , ad , b1, . . . , be in the finite
field R/P such that

P(x) ⌘ (1� a1x) · · · (1� adx) mod P

and
Q(x) ⌘ (1� b1x) · · · (1� bdx) mod P .

Then  
1Y
j=0

P
⇣
xk

j
⌘!�1

⌘

dY
i=1

 
1Y
j=0

⇣
1� ai xk

j
⌘!�1

mod P .

By Lemma 12.4 the right side is a product of k-automatic power series and hence,
by Proposition 7.4, is k-automatic. Thus the infinite product

 
1Y
j=0

P
⇣
xk

j
⌘!�1

mod P

is a k-automatic power series in R/P[[x]]. Similarly, we get that

 
1Y
j=0

Q
⇣
x` j

⌘!�1

⌘

eY
i=1

 
1Y
j=0

⇣
1� bi x` j

⌘!�1

mod P ,

which implies that the infinite product

 
1Y
j=0

Q
⇣
x` j

⌘!�1

mod P

is a ` automatic power series in R/P[[x]]. This concludes the proof.
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13. Proof of Theorem 1.3

We are now ready to prove our main result.

Proof of Theorem 1.3. Let K be a field of characteristic zero and let k and l be two
multiplicatively independent positive integers.

We first note that if F(x) 2 K [[x]] is a rational function, then for every integer
m � 2, it obviously satisfies a functional equation as in (1.3) with n = 0. Hence,
F(x) is m-Mahler, which gives a first implication.

To prove the converse implication, we fix F(x) 2 K [[x]] that is both k- and
`-Mahler and we aim at proving that F(x) is a rational function. Of course, if F(x)
is a polynomial, there is nothing to prove. From now on, we thus assume that F(x)
is not a polynomial. By Corollary 8.3, we can assume that there are primes p and
q such that p divides k while p does not divide ` and such that q divides ` while
q does not divide k. By Theorem 5.1, we can assume that there is a ring R of the
form OK [1/M] (where K is a number field and M is a positive integer), such that
F(x) 2 R[[x]] and satisfies the equations

nX
i=0

Pi (x)F(xk
i
) = 0

with P0, . . . , Pd 2 R[x] and
mX
i=0

Qi (x)F
⇣
x`i

⌘
= 0

with Q0, . . . , Qe 2 R[x]. Without loss of generality, we can assume that all com-
plex roots of P0(x) and Q0(x) belong to R (otherwise we could just enlarge R by
adjoining these numbers). Furthermore, we can assume that P0(x)Q0(x) 6= 0. By
Corollary 6.2, we can also assume that P0(0) = 1 and that Q0(0) = 1, for otherwise
we could just replace F(x) by the power series F0(x) given there. We choose a ring
embedding of R in C and for the moment we regard F(x) as a complex power se-
ries. By Theorem 11.2, we can assume that if ↵ is a root of unity such that ↵k j = ↵
for some positive integer j , then P0(↵) 6= 0. Similarly, we can assume that if � is a
root of unity such that �` j

= � for some positive integer j , then Q0(�) 6= 0.
By Proposition 7.10, we can write

F(x) =

 
1Y
j=0

P0
⇣
xk

j
⌘!�1

G(x) ,

for some k-regular power series G(x) 2 R[[x]]. Furthermore, we can decompose
P0(x) as P0(x) = S0(x)S1(x), where S0(x) and S1(x) are two polynomials, the
zeros of S0(x) are all roots of unity, none of the zeros of S1(x) is a root of unity,
and S0(0) = S1(0) = 1. Since by assumption all roots of P0(x) lie in R, we get that
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both S0(x) and S1(x) belong to R[x]. By assumption if ↵ is a root of S0(x) then
for every positive integer j , one has ↵k

j
6= ↵. Then, it follows from Proposition 7.8

that  
1Y
j=0

S0
⇣
xk

j
⌘!�1

2 R[[x]]

is a k-regular power series. Set H(x) :=

⇣Q
1

j=0 S0(xk
j
)
⌘

�1
G(x). We infer from

part (iii) of Proposition 7.4 that H(x) is a k-regular power series. Moreover, one
has

F(x) =

 
1Y
j=0

S1
⇣
xk

j
⌘!�1

H(x) . (13.1)

Similarly, by Proposition 7.10, we can write

F(x) =

 
1Y
j=0

Q0
⇣
xk

j
⌘!�1

I (x) ,

for some k-regular power series I (x) 2 R[[x]]. As previously, we can decompose
Q0(x) as Q0(x) = T0(x)T1(x), where T0(x) and T1(x) belong to R[x], the zeros
of T0(x) are all roots of unity, none of the zeros of T1(x) are roots of unity, and
T0(0) = T1(0) = 1. By assumption if � is a root of T0(x) then for every positive
integer j , one has �` j

6= �. Then it follows from Proposition 7.8 that
 

1Y
j=0

T0
⇣
x` j

⌘!�1

2 R[[x]]

is a `-regular power series. Set J :=

Q
1

j=0 T0(xk
j
)�1 I (x). Again, we see by

Proposition 7.4 that J (x) is `-regular. Moreover, one has

F(x) =

 
1Y
j=0

T1
⇣
xk

j
⌘!�1

J (x) . (13.2)

By Theorem 12.1, there is an infinite set of nonzero prime ideals S of R such that,
for every prime idealP in S ,

 
1Y
j=0

S1
⇣
xk

j
⌘!�1

mod P

is a k-automatic power series in (R/P)[[x]] and
 

1Y
j=0

T1
⇣
x` j

⌘!�1

mod P
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is a `-automatic power series in (R/P)[[x]]. Then we infer from Equalities (13.1)
and (13.2) that, for P 2 S , F(x) mod P is k-regular for it is the product of two
k-regular power series. Similarly, F(x) mod P is a `-regular power series.

We recall that since R is of the formOK [1/M], it is aDedekind domain; that is,
it is a Noetherian normal domain of Krull dimension one. In particular, all nonzero
prime ideals are maximal. Now since R is a finitely generated Z-algebra andP is a
maximal ideal, the quotient ring R/P is a finite field (see [18, Theorem 4.19, page
132]). By Proposition 7.4, this implies that F(x) mod P is actually both k- and
`-automatic. By Cobham’s theorem, we obtain that the sequence of coefficients of
F(x) mod P is eventually periodic and hence F(x) mod P is a rational function.

Note that since S is infinite, the intersection of all ideals in S is the zero ideal
(see [18, Lemma 4.16, page 130]). Moreover, F(x) mod P is rational for every
prime ideal P 2 S . Applying Lemma 5.4, we obtain that F(x) is a rational func-
tion. This ends the proof.
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Multiplicative relations among singular moduli

JONATHAN PILA AND JACOB TSIMERMAN

Abstract. We consider some Diophantine problems of mixed modular-multipli-
cative type. In particular, we prove, for each n � 1, a finiteness result for n-tuples
of singular moduli minimally satisfying a non-trivial multiplicative relation.

Mathematics Subject Classification (2010): 14G18 (primary); 03C64 (sec-
ondary).

1. Introduction

We consider some Diophantine problems of mixed modular-multiplicative type as-
sociated with the Zilber-Pink conjecture (ZP; see [4, 26, 35] and Section 2). Our
results rely on the “modular Ax-Schanuel” theorem recently established by us [24].

Recall that a singular modulus is a complex number which is the j-invariant
of an elliptic curve with complex multiplication; equivalently it is a number of the
form � = j (⌧ ) where j : H ! C is the elliptic modular function, H = {z 2 C :

Im(z) > 0} is the complex upper-half plane, and ⌧ 2 H is a quadratic point (i.e.
[Q(⌧ ) : Q] = 2).
Definition 1.1. An n-tuple (�1, . . . , �n) of distinct singular moduli will be called a
singular-dependent n-tuple if the set {�1, . . . , �n} is multiplicatively dependent (i.e.Q

�
ai
i = 1 for some integers ai not all zero), but no proper subset is multiplicatively

dependent.

Theorem 1.2. Let n � 1. There exist only finitely many singular-dependent n-
tuples.

The independence of proper subsets is clearly needed to avoid trivialities. The
result is ineffective. Some examples (including a singular-dependent 5-tuple) can
be found among the rational singular moduli (listed in [29, A.4]; see 6.3). Bilu-
Masser-Zannier [3] show that there are no singular moduli with �1�2 = 1. This

JP was supported by an EPSRC grant entitled “O-minimality and Diophantine geometry”, refer-
ence EP/J019232/1. JT was supported by an NSERC discovery grant.
Received February 3, 2015; accepted in revised form June 14, 2016.
Published online December 2017.
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result is generalised by Bilu-Luca-Pizarro-Madariaga [2] to classify all solutions
of �1�2 2 Q⇥. Habegger [12] shows that only finitely many singular moduli are
algebraic units.

In addition to the “modular Ax-Schanuel”, we make use of isogeny estimates
and other arithmetic ingredients, gathered in Section 6, and we require the follow-
ing result showing that distinct rational “translates” of the j-function are multi-
plicatively independent modulo constants. To formulate it, recall that, for g1, g2 2

GL+

2 (Q), the functions j (g1z), j (g2z) are identically equal if and only if [g1] =

[g2] in PSL2(Z)\PGL+

2 (Q); functions f1, . . . , fk : H ! C will be called mul-
tiplicatively independent modulo constants if there is no relation

Qk
i=1 f

ni
i = c

where ni are integers, not all zero, and c 2 C.

Theorem 1.3. Let g1, . . . , gk 2 GL+

2 (Q). If the functions j (g1z), . . . , j (gkz) are
pairwise distinct then they are multiplicatively independent modulo constants.

Theorem 1.3 is not predicted by ZP, nor would it follow from “Ax-Schanuel”
for exp and j (see Section 3). But in view of Theorem 1.3, Theorem 1.2 is implied
by ZP.

The Zilber-Pink setting is introduced in Section 2. After the proofs of 1.3 and
1.2 in Section 4 and Section 6, we discuss further ZP problems in the same setting in
Section 7, Section 8, and Section 9, obtaining some partial results and some results
conditional on certain “weakly bounded height conjectures” which we formulate in
this setting. These are along the lines of a conjecture of Habegger [10] (see also [11,
Appendix B]) in the modular setting, itself an analogue of the “Bounded Height
Conjecture” for (C⇥)n formulated by Bombieri-Masser-Zannier [4] and proved by
Habegger [9].

ACKNOWLEDGEMENTS. We thank Gareth Jones for comments. We are grateful to
the referee for corrections and careful comments as well as for raising the question
addressed in Section 9.

2. The Zilber-Pink setting

We identify varieties and subvarieties with their sets of complex points (thus
Y (1)(C) = C and Gm(C) = C⇥). Varieties and subvarieties are assumed irre-
ducible over C.

For m, n 2 N = {0, 1, 2, . . .} set

X = Xm,n = Y (1)m ⇥ Gn
m.

Definition 2.1.

1. A weakly special subvariety of Y (1)m = Xm,0 = Cm is a subvariety of the
following form. There is a “partition” m0, . . . ,mk of {1, . . . ,m}, in which only
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m0 is permitted to be 0, but k = 0 is permitted such that M = M0 ⇥ M1 ⇥

. . . ⇥ Mk where M0 is a point in Cm0 (here Cmi refers to the cartesian product
of the coordinates contained in mi , which is a subset of {1, . . . ,m}) and, for
i = 1, . . . , k, Mi ⇢ Cmi is a modular curve;

2. A special point of Cm is a weakly special subvariety M of dimension zero (so
n0 = {1, . . . , n} and M = M0) such that each coordinate of M is a singular
modulus;

3. A special subvariety of Cm is a weakly special subvariety such that m0 = ; or
M0 2 Cm0 is a special point. It is strongly special if m0 = ;;

4. A weakly special subvariety ofGn
m = X0,n = (C⇥)n is a coset of a subtorus, i.e.

a subvariety defined by a finite system of equations
Q
xai ji = ⇠ j , j = 1, . . . , k

where, for each j , ai j 2 Z are not all zero, ⇠ j 2 C⇥ and the lattice generated by
the exponent vectors (a1 j , . . . , anj ), j = 1, . . . , k is primitive;

5. A special point of Gn
m is a torsion point;

6. A special subvariety of Gn
m is a weakly special subvariety such that each ⇠ j is a

root of unity; i.e. it is a coset of a subtorus by a torsion point;
7. A weakly special subvariety of X is a product M ⇥ T where M, T are weakly
special subvarieties of Y (1)m, Gn

m, respectively, and likewise for a special point
of X and special subvariety of X .

Definition 2.2. Let W ⇢ X be a subvariety. A subvariety A ⇢ W is called an
atypical component (of W in X) if there is a special subvariety T ⇢ X such that
A ⇢ W \ T and

dim A > dimW + dim T � dim X.

The atypical set of W (in X) is the union of all atypical components (of W in X),
and is denoted Atyp(W, X), or Atyp(W ) if X is implicit from the context.

Variants of the following conjecture, in different settings, were made indepen-
dently by Zilber [35], Bombieri-Masser-Zannier [4], and Pink [26].
Conjecture 2.3 (Zilber-Pink for X). Let W ⇢ X . Then Atyp(W ) is a finite union
of atypical components; equivalently, there are only finitely many maximal atypical
components.

The full Zilber-Pink conjecture is the same statement about an arbitrary mixed
Shimura variety (with its special subvarieties), and an algebraic subvariety W ⇢ X .
In fact the above is the analogue of the statements in [4, 35] in the general setting
considered by Pink, and is notionally stronger than the statement in [26]. For a
general discussion of the conjecture see [34].
Definition 2.4. Let A ⇢ X be a subvariety. We denote by hAi the smallest special
subvariety containing A (which exists as it is just the intersection of all special
subvarities containing A), and define the defect of A by

�(A) = dimhAi � dim A.

Thus A ⇢ W is atypical if �(A) < dim X � dimW , and W itself is atypical if
hW i 6= X .
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Now in Conjecture 2.3 we only look for maximal atypical components, and we
do not care if a larger atypical component contains a smaller but more atypical (i.e.
smaller defect) one. But in fact the conjecture (taken over all special subvarieties of
X) implies a formally stronger version (see [14, Proposition 2.4]).
Definition 2.5. A subvariety W ⇢ V is called optimal for V if there is no strictly
larger subvariety W ⇢ W 0

⇢ V with �(W 0)  �(W ).
Conjecture 2.6. Let V ⇢ X . Then V has only finitely many optimal subvarieties.

For a particular V and X , finding (or establishing the finiteness of) all optimal
subvarieties could be more difficult than finding (or establishing the finiteness of)
all maximal atypical subvarieties.

Now (as in [14]) we can repeat the same pattern of definitions with weakly
special subvarieties instead of special ones. The smallest weakly special subvariety
containing W we denote hW igeo, and we define the geodesic defect to be

�geo(W ) = dimhW igeo � dimW.

A subvariety W ⇢ V is called geodesic-optimal if there is no strictly larger subva-
riety W 0

⇢ V with �geo(W 0)  �geo(W ). (This property is termed “cd-maximal” in
the multiplicative setting in [27]). The following fact was established for modular,
multiplicative and Abelian varieties separately in [14].

Proposition 2.7. Let V ⇢ Xm,n . An optimal subvariety of V is geodesic-optimal.

Proof. It is easy to adapt the proof of [14, Proposition 4.3] to show that Xm,n has
the “defect condition”, and then the above follows from the formal properties of
weakly special and special subvarieties, as in [14, Proposition 4.5].

Now we consider

V = Vn = {(x1, . . . , xn, t1, . . . , tn) : xi = ti , i = 1, . . . , n} ⇢ Xn = Xn,n.

We see that if a tuple (�1, . . . , �n) of singular moduli satisfies a non-trivial multi-
plicative relation then the point

6 = (�1, . . . , �n, �1, . . . , �n) 2 V

lies in the intersection of V with a special subvariety of X of codimension n + 1.
So such a point is an atypical component of Vn .

3. Mixed Ax-Schanuel

We now take again

X = Xm,n = Y (1)m ⇥ Gn
m, U = Um,n = Hm

⇥ Cn, and ⇡ : U ! X

given by

⇡(z1, . . . , zm, u1, . . . , un) =

�
j (z1), . . . , j (zm), exp(u1), . . . , exp(un)

�
.
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Definition 3.1.

1. An algebraic subvariety ofU will mean a complex-analytically irreducible com-
ponent of Y \U where Y ⇢ Cm

⇥ Cn is an algebraic subvariety;
2. A weakly special subvariety ofU is an irreducible component of ⇡�1(W )where

W is a weakly special subvariety of X . Likewise for special subvariety of U .

The following result leads to the analogue of the “Weak Complex Ax” (WCA; [14,
Conjecture 5.10]) in this mixed modular-multiplicative setting. It is deduced from
the same statement in the two extreme special cases: WCA for Y (1)n , which is a
consequence of the full modular Ax-Schanuel result established in [24], and WCA
for Gn

m, which is a consequence of Ax-Schanuel [1].
Note that we could avoid talking about “algebraic subvarieties ofU” by taking

Y to be an algebraic subvariety of Cm
⇥ Cn and A to be a complex-analytically

irreducible component of Y \ ⇡�1(V ).

Theorem 3.2. Let V ⇢ X and W ⇢ U be algebraic subvarieties and A ⇢ W \

⇡�1(V ) a complex-analytically irreducible component. Then

dim A = dim V + dimW � dim X ,

unless A is contained in a proper weakly special subvariety of U .

Proof. We suppose that A is not contained in a proper weakly special subvariety of
U , and prove the dimension statement. We may suppose that A is Zariski-dense in
W and that ⇡(A) is Zariski-dense in V .

Let V0 be the image of V under the projection X ! Gn
m, and W0 the image of

W under the projection p0 : U ! Cn . Then the image A⇤ of A under p0, being
connected, is contained in some complex-analytically irreducible component A0 ⇢

W0 \ exp�1(V0). Then A0 is not contained in a proper weakly special subvariety
of Cn , otherwise A would be contained in a proper weakly special subvariety of U .
So by Ax-Schanuel ([1]; see also [32]) we have

dim A0  dimW0 + dim V0 � dimCn.

Now we look at fibres inHm and Cm . We let Au,Wu ⇢ Hm, Vt ⇢ Cm be the fibres
(of A,W, V respectively) over u = (u1, . . . , un) 2 A0, u 2 W0, t = (t1, . . . , tn) 2

V0, respectively. Now A0 must be Zariski-dense inW0, else A could not be Zariski-
dense in W , and similarly exp(A0) must be Zariski-dense in V0.

Since A is irreducible, the image A⇤ has constant dimension (see [16, V. 3.2,
Corollary 2]) equal to the rank rk(p0) of p0 : A ! A0, and dim A⇤

 dim A0.
Further we have [16, V. 3.3] that dim A = rk(p0)+�(p0) = dim A⇤

+�(p0) where
�(p0) is the generic (i.e. minimal) fibre dimension of p0.

The projection W ! W0 has a generic fibre dimension away from a locus
W 0

⇢ W of lower dimension, which does not contain A. So a generic fibre over
A⇤ outside the image of W 0 is generic for A⇤ as well as W0, and likewise for the
corresponding fibre over V0.
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For u 2 A⇤, if Au is not contained in a proper weakly special subvariety of
Hm , then by Ax-Schanuel for the j-function [24] we have,

dim Au  dimWu + dim Vu � dimHm .

If this holds generically, adding up the two last displays gives us the statement we
want.

So we consider what happens when this fails generically. If the Au were con-
tained in a fixed proper weakly special, than A would be, which we have precluded.
So the fibres must belong to a “moving family” of proper weakly specials. As
elements of GL+

2 (Q) can’t vary analytically, the only possibility is that some coor-
dinates are constant on the fibres (though not constant on A).

Without loss of generality, we can suppose that these coordinates are z1, . . . , zk .
For 1  `  k, let V` be the image of V under the projection X ! C`

⇥ Gn
m, and

W` the image of W under the projection p` : U ! H`
⇥ Cn . Then the image

of A under p`, being connected, is contained in some complex-analytically irre-
ducible component A` ⇢ W` \⇡�1

`,n (V`). Note that this is consistent with the earlier
definition of A0,W0, V0.

Now we prove inductively that the dimension inequality holds at “level” `, and
once it holds at level k we are done. We assume that, for some 0  h < k:

(A) Ah is Zariski-dense in Wh and ⇡h(Ah) is Zariski-dense in Vh ;
(B) dim Ah  dimWh + dim Vh � (n + h).

We know that these both hold for h = 0, and that (A) holds for all h.
Now zh+1 is constant on the fibres, so dim Ah+1 = dim Ah . To show (B) we

need only show that either dimWh+1 > dimWh or dim Vh+1 > dim Vh .
Suppose that dimWh+1 = dimWh . This means that, as functions on W , zh+1

is algebraic over z1, . . . , zh, u1, . . . , un . But, as W is not contained in a proper
weakly special subvariety, zh+1 is not constant on W nor does it satisfy any re-
lation zh+1 = gzi where 1  i  h and g 2 GL+

2 (Q). But then, by the “Ax-
Lindemann” result of [22] for the j-function, j (zh+1) is algebraically indepen-
dent of j (z1), . . . , j (zh), exp(u1), . . . , exp(un) as functions on W . Hence by the
Zariski density these functions are independent as functions on Ah+1, and hence,
by the Zariski-density of ⇡h+1(Ah+1) in Vh+1, we must have that dim Vh+1 =

dim Vh + 1.

From this statement one may deduce, as explained in [23, above 5.7], the ana-
logue of [14, Conjecture 5.10] (for j itself this follows from [24]).

Theorem 3.3. Let U 0
⇢ U be a weakly special subvariety, and put X 0

= ⇡(U 0).
Let V ⇢ X 0 andW ⇢ U 0 be subvarieties, and A a complex-analytically irreducible
component of W \ ⇡�1(V ). Then

dim A = dim V + dimW � dim X 0

unless A is contained in a proper weakly special subvariety of U 0.



MULTIPLICATIVE RELATIONS AMONG SINGULAR MODULI 1363

It is shown in [14] that Theorem 3.2 is equivalent by arguments using only the
formal properties of the collection of weakly special subvarieties to the following
version. We need the following definition from [14].
Definition 3.4. Fix a subvariety V ⇢ X .

1. A component with respect to V is a complex analytically irreducible component
of W \ ⇡�1(V ) for some algebraic subvariety W ⇢ U ;

2. If A is a component with respect to V we define its defect to be @(A) =

dimZcl(A) � dim A, where Zcl(A) denotes the Zariski closure of A;
3. A component A with respect to V is called optimal for V if there is no structly
larger component B with respect to V with @(B)  @(A);

4. A component A with respect to V is called geodesic if it is a component of
W \ ⇡�1(V ) for some weakly special subvariety W .

Proposition 3.5. Let V ⇢ X . An optimal component with respect to V is geodesic.

Proof. The same as the proof that “Formulation A” implies “Formulation B” in [14].
(The proof of the reverse implication is also the same as given there.)

4. Proof of Theorem 1.3

We start by recalling some background on trees and lattices associated to GL+

2 (Q).
Let TQ = PSL2(Z)\PGL+

2 (Q), where we assume their images are distinct. For a
prime number p, TQ maps into Tp = PSL2(Zp)\PGL2(Qp), and embeds into the
product of the Tp over all p.

Now TQ may be identified with the space of Z-lattices in Q2 up to scaling,
by sending g to the lattice spanned by e1g, e2g, where e1 = (1, 0), e2 = (0, 1).
Likewise, Tp may be identified with the space of Zp-lattices in Q2

p up to scale.
Moreover, Tp may be given the structure of a connected (p + 1)-regular tree by
saying that two lattices L , L 0 are adjacent if one can scale L 0 to be inside L with
index p. There is a natural right action of PGL2(Qp) on Tp: it acts on Q2

p (up to
scaling) in the natural way and thus on the lattices in it.

Since Tp is a tree there is a unique shortest path between any two nodes, and
any path between those nodes traverses that path.

Our proof will study curves isogenous to the curve E0 whose j-invariant is
0. These curves have CM by Z[⇣ ], where ⇣ = exp(2⇡ i/3). A point z 2 H with
j (z) = 0 corresponds to the elliptic curve E0 together with a basis v1, v2 for its
integral homology H1(E0, Z). For any sub-lattice L ⇢ H1(E0, Q) we can define
an elliptic curve EL isogenous to E0 which only depends on L up to scale. To
do this, scale L until it contains H1(E0, Z) and the quotient is cyclic. We can
identify QL = L/H1(E0, Z) with a subgroup of the torsion group of E0 and take
the quotient. Define T 0

Q to be the space of lattices in H1(E0, Q), up to scaling, and
correspondingly T 0

p the space of Zp-lattices in H1(E0, Qp), up to scaling.
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Now suppose that EL is isomorphic to E0. This implies that the quotient QL is
the same as that of the kernel of an endomorphism x of E0. If we identify H1(E, Z)
with Z[⇣ ], then the kernel of multiplication by x is (x�1)/Z[⇣ ], where (m) denotes
the fractional ideal generated by m. These correspond to elements of the fractional
ideal group of Zp[⇣ ] (providing the endomorphisms giving the kernels) quotiented
out by Q⇥

p (scaling). Explicitly we find the following.

1. If p ⌘ 1 mod 3 then (p) has two disctinct primes above it, whose product is
(p). Then Zp[⇣ ] = Zp � Zp with ideal group Z2, which we quotient by the
diagonal Z. These nodes give a line in the tree: each such node being adjacent
to two other such nodes for which the edges correspond to the two primes over
(p);

2. If p ⌘ 2 mod 3 then Zp[⇣ ] = Zp2 , with ideal group Z which we quotient by Z.
Thus in this case there is just one node coming from curves isomorphic to E0;

3. If p = 3 we get a ramified extension of Z3, which still has ideal group Z (gen-
erated by powers of the uniformiser) but now we quotient by 2Z since 3 has
valuation 2. We thus have two nodes coming from curves isomorphic to E0,
which are adjacent in the tree.

Note that in every case there is at least one node N 0 of T 0

p adjacent to H1(E0, Z)
such that any lattice L for which the shortest path from H1(E0, Z) to L goes through
N 0 is not isomorphic to E0.

Proposition 4.1. Let g1, . . . , gk 2 GL+

2 (Q) and suppose that the functions j (gi z)
are distinct. Then there exists z 2 H such that j (gi z) = 0 for exactly one i .

Proof. Suppose first that there exists a prime number p such that the images ui of
the gi in T 0

p are distinct. Without loss of generality we may assume that g1, g2 have
images u1, u2 in T 0

p whose distance is at least as large as that between the images of
any distinct gi , gk . This implies there is a unique node N adjacent to u1 such that
the shortest path from u1 to any other ui goes through N . We may further suppose
without loss of generality that g1 = 1.

Fixing a basis v1, v2 for H1(E0, Z) gives a map from Tp to T 0

p, sending Z2 to
H1(E0, Z). By choosing v1, v2 appropriately we can send N to N 0. It follows that
the z with j (z) = 0 corresponding to this choice has j (gi z) 6= 0 for all i > 1.

Now we give the proof without the simplifying assumption. While no single
p may separate all the gi , finitely many p do. Let S = {g1, . . . , gk}. Consider
the image of S in T2 and pick two nodes with maximal distance among images of
pairs from S. Let u2 be one of these “extremal” nodes, and let S2 be the subset of S
whose image in T2 is u2.

Now consider the image of S2 in T3, choose an extremal node u3 and let S3 be
the subset of S2 whose image in T3 is u3. After finitely many steps we arrive at a set
Sp with only a single element. We may assume this element is g1 and that g1 = 1.

For each prime q  p we let Nq be the unique node adjacent to uq through
which all paths from uq to other images Sr go, where r is the prime preceding q (or
r = 0 for p = 2).
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Choose a basis v1, v2 of H1(E0, Z) such that the induced map from Tq to T 0

q
takes Nq to N 0

q for all q  p. The fact that this is possible amounts to the fact that
SL2(Z) subjects onto SL2(Z/nZ) for every n.

The claim now is that, for each i > 1, j (gi z) 6= 0. To see this, let q < p be
the largest prime such that gi 2 Sq , and q 0

 p the next prime after q. The above
argument in the tree T 0

q 0
shows that gi z does not represent E0. This proves the claim

and the proposition follows.

Proof of Theorem 1.3. Theorem 1.3 follows directly from Proposition 4.1

5. Arithmetic estimates

The proof of Theorem 1.2, and further results considered in the sequel, use some
basic arithmetic estimates which are gathered here. Several of them were used
for similar purposes in [13]. The absolute logarithmic Weil height of a non-zero
algebraic number ↵ is denoted h(↵); the absolute Weil height is H(↵) = exp h(↵).

Constants c0, c1, c2 . . . here and in the sequel are positive and absolute (though
not necessarily effective), and have only the indicated dependencies.

Weak Lehmer inequality

A lower bound for the height by any fixed negative power of the degree suffices for
our purposes. Loher has proved (see [17]): if [K : Q] = d � 2 and 0 6= ↵ 2 K is
not a root of unity then

h(↵) �

1
37
d�2(log d)�1. (5.1)

Singular moduli

For a singular modulus � , we denote by R� the associated quadratic order and
D� = D(R� ) its discriminant. Habegger [12, Lemma 1] shows that

h(� ) � c1 log |D� | � c0, (5.2)

based on results of Colmez and Nakkajima-Taguchi.
No singular modulus is a root of unity (we thank Gareth Jones for pointing

this out: a singular modulus has a Galois conjugate which is real, but ±1 are not
singular moduli by inspecting the list of rational singular moduli, e.g., in [29, A. 4]).
This together with Kronecker’s theorem imply, for a non-zero singular modulus � ,

h(� ) > c2. (5.3)

In the other direction [13, Lemma 4.3], for all ✏ > 0,

h(� )  c3(✏)|D� |
✏ . (5.4)
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Finally, we note that if ⌧ is a pre-image of a singular modulus � in the classical
fundamental domain for the SL2(Z) action then (see [22, 5.7])

H(⌧ )  2D� . (5.5)

Class numbers of imaginary quadratic fields

The class number of an imaginary quadratic order R will be denoted Cl(R). Recall
that, for a singular modulus � , [Q(� ) : Q] = Cl(R� ). By Landau-Siegel, for every
✏ > 0,

Cl(R) � c4(✏)|D(R)|
1
2�✏ . (5.6)

In the other direction,
Cl(R)  c5(✏)|D(R)|

1
2+✏ (5.7)

with c5(✏) explicit (see, e.g., Paulin [20, Proposition 2.2], for a precise statement).

Faltings height of an elliptic curve

Let E be an elliptic curve defined over a number field. Let hF(E) denote the semi-
stable Faltings height of E , and jE its j-invariant. Then ([31, 2.1]; see also [10])����h( jE ) �

1
12
hF(E)

����  c6 logmax{2, h( jE )} (5.8)

with an absolute constant c6.
Further, if E1, E2 are elliptic curves defined over a number field with a cyclic

isogney of order N between them (i.e. 8N ( jE1, jE2) = 0) then ( [28, 2.1.4]; see
also [13, proof of Lemma 4.2])

|hF(E1) � hF(E2)| 

1
2
log N . (5.9)

Isogeny estimate

Let K be a number field with d = max{2, [K : Q]}. Let E, E 0 be elliptic curves
defined over K , with hF(E) and hF(E 0) their semi-stable Faltings heights. When E
and E 0 are isogenous, the fundamental results of Masser and Wüstholz [19] give an
estimate for the degree of as minimal isogeny between E, E 0 in terms of [K : Q]

and the height of one of them. Gaudron and Rémond [8] prove the following explicit
result improving that of Pellarin [21].

If E, E 0 are isogenous then there exists an isogeny E ! E 0 of degree N
satisfying

N  1013d2 max{hF(E), log d, 1}2. (5.10)

In particular there exists a cyclic isogeny with the same degree bound.
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Estimate for the height of a multiplicative dependence

The following result, due to Yu (see [17]), allows us to get control of the height of
a multiplicative relation on our singular moduli in terms of their height. It is thus a
kind of “multiplicative isogeny estimate”.

Let ↵1, . . . ,↵n be multiplicatively dependent non-zero elements of a number
field K of degree d � 2. Suppose that any proper subset of the ↵i is multiplicatively
independent. Then there exist rational integers b1, . . . , bn with ↵

b1
1 . . .↵

bn
n = 1 and

|bi |  c7(n)dn log dh(↵1) . . . h(↵n)/h(↵i ), i = 1, . . . , n. (5.11)

6. Proof of Theorem 1.2

Fix n. Let X = Xn = Xn,n = Y (1)n ⇥ Gn
m, and let

V = Vn = {(x1, . . . , xn, t1, . . . , tn) 2 X : ti = xi , i = 1, . . . , n}.

So dim V = codimV = n and a singular-dependent n tuple (x1, . . . , xn) gives rise
to an atypical point (x1, . . . , xn, x1, . . . , xn) 2 V .

Lemma 6.1. A singular-dependent n-tuple may not be contained in an atypical
component of V of positive dimension.

Proof. A singular-dependent tuple can never be contained in a special subvariety
of X defined by two (independent) multiplicative conditions, for between them we
could eliminate one coordinate, contradicting the minimality.

Now a special subvariety of the form M⇥Gn
m, where M is a special subvariety

of Y (1)n , can never intersect V atypically; neither can one of the form Y (1)n ⇥ T
where T is a special subvariety of Gn

m.
Let us consider a special subvariety of the form M ⇥ T where T is defined by

one multiplicative condition. The intersection of M ⇥ T with V consists of those
n-tuples of M which belong to T . This would typically have dimension dimM�1,
and so to be atypical we must have M\Gn

m ⇢ T . Now Theorem 1.3 implies that M
has two identically equal coordinates, but then cannot contain a singular-dependent
tuple.

Proof of Theorem 1.2. If � = j (⌧ ) is a singular modulus, so that ⌧ 2 H is quadratic
over Q, we define its complexity 1(� ) to be the absolute value of the discriminant
of ⌧ i.e. 1(� ) = |D� | = |b2 � 4ac| where ax2 + bx + c 2 Z[x] with (a, b, c) = 1
has ⌧ as a root. For a tuple (�1, . . . , �n) of singular moduli we define the complexity
of � to be 1(� ) = max(1(�1), . . . ,1(�n)).

Now suppose that V contains a point corresponding to a singular-dependent
n-tuple of sufficiently large complexity, 1. By Landau-Siegel (5.6) with ✏ = 1/4,
such a tuple has, for sufficiently large (though ineffective) 1, at least c511/4 con-
jugates over Q. Each is a singular-dependent n-tuple, and they give rise to distinct
points in V .
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Let Fj be the standard fundamental domain for the action of SL2(Z) onH, and
Fexp the standard fundamental domain for the action of 2⇡ iZ (by translation) onC.

We now consider the sets

Y =

n
(z, u, r, s) 2 Fnj ⇥ Fnexp ⇥ Rn

⇥ R : j (z) = exp(u), r · u = 2⇡ is
o

,

so that ( j (z), exp(u)) 2 V for (z, u, r, s) 2 Y and

Z =

n
(z, r, s) 2 Fnj ⇥ Rn

⇥ R : 9u, (z, u, r, s) 2 Y
o

.

Then Z is a definable set in the o-minimal structure Ran exp.
A singular-dependent n-tuple � 2 V has a pre-image

⌧ = (z1, . . . , zn, u1, . . . , un) 2 Fnj ⇥ Fnexp,

and this gives rise to a point in Z , where the coordinates in Rn+1 register the mul-
tiplicative dependence of the tuple, as follows. The Fj coordinates are the zi , so
they are quadratic points, and as recalled in (5.5) their absolute height is bounded
by 21(�i ). The point in Rn+1 has integer coordinates (b1, . . . , bn, b), not all zero,
such that

nX
i=1

biui = 2⇡ ib.

Now in view of the height estimate (5.4), and degree estimate (5.7) on the j (zi ),
(5.11) gives that the bi in a multiplicative relation among the �i may be taken to be
bounded in size by c8(n)1n . With this bound on the |bi |, and since the imaginary
parts of the ui are bounded by 2⇡ i , we get an upper bound on |b|. We find that the
height of (z1, . . . , zn, b1, . . . , bn, b) is bounded by c9(n)1n .

In view of the Galois lower bound, a singular-dependent n-tuple of complexity
1 gives rise to at least

T
1
4n quadratic points on Z with absolute height at most T = c10(n)1n.

For sufficiently large 1, the Counting Theorem [25] applied to quadratic points
on Z (considered in real coordinates) implies that it contains a semi-algebraic set of
positive dimension. This implies (by the arguments used in [13,14]: the correspond-
ing points (z, u) inHn

⇥Cn cannot be constant on all such semi-algebraic sets) that
there is a complex algebraic Y ⇢ U which intersects Z in a positive-dimensional
component A which is atypical in dimension and contains singular-dependent n-
tuples.

By the mixed Ax-Schanuel of Section 3 this implies that there is a positive-
dimensional weakly special subvariety W containing Y containing a component B
with A ⇢ B and @(B)  @(A). Moreover, it contains the special subvarieties that
contain (some of) the singular-dependent points, so W is a special subvariety of
positive dimension containing singular-dependent points of V , which we have seen
is impossible.

So 1 is bounded, giving the finiteness.
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Example 6.2. An example of a singular-dependent 5-tuple is (see [29, A. 4]):
�
� 2153353113, �215, 2333113, 2633, 2153153

�
.

One also has a 3-tuple (�215,�21533, 2633) and 4-tuple (243353,�2153153,�3353,
2653).

7. On the atypical set of Vn

The atypical set of Vn is the union of its proper optimal components (Vn itself is
always optimal but never atypical). Since optimal components are geodesic-optimal
Proposition 2.7, we will investigate the possibilities for these.

We observe that any geodesic-optimal components which dominate every co-
ordinate can only come from an optimal strongly special subvariety. The finiteness
of these, even if we cannot identify them, is guaranteed by o-minimality.
Definition 7.1. Complexnumbers x,ywill be calledHecke equivalent if8N (x,y)=
0 for some N � 1. I.e., if the elliptic curves with j-invariants x and y are isogenous.

7.1. Geodesic-optimal components of dimension n

As already observed, Vn is not atypical since it dominates both Y (1)n and Gn
m. In

other words, the defect of Vn is equal to its codimension.

7.2. Geodesic-optimal components of dimension n� 1

Let T ⇢ X be a geodesic subvariety of co-dimension 2. Can T \V have dimension
n � 1? There are two equations defining T , each being one of four possible types:
a single modular relation, a constant modular coordinate, a single multiplicative
relation, a constant multiplicative coordinate.

Now if both equations are of modular (respectively multiplicative) type we
never get an atypical component, because V dominates Y (1)n (respectively Gn

m).
The same is true for any T which is defined purely by modular (respectively multi-
plicative) relations.

So we consider T defined by one condition of each type. Let us call T1 the
projection of T to the Y (1)n factor, which is a geodesic subvariety of codimension
1, and T2 its projection to Gn

m. We get an atypical component of dimension n � 1
if either T1 \ Gn

m is contained in T2, or if T2 is contained in T1 (i.e. when both are
considered in the same copy of (C⇥)n).

If the modular condition is a modular relation (rather than a constant coordi-
nate) then the first is excluded by Theorem 1.3, unless it is of the form xi = x j .
If the multiplicative relation is not a fixed coordinate, the other inclusion is also
impossible unless it is of the form ti = t j .

So we are reduced to considering constant coordinate conditions on both sides.
This obviously leads to a component of dimension n� 1 if the conditions coincide:
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xi = ⇠ = ti . However such a component can only be atypical (i.e. arise from
the intersection of Vn with a special subvariety of codimension (at most) 2 if ⇠ is
both a singular modulus and a root of unity. But this never occurs, as remarked in
Section 5.

This establishes ZP for V1, which is the curve defined by x1 = t1 in C ⇥ C⇥.
And it shows that V2 has no atypical subvarieties of positive dimension apart from
the “diagonal” x1 = x2.

Proposition 7.2. ZP holds for V2.

Proof. In view of the fact that the only atypical component of positive dimension is
the “diagonal”, which has defect zero, we are reduced to showing that V2 has only
finitely many optimal points, i.e. points which are atypical but not contained in the
“diagonal”. A point (x1, x2, x1, x2) 2 V2 is atypical if it lies on a special subvariety
of codimension 3. There are then two cases: we have two independent modular
conditions and one multiplicative, or two multiplicative and one modular relation.

The former case is exactly the question of singular-dependent 2 tuples, whose
finiteness we have already established. The latter leads to the question of two (un-
equal) roots of unity which satisfy a modular relation. This is established in the
following proposition, by a similar argument to that used in (5.2); and with this the
proof is complete.

We may observe that the optimal points of V2 satisfy 3 special relations (never
4), so have “defect” 1.
Definition 7.3. A pair of distinct roots of unity is called a modular pair if they
satisfy a modular relation.

Proposition 7.4. There exist only finitely many modular pairs.

Proof. Let (⇣1, ⇣2) be such a point, where the order of ⇣i is Mi and8L(⇣1, ⇣2) = 0.
The point is that the order of the root of unity, and their bounded height, leads to
a bound on the degree of the modular relation. Specifically, by (5.8), the semi-
stable Faltings height of the corresponding elliptic curves E1, E2 with j-invariants
⇣1, ⇣2 are bounded, and so by the isogeny estimate (5.10) there is a modular relation
8N (⇣1, ⇣2) = 0 with N  c11 max{M1,M2}5. Thus such a point leads to a rational
point on a suitable definable set whose height is bounded by a polynomial in the
orders of the two roots, and if it is of sufficiently large complexity it forces the
existence of a higher dimensional atypical intersection containing such points. But
the only atypical set of dimension 1 is given by x1 = x2, t1 = t2.

As modular relations always subsist between two numbers, there is no notion
of “modular-multiplicative n-tuples” analogous to singular-dependent tuples. How-
ever, an immediate consequence of the above is that, for any n, there exists only
finitely many n-tuples of distinct roots of unity which are pairwise Hecke equiva-
lent (and none for sufficiently large n).
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7.3. Geodesic-optimal components of dimension n� 2

These arise from intersecting Vn with a geodesic subvariety T of codimension (at
least) 3. We must have at least 1 relation of each type, and if they are all of “non-
constant” type (no fixed coordinates) then we get finiteness by o-minimality.

If there is one constant condition, this immediately gives a second such con-
dition of the other type, and then any additional non-constant condition (i.e. not
forcing any further constant coordinates) will give a component of dimension n�2.
However, no such component can be atypical.

Consider the case of 3 constant conditions. First the case of two fixed modular
coordinates. This will give rise to an atypical intersection if the two fixed values are
multiplicatively related. Next the case of two fixed multiplicative coordinates. This
will give rise to an atypical component if the two fixed values are Hecke equivalent.
The finiteness of such components follows from ZP for V2, and they all have defect
2. Thus:

Proposition 7.5. For n � 1, Vn has only finitely many maximal atypical compo-
nents of dimension n � 2.

But for n = 3 we can in fact exclude “strongly atypical” altogether. Such a
component has one of two shapes.

1. Two modular relations and one multiplicative relation. This would be atypical
if the resulting modular curve satisfied the multiplicative relation, but this is
impossible by Theorem 1.3;

2. Two multiplicative relations and one modular relation. This gives a “multiplica-
tive curve”, which can be parameterised as (⇣1ta1, ⇣2ta2, ⇣3ta3), where ⇣i are
roots of unity and ai integers. As the 8N , N � 2 are symmetric, two coor-
dinates cannot satisfy a modular equation unless ai = a j (so that N = 1 and
81 = X � Y ) and ⇣i = ⇣ j .

Proposition 7.6. The positive dimensional atypical components of V3 and their de-
fects may be described as follows:

1. The intersection of V3 with xi = x j , i 6= j is a copy of V2 contained in X2
(hence of defect 2) and has some atypical points in it, which have defect 1. It
contains also the subvariety with x1 = x2 = x3, which has defect 0;

2. A singular-dependent 2-tuple � = (�1, �2) gives rise to an atypical component
A� of dimension 1 and defect 2. (There may exist singular moduli which belong
to two distinct such pairs �, � 0. Then we get a point (A� \ A� 0) of defect 1);

3. Amodular pair ⇣ = (⇣1, ⇣2) gives rise to an atypical component B⇣ of dimension
1 and defect 2. (There may exist roots of unity belonging to two distinct modular
pairs ⇣, ⇣ 0. Then we get a point (B⇣ \ B⇣ 0) of defect 1.)

In particular, there are no positive dimensional “strongly atypical” components
(i.e., with no constant coordinates).
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Thus ZP for V3 depends on the finiteness of its atypical points off all the above
positive dimensional atypical components. This leads to some Diophantine ques-
tions which would establish ZP for V3, which we study in the next section.
Remark 7.7. Note that X contains families of weakly special subvarieties which
intersect Vn atypically, namely those defined be relations the form xi = x j (and
ti = t j ) or xk = tk = ck 2 C⇥ for various choices of (i, j), i 6= j, k. If m
such conditions are imposed, the resulting weakly special subvariety has dimension
2n � 2m and intersects Vn in a component of dimension n � m, so has geodesic
defect n � m.
Conjecture 7.8. The atypical geodesic components described in Remark 7.7 give
all geodesic optimal subvarieties of Vn for any n; in particular, apart from com-
ponents defined by “diagonal” equations xi = x j there are no “strongly optimal”
geodesic optimal components (i.e. with no constant coordinates).

8. Optimal points in V3

The optimal points in (x1, x2, x3, x1, x2, x3) 2 V3 fall into two classes. Those
which are atypical in satisfying at least 4 special conditions, but are not contained
in atypical component of higher dimension. And those which are “more atypi-
cal”, satisfying 5 special conditions (it is not possible to have 6: only a triple of
singular moduli which were also roots of unity could achieve this), though lying
in an atypical set of larger dimension but larger defect. Those lying on diagonals
xi = x j , i 6= j are easy to describe, we consider here those that do not.

Let us first consider points satisfying 5 special conditions. These also fall
into two types: 3 modular, 2 multiplicative, or the other way around. If there are
3 modular conditions then each xi is a singular modulus. The two multiplicative
conditions mean either than one x j is torsion, and the other two multiplicatively
related, or the three are pairwise multiplicatively related. The former is impossible.
Now only finitely many pairs of singular moduli have a multiplicative relation, so
x1, x2 comes from a finite set, and x3 comes also from a finite set. If there are
three multiplicative relations then each xi is torsion. Only finitely many pairs of
(distinct) roots of unity satisfy isogenies, and we get finiteness (there are no “Hecke
equivalences” involving three points!). All these points have defect 1.

Now we consider points (x1, x2, x3, x1, x2, x3) 2 V3, away from positive di-
mensional atypical subvarieties, satisfying 4 special conditions. The “generic” sit-
uation involves no singular moduli or roots of unity.
Problem 8.1. Prove that there exist only finitely many triples x1, x2, x3 of distinct
non-zero algebraic numbers, which are not roots of unity and not singular moduli,
such that they are pairwise Hecke equivalent, and also pairwise multiplicatively
dependent.

The various arithmetic estimates seem insufficient to get a lower degree bound
in terms of the “complexity”: the degrees of the two isogenies and the heights of
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the two multiplicative relations. This seems to be a problem of a similar nature to
that encountered in [13] dealing with curves which are not “asymmetric” (see [13,
Section 1]).

There are three “non-generic” variations of which we can resolve two. The
multiplicative relations may take the form that one coordinate is a root of unity,
the other two coordinates being multiplicatively dependent. Similarly, the modular
relations may take the form that one coordinate is singular, the other two Hecke
equivalent. Or both. Note that if two coordinates are singular the point is not
optimal, but lies on one of the atypical components in Propositions 7.6(3); if two
coordinates are roots of unity, the point is on a component as in Proposition 7.6(2).

We consider the non-generic multiplicative condition first. Up to permutations
we may assume the singular coordinate is x1

Proposition 8.2. There exist only finitely many triples x1, x2, x3 of distinct non-
zero algebraic numbers such that:

1. x3 is a root of unity, x1, x2 are multiplicatively dependent but not roots of
unity;

2. The three points are pairwise Hecke equivalent, but are not singular moduli.

Proof. Define the complexity1 of such a triple to be the maximum of: the order M
of the root of unity x3 and the minimum degrees of isogenies N1, N2 between x3 and
x1, x2, respectively. By (5.8), the stable Faltings height of an elliptic curves whose
j-invariant is a root of unity is absolutely bounded. Now by (5.9), h(x j ) ⌧ (1 +

logmax{N j }), j = 1, 2, so by (5.10) the degrees d j = [Q(x3, x j ) : Q] � N1/5j .
By (5.11) and (5.1) (to get a lower bound for h(xi )) the height of a multiplicative
relation between x1, x2 is bounded by some c121c13 . And [Q(x3) : Q] = �(M) �✏

M1�✏ , where � is the Euler �-function. We may take ✏ = 1/2 say.
Thus, a triple of complexity 1 gives rise to “many” (i.e. at least c141c15)

quadratic points on a certain definable set, and so all but finitely many such points
lie on atypical components of positive dimension.

But no such triples lie on positive dimensional atypical components: by Propo-
sition 7.6, such components have either two singular coordinates or two modular
coordinates, so the conditions on our triples would then force all xi to be singular,
which is impossible (as then x3 cannot be torsion) or all torsion, which leads to the
same impossible requirement for x1.

Symmetrically, we have the case where the modular relations are of the non-
generic form. We seem unable to establish finiteness here, so we pose it as a prob-
lem.
Problem 8.3. Prove that there exist only finitely many triples x1, x2, x3 of distinct
non-zero algebraic numbers such that x1 is singular, x2, x3 are Hecke equivalent,
and the three are pairwise multiplicatively dependent.

Finally, we have the following.
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Proposition 8.4. There exist only finitely many triples x1, x2, x3 of distinct non-
zero algebraic numbers such that

1. x1 is a singular modulus, x2, x3 are Hecke equivalent but are not singular mod-
uli;

2. x3 is a root of unity, x1, x2 are multiplicatively dependent but not roots of unity.

Proof. Let D be the discriminant of x1 (see Section 5), and M the (minimal) order
of x3. Take N minimal with 8N (x2, x3) = 0, and B minimal for a non-trivial mul-
tiplicative relation xb11 x

b2
2 = 1 with B = max{b1, b2}. Set 1 = max{|D|,M, N } to

be the complexity of the tuple (x1, x2, x3). Set d = [Q(x1, x2, x3) : Q].
Let E⇠ be the elliptic curve with j-invariant ⇠ . As in the proof of Proposi-

tion 8.2, hF(Ex3) is bounded by some absolute c16. Then, by the isogeny estimates
(5.10), we have N  c17([Q(x2, x3) : Q])5. Also M1�✏

⌧✏ �(M) = [Q(x3) : Q],
and |D| ⌧ [Q(x1) : Q]

4 by (5.6).
Arguing as in [13], the height inequalities (5.8), (5.9) imply that h(x2) is

bounded above by c18(1+ log N ). By the Weak Lehmer estimate (5.1) it is bounded
below by c19d�3. Corresponding estimates for h(x1) are provided by (5.4) and
(5.3). Therefore (5.11) ensures that

B  c20d3D.

The rest of the proof is the same as the proof of Proposition 8.2.

Thus Problems 8.1 and 8.3 imply (and are implied by) ZP for V3. If one takes
two complex numbers and three conditions, then either two “modular” conditions or
two “multiplicative” special conditions will force the points to be special, and one
can prove finiteness. However one can consider two complex numbers satisfying a
special condition of each of three (or more) different types.

Let S be a Shimura curve corresponding to a quaternion algebra over Q (see,
e.g., Elkies [6]). There is a notion of Hecke orbit of a point on S (see, e.g., [5]), an
equivalence class of points under a certain equivalence relation. This relation is the
existence of a “cyclic N -isogeny” between the corresponding parameterised objects
for some N ; see [6, Section 2.3, page 12]. If S has genus zero, there is an analogue
jS : H ! P1 of the j-function (see [7,30]) which generates the function field of S,
and we may speak of points in C being “Hecke equivalent (for S)” if they are in the
same Hecke orbit.
Problems 8.5. Prove that there are only finitely many pairs of distinct non-zero
algebraic numbers x1, x2 in each situation.

1. x1, x2 are Hecke equivalent (in the sense of 7.1), and multiplicatively dependent,
and are also Hecke equivalent for some other Shimura curve;

2. x1, x2 are Hecke equivalent, and multiplicatively dependent, and the points with
these x-coordinates are dependent in some specific elliptic curve;

3. As in the previous problems, but with more or different conditions: say the
points are Hecke equivalent/dependent for 10 pairwise incommensurable Shi-
mura curves.
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Finally we state a “weakly bounded height conjecture” on the height of “just likely”
intersections of mixed multiplicative-modular type under which Problems 8.1
and 8.3 are affirmed.
Definition 8.6. Amodular-dependent pair is a point (x, y) 2 (C⇥)2 such that there
exists integers N , a, b, ` with N � 2, ` � 1 and gcd(a, b) = 1 such that

8N (x, y) = 0, (xa yb)` = 1.

The complexity 1(x, y) of such a pair is the minimum of max(N , |a|, |b|, `) over
all N , a, b, ` for which the above equations hold for x, y.
Conjecture 8.7. For ✏ > 0 we have h(x), h(y)  c✏1(x, y)✏ for all modular-
dependent pairs (x, y).
Proposition 8.8. Assume Conjecture 8.7. Then finiteness holds in Problems 8.1
and 8.3.
Proof. Let (x, y) be a modular-dependent pair with complexity 1 = 1(x, y) =

max(|a|, |b|, `) for suitable a, b, `. Constants denoted c are absolute but may vary
at each occurrence.

Let Ex , Ey be elliptic curves with j-invariants x, y and semistable Faltings
heights hF(x) = hF(Ex ) and hF(y) = hF(Ey) respectively. Then Ex , Ey may both
be defined over Q(x, y), and we set d = [Q(x, y) : Q].

By the isogeny estimate (5.10), N  cd2 max{hF(x), log d, 1}2. Now hF(x)
and h(x) differ by at most c logmax(2, h(x)). So

N  cd2 max(1, log d)2
�
1+ h(x) + c logmax(2, h(x))

�2
.

We have d2 max(1, log d)2  d4, and under Conjecture 8.7 (with ✏ = 1/20 say) we
have

N  cd411/10.

For the purposes of Proposition 8.1 and 8.3 we may assume that neither x nor y is a
root of unity. By a Weak Lehmer inequality (5.1) we have h(x) � cd�3, h(y) �

cd�3. Since neither x, y is a root of unity, we find (5.11) that there exists a non-
trivial multiplicative relation x↵ y�

= 1 with

|↵|  cd3h(y)  cd311/10, |�|  cd3h(x)  cd311/10.

Again since x, y are not roots of unity, we have that (↵,�) is a multiple of (`a, `b).
So we find that |a|, |b|, c`  cd311/10. Now 1 = max(N , |a|, |b|, |`|) and so
combining the various inequalities we find

1  cd7.

Now points x1, x2, x3 as in Problem 8.1 give rise to rational points on some suitable
definable set of height at most max

�
1(x1, x2),1(x2, x3),1(x1, x3)

�
. This lower

estimate for the degree is then suitable to complete a finiteness proof for isolated
points of this form by point-counting and o-minimality as in the proofs of Theo-
rem 1.2, Propositions 8.2, and 8.4. The argument for Problem 8.3 is similar.
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9. On ZP for Vn

The referee asked us whether there is a natural generalization of the height-theoretic
Conjecture 8.7 which would imply ZP for Vn, n � 3. We thank the referee for
raising this question, to which we offer an affirmative answer here. As this Conjec-
ture 9.5 is rather more speculative than the very special case in Conjecture 8.7 we
have preferred to keep this section separate.

We continue to let Xn = Y (1)n ⇥ Gn
m and Un = Hn

⇥ Cn , and F a standard
fundamental domain for the action onUn by SL2(Z)n ⇥Zn where m 2 Z acts on C
be translation by 2⇡ im. Constants c, c(n), c(n, ✏), . . . depend only on the indicated
quantities, but may differ at each occurence.

First, we will assume Conjecture 7.8. This seems to be necessary, in view of
the following. We have seen that an optimal component with respect to Vn ⇢ Xn
is geodesic optimal. Now weakly special subvarieties of Un are contained in larger
definable families of “Mobius varieties” which are defined by some finite number
of relations of the form zi = gi j z j , gi j 2 SL2(R) or of the form zk = ck 2 C
on the Hn variables and of the form � nj=1ri j u j = 0 with (r1, . . . , rn) 2 Rn on the
Cn variables (see Mobius varieties in [14, Section 6.2] and “linear varieties” in [22,
10.1]). Then the set of Mobius varieties which intersect Z = ⇡�1(Vn)\F optimally
among Mobius varieties gives the full set of weakly special varieties intersecting Z
optimally. By o-minimality, the set of relations among non-constant coordinates is
then finite, since the corresponding coefficients ri j and group elements gi j must in
fact be rational (see [14, Proposition 6.6; 22, 10.2]).

We are thus led to consider, for example, the intersections of a fixed strongly
special modular special subvariety M with a family of translates {aT : a 2 A} of
a subtorus T , i.e. a family of weakly special multiplicative weakly special subvari-
eties. Here A can be taken to be a copy of some (C⇥)m . Since optimal components
are geodesic-optimal, these components will correspond to those a 2 A for which
M \ aT has atypical dimension, which give some subvarieties Ai ⇢ A. However,
if the component is optimal, the corresponding special subvariety will in general be
larger, and we will be led to consider atypical points in Ai ⇢ (C⇥)m , i.e. to some
cases of ZP for the multiplicative group, which we do not know how to handle at
present.

We will say that a point C = (x1, . . . , xn) 2 (C⇥)n satisfies h special rela-
tions if the smallest special subvariety of Xn containing (x1, . . . , xn, x1, . . . , xn)
has codimension h. On the modular side, the relation of being in the same Hecke
orbit divides the non-special coordinates into k equivalence classes. Such equiva-
lence classes of non-special points we call cliques. Then we see that if C satisfies
h special relations we have

h = n + m � k ,

where m is the number of independent multiplicative relations satisfied by C , and k
is the number of cliques. We set

@(C) = n � h = k � m.



MULTIPLICATIVE RELATIONS AMONG SINGULAR MODULI 1377

Definition 9.1. A tuple C = (c1, . . . , cn) 2 (C⇥)n with pairwise distinct coordi-
nates is called n-optimal if no proper subtuple C 0 has @(C 0)  @(C). I.e. removing
any ` points from C loses at least ` + 1 special relations.

Proposition 9.2. Assuming Conjecture 7.8, ZP for all Vn is equivalent to the state-
ment that, for all n, there are only finitely many n-optimal points.

Proof. Assuming Conjecture 7.8, all optimal components are, up to permutations
of coordinates, of the form {(W,W ) 2 Vn} where W ⇢ Cn is of the form

{(c1, c2, . . . , c`, x`+1, . . . , xn) : xi 2 C⇤, xi = x j : (i, j) 2 I }

for some set I of pairs (i, j) with max(i, `) < j from {1, . . . , n}, where c1, . . . , c`
are distinct non-zero complex numbers.

If the tuple C = (c1, . . . , c`) satisfies h special relations, we have

dimW = n � ` � |I |, dimhW i = 2n � 2|I | � h,

whence

�(W ) = 2n � 2|I | � h � (n � ` � |I |) = n + (` � h) � |I | = n + @(C) � |I |.

Therefore, the component W is optimal just if C is `-optimal.

Suppose C is an n-optimal tuple, with (C,C) contained in some smallest
special subvariety T ⇢ Xn . Then the component of T \ Vn containing (C,C)
must be just the point {(C,C)}. Otherwise, the component is clearly not opti-
mal. Thus, an n-optimal tuple is a tuple of algebraic numbers, and the degree
d(C) = [Q(c1, . . . , cn) : Q] is bounded in terms of the degrees of the equations
defining T .

We now frame a “weakly bounded height conjecture” for certain “just likely”
intersections that seems plausible and is sufficient to establish this finiteness (as-
suming Conjecture 7.8). Of course one only needs the conjecture to hold for optimal
points, which must in fact be “unlikely”.

Consider a point C = (c1, . . . , cn) 2 (C⇥)n with ci distinct, together with a Z-
module0 of exponents of multiplicative relations onC . That is, 0 is aZ-submodule
of the relation group

0(C) = {(a1, . . . , an) 2 Zn
: ca11 · · · cann = 1}.

Suppose C has k cliques and rank(0) = m. Removing some points from C yields
a tuple C 0, and it inherits a submodule 00 of relations from 0 which are trivial on
the points removed (i.e. 00 is the submodule of exponent vectors for which the
coordinates corresponding to C � C 0 are zero). We call 00 the induced relations.



1378 JONATHAN PILA AND JACOB TSIMERMAN

Definition 9.3. A pair (C,0) consisting of a tuple C 2 (C⇥)n with pairwise dis-
tinct coordinates having k cliques and a Z-module of 0 ⇢ Zn of exponent vectors
of multiplicative relations on C is called grounded if, for any subtuple C 0 formed
by removing any  cliques, where 0 <  < k, together with any number of special
points, the induced relation module 00 satisfies rank(00) < rank(0)�  . I.e. losing
 cliques loses at least  + 1 multiplicative relations.

Note that a grounded tuple can never contain a singleton clique, for omitting
such a clique will lead to the loss of at most one multiplicative relation.
Definition 9.4. We define the height of a tuple C = (c1, . . . , cn) to be

h(C) = max(h(c1), . . . , h(cn)).

The modular complexity of a tuple is

1mod(C) = max{N }

over N such that there exists ci , c j (allowing i = j) with 8N (ci , c j ) = 0, and
N � 2 minimal for this pair i, j . We define the complexity of a Z-submodule of Zn

to be
1(0) = min{T }

over T such that there is a basis of 0 consisting of vectors with all entries of absolute
value bounded by T . The complexity of a pair (C,0) is

1(C,0) = max{1mod(C),1(0)}.

Finally, the complexity of C is

1(C) = 1(C,0(C)).

Conjecture 9.5. Let (C,0) be grounded, where C 2 (C⇥)n , and suppose that
rank(0) equals the number k of cliques of C . Then

h(C)  c(n, ✏)1(C,0)✏

for any ✏ > 0.
Note that such C is in the intersection of Vn with a special subvariety of di-

mension n+ k� rank(0) = n, hence is a “just likely” intersection, though this may
not be the smallest special subvariety containing C .

It seems that one cannot hope to have a suitable weakly bounded height con-
jecture for tuples which are not grounded. For example, if one has a clique C 0

satisfying some relations 00, then imposing just one additional relation � 2 Zn

on C = (C 0,C 00) for an additional clique C 00 would allow the height of C 00 to be
roughly 1(Z� )h(C 0). An interesting question seems to be whether one should ex-
pect in fact an upper bound of the form⌧n (log1(C,0))c(n) in Conjecture 9.5.

We now gather some further arithmetic estimates. Various forms of the fol-
lowing result, which we do not need in the sharpest forms, appear in the literature;
see [17]. The following is extracted from [18].
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Proposition 9.6. For an n-tuple C of degree d = d(C) and height h = h(C), there
is a basis of 0(C) consisting of vectors of integers of size at most

c(n)dn log(d + 2)3n max(h, 1)n.

Proof. This is a weakened form of the bound in [18, page 253] together with the
estimates for the quantities there established on page 254.

Lemma 9.7. Suppose C 2 (C⇥)n is n-optimal. Then (C,0(C)) is grounded.
Moreover, if C has k cliques, then there is a submodule 0 of relations on C with
rank(0) = k such that (C,0) is grounded and 1(0)  c(n)1(0(C)).

Proof. For the first assertion, if we remove  cliques (and some special points) from
C to form C 0 and lose only  multiplicative relations then @(C 0)  @(C), and C
was not n-optimal. So n-optimal is stronger than grounded.

For the second assertion, we show how to find a suitable submodule 0 of 0(C)
of rank equal to k, the number of cliques.

We first show that there is a vector v1 2 0(C) with a height bound as in the
assertion of the lemma which “involves” all special points and cliques, i.e. where
the exponent is non-zero on every coordinate i where ci is special, and for some
coordinate in every clique.

Let B be a basis of 0(C) consisting of vectors of integers of size at most
1(0(C)). Since (C,0(C)) is n-optimal, such a vectorw j exists for each individual
special coordinate, and for each individual clique; say there are J such vectors.
Moreover, we can assume that each w j 2 B. We consider vectors of the form

w =

JX
j=1

a jw j , a j 2 Q.

For each special coordinate or clique, the condition that w vanishes on that coordi-
nate or clique gives a proper subspace ofQn . It therefore contains at most c(n)T n�1
integer points in the box [�T, T ]

n . We must avoid J  n such subspaces, so
T = c(n) suffices.

We now construct v2 2 0(C) such that, for every clique, v2 does not vanish
modulo v1. For each clique individually the existence of such a vectorw j is assured
since (C,0(C)) is grounded, and so we can take w j 2 B. A similar box argument
produces v2 (the number of subspaces to avoid is now at most the number of pairs of
cliques), and we continue to produce v3, . . . , vk , where vk does not vanish modulo
Z[v1, . . . , vk�1] on any choice of k � 1 cliques.

Proposition 9.8. Let � be a singular modulus of discriminant D� . Then there exists
N � 2 with 8N (�, � ) = 0 satisfying N  |D� |. Conversely, if 8N (�, � ) = 0
where N � 2 then |D� |  cN20, with an explicit c.
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Proof. Let ⌧ be a preimage of � in the standard fundamental domain. Then ⌧
satisfies a minimal quadratic equation over Z of the form A⌧ 2 + B⌧ + C = 0
which is reduced, meaning |B|  A  C and B � 0 if A = |B| or A = C .
Thus 4AC = B2 � D�  AC � D� whence 3AC  |D� |. Now g⌧ = ⌧ for
g =

�
�B �C
A 0

�
, which is primitive of determinant N = AC  |D� |.

In the other direction, suppose 8N (�, � ) = 0. This means that g⌧ = h⌧ for
a matrix g of the form g =

� a b
0 d

�
with 0 < a, 0  b < d, ad = N (see [15,

5.1, page 52]), and h 2 SL2(Z). Now |Re(g⌧ )|  2N and |Im(⌧ )�1|  2N so
the matrix h has entries at most c(2N )9 by [13, Lemma 5.1]. Thus ⌧ is fixed by
h�1g, an integer matrix with entries bounded by c(2N )10. This gives an integral
quadratic polynomial satisfied by ⌧ whose coefficients have size at most 2c(2N )10.
The minimal equation for ⌧ must divide this one, and so (with a new constant)
|D� |  cN20

Theorem 9.9. Assuming Conjectures 7.8 and 9.5, ZP holds for Vn ⇢ Xn for all n.

Remark 9.10. One might hope to prove at this juncture that Conjecture 9.5 im-
plies finiteness of n-optimal tuples for each n (without assuming Conjecture 7.8).
However, our proof will require Conjecture 7.8.

Proof. Suppose C 2 (C⇥)n is n-optimal. Then the point (C,C) 2 Vn is an optimal
component. Thus C is grounded, and the relation group 0(C) has rank exceeding
k, the number of cliques in C (because (C,C) must be an unlikely intersection).

By Lemma 9.7 we find a submodule 0 of relations on C with rank k and with
1(0)  c(n)0(C). By Conjecture 9.8 with ✏ = (20n)�1 we have

h(C)  c(n)1(C,0)1/(20n).

We now obtain a lower bound for d(C) in terms of 1(C). We start considering
1mod(C). If x, y are distinct and 8N (x, y) = 0 with N minimal then, as in the
proof of Proposition 8.8,

N  c(n)[Q(x, y) : Q]
41(C,0)1/(10n).

If x is special, then we have 8N (x, x) = 0 for some N  |Dx |, while d(x) �✏

|Dx |
1/2�✏ (ineffectively) by Landau-Siegel. Thus again N  c[Q(x) : Q]

4, and we
find

1mod(C)  c(n)d(C)41(C,0)1/(10n)

for some (ineffective if any ci are special) positive c(n).
Now by Proposition 9.6, there is a basis of 0(C) of height at most

1(0(C))  c(n)d(C)4n1(C,0)1/10,

and since 1(0)  c(n)1(C) we have that 1(C)  c(n)d(C)4n1(C)1/10. Hence

1(C)  c(n)d(C)5n.
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Now consider the uniformisation ⇡ : F ! X , which is definable in an o-minimal
structure. As in the proof of 1.2, the point C and each of its conjugates gives rise
to a rational point P of height H(P)  c1(C) on a suitable definable subset of
a suitable power of GL2(R). We follow the argument in the proof of Theorem 1.2
(which follows that in [13,14]). If1 is sufficiently large then the Counting Theorem
implies that the above-mentioned definable set contains positive-dimensional real
semi-algebraic sets.

Since there are many conjugates of C giving rise to rational points, some
positive-dimensional semi-algebraic set must give rise to a moving component of
the given dimension and defect. Complexifying the real parameter, there is a larger
component of Vn with the same defect. The mixed Ax-Schanuel implies there is a
larger geodesic component with the same defect so that (in virtue of Conjecture 7.8)
the point C was not n-optimal. This contradiction shows that the complexity of an
optimal n-tuple is bounded. Then the degree d(C) and the height h(C) are bounded
by some c(n), and so there are only finitely many such C .
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1382 JONATHAN PILA AND JACOB TSIMERMAN

[17] T. LOHER and D. W. MASSER, Uniformly counting points of bounded height, Acta Arith.
111 (2004), 277–297.

[18] D. MASSER, Linear relations on algebraic groups, In: “New Advances in Transcendence
Theory”, Baker (ed.), CUP, 1988, 248–262.
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[27] B. POIZAT, L’egalité au cube, J. Symbolic Logic 66 (2001), 1647–1676.
[28] M. RAYNAUD, Hauteurs et isogénies, Seminaire sur les pinceaux arithmetiques: La con-
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Divisorial Zariski decomposition
and some properties of full mass currents

ELEONORA DI NEZZA, ENRICA FLORIS AND STEFANO TRAPANI

Abstract. Let ↵ be a big class on a compact Kähler manifold. We prove that
a decomposition ↵ = ↵1 + ↵2 into the sum of a modified nef class ↵1 and a
pseudoeffective class ↵2 is the divisorial Zariski decomposition of ↵ if and only
if vol(↵) = vol(↵1). We deduce from this result some properties of full mass
currents.

Mathematics Subject Classification (2010): 32J25 (primary); 32Q15, 32W20
(secondary).

Introduction

The study of the Zariski decomposition started with the work of Zariski [26] who
defined it for an effective divisor in a smooth projective surface. Fujita extended
the definition to the case of pseudoeffective divisors [13]. Due to the importance of
the Zariski decomposition for surfaces, several generalizations to higher dimension
exist (see [22] for a survey of these constructions). The divisorial Zariski decom-
position for a cohomology class ↵ on a Kähler manifold has been introduced by
Boucksom in [7]. If ↵ is the class of a big divisor on a projective manifold, the di-
visorial Zariski decomposition coincides with the � -decomposition introduced by
Nakayama [20]. The divisorial Zariski decomposition is a decomposition

↵ = Z(↵) + {N (↵)}

into a “positive part”, the Zariski projection Z(↵), whose non-nef locus has codi-
mension at least 2, and a “negative part” {N (↵)} which is the class of an effective
divisor and is rigid. The class Z(↵) encodes some important information about ↵:
Z(↵) is big if and only if ↵ is and vol(↵) = vol(Z(↵)).

The first named author is supported by a Marie Sklodowska Curie individual fellowship 660940–
KRF–CY (MSCA-IF).
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Published online December 2017.
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In this note we give a criterion for a sum of two classes to be a divisorial Zariski
decomposition. Our main result is:

Main Theorem. Let X be a compact Kähler manifold of complex dimension n.
Let ↵ be a big class on X . Let ↵1 2 H1,1(X, R) be a modified nef class and
↵2 2 H1,1(X, R) be a pseudoeffective class. Then ↵ = ↵1 + ↵2 is the divisorial
Zariski decomposition of ↵ if and only if vol(↵) = vol(↵1).

The relations between the Zariski decomposition of numerical classes of cycles
on a projective variety and their volume have been largely studied recently in a
series of papers [14, 15, 18]. The Main Theorem also goes in this direction: for
instance, if X is projective and ↵ = {D} is the class of a big divisor, we recover [15,
Proposition 5.3] for cycles of codimension 1.

Our proof relies deeply on a result of existence and uniqueness of weak solu-
tions of complex Monge-Ampère equations.

On the other hand the proof in [15] uses the differentiability of the volume
function f (t) = vol(↵ + t{D}), which, at the moment, is known to be true only in
the algebraic case. In Remark 2.3 we present a proof of the Main Theorem using
the differentiability of the volume. As it is proved by Xiao [24, Proposition 1.1] ,
the differentiability of the volume is equivalent to the following quantitative version
of a Demailly’s conjecture [8, Conjecture 10.1], that states:

Let X be a compact Kähler manifold of complex dimension n, and let ↵,� 2

H1,1(X, R) be two nef classes. Then we have

vol(↵ � �) � ↵n � n ↵n�1 · �. (0.1)

While this paper was being published, Witt Nyström [21] proved inequality (0.1)
for projective manifolds. This, together with Remark 2.3, provides another proof
of the Main theorem in the case where X is projective and ↵2 is the class of an
effective R-divisor.

In the second part of this note we show that the Main Theorem is strictly re-
lated to the invariance of finite energy classes under bimeromorphic maps. More
precisely, in Theorem 3.6 we show that finite energy classes are inviariant under a
bimeromorphic map if and only if the volumes are preserved. This extends to any
dimension, [12, Proposition 2.5], where a similar statement is proved in dimension
2 by the first named author using the Hodge index theorem.

We now give a brief outline of this note. Section 1 reviews background material
on the divisorial Zariski decomposition and currents with full Monge-Ampère mass.
In Section 2 we prove theMain Theorem and in Section 3 we give some applications
to full mass currents. In particular we prove Theorem 3.6.

ACKNOWLEDGEMENTS. We would like to thank Sébastien Boucksom for several
useful discussions on the subject and for communicating us the proof in Remark 2.3.



DIVISORIAL ZARISKI DECOMPOSITION AND FULL MASS CURRENTS 1385

1. Preliminaries

Let (X,!) be a compact Kähler manifold of complex dimension n and let ↵ 2

H1,1(X, R) be a real (1, 1)-cohomology class. Recall that ↵ is said to be pseudo-
effective if it can be represented by a closed positive (1, 1)-current T ; ↵ is nef if and
only if for any " > 0 there exists a smooth form ✓" 2 ↵ such that ✓" � �"!; ↵ is
big if and only if it can be represented by a Kähler current, i.e., if and only if there
exists a positive closed (1, 1)-current T 2 ↵ such that T � " ! for some " > 0 and
↵ is a Kähler class if and only if it contains a Kähler form.

Given a smooth representative ✓ of the class ↵, it follows from @@̄-lemma that
any positive (1, 1)-current can be written as T = ✓ + ddc' where the global poten-
tial ' : X ! R [ {�1} is a ✓-plurisubharmonic function (✓-psh for short), i.e., it
is upper semicontinuous and ✓ + ddc' � 0 in the sense of currents. Here d and dc
are real differential operators defined as

d := @ + @̄, dc :=

i
2⇡

�
@̄ � @

�
.

Let T be a closed positive (1, 1)-current. We denote by ⌫(T, x) its Lelong number
at a point x 2 X defined as

⌫(T, x) = ⌫(', x) := sup{� � 0 : '(z)  � log d(x, z) + C},

where z is a coordinate in a coordinate neighborhood of x and d is a distance on it.
The Lelong number of T along a prime divisor D is

⌫(T, D) := inf{⌫(T, x) : x 2 D}.

We refer the reader to [11] for a more extensive account on Lelong numbers.
There is a unique decomposition of T as a weakly convergent series

T = R +

X
j

� j
⇥
Dj

⇤
,

where:

(i) [Dj ] is the current of integration over the prime divisor Dj ⇢ X ;
(ii) � j := ⌫(T, Dj ) � 0;
(iii) R is a closed positive current with the property that codimEc(R) � 2 for every

c > 0.

Recall that
Ec(R) := {x 2 X : ⌫(R, x) � c},

and that this is an analytic subset of X by a famous result due to Siu [23]. Such a
decomposition is called the Siu decomposition of T .
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Analytic and minimal singularities

A positive current T = ✓ +ddc' is said to have analytic singularities if there exists
c > 0 such that locally on X ,

' =

c
2
log

NX
j=1

| f j |2 + u,

where u is smooth and f1, . . . , fN are local holomorphic functions.
If T and T 0 are two closed positive currents on X , then T 0 is said to be less

singular than T if their local potentials satisfy '  '0
+ O(1).

A positive current T is said to have minimal singularities (inside its cohomol-
ogy class ↵) if it is less singular than any other positive current in ↵. Its ✓-psh
potentials ' will correspondingly be said to have minimal singularities.

Such ✓-psh functions with minimal singularities always exist, one can consider
for example

V✓ := sup {' ✓-psh,'  0 on X} .

1.1. Big and modified nef classes

Definition 1.1. If ↵ is a big class, we define its ample locus Amp(↵) as the set of
points x 2 X such that there exists a Kähler current T 2 ↵ with analytic singulari-
ties and smooth in a neighbourhood of x .

The ample locus Amp(↵) is a Zariski open subset, and it is nonempty thanks
to Demailly’s regularization result (see [7]).

Observe that a current with minimal singularities Tmin 2 ↵ has locally bounded
potential in Amp(↵).
Definition 1.2. Let ↵ be a big class.

(1) Let T 2 ↵ be a positive (1, 1)-current, then we set

E+(T ) := {x 2 X : ⌫(T, x) > 0};

(2) We define the non-Kähler locus of ↵ as

Enk(↵) :=

\
T
E+(T )

ranging among all the Kähler currents in ↵.

By [7, Theorem 3.17(iii)] a class ↵ is Kähler if and only if Enk(↵) = ;. Moreover
by [7, Theorem 3.17(ii)] we have Enk(↵) = X \ Amp(↵).
Definition 1.3. We say that ↵ is modified-nef if and only if for every " > 0 there
exists a closed (1, 1)-current T" 2 ↵ with T" � �"! and ⌫(T", D) = 0 for any
prime divisor D.

We recall now an alternative and useful definition of modified nef classes.
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Proposition 1.4 ([7, Proposition 3.2]). Let ↵ 2 H1,1(X, R) be a pseudoeffective
class. Then ↵ is modified nef if and only if ⌫(↵, D) = 0 for every prime divisor D.

We refer to [7] for the defintion and properties of the minimal multiplicity
⌫(↵, D). We will be only interested in the case where ↵ is big, and in this case
the minimal multiplicity coincides with ⌫(Tmin, D), the Lelong number along D of
a current in ↵ with minimal singularities (cf. [7, Proposition 3.6(ii)]).

1.2. The divisorial Zariski decomposition

In this subsection we collect some basic results on the divisorial Zariski decompo-
sition defined in [7]. They can all be found in [7] but we recall some statements
frequently used in this note.

Let ↵ 2 H 1,1(X, R) be a pseudo-effective class. The divisorial Zariski decom-
position of ↵ is defined as follows:
Definition 1.5. The negative part of ↵ is defined as N (↵) :=

P
⌫(↵, D)[D], where

D are prime divisors. The Zariski projection of ↵ is Z(↵) := ↵ � {N (↵)}. We call
the decomposition ↵ = Z(↵) + {N (↵)} the divisorial Zariski decomposition of ↵.
Properties. Let ↵ = Z(↵) + {N (↵)} be the divisorial Zariski decomposition of ↵.
Then

(1) The class Z(↵) is modified nef [7, Proposition 3.8];
(2) N (↵) is a divisor, i.e. there is a finite number of prime divisors D such that

⌫(↵, D) > 0 [7, Proposition 3.12];
(3) The set of modified nef classes is a closed convex cone and it is the closure

of the convex cone generated by the classes µ?↵̃ where µ : X̃ ! X is a
modification and ↵̃ is a Kähler class on X̃ [7, Proposition 2.3];

(4) The negative part {N (↵)} is a rigid class, i.e. it contains only one positive
current [7, Proposition 3.13];

(5) Let ↵ be a modified nef and big class, D1, . . . , Dk be prime divisors and
�1, . . . , �k 2 R+. Then [7, Proposition 3.18]

N

 
↵ +

X
i

�i {Di }

!
=

X
i

�i [Di ]

if and only if Dj ⇢ Enk(↵) for any j .

Proposition 1.6 ([7, Proposition 3.6(ii)]). Let ↵ 2 H1,1(X, R) be a big class and
let Tmin 2 ↵ be a current with minimal singularities. Consider the Siu decomposi-
tion of Tmin,

Tmin = R +

X
j
a j

⇥
Dj

⇤

where a j = ⌫(Tmin, Dj ). Then {R} = Z(↵) and {

P
j a j D j } = {N (↵)}. In partic-

ular, ⌫(↵, D) = ⌫(Tmin, D) for any prime divisor D.
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1.3. Volume of big classes

Fix ↵ 2 H1,1big (X, R). We introduce
Definition 1.7. Let Tmin be a current with minimal singularities in ↵ and let � a
Zariski open set on which the potentials of Tmin are locally bounded, then

vol(↵) :=

Z
�
T nmin > 0 (1.1)

is called the volume of ↵.
Note that the Monge-Ampère measure of Tmin is well defined in � by [1] and

that the volume is independent of the choice of Tmin and � [4, Theorem 1.16].
Let f : X ! Y be a birational modification between compact Kähler mani-

folds and let ↵Y 2 H1,1(Y, R) be a big class. The volume is preserved by pull-
backs,

vol( f ?↵Y ) = vol(↵Y )

(see [6]). On the other hand, it is not preserved by push-forwards. In general we
have

vol( f?↵X ) � vol(↵X )

(see Remark 3.4).

1.4. Full mass currents

Fix X a n-dimensional compact Kähler manifold, ↵ 2 H1,1(X, R) be a big class
and ✓ 2 ↵ a smooth representative.

The non-pluripolar product

Given T1 := ✓1 + ddc'1, ..., Tp := ✓p + ddc'p positive (1, 1)-currents, where ✓ j
are closed smooth (1, 1)-forms, following the construction of Bedford-Taylor [2]
in the local setting, it has been shown in [4, Proposition 1.6] that the sequence of
currents

1T
j {' j>V✓ j�k}

�
✓1 + ddcmax('1, V✓1 � k)

�
^ ... ^

�
✓p + ddcmax('p, V✓p � k)

�
is non-decreasing in k and converges weakly to the so-called non-pluripolar product⌦

T1 ^ ... ^ Tp
↵
.

The resulting positive (p, p)-current does not charge pluripolar sets and it is closed.
In the sequel we will focus on the particular case when T1 = · · · = Tp = T and
p = n. We denote by hT ni the non-pluripolar measure of T .

Let us stress that since the non-pluripolar product does not charge pluripolar
sets,

vol(↵) =

Z
X

⌦
T nmin

↵
(1.2)
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whereas by [4, Proposition 1.20] for any positive (1, 1)-current T 2 ↵ we have

vol(↵) �

Z
X
hT ni. (1.3)

Definition 1.8. A closed positive (1, 1)-current T on X with cohomology class ↵
is said to have full Monge-Ampère mass ifZ

X

⌦
T n

↵
= vol(↵).

We denote by E(X,↵) the set of such currents. Let ' be a ✓-psh function such that
T = ✓ + ddc'. The non-pluripolar Monge-Ampère measure of ' is

MA(') :=

⌦
(✓ + ddc')n

↵
=

⌦
T n

↵
.

Wewill say that ' has full Monge-Ampère mass if ✓+ddc' has full Monge-Ampère
mass. We denote by E(X, ✓) the set of corresponding functions.

2. Proof of the main theorem

Throughout this section X and Y will be compact Kähler manifolds of complex
dimension n.

Theorem 2.1. Let ↵ be a big class on X . Let ↵1 2 H1,1(X, R) be a modified nef
class and ↵2 2 H1,1(X, R) be a pseudoeffective class. Then ↵ = ↵1 + ↵2 is the
divisorial Zariski decomposition of ↵ if and only if vol(↵) = vol(↵1).

Remark 2.2. In particular, Theorem 2.1 implies that the pseudoeffective class ↵2
will be of the form ↵2 =

PN
j=1 � j {Dj } where Dj are prime divisors and � j =

⌫(↵, Dj ) � 0.

Proof of Theorem 2.1. If ↵ = ↵1 + ↵2 is the divisorial Zariski decomposition then
by [7, Proposition 3.20] we have vol(↵) = vol(↵1).

Vice versa, assume that we have a decomposition as above with vol(↵) =

vol(↵1) = V . Let µ be a smooth volume form on X with total mass V and let
T1 2 E(X,↵1) be the unique solution of the complex Monge-Ampère equation⌦

T n1
↵
= µ.

Such T1 exists and is unique by [4, Theorem 3.1]. Furtheremore, T1 has minimal
singularities in its cohomology class [4, Theorem 4.1]. Let ⌧ be any positive closed
(1, 1)-current in ↵2 and set T = T1 + ⌧ . By multilinearity of the non-pluripolar
product [4, Proposition 1.4], we have hT ni � hT n1 i. By (1.2) and (1.3) we have

Z
X

⌦
T n

↵
 vol(↵) = vol(↵1) =

Z
X

⌦
T n1

↵
.
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Therefore hT ni = hT n1 i = µ. Thus T is a solution of the Monge-Ampère equa-
tion hT ni = µ in the class ↵ and by uniqueness, it follows that ↵2 is rigid, i.e.
there exists a unique positive closed (1, 1)-current in ↵2. Moreover, T has mini-
mal singularities. Since vol(↵) =

R
X hT ni = µ(X), by the multilinearity of the

non-pluripolar product we get

n�1X
j=0

✓
n
j

◆⌦
T j
1 ^ ⌧ n� j ↵

= 0.

Let S 2 ↵1 be a Kähler current, i.e. S � "! for some " > 0. Let�1 be a non-empty
Zariski open subset where S is smooth and let � = Amp(↵) 6= ;. Since T has
minimal singularities, then T 2 ↵ has locally bounded potential on�. In particular,
the current ⌧ has locally bounded potential in �2 = � \ �1 = X \ 6. Then we
have

0  "n�1
Z

�2

!n�1
^ ⌧ 

Z
�2

Sn�1 ^ ⌧ 

Z
�2

T n�11 ^ ⌧ = 0,

where the last inequality follows from [4, Proposition 1.20]. This implies that the
current ⌧ is supported on 6.

By [11, Corollary 2.14], ⌧ is of the form

⌧ =

NX
j=1

� j
⇥
Dj

⇤
,

where Dj are irreducibile divisors and � j � 0. Moreover, observe that, since ↵1
is modified nef and T1 has minimal singularities, we have ⌫(T1, Dj ) = 0 for any j
by Proposition 1.4 hence � j = ⌫(T, Dj ). In other words, T = T1 + ⌧ is the Siu
decomposition of T . Since ↵ is big and T has minimal singularities, by Proposition
1.6 we have ⌫(↵, D) = ⌫(T, D), hence the conclusion.

We would like to observe that in the algebraic case, for a projective manifold
X , Theorem 2.1 can be proved using the differentiability of the volume [9].

We thank Sébastien Boucksom for the following remark:
Remark 2.3. Let N 1(X)R ⇢ H1,1(X, R) denote the real Néron-Severi space and
↵ 2 N 1(X)R be a big class. Assume ↵ = ↵1 +

PN
i=1 �i {Di } with

(i) ↵1 2 N1(X)R a modified nef class such that vol(↵) = vol(↵1);
(ii) �i � 0;
(iii) Di are prime divisors for any i .

Then ↵ = ↵1+

PN
i=1 �i {Di } is the divisorial Zariski decomposition of ↵.We claim

that it is enough to prove that for any prime divisor D 6⇢ Enk(↵),

vol(↵1 + t D) > vol(↵1) 8t > 0. (2.1)
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Indeed, to prove that ↵ = ↵1+

PN
i=1 �i {Di } is the divisorial Zariski decomposition

of ↵, we have to check that Di ⇢ Enk(↵1) by Property 1.2(5). If �i > 0 and
Di 6⇢ Enk(↵1) then (2.1) yields

vol(↵) � vol(↵1 + �i Di ) > vol(↵1) = vol(↵),

hence a contradiction.
The inequality (2.1) easily follows from the differentiability of the volume.

Indeed, by [9, Theorem A] we have
d
dt

��
t=0 vol(↵1 + t D) = n

⌦
↵n�11

↵
· D

where h↵n�11 i denotes the positive product of ↵ defined in [4, Definition 1.17].
Thanks to [9, Remark 4.2 and Theorem 4.9], we have h↵n�11 i · D > 0, hence
vol(↵1 + t D) is a continuous strictly increasing function for small t > 0, and so
vol(↵1 + t D) > vol(↵1).

Using the results in [21] by Witt Nyström and Boucksom, the above proof
works when X is projective and ↵ 2 H1,1(X, R).

3. Currents with full Monge-Ampère mass

In this section we state a few consequences of Theorem 2.1. The first result states
that currents with full Monge-Ampère mass in ↵ compute the coefficients of the
divisorial Zariski decomposition of ↵.

Theorem 3.1. Let ↵ be a big class on X . If T 2 E(X,↵) and Tmin 2 ↵ is a current
with mininal singularities, then the set

�
x 2 X : ⌫(T, x) > ⌫(Tmin, x)

 
is contained in a countable union of analytic subsets of codimension � 2 contained
in EnK (↵). In particular, ⌫(T, D) = ⌫(Tmin, D) for any irreducible divisor D ⇢ X .

Proof. If T 2 E(X,↵) then E+(T ) ⇢ Enk(↵) because of [12, Proposition 1.9]. On
the other hand if we write the Siu decomposition of T as

T = T1 +

X
j�1

� j
⇥
Dj

⇤
,

where Dj are prime divisors and codim Ec(T1) � 2 for all c > 0, we have Dj ⇢

X \ Amp(↵). Hence there is a finite number of Dj such that � j 6= 0. In particular,
⌫(T1, Dj ) = 0 for any j .

Set ↵1 := {T1} and note that, since ↵ is big, ↵1 is big. Moreover, ↵1 is modified
nef. Indeed, pick Tmin,1 2 ↵1 a current with minimal singularities. Since 0 

⌫(Tmin,1, Dj )  ⌫(T1, Dj ) = 0, we have ⌫(Tmin,1, D) = 0 for any D prime divisor.
The claim then follows from Propositions 1.4 and 1.6.
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Furthermore, the current S = Tmin,1 +

PN
j=1 � j [Dj ] is less singular than T ,

hence it has full Monge-Ampère mass [4, Corollary 2.3]. Therefore
vol(↵) =

Z
X

⌦
T n

↵
=

Z
X

⌦
Sn

↵
=

Z
X

⌦
T nmin,1

↵
= vol(↵1).

We are now under the assumptions of Theorem 2.1, thus ↵ = ↵1+

P
j�1 � j [Dj ] is

the divisorial Zariski decompostion of ↵ and
⌫
�
T, Dj

�
= � j = ⌫

�
↵, Dj

�
= ⌫

�
Tmin, Dj

�
,

where the last identity is Proposition 1.6.
Moreover,

B :=

�
x 2 X : ⌫(T, x) > ⌫(Tmin, x)

 
⇢

[
c2Q+

Ec(T1) [

N[
j=1

6 j ,

where 6 j := {x 2 Dj : ⌫(T, x) > � j }. Indeed, if x 2 B is such that x 2

X \

SN
j=1 Dj then ⌫(T, x) = ⌫(T1, x) > ⌫(Tmin,1, x) � 0. If x 2 Dj for some j

and x 2 B then ⌫(T, x) > ⌫(Tmin, Dj ) = � j , that is x 2 6 j . Finally, observe that
by [23] both Ec(T1) and 6 j are analytic subsets of codimension � 2 for any c > 0
and j , respectively.

Remark 3.2. In [19, Theorem 1.1 and Lemma 5.4] Lesieutre constructs an exam-
ple of a big class ↵ on a 4-dimensional manifold X whose non-nef locus Enn(↵) is
an infinite countable union of irreducible curves and it is Zariski dense in a divisor
E ⇢ X . Hence ↵ is modified nef and Theorem 3.1 implies that if T 2 E(X,↵)
then the set E+(T ) := {x 2 X : ⌫(T, x) > 0} contains Enn(↵) but it does not
contain E . Therefore E+(T ) is not a closed analytic subset. In particular, there
does not exist a positive current with analytic singularities T+ 2 ↵ that has full
Monge-Ampère mass.

In [12], the first named author proved that finite energy classes (and in particu-
lar the energy class E defined in section 3) are in general not preserved by bimero-
morphic maps (see [12, Example 1.7 and Proposition 2.3]). In order to circumvent
this problem she introduced a natural condition.
Definition 3.3. Let f : X 99K Y be a bimeromorphic map and ↵ be a big class on
X . Let T↵(X) denote the set of positive closed (1, 1)-currents in ↵. We say that
Condition (V) is satisfied if

f?
⇣
T↵(X)

⌘
= T f?↵(Y ),

where T f?↵(Y ) is the set of positive currents in the image class f?↵.
Remark 3.4. Note that in general we have f?

�
T↵(X)

�
✓ T f?↵(Y ). This means in

particular that the push-forward of a current with minimal singularities in ↵X has
not necessarly minimal singularities in f?↵X , hence vol( f?↵X ) � vol(↵X ).

The first named author showed in [12, Proposition 2.3] that Condition (V) im-
plies that f?E(X,↵) = E(Y, f?↵).

In the following we prove that Condition (V) is equivalent to the preservation
of volumes.
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Lemma 3.5. Let f : X ! Y be a birational morphism and let ↵ be a big class on
X . Let Ei , Fi be distinct prime divisors contained in the exceptional locus Exc( f )
of f , then there exist ai , bi 2 R+ such that

↵ = f ? f?↵ �

"X
i
ai {Ei } �

X
i
bi {Fi }

#
. (3.1)

Moreover, Condition (V ) is equivalent to:

(i) ai  ⌫( f ? f?↵, Ei ) for any i;
(ii) �bi  ⌫( f ? f?↵, Fi ) for any i .

The statements in Lemma 3.5 are quite standard but we include a proof for the
reader’s convenience.

Proof. The identity (3.1) follows from the fact that for any T 2 ↵ positive (1, 1)-
current, T � f ? f?T is supported on Exc( f ) since f is a biholomorphism on X \

Exc( f ). Therefore we conclude by [11, Corollary 2.14].
Assume Condition (V) holds, that is, that any positive (1, 1)-current S 2 f?↵

can be written as S = f?T for some positive (1, 1)-current T 2 ↵. Since the
cohomology classes of the excetional divisors of f are linearly independent, by
(3.1) we have an identity of currents,

T +

X
i
ai [Ei ] = f ? f?T +

X
i
bi [Fi ].

Thus, for any i we have ⌫( f ? f?T, Ei ) � ai � 0 and ⌫( f ? f?T, Fi ) + bi � 0.
Hence (i) and (ii) since Condition (V) holds in particular for currents with minimal
singularities in f?↵.

Conversely, let S 2 f?↵ be a positive (1, 1)-current. By the Siu decomposition
the current

f ?S �

X
i

⌫( f ?S, Ei )[Ei ] �

X
i

⌫( f ?S, Fi )[Fi ]

is positive. For any i , set �i := ⌫( f ?S, Ei ) � ai and µi := ⌫( f ?S, Fi ) + bi and
observe �i , µi � 0 by (i) and (ii). Then

T := f ?S �

X
i

⌫( f ?S, Ei )[Ei ] �

X
i

⌫( f ?S, Fi )[Fi ] +

X
i

�i [Ei ] +

X
i

µi [Fi ]

is a positive (1, 1)-current in ↵ and by construction we have f?T = S.

Theorem 3.6. Let f : X 99K Y be a bimeromorphic map and let ↵ be a big class
on X . Then Condition (V) holds if and only if vol(↵) = vol( f?↵).

Proof. Condition (V) insures that there exists a positive current T 2 ↵ such that
f?T is a current with minimal singularities in f?↵. Then

vol(↵) �

Z
X

⌦
T n

↵
=

Z
Y

⌦
( f?T )n

↵
= vol( f?↵).

By Remark 3.4 we get vol(↵) = vol( f?↵).
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Let us now prove the converse implication. First, observe that, applying a
resolution of singularities, a bimeromorphic map f : X 99K Y can be decomposed
as f = h�1

� g,
Z

h

����
�
�
�
�
�
� g

��@
@

@
@

@
@

@

X Y,

where h, g are two birational morphisms and Z denotes a resolution of singularities
for the graph of f . By the proof of [4, Proposition 1.12], for every birational mor-
phism h we have h?

�
T↵(X)

�
= Th?↵(Z), hence it suffices to prove the claim when

f is a birational morphism.
Let Ei , Fi and ai , bi as in (3.1). By Lemma 3.5, Condition (V) is equivalent to:

(i) ai  ⌫( f ? f?↵, Ei ) for any i ;
(ii) �bi  ⌫( f ? f?↵, Fi ) for any i .

Condition (ii) is satisfied since ⌫( f ? f?↵, Fi ) � 0. Thus we are left to prove (i).
Consider � := f ? f?↵ +

P
i bi {Fi }. We notice that f?� = f?↵. More-

over, by Lemma 3.5, � satisfies Condition (V). Indeed, for any i we have �bi 

⌫( f ? f?�, Fi ) = ⌫( f ? f?↵, Fi ). By the first implication of this theorem, we get
vol(�) = vol( f?�) = vol( f?↵).

Let Tmin 2 ↵ and Smin 2 f?↵ be currents with minimal singularities. Then
Tmin +

P
i ai [Ei ] and f ?Smin +

P
i bi [Fi ] are both positive (1, 1)-currents in �

with full Monge-Ampère mass. Indeed,
Z
X

* 
Tmin +

X
i
ai [Ei ]

!n+
=

Z
X

⌦
T nmin

↵
= vol(↵)

Z
X

* 
f ?Smin +

X
i
bi [Fi ]

!n+
=

Z
Y

⌦
Snmin

↵
= vol( f?↵),

and vol(↵) = vol( f?↵) = vol(�). By Theorem 3.1

a j ⌫

 
Tmin+

X
i
ai [Ei ], E j

!
=⌫

 
f ?Smin +

X
i
bi [Fi ], E j

!
= ⌫

�
f ?Smin, E j

�

for any prime divisor E j , since the prime divisors Fi and E j are distinct. By Propo-
sition 1.6, a j  ⌫( f ?Smin, E j ) = ⌫( f ? f?↵, E j ), hence the conclusion.

Theorem 3.7. Let ↵ be a big class and D be an irreducible divisor such that D \

Amp(↵) 6= ;. Then
vol(↵ + t D) > vol(↵) 8t > 0.

Vice versa, if D \ Amp(↵) = ; then

vol(↵ + t D) = vol(↵) 8t > 0.
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Proof. We first reduce to the case ↵ modified nef and big class. Let ↵ = Z(↵) +

{N (↵)} be the divisorial Zariski decomposition of ↵. By Lemma 3.8 D\Amp(↵) 6=

; if and only if D \ Amp(Z(↵)) 6= ;.
If the theorem is true for modified nef and big classes, we have

vol(↵ + t D) � vol(Z(↵) + t D) > vol(Z(↵)) = vol(↵).

Thus we can assume that ↵ is a modified nef and big class. Assume by contradic-
tion that there exists t0 such that vol(↵ + t0D) = vol(↵). It follows by Theorem 2.1
that � = ↵ + t0D is the divisorial Zariski decomposition of � and so D ⇢ Enk(↵)
Property 1.2(5). Since Enk(↵) = X \ Amp(↵) [7, Proposition 3.17] we get a con-
tradiction.

Vice versa, if ↵ = Z(↵) + {N (↵)} is the divisorial Zariski decomposition of
↵ and D \ Amp(↵) = ; (or equivalently D ⇢ Enk(Z(↵)) by Lemma 3.8 below
and [7, Theorem 3.17]) then by Property 1.2(5) we have that, for any t > 0, the
divisorial Zariski decomposition of ↵ + t D is

↵ + t D = Z(↵) + (N (↵) + t D),

thus vol(↵ + t D) = vol(Z(↵)) = vol(↵).

Lemma 3.8. Let ↵ 2 H1,1big (X, R) and let ↵ = Z(↵) + {N (↵)} be its divisorial
Zariski decomposition. Then we have

Amp(↵) = Amp(Z(↵)).

Proof. We first show the inclusion Amp(↵) ⇢ Amp(Z(↵)). Pick x 2 Amp(↵). By
definition there exists a Kähler current with analytic singularities T 2 ↵ which is
smooth in a neighbourhood of x . Moreover ⌫(Tmin, x) = 0 since 0 = ⌫(T, x) �

⌫(Tmin, x). Let T = R +

P
j a j [Dj ] be the Siu decomposition of T , then x /2

supp Dj for any j . The current T � N (↵) 2 Z(↵) has clearly analytic singularities,
is smooth around x and it is also Kähler since N (↵) 

P
j a j [Dj ] by Proposition

1.6. Hence x 2 Amp(Z(↵)). Conversely, pick x 2 Amp(Z(↵)), then there exists a
Kähler current with analytic singularities T 2 Z(↵) that is smooth in a neighbour-
hood of x (see Definition 1.1). It follows from Property 1.2(5) that x /2 supp N (↵).
This implies that T + N (↵) 2 ↵ is a Kähler current with analytic singularites that
is smooth in a neighbourhood of x . Hence x 2 Amp(↵).
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On the Kodaira-Spencer map of Abelian schemes

YVES ANDRÉ

Abstract. Let A be an Abelian scheme over a smooth affine complex variety
S, ⌦A the OS-module of 1-forms of the first kind on A, DS⌦A the DS-module
spanned by ⌦A in the first algebraic De Rham cohomology module, and ✓@ :

⌦A ! DS⌦A/⌦A the Kodaira-Spencer map attached to a tangent vector field
@ on S. We compare the rank of DS⌦A/⌦A to the maximal rank of ✓@ when @
varies: we show that both ranks do not change when one passes to the “modular
case”, i.e. when one replaces S by the smallest weakly special subvariety of
Ag containing the image of S (assuming, as one may up to isogeny, that A/S
is principally polarized); we then analyse the “modular case” and deduce, for
instance, that for any Abelian pencil of relative dimension g with Zariski-dense
monodromy in Sp2g , the derivative with respect to a parameter of a non zero
Abelian integral of the first kind is never of the first kind.

Mathematics Subject Classification (2010): 14K20 (primary); 14G35, 32G20
(secondary).

This paper deals with Abelian integrals depending algebraically on parameters and
their derivatives with respect to the parameters. Since the nineteenth century, it
has been known that differentiation with respect to parameters does not preserve
Abelian integrals of the first kind in general.

We study this phenomenon in the language of modern algebraic geometry, i.e.
in terms of the algebraic De Rham cohomology OS-module H1dR(A/S) attached
to an Abelian scheme A of relative dimension g over a smooth C-scheme S, its
submodule ⌦A of forms of the first kind on A, the Gauss-Manin connection r
and the associated Kodaira-Spencer map ✓ , i.e. the OS-linear map TS ⌦ ⌦A

✓
!

H1dR(A/S)/⌦A induced by r.
We introduce and compare the following (generic) “ranks”:

• r = r(A/S) = rkDS⌦A/⌦A;
• r 0 = r 0(A/S) = rk ✓ ;
• r 00 = r 00(A/S) = max@ rk ✓@ ;

where @ runs over local tangent vector fields on S (of course, r 00 = r 0 when S is a
curve).
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One has r 00  r 0  r  g and these inequalities may be strict, even if there is
no isotrivial factor (Paragraph 4.1.2). On the other hand, these ranks are insensitive
to dominant base change, and depend only on the isogeny class of A/S (1.6). In
particular, one may assume that A/S is principally polarized and (replacing S by an
etale covering) admits a level n � 3 structure.

We prove that r and r 00 are unchanged if one passes to the “modular case”, i.e.
if one replaces S by the smallest weakly special (= totally geodesic) subvariety of
the moduli space Ag,n containing the image of S, and A by the universal Abelian
scheme on S (3.1).

We prove that r = r 0 in the “modular case”, i.e. when S is a weakly special
subvariety of Ag,n (3.2).

We then study the “PEM case”, i.e. the case when the connected algebraic
monodromy group is maximal with respect to the polarization and the endomor-
phisms, and emphasize the “restricted PEM case”, i.e. where we moreover assume
that if the center F of End A⌦Q is a CM field, then⌦A is a free F⌦QOS-module
(4.1, 4.3); this includes, of course, the case when the algebraic monodromy group
is Sp2g.

Building on the previous results, we show that one has r 00 = r 0 = r = g in
the restricted PEM case (4.4). If moreover S is a curve, we show that the derivative
(with respect to a parameter) of a non zero Abelian integral of the first kind is never
of the first kind (4.6).

Our methods are inspired by B. Moonen’s paper [18]; we exploit the “bi-
algebraic” properties of the Kodaira-Spencer map in the guise of a theorem of “log-
arithmic Ax-Schanuel type” for tangent vector bundles (2.2).

Since the problems under study occur in various parts of algebraic geometry
and diophantine geometry, we have tried to make the results more accessible by
including extended reminders: Section 1 about algebraic De Rham cohomology of
Abelian schemes, Gauss-Manin connections and Kodaira-Spencer maps; Subsec-
tions 3.1 to 3.4 about weakly special subvarieties of connected Shimura varieties,
relative period torsors, and automorphic bundles.

ACKNOWLEDGEMENTS. I thank D. Bertrand and B. Moonen for their careful read-
ing.

1. Preliminaries

1.1. Invariant differential forms

Let S be a smooth connected scheme over a field k of characteristic zero.
Let f : G!S be a smooth commutative group scheme; we denote by m :

G ⇥S G ! G the group law and by e : S ! G the unit section. The invariant
differential 1-forms on G are those satisfying m⇤! = p⇤1! + p⇤2! (where p1, p2
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denote the projections); they form a locally free OS-module denoted by ⌦G , natu-
rally isomorphic to e⇤�1G/S and to f⇤�1G/S , and OS-dual to the Lie algebra LieG.
One has f ⇤⌦G ⇠= �1G/S . Moreover, invariant differential 1-forms are closed [19,
3.5] [9, 1.2.1].

Let us consider the special case when G = A is an Abelian scheme of relative
dimension g, or G = A\ universal vectorial extension of A (Rosenlicht-Barsotti, cf.
e.g., [16, I]). Recall that Ext(A, Ga) ⇠= R1 f⇤OA (using the fact that any rigidified
Ga-torsor over an S-Abelian scheme has a canonical S-group structure), so that A\
is an extension of A by the vector group attached to the dual of R1 f⇤OA, which is
a locally free OS-module of rank g. The projection A\ ! A gives rise to an exact
sequence of locally free OS-modules

0! ⌦A ! ⌦A\ ! R1 f⇤OA ! 0, (1.1)

in a way compatible with base change S0 ! S. On the other hand, if At := Pic0(A)
denotes the dual Abelian scheme, ⌦At is naturally dual to R1 f⇤OA (Cartier), and
⌦At\ is naturally dual to ⌦A\ in such a way that the exact sequence (1.1) is dual to
corresponding exact sequence for At [9, 1.1.1].

1.2. Algebraic De Rham cohomology

The first algebraic De Rham cohomology OS-module H1dR(G/S) is the hyperco-
homology sheaf R1 f⇤(�⇤G/S, d). Assuming S affine, it can be computed à la Čech
using an affine open cover U of G and taking as coboundary map on C p(U ,�

q
G/S)

the sum of the Čech coboundary and (�)p+1 times the exterior derivative d. In par-
ticular, since invariant differential forms are closed, there is a canonical OS-linear
map⌦G ! H1dR(G/S).

If G = A is an Abelian scheme, and A\ its universal vectorial extension, it
turns out that the canonical morphisms

⌦A\ ! H1dR
�
A\/S

�
 H1dR(A/S)

are isomorphisms [9, 1.2.2]. The exact sequence (1.1) thus gives rise to an exact
sequence of locally free OS-modules

0! ⌦A = f⇤�1A/S ! H1dR(A/S)! R1 f⇤OA = ⌦_At ! 0, (1.2)

in a way compatible with base change S0 ! S and with duality A 7! At (cf.
also [14, 8.0]; f⇤�1A/S and R

1 f⇤OA are the graded pieces gr1 and gr0 of the Hodge
filtration ofH1dR(A/S) respectively).

Any polarization of A endows the rank 2g vector bundle H1dR(A/S) with a
symplectic form, for which⌦A is a Lagrangian1 subbundle, and the exact sequence
(1.2) becomes autodual.

1 I.e. isotropic of rank g.
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When S = Spec k,H1dR(A/S) can also be interpreted as the space of differen-
tials of the second kind (i.e. closed rational 1-forms which are Zariski-locally sums
of a regular 1-form and an exact rational form) modulo exact rational 1-forms. For
any rational section ⌧ of A\ ! A and any ⌘ 2 ⌦A\ , ⌧⇤⌘ is of the second kind and
depends on ⌧ only up to the addition of an exact rational 1-form.

In the sequel, we abbreviateH1dR(A/S) byH.

1.3. Gauss-Manin connection

Since the nineteenth century, it has been known that differentiating Abelian inte-
grals with respect to parameters leads to linear differential equations, the prototype
being the Gauss hypergeometric equation in the variable t satisfied by

R
1

1 za�c(1�
z)c�b�1(1�t z)�adz. Manin gave an algebraic construction of this differential mod-
ule (in terms of differentials of the second kind), later generalized by Katz-Oda and
others to the construction of the Gauss-Manin connection on algebraic De Rham
cohomology of any smooth morphism X ! S.

Let as before A f
! S be an Abelian scheme of relative dimension g over a

smooth connected k-scheme S. If k = C, the Gauss-Manin connection is deter-
mined by its analytification ran , whose dual is the unique analytic connection on
(H_)an which kills the period lattice

ker expA ⇠= ker expA\ ⇢
�
Lie A\

�an
=

�
⌦_A\

�an
= (H_)an. (1.3)

The formation of (H,r) is compatible with base change S0 ! S and with duality
A 7! At . It is contravariant in A, and S-isogenies lead to isomorphisms between
Gauss-Manin connections.

If S is affine and ⌦A and ⌦At are free, let us take a basis !1, . . . ,!g of ⌦A
and complete it into a basis !1, . . . ,!g, ⌘1, . . . , ⌘g of H. Pairing with a basis
�1, . . . , �2g of the period lattice on a universal covering S̃ of San , one gets a full
solution matrix

Y =

✓
�2 N2
�1 N1

◆
2 M2g(O(S̃)) (1.4)

for r (with (�1)i j =

R
�i
! j , etc. . . ). This reflects into a family of differential

equations2

@Y = Y
✓
R@ S@
T@ U@

◆
, (1.5)

where R@ , S@ , T@ ,U@ 2 Mg(O(S))3 depend O(S)-linearly on the derivation @ 2
0TS.

2 We write the matrix of r@ on the right in order to let the monodromy act on the left on Y . This
convention has many advantages. In particular, it is independent of the choice of �1, . . . , �2g .
Writing Y with the indices 2 above the indices 1 will be justified in Subsection 2.2.2 below.
3 The fact that these matrices have entries inO(S) rather thanO(San) reflects the algebraic nature
of the Gauss-Manin connection. Alternatively, it can be deduced from the next sentence.
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It is well-known that the Gauss-Manin connection is regular at infinity (cf.,
e.g., [14, 14.1]), hence its D-module theoretic properties are faithfully reflected by
monodromy theoretic properties.
Remark 1.1. The Katz-Oda algebraic construction of r, in the case ofH1dR(A/S),
goes as follows [15, 1.4]. From the exact sequence

0! f ⇤�1S/k ! �1A/k ! �1A/S ! 0, (1.6)

passing to exterior powers, one gets the exact sequence of k-linear complexes of
OA-modules

0! f ⇤�1S/k ⌦�
⇤�1
A/S ! �⇤A/k/

⇣
f ⇤�2S/k ⌦�

⇤�2
A/S

⌘
! �⇤A/S ! 0. (1.7)

Then r is a coboundary map in the long exact sequence for R⇤ f⇤ applied to (1.7),
that is

R1 f⇤�⇤A/S
r

! R2 f⇤
⇣
f ⇤�1S/k ⌦�

⇤�1
A/S

⌘
= �1S/k ⌦ R1 f⇤�⇤A/S, (1.8)

and can be computed explicitly à la Čech, cf. [14, 3.4]. One checks that this map
satisfies the Leibniz rule and the associated map

TS =

⇣
�1S/k

⌘
_ @ 7!r@
! EndkH (1.9)

respects Lie brackets, so that r corresponds to a DS-module structure on H (here
DS denotes the sheaf of rings of differential operators on S, which is generated by
the tangent bundle TS). In fact, it can also be interpreted as the first higher direct
image of OA in the D-module setting (cf. e.g., [6, 4] for an algebraic proof).

An alternative and more precise construction of r, which avoids homological
algebra, consists in endowing A\ with the structure of a commutative algebraic D-
group, which automatically provides a connection on (the dual of) its Lie algebra [3,
3.4, H5] [5, 6].

1.4. Kodaira-Spencer map

The Gauss-Manin connection does not preserve the subbundle⌦A ⇢ H in general.
The composed map

⌦A ,! H r

! �1S ⌦H!! �1S ⌦ (H/⌦A) = �1S ⌦⌦
_

At (1.10)

is the Kodaira-Spencer map (or Higgs field). Like the Gauss-Manin connection, its
formation commutes with base-change. Unlike the Gauss-Manin connection, it is
an OS-linear map (also called the Higgs field of A/S [22]).
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Remark 1.2. This map can be interpreted as a coboundary map in the long exact
sequence for R⇤ f⇤ applied to (1.6), and computed explicitly à la Čech, cf. [14,
3.4] [15, 1.3].

It can be rewritten as the map

✓ : TS ⌦OS ⌦A ! ⌦_At = Lie At . (1.11)

If D1S ⇢ DS denotes the subsheaf of differential operators of order  1 on S, and
DS⌦A ⇢ H the sub-DS-module generated by⌦A inH = H1dR(A/S). One has

Im ✓ = D1S ⌦A/⌦A ⇢ DS⌦A/⌦A ⇢ H/⌦A = Lie At . (1.12)

The Kodaira-Spencer map can also be rewritten as the map

TS
@ 7!✓@
! Lie A⌦ Lie At , (1.13)

which is invariant by duality A 7! At [7, 9.1]; if A is polarized, it thus gives rise to
a map

TS
@ 7!✓@
! S2Lie A ⇠= Homsym

�
⌦A,⌦

_

A
�
. (1.14)

In the situation and notation of the end of Subsection 1.3, the matrix of ✓@ is T@
(which is a symmetric matrix if one chooses the basis !1, . . . , ⌘g to be symplectic).
Remarks 1.3.

i) Here is another interpretation of ✓@ in terms of the universal vectorial extension
A\, assuming S affine [7, 9]: for any ! 2 0⌦A, pull-back the exact sequence
of vector bundles associated to (1.6) by the morphism OA ! �1A/S corre-
sponding to ! and get an extension of A by the vector group attached to �1S ,
so that the morphism from A\ to this vectorial extension gives rise, at the level
of invariant differential forms, to a morphism ⌦At ! �1S; thus to any ! and
any @ 2 0TS = Hom(�1S,OS), one gets an element of ⌦_At , which is nothing
but ✓@ · !;

ii) The following equivalences are well-known:
– A/S is isotrivial , ✓ = 0 , DS⌦A = ⌦A , r is isotrivial (i.e. has
finite monodromy).

Remembering that the Kodaira-Spencer map commutes to base-change, the
only non trivial implications are: r isotrivial) DS⌦A = ⌦A, and ✓ = 0)
A/S isotrivial. The first implication comes from Deligne’s “théorème de la
partie fixe” [10, 4.1.2]. An elementary proof of the second one will be given
below (Paragraph 2.1.1);

iii) In contrast to DS⌦A, D1S ⌦A is not locally a direct factor of H in general: at
some points s 2 S the rank of ✓s may drop (see however Theorem 3.2). In fact,
the condition that the rank of ✓s is constant is very restrictive: for instance,
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if S is a proper curve, the condition that ✓ is everywhere an isomorphism is
equivalent to the condition that the Arakelov inequality deg⌦A 

g
2 deg�

1
S

is an equality, and implies that A/S is a modular family, parametrized by a
Shimura curve [22].

1.4.1. Since the OS-module H/DS⌦A carries a DS-module structure, it is lo-
cally free [14, 8.8], hence DS⌦A is locally a direct summand of H. In fact, by
Deligne’s semisimplicity theorem [10, 4.2.6], DS⌦A is even a direct factor of H
(as a DS-module, hence as a vector bundle).

Lemma 1.4. The formation of DS⌦A commutes with dominant base change S0
⇡
!

S (with S0 smooth connected).

Proof. Since H commutes with base-change and DS⌦A is locally a direct sum-
mand, it suffices to prove the statement after restricting S to a dense affine open
subset. In particular, one may assume that ⇡ is a flat submersion, so that TS0 !
⇡⇤TS and DS0 ! ⇡⇤DS are epimorphisms, and DS0⌦AS0 = ⇡⇤DS⇡

⇤⌦A =

⇡⇤(DS⌦A).

1.4.2. As in the introduction, let us define

r = r(A/S) := rkDS⌦A/⌦A, (1.15)

r 0 = r 0(A/S) := rk ✓ = rkD1S ⌦A/⌦A, (1.16)
r 00 = r 00(A/S) := max

@
rk ✓@ , (1.17)

where @ runs over local tangent vector fields on S (and rk denotes a generic rank).

Lemma 1.5. These are invariant by dominant base change S0 ⇡! S (with S0 smooth
connected), and depend only on the isogeny class of A/S.

Proof. For r , this follows from the previous lemma. Its proof also shows that
D1S ⌦A commutes with base change by flat submersions, which settles the case of
r 0. For r 00, we may assume that S and S0 are affine, that TS is free and TS0 = ⇡⇤TS ,
and pick a basis @1, . . . , @d of tangent vector fields; the point is that max�i rk

P
�i✓@i

is the same when the �i ’s run in O(S) or in O(S0) (consider the ✓@i ’s as matrices
and note that each minor determinant is a polynomial in the �i ’s).

The second assertion is clear since any isogeny induces an isomorphism at the
level of (H,r).

Lemma 1.6.

(1) r 00 = g holds if and only if there exists a local vector field @ such that ✓@ .! 6= 0
for every non-zero ! 2 0⌦A;

(2) r 0 = g holds if and only if for every non-zero ! 2 0⌦A, there exists a local
vector field @ such that ✓@ .! 6= 0.
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Proof. The first equivalence is immediate, while the second uses the symmetry of
(1.13): assuming A polarized, and after restricting S to a dense open affine subset,
one has r 0 = g , 8! 2 0⌦A \ 0, 9⌘ 2 0⌦A, 9@ 2 0TS, (✓@ .!) · ⌘ 6= 0.
Since (✓@ .⌘)·! = (✓@ .!)·⌘, one gets 8! 2 0⌦A\0, 9⌘ 2 0⌦A, 9@ 2 0TS, (✓@ .⌘)·
! 6= 0.

2. Automorphic vector bundles and bi-algebraicity

2.1. Bi-algebraicity of the Kodaira-Spencer map

2.1.1. Let Ag,n be the moduli scheme of principally polarized Abelian varieties
of dimension g with level n structure (n � 3), and let X ! Ag,n be the universal
Abelian scheme.

The universal covering of Aan
g,n is the Siegel upper half space Hg. We denote

by jg,n : Hg ! Aan
g,n the uniformizing map (for g = n = 1, this is the usual

j-function). The pull-back of the dual of the period lattice ker expX on Hg is a
constant symplectic lattice 3. On Hg, the Gauss-Manin connection of X /Ag,n
becomes a trivial connection with solution space 3C.

On the other hand, Hg is an (analytic) open subset of its “compact dual” H_g ,
which is the Grassmannian of Lagrangian subspaces V ⇢ 3_C (i.e. isotropic sub-
spaces of dimension g): the Lagrangian subspace V⌧ corresponding to a point
⌧ 2 Hg is ⌦X jg,n (⌧ ) ⇢ H1dR(X jg,n(⌧ ))

⇠
= 3_C (note that the latter isomorphism

depends on ⌧ , not only on jg,n(⌧ )). The Grassmannian H_g is a homogeneous space

for Sp(3C) (in block form
✓
A B
C D

◆
sends ⌧ 2 Hg to (A⌧ + B)(C⌧ + D)�1). The

vector bundle j⇤g,nLieX is the restriction to Hg of the tautological vector bundle L
on the Lagrangian Grassmannian H_g .
2.1.2. In this universal situation, the Kodaira-Spencer map (in the form of (1.14))
is an isomorphism

TAg,n
⇠

! S2LieX , (2.1)

and its pull-back to Hg is the restriction of the canonical isomorphism

TH_g
⇠

! S2L (2.2)

cf. e.g., [8, 12].
Any principally polarized Abelian scheme with level n structure A/S is iso-

morphic to the pull-back of X by a morphism S µ
! Ag,n , and the Kodaira-Spencer

map of A/S (in the form of (1.14)) is the pull-back by µ of the isomorphism (2.1)
composed with dµ : TS ! µ⇤TAg,n . In particular, the Kodaira-Spencer map ✓ of
A/S vanishes if and only if the image of S! Ag,n is a point, i.e. A/S is constant;
moreover, if A/S is not constant, µ is generically finite, and @ is a non zero section
of TS , then ✓@ is non zero.
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2.2. Relative period torsor

2.2.1. The bi-algebraicity mentioned above refers to the pair of algebraic struc-
tures Ag,n,H_g , which are transcendentally related via Hg and jg,n .

On the other hand, there is a purely algebraic relation between these two alge-
braic structures, through the relative period torsor. This is the Sp(3C)Ag,n -torsor
5g,n

⇡
! Ag,n of solutions of the Gauss-Manin connection r of X . More formally,

this is the torsor of isomorphismsH! 3_C⌦OAg,n which respect ther-horizontal
tensors4. Its generic fiber is the spectrum of the Picard-Vessiot algebra5 attached to
r, namely Spec C(Ag,n)[Yi j ]i, j=1,...,2g (with the notation of Subsection 1.3).

2.2.2. The canonical horizontal isomorphism H ⌦OAg,n OHg
⇠

! 3_C ⌦C OHg
gives rise to an analytic map

k : Hg ! 5g,n (2.3)

with ⇡ � k = jg,n . In local bases and with the notation of Subsection 1.3, k sends

⌧ 2 Hg to the point Y (⌧ ) =

✓
�2(⌧ ) N2(⌧ )
�1(⌧ ) N1(⌧ )

◆
of 5 jg,n(⌧ ). In particular, the image

of k is Zariski-dense in5g,n .
On the other hand there is an algebraic Sp(3C)-equivariant map

⇢ : 5g,n!H_g , (2.4)

which sends a point p 2 5g,n(C) viewed as an isomorphism H⇡(p) ! 3_ to the
image of ⌦X⇡(p) in 3_C. In local bases and with the notation of Subsection 1.3, ⇢

sends
✓
�2 N2
�1 N1

◆
to ⌧ = �2�

�1
1 ; ⇢ � k is the Borel embedding Hg ,! H_g .

One thus has the following diagram

Hg ! 5g,n
(⇡,⇢)
!! Ag,n ⇥H_g , (2.5)

in which the first map has Zariski-dense image, and the second map (⇡, ⇢) is sur-
jective (of relative dimension g(3g+1)

2 ) since the restriction of ⇢ to any fiber of ⇡
is Sp(3C)-equivariant and H_g is homogeneous. It follows that the graph of jg,n is
Zariski-dense6 in H_g ⇥Ag,n .

The function field of5g,n is studied in detail in [4]: it is a differential field both
for the derivations of Ag,n and for the derivations @/@⌧i j of H_g . Over C(H_g ) =

C(⌧i j )i jg, it is generated by (iterated) derivatives with respect to the @/@⌧i j ’s of
the modular functions (the field of modular functions being C(Ag,n)).

4 This is a reduction from GSp to Sp of the standard principal bundle considered in [17, III.3].
5 In general, one has to adjoin the inverse of the wronskian together with the entries of a full
solution matrix in order to build a Picard-Vessiot algebra, but here the wronskian is a rational
function, since the monodromy is contained in Sp.
6 This property does not extend to m-jets for m � 3.
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2.3. Connected Shimura varieties and weakly special subvarieties

2.3.1. Let G be a reductive group over Q, Gad the quotient by the center, and
Gad(R)+ the connected component of identity of the Lie group Gad(R).

Let X be a connected component of a conjugacy class X of real-algebraic ho-
momorphisms C⇤ ! GR. For any rational representation G ! GL(W ), one then
has a collection of real Hodge structures (WR, hx )x2X on WR parametrized by X .
If the weight is defined over Q (which is the case if G = Gad since the weight is 0
in this case), one even has a collection of rational Hodge structures (W, hx )x2X .

In the sequel, we assume that (G,X) satisfies Deligne’s axioms for a Shimura
datum; these axioms ensure that X has a Gad(R)+-invariant metric, which makes
X into a hermitian symmetric domain, and that the (WR, hx ) (respectively (W, hx ))
come from variations of polarized Hodge structures on the analytic variety X (re-
spectively if the weight is defined over Q, for instance if G = Gad ); moreover, in
the case of the adjoint representation on g = LieG, the variation of Hodge struc-
tures is of type (�1, 1) + (0, 0) + (1,�1) (cf. e.g., [17, II]).

2.3.2. Let 0 be a discrete subgroup of Gad(Q)+, quotient of a torsion-free con-
gruence subgroup ofG(Q). Then 0\X has a canonical structure of algebraic variety
(Baily-Borel): the connected Shimura variety attached to (G, X,0). The variation
of Hodge structures descends to it, with monodromy group 0. The situation of Sub-
section 2.1 corresponds to the case G = GSp2g, X = Hg, 0 = the congruence
subgroup of level n � 3 (cf. e.g., [17, II]).

2.3.3. Let S be the connected Shimura variety attached to (G, X,0), and j :

X ! S the uniformizing map. An irreducible subvariety S1 ⇢ S is weakly special
if there is a sub-Shimura datum (H,Y)! (G,X), a decomposition (Had ,Yad) =

(H1,Y1)⇥ (H2,Y2), and a point y 2 Y2 such that S1 is the image of Y1 ⇥ y in S
(here Y1 is a connected component ofY1 contained in X) [21]7; in particular, S1 is
isomorphic to the connected Shimura variety attached to (H1,Y1,0ad \ H1).

2.4. Automorphic vector bundles

2.4.1. Given a faithful rational representation W of G, the associated family of
Hodge filtrations on WC is parametrized by a certain flag variety X_, the compact
dual of X , which is a Gad

C -homogeneous space.
The isotropy group of a point x 2 X_ is a parabolic subgroup Px , Kx :=

Px \Gad(R)+ is a maximal compact subgroup, and there is a Gad(R)+-equivariant
Borel embedding

X = Gad(R)+/Kx
i
,! X_ = Gad

C /Px . (2.6)

7 This is a special subvariety if y is a special point.
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2.4.2. Associated to W , there is a variation of polarized Hodge structures on
S = 0\X , hence an integrable connection r with regular singularities at infinity
on the underlying vector bundleW . There is again a relative period torsor in this
situation.

Assume for simplicity thatG = Gad . The monodromy group0 is then Zariski-
dense in G. The relative period torsor

5
⇡
! S (2.7)

is the GS-torsor of isomorphismsW ! WC ⌦OS which respects the r-horizontal
tensors8. Its generic fiber is the Picard-Vessiot algebra attached to r.

The canonical horizontal isomorphism W ⌦OS OX
⇠

! WC ⌦ OX gives rise
to an analytic map k : X ! 5 with ⇡ � k = j . There is an algebraic GC-
equivariant map 5 ⇢

! X_ (which sends a point p 2 5(C) viewed as an isomor-
phismW⇡(p)! W to the point of X_ which parametrizes the image of the Hodge
filtration ofW⇡(p)); one has ⇢ � k = i .

One thus has the following factorization:

( j, i) : X ! 5
(⇡,⇢)
!! S ⇥ X_ (2.8)

in which the first map has dense image, the second map (⇡, ⇢) is surjective (since
the restriction of ⇢ to any fiber of ⇡ is GC-equivariant with homogeneous target).

Since any faithful rational representation of G lies in the tannakian category
generated by W and conversely, neither X_ nor 5 depend on the auxiliary W . On
the other hand, ⇡⇤ provides an equivalence between the category of vector bundles
on S and the category of GC-vector bundles on5 [17, III.3.1].

2.4.3. A GC-equivariant vector bundle ˘V on X_ = GC/Px is completely deter-
mined by its fiber at x 2 X together with the induced Px -action (or else, the induced
Kx -action). The quotient V := 0\i⇤ ˘V has a canonical structure of algebraic vector
bundle on S = 0\X , the automorphic vector bundle attached to ˘V [17, III.2.1, 3.6].
One has the equality of analytic vector bundles on X :

j⇤V = i⇤ ˘V . (2.9)

There is also a purely algebraic relation between V and ˘V , through the relative
period torsor [17, III.3.5]: one has the equality of algebraic GC-vector bundles on
5:

⇡⇤V = ⇢⇤ ˘V . (2.10)

8 It coincides with the standard principal bundle considered in [17, III.3].
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2.4.4. Any representation of GC gives rise to a GC-equivariant vector bundle on
X_, hence to an automorphic vector bundle (which carries an integrable connec-
tion).

On the other hand, TX_ is a GC-equivariant vector bundle on X_, and the
corresponding automorphic vector bundle is nothing but TS .

In the situation of Paragraph 2.1.2, the tangent bundle TH_g and its tautological
bundle L are equivariant vector bundles, and the universal Kodaira-Spencer map
(2.1) is an isomorphism of automorphic vector bundles onAg,n .

2.5. A theorem of logarithmic Ax-Schanuel type for tangent bundles

2.5.1. The theorem of logarithmic Ax-Schanuel type for connected Shimura va-
rieties is the following [11, 2.3.1] (cf. also [21])9:

Theorem 2.1. Let S be a connected Shimura variety (San = 0\X). Let Z ⇢ S
be an irreducible locally closed subset, and let Z̃ be an analytic component of the
inverse image of Z in X .

Then the image in S of the intersection with X of the Zariski closure of Z̃ in the
compact dual X_ is the smallest weakly special subvariety S1 ⇢ S containing Z .

Here is a sketch of proof. One can replace S by the smallest special subvariety
containing Z . Fix a point s 2 Z(C) and a faithful rational representation of G, and
consider the associated vector bundle W with integrable connection r on S. Let
Ĝ1 ⇢ G be the Zariski closure of the monodromy group 0Z of (W|Z ,r|Z ) at s. Up
to replacing 0 by a subgroup of finite index, Ĝ1 is connected and a normal subgroup
of G (by [2, 5]). This gives rise to a weakly special subvariety S1 ⇢ S associated to
a factor G1 = Ĝad

1 of Gad , which is in fact the smallest weakly special subvariety
of S containing Z (cf. [18, 3.6], [21, 4.1] for details). On the other hand, since Z̃
is stable under 0Z , its Zariski closure in the GC-homogeneous space X_1 is stable
under G1, hence equal to X_1 .

Here is the analog for tangent vector bundles, assuming Z smooth:

Theorem 2.2. In this situation, TZ̃ is Zariski-dense in TX_1 .

Proof. We may replace G by G1 and S by S1. Let TZ̃ be the Zariski closure of
TZ̃ = Z̃ ⇥Z TZ in TX_ . Let (W,r) be as above, and let 5 be the relative pe-
riod torsor of S (we take over the notation (2.3) (2.5)). Since (W|Z ,r|Z ) has
the same algebraic monodromy group as (W,r), namely G, the generic fiber of
the projection 5Z

⇡Z
! Z is the spectrum of the Picard-Vessiot algebra attached

9 Not to be confused with the (exponential) Ax-Schanuel theorem - a.k.a. hyperbolic Ax-
Lindemann - for connected Shimura varieties, which concerns the maximal irreducible algebraic
subvarieties of X_ whose intersection with X is contained in Z̃ , and which is a much deeper
result (Pila-Tsimerman, Klingler-Ullmo-Yafaev).
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to (W|Z ,r|Z ), and the image of k
|Z̃ (Z̃) is Zariski-dense in 5Z . It follows that

(k
|Z̃ ⇥ 1TZ )(TZ̃ ) = k

|Z̃ (Z̃)⇥Z TZ is Zariski-dense in5Z ⇥Z TZ .
In fact, r|Z induces a connection on the torsor 5Z , which amounts to a split-

ting of the natural exact sequence of GC-equivariant vector bundles on5Z :

T5Z /Z ! T5Z
(
! 5Z ⇥Z TZ ,

and since k
|Z̃ (Z̃) is horizontal, the Zariski-closure of k

|Z̃⇤(TZ̃ ) in T5Z is the GC-
equivariant vector subbundle5Z ⇥Z TZ .

On the other hand, TZ̃ ! TX_ factors through the map T5Z ! TX_ of
GC-equivariant vector bundles induced by ⇢, and one concludes that TZ̃ is a GC-
equivariant vector subbundle of TX_ . Hence TZ̃ =

˘V for some automorphic vector
subbundle V ⇢ TS .

It is known (see [13, VIII, 5]) that for any irreducible factor of X , the (real)
representation of the corresponding factor of k on the corresponding factor of Tx X
is irreducible, from which it follows that the automorphic vector subbundles of TS
are of the form S ⇥S1 TS1 for some factor S1 of the locally symmetric domain S.
Since V contains TZ and Z is not contained in any proper S1, one concludes that
V = TS and TZ̃ = TX_ .

Remark 2.3. In general, given an algebraic vector bundleM on an algebraic va-
riety Y , the Zariski closure of an analytic subbundle over some Zariski-dense ana-
lytic subspace of Y is not necessarily an algebraic subbundle ofM: for instance,
the Zariski closure in TC2 of the tangent bundle of the graph in C2 of a Weierstrass
} function is a quadric bundle over C2, not a vector subbundle of TC2 (a similar
counterexample holds for the graph of the usual j-function and its bundle of jets of
order  3, since j satisfies a rational non-linear differential equation of order 3).

On the other hand, Theorem 2.2 does not extend to arbitrary automorphic vec-
tor bundles, but one has the following easy consequence of Theorem 2.1:
Porism 2.4. In the same situation, let V be an automorphic vector bundle on S
with corresponding vector bundle ˘V on X_, and let F be a vector subbundle of the
restriction of V to Z . Then Z and F are bi-algebraic if and only if Z is a weakly
special subvariety and F is an automorphic vector bundle.

The assumption “Z is bi-algebraic” means that Z̃ is the intersection of Xwith an
algebraic subvariety of X_, and according to Theorem 2.1, this amounts to Z= S1.

The assumption “F is bi-algebraic” means that its pull-back ˜F in ˘V is an
algebraic subvariety. Since Z = S1, this amounts to say that this analytic subbundle
of V ⇥S X_1 =

˘V ⇥X_ X_1 is algebraic. It is in fact a G1C-vector subbundle, so that
F is an automorphic vector bundle on X_1 .

Using the relative period torsor, one can also prove the following stronger ver-
sion of Theorem 2.1:
Scholium 2.5. in the setting of Theorem 2.1, the graph of j

|Z̃ is Zariski-dense in
X_1 ⇥ Z .
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Indeed, it follows from (2.8) (with S1 in place of S) that the map 51|Z
(⇢,⇡Z )
!

X_1 ⇥ Z is surjective. On the other hand, the image of k
|Z̃ (Z̃) is Zariski-dense in

51|Z .

3. Transition to the modular case

We go back to the study of r(A/S), r 0(A/S), r 00(A/S) for an Abelian scheme A/S.
We may assume that the base field k is C. According to Lemma 1.6, these ranks
are invariant by dominant base change of S and by isogeny of A, hence one may
assume that A/S admits a principal polarization and a Jacobi level n structure for
some n � 3, and then replace S by the smooth locus Z ⇢ Ag,n of its image in the
moduli space of principally polarized Abelian varieties of dimension g with level n
structure, and A by the restriction XZ of the universal Abelian scheme X onAg,n .

3.1. From Z to the smallest weakly special subvariety ofAg,n containing Z

Let us consider again the situation of Paragraph 2.5.1, with S = Ag,n . Given a
(locally closed) subvariety Z ⇢ Ag,n , one constructs the smallest weakly special
subvariety S1 ⇢ Ag,n containing Z , taking (W,r) equal to H1dR(X /Ag,n) with
its Gauss-Manin connection. By construction, S1(C) = 01\X1 where X1 is a
hermitian symmetric domain attached to the adjoint group G1 of the connected
algebraic monodromy group of r|Z .

Theorem 3.1. One has r(XZ/Z) = r(XS1/S1) and r 00(XZ/Z) = r 00(XS1/S1).

Proof. Fix s 2 Z(C). By construction r|Z and r|S1 have the same connected alge-
braic monodromy group at s, namely Ĝ1 ⇢ Sp2g (up to replacing n by a multiple).
It follows that DZ⌦XZ = (DS1⌦XS1 )|Z , whence r(XZ/Z) = r(XS1/S1).

On the other hand, the inequality r 00(XZ/Z)  r 00(XS1/S1) is obvious. For
any natural integer h < g, let 1h be the closed subset of TH_g corresponding to
quadratic forms in S2LieX of rank  h (this is in fact a Sp(3C)-subvariety; 10
is the 0-section). Then r 00(XZ/Z) (respectively r 00(XS1/S1)) is the greatest integer
h such that dµ(@) in not contained in µ⇤1h�1. In order to prove the inequality
r 00(XZ/Z) � r 00(XS1/S1), it thus suffices to show that if TZ̃ is not contained in
1h , neither is TX_1 , which follows from the fact that TZ̃ is Zariski-dense in TX_1
(2.2).

3.2. Case of a weakly special subvariety ofAg,n

We now assume that S is a weakly special subvariety ofAg,n , with associated group
G = Gad , and that there is a finite covering Ĝ of G contained in Sp(3Q).

Theorem 3.2. One has Im ✓ = DS⌦XS/⌦XS , hence r(XS/S) = r 0(XS/S).
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Proof. Fix an arbitrary point x 2 X and set s = j (x) 2 S. Then X = G(R)/Kx ,
and X_ = GC/Px can also be written ĜC/P̂x ⇢ H_g ; P̂x stabilizes the Lagrangian
subspace Vx := ⌦Xs ⇢ 3

_

C. We write

g = LieGC = Lie ĜC, kC = Lie Kx,C.

The Hodge decomposition of gwith respect to ad �hx takes the form u+
�kC�u�,

where u+, the Lie algebra of the unipotent radical of Px , is of type (�1, 1), kC is
of type (0, 0), and u� of type (1,�1). One has u+

� kC = Lie P̂x , kC � u� is the
Lie algebra of an opposite parabolic group P�x , and kC is the common (reductive)
Levi factor (cf. also [18, 5]).

Looking at the Hodge type, one finds that⇥
u+, u+

⇤
=

⇥
u�, u�

⇤
= 0,

⇥
kC, u+

⇤
⇢ u+,

⇥
kC, u�

⇤
⇢ u�,

⇥
u+, u�

⇤
⇢ kC. (3.1)

By the Jacobi identity, it follows that⇥
kC,

⇥
u+, u�

⇤⇤
⇢

⇥
u+, u�

⇤
, (3.2)

i.e. [u+, u�] is a Lie ideal of kC, hence a reductive Lie algebra.
We may identify Tx X_ = Ts S with u�. Note that 3_C is a faithful repre-

sentation of g and that Vx is stable under Lie Px = u+
+ kC. Using the Hodge

decomposition Vx � V̄x = 3_C
⇠
= H1dR(Xs), we can write the elements of g as ma-

trices in block form
� R S
T ◆(R)

�
, with R 2 kC, S 2 u+, T 2 u� and ◆ is the involution

exchanging Px and P�x . Identifying u+ with
�
0 u+

0 0
� �
respectively u� with

� 0 0
u� 0

��
,

one may write [u+, u�] =

�
u+

·u� 0
0 ◆(u+

·u�)

�
. Therefore u+

· u� is a reductive Lie
algebra acting on Vx . Accordingly, Vx decomposes as V0 � V 0, where V0 is the
kernel of this action, and (u� · u)V 0 = V 0.

The identifications u� = Ts S and Vx = (⌦XS )s lead to Vx � u�Vx =

(D1S ⌦XS )s .
Claim. Vx � u�Vx is the smallest g-submodule of 3_C containing Vx . Therefore, it
is the fiber at x of DS⌦XS .

The point is that Vx+u�Vx = Vx+u�V 0 is stable under u�, u� and kC, which
follows from (3.1) and from the fact that Vx is stable under u+

+ kC.

4. The case of maximal monodromy (subject to given polarization and
endomorphisms)

4.1. Abelian schemes of PEM type

Definition 4.1. A principally polarized Abelian scheme A/S is of PE-monodromy
type – or PEM type – if its geometric generic fibre is simple and the connected
algebraic monodromy is maximal with respect to the polarization  and the endo-
morphisms.
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In other words, the Zariski-closure of the monodromy group at s 2 S is the
maximal algebraic subgroup of Sp(H1(As), s) which commutes with the action
of End A/S (this condition is independent of s 2 S(C)).

Let us make this more explicit.The endomorphismQ-algebra D :=(EndA/S)⌦
Q is the same as the one of its generic fiber; since the latter is assumed to be geo-
metrically simple, D is also the endomorphism Q-algebra of the geometric generic
fibre. According to Albert’s classification, its falls into one of the following types:

I: a totally real field F = D;
II: a totally indefinite quaternion algebra D over a totally real field F ;
III: a totally indefinite quaternion algebra D over a totally real field F ;
IV: a division algebra D over a CM field F .

Let E � F be a maximal subfield of D, which we can take to be a CM field
except for type I, and let E+ be a maximal totally real subfield. For any embedding
� : E+ ,! R, let us order the embeddings �1, �2 : E ,! C above � if E 6= E+

(and set �1 = � otherwise). We identify � (respectively �1) with a homomorphism
E+
⌦C! C (respectively E ⌦C! C). Let us set

H� = H⌦E+
⌦C,� C (respectively H�1 = H⌦E⌦C,�1 C). (4.1)

By functoriality of the Gauss-Manin connection, these are direct factors of H as
DS-modules, and H� only depends (up to isomorphism) on the restriction [�] of �
to F+.

Then the maximal possible connected complex monodromy group at an arbi-
trary point s 2 S(C) is of the form 5[�] G[�] where G[�] and its representation on
H�,s are of the form

I: Sp(H�,s), St ;
II: Sp(H�1,s), St � St ;
III: SO(H�1,s), St � St ;
IV: SL(H�1,s), St � St_;

where St denotes the standard representation, and St_ its dual. Moreover, for types
I, II, III,H�1,s is an even-dimensional space, cf., e.g., [1, 5].
Remark 4.2. If A/S is endowed with a level n structure, it is of PEM type if and
only if the smallest weakly special subvariety of Ag,n containing the image of S is
a special subvariety of PEL type in the sense of Shimura, i.e. the image in Ag,n
of the moduli space for principally polarized Abelian varieties A such that D ⇢
(End A) ⌦ Q, equipped with level n structure [20] (for S = Spec k, A is of PEM
type if and only if A has complex multiplication).

One could also define the related (but weaker) notion of Abelian scheme A/S
of PE Hodge type, on replacing the monodromy group by the Mumford-Tate group,
cf., e.g., [1]. If A/S is endowed with a level n structure, it is of PE Hodge type if
and only if the smallest special subvariety of Ag,n containing the image of S is a
special subvariety of PEL type in the sense of Shimura.



ON THE KODAIRA-SPENCER MAP OF ABELIAN SCHEMES 1413

4.1.1. Parallel to (4.1), one has a decomposition

⌦A,� = ⌦A ⌦E+
⌦C,� C (respectively ⌦A,�1 = ⌦A ⌦E⌦C,�1 C). (4.2)

The sequence (1.2) induces an exact sequence

0! ⌦A,�1 ! H�1 ! H�1/⌦A,�1 ! 0. (4.3)

It turns out that for types I, II, III, H�1/⌦A,�1
⇠
= ⌦_A,�1

. This is not the case for
type IV, and the pair�

r[�] = dim⌦A,�1,s, s[�] = dimH�1,s/⌦A,�1,s
�

(4.4)

is an interesting invariant called the Shimura type (for type IV, the PEL families
depend not only on D, the polarization and the level structure, but also on these
pairs, when [�] runs among the real embeddings of F+). On the other hand,
⌦A,�2

⇠
= ⌦A,�1 for types I, II, III, while⌦A,�2

⇠
= (H�1/⌦A,�1)

_ for type IV.
4.1.2. By functoriality, the Kodaira-Spencer map induces a map

✓@,�1 : ⌦A,�1 ! H�1/⌦A,�1 . (4.5)

Therefore, rk ✓@,�1  min(r[�], s[�]). In particular, if for some [�], r[�] 6= s[�], then
r 0 < g.

Let us consider for example the Shimura family of PEL type of Abelian 3-
folds with multiplication by an imaginary quadratic field E (type IV) and invariant
(r[�] = 1, s[�] = 2) (it is non empty by [20]). The base is a Shimura surface, and
for this family one has r 00 = 2, r 0 = r = g = 3. Let A/S be the restriction of this
Abelian scheme to a general curve of this surface; then r 00 = r 0 = 2, r = g = 3.

One gets examples with r < g when r[�] · s[�] = 0 for some [�].

4.2. Abelian schemes of restricted PEM type

Definition 4.3. A principally polarized Abelian scheme A/S is of restricted PEM
type if it is of PEM type and for any (equivalently, for all) s 2 S(C), (⌦A)s is a free
E ⌦C-module.

In the latter condition, one could replace E by F . It is automatic for types I,
II, III. For type IV, it amounts to the equality r� = s� for every �; in that case,
��1
⇠
= �_�2 .

Theorem 4.4. In the restricted PEM case, one has r 00 = r 0 = r = g.
Proof. Thanks to Lemma 1.6 and Theorem 3.1, we are reduced to prove that r 00 = g
for a Shimura family of PEL type, provided r� = s� for every � in the type IV case.
This amounts in turn to showing that there exists @ such that ✓@,�1 has maximal rank,
equal to the rank ofH�1 which is twice the rankm of⌦A,�1 . Let g be one of the Lie
algebras sp(2m), so(2m), sl(2m). In the notation of the proof of Theorem 3.2, The
point is to show that u� contains an invertible element. But u+ consists of lower
left quadrants of elements of g viewed as a 2m-2m-matrices; and it is clear that the
lower left quadrant of a general element of g is an invertible m-m-matrix.
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Remarks 4.5.

i) One can be more precise and give an interpretation of the partial Kodaira-
Spencer map at the level of X_ as induced by isomorphisms

TG[�]/P
[�]

⇠

! S2L�1 (4.6)

for type I and II (the lower left quadrant of an element of g is symmetric),

TG[�]/P
[�]

⇠

! L⌦2�1 (4.7)

for type III and IV (the lower left quadrant of an element of g can be any
m-m-matrix).

ii) Of course one has r = g wheneverH is an irreducible DS-module.

Claim. If EndS A = Z and A/S is not isotrivial, then H is an irreducible DS-
module.

Indeed, the conclusion can be reformulated as: the local system R1 f an⇤ C is ir-
reducible. Since we know that it is semisimple [10, Section 4.2.6], this is also equiv-
alent, by Schur’s lemma, to End R1 f an⇤ C = C and also to End R1 f an⇤ Z = Z. This
equality then follows from the assumptions by the results of [10, Section 4.4]. More
precisely, let Z be as in loc. cit. the center of End R1 f an⇤ Q; then Z is contained in
(EndS A)⌦Q (loc. cit., 4.4.7), hence equal toQ, and by loc. cit. Proposition 4.4.11
(under conditions (a), (b), (c1) or (c2)), one deduces that End R1 f an⇤ Z = Z.

It would be interesting to determine whether r 00 = g in this case, beyond the
PEM case.

4.3. Differentiating Abelian integrals of the first kind with respect
to a parameter

From the above results about differentiating differential forms of the first kind with
respect to parameters, it is possible to draw results about differentiating their inte-
grals.

An Abelian integral of the first kind on A is a C-linear10 combination of
Abelian periods

R
� !, with ! 2 0⌦A and � in the period lattice on a universal

covering S̃ of San .

Theorem 4.6. Assume that A is an Abelian scheme of restricted PEM type over an
affine curve S. Let @ be a non-zero derivation ofO(S). Then the derivative of a non
zero Abelian integral of the first kind is never an Abelian integral of the first kind
(on A).

10 Or O(S)-linear, this amounts to the same.
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Proof. Let us first treat the case when the monodromy of A/S is Zariski-dense in
Sp2g for clarity. We may assume that ⌦A is free. Then an Abelian integral of
the first kind is an O(S)-linear combination

P
i j �i j

R
�i
! j of entries of

��2
�1

�
. By

(1.5),
P

i j �i j@
R
�i
! j =

P
i jk �i j (

R
�i
!k(R@)k j +

R
�i
!k(T@)k j ), i.e. anO(S)-linear

combination of entries of
��2R@+N2T@
�1R@+N1T@

�
.

Since the monodromy of A/S is Zariski-dense in Sp2g, Y =

��2 N2
�1 N1

�
is the

generic point of a Sp2g,C(S)-torsor, by differential Galois theory in the fuchsian case
(Picard-Vessiot-Schlesinger-Kolchin). Since there is no linear relations between the
entries of a generic element of Sp2g, there is no C(S)-linear relations between the
entries of

��2 N2
�1 N1

�
, or else between the entries of

��2 N2T@
�1 N1T@

�
since T@ is invertible

(4.4). One concludes that
P

i j �i j@
R
�i
! j =

P
µi j

R
�i
! j with �i j , µi j 2 O(S)

implies �i j = µi j = 0.
The other cases are treated similarly, decomposing H into pieces of rank 2m

indexed by � as above, and replacing Sp2g by Sp2m, SO2m or SL2m according to
the type.
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Polynomial semiconjugacies, decompositions of iterations,
and invariant curves

FEDOR PAKOVICH

Abstract. We study the functional equation A � X = X � B, where A, B,
and X are polynomials with complex coefficients. Using results of [13] about
polynomials sharing preimages of compact sets in C, we show that for given B
its solutions may be described in terms of the filled-in Julia set of B. On this
base, we prove a number of results describing a general structure of solutions.
The results obtained imply in particular the result of Medvedev and Scanlon [10]
about invariant curves of maps F : C2 ! C2 of the form (x, y) ! ( f (x), f (y)),
where f is a polynomial, and a version of the result of Zieve andMüller [22] about
decompositions of iterations of a polynomial.

Mathematics Subject Classification (2010): 37F10 (primary); 14H99 (sec-
ondary).

1. Introduction

Let A and B be rational functions of degree at least two on the Riemann sphere.
The functions A and B are called commuting if

A � B = B � A, (1.1)

and conjugate if
A � X = X � B (1.2)

for some rational function X of degree one.
If (1.2) is satisfied for some rational function X of degree at least two, the func-

tion B is called semiconjugate to A, and the function X is called a semiconjugacy
from B to A. Unlike conjugation, semiconjugation is not an equivalency relation.
We will use the notation A  B if for given rational functions A and B there exists
a non-constant rational function X such that (1.2) holds, and the notation A 

X
B

if A,B, and X satisfy (1.2). The notation reflects the fact that the binary relation

Received October 30, 2015; accepted in revised form August 18, 2016.
Published online December 2017.
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on the set of rational functions defined by equality (1.2) is a preorder. Indeed, if
A 

X
B and B 

Y
C then A 

X�Y
C .

Both equations (1.1) and (1.2) have “obvious” solutions. Namely, equation
(1.1) has solutions of the form

A = R�m, B = R�n, (1.3)

where R is an arbitrary rational function and m, n � 1. Notice that such A and B
have an iteration in common, that is

A�n
= B�m . (1.4)

In order to obtain solutions of equation (1.2) we can take arbitrary rational functions
A1, B1 and set

F = A1 � B1, G = B1 � A1.

Then the equality
(A1 � B1) � A1 = A1 � (B1 � A1) (1.5)

implies that F 

A1
G. Similarly, G 

B1
F . Moreover, if now A2, B2 are rational

functions such that the equality

G = A2 � B2 (1.6)

holds, then the function H = B2 � A2 satisfies G 

A2
H and H 

B2
G, implying that

F 

A1�A2
H and H 

B2�B1
F. This motivates the following definition of an equivalency

relation on the set of rational functions: F⇠G if there exist rational functions Ai ,
Bi , 1  i  n, such that

F = A1 � B1, G = Bn � An,

and
Bi � Ai = Ai+1 � Bi+1, 1  i  n � 1.

Clearly, F ⇠ G implies that F  G and G  F . Notice that, since for any rational
function X of degree one the equality

A = (A � X) � X�1

implies that A ⇠ X�1
� A � X , any equivalence class is a collection of conjugacy

classes.
Functional equation (1.1) was first studied by Fatou, Julia, and Ritt in the pa-

pers [5, 8], and [21]. In all these papers it was assumed that the considered com-
muting functions A and B have no iterate in common. Fatou and Julia described
solutions of (1.1) under the additional assumption that the Julia set of A or B does
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not coincide with the whole complex plane, and Ritt investigated the general case.
Briefly, the Ritt theorem states that if rational functions A and B commute and no
iterate of A is equal to an iterate of B, then, up to a conjugacy, A and B are ei-
ther powers, or Chebyshev polynomials, or Lattès functions. Another proof of the
Ritt theorem was given by Eremenko in [4]. Notice however that a description of
commuting A and B with a common iterate is known only in the polynomial case.
Thus, in a certain sense the classification of commuting rational functions is not yet
completed. On the other hand, it was shown by Ritt [19, 21] that in the polynomial
case equality (1.1) implies that, up to the change

A ! � � A � ��1, B ! � � B � ��1,

where � is a polynomial of degree one, either

A = zn, B = "zm,

where "n = ", or
A = ±Tn, B = ±Tm,

or
A = "1R�m, B = "2R�n,

where R = zS(z`) for some polynomial S and "1, "2 are l-th roots of unity. In fact,
this conclusion remains true if instead of (1.1) one were to assume only that A and
B share a completely invariant compact set in C (see [13]).

Equation (1.2) was investigated in the recent paper [17]. The main result
of [17] states that if a rational function B is semiconjugate to a rational function
A, then either A ⇠ B, or A and B are “minimal holomorphic self-maps” between
orbifolds of non-negative Euler characteristic on the Riemann sphere. The latter
class of functions is a natural extension of the class of Lattès functions and admits a
neat characterization. However, as with the description of commuting rational func-
tions, the description of solutions of (1.2) given in [17] is not completely satisfac-
tory, since it gives no information about equivalent rational functions. In particular,
the results of [17] do not provide any bounds on the number of conjugacy classes
in an equivalence class of a rational function B or more generally on the number of
conjugacy classes of A such that A  B. Another related problem is the following:
is it true that if conditions A  B and B  A hold simultaneously, then A ⇠ B?
Finally, it would be desirable to obtain some handy structural descriptions of the
totality of X satisfying (1.2) for given A and B, and of the totality of A satisfying
A  B for given B.

In this paper we study equation (1.2) with emphasis on the above questions in
the case where all the functions involved are polynomials. Notice that in distinc-
tion with the general case, for polynomials there exists quite a comprehensive the-
ory of functional decompositions developed by Ritt [20]. Nevertheless, questions
regarding polynomial decompositions may be highly non-trivial, and a number of
recent papers are devoted to such questions arising from different branches of math-
ematics. Let us mention for example the paper [22] with applications to algebraic
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dynamics [6], or the paper [16] with applications to differential equations [18].
Another example is the recent paper [10] about invariant varieties for dynamical
systems defined by coordinatwise actions of polynomials, a considerable part of
which concerns properties of polynomial solutions of (1.2).

The main distinction between this paper and the above mentioned papers is the
systematical use of ideas and results from the paper [13] which relates polynomials
sharing preimages of compact sets in C with the functional equation

A � C = D � B.

In particular, the main result of [13] leads to a characterization of polynomial so-
lutions of (1.2) in terms of filled-in Julia sets. Recall that for a polynomial B the
filled-in Julia set K (B) is defined as the set of points in C whose orbits under iter-
ations of B are bounded. Since equality (1.2) implies the equalities

A�n
� X = X � B�n, n � 1,

it it easy to see that if X is a semiconjugacy from B to A, then the preimage
X�1(K (A)) coincides with K (B). We show that this property is in fact charac-
teristic.

Theorem 1.1. Let A, B and X be polynomials of degree at least two such that
A 

X
B. Then

X�1(K (A)) = K (B). (1.7)
Conversely, if equality (1.7) holds and deg A = deg B, then there exists a polyno-
mial of degree one µ such that

(µ � A) � X = X � B

and µ(K (A)) = K (A). More generally, if for given B and X the condition

X�1(K ) = K (B) (1.8)

holds for some compact set K in C, then there exists a polynomial A such that
A 

X
B and K (A) = K .

For a fixed polynomial B of degree at least two denote by E(B) the set of
polynomials X of degree at least two such that A 

X
B for some polynomial A. An

immediate corollary of Theorem 1.1 is that a polynomial X is contained in E(B) if
and only if K (B) is a union of fibers of X . Another corollary is that if A 

X
B, then

for any decomposition X = X1 � X2 there exists a polynomial C such that

A 

X1
C, C 

X2
B.

Notice that in particular this casts the problem of the description of decompositions
of iterations of a polynomial, first considered in the paper [22], into the context of
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equation (1.2). Indeed, since B � B�d
= B�d

� B, the polynomial B�d is contained
in E(B) and hence for any decomposition B�d

= Y � X the equalities

B � Y = Y � A, A � X = X � B

hold for some polynomial A.
The following statement is another corollary of the main result of [13].

Theorem 1.2. For any X1, X2 2 E(B) there exists X 2 E(B) such that deg X =

LCM(deg X1, deg X2) and

X = U1 � X1 = U2 � X2

for some polynomials U1, U2. Furthermore, there exists W 2 E(B) such that
degW = GCD(deg X1, deg X2) and

X1 = V1 � W, X2 = V2 � W

for some polynomials V1, V2.

For fixed polynomials A, B denote by E(A, B) the subset of E(B) (possibly
empty) consisting of polynomials X such that A 

X
B. In particular, the set E(B, B)

consists of polynomials of degree at least two commuting with B. We will call a
polynomial P special if it is conjugate to zn or±Tn , or equivalently if there exists a
Möbius transformation µ which maps K (P) to D or [�1, 1]. The following result
describes a general structure of E(A, B) for non-special A, B.

Theorem 1.3. Let A and B be fixed non-special polynomials of degree at least
two such that the set E(A, B) is non-empty, and let X0 be an element of E(A, B) of
minimal degree. Then a polynomial X belongs to E(A, B) if and only if X =

eA�X0
for some polynomial eA commuting with A.

Notice that in a sense this result is a generalization of the result of Ritt about
commuting polynomials. Indeed, applying Theorem 1.3 for B = A and X = B,
we obtain that if A is non-special and B 2 E(A, A), then B =

eA � R, where R is a
polynomial of minimal degree in E(A, A). Now we can apply Theorem 1.3 again to
the polynomial eA and so on, eventually obtaining the representation B = µ1�R�m1 ,
where µ1 is a polynomial of degree one commuting with A. In particular, since
A 2 E(A, A), the equality A = µ2 � R�m2 holds for some polynomial µ2 of degree
one commuting with A.

Another corollary of Theorem 1.3 is the following result obtained by Medve-
dev and Scanlon in [10]: if C ⇢ C2 is an irreducible algebraic curve invariant
under the map F : (x, y) ! ( f (x), f (y)), where f is a non-special polynomial,
then there exists a polynomial p which commutes with f such that C has the form
z1 = p(z2) or z2 = p(z1). More generally, we prove the following statement
which supplements the results of [10] about algebraic curves invariant under the
map F : (x, y) ! ( f (x), g(y)), where f and g are non-special polynomials.
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Theorem 1.4. Let f and g be non-special polynomials of degree at least two and
C a curve in C2. Then C is an irreducible ( f, g)-invariant curve if and only if C has
the form u(x)�v(y) = 0, where u, v are polynomials of coprime degrees satisfying
the equations

t � u = u � f, t � v = v � g (1.9)

for some polynomial t.

Our next result describes the interrelations between the equivalence ⇠, the
preorder  , and decompositions of iterations.

Theorem 1.5. Let A and B be polynomials of degree at least two. Then conditions
A  B and B  A hold simultaneously if and only if A ⇠ B. Furthermore, A ⇠ B
if and only if there exist polynomials X , Y such that

B � Y = Y � A, A � X = X � B,

and Y � X = B�d for some d � 0.

For a fixed polynomial B of degree at least two denote by F(B) the set of poly-
nomials A such that A  B. The following theorem gives a structural description
of the set F(B).

Theorem 1.6. Let B be a fixed non-special polynomial of degree n � 2. Then there
exist A 2 F(B) and a semiconjugacy X from B to A which are universal in the
following sense: for any polynomial C 2 F(B) there exist polynomials XC , UC
such that X = UC � XC and the diagram

C B
����! C??yXC ??yXC

C C
����! C??yUC ??yUC

C A
����! C

(1.10)

is commutative. Furthermore, the degree of X is bounded from above by a constant
c = c(n) which depends on n only.

We did not make special efforts to obtain an optimal estimation for c(n), how-
ever our method of proof shows that

c(n)  (n � 1)!n2 log2 n+3.

Thus, Theorem 1.6 gives an effective bound on the number of conjugacy classes of
polynomials A such that A  B.
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The paper is organized as follows. In the second section we give a very brief
overview of the Ritt theory. In the third section we recall basic results of [13] and
prove Theorem 1.1 and Theorem 1.2. We also prove the corollaries of Theorem 1.1
mentioned above. In the fourth section we first show that if A  B and one of poly-
nomials A or B is special, then the other one also is special (Theorem 4.4). Then
we prove Theorem 1.3 and deduce from it the result of Ritt about commuting poly-
nomials. We also apply Theorem 1.3 to the problem of description of curves in C2
invariant under maps F : (x, y) ! ( f (x), g(y)), where f and g are polynomials,
and prove Theorem 1.4. Finally, we prove Theorem 1.5.

In the fifth section we first show (Theorem 5.2) that if B is a non-special poly-
nomial of degree n, and X 2 E(B), then the degree l of any special compositional
factor of X satisfies the inequality l  2n. On this base we prove that if X 2 E(B)
is not a polynomial in B, then deg X is bounded from above by a constant which
depends on n only. In turn, from this result we deduce Theorem 1.6. As another
corollary of the boundedness of deg X we obtain the following result of Zieve and
Müller [22]: if B is a non-special polynomial of degree n � 2, and X and Y are
polynomials such that Y � X = B�s for some s � 1, then there exist polynomialseX , eY and i, j � 0 such that

Y = B�i
�

eY , X =
eX � B� j , and eY �

eX = B�es,
wherees is bounded from above by a constant which depends on n only.

ACKNOWLEDGEMENTS. The author is grateful to the Max-Planck-Institut füer
Mathematik for the hospitality and the support.

2. Overview of the Ritt theory

Let F be a polynomial with complex coefficients. The polynomial F is called
indecomposable if the equality F = F2 � F1 implies that at least one of the poly-
nomials F1, F2 is of degree one. Any representation of a polynomial F in the
form F = Fr � Fr�1 � · · · � F1, where F1, F2, . . . , Fr are polynomials, is called
a decomposition of F. A decomposition is called maximal if all F1, F2, . . . , Fr are
indecomposable and of degree greater than one. Two decompositions having an
equal number of terms

F = Fr � Fr�1 � · · · � F1 and F = Gr � Gr�1 � · · · � G1

are called equivalent if either r = 1 and F1 = G1, or r � 2 and there exist
polynomials µi , 1  i  r � 1, of degree 1 such that

Fr = Gr � µr�1, Fi = µ�1
i � Gi � µi�1, 1 < i < r, and F1 = µ�1

1 � G1.
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The theory of polynomial decompositions established by Ritt can be summarized
in the form of two theorems usually called the first and the second Ritt theorems
(see [20]).

The first Ritt theorem states, roughly speaking, that any maximal decomposi-
tions of a polynomial may be obtained from any other by some iterative process
involving the functional equation

A � C = D � B. (2.1)

Theorem 2.1 ([20]). Any two maximal decompositions D,E of a polynomial P
have an equal number of terms. Furthermore, there exists a chain of maximal de-
compositions Fi , 1  i  s, of P such that F1 = D, Fs ⇠ E, and Fi+1 is obtained
from Fi by a replacement of two successive polynomials A � C in Fi by two other
polynomials D � B such that (2.1) holds.

The second Ritt theorem in turn describes indecomposable polynomial solu-
tions of (2.1). More precisely, it describes solutions satisfying the condition

GCD(deg A, deg D) = 1, GCD(degC, deg B) = 1, (2.2)

which holds in particular if A,C, D, B are indecomposable (see Theorem 2.3 be-
low).

Theorem 2.2 ([20]). Let A,C, D, B be polynomials such that (2.1) and (2.2) hold.
Then there exist polynomials �1, �2, µ, ⌫ of degree one such that, up to a possible
replacement of A by D and of C by B, either

A = ⌫ � zs Rn(z) � ��1
1 , C = �1 � zn � µ (2.3)

D = ⌫ � zn � ��1
2 , B = �2 � zs R(zn) � µ, (2.4)

where R is a polynomial, n � 1, s � 0, and GCD(s, n) = 1, or

A = ⌫ � Tm � ��1
1 , C = �1 � Tn � µ, (2.5)

D = ⌫ � Tn � ��1
2 B = �2 � Tm � µ, (2.6)

where Tn, Tm are the Chebyshev polynomials, n,m � 1, and GCD(n,m) = 1.

Notice that the main difficulty in the practical use of Theorem 2.1 and Theorem
2.2 is the fact that classes of solutions appearing in Theorem 2.2 are not disjoint.
Namely, any solution of the form (2.5), (2.6) with n = 2 can also be represented in
the form (2.3), (2.4) (see, e.g., [10, 16, 22] for further details).

The description of polynomial solutions of equation (2.1) in the general case
in a certain sense reduces to the case where (2.2) holds by the following statement.
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Theorem 2.3 ([3]). Let A,C, D, B be polynomials such that (2.1) holds. Then
there exist polynomials U, V, eA, eC, eD, eB, where

degU = GCD(deg A, deg D), deg V = GCD(degC, deg B),

such that
A = U �

eA, D = U �
eD, C =

eC � V, B =
eB � V,

and eA �
eC =

eD �
eB.

In particular, if degC = deg B, then there exists a polynomial µ of degree one such
that

A = D � µ�1, C = µ � B.

Theorem 2.2 implies the following description of polynomial solutions of equation
(1.2) under the condition

GCD(deg X, deg B) = 1 (2.7)

(see [7]).

Theorem 2.4 ([7]). Let A, B, X be polynomials such that (1.2) and (2.7) hold.
Then there exist polynomials µ, ⌫ of degree one such that either

A = ⌫ � zs Rn(z) � ⌫�1, X = ⌫ � zn � µ, D = µ�1
� zs R(zn) � µ,

where R is a polynomial, n � 1, s � 0, and GCD(s, n) = 1, or

A = ⌫ � ±Tm � ⌫�1, X = ⌫ � Tn � µ, D = µ�1
� ±Tm � µ,

where Tn, Tm are the Chebyshev polynomials, n,m � 1, and GCD(n,m) = 1.

Notice, however, that Theorem 2.2, even combined with Theorem 2.3, provides
very little information about solutions of (1.2) if (2.7) is not satisfied. A possible
way to investigate the general case is to analyze somehow the totality of all decom-
positions of a polynomial P , basing on Theorem 2.1 and Theorem 2.2, and then to
apply this analysis to (1.2) using the fact that we can pass from the decomposition
P = A � X to the decomposition P = X � B. This idea was used in [10]. A similar
technique was used in [22], where it was applied to the study of decompositions of
iterations of a polynomial. In this paper we use another method completely bypass-
ing Theorem 2.1. Notice by the way that Theorem 2.1 does not hold for arbitrary
rational functions (see, e.g., [12]).
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3. Semiconjugacies and Julia sets

3.1. Polynomials sharing preimages of compact sets

Let f1(z), f2(z) be non-constant complex polynomials and K1, K2 ⇢ C com-
pact sets. In the paper [13] we investigated the following problem. Under what
conditions on the collection f1(z), f2(z), K1, K2 do the preimages f �1

1 (K1) and
f �1
2 (K2) coincide, that is,

f �1
1 (K1) = f �1

2 (K2) = K (3.1)

for some compact set K ⇢ C?
Using ideas from approximation theory, we relate equation (3.1) to the func-

tional equation
g1( f1(z)) = g2( f2(z)), (3.2)

where f1(z), f2(z), g1(z), g2(z) are polynomials. It is easy to see that for any poly-
nomial solution of (3.2) and any compact set K3 ⇢ C we obtain a solution of (3.1)
setting

K1 = g�1
1 (K3), K2 = g�1

2 (K3). (3.3)
Briefly, the main result of [13] states that, under a very mild condition on the car-
dinality of K , all solutions of (3.1) can be obtained in this way. Combined with
Theorem 2.3 and Theorem 2.2 this leads to a very explicit description of solutions
of (3.1).
Theorem 3.1 ([13]). Let f1(z), f2(z) be polynomials, deg f1 = d1, deg f2 = d2,
d1  d2, and let K1, K2, K ⇢ C be compact sets such that (3.1) holds. Suppose
that card{K} � LCM(d1, d2). Then, if d1 divides d2, there exists a polynomial
g1(z) such that f2(z) = g1( f1(z)) and K1 = g�1

1 (K2). On the other hand, if
d1 does not divide d2, then there exist polynomials g1(z), g2(z), deg g1 = d2/d,
deg g2 = d1/d, where d = GCD(d1, d2), and a compact set K3 ⇢ C such that
(3.2), (3.3) hold. Furthermore, in this case there exist polynomials ef1(z), ef2(z),
W (z), degW (z) = d, such that

f1(z) =
ef1(W (z)), f2(z) =

ef2(W (z)) (3.4)

and there exist linear functions �1(z), �2(z) such that either

g1(z) = zcRd1/d(z) � ��1
1 , ef1(z) = �1 � zd1/d ,

g2(z) = zd1/d � ��1
2 , ef2(z) = �2 � zcR

�
zd1/d

�
,

(3.5)

for some polynomial R(z) and c equal to the remainder after division of d2/d by
d1/d, or

g1(z) = Td2/d(z) � ��1
1 , ef1(z) = �1 � Td1/d(z),

g2(z) = Td1/d(z) � ��1
2 , ef2(z) = �2 � Td2/d(z),

(3.6)

for the Chebyshev polynomials Td1/d(z), Td2/d(z).
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Theorem 3.1 may be used to prove many other results (see [13] for details), the
most notable of which is the following description of solutions of (3.1) in the case
where K1 = K2, first obtained by T. Dinh [1, 2] by methods of complex dynamics.

Theorem 3.2 ([2, 13]). Let f1(z), f2(z) be polynomials such that

f �1
1 (T ) = f �1

2 (T ) = K (3.7)

holds for some infinite compact sets T, K ⇢ C. Then, if d1 divides d2, there exists
a polynomial g1(z) such that f2(z) = g1( f1(z)) and g�1

1 (T ) = T . On the other
hand, if d1 does not divide d2, then there exist polynomials ef1(z), ef2(z), W (z),
degW (z) = d, satisfying (3.4). Furthermore, in this case one of the following
conditions holds:

1) T is a union of concentric circles and

ef1(z) = � � zd1/d , ef2(z) = � � � zd2/d (3.8)

for some linear function � (z) and � 2 C;
2) T is a segment and

ef1(z) = � � ±Td1/d(z), ef2(z) = � � ±Td2/d(z), (3.9)

for some linear function � (z) and the Chebyshev polynomials Td1/d(z), Td2/d(z).

3.2. Proofs of Theorem 1.1 and Theorem 1.2

Proof of Theorem 1.1. If A 

X
B, then for any n � 1 the equality

A�n
� X = X � B�n

holds. Therefore, if z1 = X (z0), then the sequence A�n(z1) is bounded if and only
if the sequence X � B�n(z0) is bounded. In turn, the last sequence is bounded if and
only if the sequence B�n(z0) is bounded. Thus, A 

X
B implies

X�1(K (A)) = K (B). (3.10)

Conversely, if (3.10) holds, then it follows from B�1(K (B)) = K (B) that

(X � B)�1(K (A)) = K (B).

Thus,
X�1(K (A)) = (X � B)�1(K (A)).

Since deg X | deg(X � B), applying to the latter equality Theorem 3.1 we conclude
that eA � X = X � B



1428 FEDOR PAKOVICH

for some polynomial eA. Furthermore, since we proved that for such eA the equality
X�1(K (eA)) = K (B) holds, we see that X�1(K (eA)) = X�1(K (A)), implying that
K (eA) = K (A). Finally, it follows from Theorem 3.1 applied to

A�1(K ) =
eA�1(K ) = K ,

where K = K (eA) = K (A), that there exists a polynomial of degree one µ such
that eA = µ � A and µ(K (A)) = K (A).

More generally, if
X�1(K ) = K (B) (3.11)

for some compact set K ⇢ C, then

X�1(K ) = (X � B)�1(K ),

implying by Theorem 3.1 that (1.2) holds for some polynomial A. Furthermore,
since for such a polynomial A equality (3.10) holds, we conclude that X�1(K ) =

X�1(K (A)) and K = K (A).

Corollary 3.3. Let B be a polynomial of degree at least two. Then a polynomial X
is contained in E(B) if and only K (B) is a union of fibers of X. In particular, if B1
and B2 are polynomials such that K (B1) = K (B2), then E(B1) = E(B2).

Proof. Clearly, condition (3.11) implies that K (B) is a union of fibers of X. Con-
versely, if K (B) is a union of fibers of X, then

K (B) = X�1�X (K (B))
�
,

implying that (3.11) holds for the compact set K = X (K (B)).

Corollary 3.4. Let A, B, and X be polynomials such that A 

X
B. Then for any

decomposition X = X1 � X2 there exists a polynomial C such that

A 

X1
C, C 

X2
B.

Proof. By Theorem 1.1, K (B) = X�1(K (A)). Since X = X1 � X2, this implies
that K (B) = X�1

2 (eK ), where eK = X�1
1 (K (A)). Therefore, by Theorem 1.1, there

exists a polynomial C such that

C � X2 = X2 � B. (3.12)

Now we have:

A � X1 � X2 = X1 � X2 � B = X1 � C � X2,

implying that A � X1 = X1 � C .
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Remark 3.5. Corollary 3.4 may be proved without using Theorem 1.1. Indeed, if
X = X1 � X2, then it follows from

A � (X1 � X2) = X1 � (X2 � B),

by Theorem 2.3, that

X1 � X2 = U �
eW , X2 � B = V �

eW , (3.13)

where
deg eW = GCD(deg(X1 � X2), deg(X2 � B)).

Since deg X2 | deg eW , Theorem 2.3 applied to the first equality in (3.13) implies
that eW = S � X2 for some polynomial S. Therefore,

X2 � B = V �
eW = V � S � X2

and hence (3.12) holds for C = V � S.

Proof of Theorem 1.2. By Theorem 1.1, the condition X1, X2 2 E(B) implies that
there exist K1, K2 ⇢ C such that

X�1
1 (K1) = K (B), X�1

2 (K2) = K (B).

It now follows from Theorem 3.1 that there exist polynomials X , W , U1, U2, V1,
V2 such that

deg X = LCM(deg X1, deg X2), degW = GCD(deg X1, deg X2),

and that equalities
X = U1 � X1 = U2 � X2

and
X1 = V1 � W, X2 = V2 � W (3.14)

hold. Furthermore, there exists K3 ⇢ C such that

K1 = U�1
1 (K3), K2 = U�1

2 (K3).

Therefore, X�1(K3) = K (B), implying by Theorem 1.1 that X 2 E(B). Finally,
any of equalities (3.14) implies that W 2 E(B) by Corollary 3.4.
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4. Semiconjugacies between fixed A and B

4.1. Semiconjugacies between special polynomials

For a polynomial P and a finite set K ⇢ C denote by P�1
odd(K ) the subset of P�1(K )

consisting of points where the local multiplicity of P is odd. Notice that the chain
rule implies that if P = A � B, then

P�1
odd(K ) = B�1

odd

⇣
A�1
odd(K )

⌘
. (4.1)

Lemma 4.1. Let P be a polynomial of degree n � 2, and K ⇢ C a finite set
containing at least two points. Assume that P�1

odd(K ) = K . Then K contains exactly
two points, and P is conjugate to ±Tn .

Proof. Denote by ez the multiplicity of P at z 2 C, and set r = card(K ). Since for
any y 2 C the set P�1(y) contains

n �

X
z2C

P(z)=y

(ez � 1)

points and X
z2C

(ez � 1) = n � 1,

we have:
card

�
P�1(K )

�
� rn �

X
z2C

(ez � 1) = (r � 1)n + 1 (4.2)

(the minimum is attained if K contains all finite critical values of P). Therefore, if

card
⇣
P�1
odd(K )

⌘
= card(K ) = r,

then the set P�1(K ) contains at least (r � 1)n + 1 � r points where the local
multiplicity of P is greater than one, implying that

X
z2P�1(K )

ez � r + 2 ((r � 1)n + 1� r) . (4.3)

Since the sum in the left-hand side of (4.3) equals rn, this inequality implies that

(n � 1)(r � 2)  0. (4.4)

Thus, r = 2. Furthermore, since the equality in (4.4) is attained if and only if
equality is attained in (4.3), we conclude that if P�1

odd(K ) = K , then ez = 2 for each
z 2 P�1(K ) \ K , and the local multiplicity of P at each of the two points of K is
equal to one.
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Changing P to ��1
� P � � for a convenient polynomial of degree one � , we

can assume that K = {�1, 1}. Then the condition on multiplicities of P implies
that P2 � 1 is divisible by (P 0)2, and calculating the quotient we conclude that P
satisfies the differential equation

n2
�
1� y2

�
=

�
y0

�2�1� z2
�
.

Since the general solution of the equation

y0p
1� y2

= ±

n
p

1� z2

is
arccos y = ±n arccos z + c,

it follows now from P(1) = ±1 that

P = ± cos(n arccos x) = ±Tn(z).

Remark 4.2. Notice that the equality Tn(�z) = (�1)nTn(z) implies that for even
n the polynomials Tn and �Tn are conjugate since Tn = ↵ � (�Tn) � ↵�1, where
↵(z) = �z. For odd n however the polynomials Tn and �Tn are not conjugate.

Lemma 4.3. Let P be a polynomial and a, b 2 C. Then the set P�1
odd{a, b} contains

at least two points.

Proof. It follows from the equality

2n =

X
z2C

P(z)=a

ez +

X
z2C

P(z)=b

ez

that the number X
z2P�1

odd{a,b}

ez

is even, implying that the number card(P�1
odd{a, b}) also is even. On the other hand,

card
⇣
P�1
odd{a, b}

⌘
6= 0,

for otherwise P�1
odd{a, b} contains at most n/2 + n/2 = n points in contradiction

with inequality (4.2).

Theorem 4.4. Let A and B be polynomials of degree at least two such that
A  B. Then A is conjugate to zn if and only if B is conjugate to zn . Similarly, A
is conjugate to ±Tn if and only if B is conjugate to ±Tn.
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Proof. Assume that B is conjugate to±Tn , and let X be a semiconjugacy from B to
A. Changing B and X to ��1

� B � � and X � � , for a convenient polynomial � of
degree one, without loss of generality we can assume that B = ±Tn. By Theorem
1.1, we have:

X�1(K (A)) = K (B) = [�1, 1]. (4.5)

Set m = deg X. Since
T�1
m ([�1, 1]) = [�1, 1], (4.6)

equality (4.5) implies that

X�1(K (A)) = T�1
m ([�1, 1]).

It now follows from Theorem 3.1 that there exists a polynomial � of degree one
such that X = � � Tm . Therefore, changing A and X to ��1 � A � � and ��1

� X ,
we can assume that X = Tm . Thus, we have:

A � Tm = Tm � ±Tn = (�1)mTn � Tm, (4.7)

implying that A = ±Tn .
Similarly, if B = zn , then the equalities

X�1(K (A)) = K (B) = D,

and (zm)�1(D) = D imply that X = � � zm for some polynomial � of degree one,
and arguing as above we conclude that A is conjugate to zn.

Assume now that A is conjugate to ±Tn . Without loss of generality we can
assume that A = ±Tn. Since T�1

n odd{�1, 1} = {�1, 1}, formula (4.1) implies that

(±Tn � X)�1odd{�1, 1} = X�1
odd{�1, 1}.

It follows now from
±Tn � X = X � B (4.8)

that
B�1
odd

⇣
X�1
odd{�1, 1}

⌘
= X�1

odd{�1, 1}. (4.9)

Since by Lemma 4.3 the set X�1
odd{�1, 1} contains at least two points, this implies

by Lemma 4.1 that the polynomial B is conjugate to ±Tn.
Finally, if A is conjugate to zn , we can assume that A = zn , and considering

zeroes of the left and the right parts of the equality

zn � X = X � B,

we see that B�1(X�1(0)) = X�1(0). It follows now from inequality (4.2) that
X�1(0) consists of a single point, implying easily that the polynomial B is conju-
gate to zn.
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Remark 4.5. Since for even n the polynomials Tn and �Tn are conjugate (see Re-
mark 4.2), Theorem 4.4 implies that if B is conjugate to±Tn for even n, then A and
B are conjugate. On the other hand, if B is conjugate to �Tn for odd n, then A is
not necessarily conjugate to �Tn , but only to ±Tn . Still, it follows from (4.7) that
if B is conjugate to Tn , then A is conjugate to Tn .

Notice that Theorem 4.4 combined with Remark 4.5 implies the following
corollary.

Corollary 4.6. Let A and B be polynomials such that the conditions A  B and
B  A hold simultaneously, and at least one of A and B is special. Then A and B
are conjugate.

4.2. Proof of Theorem 1.3

The following lemma is a well-known fact from the complex dynamics. For the
reader’s convenience we give a short proof based on Theorem 3.1.

Lemma 4.7. Let A be a polynomial of degree n such that K (A) is a union of circles
with a common center. Then K (A) is a disk, and A is conjugate to zn. Similarly, if
K (A) is a segment, then A is conjugate to ±Tn.

Proof. Since for a polynomial A the complement to K (A) in CP1 is connected
(see, e.g., [11, Lemma 9.4]), if K (A) is a union of circles with a common center,
then K (A) is a disk. Furthermore, changing if necessary A to a conjugate poly-
nomial, we can assume that K (A) = D. Thus, A�1(D) = D. On the other hand,
(zn)�1(D) = D, and applying to these equalities Theorem 3.1, we conclude that
A = ↵zn, where |↵| = 1, implying that A is conjugate to zn.

Similarly, if K (A) is a segment, we can assume that K (A) = [�1, 1], and to
conclude in a similar way that A is conjugate to ±Tn.

Proof of Theorem 1.3. Set d0 = deg X0, and let X 2 E(A, B) be a polynomial of
degree d. By Theorem 1.1, we have:

X�1
0 (K (A)) = K (B), X�1(K (A)) = K (B).

Applying to these equalities Theorem 3.2 and taking into account that, by Lemma
4.7, K (A) is neither a union of concentric circles nor a segment, we conclude that
X =

eA � X0 for some polynomial eA. Substituting now this expression in (1.2) and
using that X0 2 E(A, B) we have:

A �
eA � X0 =

eA � X0 � B =
eA � A � X0,

implying that A �
eA = A �

eA.
Conversely, if A commutes with eA, then

A � (eA � X0) =
eA � A � X0 = (eA � X0) � B.
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Theorem 1.3 implies in particular the following classification of commuting poly-
nomials obtained by Ritt.

Theorem 4.8 ([21]). Let A and B be commuting polynomials of degree at least
two. Then, up to the change

A ! � � A � ��1, B ! � � B � ��1, (4.10)

where � is a polynomial of degree one, either

A = zn, B = "zm, (4.11)

where "n = ", or
A = ±Tn, B = ±Tm, (4.12)

or
A = "1R�m, B = "2R�n, (4.13)

where R = zS(z`) for some polynomial S, and "1, "2 are l-th roots of unity.

Proof. Assume first that A is conjugate to zn . Without loss of generality we may
assume that A = zn. Applying Theorem 1.1 for B = A and X = B, we have:

B�1(K (A)) = K (A).

Since K (A) = D, arguing as in Lemma 4.7 we conclude that B = "zm , and it
follows from A � B = B � A that "n = ". If A is conjugate to ±Tn , the proof is
similar.

On the other hand, if A is non-special, then Theorem 1.3 implies that any B 2

E(A, A) has the form B =
eA�R, where R is a polynomial of the minimum possible

degree in E(A, A). Now we can apply Theorem 1.3 again to the polynomial eA
and so on, obtaining eventually the representation B = µ1 � R�m1 , where µ1 is a
polynomial of degree one commuting with A. In particular, since A 2 E(A, A), the
equality A = µ2 � R�m2 holds for some polynomial µ2 of degree one commuting
with A. Furthermore, since R commutes with A = µ2 � R�m2 , the polynomial µ2
commutes with R. This implies easily that, up to a conjugacy, R = zS(z`) for
some polynomial S, and µ2 = "2z for some lth root of unity "2. Finally, since µ1
commutes with the polynomial A, and A = µ2�R�m2 has the form zeS(z`) for some
polynomial eS, we conclude that µ1 = "1z for some lth root of unity "1.

4.3. Semiconjugacies and invariant curves

It was shown in the recent paper [10] that the problem of describing semiconjugate
polynomials is closely related to the problem of describing algebraic curves C in
C2 invariant under maps of the form F : (x, y) ! ( f (x), g(y)), where f, g are
polynomials of degree at least two. Briefly, this relation may be summarized as
follows (see [10, Proposition 2.34] for more details).
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If C is an irreducible ( f, g)-invariant curve, then its projective closure C in
CP1 ⇥ CP1 is also ( f, g)-invariant. Denote by h̄ the restriction of F on C. Let eC
be the desingularization of C and � :

eC ! C a map biholomorphic off a finite set.
Clearly, h̄ lifts to a holomorphic map h :

eC !
eC. Consider now the commutative

diagram
eC h

����!
eC??y� ??y�

C
h̄

����! C??y↵ ??y↵
CP1 f

����! CP1,

(4.14)

where ↵ : C ! CP1 is the projection map onto the first coordinate. Set ⇡ = ↵ ��.
If ⇡ is a constant, then C is a line z1 = ⇠, where ⇠ is a fixed point of f , so assume
that the degree of ⇡ is at least one. Observe that since f �1(1) = 1, the set
K = ⇡�1(1) and the map h satisfy the equality

h�1(K ) = K . (4.15)

Since h is a holomorphic map between Riemann surfaces of the same genus and
deg h=deg f �2, it follows from the Riemann-Hurwitz formula that either g(eC) =

0, or g(eC) = 1 and h is unbranched. Since deg h � 2, for unbranched h equality
(4.15) is impossible. Therefore, eC = CP1 and (4.15) implies easily that, up to the
change ↵ � h � ↵�1, where ↵ is a Möbius transformation, either K = 1 and h is a
polynomial, or K = {0,1} and h = z± deg f . Thus,

f � ⇡ = ⇡ � h, (4.16)

where either ⇡ and h are polynomials, or h = z± deg f and ⇡ is a Laurent polyno-
mial. The last case requires an additional investigation. The paper [10] refers (Fact
2.25) to a more general result of [9] (Theorem 10) implying that for a non-special
polynomial f this possibility is excluded. Alternatively, one can use the results
of [14] (e.g., Theorem 6.4).

Considering in a similar way the projection onto the second coordinate, we
obtain the equality

g � ⇢ = ⇢ � h. (4.17)

Thus, for non-special f and g any irreducible ( f,g)-invariant curve may be paramet-
rized by some polynomials ⇡, ⇢ satisfying a system given by equations (4.16),
(4.17) for some polynomial h.
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Notice that in a certain sense a description of ( f, g)-invariant curves reduces
to the case f = g since the commutative diagram

C2 (h,h)
����! C2??y(⇡,⇢)

??y(⇡,⇢)

C2 ( f,g)
����! C2

(4.18)

implies that any ( f, g)-invariant curve is an image of an (h, h)-invariant curve under
the map (x, y) ! (⇡(x), ⇢(y)).

Theorem 1.3 allows to obtain easily the following description of ( f, f )-invar-
iant curves obtained in [10] (see Theorem 6.24 and the theorem on page 85).

Theorem 4.9. Let f be a non-special polynomial of degree at least two, and C an
irreducible ( f, f )-invariant curve in C2. Then there exists a polynomial p which
commutes with f such that C has either the form z1 = p(z2) or z2 = p(z1).

Proof. If C is a line z1 = ⇠, then ⇠ is a fixed point of f , and the conclusion of
the theorem holds for p = ⇠ . Similarly, the theorem holds if C is a line z2 = ⇠.
Otherwise, as it was shown above, C may be parametrized by some non-constant
polynomials ⇡, ⇢ satisfying the system

f � ⇡ = ⇡ � h, (4.19)
f � ⇢ = ⇢ � h (4.20)

for some polynomial h. Furthermore, without loss of generality we may assume
that there exists no polynomial w of degree greater than one such that

⇡ = e⇡ � w, ⇢ = e⇢ � w, (4.21)

for some polynomials e⇡, e⇢. Indeed, if (4.21) holds, then applying Theorem 2.3 to
the equality

( f � e⇡) � w = e⇡ � (w � h),

we conclude that w � h =
eh � w for some polynomial eh, implying that we may

change ⇡ to e⇡, ⇢ to e⇢, and h toeh.
Set d = GCD(deg ⇢, deg⇡). Since f is not special, it follows from (4.19),

(4.20) by Theorem 1.3 that if both ⇢ and ⇡ are of degree at least two, then d > 1,
implying by Theorem 1.2 that (4.21) holds for some polynomials e⇡, e⇢ and w with
degw = d > 1. Therefore, at least one of the polynomials ⇢ and ⌧ is of degree one,
say deg ⇢ = 1. Then, C has the form z1 = p(z2),where p = ⇡ �⇢�1. Furthermore,
equality (4.20) implies that h = ⇢�1

� f � ⇢, and substituting this expression into
(4.19) we conclude that p commutes with f.
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Proof of Theorem 1.4. For any polynomials of coprime degrees u and v the curve
Cu,v : u(x) � v(y) = 0 is irreducible (see [15, Proposition 3.1]). Furthermore, if
(1.9) holds and (x0, y0) is a point on Cu,v , then (1.9) yields the equality

u( f (x0)) = t (u(x0)) = t (v(y0)) = v(g(y0)),

implying that ( f (x0), g(y0)) also is a point on Cu,v .
Conversely, assume that C is an irreducible ( f, g)-invariant curve which is not

a line, and let ⇡ and ⇢ be polynomials parametrizing C and satisfying (4.16), (4.17)
for some polynomial h. Then by Theorem 1.2, there exist polynomials u and v of
coprime degrees such that

u � ⇡ = v � ⇢ .

Thus, any irreducible ( f, g)-invariant curve C in C2 has the form u(x) � v(y) = 0
for some polynomials u, v of coprime degrees. Furthermore, since the polynomial

s = u � ⇡ = v � ⇢

belongs to E(h) we have:

t � u � ⇡ = u � ⇡ � h = u � f � ⇡,

t � v � ⇢ = v � ⇢ � h = v � g � ⇢,

implying (1.9).

A further analysis of system (1.9) using Proposition 5.4 and Proposition 5.5
proved below leads to a more precise description of ( f, g)-invariant curves appar-
ently equivalent to the one given by [10, Theorem 6.2]. Notice however that in [10]
a more general case of skew-invariant curves and skew-twists between polynomi-
als is considered, and the methods of our paper involving Julia sets seem not to be
extendable to this more general situation.

4.4. Semiconjugacies between equivalent A and B

For a natural number n > 1 with a prime decomposition n = pa11 pa22 . . . pass set
rad(n) = p1 p2 . . . ps . The following two theorems in totality provide a proof of
Theorem 1.5.

Theorem 4.10. Let A and B be polynomials of degree at least two. Then conditions
A  B and B  A hold simultaneously if and only if A ⇠ B.

Proof. The “if” part follows from the definition of ⇠ (see the introduction). Fur-
thermore, if at least one of A and B is special, then conditions A  B and B  A
imply by Corollary 4.6 that A and B are conjugate and hence equivalent. So, we
may assume that A and B are non-special.

Let Y and X be polynomials such that

B 

Y
A, A 

X
B. (4.22)
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Set n = deg A = deg B.We can assume that deg X > 1, degY > 1 since otherwise
A and B are conjugate and hence A ⇠ B. Since (4.22) implies that Y � X commutes
with B, Theorem 4.8 implies that

rad(deg X) | rad(n). (4.23)

In particular,
GCD(deg X, n) > 1. (4.24)

Applying Theorem 2.3 to the equality

A � X = X � B, (4.25)

we conclude that there exist polynomials eX, eB, and W such that

B =
eB � W, X =

eX � W, (4.26)

and degW = GCD(deg X, n). Clearly, B ⇠ W �
eB, and equalities (4.25) and (4.26)

imply that
A �

eX =
eX � (W �

eB). (4.27)

Furthermore, deg eX < deg X , since degW > 1 by (4.24). If deg eX = 1, then
A ⇠ W �

eB since A and W �
eB are conjugate; hence,
A ⇠ W �

eB ⇠ B,

and we are done. Otherwise, we can apply Theorem 2.3 in a similar way to equality
(4.27) and so on. Since condition (4.23) ensures that the degrees of corresponding
semiconjugacies decrease, we obtain in this way a finite chain of equivalences from
B to A.

Theorem 4.11. Let A and B be polynomials of degree at least two. Then A ⇠ B if
and only if there exist polynomials X and Y such that

B � Y = Y � A, A � X = X � B, (4.28)

and Y � X = B�d for some d � 0.

Proof. Taking into account Theorem 4.10, we only need to show that if equalities
(4.28) hold, then they hold for some eX, eY such that eY �

eX = B�d , d � 0. Since
(4.28) implies that Y � X commutes with B, it follows from Theorem 4.8 that either
B is special, or, up to a conjugacy,

Y � X = "1R�m1, B = "2R�m2,

where R = zS(zn) for some polynomial S, and "1, "2 are nth roots of unity. In the
first case, Corollary 4.6 implies that A and B are conjugate. Therefore, in this case
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(4.28) holds for some Möbius transformations eY and eX such that eY �
eX = B0. In

the second case set eX = X � "3R�(m2m1�m1),

where "3 = "
m1
2 /"1, and observe that the second of equalities (4.28) still holds foreX since

A �
eX = A � X � "3R�(m2m1�m1)

= X � B � "3R�(m2m1�m1)

= X � "2R�m2
� "3R�(m2m1�m1)

= X � "3R�(m2m1�m1)
� "2R�m2

=
eX � B.

On the other hand, we have:

Y �
eX = "1R�m1

� "3R�(m2m1�m1)
= "1"3R�m2m1

= "
m1
2 R�m2m1

= B�m1 .

5. Semiconjugacies for fixed B

5.1. Special factors of semiconjugacies

Lemma 5.1. Let A and B be polynomials of degree n � 2 such that

A � T` = T` � B, l � 2. (5.1)

Then l  2n, unless A = ±Tn and B = ±Tn. Similarly, if

A � z` = z` � B, l � 2, (5.2)

then l  n, unless A = ↵zn, ↵ 2 C, and B = �zn, � 2 C.

Proof. If

n 

l � 1
2

, (5.3)

then the set
(T` � B)�1odd{�1, 1} = B�1

odd{�1, 1}

contains at most l � 1 points. Therefore, if equality (5.1) holds, then the set

(A � T`)�1odd{�1, 1} (5.4)

also contains at most l � 1 points. On the other hand, since �1 and 1 are the only
finite critical values of Tn , if the set A�1

odd{�1, 1} contains at least one point distinct
from ±1, then set (5.4) contains at least l points. Since by Lemma 4.3 the set
A�1
odd{�1, 1} contains at least two points, we conclude that if (5.3) holds, then

A�1
odd{�1, 1} = {�1, 1}. (5.5)
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Therefore, by Lemma 4.1, A = ±Tn , It follows now from (5.1) that

±Tnl = T` � B,

implying that
T` � B = ±T` � Tn,

and applying to the last equality Theorem 2.3 we see that

T` = ±T` � µ, B = µ�1
� Tn, (5.6)

for some polynomial µ of degree one. Finally, it is easy to see, using for example
the explicit formula

Tn =

n
2

[n/2]X
k=0

(�1)k
(n � k � 1)!
k!(n � 2k)!

(2x)n�2k, (5.7)

that Tn has non-zero coefficients of its terms of degree n and n � 2, and the co-
efficient equal zero for its term of degree n � 1. Thus, the first of equalities (5.6)
implies the equality µ = ±x .

Assume now that equality (5.2) holds and n  l � 1. Then the polynomial in
the right part of (5.2) has at most l � 1 zeroes. On the other hand, since the unique
finite critical value of z` is zero, it is easy to see that, unless

A = ↵zn, ↵ 2 C, (5.8)

the polynomial in the left part of (5.2) has at least l zeroes. Finally, (5.8) and (5.2)
imply easily that B = �zn, � 2 C.

Theorem 5.2. Let B be a non-special polynomial of degree n � 2, and X an ele-
ment of E(B). Assume that X = W1 � z` � W2 for some polynomials W1, W2 and
l � 1. Then l  n. Similarly, if X = W1 � ±T` � W2, then l  2n.

Proof. If X = W1 � z` � W2, then applying Corollary 3.4 twice we conclude that
there exist polynomials C1and C2 such that the equalities

A � W1 = W1 � C1, C1 � z` = z` � C2, C2 � W2 = W2 � B (5.9)

hold. Applying now Lemma 5.1 to the second equality in (5.9) we conclude that
l  n, unless C1 and C2 are conjugate to zn. On the other hand, in the last case
the third equality in (5.9) implies by Theorem 4.4 that B is conjugate to zn. If
X = W1 � ±T` � W2, the proof is similar.

Corollary 5.3. Let B be a non-special polynomial of degree n � 2. Assume that
B�d

= W1 � z` � W2 for some polynomials W1, W2, and l � 1, d � 1. Then l  n.
Similarly, if B�d

= W1 � ±T` � W2, then l  2n.

Proof. Direct consequence of Theorem 5.2, since B�d is a semiconjugacy from B
to B.
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5.2. Proof of Theorem 1.6

For natural numbers n and m define l = l(n,m) as the maximum number coprime
with n which divides m. Thus,

m = lb, (5.10)

where rad(b)|rad(n) and GCD(n, l) = 1. Define now d = d(n,m) as the minimum
number such that b in (5.10) satisfies b | nd . The next proposition describes a
general structure of elements of E(B) for non-special B.

Proposition 5.4. Let B be a non-special polynomial of degree n � 2. Then any
X 2 E(B) has the form X = ⌫ � zl(n,m)

�W, where ⌫ is a polynomial of degree one,
and W is a compositional right factor of B�d(n,m). Furthermore, l(n,m) < n.

Proof. Set m = deg X , and let l, b, d be the numbers defined above. If A is a
polynomial such that

A � X = X � B, (5.11)

then the equality
A�d

� X = X � B�d , (5.12)

implies by Theorem 2.3 that

X = U � S, B�d
= V � S, (5.13)

for some polynomials U, V, S, where degU = l. Furthermore, equalities (5.11)
and X = U � S imply by Corollary 3.4 that

A �U = U � C (5.14)

for some polynomial C . Since l is coprime with n, by Theorem 2.4 there exist
polynomials µ, ⌫ of degree one such that either

A = ⌫ � zs R`(z) � ⌫�1, U = ⌫ � z` � µ, C = µ�1
� zs R(z`) � µ,

where R is a polynomial, n � 1, s � 0, and GCD(s, l) = 1, or

A = ⌫ � ±Tn � ⌫�1, U = ⌫ � T` � µ, C = µ�1
� ±Tn � µ,

where GCD(l, n) = 1. In the last case however Theorem 4.4 applied to (5.11)
implies that B is conjugate to Tn. Therefore, the first case must hold and hence
X = ⌫ � z` �W , whereW = µ� S is a compositional right factor of B�d .Moreover,
since n = rl+ s, where r = deg R, the inequality l < n holds whenever r 6= 0. On
the other hand, if r = 0, then A is conjugate to zn and hence B also is conjugate to
zn by Theorem 4.4.

For a natural number n > 1 with a prime decomposition n = pa11 pa22 . . . pass
set ordp(n) = ai , if p = pi for some i , 1  i  s, and ordp n = 0 otherwise.
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Proposition 5.5. If, under assumptions of Proposition 5.4, the polynomial X is not
a polynomial in B, then d(n,m)  2 log2 n + 3.

Proof. Set
a = nd/b. (5.15)

Clearly, for any prime p,

ordp(b) + ordp(a) = ordp(n)d,

implying that

ordp b = ordp(n)(d � 1) + ordp(n) � ordp(a). (5.16)

Observe that the definition of d(n,m) implies that a is not divisible by n. Moreover,
the number b is not divisible by n either, since otherwise equality (5.11) implies by
Theorem 2.3 that X is a polynomial in B. Observe also that by Theorem 4.4 any
polynomial A such that (5.11) holds is not special.

It follows from Theorem 2.3 applied to equality (5.12) that there exist polyno-
mials N , F and Y , Z , where

deg Z = l, degY = a,

such that
A�d

= N � Y, X = N � Z ,

and
Y � X = Z � B�d . (5.17)

Applying now Theorem 2.3 and Theorem 2.2 to the equality

Y � X =

⇣
Z � Bd�i

⌘
� Bi

for each i, 1  i  d � 1, we obtain a collection of polynomials Yi , Xi , Wi Ui , Ki ,
Li , 1  i  d � 1, such that

Y = Ui � Yi , Z � B�d�i
= Ui � Ki , X = Xi � Wi , B�i

= Li � Wi , (5.18)

and
Yi � Xi = Ki � Li . (5.19)

Furthermore,
degYi = ai , deg Xi = lbi ,

where
ai =

a
GCD

�
a, nd�i

� , bi =

b
GCD

�
b, ni

� , (5.20)



POLYNOMIAL SEMICONJUGACIES AND INVARIANT CURVES 1443

and there exist polynomials of degree one ⌫i , �i , µi 1  i  d� 1, such that either

Yi = ⌫i � zai � �i , Xi = ��1
i � zcR(zai ) � µi , (5.21)

where R 2 C[z] and GCD(c, ai ) = 1, or

Yi = ⌫i � zcRlbi (z) � �i , Xi = ��1
i � zlbi � µi , (5.22)

where R 2 C[z] and GCD(c, lbi ) = 1, or

Yi = ⌫i � Tai � �i , Xi = ��1
i � Tlbi � µi , (5.23)

where GCD(ai , lbi ) = 1.
Observe first that

ai � 2i , bi � 2d�i . (5.24)

Indeed, since n - a, there exists p 2 rad(n) such that ordp(n)� ordp(a) > 0. Thus,
ordp(b) > ordp(nd�1) by (5.15), and hence for any i, 1  i  d � 1, the equality

ordp
�
GCD(b, ni )

�
= ordp(n)i

holds. It follows now from (5.20) and (5.16) that

ordp(bi ) = ordp(b)�ordp
�
GCD(b, ni )

�
= ordp(n)(d�1�i)+ordp(n)�ordp(a),

implying that

bi � pordp(n)(d�1�i)+ordp(n)�ordp(a)
� pordp(n)(d�1�i)+1

� p(d�1�i)+1
= pd�i .

Similarly, since n - b, there exists q 2 rad(n) such that ordq(n) � ordq(b) > 0
implying by (5.20) and (5.16) that that for any i, 1  i  d � 1, the inequality
ai � qi holds. Since p � 2, q � 2, this proves (5.24).

In order to establish the required bound, observe that since

A�d
= N �Ui � Yi ,

it follows from Corollary 5.3 that if (5.21) or (5.23) holds, then ai  2n. On the
other hand, since X = Xi � Wi , if (5.22) or (5.23) holds, then bi  lbi  2n, by
Theorem 5.2. Thus, for any i, 1  i  d � 1, the inequality

min{ai , bi }  2n

holds. On the other hand, it follows from (5.24) that for i0 = bd/2c the inequality

min{ai , bi } � 2bd/2c

holds. Therefore, 2bd/2c
2n, implying that 2d/2

2
p

2n. Thus, d/2  log2 n+3/2
and d  2 log2 n + 3.
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Proof of Theorem 1.6. Observe first that if X 2 E(B) is a semiconjugacy from B
to A, then A is defined in a unique way since the equalities

A � X = X � B, eA � X = X � B

imply A � X =
eA � X , which in turn implies A =

eA. In particular, this implies that
for any X1, X2 2 E(B) such that X2 = µ � X1 for some polynomial µ of degree
one the corresponding polynomials A1, A2 2 F(B) are conjugate. Moreover, for
any A 2 F(B) there exists X such that

A � X = X � B (5.25)

and X is not a polynomial in B, since (5.25) and X =
eX � B�s imply that

A �
eX =

eX � B.

Finally, if X1, X2 2 E(B) and deg X1 = deg X2, then the corresponding polyno-
mials in A1, A2 2 F(B) are conjugate, since Theorem 1.1 and Theorem 3.1 imply
that there exists a polynomial µ of degree one such that X2 = µ � X1.

Let X be an element of E(B) and X = ⌫ � zl � W its representation from
Proposition 5.4. Then it follows from Proposition 5.5 that, unless X is a polynomial
in B, the inequality d  2 log2 n + 3 holds. Since, in addition, for the number l
the inequality l < n holds, this implies that up to the change X ! µ � X , where
µ is a polynomial of degree one, there exists at most a finite number of elements of
E(B) which are not polynomials in B. Applying to these polynomials recursively
Theorem 1.2 we obtain polynomials X 2 E(B) and A 2 F(B) which satisfy the
conclusion of the theorem.

Remark 5.6. Since the degree of the polynomial of X from Theorem 1.6 is equal to
the least common multiple of degrees of all polynomials from E(B) which are not
polynomials in B, it follows from Proposition 5.4 and Proposition 5.5 that deg X
is bounded by the number  (n)n2 log2 n+3, where  (n) denotes the least common
multiple of all numbers less than n and coprime with n. In particular,

c(n)  (n � 1)!n2 log2 n+3.

Corollary 5.7. Let B be a polynomial of degree at least two. Then there exists at
most a finite number of conjugacy classes of polynomials A such that A  B.

Proof. If B is non-special, then the corollary follows from Theorem 1.6. For special
B the corollary follows from Theorem 4.4.

Corollary 5.8. Each equivalence class of the relation ⇠ contains at most a finite
number of conjugacy classes.

Proof. It follows from Corollary 5.7, since A ⇠ B implies A  B.
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Corollary 5.9 ([22]). Let B be a non-special polynomial of degree n � 2, and
X and Y polynomials such that Y � X = B�s for some s � 1. Then there exist
polynomials eX , eY and i, j � 0 such that

Y = B�i
�

eY , X =
eX � B� j , and eY �

eX = B�es,
wherees is bounded from above by a constant which depends on n only.

Proof. Clearly, without loss of generality we may assume that X is not a polynomial
in B. Since B �B�d

= B�d
�B, the polynomial B�d is contained in E(B) and hence

X is contained in E(B) by Corollary 3.4. Furthermore, since rad(deg X) | rad(n),
it follows from Proposition 5.4 and Proposition 5.5 that there exists a polynomial eY
such that eY � X = B�(2 log2 n+3). Therefore, if s > 2 log2 n + 3, then

B�s
= B�(s�2 log2 n�3)

� B�(2 log2 n+3)
= B�(s�2 log2 n�3)

�
eY � X = Y � X,

implying that Y = B�(s�2 log2 n�3) �
eY . This proves the corollary, and shows thates  2 log2 n + 3.

Remark 5.10. The bound es  2 log2 n + 3 in Corollary 5.9 is not optimal. It
was shown in [22] that in factes  log2(n + 2) and that this last bound cannot be
improved. For more details we refer the reader to [22]. Notice however that for
applications, similar to the ones given in [6], the actual form of the bound fores is
not important.
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Uniqueness of entire functions sharing a small function
with linear differential polynomials
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Abstract. We consider the situation when an entire function shares a small
function with linear differential polynomials. Our result improves a result of
H. Zhong.
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ondary).

1. Introduction, definitions and results

Suppose that f is a meromorphic function in the complex planeC. A meromorphic
function a = a(z), defined inC, is called a small function of f if T (r, a) = S(r, f ),
where T (r, a) is Nevanlinna’s characteristic function of a and S(r, f ) is any quan-
tity satisfying S(r, f ) = o{T (r, f )} as r ! 1 possibly outside a set of finite linear
measure.

We denote by E(a; f ) the collection of the zeros of f � a, where a zero is
counted according to its multiplicity. Also by E(a; f ) and by E1)(a; f ) we denote
the collection of distinct zeros of f � a and simple zeros of f � a respectively.

Suppose that f and g are two meromorphic functions in C and a = a(z) is
a small function of f and g. We say that f and g share the small function a CM
(counting multiplicities) or IM (ignoring multiplicities) if E(a; f ) = E(a; g) or
E(a; f ) = E(a; g) respectively.

The investigation of uniqueness of an entire function sharing certain values
with its derivatives was initiated by L. A. Rubel and C. C. Yang in 1977, see [6].
They proved the following result.
Theorem A ([6]). Let f be a nonconstant entire function. If for two values a and
b, E(a; f ) = E(a; f (1)) and E(b; f ) = E(b; f (1)), then f ⌘ f (1).

Let f (z) = exp(ez)
R z
0 exp(�e

t )(1 � et )dt . Then f (1)
� 1 = ez( f � 1) and

so E(1; f ) = E(1; f (1)). Clearly f 6⌘ f (1) and we see that the hypothesis of

The work of the second author is supported by CSIR fellowship.
Received November 6, 2015; accepted in revised form September 27, 2016.
Published online December 2017.
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two-value sharing in Theorem A is essential. So it appeared to be an interesting
problem to investigate the situation of a single value sharing by an entire function
with its derivative. To this end, the first result came from G. Jank, E. Mues and L.
Volkmann [3], which may be stated as follows.
Theorem B ([3]). Let f be a nonconstant entire function. If for a nonzero constant
a, E(a; f ) = E(a; f (1)) and E(a; f ) ⇢ E(a; f (2)), then f ⌘ f (1).

We easily note that the hypothesis of Theorem B is equivalent to the following:
E(a; f ) = E(a; f (1)) and E(a; f ) ⇢ E(a; f (2)).

It is now a natural query whether the second order derivative can be replaced
by a higher order one. H. Zhong [9] answered this query in the negative by means
of the following example.
Example 1.1. Let k(� 3) be a positive integer and !(6= 1) be a (k � 1)th root of
unity. If g(z) = e!z +!� 1, then g, g(1) and g(k) share the value ! CM but neither
g ⌘ g(1) nor g ⌘ g(k).

Accommodating the general order derivative, H. Zhong [9] proved the follow-
ing result.
Theorem C ([9]). Let f be a nonconstant entire function, a(6= 0) be a finite value
and n(� 1) be an integer. If E(a; f ) = E(a; f (1)) and E(a; f ) ⇢ E(a; f (n)) \

E(a; f (n+1)), then f ⌘ f (n).
Suppose that f is a nonconstant entire function and a1, a2, . . . , an(6= 0) are

complex numbers.
Then

L = L( f ) = a1 f (1)
+ a2 f (2)

+ · · · + an f (n) (1.1)
is called a linear differential polynomial generated by f .

In 1999, P. Li [4] extended Theorem C to linear differential polynomials and
proved the following result.
Theorem D ([4]). Let f be a nonconstant entire function and L be defined by (1.1).
Suppose that a is a nonzero finite value. If E(a; f ) = E(a; f (1)) and E(a; f ) ⇢

E(a; L) \ E(a; L(1)), then f ⌘ f (1)
⌘ L .

In the present paper we extend Theorem C by considering shared small func-
tions instead of shared values.

For two subsets A and B of C, we denote by A1B the set (A� B) [ (B� A),
which is called the symmetric difference of the sets A and B.

We refer the reader to the monograph [2] for standard definitions and notation
of the value distribution theory.

Suppose that f is a meromorphic function and a = a(z) is a small function of
f . We denote by n(2(r, a; f ) the number of multiple zeros of f �a lying in |z|  r .
The function

N(2(r, a; f ) =

Z r

0

n(2(t, a; f ) � n(2(0, a; f )
t

dt + n(2(0, a; f ) log r

is called the integrated counting function of multiple zeros of f � a.
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Let A ⇢ C. Then by nA(r, a; f ) we denote the number of zeros of f �a lying
in A \ {z : |z|  r}. The function

NA(r, a; f ) =

Z r

0

nA(t, a; f ) � nA(0, a; f )
t

dt + nA(0, a; f ) log r

is called the integrated counting function of those zeros of f � a that lie in A.
We now state the results of the present paper.

Theorem 1.2. Let f be a nonconstant entire function and a = a(z)(6⌘ 0,1) be a
small function of f such that a(1)

6⌘ a. Suppose that A = E(a; f )1E(a; f (1)) and
B = E(a; f )\{E(a; L) \ E(a; L(1))}, where L defined by (1.1) is nonconstant.
Then f ⌘ L = ↵ez , where ↵(6= 0) is a constant, provided the following hold:

(i) NA[B(r, a; f ) + NA(r, a; f (1)) = S(r, f );
(ii) E1)(a; f ) ⇢ E(a; f (1));
(iii) each common zero of f � a and f (1)

� a has the same multiplicity.

Putting A = B = ; we obtain the following corollary.

Corollary 1.3. Let f be a nonconstant entire function and a = a(z)(6⌘ 0,1) be
a small function of f such that a(1)

6⌘ a. If E(a; f ) = E(a; f (1)) and E(a; f ) ⇢

E(a; L) \ E(a; L(1)), L being nonconstant, then f ⌘ L = ↵ez , where ↵(6= 0) is a
constant and L is defined by (1.1).

The following example shows that the hypothesis a(1)
6⌘ a is essential for

Theorem 1.2 and Corollary 1.3.
Example 1.4. Let f = ez + exp(ez) and a = ez . Then a(6⌘ 0,1) is a small
function of f . Also E(a; f ) = E(a; f (1)) = ; and so E(a; f ) ⇢ E(a; L) \

E(a; L(1)). Clearly the conclusion of Theorem 1.2 and Corollary 1.3 does not hold.
We note that the function f of Example 1.4 is of infinite order. In the following

theorem we see that the hypothesis “a(1)
6⌘ a” can be removed from Corollary 1.3

if we consider an entire function of finite order.

Theorem 1.5. Let f be a nonconstant entire function of finite order and a =

a(z)(6⌘ 0,1) be a small function of f . If E(a; f ) = E(a; f (1)) and E(a; f ) ⇢

E(a; L) \ E(a; L(1)), then f ⌘ L = ↵ez , where ↵(6= 0) is a constant and L is
defined by (1.1).

Let f be a nonconstant meromorphic function in C and a1, a2, . . . , al(6⌘ 0) be
small functions of f . A function of the form

 =

lX
j=1

a j ( f )n0 j
�
f (1)�n1 j

· · ·

�
f (k)�nkj

is called a differential polynomial generated by f , where ni j (i = 0, 1, . . . k; j =

1, 2, . . . l) and k are nonnegative integers.
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The numbers � = max1 jl
Pk

i=0 ni j and 0 = max1 jl
Pk

i=0(i + 1)ni j
are respectively called the degree and weight of  .

ACKNOWLEDGEMENTS. The authors are thankful to the referee for valuable sug-
gestions and observations towards the improvement of the paper.

2. Lemmas

In this section we present some necessary lemmas.

Lemma 2.1 ([1]; see also [7]). Let f be a meromorphic function and k be a pos-
itive integer. Suppose that f is a solution of the following differential equation:
a0w(k)

+ a1w(k�1)
+ · · · + akw = 0, where a0(6= 0), a1, a2, . . . , ak are constants.

Then T (r, f ) = O(r). Furthermore, if f is transcendental, then r = O(T (r, f )).

Lemma 2.2 ([1]). Let f be a meromorphic function and n be a positive integer. If
there exist meromorphic functions a0(6⌘ 0), a1, . . . , an such that

a0 f n + a1 f n�1 + · · · + an�1 f + an ⌘ 0,

then

m(r, f )  nT (r, a0) +

nX
j=1

m(r, a j ) + (n � 1) log 2.

Lemma 2.3 ([5]; see also [8, page 28 ]). Let f be a nonconstant meromorphic
function. If

R( f ) =

a0 f p + a1 f p�1 + · · · + ap
b0 f q + b1 f q�1

+ · · · + bq
is an irreducible rational function in f with the coefficients being small functions
of f and a0b0 6⌘ 0, then

T (r, R( f )) = max{p, q}T (r, f ) + S(r, f ).

Lemma 2.4. Let f, a0, a1, . . . , ap, b0, b1, . . . , bq be meromorphic functions. If

R( f ) =

a0 f p + a1 f p�1 + · · · + ap
b0 f q + b1 f q�1

+ · · · + bq
(a0b0 6⌘ 0),

then

T (r, R( f )) = O

 
T (r, f ) +

pX
i=0

T (r, ai ) +

qX
j=0

T (r, b j )

!
.
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Proof. The lemma follows from the first fundamental theorem and the properties of
the characteristic function.

Lemma 2.5 ([2, page 68 ]). Let f be a transcendental meromorphic function and
f n P(z) = Q(z), where P(z), Q(z) are differential polynomials generated by f
and the degree of Q is at most n. Then m(r, P) = S(r, f ).

Lemma 2.6 ([2, page 69]). Let f be a nonconstant meromorphic function and

g(z) = f n(z) + Pn�1(z),

where Pn�1(z) is a differential polynomial generated by f and of degree at most
n � 1.

If N (r,1; f ) + N (r, 0; g) = S(r, f ), then g(z) = hn(z), where h(z) =

f (z) +
a(z)
n and hn�1(z)a(z) is obtained by substituting h(z) for f (z), h(1)(z) for

f (1)(z) etc. in the terms of degree n � 1 in Pn�1(z).

Let us note the special case, where Pn�1(z) = a0(z) f n�1+ terms of degree
n � 2 at most. Then hn�1(z)a(z) = a0(z)hn�1(z) and so a(z) = a0(z). Hence
g(z) =

⇣
f (z) +

a0(z)
n

⌘n
.

Lemma 2.7 ([2, page 47]). Let f be a nonconstant meromorphic function and a1,
a2, a3 be distinct small functions of f . Then

T (r, f )  N (r, 0; f � a1) + N (r, 0; f � a2) + N (r, 0; f � a3) + S(r, f ).

We note that in Lemma 2.7 a1, a2, a3 are allowed to be constants, and one of them
may even be1.

3. Proofs of the theorems

Proof of Theorem 1.2. Let � =
f (1)

�a
f�a and g = f � a. Then

g(1)
= �g + a � a(1)

= �1g + µ1, (3.1)

where �1 = � and µ1 = a � a(1)
= b, say.

Differentiating (3.1) and using (3.1) repeatedly we get

g(k)
= �kg + µk, (3.2)

where �k+1 = �
(1)
k + �1�k and µk+1 = µ

(1)
k + µ1�k for k = 1, 2, . . .

We now divide the proof into two parts.
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Part I
We prove that T (r, �) = S(r, f ). If � is constant, then obviously T (r, �) = S(r, f ).
So we suppose that � is nonconstant. By the hypothesis (i), (ii) and (iii) we get

N (r, 0; �)+ N (r,1;�)  NA(r, 0; f �a)+ NA
�
r, 0; f (1)

�a
�

= S(r, f ). (3.3)

Putting k = 1 in �k+1 = �
(1)
k +�1�k we get �2 = �2+d1�, where d1 =

�(1)

� . Again
putting k = 2 in �k+1 = �

(1)
k +�1�k we have �3 = �

(1)
2 +�1�2 = �3+3d1�2+d2�,

where d2 = d21 + d(1)
1 . Similarly �4 = �

(1)
3 + �1�3 = �4 + 6d1�3 + (6d21 + 3d(1)

1 +

d2)�2 + (d(1)
2 + d1d2)� . Therefore, in general, we get for k � 2

�k = �k +

k�1X
j=1

↵ j�
j , (3.4)

where T (r,↵ j ) = O(N (r, 0; �) + N (r,1;�)) + S(r, �) = S(r, f ) for j =

1, 2, . . . , k � 1.
Again putting k = 1 in µk+1 = µ

(1)
k + µ1�k we get µ2 = µ

(1)
1 + µ1�1 =

b� + b(1). Also putting k = 2 in µk+1 = µ
(1)
k + µ1�k we obtain by (3.4), µ3 =

b�2 + (b(1)
+ bd1 + ↵1)�+ b(2). Similarly µ4 = b�3 + (2bd1 + b(1)

+ b↵2)�2 +

(b(2)
+ 2b(1)d1 + bd(1)

+ ↵
(1)
1 + bd21 + ↵1d1 + b↵1)�+ b(3). Therefore, in general,

for k � 2

µk =

k�1X
j=1

� j�
j
+ b(k�1), (3.5)

where T (r,� j ) = O(N (r, 0; �)+N (r,1;�))+S(r, �) = S(r, f ) for j = 1, 2, . . .,
k � 1 and �k�1 = b.

Let z0 be a zero of f � a and f (1)
� a with multiplicity q(� 2). Then z0 is a

zero of f (1)
� a(1) with multiplicity q � 1. Hence z0 is a zero of b = a � a(1)

=

( f (1)
� a(1)) � ( f (1)

� a) with multiplicity q � 1. Since q  2(q � 1), we have
N(2(r, a; f )  2N (r, 0; b) + NA(r, a; f ) = S(r, f ).

We first suppose that either n � 2 or n = 1 and a1 6= 1. Let

 =

(a � L(a))
�
f (1)

� a(1)�
�

�
a � a(1)�(L � L(a))

f � a
. (3.6)

From (3.6) we get N (r, )  N(2(r, a; f )+ NA[B(r, a; f )+ (n+1)N (r,1; a) =

S(r, f ) and so T (r, ) = S(r, f ) because m(r, ) = S(r, f ).
Using (3.2), (3.4) and (3.5) we get

L(g) = a1g(1)
+

nX
k=2

akg(k)

= a1(�g + b) +

nX
k=2

ak

 
�k +

k�1X
j=1

↵ j�
j

!
g +

nX
k=2

ak

 
k�1X
j=1

� j�
j
+ b(k�1)

!
.
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Therefore from (3.6) we get

0 ⌘

(
 + a1b�+

nX
k=2

akb

 
�k +

k�1X
j=1

↵ j�
j

!
� �(a � L(a))

)
g

+ b

(
ba1 +

nX
k=2

ak

 
k�1X
j=1

� j�
j
+ b(k�1)

!
� (a � L(a))

)
.

(3.7)

If  +a1b�+

Pn
k=2 akb(�k +

Pk�1
j=1 ↵ j�

j )��(a� L(a)) ⌘ 0, then by Lemma 2.2
we get m(r, �) = S(r, f ). Therefore by (3.3) we have T (r, �) = S(r, f ).

Suppose that  + a1b� +

Pn
k=2 akb(�k +

Pk�1
j=1 ↵ j�

j ) � �(a � L(a)) 6⌘ 0.
Then from (3.7) we get

g = �

b

(
ba1 +

nP
k=2

ak

 
k�1P
j=1

� j�
j
+ b(k�1)

!
� (a � L(a))

)

 + a1b�+

nP
k=2

akb

 
�k +

k�1P
j=1

↵ j� j

!
� �(a � L(a))

. (3.8)

From (3.8) we get by Lemma 2.4, T (r, g) = O(T (r, �))+S(r, f ) and so T (r, f ) =

O(T (r, �)) + S(r, f ). This implies that S(r, f ) is replaceable by S(r, �).
Also, from (3.8) we see that g is a rational function in �, which can be made

irreducible. We now put

g =

Ps(�)
Qs+1(�)

, (3.9)

where Ps(�) and Qs+1(�) are relatively prime polynomials in � of respective de-
grees s and s+1. The coefficients of both the polynomials are small functions of �.
Without loss of generality we assume that Qs+1(�) is a monic polynomial. We fur-
ther note that the counting function of the common zeros of Ps(�) and Qs+1(�), if
any, is S(r, �), because Ps(�) and Qs+1(�) are relatively prime and the coefficients
are small functions of �.

Since N (r,1; g) = S(r, f ) = S(r, �), we see from (3.9) that N (r, 0;
Qs+1(�)) = S(r, �). Also by (3.3) we know that N (r,1;�) = S(r, f ) = S(r, �).
So by Lemma 2.6 we get

Qs+1(�) =

✓
�+

c
s + 1

◆s+1
, (3.10)

where c is the coefficient of �s in Qs+1(�).
If c 6⌘ 0, then by Lemma 2.7 we obtain

T (r, �)  N (r, 0; �) + N (r,1;�) + N
✓
r,�

c
s + 1

; �

◆
+ S(r, �)

= N (r, 0; Qs+1(�)) + S(r, �)
= S(r, �),
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a contradiction. Therefore c ⌘ 0 and we get from (3.9) and (3.10)

g =

Ps(�)
�s+1

. (3.11)

Differentiating (3.11) we obtain

g(1)
= d1

�P(1)
s (�) � (s + 1)Ps(�)

�s+1
,

where d1 =
�(1)

� and T (r, d1) = O(N (r, 0; �)+N (r,1;�))+m(r, d1) = S(r, f )+
S(r, �) = S(r, �). So by Lemma 2.3 we have

T
⇣
r, g(1)

⌘
= (s + 1� p)T (r, �) + S(r, �), (3.12)

for some integer p, 0  p  s.
Again since g(1)

= �g + b, where b = a � a(1)
6⌘ 0, we get from (3.11)

g(1)
=

Ps(�)
�s

+ b

and so by Lemma 2.3 we have

T
⇣
r, g(1)

⌘
= (s � p)T (r, �) + S(r, �), (3.13)

where p is same as in (3.12). Now from (3.12) and (3.13) we get T (r, �) = S(r, �),
a contradiction.

Next we suppose that n = 1 and a1 = 1. Let

� =

�
a � L(1)(a)

�
(L � L(a)) � (a � L(a))

�
L(1)

� L(1)(a)
�

f � a
.

Since in this case L = f (1), we get

� =

�
a � a(2)�� f (1)

� a(1)�
�

�
a � a(1)�� f (2)

� a(2)�
f � a

=

�
a � a(2)�g(1)

� bg(2)

g
.

(3.14)

By the hypothesis we have T (r,�) = S(r, f ). Using (3.2), (3.4), (3.5) and (3.14)
we getn

b�2 + (↵1b � a + a(2))�+ �}g + b{b(1)
+ �1�+ a(2)

� a
o

⌘ 0. (3.15)

Following the similar argument of the preceding case and using (3.15) we can show
that m(r, �) = S(r, f ). So by (3.3) we have T (r, �) = S(r, f ). This completes the
proof of Part I.
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Part II
First we verify that

T (r, f )  3N (r, 0; f � a) + S(r, f ). (3.16)

By the first fundamental theorem we get

T (r, f ) = T (r, f � a) + S(r, f )

= T
✓
r,

1
f � a

◆
+ S(r, f )

= N
✓
r,

1
f � a

◆
+ m

✓
r,

1
f � a

◆
+ S(r, f )

 N
✓
r,

1
f � a

◆
+ m

✓
r,

1
f (1)

� a(1)

◆
+ S(r, f )

= N
✓
r,

1
f � a

◆
+ T

⇣
r, f (1)

⌘
� N

✓
r,

1
f (1)

� a(1)

◆
+ S(r, f ).

Now by Lemma 2.7 we get from above

T (r, f )  N (r, 0; f � a) + N
⇣
r, 0; f (1)

� a
⌘

+ N
⇣
r, 0; f (1)

� a(1)
⌘

� N
⇣
r, 0; f (1)

� a(1)
⌘

+ S(r, f ).
(3.17)

Let us denote by N p
(k(r, 0; F) the counting function of zeros of F with multiplicities

not less than k and a zero of multiplicity q(� k) is counted q � p times, where
p  k.

Now

N (r, 0; f � a) + N
⇣
r, 0; f (1)

� a(1)
⌘

� N
⇣
r, 0; f (1)

� a(1)
⌘

= N (r, 0; f � a) + N1(2(r, 0; f � a) � N1(2
⇣
r, 0; f (1)

� a(1)
⌘

= N (r, 0; f �a)+N (2(r, 0; f � a) + N2(3(r, 0; f � a) � N1(2
⇣
r, 0; f (1)

� a(1)
⌘

 2N (r, 0; f � a) + N1(2
⇣
r, 0; f (1)

� a(1)
⌘

� N1(2
⇣
r, 0; f (1)

� a(1)
⌘

+ S(r, f )

= 2N (r, 0; f � a) + S(r, f ),

where N (2(r, 0; f �a) is the integrated counting function of distinct multiple zeros
of f � a.

Therefore from (3.17) we get

T (r, f )  2N (r, 0; f � a) + N
⇣
r, 0; f (1)

� a
⌘

+ S(r, f ). (3.18)
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Since

N (r, 0; f (1)
�a)  N (r, 0; f �a)+NA(r, 0; f (1)

�a) = N (r, 0; f �a)+S(r, f ),

(3.16) is obtained from (3.18).
Since T (r, �) = S(r, f ), we see that T (r, �k) + T (r, µk) = S(r, f ) for k =

1, 2, . . . , where �k and µk are defined in (3.2). Now

L =

nX
k=1

ak f (k)
=

nX
k=1

akg(k)
+ L(a)

=

 
nX

k=1
ak�k

!
g +

nX
k=1

akµk + L(a) = ⇠g + ⌘, say.
(3.19)

Clearly T (r, ⇠) + T (r, ⌘) = S(r, f ). Differentiating (3.19) we get

L(1)
= ⇠ (1)g + ⇠g(1)

+ ⌘(1). (3.20)

Let z0 62 A [ B, be a zero of g = f � a. Then from (3.19) and (3.20) we get
a(z0) � ⌘(z0) = 0 and ⇠(z0)(a(z0) � a(1)(z0)) + ⌘(1)(z0) � a(z0) = 0.

If a(z) � ⌘(z) 6⌘ 0, we get

N (r, 0; f � a)  NA[B(r, 0; f � a) + N (r, 0; a � ⌘) + S(r, f ) = S(r, f ),

which contradicts (3.16). Therefore

a(z) ⌘ ⌘(z). (3.21)

Again if ⇠(z)(a(z) � a(1)(z)) + ⌘(1)(z) � a(z) 6⌘ 0, we get

N (r, 0; f � a)  NA[B(r, 0; f � a) + N
⇣
r, 0; ⇠

⇣
a � a(1)

⌘
+ ⌘(1)

� a
⌘

+ S(r, f ) = S(r, f ),

which contradicts (3.16). Therefore

⇠(z)
⇣
a(z) � a(1)(z)

⌘
+ ⌘(1)(z) � a(z) ⌘ 0. (3.22)

Since a(z) 6⌘ a(1)(z), from (3.21) and (3.22) we get ⇠(z) ⌘ 1. Hence from (3.19)
and (3.21) we get L ⌘ g + a ⌘ f .

By actual calculation we see that �2 = �2 + �(1) and �3 = �3 + 3��(1)
+ �(2).

We now verify, in general, that

�k = �k + Pk�1[�], (3.23)
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where Pk�1[�] is a differential polynomial in � with constant coefficients such that
the degree �Pk�1  k � 1 and the weight 0Pk�1  k. Also each term of Pk�1[�]
contains some derivative of �.

Let (3.23) be true. Then

�k+1 = �
(1)
k + �1�k

=

⇣
�k + Pk�1[�]

⌘(1)
+ �

⇣
�k + Pk�1[�]

⌘
= �k+1 + Pk[�],

where we note that differentiation does not increase the degree of a differential
polynomial but increases its weight by 1. So (3.23) is verified by mathematical
induction.

Since ⇠(z) ⌘ 1, by (3.19) and (3.23) we get

nX
k=1

ak�k +

nX
k=1

ak Pk�1[�] ⌘ 1. (3.24)

By the hypotheses (ii) and (iii) we see that � has no simple pole. Let z0 be a pole
of � with multiplicity p(� 2). Then z0 is a pole of

Pn
k=1 ak�k with multiplicity

np and it is a pole of
Pn

k=1 ak Pk�1[�] with multiplicity at most (n � 1)p + 1.
Since np > (n � 1)p + 1, it follows that z0 is a pole of the left hand side of
(3.24) with multiplicity np, which is impossible. So � is an entire function. If �
is transcendental, then by Lemma 2.5 we get from (3.24) that T (r, �) = S(r, �),
a contradiction. If � is a polynomial of degree d(� 1), then the left hand side of
(3.24) is a polynomial of degree nd, which is also a contradiction. Therefore � is
a constant and so from (3.23) we get �k = �k for k = 1, 2, . . .. We suppose that
� 6= 1.

Since L ⌘ f , we see by Lemma 2.1 that T (r, f ) = O(r) and so T (r, a) =

o(r), because a is a small function of f .
Since � is a constant, by a simple calculation we get µk =

Pk�1
j=0 b

(k�1� j)� j

for k = 1, 2, . . .. Therefore from (3.19) we have

⌘ = L(a) +

nX
k=1

akµk = L(a) +

nX
k=1

ak

 
k�1X
j=0

b(k�1� j)� j

!
. (3.25)

From (3.21) and (3.25) we see that a = a(z) is an entire function. Since T (r, a) =

o(r), by Lemma 2.1, (3.21) and (3.25) we observe that a = a(z) is a polynomial.
Now from (3.1) we get

f (1)
= � f + (1� �)a = � f + Pl , (3.26)

where Pl is a polynomial of degree l.
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Differentiating (3.26) l + 1 times we get f (l+2)
= � f (l+1) and so f (l+1)

=

�e�z , where �(6= 0) is a constant. Now integrating f (l+1)
= �e�z , l + 1 times we

get

f =

�

�l+1
e�z + Qt ,

where Qt is a polynomial of degree t ( l).
Since ⇠(z) ⌘ 1 and �k = �k , we have

Pn
k=1 ak�k = 1. Hence

L =

nX
k=1

ak f (k)
=

 
nX

k=1
ak�k

!
�

�l+1
e�z +

nX
k=1

akQ(k)
t =

�

�l+1
e�z +

nX
k=1

akQ(k)
t .

Since f ⌘ L , we have Qt ⌘

Pn
k=1 akQ

(k)
t and this implies Qt ⌘ 0. Therefore

f =
�

�l+1
e�z and from (3.26) we get �

�l
e�z =

�
�l
e�z + (1��)a, which is impossible

as � 6= 1 and a 6⌘ 0. Hence � = 1 and so from (3.26) we obtain f ⌘ L = ↵ez ,
where ↵(6= 0) is a constant. This proves the theorem.

Proof of Theorem 1.5. Let a ⌘ a(1). Then a = �ez , where �(6= 0) is a constant.
Since E(a; f ) = E(a; f (1)) and f is of finite order, there exists a polynomial h
such that f (1)

�a
f�a = eh and so f (1)

�a(1)

f�a = eh . Integrating we get f = a+� e⌫ , where
� (6= 0) is a constant and ⌫(1)(z) = eh(z). Since f and so a are of finite order, we see
that ⌫ is a polynomial. Again E(a; f ) = E(a; f (1)) = ; and f (1)

= a + � ⌫(1)e⌫
imply that ⌫(1) is a constant. So ⌫ = cz + d, where c(6= 0) and d are constants.
Therefore f = a + � ecz+d and this contradicts the fact that a = �ez is a small
function of f . Hence a 6⌘ a(1) and the theorem follows from Corollary 1.3. This
proves the theorem.
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Twisted cohomology of arrangements of lines and Milnor fibers

MARIO SALVETTI AND MATTEO SERVENTI

Abstract. Let A be an arrangement of affine lines in C2, with complement
M(A). The (co)homology ofM(A) with twisted coefficients is strictly related
to the cohomology of the Milnor fibre associated to the conified arrangement,
endowed with the geometric monodromy. Although several partial results are
known, even the first Betti number of the Milnor fiber is not understood. We
give here a vanishing conjecture for the first homology, which is of a different
nature with respect to the known results. Let 0 be the graph of double points
of A: we conjecture that if 0 is connected then the geometric monodromy acts
trivially on the first homology of the Milnor fiber (so that the first Betti number
is combinatorially determined in this case). This conjecture depends only on the
combinatorics of A.We prove it in some cases with stronger hypothesis.

In the final parts, we introduce a new description in terms of the group given
by the quotient of the commutator subgroup of ⇡1(M(A)) by the commutator of
its length-zero subgroup. We use that to deduce some new interesting cases of a-
monodromicity, including a proof of the conjecture under some extra conditions.

Mathematics Subject Classification (2010): 55N25 (primary); 57M05 (sec-
ondary).

1. Introduction

Let A := {`1, . . . , `n} be an arrangement of affine lines in C2, with complement
M(A). Let L be a rank-1 local system onM(A), which is defined by a unitary
commutative ring R and an assignment of an invertible element ti 2 R⇤ for each
line `i 2 A. Equivalently, L is defined by a module structure on R over the fun-
damental group ofM(A) (such structure factorizes through the first homology of
M(A)). By “coning”A one obtains a three-dimensional central arrangement, with
complement fibering over C⇤. The Milnor fiber F of such fibration is a surface of
degree n + 1, endowed with a natural monodromy automorphism of order n + 1. It
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is well known that the trivial (co)homology of F with coefficients in a commutative
ring A, as a module over the monodromy action, is obtained by the (co)homology
ofM(A) with coefficients in R := A[t±1], where here the structure of R as a
⇡1(M(A))-module is given by taking all the ti ’s equal to t and the monodromy
action corresponds to t-multiplication. For reflection arrangements, relative to a
Coxeter group W, many computations were done, especially for the orbit space
MW(A) := M(A)/W, which has an associated Milnor fiber FW := F/W : in
this case we know a complete answer for R = Q[t±1], for all groups of finite
type (see [11, 12, 21]), and for some groups of affine type [6–8] (based on the tech-
niques developed in [13, 30]). For R = Z[t±1] a complete answer is known in
case An (see [5]). Some results are known for (non quotiented) reflection arrange-
ments (see [25, 31]). A big amount of work in this case has been done on related
questions, when R = C, in that case the ti ’s being non-zero complex numbers,
trying to understand the jump-loci (in (C⇤)n) of the cohomology (see for exam-
ple [9, 10, 16, 18, 24, 34]).

Some algebraic complexes computing the twisted cohomology ofM(A) are
known (see for example the above cited papers). In [22], the minimal cell struc-
ture of the complement which was constructed in [33] (see [15, 28]) was used to
find an algebraic complex which computes the twisted cohomology, in the case of
real defined arrangements (see also [23]). The form of the boundary maps depends
not only on the lattice of the intersections associated to A but also on its oriented
matroid: for each singular point P of multiplicity m there are m � 1 generators in
dimension 2 whose boundary has non vanishing components along the lines con-
tained in the “cone” of P and passing above P.

Many of the specific examples of arrangements with non-trivial cohomology
(i.e., having non-trivial monodromy) which are known are based on the theory of
nets and multinets (see [19]): there are relatively few arrangements with non trivial
monodromy in cohomology and some conjecture claim very strict restrictions for
line arrangements (see [37]).

In this paper we state a vanishing conjecture of a very different nature, which is
very easily stated and which involves only the lattice associated to the arrangement.
Let 0 be the graph with vertex set A and edge set which is given by taking an edge
(`i , ` j ) iff `i \ ` j is a double point. Then our conjecture is as follows:

Conjecture 1.

Assume that 0 is connected; then A has trivial monodromy. (1.1)

This conjecture is supported by several “experiments”, since all computations we
made confirm it. Also, all non-trivial monodromy examples we know have discon-
nected graph 0.We give here a proof holding with further restrictions. Our method
uses the algebraic complex given in [22] so our arrangements are real.

An arrangement with trivial monodromy will be called a-monodromic. We
also introduce a notion of monodromic triviality over Z. By using free differential
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calculus, we show that A is a-monodromic over Z iff the fundamental group of
the complementM(A) of the arrangement is commutative modulo the commutator
subgroup of the length-zero subgroup of the free group Fn. As a consequence, we
deduce that if G := ⇡1(M(A)) modulo its second derived group is commutative,
then A has trivial monodromy over Z.

In the final section we give an intrinsic characterization of the a-monodromicity.
Let K be the kernel of the length map G ! Z.We introduce the group H :=

[G,G]

[K ,K ]
,

and we show that such group exactly measures the “non-triviality” of the first ho-
mology of the Milnor fiber F, as well as its torsion. Any question about the first
homology of F is actually a question about H. To our knowledge, H appears here
for the first time (a preliminary partial version is appearing in [32]). We use this de-
scription to give some interesting new results about the a-monodromicity of the
arrangement. First, we show that if G decomposes as a direct product of two
groups, each of them containing an element of length 1, then A is a-monodromic
(Theorem 8.11). This includes the case when G decomposes as a direct product
of free groups. As a further interesting consequence, an arrangement which de-
composes into two subarrangements which intersect each other transversally, is a-
monodromic.

Also, we use this description to prove our conjecture under the hypothesis that
we have a connected admissible graph of commutators (Theorem 8.13): essentially,
this means to have enough double points `i\` j which give as relation (mod [K , K ])
the commutator of the fixed geometric generators �i ,� j of G.

After having finished our paper, we learned about the paper [2] were the graph
of double points is introduced and some partial results are shown, by very different
methods.

2. Some recalls

We recall here some general constructions (see [36], also as a reference to most of
the recent literature). Let M be a space with the homotopy type of a finite CW-
complex with H1(M; Z) free Abelian of rank n, having basis e1, . . . , en. Let t =

(t1, . . . , tn) 2 (C⇤)n and denote by Ct the Abelian rank one local system over M
given by the representation

� : H1(M; Z) �! C⇤

= Aut(C)

assigning ti to ei .
Definition 2.1. With this notation one calls

V (M) =

�
t 2 (C⇤)n : dimC H1(M; Ct ) � 1

 
the (first) characteristic variety of M .

There are several other analogous definitions in all (co)homological dimen-
sions, as well as refined definitions keeping into account the dimension actually
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reached by the local homology groups. For our purposes here we need to consider
only the above definition.

The characteristic variety of a CW-complex M turns out to be an algebraic
subvariety of the algebraic torus (C⇤)b1(M) which depends only on the fundamental
group ⇡1(M) (see for example [10]).

Let now A be a complex hyperplane arrangement in Cn . One knows that
the complementM(A) = Cn

\

S
H2A H has the homotopy type of a finite CW-

complex of dimension n. Moreover, in this case one knows by a general result
(see [1]) that the characteristic variety of M is a finite union of torsion translated
subtori of the algebraic torus (C⇤)b1(M).

Nowwe need to briefly recall two standard constructions in arrangement theory
(see [26] for details).

Let A = {H1, . . . , Hn} be an affine hyperplane arrangement in Cn with coor-
dinates z1, . . . , zn and, for every 1  i  n, let ↵i be a linear polynomial such that
Hi = ↵�1

i (0). The cone cA of A is a central arrangement in Cn+1 with coordi-
nates z0, . . . , zn given by {

fH0,fH1, . . . ,fHn} wherefH0 is the coordinate hyperplane
z0 = 0 and, for every 1  i  n, eHi is the zero locus of the homogenization of ↵i
with respect to z0.

Now let eA = {
eH0, . . . , eHn} be a central arrangement in Cn+1 and choose co-

ordinates z0, . . . , zn such that eH0 = {z0 = 0}; moreover, for every 1  i  n;
let e↵i (z0, . . . , zn) be such that fHi = e↵i�1(0). The deconing of eA is the arrange-
ment d eA in Cn given by {H1, . . . , Hn} where, if we set for every 1  i  n,
↵i (z1, . . . , z1) = e↵i (1, z1, . . . , zn), Hi = ↵�1

i (0). One easily sees thatM(cA) =

M(A) ⇥ C⇤ (and converselyM( eA) =M(d eA) ⇥ C⇤).
The fundamental group ⇡1(M( eA))) is generated by elementary loops �i ,

i = 0, . . . , n, around the hyperplanes and in the decomposition ⇡1(M(A)) '

⇡1(M(dA)) ⇥ Z the generator of Z = ⇡1(C⇤) corresponds to a loop going around
all the hyperplanes. The generators can be ordered so that such a loop is represented
by �0 . . .�n. Choosing eH0 as the hyperplane at infinity in the deconing A = d eA,
one has (see [10])

V ( eA) =

�
t 2 (C⇤)n+1 : (t1, . . . , tn) 2 V (dA) and t0 · · · tn = 1

 
.

It is still an open question whether the characteristic variety V ( eA) is combinatori-
ally determined, that is, determined by the intersection lattice L( eA). Actually, the
question is partially solved: thanks to the above description we can write

V ( eA) = V̌ ( eA) [ T ( eA),

where V̌ ( eA) is the union of all the components of V ( eA) passing through the unit
element 1 = (1, 1, . . . , 1) and T ( eA) is the union of the translated tori of V ( eA).

The “homogeneous” part V̌ ( eA) is combinatorially described through the reso-
nance variety

R1( eA) :=

�
a 2 A1 : H1(A•, a ^ ·) 6= 0
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introduced in [18]. Here A• is the Orlik-Solomon algebra over C of eA. Denote by
V( eA) the tangent cone of V ( eA) at 1; it turns out that V( eA) ⇠

= R1( eA). So, from
R1( eA) we can obtain the components of V ( eA) containing 1 by exponentiation.

It is also known (see [10,24]) thatR1( eA) is a subspace arrangement: R1( eA) =

C1 [ · · · [ Cr with dimCi � 2, Ci \ C j = 0 for every i 6= j .
One makes a distinction between local components CI of R1( eA), associated

to a codimensional-2 flat I in the intersection lattice, which are contained in some
coordinate hyperplanes; and global components, which are not contained in any
coordinate hyperplane of A1. Global components of dimension k � 1 are known to
correspond to (k, d)-multinets [19]. Let A be the projectivization of eA. A (k, d)-
multinet on a multi-arrangement (A,m), is a pair (N ,X ) whereN is a partition of
A into k � 3 classesA1, . . . ,Ak and X is a set of multiple points with multiplicity
greater than or equal to 3 which satisfies a list of conditions. We just recall that
X determines N : construct a graph 00

= 00(X ) with A as vertex set and an edge
from l to l 0 if and only if l \ l 0 /2 X . Then the connected components of 00 are the
blocks of the partitionN .

3. The Milnor fibre and a conjecture

Let Q : C3 ! C be a homogeneous polynomial (of degree n + 1) which defines
the arrangement eA. Then Q gives a fibration

Q
|M( ˜A) : M( ˜A) ! C⇤ (3.1)

with Milnor fibre F = Q�1(1) and geometric monodromy ⇡1(C⇤, 1) ! Aut(F)

induced by x ! e
2⇡ i
n+1 · x (see for example [35,38]).

Let A be any unitary commutative ring and

R := A
⇥
t, t�1

⇤
.

Consider the Abelian representation

⇡1(M( eA)) ! H1(M( eA); Z) ! Aut(R) : � j ! t ·

taking a generator � j into t-multiplication. Let Rt be the ring R endowed with this
⇡1(M( eA))-module structure. Then the following it is well-known:

Proposition 3.1. One has an R-module isomorphism

H⇤(M( eA), Rt ) ⇠
= H⇤(F, A)

where t-multiplication on the left corresponds to the monodromy action on the right.
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In particular for R = Q[t, t�1], which is a PID, one has

H⇤

⇣
M( eA), Q

⇥
t±1
⇤⌘

⇠
= H⇤(F, Q).

Since the monodromy operator has order dividing n + 1, H⇤(M( eA); Rt ) decom-
poses into cyclic modules either isomorphic to R or to R

('d )
, where 'd is a cyclo-

tomic polynomial with d|n + 1 . It is another open problem to find a (possibly
combinatorial) formula for the Betti numbers of F.

It derives from the spectral sequence associated to (3.1) that

n + 1 = dim(H1(M( eA); Q)) = 1+ dim
H1(F; Q)

(µ � 1)

where on the right one has the coinvariants with respect to the monodromy action.
Therefore

b1(F) � n;

actually
b1(F) = n , µ = id.

Definition 3.2. An arrangement eA with trivial monodromy will be called
a-monodromic.

Remark 3.3. The arrangement eA is a-monodromic if and only if
H1(F; Q) ⇠

= Qn
⇣
equivalently: H1(M( eA); R) ⇠

=

⇣
R

(t�1)

⌘n ⌘

LetA = d eA be the affine part. In analogy with Definition 3.2 we say
Definition 3.4. The affine arrangement A is a-monodromic if

H1(M(A); R) ⇠
=

✓
R

(t � 1)

◆n�1
.

By the Kunneth formula one easily gets (with R = Z[t±1] or R = Q[t±1])

H1(M( eA); R) ⇠
= H1(M(A); R) ⌦

R
(tn+1 � 1)

�

R
(t � 1)

. (3.2)

It follows that ifA has trivial monodromy then eA does. The converse is not true in
general (see the example in Figure 6.7).

We can now state the conjecture presented in the introduction.
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Conjecture 1. let 0 be the graph with vertex set A and edge-set all pairs (`i , ` j )
such that `i \ ` j is a double point. Then if 0 is connected thenA is a-monodromic.

Conjecture 2. let 0 be as before. Then if 0 is connected then eA is a-monodromic.
By formula (3.2) Conjecture 1 implies Conjecture 2.

A partial evidence of these conjecture is that the connectivity condition on the
graph of double points gives strong restrictions on the characteristic variety, as we
now show.
Remark 3.5. Let t = (t, . . . , t) 2 (C⇤)n+1 give non-trivial monodromy for the
arrangement eA. Then t 2 V ( eA). Moreover, t can intersect V̌ ( eA) only in some
global component.
The next theorem shows how the connectivity of 0 is an obstruction to the existence
of multinet structures.

Theorem 3.6. If the above graph 0 is connected then the projectivizedA of eA does
not support any multinet structure.

Proof. Choose a set X of points of multiplicity greater than or equal to 3 and build
00(X ) as we said at the end of Section 2. This graph 00(X ) has A as the set of
vertices and the set of edges of 0 is contained in the set of edges of 00(X ). Since
by hypothesis 0 is connected then 00(X ) has at most two connected components
and so X cannot give a multinet structure an A.
Corollary 3.7. If the graph 0 is connected, there is no global resonance component
inR1( eA).

So, according to Remark 3.5, if 0 is connected then non trivial monodromy
could appear only in the presence of some translated subtori in the characteristic
variety.

4. Algebraic complexes

We shall prove the conjectures with extra assumptions on the arrangement. Our
tool will be an algebraic complex which was obtained in [22], as a 2-dimensional
refinement of that in [33], where the authors used the explicit construction of a
minimal cell complex which models the complement. Since these complexes work
for real defined arrangements, this will be our first restriction.

Of course, there are other algebraic complexes computing local system coho-
mology (see the references listed in the introduction). The one in [22] seemed to us
particularly suitable to attack the present problem (even if we were not able to solve
it in general).

First, the complex depends on a fixed and generic system of “polar coordi-
nates”. In the present situation, this just means to take an oriented affine real line
` which is transverse to the arrangement. We also assume (even if it is not strictly



1468 MARIO SALVETTI AND MATTEO SERVENTI

necessary) that ` is “far away” from A, meaning that it does not intersect the clo-
sure of the bounded facets of the arrangement. This is clearly possible because the
union of bounded chambers is a compact set (the arrangement is finite). The choice
of ` induces a labelling on the lines {`1, . . . , `n} inA,where the indices of the lines
agree with the ordering of the intersection points with `, induced by the orientation
of `.

Let us choose a basepoint O 2 `, coming before all the intersection points of
` withA (with respect to the orientation of `). We recall the construction in [22] in
the case of the Abelian local system defined before.

Let Sing(A) be the set of singular points of the arrangement. For any point
P 2 Sing(A), let S(P) := {` 2 A : P 2 `}; so m(P) = |S(P)| is the multiplicity
of P.

Let iP , i P be the minimum and maximum index of the lines in S(P) (so iP <
i P ). We denote by C(P) the subset of lines inAwhose indices belong to the closed
interval [iP , i P ].We also denote by

U(P) := {` 2 A : ` does not separate P from the basepoint O}.

Let (C⇤, @⇤) be the 2-dimensional algebraic complex of free R-modules having one
0-dimensional basis element e0, n 1-dimensional basis elements e1j , j = 1, . . . , n,
(e1j corresponding to the line ` j ) and ⌫2 =

P
P2Sing(A)m(P)�1 2-dimensional

basis elements: to the singular point P of multiplicity m(P) we associate gen-
erators e2P,h, h = 1, . . . ,m(P) � 1 . The lines through P will be indicized as
` jP,1, . . . , ` jP,m(P) (with growing indices).

As a dual statement to [22, Theorem 2], we obtain:

Theorem 4.1. The local system homology H⇤(M(A); R) is computed by the com-
plex (C⇤, @⇤) above, where

@1
�
e1j
�

= (t j � 1) e0

and

@2(e2P,h) =

X
` j2S(P)

0
BB@

Y
i< j so that
li2U(P)

ti

1
CCA
0
BB@

Y
i2[ jP,h+1! j)

ti �

Y
i< j so that
li2S(P)

ti

1
CCAe1j

+

X
` j2C(P)\U(P)

0
BB@

Y
i< j so that
li2U(P)

ti

1
CCA
0
BB@1�

Y
i jP,h ,i< j
li2S(P)

ti

1
CCA
0
BB@

Y
i� jP,h+1, i< j

li2S(P)

ti �

Y
i� jP,h+1
li2S(P)

ti

1
CCAe1j ,

(4.1)

where [ jP,h+1 ! j) is the set of indices of the lines in S(P) which run from jP,h+1
(included) to j (excluded) in the cyclic ordering of 1, . . . , n.

By convention, a product over an empty set of indices equals 1.
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When R = A[t±1] and ti = t, i = 1, . . . , n, we obtain the local homology
H⇤(M(A); R) by using an analogue algebraic complex, where all ti ’s equal t in
the formulas. In particular (4.1) becomes

@2
⇣
e2P,h

⌘
=

X
` j2S(P)

t#{`i2U(P):i< j}
⇣
t#[ jP,h+1! j)

� t#{`i2S(P): i< j}
⌘
e1j

+

X
` j2C(P)\U(P)

t#{`i2U(P):i< j}+#{`i2S(P):i� jP,h+1,i< j}

⇥

⇣
1�t#{`i2S(P):i jP,h ,i< j}

⌘ ⇣
1� t#{`i2S(P): i� jP,h+1, i� j}

⌘
e1j .

(4.2)

By separating in the first sum the case j � jP,h+1 from the case j  jP,h we have:

@2
⇣
e2P,h

⌘
=

X
` j2S(P)
j� jP,h+1

t#{`i2U(P):i< j}+#{`i2S(P): jP,h+1i< j}
⇣
1�t#{`i2S(P):i jP,h}

⌘
e1j

+

X
` j2S(P)
j jP,h

t#{`i2U(P):i< j}+#{`i2S(P):i< j}
⇣
t#{`i2S(P): jP,h+1i}

�1
⌘
e1j

+

X
` j2C(P)\U(P)

t#{`i2U(P):i< j}+#{`i2S(P):i� jP,h+1,i< j}

⇥

⇣
1�t#{`i2S(P):i jP,h ,i< j}

⌘ ⇣
1� t#{`i2S(P): i� jP,h+1, i� j}

⌘
e1j .

(4.3)

In particular, let P be a double point. Then h takes only the value 1, and jP,1, jP,2
are the indices of the two lines passing through P. So formula (4.3) becomes

@2
⇣
e2P,1

⌘
= t#{`i2U(P):i< jP,2}(1�t) e1jP,2

+ t#{`i2U(P): i< jP,1} (t � 1) e1jP,1

+

X
` j2C(P)\U(P)

t#{`i2U(P): i< j} (t � 1)2 e1j .
(4.4)

Since @2 is divisible by t � 1 we can rewrite (4.4) as

@2
⇣
e2P,1

⌘
= (t � 1) @̃2

⇣
e2P,1

⌘
(4.5)

where
@̃2
⇣
e2P,1

⌘
= t#{`i2U(P): i< jP,2}e1jP,2

� t#{`i2U(P):i< jP,1}e1jP,1

+

X
` j2C(P)\U(P)

t#{`i2U(P): i< j}(1�t) e1j .
(4.6)
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5. A proof in particular cases

We give here a proof of Conjecture 1 with further hypothesis on A.
Notice that the rank of @2 is n � 1 (the sum of all rows vanishes). Then the

arrangement has no monodromy if and only if the only elementary divisor of @2
is '1 := t � 1, so @2 diagonalizes to �

n�1
i=1 '1. This is equivalent to the reduced

boundary @̃2 having an invertible minor of order n � 1.
Let 0 be the graph of double points. A choice of an admissible coordinate

system gives a total ordering on the lines so it induces a labelling, varying between
1 and n, on the set of vertices V0 of 0. Let T be a spanning tree of 0 (with induced
labelling on VT ).
Definition 5.1. We say that the induced labelling on VT = V0 is very good (with
respect to the given coordinate system) if the sequence n, . . . , 1 is a collapsing
ordering on T . In other words, the graph obtained by T by removing all vertices
with label � i and all edges having both vertices with label � i, is a tree, for all
i = n, . . . , 1.

We say that the spanning tree T is very good if there exists an admissible coor-
dinate system such that the induced labelling on VT is very good (see Figure 6.1).
Remark 5.2.

(1) A labelling over a spanning tree T gives a collapsing ordering if and only if for
each vertex v, the number of adjacent vertices with lower label is  1. In this
case, only the vertex labelled with 1 has no lower labelled adjacent vertices (by
the connectness of T ).

(2) Given a collapsing ordering over T, for each vertex v with label iv > 1, let `(v)
be the edge which connects v with the unique adjacent vertex with lower label;
by giving to `(v) the label iv +

1
2 , we obtain a discrete Morse function on the

graph T (see [20]) with unique critical cell given by the vertex with label 1. The
set of all pairs (v, `(v)) is the acyclic matching which is associated to this Morse
function.

Let us indicate by 00 the linear tree with n vertices: we consider 00 as a CW -
decomposition of the real segment [1, n], with vertices { j}, j = 1, . . . , n, and
edges the segments [ j, j + 1], j = 1, . . . , n � 1.
Definition 5.3. We say that a labelling induced by some coordinate system on the
tree T is good if there exists a permutation i1, . . . , in of 1, . . . , n which gives a
collapsing sequence both for T and for 00. In other words, at each step we always
remove either the maximum labelled vertex or the minimum, and this is a collapsing
sequence for T .

We say that T is good if there exists an admissible coordinate system such that
the induced labelling on VT is good (see Figure 6.2).

Notice that a very good labelling is a good labelling where at each step one
removes the maximum vertex.
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Consider some arrangement A with graph 0 and labels on the vertices which
are induced by some coordinate system. Notice that changes of coordinates act on
the labels by giving all possible cyclic permutations, which are generated by the
transformation i ! i + 1 mod n. So, given a labelled tree T, checking if T is
very good (respectively good) consists in verifying if some cyclic permutation of
the labels is very good (respectively good). This property depends not only on the
“shape” of the tree, but also on how the lines are disposed in R2 (the associated
oriented matroid). In fact, one can easily find arrangements where some “linear”
tree is very good, and others where some linear tree is not good.
Definition 5.4. We say that an arrangement A is very good (respectively good) if
0 is connected and has a very good (respectively good) spanning tree.

It is not clear if this property is combinatorial, i.e., if it depends only on the
lattice. Of course,A very good impliesA good.

Theorem 5.5. Let A be a good arrangement. ThenA is a-monodromic.

Proof. We use induction on the number n of lines, the claim being trivial for n = 1.
Take a suitable coordinate system as in Definition 5.4, such that the graph 0 has a
spanning tree T with good labelling. Assume for example that at the first step we
remove the last line, so the graph 00 of the arrangementA0

:= A\{`n} is connected
and the spanning tree T 0 obtained by removing the vertex {`n} and the “leaf-edge”
(`n, ` j ) (for some j < n) has a good labelling.

There are n � 1 double points which correspond to the edges of T : only
one of these is contained in `n, namely `n \ ` j (see Remark 5.2). Let D :=

{d1, . . . , dn�1} be the set of such double points, with dn�1 = `n \ ` j . Let also
D0

:= {d1, . . . , dn�2}, which corresponds to the edges of T 0. Let (C(D)⇤, @⇤)
(respectively (C(D0)⇤, @

0

⇤
)) be the subcomplex of C(A)⇤ generated by the 2-cells

which correspond to D (respectively D0 ): then C(D)2 = �1in�1Re j , and
C(D0)2 = �1in�2Re0j . Notice that, by the explicit formulas given in Section
4, the component of the boundary @2(e j ) along the 1-dimensional generator cor-
responding to `n equals �'1 for j = n � 1, and vanishes for j = 1, . . . , n � 2.
Actually, the natural map taking e0j into e j , j = 1, . . . , n � 2, identifies C(D0)⇤
with the sub complex of C(D)⇤ generated by the e j ’s, j = 1, . . . , n � 2,

@2 =

2
64 @ 0

2 *

0 �'1

3
75 . (5.1)

Then by induction @ 0

2 diagonalizes to�
n�2
j=1'1.Therefore @2 diagonalizes to�

n�1
j=1'1,

which gives the thesis. If at the first step we remove the first line, the argument is
similar, because @ 2 (e j ) has no non-vanishing components along the generator cor-
responding to `1.
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Let us consider a different situation.
Definition 5.6. We say that a subset 6 of the set of singular points Sing(A) of
the arrangement A is conjugate-free (with respect to a given admissible coordinate
system) if 8P 2 6 the set U(P) \ C(P) is empty.

An arrangementA will be called conjugate-free if 0 is connected and contains
a spanning tree T such that the set of points in Sing(A) that correspond to the edges
ET of T is conjugate-free (see Figure 6.3).

Let 6 be conjugate-free: it follows from formula (4.3) that the boundary of all
generators e2P,h, P 2 6, can have non-vanishing components only along the lines
which contain P.

Theorem 5.7. Assume that A is conjugate-free. ThenA is a-monodromic.

Proof. The sub matrix of @2 which corresponds to the double points ET is '1-
times the incidence matrix of the tree T . Such matrix is the boundary matrix of the
complex which computes the Z-homology of T : it is a unimodular rank-(n �

1) integral matrix (see for example [3]). From this the result follows straight-
forwardly.

We can have a mixed situation between Definitions 5.4 and 5.6 (see Figure 6.4).

Theorem 5.8. Assume that 0 is connected and contains a spanning tree T which
reduces, after a sequence of moves where we remove either the maximum or the
minimum labelled vertex, to a subtree T 0 which is conjugate-free. Then A is a-
monodromic.

Proof. The thesis easily follows by induction on the number n of lines. In fact,
either T is conjugate-free, and we use Theorem 5.7, or one of the subtrees T \ {`n},
T \ {`1} satisfies again the hypothesis of the theorem. Assume that it is T 00

=

T \ {`n}. Then the boundary map @2 restricted to the 2-cells corresponding to ET 00

has a shape similar to (5.1). Therefore by induction we conclude.

Some examples are given in Section 6.

Remark 5.9. In all the theorems in this section, we have proven a stronger result:
namely, the subcomplex spanned by the generators corresponding to the double
points is a-monodromic.

6. Examples

In this section we give examples corresponding to the various definitions of Sec-
tion 5. We include the computations of the local homology of the complements.

In Figure 6.1 we show an arrangement having a very good tree (Definition 5.1)
and the associated sequence of contractions.
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Figure 6.1.

In Figure 6.2 an arrangement with a good tree is given (Definition 5.3) together with
its sequence of contractions.

Figure 6.2.

An arrangement having a tree which is both conjugate-free (see Definition 5.6) and
good is depicted in Figure 6.3

Figure 6.3.
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In Figure 6.4 we show an arrangement with a tree which after 2 admissible contrac-
tions becomes conjugate free (see Theorem 5.8).

Figure 6.4.
Next we give some example of arrangements with non-trivial monodromy. Notice
that the graph of double points is disconnected in these cases.

Notice also that in the first two examples one has non-trivial monodromy both
for the given affine arrangement and its conifed arrangement inC3; in the last exam-
ple, the given affine arrangement has non trivial monodromy while its conification
is a-monodromic.

Figure 6.5. Deconed A3 arrangement

H1(M(A), Q[t±1]) '

✓Q[t±1]
(t � 1)

◆3
�

Q[t±1]
(t3 � 1)

.

Figure 6.6. Deconed Pappus arrangement

H1(M(A), Q[t±1]) '

✓Q[t±1]
(t � 1)

◆6
�

Q[t±1]
(t3 � 1)

.
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Figure 6.7. The “complete triangle” has non-trivial monodromy but its conification is
a-monodromic

H1(M(A), Q[t±1]) '

 
Q[t±1]
(t � 1)

!4
�

Q[t±1]
(t3 � 1)

.

We focus here on the structure of the fundamental groups of the above examples, in
particular in case of a-monodromic arrangements.

For arrangement in Figure 6.1: after taking line 5 to infinity we obtain an affine
arrangement having only double points with two pairs of parallel lines, namely (the
new) lines 2, 6 and 4, 1. Therefore

⇡1(M(A)) = Z ⇥ Z ⇥ F2 ⇥ F2.

We consider arrangement in Figure 6.2 and in Figure 6.5 together. The deconed A3
arrangement in Figure 6.5 is a well known K (⇡, 1)-arrangement: the fundamental
group of the complement is the pure braid group P4 in 4 strands. Notice that the
projection onto the y coordinate fibers the complement over C \ {2 pts} with fiber
C \ {3 pts}. It is well known that this fibering is not trivial and we obtain a semi-
direct product decomposition

⇡1(M(A)) = F3 o F2.

The same projection gives a fibering of the complement of the arrangement in Fig-
ure 6.2 over C \ {3 pts} with fiber C \ {3 pts}. Notice that this is also a non-trivial
fibering, so we have a semi-direct decomposition

⇡1(M(A)) = F3 o F3.

In particular, we have an a-monodromic arrangement such that the fundamental
group of the complement is not a direct product of free groups.

In the arrangement of Figure 6.3 the line at infinity is transverse to the other
lines. If we take line 5 at infinity we get an affine arrangement with only double
points, with two pairs of parallel lines 1, 3 and 4, 6. Therefore we obtain a decom-
position of ⇡1(M(A)) as in case of Figure 6.1.

The arrangement of Figure 6.4 has only one triple point. By taking line 5
to infinity we get an affine arrangement with only double points and one pair of
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parallel lines 3, 4. Therefore

⇡1(M(A)) = Z4 ⇥ F2.

The complete triangle in Figure 6.7 becomes, after taking any line at infinity, the
affine arrangement A0 which is obtained from the A3 deconed arrangement in Fig-
ure 6.5 by adding one more line l which is transverse to all the others. Therefore

⇡1(M(A)) = Z ⇥ (F3 o F2).

Remark 6.1. It turns out that the arrangement A0 is a-monodromic. This is not a
contradiction: in fact, one is considering two different local systems onM(A0) =

M(A). The a-monodromic one associates to an elementary loop around l the t-
multiplication. This is different from the one obtained by exchanging one of the
affine lines of the arrangement A in Figure 6.7 with the infinity line. In this case
we should associate to an elementary loop around l the t6�multiplication, and then
apply formula (4.1).

7. Free calculus

In this section we reformulate our conjecture in terms of Fox calculus. Let A =

{l1, . . . , ln} be as above; if we denote by �i an elementary loop around li we have
that the fundamental group ⇡1(M(A)) is generated by �1, . . . ,�n and a presenta-
tion of this group is given for example in [29]. Let R = Q[t±1] be as above with
the given structure of ⇡1(M(A))�module.

We denote by Fn the free group generated by �1, . . . ,�n. Let ' : Fn ! < t >
be the group homomorphism defined by '(�i ) = t for every 1  i  n where
< t > is the multiplicative subgroup of R generated by t . As in [4], if w is a word
in the � j ’s, we use the notationw' for '(w). Consider the algebraic complex which
computes the local homology ofM(A) introduced in Section 4. The following
remark is crucial for the rest of this section: if e2P, j is a two-dimensional generator
corresponding to a two-cell which is attached along the word w in the � j ’s, then⇣
@w
@�i

⌘'
is the coefficient of e1i of the border of e

2
P, j . This easily follows from the

combinatorial calculation of local system homology.
Let l : Fn �! Z be the length function, given by

l(�✏1i1 · · ·�
✏r
ir ) =

rX
k=1

✏k .

Then ker' is the normal subgroup of Fn given by the words of lenght 0.
Each relation in the fundamental group ⇡1(M(A)) is a commutator (cf. [17,

29]), so it lies in ker'. So, in the sequel, we consider only words in ker'.
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Remark 7.1. The arrangement A is a-monodromic if and only if (by definition)
the Q[t±1]-module generated by @2(e2j ), j = 1, . . . , ⌫2, equals (t � 1)ker@1. One
has: ker@1 = {

Pn
j=1 x j e1j :

Pn
j=1 x j = 0}.

Let R j , j = 1 . . . , ⌫2, be a complete set of relations in ⇡1(M(A)). We use now
e2j to indicate the two-dimensional generator corresponding to a two-cell which is
attached along the word R j . Then the boundary of e2j is given by

@2(e2j ) =

nX
i=1

✓
@R j

@�i

◆'
e1i , j = 1, . . . , ⌫2. (7.1)

Then by Remark 7.1A is a-monodromic if and only if each element of the shape

P(t) := (1� t)
nX
i=1

Pi (t) e1i ,
nX
i=1

Pi (t) = 0, (Pi (t) 2 Q[t±1], i = 1 . . . , n)

(7.2)
is a linear combination with coefficients in Q[t±1] of the elements in (7.1), i.e.:

P(t) =

⌫2X
j=1

Q j (t)@2(e2j ), Q j (t) 2 Q[t±1]. (7.3)

It is natural to wonder about solutions with coefficients in Z[t±1] instead ofQ[t±1].
We say that A is a-monodromic over Z if there is a solution to (7.3) over Z[t±1]
(when all the Pi (t)’s in (7.2) are in Z[t±1]).

Theorem 7.2. The arrangementA is a-monodromic overZ if and only if ⇡1(M(A))
is commutative modulo [ker', ker']. More precisely, A is a-monodromic over Z if
and only if

[Fn, Fn] = N [ker', ker'],

where N is the normal subgroup generated by the relations R j ’s .

Proof. A set of generators for (t � 1)ker@1 as Z[t±1]-modulo is given by all ele-
ments of the type

Prs := (1� t)(e1r � e1s ) , r 6= s.
Such an element can be re-written in the form (7.1) as

Prs =

nX
i=1

✓
@[�r ,�s]

@�i

◆'
e1i ,

where [�r ,�s] = �r�s�
�1
r ��1

s . Now there exists an expression like (7.3) for Prs,
with all Q j (t) 2 Z[t±1] if and only if

✓
@[�r ,�s]

@�i

◆'
=

0
@@

Q⌫2
j=1 RQ j (�1)

j

@�i

1
A
'

, i = 1, . . . , n. (7.4)
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Here Q j (�1) 2 Z[Fn] is obtained by substituting t with �1 (any word of length
one would give the same here). Moreover, for R, w any words in ker' we set
Rw

:= wRw�1, and for a 2 Z we set Raw := Rw . . . Rw (a factors) if a > 0 and
(R�1)w . . . (R�1)w (|a| factors) for a < 0. Also, we set Raw+bu

:= RawRbu . Then
equalities (7.4) come from standard Fox calculus.

Then from Blanchfield theorem (see [4, Chapter 3]) it follows that

[Fn, Fn] ⇢ N [ker', ker'].

The opposite inclusion follows because, as we said before Remark 7.1, for any
arrangement one has N ⇢ [Fn, Fn].

Remark 7.3. The condition in Theorem 7.2 is equivalent to the equality

Fn
N [ker', ker']

=

Fn
[Fn, Fn]

= H1(M(A); Z).

Since ker' � [Fn, Fn], so [ker', ker'] � [[Fn, Fn], [Fn, Fn]], the next corollary
follows immediately from Theorem 7.2.

Corollary 7.4. Assume that ⇡1(M(A))/⇡1(M(A))(2) is Abelian, which is equiv-
alent to the condition ⇡1(M(A))(1) = ⇡1(M(A))(2), where ⇡1(M(A))(i) is the
i-th element of the derived series of ⇡1(M(A)), for i � 0. ThenA is a-monodromic
over Z.

The condition of Corollary 7.4 corresponds to the vanishing of the so-called Alexan-
der invariant of ⇡1(M(A)).

As a subgroup of the free group Fn, the group ker' is a free group We use the
Reidemeister-Schreier method to write an explicit list of generators. Notice that for
any fixed 1  j  n, the set {�kj : k 2 Z} is a Schreier right coset representative

system for Fn/ker'. Denote briefly by sk,i the element s�kj ,�i = �kj�i (�
k
j�i )

�1
=

�kj�i�
�(k+1)
j . Then

ker' =

⌦
{sk,i : 1  i  n, k 2 Z}; sk,i

↵
,

where sk,i is a relation if and only if �kj�i is freely equal to �
k+1
j ; this happens if

and only if i = j . So ker' is the free group generated by {sk,i : k 2 Z, 1  i 

n, i 6= j}. Its Abelianization

ab (ker') = ker'/[ker', ker']

is the free Abelian group on the classes sk,i of the generators sk,i ’s, i 6= j. Let

ab : ker' �! ab (ker')
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be the Abelianization homomorphism. Now we define the automorphism � of ker'
by

� (sk,i ) = sk+1,i ,

which passes to the quotient, so it defines an automorphism (call it again � ) of
ab (ker'). Therefore we may view ab (ker') as a finitely genereted free Z[�±1

]-
module, with basis s0,i with 1  i  n and i 6= j . In this language Theorem 7.2
translates as:

Theorem 7.5. The arrangement A is a-monodromic over Z if and only if the sub-
module (1 � � )ab(ker') of ab(ker') is generated by ab(R j ), j = 1, . . . , ⌫2, as
Z[�±1

]-module.

Of course, one can give a conjecture holding over Z.

Conjecture 3. Assume that 0 is connected; then A is a-monodromic over Z.
Conjecture 3 clearly implies Conjectures 1 and 2. Our experiments agree with this
stronger conjecture.

We give explicit computations for the arrangements in Figures 6.1 and 6.5. The
Z[�±1

]-module (1�� )ab(ker') is generated by {(1�� )s0,i , , i 6= j}.We choose
j as the last index in the natural ordering. All Abelianized relations are divisible by
(1�� ), so we just divide everything by 1�� and verify that ab(ker') is generated
by ab(R j )/(1� � ).

For the arrangement in Figure 6.1 we have to rewrite 13 relations coming from
11 double points and 1 triple point. After Abelianization we obtain:

(a) s0,2 � s0,3; (b) s0,2 � s0,4;

(c) s0,3 � s0,4; (d) s0,1 � s0,4;

(e) s0,1 � s0,3; (f) � s0,2 + s0,5;

(g) (1+ � )s0,2 � � s0,5; (h) s0,1+ ��1(1�� )s0,2� ��2(1+� )s0,5;

(i) s0,3 + (��1
� 1)s0,5; (j) s0,4 + (��1

� 1)s0,5;

(k) s0,1 + (��1
� 1)s0,2 � ��1s0,5; (l) s0,1 � s0,2;

(m) s0,3 � s0,5.

The generator s0,5 is obtained as � ( (i) � (m) ). From s0,5 we obtain in sequence
all the other generators s0,3, s0,1, s0,4, s0,2. According to Theorem 7.5 this gives
the a-monodromicity of the arrangement in Figure 6.1.
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For the arrangement A3 deconed in Figure 6.5 we have to rewrite two relations
for each triple point and one relation for each double point. Their Abelianization is
given by:

(a) s0,2 � s0,3;
(b) � s0,2 + s0,4;
(c) (� + 1)s0,2 � � s0,4;
(d) � s0,1 + (1� � )s0,2 + (��1)s0,3 + (��2

� 1)s0,4;
(e) s0,1 + (��1

� 1)s0,2 � (��1)s0,4;
(f) (� + 1)s0,1 + (��1

� � )s0,2 � s0,3 + (��2
� ��1)s0,4.

We perform the following base changes:

(a0) = (a);
(b0) = (b) � � (a);
(c0) = (c) � (b) � (a);
(d0) = (d) � ��2(b) + ��1(a) � � (e);
(e0) = (e) + ��1(b) � ��1(a);
(f0) = (f) � (��2

+ ��1
+ 1)(b) + � (a) + ��1(c) � (� + 1)(e)

and
s00,1 = s0,1 + ��1 s0,3; s00,2 = s0,2 � s0,3;
s00,3 = s0,3; s00,4 = s0,4 + � s0,3.

It is straighforward to verify, after these changes, that the submodule M generated
by hab(R j ) : j = 1, . . . , 6i equals

D
s00,1, s

0

0,2, (1+ � + � 2)s00,3, s
0

0,4

E
.

So M ( (1� � )ab(ker'), in accordance with Theorem 7.5.

8. Further characterizations

In this section we give a more intrinsic picture. Let eA = {H0, H1, . . . , Hn} be the
conified arrangement in C3. The fundamental group

G = ⇡1(M( eA)) (= ⇡1(M(A)) ⇥ Z)

is generated by elementary loops �0, . . . ,�n around the hyperplanes. Let

F = Fn+1[�0, . . . ,�n]
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be the free group and N be the normal subgroup generated by the relations, so we
have a presentation

1 �! N �! F ⇡
�! G �! 1

The length map ' : F! hti ⇠
= Z factors through ⇡ by a map

 : G! Z.

Next,  factorizes through the Abelianization

G
[G,G]

⇠
= H1(M( eA); Z) ⇠

= Zn+1 ⇠
=

F
[F,F]

.

Let now K = ker so we have

1 �! K �! G  
�! Z �! 1, (8.1)

and  factorizes through

G ab
�!

G
[G,G]

⇠
= Zn+1 �

�! Z.

We have the following commutative diagram:

1

✏✏
N

✏✏

1

1 // ker(') // F
' //

⇡

✏✏

Z //

==
{

{
{

{
{

{
{

{
{

{
{

1

1 //
[G,G]

//

✏✏

G ab //

 

>>
}

}
}

}
}

}
}

}
}

}
}

✏✏

G
[G,G]

//

�

OO

1

K

==
{

{
{

{
{

{
{

{
{

{
{

1

1

<<
yyyyyyyyyyy

.

(8.2)

Remark 8.1. One has ker(�) =
K

[G,G]
so K

[G,G]

⇠
= Zn.
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Therefore diagram (8.2) extends to

1

✏✏
N

✏✏

1 1

1 // ker(') // F
' //

⇡

✏✏

Z //

OO ==
{

{
{

{
{

{
{

{
{

{
{

1

1 //
[G,G]

//

✏✏

G ab //

 

>>
}

}
}

}
}

}
}

}
}

}
}

✏✏

G
[G,G]

//

�

OO

1

K

>>
}

}
}

}
}

}
}

}
}

}
}

}

1 K
[G,G]

OO

1

==
{

{
{

{
{

{
{

{
{

{
{

1

OO

.

(8.3)

Recall the Z[t±1]�module isomorphism

H1(G; Z[t±1]) ⇠
= H1(F; Z) (8.4)

where F is the Milnor fibre, and (by the Shapiro Lemma):

H1(F; Z) ⇠
= H1(K; Z) =

K
[K,K]

. (8.5)

Remark 8.2. There is an exact sequence

1 �!

[G,G]

[K,K]

�!

K
[K,K]

�!

K
[G,G]

⇠
= Zn

�! 1. (8.6)

From the definition before Theorem 7.2 one has

Lemma 8.3. The arrangement eA is a-monodromic over Z if and only if

H1(F; Z) ⇠
= Zn.
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It follows:

Theorem 8.4. The arrangement eA is a-monodromic over Z if and only if

[G,G]

[K,K]

= 0. (8.7)

Proof. It immediately follows from sequence 8.6 and from the property that a
surjective endomorphism of a finitely generated free Abelian group is an isomor-
phism.

Since K � [G,G] it follows immediately (see Corollary 7.4) that:

Corollary 8.5. If

G(1)
= [G,G] = G(2)

= [[G,G], [G,G]],

then the arrangement eA is a-monodromic.

We also have:

Corollary 8.6. Let G have a central element of length 1. Then the arrangement eA
is a-monodromic.

Proof. Let � 2 G be a central element of length 1. From sequence (8.1) the group
splits as a direct product

G ⇠
= K⇥ Z

where Z =< � > . Therefore clearly [G,G] = [K,K].

An example of the situation of the corollary is when one of the generators � j
commutes with all the others, i.e., one hyperplane is transversal to the others. So,
we find again in this way a well-known fact.

Consider again the exact sequence (8.6). Remind that the arrangement eA is
a-monodromic (over Q) if and only if H1(F; Q) ⇠

= Qn. By tensoring sequence
(8.6) by Q we obtain:

Theorem 8.7. The arrangement eA is a-monodromic (over Q) if and only if

[G,G]

[K,K]

⌦ Q = 0.

Remark 8.8. All remarkable questions about the H1 of the Milnor fibre F are ac-
tually questions about the group

[G,G]

[K,K]

.
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In particular:

(1) H1(F; Z) has torsion if and only if [G,G]

[K,K]
has torsion;

(2) b1(F) = n + rk
⇣

[G,G]

[K,K]

⌘
.

(There are only complicated examples with torsion in higher homology of the Mil-
nor fiber, recently found in [14].)

Corollary 8.9. One has

n  b1(F)  n + rk
✓

[G,G]

[[G,G], [G,G]]

◆
= n + rk

 
G(1)

G(2)

!
.

Now we consider again the affine arrangement A. Denoting by G0
:= ⇡1(M(A)),

we have
G ⇠

= G0

⇥ Z,

where the factor Z is generated by a loop around all the hyperplanes in eA. As
already said, it follows by the Kunneth formula that if A has trivial monodromy
over Z (respectively Q), so does eA. Conversely, in Figure 6.7 we have an example
where eA is a-monodromic butA has non-trivial monodromy.

The a-monodromicity of A (over Z) is equivalent to

H1(M(A); R) ⇠
=

✓
R

(t � 1)

◆n�1
, (8.8)

(R = Z[q±1
]). By considering a sequence as in (8.1),

1 �! K0

�! G0
 

�! Z �! 1, (8.9)

we can repeat the above arguments: in particular condition (8.8) is equivalent to

H1(K0

; Z) =

K0

[K0,K0
]

= Zn�1,

and we get an exact sequence like in (8.6) for K0 and G0. So we obtain:

Theorem 8.10. The arrangementA is a-monodromic over Z (respectively over Q)
if and only if

[G0,G0
]

[K0,K0
]

= 0
⇣
respectively [G0,G0

]

[K0,K0
]
⌦ Q = 0

⌘
.
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By considering a presentation for G0

1 �! N0

�! F0
⇡

�! G0

�! 1

where F0 is the group freely generated by �1, . . . ,�n, we have a diagram similar to
(8.3) for G0. From N0

⇢ [F0,F0
] ⇢ ker' we have isomorphisms

[G0,G0
]

[K0,K0
]

⇠
=

⇡�1
[G0,G0

]

⇡�1
[K0,K0

]

⇠
=

[F0,F0
]

N0
[ker', ker']

,

which gives again Theorem 7.2.
Corollary 8.6 extends clearly to the affine case: therefore, if one line ofA is in

general position with respect to the others, thenA is a-monodromic. This result has
the following useful generalization, which has both a central and an affine versions.
We give here the affine one.

Theorem 8.11. Assume that the fundamental group G 0 decomposes as a direct
product

G 0

= A ⇥ B

of two subgroups, each one having at least one element of length one. Then A is
a-monodromic.

In particular, this applies to the case when G 0 decomposes as a direct product
of free groups,

G 0

= Fi1 ⇥ Fi2 ⇥ · · · ⇥ Fik

where (at least) two of them have an element of length one.

Proof. First, observe that any commutator [ab, a0b0
]2 [G 0,G 0

] equals [a, a0
][b, b0

].
Therefore it is sufficient to show that [A, A] ⇢ [K 0, K 0

], and [B, B] ⇢ [K 0, K 0
].

Let a0 2 A, b0 2 B be elements of length one. Let l =  (a), l 0 =  (a0) be the
lengths of a and a0 respectively. Then

[a, a0

] = [ab�l
0 , a0b�l 0

0 ],

and the second commutator lies in [K 0, K 0
] by construction. This proves that

[A, A] ⇢ [K 0, K 0
].

In the same way, by using a0, we show that [B, B] ⇢ [K 0, K 0
].

Remark 8.12. This theorem includes the case when the arrangement is a disjoint
unionA=A0

tA00 of two subarrangements which intersect each other transversally.
It is known that ⇡1(M(A)) is the direct product of ⇡1(M(A0)) with ⇡1(M(A00))
(see [27]) therefore by Theorem 8.11 the arrangement A is a-monodromic. This
remark also seems new in the literature.
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We can use this result (or even Corollary 8.6) to prove the a-monodromicity
of those examples in Section 6 for which the fundamental group splits as a direcy
product of free groups.

Another example is given by any affine arrangement having only double points:
in this case A = [

k
i=1 Ai where the Ai ’s are sets of parallel lines. Then ⇡1(A) =

⇥
k
i=1 Fni where Fni is the free group in ni = |Ai | generators. This gives an easy

prove of the following known fact: if there exists a line in a projective arrange-
ment A which contains all the points of multiplicity greater than 3, then A is a-
monodromic.

To take care also of examples as that in Figure 6.2, where the fundamental
group is not a direct product of free groups, let us introduce another class of graphs
0̃ as follows. Let the affine arrangement A have n lines. Then:

(1) the vertex set of 0̃ corresponds to the set of generators {�i , i = 1, . . . , n} of G0
;

(2) for each edge (�i ,� j ) of 0̃, the commutator [�i ,� j ] belongs to [K 0, K 0
];

(3) 0̃ is connected.

We call a graph 0̃ satisfying the previous conditions an admissible graph.

Theorem 8.13. If A allows an admissible graph 0̃ thenA is a-monodromic.

We need the following lemma.

Lemma 8.14. Let Fn = F[�1, . . . ,�n] be the free group in the generators �i ’s.
Let ' be the length function (see Section 7) on Fn. Then for any sequence of indices
i0, . . . , ik one has

[�i0,�i1][�i1,�i2] . . . [�ik�1,�ik ][�ik ,�i0] 2 [ker('), ker(')]

for each “closed” product of commutators.

Proof of lemma. If k  2 the result is trivial. If k = 3, a straighforward application
of Blanchfield theorem ([4]) gives the result. For k > 3, we can write

[�i0,�i1][�i1,�i2] . . . [�ik�1,�ik ][�ik ,�i0]

= ([�i0,�i1][�i1,�i2][�i2,�i0])([�i0,�i2] . . . [�ik�1,�ik ][�ik ,�i0]),

and we conclude by induction on k.

Remark 8.15. Clearly, Lemma 8.14 applied to the generators of G 0 gives that

[�i0,�i1][�i1,�i2] . . . [�ik�1,�ik ][�ik ,�i0] 2 [K 0, K 0

]

for each closed product of commutators.
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Proof of Theorem 8.13. According to Theorem 8.10 what we have to prove is that
any commutator [�i ,� j ] belongs to [K 0, K 0

].

If i, j corresponds to an edge (�i ,� j ) of 0̃, the result follows by definition.
Otherwise, let �i = �i0,�i1, . . . ,�ik = � j be a path in 0̃ connecting �i with � j .
By definition, [�i j ,�i j+1] 2 [K 0, K 0

], j = 0, . . . , k � 1, so
Qk�1

j=0[�i j ,�i j+1] 2

[K 0, K 0
]. By Lemma 8.14 and Remark 8.15

[�i0,�i1][�i1,�i2] . . . [�ik�1,�ik ][�ik ,�i0] 2 [K 0, K 0

].

It follows that [�i0,�ik ] = [�i ,� j ] 2 [K 0, K 0
], which gives the thesis.

We can use Theorem 8.13 to prove Conjecture 1 under further hypothesis.

Corollary 8.16. Let A be an affine arrangement and let 0 be its associated graph
of double points. Assume that 0 contains an admissible spanning tree 0̃. ThenA is
a-monodromic.

Of course, under the hypothesis of Corollary 8.16, the graph 0 is connected. Ex-
amples where 0 contains an admissible spanning tree are the conjugate-free ar-
rangements in Definition 5.6. Here all commutators (corresponding to the edges
of T ) of the geometric generators are simply equal to 1 in the group G 0. Therefore
Theorem 8.13 is a generalization of Theorem 5.7.

Very little effort is needed to show that the whole graph 0 of double points in
the arrangement of Figure 6.2 is admissible: therefore Corollary 8.16 applies to this
case.

For the sake of completeness, we also mention that, for all the examples in Sec-
tion 6 which have non trivial monodromy, all the quotient groups [G 0,G 0

]/[K 0, K 0
]

are free Abelian of rank 2. This fact is in accordance with the monodromy compu-
tations given in Section 6, since in all these cases one has '3-torsion. It also follows
that, for such examples, the first homology group of the Milnor fiber has no torsion.

Remark 8.17. When the graph 0 of double points is not connected, then we can
consider its decomposition into connected components 0 = ti 0i . We have a cor-
responding decomposition A = ti Ai of the arrangement. By definition, every
double point of A is a double point of exactly one of the Ai ’s, while each pair of
lines in differentAi ’s either intersect in some point of multiplicity greater than 2, or
are parallel (we are considering the affine case here). If our conjecture is true, then
each Ai is a-monodromic. At the moment we are not able to speculate about how
the monodromy of A is influenced by these data: apparently, the only knowledge
of such decomposition gives little control on the multiplicities of the intersection
points of different components, which can assume very different values. We are
going to address these interesting problems in future work.
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Lipschitz changes of variables between
perturbations of log-concave measures

MARIA COLOMBO, ALESSIO FIGALLI AND YASH JHAVERI

Abstract. Extending a result of Caffarelli, we provide global Lipschitz changes
of variables between compactly supported perturbations of log-concave measures.
The result is based on a combination of ideas from optimal transportation theory
and a new Pogorelov-type estimate. In the case of radially symmetric measures,
Lipschitz changes of variables are obtained for a much broader class of perturba-
tions.

Mathematics Subject Classification (2010): 49Q20 (primary); 35J96, 26D10
(secondary).

1. Introduction

In [4], Caffarelli built Lipschitz changes of variables between log-concave proba-
bility measures. More precisely, he showed that if V,W 2 C1,1loc (Rn) are convex
functions with D2V (x)  3V Id and �W Id  D2W (x) for a.e. x 2 Rn with
0 < 3V , �W < 1, then there exists a Lipschitz map T : Rn

! Rn such that
T#
�
e�V (x) dx

�
= e�W (x) dx 1 and

krTkL1(Rn) 

p
3V /�W . (1.1)

1 Given two finite Borel measures µ and ⌫ and a Borel map T : Rn
! Rn , recall that T#µ = ⌫ if

Z
Rn
'(y) d⌫(y) =

Z
Rn
'(T (x)) dµ(x) 8' Borel and bounded.
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The map T is obtained via optimal transportation. It is the unique solution of the
Monge problem for quadratic cost

min
⇢Z

Rn
|x � T (x)|2e�V (x) dx : T#

�
e�V (x) dx

�
= e�W (x) dx

�

(see Section 2 for more details and [12] for a completely different construction of a
Lipschitz change of variables in this setting). We note that a particularly important
feature of Caffarelli’s result is that the bound (1.1) is independent of the dimen-
sion n.

A consequence of Caffarelli’s result is the possible deduction of certain func-
tional inequalities (such as log-Sobolev or Poincaré-type inequalities) for log-con-
cave measures from their corresponding Gaussian versions. For instance, denoting
the standard Gaussian measure on Rn by �n , consider the Gaussian log-Sobolev
inequality,

Z
Rn

f 2 ln f d�n 

Z
Rn

|r f |2 d�n +

✓Z
Rn

f 2 d�n
◆
ln
✓Z

Rn
f 2 d�n

◆
,

which holds for every function f 2 W 1,2(Rn). For any measure ⌫ such that there
exists a Lipschitz change of variables between ⌫ and the Gaussian measure, namely
⌫ = T#�n , we deduce, applying twice the change of variable formula, that
Z

Rn
f 2 ln f d⌫ =

Z
Rn

f (T )2 ln f (T ) d�n



Z
Rn

|r[ f � T ]|
2 d�n +

✓Z
Rn

f (T )2 d�n
◆
ln
✓Z

Rn
f (T )2 d�n

◆

 krTk
2
L1(Rn)

Z
Rn

|r f (T )|2 d�n +

✓Z
Rn

f (T )2 d�n
◆
ln
✓Z

Rn
f (T )2 d�n

◆

= krTk
2
L1(Rn)

Z
Rn

|r f |2 d⌫ +

✓Z
Rn

f 2 d⌫
◆
ln
✓Z

Rn
f 2 d⌫

◆
.

Therefore, ⌫ enjoys a log-Sobolev inequality with constant krTk
2
L1(Rn).

Besides the natural consequences described in [4] and above, Caffarelli’s The-
orem has found numerous applications in various fields: indeed, it can be used to
transfer isoperimetric inequalities, to obtain correlation inequalities, and more (see,
for instance, [6, 7, 11, 13]). Some recent extensions and variations of Caffarelli’s
Theorem can be found in, for example, [14, 15, 17].

In this paper, we extend the result of Caffarelli by building Lipschitz changes of
variables between perturbations of V andW that are not necessarily convex. Pertur-
bations of log-concave measures (in particular, perturbations of Gaussian measures)
appear, for instance, in quantum physics as a means to help understanding solutions
to physical theories with nonlinear equations of motion. In cases where an explicit
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solution is unknown, perturbations of log-concave measures can be used to yield
approximate solutions.

We let P(X) denote the space of probability measures on a metric space X .
The main result of the paper is the following:

Theorem 1.1. Let V 2 C1,1loc (Rn) be such that e�V (x) dx 2 P(Rn). Suppose that
V (0) = infRn V and there exist constants 0 < �, 3 < 1 for which � Id 

D2V (x)  3 Id for a.e. x 2 Rn . Moreover, let R > 0, q 2 C0c (BR), and
cq 2 R be such that e�V (x)+cq�q(x) dx 2 P(Rn). Assume that ��q Id  D2q
in the sense of distributions for some constant �q � 0. Then, there exists a constant
C = C(R, �,3, �q) > 0, independent of n, such that the optimal transport map T
that takes e�V (x) dx to e�V (x)+cq�q(x) dx satisfies

krTkL1(Rn)  C. (1.2)

The crucial point here is that the estimate on the Lipschitz constant of the optimal
transport map is independent of dimension, as it is in Caffarelli’s results for log-
concave measures.

In the case of spherically symmetric measures, we are able to weaken the as-
sumptions on both the log-concave measure and its perturbation and still obtain
a global Lipschitz change of variables. In particular, the Lipschitz constant is con-
trolled only by the L1-norm of the positive and negative parts of the perturbation q,
denoted by q+ and q�. In the following theorem, we first analyze the 1-dimensional
problem:

Theorem 1.2. Let V : R ! R [ {1} be a convex function and q : R ! R be a
bounded function such that e�V (x) dx, e�V (x)�q(x) dx 2 P(R). Then, the optimal
transport T that takes e�V (x) dx to e�V (x)�q(x) dx is Lipschitz and satisfies

k log T 0

kL1(R)  kq+

kL1(R) + kq�

kL1(R). (1.3)

We remark that while the map T in Theorem 1.2 is only unique up to sets of
e�V (x) dx-measure zero, arguing by approximation, we can find a particular trans-
port T for which the estimate on log T 0 in (1.3) is satisfied almost everywhere in R.
Applying this 1-dimensional result to radially symmetric densities, we obtain the
following:

Theorem 1.3. Let V : Rn
! R [ {1} be a convex, radially symmetric function

and q : Rn
! R be a bounded, radially symmetric function such that e�V (x) dx ,

e�V (x)�q(x) dx 2 P(Rn). Then, the optimal transport T that takes e�V (x) dx to
e�V (x)�q(x) dx is Lipschitz and satisfies

e�kq+
kL1(Rn )�kq�

kL1(Rn ) IdrT (x)ekq
+

kL1(Rn )+kq�
kL1(Rn ) Id

for a.e. x 2Rn.
(1.4)
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Note that the assumption e�V (x)�q(x) dx 2 P(Rn) in Theorems 1.2 and 1.3, unlike
in Theorem 1.1, is nonrestrictive. Since q is not required to be compactly supported,
the normalization constant making e�V (x)�q(x) dx a probability measure if it were
not already can simply be absorbed into q.

We further remark that the 1-dimensional estimate in Theorem 1.2 is false in
higher dimensions when one does not assume that the densities are radially sym-
metric. More precisely, taking the reference measure e�V (x) dx to be the standard
Gaussian measure, the estimate

kD2� � Id kL1(Rn)  CkqkL1(Rn) (1.5)

cannot be true for n > 1 (see Remark 5.2 to understand the relationship between
(1.3) and (1.5) for n = 1). This is manifest if we recall that the Monge-Ampère
equation linearizes to the Poisson equation, which does not enjoy C1,1loc estimates
for bounded right-hand side. In other words, given V and q to be chosen, letting �"
be the potential such thatr�" takes e�V (x) dx to e�V (x)�"q(x) dx (for simplicity, we
omit the normalization constant that makes e�V (x)�"q(x) dx a probability measure),
and setting  "(x) = (�"(x) � |x |2/2)/", we have that

1 " + O(") =

log detr2�"
"

=

�V + V (r�") + "q(r�")

"
= hx,r "i + q(r�") + O(")

for every " > 0. The estimate (1.5) implies that sup">0 kD2 "kL1(Rn) < 1 and,
therefore, the existence of a C1,1loc solution to the Poisson equation with bounded
right-hand side, an impossibility in higher dimensions.

Although this heuristic argument is convincing, the details of the proof are
rather delicate, and we give them in the Appendix for completeness.
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2. Preliminaries

We begin with some preliminaries on optimal transportation and the Monge-Am-
père equation, and we fix some notation.

Let µ, ⌫ 2 P(Rn). The Monge optimal transport problem for quadratic cost
consists of finding the most efficient way to take µ to ⌫ given that the transportation
cost to move from a point x to a point y is |x � y|2. Hence, one is led to minimize

cost(T ) :=

Z
Rn

|x � T (x)|2 dµ(x)
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among all maps T such that T#µ = ⌫. A relaxed formulation of Monge’s problem,
due to Kantorovich, is to minimizeZ

Rn
⇥Rn

|x � y|2 d⇡(x, y)

among all transport plans ⇡ , namely the measures ⇡ 2 P(Rn
⇥Rn) whose margin-

als are µ and ⌫. By a classical theorem of Brenier [2], the existence and uniqueness
of an optimal transport plan are guaranteed when µ is absolutely continuous and µ
and ⌫ have finite second moments. Additionally, the optimality of a transport plan
⇡ is equivalent to ⇡ = (Id⇥r�)#µ where � is a convex function, often called the
potential associated to the optimal transport. As a consequence, it follows that in
the Monge problem, unique optimal maps exist as gradients of convex functions.
Theorem 2.1. Let µ, ⌫ 2 P(Rn) such that µ = f (x) dx andZ

Rn
|x |2 dµ(x) +

Z
Rn

|y|2 d⌫(y) < 1.

Then, there exists a unique (up to sets of µ-measure zero) optimal transport T
taking µ to ⌫. Moreover, there is a convex function � : Rn

! R such that T = r�.

A direct consequence of Brenier’s characterization of optimal transports as
gradients of convex functions is that

hx � y, T (x) � T (y)i � 0 for a.e. x, y 2 Rn, (2.1)

which follows immediately from the monotonicity of gradients of convex functions.
Suppose now that µ = f (x) dx and ⌫ = g(y) dy, and let � be a convex

function such that T = r� for T the optimal transport that takes µ to ⌫. Assuming
that T = r� is a smooth diffeomorphism, the standard change of variables formula
implies that

f (x) = g(T (x)) detrT (x).
Hence, assuming that g > 0, we see that � is a solution to the Monge-Ampère
equation

det D2� =

f
g � r�

.

This formal link between optimal transportation and Monge-Ampère (since, to de-
duce the above equation, we assumed that T was already smooth) is at the heart of
the regularity of optimal transport maps (see, for instance, [8] for more details). In
particular, Caffarelli showed the following in [3] (see also [9, Theorem 4.5.2]):
Theorem 2.2. Let X, Y ⇢ Rn be bounded open sets, and f : X ! R+ and
g : Y ! R+ be probability densities locally bounded away from zero and infinity.
If Y is convex, then for any set X 0

⇢⇢ X , the optimal transport T = r� : X ! Y
between f (x) dx and g(y) dy is of class C0,↵(X 0) for some ↵ > 0. In addition,
if f 2 Ck,�

loc (X) and g 2 Ck,�
loc (Y ) for some k 2 N [ {0} and � 2 (0, 1), then

� 2 Ck+2,�
loc (X).
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As mentioned in [1], Caffarelli’s regularity result on optimal transports can be ex-
tended to the case where f and g are defined on all of Rn and assumed to be locally
bounded away from zero and infinity. Lastly, we note that optimal transport maps
are stable under approximation (see [18]). In particular, let f j and g j be locally uni-
formly bounded probability densities such that f j ! f and g j ! g in L1loc. Then,
the associated potentials � j ! � locally uniformly and r� j ! r� in measure.

We fix the following additional notation:

BR ball of radius R centered at the origin
Ln n-dimensional Lebesgue measure
Hd d-dimensional Hausdorff measure
Sn�1 unit sphere in Rn

!n n-dimensional Lebesgue measure of B1 ⇢ Rn.

3. Lipschitz changes of variables between log-concave measures

We begin with two useful results of Caffarelli (see [4]). They provide some motiva-
tion, and we briefly recall their proofs both for completeness and because we shall
need them later.

Lemma 3.1. Let µ = f (x) dx, ⌫ = g(x) dx 2 P(Rn) with finite second moments
and r� = T be the optimal transport taking µ to ⌫. Assume that log f 2 L1

loc(Rn)
and that g is bounded away from zero in the ball Bj for some j > 0 and vanishes
outside Bj. Then,

T (x) ! j
x
|x |

uniformly as |x | ! 1.

In particular, for any fixed " > 0 and for all ↵ 2 Sn�1, the function �(x + "↵) +

�(x � "↵) � 2�(x) ! 0 as |x | ! 1.

Proof. We begin by noticing that, as a consequence of Theorem 2.2, T is continuous
on Rn and, in particular, the map T is well defined at every point.

Let x0 2 Rn and ✓ 2 (0,⇡/4) be fixed, and consider the cone with vertex at
T (x0) and pointing in the x0-direction

0 :=

⇢
y 2 Rn

: \(x0, y � T (x0)) 

⇡

2
� ✓

�
.

By (2.1) we see that
\(x � x0, T (x) � T (x0)) 

⇡

2
;

hence,

\(x � x0, x0)  \(x � x0, T (x) � T (x0)) + \(x0, T (x) � T (x0))  ⇡ � ✓

8 x so that T (x) 2 0,
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and so, up to a set of measure zero, the preimage of 0 under T is contained in the
(concave) cone

� :=

�
x 2 Rn

: \(x0, x � x0)  ⇡ � ✓
 
.

Moreover, since T#µ = ⌫,

inf
x2Bj

g(x)Ln
�
0 \ Bj

�
 ⌫

�
0 \ Bj

�
= ⌫(0)  µ(�).

Let B = B(|x0| tan ✓)/2, and notice that � ✓ Rn
\ B. This proves that µ(�) 

µ(Rn
\ B).
Now, µ(Rn

\B) ! 0 as |x0| ! 1 since B coversRn as |x0| ! 1. Recalling
that g is bounded away from zero in Bj, we have that

lim
|x0|!1

Ln
�
0 \ Bj

�
= 0.

Letting ✓ ! 0, we see that T (x0) ! j x0
|x0| . As the point x0 was fixed arbitrarily,

r�(x) = T (x) ! j x
|x | uniformly as |x | ! 1. Thus, � behaves like the cone j|x |

at infinity. In particular, for any fixed " > 0 and for all ↵ 2 Sn�1, the function
�(x + "↵) + �(x � "↵) � 2�(x) ! 0 as |x | ! 1.

Thanks to Lemma 3.1, [4, 5], Caffarelli proved the following result.

Theorem 3.2. Let V, W 2 C1,1loc (Rn) be such that e�V (x) dx, e�W (x) dx 2 P(Rn).
Suppose there exist constants 0 < �W , 3V < 1 such that D2V (x)  3V Id and
�W Id  D2W (x) for a.e. x 2 Rn . Then, the optimal transport T that takes
e�V (x) dx to e�W (x) dx is globally Lipschitz and satisfies

krTkL1(Rn) 

p
3V /�W . (3.1)

Proof. By the stability of optimal transports, we may assume that W is equal to
infinity outside the ball Bj for some fixed j > 0. Indeed, define

W j
:=

(
W in Bj
1 in Rn

\ Bj

and cj 2 (0,1) such that Z
Rn
ecj�W

j(x) dx = 1.

Clearly, ecj�W j
! e�W in L1(Rn) as j ! 1. Hence, if we prove (3.1) for the

optimal transport T j that takes e�V (x) dx to ecj�W j(x) dx , letting j ! 1 we obtain
the same estimate for T .
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Also, by Theorem 2.2, the convex potential � : Rn
! R associated to the op-

timal transport T is of class C3; therefore, � satisfies the Monge-Ampère equation

det D2�(x) =

e�V (x)

e�W (r�(x)) ,

or equivalently,
log det D2�(x) = �V (x) + W (r�(x)). (3.2)

For fixed " > 0, we define the incremental quotient of a function f : Rn
! R at

(x,↵) 2 Rn
⇥ Sn�1 by

f "(x,↵) := f (x + "↵) + f (x � "↵) � 2 f (x).

By the convexity of � we see that �" � 0. Also, it follows by Lemma 3.1 that �" !

0 as |x | ! 1. Thus �" attains a global maximum at some (x0,↵0) 2 Rn
⇥ Sn�1.

Up to a rotation, we assume that ↵0 = e1. Thus,

0 = r�"(x0, e1) = r�(x0 + "e1) + r�(x0 � "e1) � 2r�(x0). (3.3)

Moreover, because e1 is the maximal direction,

0 = @��
"(x0, e1) = "hr�(x0 + "e1) � r�(x0 � "e1),�i 8� ? e1.

Taking � = ei for i 6= 1 and utilizing (3.3), we see that all the components but the
first of r�(x0 + "e1), r�(x0 � "e1), and r�(x0) are equal. Let � := hr�(x0 +

"e1) � r�(x0 � "e1), e1i/2, and observe that, by (3.3),

hr�(x0), e1i ± � =

1
2
hr�(x0 + "e1) + r�(x0 � "e1), e1i

±

1
2
hr�(x0 + "e1) � r�(x0 � "e1), e1i = hr�(x0 ± "e1), e1i.

Hence, we conclude that

r�(x0 ± "e1) = r�(x0) ± �e1. (3.4)

Another consequence of �" achieving a maximum at x0 is

D2�(x0 + "e1) + D2�(x0 � "e1) � 2D2�(x0)  0. (3.5)

We recall that

lim
"!0+

det (A + "B) � det(A)

"
= det (A) tr (A�1B) (3.6)

for all square matrices A and B with A invertible. Also, if we set F(A) := log det A,
since F is concave on the space of positive semidefinite n⇥n matrices and recalling
(3.6), we have

rF
�
D2�(x0)

�
=

�
D2�(x0)

�
�1
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and

F
⇣
D2�(x0 ± "e1)

⌘
F

⇣
D2�(x0)

⌘
+

⌧⇣
D2�(x0)

⌘
�1

, D2�(x0 ± "e1)�D2�(x0)
�
.

In particular, from (3.5) and the convexity of �, we deduce that

F
⇣
D2�(x0 + "e1)

⌘
+ F

⇣
D2�(x0 � "e1)

⌘
� 2F

⇣
D2�(x0)

⌘
 0.

Now, let us, for fixed " > 0, consider the incremental quotient of (3.2) at
(x0, e1). Using (3.4), we realize that

V "(x0, e1) � W �(r�(x0), e1). (3.7)

Observe that

V "(x0, e1) =

Z "

0

✓Z t

�t

D
D2V (x0 + se1)e1, e1

E
ds
◆
dt;

hence,
V "(x0, e1)  3V "

2. (3.8)

Furthermore, from (3.4), we similarly see that

�W �
2

 W �(r�(x0), e1).

Combining this estimate with (3.8) and (3.7), we get

"
p
3V /�W � �. (3.9)

Set C :=

p

3V /�W . Since

�"(x0, e1) =

Z "

0

⌦
r�(x0 + te1) � r�(x0 � te1), e1

↵
dt,

the convexity of �, (3.4), and (3.9) give us that

�"(x0, e1) = 2�"  2C"2,

and so
krTkL1(Rn) =

��D2���L1(Rn)  2C.

Notice that this is the desired estimate up to a factor 2. We use a bootstrapping
argument to remove this factor. Suppose that 0  kD2�kL1(Rn)  a0 for some
a0 > C . For any 0  t  ", by (3.4) and (3.9),

|hr�(x0 + te1) � r�(x0 � te1), e1i|  min{2"C, 2a0t}.
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Thus,

�"(x0, e1) 

Z "C
a0

0
2a0t dt +

Z "

"C
a0

2"C dt = "2
(2Ca0 � C2)

a0
.

In other words, if kD2�kL1(Rn)  a0 with a0 > C , then

kD2�kL1(Rn) 

(2Ca0 � C2)
a0

.

Starting with a0 = 2C and repeating the above procedure an infinite number of
times, we prove (3.1) since C uniquely solves (2Ca � C2)/a = a.

Remark 3.3. Notice that the above proof relies only on the local behavior of our
densities e�V and e�W . In particular, the bounds on the Hessians of V and W are
only used near the maximum point x0 and its image r�(x0), respectively. This
simple observation will play an important role in the proof of Theorem 1.1.
Remark 3.4. The above result is not ideal. Indeed, if V = W , then T = Id and
one would like to have the bound krTkL1(Rn)  1 instead of krTkL1(Rn) 
p

3V /�V .

4. Compactly supported perturbations: proof of Theorem 1.1

In the following lemma, we prove an upper bound on how far points travel under the
transport map when the source measure is perturbed in a certain fixed ball BP . We
capture and quantify that our perturbations are compactly supported. Lemma 4.1
will be applied in the proof of Theorem 1.1 to the inverse transport.

Furthermore, given our convex function V , we consider, for j 2 N,

V j :=

(
V in Bj
1 in Rn

\ Bj,
(4.1)

and we approximate e�V (x) dx with compactly supported measures ecj�V j(x) dx .
This approximation is in the spirit of Caffarelli’s approximation in the proof of The-
orem 3.2. It allows us to find maximum points of a suitable function and guarantees
that they do not escape to infinity in the proof of Theorem 1.1. This approximation
procedure is purely technical. Hence, on a first reading of Lemma 4.1, the reader
may just take j = 1.

Lemma 4.1. Let V 2 C1(Rn) be such that µ := e�V (x) dx 2 P(Rn). Suppose
that V (0) = infRn V and there exist constants 0 < �, 3 < 1 such that � Id 

D2V (x)  3 Id for all x 2 Rn . Moreover, let P > 0, p 2 C1

c (BP), and cp 2 R
be such that e�V (x)+cp�p(x) dx 2 P(Rn). Given j > P , set V j as in (4.1) and
choose cp,j 2 (0,1) such that µp,j := ecp,j�V j(x)+cp�p(x) dx 2 P(Rn). If T is
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the optimal transport map that takes µp,j to µ, then there exist constants P 0
=

P 0(P, �,3, kpkL1(Rn)) > 0 and j0 = j0(n, V (0), P, �,3, kpkL1(Rn)) > P such
that for all j 2 [j0,1],

T (BP) ✓ BP 0 . (4.2)

Even though this lemma is not independent of dimension as written (specifically,
j0 depends on n), the dimensional dependence does not affect the constant P 0 and
disappears in the limit as j ! 1. Thus, we can indeed prove a global estimate on
the optimal transport taking e�V (x) dx to e�V (x)+cq�q(x) dx that is independent of
dimension.

Lemma 4.1 is written under slightly different assumptions than Theorem 1.1.
In particular, besides the obvious additional regularity assumptions on V and its
perturbation, made only for simplicity, we have not required that the perturbation
be semiconvex. That said, if we assume the the distributional Hessian of p is indeed
bounded below by ��p Id, then we can replace the dependence on kpkL1(Rn) with
a dependence on �p, as explained in the following remark.
Remark 4.2. Let p be a function compactly supported in BP that satisfies the semi-
convexity condition D2 p � ��p Id in the sense of distributions. Then, its L1-
norm is controlled by a constant depending only on P and �p (in particular, it is
independent of dimension):

kpkL1(Rn)  4�p P2. (4.3)

First, up to convolving p with a standard convolution kernel, we can assume that p
is smooth. Then, we observe that every 1-dimensional restriction f↵(t) = p(t↵),
for t 2 R and ↵ 2 Sn�1, is compactly supported in [�P, P] and has second deriva-
tive bounded below by ��p. This implies that

k f 0

↵kL1(R)  2�p P. (4.4)

Indeed, suppose to the contrary that f 0

↵(t0) > 2�p P for some t0 2 [�P, P]. By
integration, we would get

0 = f 0

↵(P) � f 0

↵(t0) +

Z P

t0
f 00

↵ (⌧ ) d⌧ > 2�p P + �p(P � t0) > 0,

which is impossible. This proves (4.4), and (4.3) holds by integrating.
Before proceeding with the proof of Lemma 4.1, we recall a Talagrand-type

transport inequality. Given µ1, µ2 2 P(Rn), we denote the squared Wasserstein
distance between µ1 and µ2 by W 2

2 (µ1, µ2) (see [18, Chapter 6] for the general
definition), and we consider their relative entropy

Ent(µ2|µ1) :=

8<
:
Z

Rn
log

✓
dµ2
dµ1

◆
dµ2 if µ2 ⌧ µ1

1 otherwise.
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Here, dµ2/dµ1 is the relative density of µ2 with respect to µ1. If µ1 = e�V (x) dx
for some V 2 C2(Rn) such that D2V (x) � �V Id for all x 2 Rn , we have that
(see [6], applied in the particular case when µ1 and µ2 are probability measures)

W 2
2 (µ1, µ2) 

2
�V
Ent(µ2|µ1). (4.5)

In our applications, W 2
2 (µ1, µ2) coincides with the cost of the optimal transport

taking µ2 to µ1.

Proof of Lemma 4.1. Notice first that, as a consequence of Theorem 2.2, T is con-
tinuous.

Assume there exists a point x0 2 BP with T (x0) /2 B10P (otherwise, the
statement is true with P 0

= 10P). We show that T (x0) 2 BP 0 for some P 0
=

P 0(P, �,3, kpkL1(Rn)) > 0 that will be chosen later. Let

x̄ := x0 + 3P
T (x0) � x0
|T (x0) � x0|

,

and define the constant C0 and ball B by C0P = |T (x0) � x0| and B := BP(x̄).
Also, let F : B ! Rn be the projection of a point y 2 B onto the hyperplane
through T (x0) and perpendicular to y � x0. The map F is well-defined because
x0 /2 B (see Figure 4.1). Let us assume that j0 > 6P , so that B ✓ Bj.

P

x0

0 qtan
y

x
B

F(y)

T(x0)
qy

Figure 4.1. The optimal transport sends B far away.

By (2.1), we have that

hy � x0, T (y) � T (x0)i � 0 8 y 2 B,

and as F(y) is the closest point to y in the set {z 2 Rn
: hy � x0, z � T (x0)i � 0},

|T (y) � x0| � |F(y) � x0| 8 y 2 B

(see Figure 4.1). Given any y 2 B, either x0, y, and x̄ determine a plane, call it
0y , within which x0, F(y), and T (x0) determine a right triangle, or x0, y, and x̄ are
collinear. Thus,

|F(y) � x0| = C0P cos ✓y



LIPSCHITZ CHANGES OF VARIABLES 1503

where ✓y is the angle between F(y) � x0 and T (x0) � x0. Now, 0y \ @B is a circle
of radius P centered at x̄ . Letting ✓tan be the angle between the line through x0 and
tangent to 0y\@B and the line through T (x0) and x0, we see that ✓y  ✓tan . (While
there are two such tangent lines, the angles they determine with the line through
T (x0) and x0 are the same. Again, see Figure 4.1.) Moreover, |x0 � x̄ | = 3P and
cos ✓tan = 2

p

2/3. Consequently,

|F(y) � x0| � C0P cos ✓tan �

C02
p

2P
3

and

|T (y) � y| � |T (y) � x0| � |y � x0| >
C02

p

2P
3

� 4P 8 y 2 B.

Since V (0) = infRn V (x) and � Id  D2V (x)  3 Id, by restricting V to 1-
dimensional lines through the origin we have that

V (0) +

�

2
|x |2  V (x)  V (0) +

3

2
|x |2 8 x 2 Rn

; (4.6)

hence, as B ✓ B6P ,

V (x)  V (0) + 183P2 8 x 2 B.

We now estimate cost(T ). Since BP \ B = ; and B ✓ Bj, we have

cost(T ) �

Z
B

|T (x) � x |2ecp,j�V
j(x)+cp dx

�


C02

p

2P
3

� 4P
�2
ecp,j�V (0)�183P2+cpLn(BP).

(4.7)

Furthermore, we claim that the following upper bound on cost(T ) holds:

cost(T ) 

6
�
kpkL1(Rn)ecp,j+cp+kpkL1(Rn )µ(BP). (4.8)

To see this, first, apply the Talagrand-type transport inequality (4.5) with µ1 = µ
and µ2 = µp,j to find that

cost(T ) 

2
�

Z
Rn

�
cp,j + cp � p(x)

�
ecp,j�V

j(x)+cp�p(x) dx . (4.9)

Second, choose j0 > 6P , so that
Z

Rn
\Bj0

e�V (0)� �
2 |x |2+kpkL1(Rn ) dx  1�exp

✓
�kpkL1(Rn)

Z
BP
e�V (0)�3

2 |x |2 dx
◆

.
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Notice that |cp|  kpkL1(Rn) since

e�cp =

Z
Rn
e�p(x) dµ(x). (4.10)

So, for every j � j0, observe that

e�cp,j =

Z
Bj
e�V (x)+cp�p(x) dx = 1�

Z
Rn

\Bj
e�V (x)+cp dx

� 1�

Z
Rn

\Bj0
e�V (0)� �

2 |x |2+kpkL1(Rn ) dx

� exp
✓

�kpkL1(Rn)

Z
BP
e�V (0)�3

2 |x |2 dx
◆

,

and then, recalling that cp,j > 0, note

cp,j  kpkL1(Rn)

Z
BP
e�V (0)�3

2 |x |2 dx

 kpkL1(Rn)ecp,j+cp+kpkL1(Rn )µ(BP).

(4.11)

Now, use Jensen’s inequality on (4.10) and that p is supported in BP to deduce that

cp �

Z
BP

p(x) ecp,j�V
j(x)+cp�p(x) dx



Z
BP

p(x) ecp,j+cp
h
e�cp,j�cp � e�p(x)

i
dµ(x)

 2kpkL1(Rn)ecp,j+cp+kpkL1(Rn )µ(BP).

(4.12)

Finally, combine (4.9), (4.11), and (4.12) to see that (4.8) holds as claimed.
In particular, since µ(BP)  e�V (0)Ln(BP), we have that

cost(T ) 

6
�
kpkL1(Rn)ecp,j�V (0)+cp+kpkL1(Rn )Ln(BP), (4.13)

provided that j � j0. Thus, (4.7) and (4.13) imply that

C0  C 0

:= 3
p

2+

9e93P2+
kpkL1(Rn )

2

2P


kpkL1(Rn)

�

�1/2
.

This proves the existence of an upper bound on C0 depending only on P, �, 3 and
kpkL1(Rn).

Taking P 0
:= (C 0

+ 1)P , we deduce that

|T (x0)|  |T (x0) � x0| + |x0|  C0P + P  P 0,

which proves (4.2).
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The following result is a Pogorelov-type a priori estimate on pure second
derivatives of the potential associated to our optimal transport. This technique is
inspired by Pogorelov’s original argument for the classical Monge-Ampère equa-
tion [16]. In our case, we face the additional difficulty of constructing an auxiliary
function h that compensates for the concavity of our perturbation and the growth of
our convex function at infinity. Assuming that our auxiliary function attains a finite
maximum, we provide a quantitative estimate on the value of h at its finite maxi-
mum. This result contains and overcomes the primary obstacles to demonstrating
that our optimal transport is globally Lipschitz.

Before stating the result, we introduce some constants and an auxiliary function
 , all depending only on the constants R, �, 3, and �q that appear in Theorem 1.1.
Define the constants P > 0 and Q > 0 by

P :=

2�q + 4�q R
�

+ 1+ R and Q :=

�

2�q
+ 1+ R; (4.14)

let  2 C2([0,1)) be given by

 (t) :=

Z t

0

Z s

0
#(r) dr ds,

#(r) :=

8>>>><
>>>>:

�q r 2 [0, R]

��qr + �q + �q R r 2 [R, Q]

�q�2r
4�2q+8�2q R��2

�

2�2q�+4�2q�R+�q�2+�q�2R
4�2q+8�2q R��2

r 2 [Q, P]

0 r 2 [P,1);

(4.15)

and let  2 C2(Rn) be defined by

 (y) :=  (|y|). (4.16)

Observe that the function  is defined in such a way that  00

� ��/2 in [0,1),
 = �q | · |

2/2 on [0, R], and  0 is supported in BP (see Figure 4.2).

Proposition 4.3. Let V, �, 3, R, q, �q , and cq be defined as in Theorem 1.1. As-
sume, additionally, that V and q are smooth. Let P,  , and  be defined as in
(4.14), (4.15), and (4.16). Given j > P , set V j as in (4.1) and choose cq,j 2 (0,1)

such that ecq,j�V j(x)+cq�q(x) dx 2 P(Rn). Also, let � 2 C1(Rn) solve

det D2� =

e�V

ecq,j�V j(r�)+cq�q(r�)
,

and assume that there exist constants j0, P 0 > 0 such that for all j 2 [j0,1],

r�
�
Rn

\ BP 0

�
✓ Rn

\ BP , (4.17)
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or equivalently, that [r�]
�1(BP) ✓ BP 0 . If

h(x,↵) := �↵↵(x)e (r�(x)) (4.18)

attains a maximum at some point (x0,↵0) among all possible (x,↵) 2 Rn
⇥ Sn�1,

then there exists a constant C = C(R, P 0, �,3, �q) > 0, yet independent of n,
such that

h(x0,↵0)  C.

R P

ψ(t)

Figure 4.2. The graph of  .

Proof. Since, by assumption, (x0, ↵0) is a maximum point of h, we have
sup

|↵|=1 �↵↵(x0) = �↵0↵0(x0). This implies that ↵0 is an eigenvector of D2�(x0).
Therefore, up to a rotation, we assume that ↵0 = e1 and that D2� is diagonal at x0.
Throughout this proof, the function h is seen as a function of the variable x with ↵0
fixed. Then, at x0 we compute that

0 = (log h)i =

�11i
�11

+  k(r�)�ki , (4.19)

for all 1  i  n, and

0 � �i j (log h)i j = �i j

�11i j
�11

�

�11i�11 j

�211
+ k(r�)�ki j+ kl(r�)�ik� jl

�
(4.20)

where we denote the inverse matrix of (�i j ) by (�i j ).
Let Ṽ j := V j � cq,j + q � cq . Using (3.6), we differentiate the equation

log det D2� = �V + Ṽ j(r�) (4.21)
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in the e1-direction twice to obtain

�i j�1i j = �V1 + Ṽ ji (r�)�1i

and

�i j�11i j � �il�k j�1i j�1kl = �V11 + Ṽ ji (r�)�11i + Ṽ ji j (r�)�1i�1 j . (4.22)

By (4.20) and (4.22), we deduce that at x0

0 � �il�k j�1i j�1kl � V11 + Ṽ ji (r�)�11i + Ṽ ji j (r�)�1i�1 j

�

�i j�11i�11 j
�11

+ �11�
i j k(r�)�ki j + �11�

i j kl(r�)�ik� jl .
(4.23)

We estimate each term in (4.23) from below. Recall that (�i j ) and (�i j ) are diagonal
at x0. Therefore, �i i = 1/�i i , and we see that

�il�k j�1i j�1kl �

�i j�11i�11 j
�11

=

nX
i=1

nX
k=2

�i i�kk�21ik � 0

and
Ṽ ji j (r�)�1i�1 j = Ṽ j11(r�)�211.

Because h has a maximum at e1 among all directions,

�11(x0) � �i i (x0), (4.24)

and so
�11�

i j kl(r�)�ik� jl = �11 i i (r�)�i i �  i i (r�)�2i i .

Additionally, differentiating (4.21) in the ek-direction, we have that

�i j�ki j = �Vk + Ṽ ji (r�)�ki .

By (4.19), it then follows that

Ṽ ji (r�)�11i+�11�
i j k(r�)�ki j = Ṽ ji (r�)�11i+ k(r�)(�Vk + Ṽ ji (r�)�ki )�11

=� k(r�)Vk�11,

and, consequently, (4.23) becomes

0 � Ṽ j11(r�)�211 +

nX
i=1

 i i (r�)�2i i �  k(r�)Vk�11 �3. (4.25)
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If x0 2 Rn
\ BP 0 , (4.17) implies that r�(x0) 2 Rn

\ BP . Then,  k(r�)Vk�11 = 0
since the gradient of  is zero outside BP by construction. If, on the other hand,
x0 2 BP 0 , then

 k(r�)Vk�11  3P 0

kr kL1(Rn)�11.

(Here, we have used that V (0) = infRn V and that D2V  3 Id to show Vk is
bounded above by 3P 0.) In both cases, we deduce that

 k(r�)Vk�11  C̃�11

for a constant C̃ depending only on R, P 0, �, 3, and �q . Thus, by (4.25), we have
that

0 � Ṽ j11(r�)�211 +

nX
i=1

 i i (r�)�2i i � C̃�11 �3. (4.26)

We claim that

Ṽ j11(r�)�211 +

nX
i=1

 i i (r�)�2i i �

�

2
�211. (4.27)

Indeed, let us consider two cases, according to whether or not r�(x0) belongs to
BR . If r�(x0) 2 BR , then

Ṽ j11(r�)�211 +

nX
i=1

 i i (r�)�2i i � ��211 � �q�
2
11 + �q�

2
11 = ��211,

and (4.27) follows. In the case that r�(x0) /2 BR , we compute the derivatives of  
in terms of the derivatives of  . Observe that

 i (y) =

 
0

(|y|)yi
|y|

and  i i (y) =  
00

(|y|)
y2i

|y|2
+

 
0

(|y|)
|y|

 
1�

y2i
|y|2

!
.

Thus,

 i i (r�) �  
00

(|r�|)
�2i

|r�|
2 � �

�

2
�2i

|r�|
2

since  00

� ��/2 in [0,1) and  0

� 0. Then, (4.24) implies that

nX
i=1

 i i (r�)�2i i � �

�

2

nX
i=1

�2i
|r�|

2�
2
i i � �

�

2
�211

nX
i=1

�2i
|r�|

2 = �

�

2
�211. (4.28)

As r�(x0) /2 BR , we know Ṽ j11(r�(x0)) = V j11(r�(x0)). It follows that

Ṽ j11(r�)�211 � ��211. (4.29)

By (4.28) and (4.29), we deduce that (4.27) holds in this case as well.
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Combining (4.26) and (4.27), we observe that

0 �

�

2
�211 � C̃�11 �3. (4.30)

Solving the quadratic equation in (4.30), we find that

�11(x0) 

C̃ +

p
C̃2 + 2�3
�

 2C̃/�+

p
23/�.

As  is bounded in Rn by definition, it follows that

h(x)  h(x0)  �11(x0)ek kL1(Rn )
 C

for a constant C depending on R, P 0, �, 3, and �q , yet independent of n, as
desired.

Notice that if �q = 0, then  = 0. In this case, the constant C̃ found in
the proof above is zero, and we recover the global Lipschitz constant obtained by
Caffarelli in Theorem 3.2 up to a factor of

p

2 (this is a better bound than the one
provided by the proof of Theorem 3.2 before the final bootstrapping argument).

Proof of Theorem 1.1. We first prove the statement assuming that V and q are
smooth. For every j > R set V j as in (4.1), and choose cq,j 2 (0,1) such that
ecq,j�V j(x)+cq�q(x) dx 2 P(Rn). Let T j be the optimal transport map that takes
e�V (x) dx to ecq,j�V j(x)+cq�q(x) dx . Since the density ecq,j�V j+cq�q is supported in
a convex set, smooth on its support, and is bounded from above and below by pos-
itive constants, by Theorem 2.2, we deduce that T j 2 C1(Rn). By the stability of
optimal transport maps, it suffices to show that for all j � j0 (j0 to be chosen possibly
depending on n) we have that

��
rT j

��
L1(Rn)  C (4.31)

for some constant C > 0 depending only on R, �, 3, and �q .
Let P,  , and h be defined as in (4.14), (4.16), and (4.18). Applying Lemma

4.1 to the optimal transport [T j]�1, we see that there exist constants j0 and P 0
=

P 0(R, �,3, �q) > 0 (see Remark 4.2) such that [T j]�1(BP) ✓ BP 0 for all j 2

[j0,1]; that is, letting r� = T j (for simplicity we omit in � the dependence on j ,
which can be any number greater than j 0 in the following),

r�
�
Rn

\ BP 0

�
✓ Rn

\ BP . (4.32)

We split the proof in two cases, according whether or not h achieves a maxi-
mum in � = Rn

⇥ Sn�1. If there exists (x0,↵0) 2 � such that

h(x0,↵0) = sup
�
h(x,↵),
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then we apply Proposition 4.3 and see that

sup
Sn�1

k�↵↵kL1(Rn)  khkL1(�)  C,

which proves (4.31).
Otherwise, we consider the maxima of h in �m := Bm ⇥ Sn�1 with m 2 N.

Let
h(xm,↵m) = sup

�m

h(x,↵).

Notice that h(xm,↵m) is nondecreasing (and not definitively constant) and |xm | "

1 as m ! 1. Now, consider the functions h" approximating h defined by

h"(x,↵) := [�(x + "↵) + �(x � "↵) � 2�(x)]e (r�(x))
8 (x,↵) 2 �.

Since � is smooth, we know that h" ! h locally uniformly in � as " ! 0. Fur-
thermore, by Lemma 3.1,

lim
|x |!1

h"(x,↵) = 0 (4.33)

uniformly with respect to x and ↵. Since h" � 0 (by the convexity of �), the
function h"(x,↵) has a finite maximum point (x",↵").

We claim that for sufficiently small " (possibly depending on n and on the
sequence {(xm,↵m)}m2N)

x" /2 BP 0 . (4.34)

Indeed, let m0 and m1 be such that xm0 /2 BP 0 and h(xm1,↵m1) > h(xm0,↵m0).
Since h" converges to h locally uniformly, there exists "0 > 0 such that

��h"(x,↵) � h(x,↵)
��


h(xm1,↵m1) � h(xm0,↵m0)
4

for every x 2 B|xm1 |+1, ↵ 2 Sn�1, and "  "0. So, for every "  "0, we have that

h"(xm1,↵m1) � h(xm1,↵m1) �

��h"(xm1,↵m1) � h(xm1,↵m1)
��

�

3h(xm1,↵m1) + h(xm0,↵m0)
4

.
(4.35)

Thus,

h"(x,↵)  h(x,↵) +

��h"(x,↵) � h(x,↵)
��

 h(xm0,↵m0) +

h(xm1,↵m1) � h(xm0,↵m0)
4

=

h(xm1,↵m1) + 3h(xm0,↵m0)
4

<
3h(xm1,↵m1) + h(xm0,↵m0)

4

(4.36)
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for every x 2 B|xm0 |, ↵ 2 Sn�1, and "  "0. Since BP 0 ✓ B|xm0 |, (4.35) and (4.36)
imply that h"(x,↵)  h"(xm1,↵m1) in BP 0 . Therefore, h" satisfies (4.34) for every
"  "0.

Recall that  is constant outside BP . Then, by (4.32) and (4.34), we know that
for every "  "0, the function e (r�(x)) is locally constant around x". Therefore,
(x",↵") is also a local maximum point for the incremental quotient �(x + "↵) +

�(x�"↵)�2�(x). Moreover, outside BR the function V j�cq,j+q�cq is convex
as it coincides with V j � cq,j � cq . So, proceeding as in the proof of Theorem 3.2
(cf. Remark 3.3), we conclude that (4.31) is also proved in the case that h is not
guaranteed to achieve a maximum in �.

In order to remove the smoothness assumptions on V and q, we approximate
V and q by convolution (adding a small constant to ensure these approximations
define probability measures). Then, from what we have shown above, the approxi-
mate transports are all globally and uniformly Lipschitz. Thanks to the stability of
optimal transports, passing to the limit, we prove (1.2).

5. Bounded perturbations in 1-dimension and in the radially symmetric
case: proofs of Theorems 1.2 and 1.3

Our goal now is to produce optimal global Lipschitz estimates under strong sym-
metry but weak regularity assumptions on our log-concave measures. Notice that
when our perturbation is zero, we recover that our optimal transport is the identity
map (cf. Remark 3.4). We begin in 1-dimension and with a technical lemma relat-
ing the behavior of our convex base and the cumulative distribution function of the
log-concave probability measure it defines.

Lemma 5.1. Let V : R ! R be a convex function such that e�V (x) dx 2 P(R)
and x0 2 R be such that V (x0) = infR V . Define 8, 9 : R ! (0, 1) by

8(x) :=

Z x

�1

e�V (t) dt and 9(x) :=

Z
1

x
e�V (t) dt = 1�8(x). (5.1)

Then,
V (x) � V (y)  log8(y) � log8(x) 8 x  y  x0 (5.2)

and
V (x) � V (y) � log9(y) � log9(x) 8 x0  x  y. (5.3)

Proof. Since an analogous argument proves (5.3), we only show (5.2); in other
words, we prove that the function log8 + V is nondecreasing in (�1, x0]. Let
x̂ = inf{x : V (x) = V (x0)}. The function log8 + V is clearly nondecreasing in
[x̂, x0], whenever this interval is not a single point. Moreover, it is locally Lipschitz
and its derivative is e�V /8 + V 0. Hence, it suffices to show that the derivative is
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nonnegative in (�1, x̂). Since V 0 is nonincreasing in (�1, x̂) and by the change
of variables formula, we have that for a.e. x 2 (�1, x̂)

V 0(x)8(x) �

Z x

�1

V 0(t)e�V (t) dt = �e�V (x),

which proves our claim.

Proof of Theorem 1.2. By approximating V with a sequence of convex functions
Vj ! V such that e�Vj (x) dx 2 P(R) and that are finite on R, we can assume
that V < 1 on R. This reduction follows from the stability of optimal transport
maps. Recall that, as a consequence of the push-forward condition T#

�
e�V (x) dx

�
=

e�V (x)�q(x) dx , T satisfies the mass balance equation
Z x

�1

e�V (t) dt =

Z T (x)

�1

e�V (t)�q(t) dt, (5.4)

which can be also written asZ
1

x
e�V (t) dt =

Z
1

T (x)
e�V (t)�q(t) dt (5.5)

since the measures e�V (x) dx and e�V (x)�q(x) dx have total mass 1. From (5.4), we
deduce that T is differentiable. Indeed, both the functions

F(x) :=

Z x

�1

e�V (t) dt and G(x) :=

Z x

�1

e�V (t)�q(t) dt

are differentiable and their derivatives do not vanish. So, T (x) = G�1
� F(x) is

differentiable as well. Thus, differentiating with respect to x and then taking the
logarithm shows that

log
�
T 0(x)

�
= �V (x) + V (T (x)) + q(T (x)) 8 x 2 R.

Consequently,

V (T (x)) � V (x) � kq�

kL1(R)

 log(T 0(x))  V (T (x)) � V (x) + kq+

kL1(R).
(5.6)

On the other hand, (5.4) implies that

e�kq+
kL1(R)

Z T (x)

�1

e�V (t) dt 

Z x

�1

e�V (t) dt  ekq
�

kL1(R)

Z T (x)

�1

e�V (t) dt

since q 2 L1(R). Taking the logarithm and defining 8 as in (5.1), we see that

�

��q+

��
L1(R)

 log8(x) � log8(T (x))  kq�

kL1(R). (5.7)
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Analogously, from (5.5), we deduce that

�

��q+

��
L1(R)

 log9(x) � log9(T (x))  kq�

kL1(R). (5.8)

We claim that

�kq+

kL1(R)  V (T (x)) � V (x)  kq�

kL1(R) 8 x 2 R. (5.9)

To prove this claim, let x0 2 R be such that V (x0) = infR V and consider the sets

E1 := {x : x  x0 and T (x)  x0} and E2 := {x : x � x0 and T (x) � x0}.

Applying (5.2) in E1 yields that

0  V (T (x)) � V (x)  log8(x) � log8(T (x))

if T (x)  x  x0 and

log8(x) � log8(T (x))  V (T (x)) � V (x)  0

whenever x  T (x)  x0. Therefore, (5.9) holds in E1 by (5.7). Similarly, applying
(5.3) gives us that (5.9) holds in E2 by (5.8). Now, we consider three cases:

1. If T (x0) = x0, the monotonicity of T implies that E1[ E2 = R, and (5.9) holds
in all of R;

2. If T (x0) > x0, then E1 [ E2 [ E+ = R where, thanks to the monotonicity of T ,
we have

E+ = {x : x  x0 and T (x) � x0} =

h
T�1(x0), x0

i
.

Since V attains its minimum at x0, V is decreasing on (�1, x0] and increasing
on [x0,1). Consequently,

V (T�1(x0)) � V (x0)  V (x) � V (T (x))  V (T (x0)) � V (x0) 8 x 2 E+.

As T�1(x0) 2 E1 and x0 2 E2, our above analysis shows that (5.9) holds in
E+;

3. If T (x0) < x0, an analogous argument to one used to prove case 2 demonstrates
that E1[ E2[ E� = R where E� = [x0, T�1(x0)] and proves (5.9) also in E�.

Therefore, by (5.6) and (5.9), we deduce (1.3).

Remark 5.2. From the numerical inequality | log(x)| � x � 1, which holds for
x 2 [0, e2], we see that if � is the potential associated to T in Theorem 1.2, then
provided that kqkL1(R)  1, there exists a constant C > 0 such that

k�00

� 1kL1(R)  CkqkL1(R).
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We now move to the radially symmetric case in n dimensions.

Proof of Theorem 1.3. Let V , q : R ! R [ {1} be two functions such that V =

q = 1 on (�1, 0), and V (x) = V (|x |) and q(x) = q(|x |) for every x 2 Rn .
Now, consider the function

T (x) := T̃ (|x |)
x
|x |

where T̃ : R ! R is the optimal transport that takes e�V (r)rn�1 dr to
e�V (r)�q(r)rn�1 dr .

Set R+
:= [0,1). We first claim that the optimal transport T̃ is Lipschitz and

satisfies ���log T̃ 0

���
L1(R+)



��q+

��
L1(R+)

+ kq�

kL1(R+). (5.10)

Indeed, let Ṽ : R ! R [ {1} be defined by Ṽ (r) = V (r) � (n � 1) log r on R+

and infinity otherwise, and let q̃ = q on R+ and zero elsewhere. Observe that Ṽ is
convex and q̃ is bounded. Hence, applying Proposition 1.2 with V = Ṽ and q = q̃
proves (5.10).

We now conclude the proof. Notice that T is continuous. Furthermore, T is an
admissible change of variables from e�V (x) dx to e�V (x)�q(x) dx . To see this, we
show that for every bounded, Borel function ' : Rn

! R,
Z

Rn
'(T (x))e�V (x) dx =

Z
Rn
'(x)e�V (x)�q(x) dx . (5.11)

The formula (5.11) can be rewritten, using polar coordinates and the definition of
T , as

Z
1

0

Z
Sn�1

'
�
T̃ (r)↵

�
dHn�1(↵) e�V (r)rn�1 dr

=

Z
1

0

Z
Sn�1

'(r↵) dHn�1(↵) e�V (r)�q(r)rn�1 dr,

which is, in turn, satisfied if we use the test function '(r) =

R
Sn�1 '(r↵) dHn�1(↵)

and recall the definition of T .
Now, let ⇠ 2 Sn�1 and x 2 Rn

\ {0}. Since T̃ (0) = 0, we observe that

rT (x)[⇠ ] =

⇥
⇠ |x |�1 � x |x |�3hx, ⇠i

⇤
T̃ (|x |) + x |x |�2T̃ 0(|x |)hx, ⇠i

=

⇥
⇠ � x |x |�2hx, ⇠i

⇤
T̃ 0(t) + x |x |�2T̃ 0(|x |)hx, ⇠i,

where t 2 (0, |x |). By (5.10), we deduce that

e�kq+
kL1(Rn )�kq�

kL1(Rn )
 h⇠,rT (x)[⇠ ]i  ekq

+
kL1(Rn )+kq�

kL1(Rn ) ,
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which proves (1.4). To conclude, we show that T is the optimal transport taking
e�V (x) dx to e�V (x)�q(x) dx . Let �̃ : R+

! R+ be the convex potential associated
to T̃ . By construction, T (x) = r(�̃(|x |)) and �̃(|x |) is a convex function. Since
optimal transports are characterized by being gradients of convex functions, T is
the optimal transport taking e�V (x) dx to e�V (x)�q(x) dx .

6. Appendix

We now show that the linear bound in Remark 5.2 is specific to the 1-dimensional
case.

Proposition 6.1. Let n 2 N and V (x) = |x |2/2+ (n/2) log(2⇡), so that e�V is the
standard Gaussian density in Rn . Then, for every C > 0, there exists a bounded,
continuous perturbation p such that kpkL1(Rn)  1 and e�V (x)�p(x) dx 2 P(Rn)
and the optimal transport T = r� that takes e�V (x) dx to e�V (x)�p(x) dx satisfies

��D2� � Id
��
L1(Rn) > CkpkL1(Rn).

Proof. Suppose, to the contrary, that for every bounded, continuous function p :

Rn
! R with kpkL1(Rn)  1, the optimal transport T = r� that takes e�V (x) dx

to e�V (x)�p(x) dx satisfies
��D2� � Id

��
L1(Rn)  C0kpkL1(Rn) (6.1)

for some C0 > 0. In particular, let q 2 L1(Rn)\C0(Rn), and for all " � 0, define
c" by

ec" =

Z
Rn
e�V (x)�"q(x) dx .

By construction, e�V (x)�"q(x)�c" dx 2 P(Rn). Thus, let �" be the potential as-
sociated to the optimal transport that takes e�V (x) dx to e�V (x)�"q(x)�c" dx , and
remember that �" solves the Monge-Ampère equation

det D2�" = e�V+V (r�")+"q(r�")+c" . (6.2)

Note that c" ! 0 as " ! 0. Also, since

��c0"�� =

���� (e
c")0

ec"

���� =

����
Z

Rn
�q(x)e�V (x)�"q(x)�c" dx

����  kqkL1(Rn),

c" is Lipschitz as a function of " and

|c"|
"

 kqkL1(Rn). (6.3)
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In addition, by the dominated convergence theorem,

c0" ! ◆q :=

Z
Rn

�q(x)e�V (x) dx as " ! 0. (6.4)

Without loss of generality, we assume that �"(0) = 0. Now, define

 "(x) :=

�"(x) � |x |2/2
"

.

By (6.1) applied to p = "q + c" and (6.3), we see that if " 
1

2kqkL1(Rn )
, then

��D2 "��L1(Rn)  (C0 + 1)kqkL1(Rn). (6.5)

Recall that, for any n ⇥ n matrix A, there exists a K > 0, depending only on kAk,
such that for all " sufficiently small | log det(Id+"A) � " tr A|  "2K . Therefore,
there exist an "0 > 0 and a collection of functions g" with

sup
""0

kg"kL1(Rn) < 1 (6.6)

such that for all "  "0,

"1 "(x) + "2g"(x) = log det
�
Id+"D2 "

�
= log det D2�".

Thus, by (6.2) and our choice of V ,

1 "(x) + "g"(x) =

V (r�"(x)) � V (x) + "q(r�"(x)) + c"
"

=

Z 1

0
h(1� t)r�"(x) + t x,r "(x)i dt + q(r�"(x)) +

c"
"

= hx,r "(x)i +

"

2
|r "(x)|2 + q(r�"(x)) +

c"
"

.

(6.7)

We claim that, up to a subsequence, there exists a function  0 2 C1,1loc (Rn) such
that  " !  0 in C1loc(Rn) and D2 " * D2 0 weakly-⇤ in L1(Rn) as " ! 0. To
this end, by Arzelà-Ascoli, it suffices to show that  " are locally bounded in C1,1.
Since  "(0) = 0, by (6.5), it is enough to prove that

lim inf
"!0

|r "(0)| < 1. (6.8)
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Assume, to the contrary, that lim"!0 |r "(0)| = 1. Notice that (6.7) implies that
for all "  "0 and x 2 Rn ,�����
Z 1

0
h(1� t)r�"(x) + t x,r "(0)i dt

�����


�����
Z 1

0
h(1� t)r�"(x) + t x,r "(x)i dt

�����+
�
|r�"(x)| + |x |

�
|r "(0) � r "(x)|

 |1 "(x)| + "|g"(x)| + |q(r�"(x))| +

|c"|
"

+

�
|r�"(x)| + |x |

�
|x | sup

""0
kD2 "kL1(Rn).

Let ↵" = r "(0)/|r "(0)| 2 Sn�1, and note that up to subsequences ↵" ! ↵0 2

Sn�1 as " ! 0. Furthermore, let ⌘ 2 C1

c (B1/2(↵0)) be a nonnegative function that
integrates to one. Then, by (6.3), we deduce that

|r "(0)|
Z

Rn

�����
Z 1

0
h(1� t)r�"(x) + t x,↵"i dt

����� ⌘(x) dx

=

Z
Rn

�����
Z 1

0
h(1� t)r�"(x) + t x,r "(0)i dt

����� ⌘(x) dx
 sup
""0

"kg"kL1(Rn) + 2kqkL1(Rn)

+ sup
""0

kD2 "kL1(Rn)

Z
Rn

�
|r�"(x)||x | + |x |2 + 1

�
⌘(x) dx .

(6.9)

Recall that D2�" converges uniformly to the identity matrix by (6.1) applied to
�" and "q. By the stability and uniqueness of optimal transports, r�" converges
locally uniformly to the identity map as " ! 0. In particular, |r�"(x)|  2 for
every x 2 B1/2(↵0) and " sufficiently small, and we obtain that

lim
"!0

Z
Rn

�����
Z 1

0
h(1� t)r�"(x) + t x,↵"i dt

����� ⌘(x) dx =

Z
Rn

hx,↵0i⌘(x) dx �

1
2

by dominated convergence. Thus, taking the limit in (6.9) and noticing that the
right-hand side is bounded as " ! 0 thanks to (6.5) and (6.6), we see that

1 = lim
"!0

|r "(0)|

�����
Z 1

0
h(1� t)r�"(x) + t x,↵"i dt

����� < 1,

which, being impossible, proves (6.8) and shows that  " !  0 in C1loc(Rn) and
D2 " * D2 0 weakly-⇤ in L1(Rn) as " ! 0 for some function  0 2 C1,1loc (Rn).
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Now, reformulating (6.7), we see that for any ⌘ 2 C1

c (Rn),
Z

Rn

⇣
1 "(x) + "g"(x) � q(r�"(x)) �

c"
"

⌘
⌘(x) dx

=

Z
Rn

⇣
hx,r "(x)i +

"

2
|r "(x)|2

⌘
⌘(x) dx .

(6.10)

Thus, recalling (6.4) and that q is continuous, we can pass to the limit and obtain
that Z

Rn

�
1 0(x) � hx,r 0(x)i

�
⌘(x) dx =

Z
Rn

�
q(x) + ◆q

�
⌘(x) dx

for all ⌘ 2 C1

c (Rn). Since q was arbitrary, we have shown that for every q 2

L1(Rn) \ C0(Rn), there exists a function  0 2 C1,1loc (Rn) solution to

1 0(x) � hx,r 0(x)i = q(x) + ◆q . (6.11)

We now show that this is impossible. Recall that there exists a bounded, continuous
g and  2 C1,↵loc (B2) \ C1(B2 \ {0}), for any ↵ 2 (0, 1), such that 1 (x) = g(x)
in B2, yet  /2 C1,1(B2). In particular, limx!0 |D2 (x)| = 1. (See [10, Chapter
3].) Define

h(x) :=

(
g(x) � hx,r (x)i x 2 B1
g(x/|x |) � hx/|x |,r (x/|x |)i x 2 Rn

\ B1,

and observe that, since  2 C1,↵loc (B2) and g is bounded and continuous, h 2

L1(Rn)\C0(Rn). By construction, there exists a 0 2 C1,1loc (Rn) that solves (6.11)
with q = h. Then, for  1 :=  0 �  we have that 1 1(x) � hx,r 1(x)i = ◆h in
B1. Thus,  1 2 C1(B1) by elliptic regularity, a contradiction since  /2 C1,1loc (B1)
and  0 2 C1,1(B1).
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[10] Q. HAN and F. LIN, “Elliptic Partial Differential Equations”, 2nd Edition, Courant Lec-
ture Notes in Mathematics, Vol. 1, New York University, Courant Institute of Mathematical
Sciences, New York, American Mathematical Society, Providence, 1997.
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A moving lemma for cycles with very ample modulus

AMALENDU KRISHNA AND JINHYUN PARK

Abstract. We prove a moving lemma for higher Chow groups with modulus, in
the sense of Binda-Kerz-Saito, of projective schemes, when the modulus is given
by a very ample divisor. This provides one of the first cases of moving lemmas for
cycles with modulus, not covered by the additive higher Chow groups. We apply
this to prove a contravariant functoriality of higher Chow groups with modulus.
We use our moving techniques to show that the higher Chow groups of a line
bundle over a scheme, with the 0-section as the modulus, vanish.

Mathematics Subject Classification (2010): 14C25 (primary); 13F35, 19E15
(secondary).

1. Introduction

The moving lemma is one of the most important technical tools in dealing with
algebraic cycles. For usual higher Chow groups, this was established by S. Bloch
(see [2, 3]). In order to study the relative K -theory of schemes (relative to effective
divisors) in terms of algebraic cycles, the theory of additive higher Chow groups
(see [5, 9, 10, 14]) and cycles with modulus (see [1, 8]) were recently introduced.
But the lack of a moving lemma has been an annoying hindrance in the study of
these additive higher Chow groups and the Chow groups with modulus.

A moving lemma for additive higher Chow groups of smooth projective
schemes was proven in [10]. A similar moving lemma for the additive higher Chow
groups of smooth affine schemes has been very recently established by W. Kai [7],
along with some more general results after Nisnevich sheafifications. However,
without such modifications, one does not yet know the existence of a moving lemma
for the higher Chow groups with modulus which do not arise from additive higher
Chow groups.

JP was partially supported by the National Research Foundation of Korea (NRF) grant No.
2015R1A2A2A01004120 funded by the Korean government (MSIP). AK was partially supported
by the Swarna Jayanti Fellowship, 2011.
Received September 17, 2015; accepted in revised form September 27, 2016.
Published online December 2017.
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1.1. Main results

The goal of this paper is to address the moving lemma problem for the higher Chow
groups with modulus of projective schemes when the modulus divisor is very ample.
Our main result is the following. The necessary definitions are recalled in Section 2.

Theorem 1.1. Let X be an equidimensional reduced projective scheme of dimen-
sion d � 1 over a field k. Let D ( X be a very ample effective Cartier divisor such
that X \ D is smooth over k. LetW be a finite collection of locally closed subsets
of X . Then, the inclusion zqW(X |D, •) ,! zq(X |D, •) is a quasi-isomorphism.

Our first application of Theorem 1.1 is the following complete solution of the
moving lemma for cycles with arbitrary modulus on projective spaces. The analo-
gous question for cycles on affine spaces was solved by W. Kai [7].

Corollary 1.2. Let k be any field and r � 1 be any integer. Let D ⇢ Prk be any
effective Cartier divisor. Let W be a finite collection of locally closed subsets of
Prk . Then the inclusion z

q
W(Prk |D, •) ,! zq(Prk |D, •) is a quasi-isomorphism.

In the second application of Theorem 1.1, we prove the following contravari-
ance property of the higher Chow groups with modulus.

Theorem 1.3. Let f : Y ! X be a morphism of equidimensional reduced quasi-
projective schemes over a field k, where X is projective over k. Let D ⇢ X be a
very ample effective Cartier divisor such that X \ D is smooth over k. Suppose that
f ⇤(D) is a Cartier divisor on Y (i.e., no minimal or embedded component of Y
maps into D). Then there exists a map

f ⇤ : zq(X |D, •)! zq(Y | f ⇤(D), •)

in the derived category of Abelian groups. In particular, for every p, q � 0, there
is a pull-back

f ⇤ : CHq(X |D, p)! CHq(Y | f ⇤(D), p).

Corollary 1.4. Let r � 1 be an integer and let f : Y ! Prk be a morphism
of quasi-projective schemes over a field k. Let D ⇢ Prk be an effective Cartier
divisor such that f ⇤(D) is a Cartier divisor on Y . Then, there exists a pull-back
f ⇤ : CHq(Prk |D, p)! CHq(Y | f ⇤(D), p) for every p, q � 0.

As a final application of our moving techniques, we prove the following van-
ishing theorem for the higher Chow groups of a line bundle on a scheme with the
modulus given by the 0-section. This provides examples where the higher Chow
groups of a variety with a modulus in an effective Cartier divisor are all zero. As
one knows, this is not possible for the ordinary higher Chow groups. This also
gives an evidence in support of the expectation that the higher Chow groups with
modulus are the relative motivic cohomology.

Theorem 1.5. Let X be a quasi-projective scheme over a field k and let f : L! X
be a line bundle. Let ◆ : X ,! L denote the 0-section embedding. Then, the cycle
complex zs(L|X, •) is acyclic for all s 2 Z.
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1.2. Outline of proofs

We prove Theorem 1.1 by following the classical approach used by Bloch to prove
his moving lemma for ordinary higher Chow groups of smooth projective schemes.
We first prove the above theorem for projective spaces. The main difficulty here
lies in constructing suitable homotopy varieties and to check their modulus condi-
tion. We solve this problem by using some blow-up techniques and our homotopy
varieties are very different from the one used classically.

To deal with the case of general projective schemes, we use the method of
linear projections. However, we need to make more subtle choices of our linear
subspaces than in the classical case due to the presence of the modulus.

We show later in this article how this method breaks down if we replace a very
ample divisor by just an ample one. We show that the linear projection method
cannot be used in general to prove the moving lemma for Chow groups with mod-
ulus on either smooth affine or smooth projective schemes, if the modulus divisor
is not very ample. This suggests that the general case of the moving lemma for
Chow groups with modulus on smooth affine or projective schemes may be a very
challenging task.

ACKNOWLEDGEMENTS. The authors are deeply indebted to the referee, who so
thoroughly read the paper and suggested many valuable corrections and simplifica-
tions.

2. Recalls on cycles with modulus

In this section we recollect some necessary definitions and notation associated with
cycles with modulus. Let k be a field and let Schk denote the category of quasi-
projective schemes over k. Let Smk denote the full subcategory of Schk consisting
of smooth schemes.

2.1. Notation

Set A1k := Spec k[t], P1k := Proj k[Y0,Y1] and let y := Y0/Y1 be the coordinate on
P1k . We set ⇤ := A1k and ⇤ := P1k . We use the coordinate system (y1, · · · , yn) on
⇤
n with yi := y � qi , where qi : ⇤

n
! ⇤ is the projection onto the i-th ⇤. For

i = 1, . . . , n, let F1n,i be the Cartier divisor on ⇤
n defined by {yi = 1}. Let F1n

denote the Cartier divisor
Pn

i=1 F1n,i on ⇤
n . A face of ⇤

n is a closed subscheme
defined by a set of equations of the form {yi1 = ✏1, . . . , yis = ✏s | ✏ j 2 {0, 1}}. For
✏ = 0, 1, and i = 1, · · · , n, let ◆n,i,✏ : ⇤

n�1
,! ⇤

n be the inclusion

◆n,i,✏(y1, . . . , yn�1) = (y1, . . . , yi�1, ✏, yi , . . . , yn�1). (2.1)

A face of ⇤n is an intersection of ⇤n with a face of ⇤n .
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2.2. Cycles with modulus

Let X 2 Schk . Recall ( [11, Section 2]) that for effective Cartier divisors D1 and D2
on X , we say D1  D2 if D1+D = D2 for some effective Cartier divisor D on X . A
modulus pair or a scheme with an effective divisor is a pair (X, D), where X 2 Schk
and D an effective Cartier divisor on X . A morphism f : (Y, E) ! (X, D) of
modulus pairs is a morphism f : Y ! X in Schk such that f ⇤(D) is defined as a
Cartier divisor on Y and f ⇤(D)  E . In particular, f �1(D) ⇢ E . If f : Y ! X
is a morphism of k-schemes, and (X, D) is a modulus pair such that f �1(D) = ;,
then f : (Y,;)! (X, D) is a morphism of modulus pairs.

Definition 2.1 ([1, 8]). Let (X, D) and (Y , E) be two modulus pairs. Let Y =

Y \ E . Let V ⇢ X ⇥ Y be an integral closed subscheme with closure V ⇢ X ⇥ Y .
We say V has modulus D on X ⇥ Y (relative to E) if ⌫⇤V (D⇥ Y )  ⌫⇤V (X ⇥ E) on
V N , where ⌫V : V N

! V ,! X ⇥ Y is the normalization followed by the closed
immersion.

Definition 2.2 ([1, 8]). Let (X, D) be a modulus pair. For s 2 Z and n � 0, let
zs(X |D, n) be the free Abelian group on integral closed subschemes V ⇢ X ⇥⇤n

of dimension s + n satisfying the following conditions:

(1) (Face condition) for each face F ⇢ ⇤n , V intersects X ⇥ F properly;
(2) (Modulus condition) V has modulus D relative to F1n on X ⇥⇤n .

We usually drop the phrase “relative to F1n ” for simplicity. A cycle in zs(X |D, n)
is called an admissible cycle with modulus D. The following containment lemma is
from [11, Proposition 2.4] (see also [1, Lemma 2.1] and [10, Proposition 2.4]).

Proposition 2.3. Let (X, D) and (Y , E) be modulus pairs and Y = Y \ E . If
V ⇢ X ⇥ Y is a closed subscheme with modulus D relative to E , then any closed
subscheme W ⇢ V also has modulus D relative to E .

One checks using Proposition 2.3 that (n 7! zs(X |D, n)) is a cubical Abelian
group. In particular, the groups zs(X |D, n) form a complex with the boundary map
@ =

Pn
i=1(�1)i (@0i � @

1
i ), where @

✏
i = ◆⇤n,i,✏ .

Definition 2.4 ([1, 8]). The complex (zs(X |D, •), @) is the nondegenerate complex
associated to (n 7! zs(X |D, n)), i.e., zs(X |D, n) := zs(X |D, n)/zs(X |D, n)degn.
The homology CHs(X |D, n) := Hn(zs(X |D, •)) for n � 0 is called higher Chow
group of X with modulus D. If X is equidimensional of dimension d, for q � 0, we
write CHq(X |D, n) = CHd�q(X |D, n).

The following is a generalization of [11, Proposition 2.12] (see also [1, Lem-
ma 2.7]). The reader can check that the only requirement in the proof of [11, Propo-
sition 2.12] is that the underlying map be flat over the complement of the modulus
divisor. This is because of the fact that an admissible cycle lies completely over this
complement.
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Lemma 2.5. Let f : Y ! X be a morphism in Schk . Let D ( X be an effective
Cartier divisor. Assume that f ⇤(D) is a Cartier divisor on Y such that the map
f �1(X \ D) ! X \ D is flat of relative dimension d. Then, there is a pull-back
map f ⇤ : zr (X |D, •)! zd+r (Y | f ⇤(D), •) such ( f � g)⇤ = g⇤ � f ⇤.

We often use the following result from [11, Lemma 2.2]:

Lemma 2.6. Let f : Y ! X be a dominant map of normal integral k-schemes. Let
D be a Cartier divisor on X such that the generic points of Supp(D) are contained
in f (Y ). Suppose that f ⇤(D) � 0 on Y . Then D � 0 on X .

Definition 2.7. Let W be a finite set of locally closed subsets of X and let e :

W ! Z�0 be a set function. Let zqW,e(X |D, n) be the subgroup generated by in-
tegral cycles Z 2 zq(X |D, n) such that for each W 2 W and each face F ⇢ ⇤n ,
we have codimW⇥F (Z \ (W ⇥ F)) � q � e(W ). They form a subcomplex
zqW,e(X |D, •) of zq(X |D, •). Modding out by degenerate cycles, we obtain the sub-
complex zqW,e(X |D, •) ⇢ zq(X |D, •). We write zqW(X |D, •) := zqW,0(X |D, •).
The number e(W ) is called the excess dimension of the intersection Z \ (W ⇥ F).
Given a function e : W ! Z�0, define (e � 1) : W ! Z�0 by (e � 1)(W ) =

max{e(W )� 1, 0}. This gives an inclusion zqW,e�1(X |D, •) ⇢ zqW,e(X |D, •).
We also use the following from [12, Proposition 4.3] in our proof of the moving

lemma.

Proposition 2.8 (Spreading lemma). Let k ⇢ K be a purely transcendental exten-
sion. Let (X, D) be a smooth quasi-projective k-scheme with an effective Cartier
divisor, and letW be a finite collection of locally closed subsets of X . Let (XK , DK )
and WK be the base changes via Spec (K ) ! Spec (k). Let prK/k : XK ! Xk
be the base change map. Then for every set function e : W ! Z�0, the pull-back
maps

pr⇤K/k :

zqW,e(X |D, •)

zqW(X |D, •)
!

zqWK ,e(XK |DK , •)

zqWK
(XK |DK , •)

(2.2)

and

pr⇤K/k :

zqW,e(X |D, •)

zqW,e�1(X |D, •)
!

zqWK ,e(XK |DK , •)

zqWK ,e�1(XK |DK , •)
(2.3)

are injective on homology.

We remark that Proposition 2.8 is stated in [12, Proposition 4.3] only for (2.2)
but the argument given there simultaneously proves (2.3) as well.

3. Moving lemma for projective spaces

In this section we prove our moving lemma for the modulus pair (X, D), where X
is a projective space over k and D is a hyperplane in X . We use the following:
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Lemma 3.1 ([2, Lemma 1.2]). Let X 2 Schk and let G be a connected algebraic
group over k acting on X . Let A, B ⇢ X be closed subsets. Assume that the fibers
of the action map G⇥A! X , given by (g, a) 7! g ·a, all have the same dimension
and that this map is dominant.

Assume moreover that there is an overfield k ,! K and a K -morphism  :

XK ! GK . Let ; 6= U ⇢ X be open such that for every x 2 UK , we have

tr.degk (� �  (x),⇡(x)) � dim(G),

where ⇡ : XK ! X and � : GK ! G are the base changes. Define ✓ : XK ! XK
by ✓(x) =  (x) · x and assume that ✓ is an isomorphism. Then, the intersection
✓(AK \UK ) \ BK is proper.

Corollary 3.2. Let X 2 Schk and let G be a connected algebraic group over k
acting transitively on X . Let Y 2 Schk and let ; 6= A ⇢ X and B ⇢ X ⇥ Y be
closed subsets. Let G act on X ⇥ Y by g · (x, y) = (g · x, y).

Let K = k(G) and let � : GK ! G be the base change. Suppose  :

(X ⇥ Y )K ! GK is a K -morphism and let U ,! X ⇥ Y be an open subset such
that:

(1) the image of every point ofUK under the composite map (X⇥Y )K
 
�! GK

�
�!

G is the generic point of G;
(2) the map ✓ : (X⇥Y )K ! (X⇥Y )K given by ✓(z) =  (z)·z, is an isomorphism.

Then the intersection ✓((A ⇥ Y )K \UK ) \ (BK \UK ) is proper on UK .

We let Ar
k = Spec (k[x1, · · · , xr ]) and let Prk = Proj(k[X1, · · · , Xr , X0]),

where we set xi = Xi/X0 for 1  i  r . This yields an open immersion j0 : Ar
k ,!

Prk . Let H1 = Prk \ Ar
k be the hyperplane at infinity. We write the homogeneous

coordinates of Prk as (X1; · · · ; Xr ; X0). We fix this choice of coordinates ofAr
k and

Prk . Set u =

Qr
i=1 xi 2 k[x1, · · · , xr ].

Let K = k(Prk) and consider the point ⌘ = (u, · · · , u) 2 PrK so that its image
under the projection PrK ! Prk is the generic point of Prk . Let U+ ,! PrK ⇥⇤K be
the open subset (PrK⇥⇤K )[(Ar

K⇥⇤K ) and setY = H1⇥{1} = (PrK⇥⇤K )\U+.
For K -schemes X and X 0, we write the product X ⇥K X 0 as X ⇥ X 0.

Lemma 3.3. Let �⌘ : Ar
K ⇥⇤K ! Ar

K denote the map �⌘(x, t) = x +⌘ · t . Then,
�⌘ uniquely extends to a morphism �⌘|U+

: U+! PrK such that the following hold:

(1) U+ is the largest open subset of PrK ⇥⇤K over which �⌘ can be extended to a
regular morphism;

(2) The extension of �⌘ on PrK ⇥⇤K is a smooth morphism;
(3) (�⌘|U+

)�1(Ar
K ) = Ar

K ⇥⇤K ;
(4) (�⌘|U+

)�1(H1) = (Ar
K ⇥ {1}) + (H1 ⇥⇤K ).
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Proof. Define the rational map �⌘ : PrK ⇥⇤K 99K PrK by

�⌘((X1; · · · ; Xr ; X0), (T0; T1))
= (T1X1 + uT0X0; · · · ; T1Xr + uT0X0; T1X0).

(3.1)

Note that �⌘((X1; · · · ; Xr ; 1), (t; 1)) = (X1 + ut; · · · ; Xr + ut; 1) so that �⌘
restricts to the given map on Ar

K ⇥⇤K . One checks that (1), (3) and (4) hold from
the shape of �⌘ in (3.1).

To show (2), note that this map is the composite PrK⇥⇤K ! PrK⇥⇤K ! PrK ,
where the first one is ((X1; · · · ; Xr ; X0), t) 7! ((X1 + ut X0; · · · ; Xr + ut X0;
X0), t) and the second is the projection to PrK (which is smooth). Since the first
map is an isomorphism, it follows that �⌘ is smooth on PrK ⇥⇤K .

Remark 3.4. The unique extension of �⌘ toU+ is not a flat morphism even though
it is smooth on PrK ⇥⇤K . If we set Vi = {(X1; · · · ; Xr ; X0)|Xi 6= 0} ,! PrK for
i = 1, · · · , r , then the map ��1⌘ (Vi )! Vi is not flat because Ar

K ⇥ {0} lies in one
fiber but all other fibers have strictly smaller dimensions.

Our idea is to use the rational map �⌘ : PrK ⇥ ⇤K 99K PrK to generate a
homotopy between an arbitrary admissible cycle in zq(Prk |H1, •) and a cycle in
zqW,e(Prk |H1, •). In order to do so, we need to extend �⌘ to an honest morphism of
schemes. We achieve this in the following results via a sequence of blow-ups.

Lemma 3.5. Let ⇡ : 0! PrK ⇥⇤K be the blow-up of PrK ⇥⇤K along the closed
subscheme Y = H1 ⇥ {1}. Then, there exists a closed point P1 2 ⇡�1(Y) and
a regular map �⌘ : 0+ := 0 \ {P1} ! PrK such that ⇡ : 0+ ! PrK ⇥ ⇤K is
surjective, and the diagram

⇡�1(U+)
� � j //

'

✏✏

0+

⇡
✏✏✏✏

�⌘

  B
B

B
B

B
B

B
B

U+

� � j //
88PrK ⇥⇤K

�⌘ // PrK

(3.2)

commutes.

Proof. Let Ui ( PrK be the open set {Xi 6= 0} for 0  i  r . One checks by a
direct local calculation the blow-up 0 has the following description. Over Ui , it is
defined by

⇡�1(Ui ) =

n�
(X1; · · · ; Xr ; X0), (T0; T1), (Y1,i ;Y0,i )

�
2 Ui ⇥⇤K ⇥ P1K |X0T0Y0,i = XiT1Y1,i

o (3.3)

and these blow-ups glue along their intersections to make up 0 via the change of
coordinate Y0,i/Y0, j = (Xi/X j )(Y1,i/Y1, j ) over Ui \ Uj . The blow-up map ⇡ :

⇡�1(Ui )! Ui ⇥⇤K is the composite ⇡�1(Ui ) ,! Ui ⇥⇤K ⇥ P1K ! Ui ⇥⇤K .
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We now define a rational map �i⌘ : ⇡�1(Ui ) 99K PrK by

�⌘
�
(X1; · · · ; Xr ; X0), (T0; T1), (Y1,i ;Y0,i )

�
=

�
Y0,i X1 + uXiY1,i ; · · · ;Y0,i Xr + uXiY1,i ;Y0,i X0

�
.

(3.4)

The blow-up 0 is glued alongUi\Uj via the automorphism i, j : ⇡�1(Ui\Uj )
'

�!

⇡�1(Ui \Uj ):

 i, j
�
(X1; · · · ; Xr ; X0), (T0; T1), (Y1,i ;Y0,i )

�
=

⇣
(X1; · · · ; Xr ; X0), (T0; T1), (Xi X�1j Y1,i ; X j X�1i Y0,i )

⌘
.

It is clear from this isomorphism that  i, j (Yl,i 6= 0) = (Yl, j 6= 0) for l = 0, 1.
Over (Y0,i 6= 0), we can let Y0,i = Y0, j = 1,Y1,i = yi and Y1, j = y j . Over this
open subset of ⇡�1(Ui \Uj ), we get

�
j
⌘ �  i, j ((X1; · · · ; Xr ; X0), (T0; T1), yi )

= �
j
⌘

⇣
(X1; · · · ; Xr ; X0), (T0; T1), Xi X�1j yi

⌘

=

⇣
X1 + uX j Xi X�1j yi ; · · · ; Xr + uX j Xi X�1j yi ; X0

⌘
= (X1 + uXi yi ; · · · ; Xr + uXi yi ; X0)

= �
i
⌘ ((X1; · · · ; Xr ; X0), (T0; T1), yi ) .

(3.5)

Over the intersection of ⇡�1(Ui \Uj ) with the open subset (Y1,i 6= 0), we have

�
j
⌘ �  i, j ((X1; · · · ; Xr ; X0), (T0; T1), yi )

= �
j
⌘

⇣
(X1; · · · ; Xr ; X0), (T0; T1), X j X�1i yi

⌘

=

⇣
X j X�1i X1yi + uX j ; · · · X j X�1i Xr yi + uX j ; X�1i X j X0yi

⌘
=

�
X1X j yi + uXi X j ; · · · ; Xr X j yi + uXi X j ; X j X0yi

�
= (X1yi + uXi ; · · · ; Xr yi + uXi ; X0yi )

= �
i
⌘ ((X1; · · · ; Xr ; X0), (T0; T1), yi ) .

(3.6)

It follows from (3.5) and (3.6) that � j⌘’s glue together to yield a rational map �⌘ :

0 99K PrK such that �⌘|⇡�1(Ui ) = �
j
⌘ for 0  i  r .

We next show the commutativity of (3.2). The left square of (3.2) commutes
by construction. We thus have to show that �⌘ � j = �⌘ � ⇡ , i.e., the trapezoid in
(3.2) commutes. It suffices to show this over each open subset (Ui ⇥ ⇤K ) \ U+.
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If P =

�
(X1; · · · ; Xr ; X0), (T0; T1), (Y1,i ;Y0,i )

�
2 ⇡�1(U+), we have ⇡(P) =

((X1; · · · ; Xr ; X0), (T0; T1)) such that either T1 6= 0 or X0 6= 0.
Suppose first that T1 6= 0. Then, we can take T1 = 1 and T0 = t . In this

case, we must have Y0,i 6= 0 so that we can assume Y0,i = 1. Thus, the equation
X0T0Y0,i = XiT1Y1,i becomes Y1,i = t X0X�1i . This yields

�
i
⌘ � j(P) = (X1 + ut X0; · · · ; Xr + ut X0; X0)

by (3.4) and

�⌘ � ⇡(P) = (X1 + ut X0; · · · ; Xr + ut X0; X0)

by (3.1).
Suppose next that X0 6= 0. Since the case T1 6= 0 was already considered, we

may suppose T0 6= 0. Thus, we may take T0 = 1 and T1 = t . In this case, we must
have Y1,i 6=0, so that we may take Y1,i =1. Thus, the equation X0T0Y0,i = XiT1Y1,i
becomes Y0,i = t Xi X�10 . This yields

�
i
⌘ � j(P) = (t X1Xi + uX0Xi ; · · · ; t Xr Xi + uX0Xi ; t Xi X0)

= (t X1 + X0; · · · ; t Xr + X0; t X0)

by (3.4). On the other hand, �⌘�⇡(P) = (t X1+uX0; · · · ; t Xr+X0; t X0) by (3.1).
We have thus shown that �⌘ � j(P) = �⌘ � ⇡(P) for P 2 ⇡�1(U+).

We now show that �⌘ is regular on 0 \ {P1}, where P1 2
�
\
r
i=1⇡

�1(Ui )
�

is the closed point ((1; · · · ; 1; 0), (1; 0), (1;�u)) in the coordinates of ⇡�1(Ui ).
Let Q =

�
(X1; · · · ; Xr ; X0), (T0; T1), (Y1,i ;Y0,i )

�
2 ⇡�1(Ui ) be a point so that

X0T0Y0,i = XiT1Y1,i . Then �⌘(Q) is not defined if and only if all its coordinates
are zero, i.e.,

Y0,i X j + uXiY1,i = 0, for all 1  j  r, and Y0,i X0 = 0. (3.7)

If Y0,i = 0 then uXiY1,i = 0 for 1  i  r . But u 2 K⇥ and Q 2 ⇡�1(Ui ) imply
that Y1,i = 0, which cannot happen since (Y1,i ;Y0,i ) 2 P1K . So, Y0,i 6= 0 and we
must have X0 = 0. Since Xi 6= 0, we can assume Xi = 1. Since X0 = 0, we also
have T1Y1,i = 0, so that either Y1,i = 0 or T1 = 0. If Y1,i = 0, then it follows from
(3.7) that Y0,i = �uY1,i = 0, which again is absurd because (Y1,i ;Y0,i ) 2 P1K . So,
Y1,i 6= 0, and T1 = 0. We may assume Y1,i = 1. Combining this with (3.7), we
thus have

Y0,i = �u, Y0,i X j + u = 0 for all 1  j 6= i  r and X0 = T1 = 0. (3.8)

We conclude that �⌘(Q) is not defined if and only if Q = ((1; · · · ; 1; 0), (1; 0),
(1;�u)). This proves the regularity of �⌘ on 0 \ {P1}. Since P1 2 ⇡�1(Y)
and since each fiber of ⇡ over Y is 1-dimensional, we conclude that the map (0 \

{P1})! PrK ⇥⇤K is surjective. This finishes the proof of the lemma.
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Remark 3.6. The reader can check that the map �⌘ : PrK ⇥ ⇤K 99K PrK is the
one defined by the linear system generated by the global sections S = {T1Xi +

uT0X0}1ir [ {T1X0} of the line bundleO(1, 1). The sheaf of ideals I1 on PrK ⇥
⇤K defining Y is generated by {XiT1, X0T0|0  i  r}. Moreover, �⌘ : 0 99K PrK
is the rational map defined by the linear system generated by the global sections
⇡⇤(S) of the line bundle ⇡⇤I1.

Let ⇡ : 0 ! PrK ⇥ ⇤K be the blow-up map as in Lemma 3.5 and let E =

⇡⇤(Y) denote the exceptional divisor for this blow-up. Note that the map ⇡ : E !
Y ' H1 is the P1K -bundle associated to the vector bundle O(1)�O.

Since H1⇥⇤K and PrK ⇥{1} are smooth schemes, and Y is a smooth divisor
inside these schemes, note that BlY(H1 ⇥ ⇤K ) ! H1 ⇥ ⇤K and BlY(PrK ⇥
{1})! PrK ⇥ {1} are isomorphisms.

Lemma 3.7. Let ⇡ : 0 ! PrK ⇥ ⇤K be as in Lemma 3.5. Then, we have the
following.

(1) BlY(H1 ⇥⇤K ) \ {P1} = ; = BlY(PrK ⇥ {1}) \ {P1};
(2) BlY(H1 ⇥⇤K ) \ BlY(PrK ⇥ {1}) = ; inside 0;
(3) ⇡⇤(H1 ⇥⇤K ) = (H1 ⇥⇤K ) + E and ⇡⇤(PrK ⇥ {1}) = (PrK ⇥ {1}) + E

in the group Div(0) of Weil divisors.

Proof. It suffices to verify each statement of the lemma over an open subset
⇡�1(Ui ) with 0  i  r . On the other hand, (3.3) shows that over Ui , we have

BlY(H1 ⇥⇤K )

= {((X1; · · · ; Xr ; 0), (T0; T1), (Y1,i ;Y0,i )) 2 PrK ⇥⇤K ⇥ P1K |Y1,i = 0}
= H1 ⇥⇤K ⇥ {0}.

Similarly, we have

BlY(PrK ⇥ {1})

= {((X1; · · · ; Xr ; X0), (1; 0), (Y1,i ;Y0,i )) 2 PrK ⇥⇤K ⇥ P1K |Y0,i = 0}
= PrK ⇥ {1}⇥ {1}.

Since P1 does not map to {0,1} ⇢ P1K under the projection ⇡�1(Ui )! P1K for
any 0  i  r , we get (1). The parts (2) and (3) of the lemma are immediate.

Let 01 ,! 0+ ⇥ PrK denote the graph of �⌘ and let 01 ,! 0 ⇥ PrK be its
closure. Let ⇡N : 0

N
1 ! 01 ,! 0 ⇥ PrK be the normalization composed with the

inclusion, and let ⇡1 := pr1�⇡N , ⇡2 := pr2�⇡N , where pr1, pr2 are the projections
from 0⇥PrK to 0 and PrK , respectively. Here, ⇡N is finite and ⇡1 is projective with
⇡�11 (0+)

'

�! 0+ such that ⇡2|0+
= �⌘.
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Since ⇡1 is a birational projective morphism and 0 is smooth, it follows from
[6, Theorem II-7.17, page 166, Exercise II-7.11(c), page 171] that there is a closed
subscheme Z ,! 0 such that Zred = {P1} and 0N1 = BlZ (0). Let F ,! 0

N
1

denote the exceptional divisor for this blow-up so that Fred = ⇡�11 (P1). Let E1 ,!
0
N
1 denote the strict transform of E under ⇡1 so that ⇡⇤1 (E) = E1 + F .
Letting � := ⇡ � ⇡1 : 0

N
1 ! PrK ⇥ ⇤K and E 0 := ⇡⇤1 (E) = E1 + F , a

combination of Lemmas 3.5, 3.7 and the above construction proves the following.

Lemma 3.8. There exists a commutative diagram

��1(U+)
� � j1 //

'

✏✏

0
N
1

�
✏✏✏✏

⇡2

  A
A

A
A

A
A

A
A

U+

� � j //
88PrK ⇥⇤K

�⌘ // PrK

(3.9)

such that � is a blow-up, and in the group Div(0N1 ) of Weil divisors, we have:

�⇤
⇣
H1 ⇥⇤K

⌘
=

�
H1 ⇥⇤K

�
+ E 0 and �⇤

�
PrK ⇥ {1}

�
=

�
PrK ⇥ {1}

�
+ E 0.

(3.10)

For any map f : X ! X 0 of K -schemes, let fn denote the map

f ⇥ Id⇤
n
K

: X ⇥⇤
n
K ! X 0 ⇥⇤

n
K .

We now show how the rational map �⌘ : PrK ⇥⇤K 99K PrK eventually leads to the
desired homotopy.

Proposition 3.9. Let n � 1 be an integer. Let V ,! PrK⇥⇤n
K be an integral closed

subscheme. Assume that V has modulus H1 relative to F1n . Let �⌘ : Ar
K ⇥⇤K !

PrK be the map as in Lemma 3.3. Then, the closure of ��1⌘,n(V ) in PrK ⇥⇤n+1
K is an

integral closed subscheme of PrK ⇥⇤n+1
K which has modulus H1 relative to F1n+1.

Proof. We use notations of the paragraph just before Lemma 3.8 and set E 0n =

E 0 ⇥ ⇤
n
K ,! 0

N
1 ⇥ ⇤

n
K . Let V ,! PrK ⇥ ⇤

n
K denote the closure of V and let

⌫V : V N
! PrK ⇥ ⇤

n
K denote the induced map from the normalization of V . By

the modulus condition, we have

⌫⇤V
�
PrK ⇥ F1n

�
� ⌫⇤V

⇣
H1 ⇥⇤

n
K

⌘
in Div

⇣
V N⌘

. (3.11)
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Condition (3.11) implies that V \ (H1⇥⇤n
K ) = ;. Set V 0 = ��1⌘,n(V ). Since �⌘,n

is smooth on ��1⌘,n(Ar
K ⇥⇤n

K ) by Lemma 3.3, it follows that V 0 is an integral closed
subscheme ofU+⇥⇤

n
K with dimK (V 0) = dimK (V )+1. Let V 0 ,! PrK ⇥⇤

n+1
K be

the Zariski closure of V 0, and let ⌫V 0 : V
0N
! V 0 ,! PrK ⇥⇤

n+1
K be the induced

map from the normalization of V 0. Let W ,! 0
N
1 ⇥⇤

n
K be the strict transform of

V 0. It follows from Lemma 3.5 that ⇡2,n(W \ ��1n (U+ ⇥⇤n
k )) = V . Since ⇡2,n is

projective, we must have ⇡2,n(W ) = V . This yields a commutative diagram

WN

⌫W

""FF
FF

FF
FF

F

f //

g

✏✏

V N

⌫V
✏✏

0
N
1 ⇥⇤

n
K

⇡2,n //

�n
✏✏

PrK ⇥⇤
n
K

V 0
N
⌫V 0

// PrK ⇥⇤
n+1
K ,

(3.12)

where ⌫W is the normalization of W composed with its inclusion into 0N1 ⇥ ⇤
n
K ,

and f and g are the maps induced by the universal property of normalization for
dominant maps. Since f is a surjective map of integral schemes, condition (3.11)
implies that (⌫V � f )⇤(PrK ⇥ F1n ) � (⌫V � f )⇤(H1 ⇥⇤

n
K ) on WN . In particular,

we get (⇡2,n � ⌫W )⇤(PrK ⇥ F1n ) � (⇡2,n � ⌫W )⇤(H1 ⇥⇤
n
K ) on WN . Equivalently,

⌫⇤W

⇣
0
N
1 ⇥ F1n

⌘
� ⌫⇤W

⇣
⇡⇤2 (H1)⇥⇤

n
K

⌘
. (3.13)

Since (�⌘|U+
)⇤(H1) = (Ar

K ⇥ {1}) + (H1 ⇥⇤K ) by Lemma 3.3, we get

j⇤1,n � ⇡
⇤

2,n

⇣
H1 ⇥⇤

n
K

⌘
= j⇤1,n

�
PrK ⇥ F1n,n+1

�
+ j⇤1,n

⇣
H1 ⇥⇤

n+1
K

⌘
,

where j1 : U+ ,! 0
N
1 is the inclusion. Since PrK ⇥ F1n,n+1 and H1 ⇥ ⇤

n+1
K are

irreducible, we get ⇡⇤2 (H1)⇥⇤
n
K � (PrK ⇥ F1n,n+1)+ (H1⇥⇤

n+1
K ) on 0N1 ⇥⇤

n
K .

Combining this with (3.13), we get

⌫⇤W

⇣
0
N
1 ⇥ F1n

⌘
� ⌫⇤W

�
PrK ⇥ F1n,n+1

�
+ ⌫⇤W

⇣
H1 ⇥⇤

n+1
K

⌘

� ⌫⇤W

⇣
H1 ⇥⇤

n+1
K

⌘
.

(3.14)
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This in turn implies that

(�n�⌫W )⇤
�
PrK⇥F1n+1

�
= (�n � ⌫W )⇤

⇣
PrK ⇥ F1n ⇥⇤K

⌘
+ (�n � ⌫W )⇤

⇣
PrK ⇥⇤

n
K ⇥ {1}

⌘
= ⌫⇤W

⇣
0
N
1 ⇥ F1n

⌘
+ (�n � ⌫W )⇤

⇣
PrK ⇥⇤

n
K ⇥ {1}

⌘
� ⌫⇤W

⇣
H1 ⇥⇤

n+1
K

⌘
+ (�n � ⌫W )⇤

⇣
PrK ⇥⇤

n
K ⇥ {1}

⌘
=
† ⌫⇤W

⇣
H1 ⇥⇤

n+1
K

⌘
+⌫⇤W

�
E 0n

�
+⌫⇤W

⇣
PrK⇥⇤

n
K⇥ {1}

⌘
=
‡ (�n � ⌫W )⇤

⇣
H1 ⇥⇤

n+1
K

⌘
+ ⌫⇤W

⇣
PrK ⇥⇤

n
K ⇥ {1}

⌘
W � (�n � ⌫W )⇤

⇣
H1 ⇥⇤

n+1
K

⌘
,

where =
† and =

‡ follow from Lemma 3.8. Using (3.12), this gives g⇤(⌫⇤V 0(PrK ⇥
F1n+1)) � g⇤(⌫⇤V 0(H1 ⇥ ⇤

n+1
K )). Since g is a surjective map of integral normal

schemes, we conclude by Lemma 2.6 that ⌫⇤V 0(PrK⇥F1n+1) � ⌫⇤V 0(H1⇥⇤
n+1
K ).

Theorem 3.10. Given an integer r � 1, let D ,! Prk be a hyperplane. LetW =

{W1, · · · ,Ws} be a finite collection of locally closed subsets of Prk and let e : W !
Z�0 be a set function. Then, the inclusion zqW(Prk |D, •) ,! zqW,e(Prk |D, •) is a
quasi-isomorphism. In particular, the inclusion zqW(Prk |D, •) ,! zq(Prk |D, •) is a
quasi-isomorphism.

Proof. The second part follows easily from the first part because zq(Prk |D, •) =

zqq(X |D, •). We shall prove the first part of the theorem in several steps. We can
find a linear automorphism ⌧ : Prk

'

�! Prk such that ⌧ (D) = H1. ReplacingW by
⌧ (W), we reduce to the case when D = H1, condition that we assume from now
on. In view of Proposition 2.8, we only need to show that the map

pr⇤K/k :

zqW,e(Prk |D, •)

zqW(Prk |D, •)
!

zqWK ,e(PrK |DK , •)

zqWK
(PrK |DK , •)

is zero on the homology, where we choose K = k(Prk).
Following the notation we used so far in this section, consider the maps

Ar
K ⇥⇤n+1

K
�⌘,n
��! PrK ⇥⇤n

K
prK/k
���! Prk ⇥⇤n

k .

For any irreducible cycle V ,! Prk ⇥ ⇤n
k , let H

⇤

n (V ) = (prK/k � �⌘,n)
�1(V ) and

let H⇤n(V ) be its closure in PrK ⇥ ⇤n+1
K . We can extend this linearly to cycles in

zq(Prk |D, n).
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Suppose V is an irreducible cycle in zqW,e(Prk |D, n). We claim that:

(1) H⇤n(V ) 2 zqWK ,e(PrK |DK , n + 1);

(2) H⇤n(V ) 2 zqWK
(PrK |DK , n + 1) if V 2 zqW(Prk |D, n);

(3) ◆⇤n+1,n+1,0(H
⇤

n(V )) = V and ◆⇤n+1,n+1,1(H
⇤

n(V )) 2 zqWK
(PrK |DK , n).

We now prove this claim using the previous results of this section. Since V has
modulus D on Prk ⇥ ⇤n

k , it follows that V is a closed subscheme of Ar
k ⇥ ⇤n

k .
In particular, V 2 zqW0,e(A

r
k, n), where W0

= {W1 \ Ar
k, · · · ,Ws \ Ar

k}. Since
H⇤n(V ) has modulus D on PrK ⇥⇤n+1

K by Proposition 3.9, it follows that H⇤n(V ) is
an integral closed subscheme of Ar

K ⇥⇤n+1
K . In particular, H⇤n(V ) = H⇤n (V ). This

shows that we can replace Prk , H
⇤

n(V ) andW by Ar
k , H

⇤

n (V ) andW0 respectively,
to prove the claim.

We prove (3) first. By the definition of �⌘, we have ◆⇤n+1,n+1,0(H
⇤

n (V )) = V .
In particular, H⇤n (V ) intersects Fn+1,n+1,0 and all its faces properly. We thus have
to show that ◆⇤n+1,n+1,1(H

⇤

n (V )) 2 zqW0
K
(Ar

K |DK , n) to prove (3).
Let Ar

k act on itself by translation and let it act on Ar
k ⇥⇤n

k by acting trivially
on ⇤n

k = ⇤n
k ⇥ {1} ,! ⇤n+1

k . Consider the map  : Ar
K ⇥ ⇤n

K ! Ar
K defined

by  (x, y) = ⌘. The reader can check that the assumptions of Corollary 3.2 are
satisfied. Applying this corollary to each A = Wi \Ar

k (where the closure is taken
inAr

k) and B = Ar
k⇥F for any face F of⇤

n
k⇥{1}, we deduce ◆⇤n+1,n+1,1(H

⇤

n (V )) 2

zqW0
K
(Ar

K |DK , n). We have thus proven (3). Since (2) is a special case of (1) where
we take e = 0, we are left with proving (1).

To prove (1), it is enough to consider the case when W = {W } is a single-
ton. Note V 2 zqW,e(Ar

k, n) and let F ,! ⇤n+1
K be any face. If F ,! ⇤n

K ⇥
{0}, then the intersection H⇤n (V ) \ (W ⇥ F) has the desired dimension because
◆⇤n+1,n+1,0(H

⇤

n (V )) = V and V 2 zqW,e(Ar
k, n). We have already proven in (3) that

the intersection H⇤n (V )\(W⇥F) is proper if F ,! ⇤n
K ⇥{1}. We can thus assume

that F = F 0K ⇥⇤K , where F 0 is a face of ⇤n
k .

Set Z = V \ (Ar
k ⇥ F 0). Consider the map  : Ar

K ⇥ ⇤K ⇥ F 0K ! Ar
K

defined by  (x, t, y) = ⌘t and let ✓ : Ar
K ⇥ ⇤K ⇥ F 0K ! Ar

K ⇥ ⇤K ⇥ F 0K
be given by ✓(x, t, y) = (x + ⌘t, t, y). Let Ar

k act by translation on itself and
trivially on ⇤k ⇥ F 0. Then ✓(x, t, y) =  (x, t, y) · (x, t, y). Applying Lemma 3.1
with X = Ar

k ⇥ ⇤k ⇥ F 0, A = W ⇥ ⇤k ⇥ F 0,U = Ar
k ⇥ Gm,k ⇥ F 0, and

B = (V⇥⇤k)\Fk = Z⇥⇤k ,! X⇥F 0, it follows that the intersection ✓(AK )\BK
is proper away fromAr

K ⇥ {0}⇥ F 0K , i.e., the intersection (H⇤n (V )\ F)\ (WK ⇥ F)
is proper away from Ar

K ⇥ {0}⇥ F 0K .
On the other hand, since V 2 zqW,e(Ar

k, n) and hence V meetsW⇥F
0 in excess

dimension at most e(W ), it follows that H⇤n (V ) \ F must meet W ⇥ F in excess
dimension at most e(W ) along Ar

K ⇥ {0}⇥ F 0K . Thus H
⇤

n (V ) intersects WK ⇥ FK
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in excess dimension at most e(W ) for all faces FK ,! ⇤n+1
K . In other words,

H⇤n (V ) 2 zqWK ,e(Ar
K , n + 1). This proves (1) and hence the claim.

It follows from the claim that there is a chain homotopy

H⇤⌘ :

zqW,e
�
Prk |D, •

�
zqW

�
Prk |D, •

� ! zqWK ,e
�
PrK |DK , •

�
zqWK

�
PrK |DK , •

� [�1],

and composed with the restriction map {1} ,! ⇤k , there is a chain map

H⇤⌘,1 :

zqW,e
�
Prk |D, •

�
zqW

�
Prk |D, •

� ! zqWK ,e
�
PrK |DK , •

�
zqWK

�
PrK |DK , •

�

such that H⇤⌘ � @ + @ � H⇤⌘ = pr⇤K/k � H⇤⌘,1. Since H
⇤

⌘,1 = 0 by the claim, we see
that pr⇤K/k is zero on the homology. The proof of the theorem is complete.

Corollary 3.11. Given an integer r � 1, let D ,! Prk be a hyperplane. LetW =

{W1, · · · ,Ws} be a finite collection of locally closed subsets of Prk and let e : W !
Z�0 be a set function. Then the inclusion zqW,e�1(Prk |D, •) ,! zqW,e(Prk |D, •) is a
quasi-isomorphism.

Proof. For every e : W ! Z�0, there is a short exact sequence of chain complexes

0!
zqW,e�1

�
Prk |D, •

�
zqW

�
Prk |D, •

� !

zqW,e
�
Prk |D, •

�
zqW

�
Pr |D, •

� ! zqW,e
�
Prk |D, •

�
zqW,e�1

�
Prk |D, •

� ! 0. (3.15)

The first two quotient complexes are acyclic by Theorem 3.10. Hence the last one
must be acyclic as well.

4. Moving lemma for projective schemes

In this section we prove the moving lemma for the higher Chow groups of projective
schemes with very ample modulus. We assume for a while that the base field k is
infinite. This is only a temporary assumption and will be removed in the final
statement of the moving lemma (see Theorem 4.7).

We fix a closed embedding ◆X : X ,! PN
k of an equidimensional reduced

projective scheme X over k of dimension d � 1, with d < N . We fix two distinct
hyperplanes Hm, H1 ,! PN

k and let Lm,1 = Hm \ H1 2 Gr(N � 2, PN
k ). We

may assume that X 6⇢ Hm [ H1. We set

X0= X \ H1
j0
,! X,U= X \ Hm,U0=U \ X0, D = ◆⇤X (Hm) and D0 = j⇤0 (D)

so that X = U [ D and X0 = U0 [ D0.We shall assume that U is smooth over k.
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Remark 4.1. The hyperplane Hm could have been just called H , but we insist on
using the subscript m to keep in mind that Hm later induces the modulus divisor.

Given a locally closed subset S ( PN
k , let Gr(S, n, PN

k ) denote the set of
n-dimensional linear subspaces of PN

k which do not intersect S. Denote the set
of n-dimensional linear subspaces of PN

k containing a locally closed subscheme
S ( PN

k by GrS(n, PN
k ). We let dim(;) = �1. Given two locally closed subsets

Z1, Z2 ,! PN
k , let Sec(Z1, Z2) denote the union of all lines `xy ,! PN

k , joining
x 2 Z1 and y 2 Z2 with x 6= y. One checks that dim(Sec(Z1, Z2)) = dim(Z1) +

dim(Z2) � dim(Z1 \ Z2) if Z1 and Z2 are linear subspaces of PN
k . In general, we

have dim(Sec(Z1, Z2))  dim(Z1)+ dim(Z2)+ 1. Given a closed point x 2 X , let
Tx (X) denote the union of lines in PN

k which are tangent to X at x . For any locally
closed subset Y ✓ X , let TY (X) =

S
x2Y Tx (X). It is clear that dim(TY (X)) 

dim(Y ) + d if Y ✓ U . With this notation, we first prove the following:

Lemma 4.2. LetW ,! PN
k be a closed subscheme of dimension at most d such that

W 6⇢ Hm . Then,Gr(W, N�d�1, Hm) is a dense open subset ofGr(N�d�1, Hm).
If Lm,1 intersectsW properly, thenGr(W, N�d�1, Lm,1) is a dense open subset
of Gr(N � d � 1, Lm,1).

Proof. Consider the incidence variety S = {(x, L) 2 W ⇥Gr(N � d � 1, Hm)|x 2
L}. We have the projection maps of projective schemes

W S
⇡2 //⇡1oo Gr(N � d � 1, Hm). (4.1)

The fiber of ⇡1 over W \ Hm is empty and it is a smooth fibration over (W \ Hm)red
with each fiber isomorphic to Gr(N � d � 2, PN�2

k ). It follows that

dim(S) = dim(W \Hm)+d(N �d�1)  d+d(N �d�1)�1 = d(N �d)�1.

Thus ⇡2(S) is a closed subscheme of Gr(N � d � 1, Hm) of dimension at most
d(N � d) � 1. On the other hand, dim(Gr(N � d � 1, Hm)) = d(N � d) so that
Gr(W, N � d � 1, Hm) is dense and open in Gr(N � d � 1, Hm) \ ⇡2(S).

If Lm,1 intersects W properly, then we can argue as above with Hm replaced
by Lm,1. We find in this case that

dim(⇡2(S))  dim(S) = dim(W \ Lm,1) + (d � 1)(N � d � 1)
 d + (d � 1)(N � d � 1)� 2 = (d � 1)(N � d)� 1.

Since dim(Gr(N�d�1, Lm,1)) = (d�1)(N�d), we get the desired conclusion.

Given an inclusion of linear subspaces L ( L 0 ✓ PN
k such that dim(L) 

N � d � 1 and X \ L = ;, the linear projection away from L defines a Cartesian
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diagram

X \ L 0 //

✏✏

X

�L
✏✏

X \ L 0oo

✏✏
Pdk \ L 0 // Pdk Pdk \ L 0oo

(4.2)

of finite maps, where Pdk ,! PN
k is a linear subspace complementary to L . Let

RL(X) ⇢ X denote the ramification locus of �L .
For an irreducible locally closed subset A ( X , let L+(A) denote the closure

of ��1L (�L(A)) \ A in ��1L (�L(A)). We linearly extend this definition to all cycles
on X . We shall use similar notation for locally closed subsets of X ⇥ ⇤n with �L
replaced by �L ⇥ Id⇤n .

For two locally closed subsets A,C ⇢ X , let

e(A,C) = max{dim(Z)� dim(A)� dim(C) + d},

where the maximum is taken over all irreducible components Z of A \ C , if these
numbers are non-negative. We take e(A,C) to be zero it they are not.

Lemma 4.3. Let A ( X \ Hm be an irreducible locally closed subset and let C (
X \ Hm be any locally closed subset. Let 6 = {x1, · · · , xs} be a set of distinct
closed points of X contained in A. Then, there is a dense open subset U A,C

X ,!

Gr(N � d � 1, Hm) such that the following hold for every L 2 U A,C
X :

(1) X \ L = ;;
(2) RL(X) contains no irreducible component of A,C or A \ C;
(3) RL(X) \6 = ;;
(4) e(L+(A) \ C)  max{e(A,C)� 1, 0};
(5) The map k(�L(x))! k(x) is an isomorphism for x 2 6.

Proof. Item (1) follows from Lemma 4.2, so we prove the remaining ones. We
may assume that C is irreducible. Let L 2 Gr(X, N � d � 1, Hm). Set T L

r =

RL(X)\A\C = RL(U)\A\C and T L
ur = (L+(A)\C)\T L

r . Note that ‘r’ stands
for ramified and ‘ur’ for unramified. Then we must have L+(A) \ C ✓ T L

ur [ T L
r

and hence dim(L+(A) \ C)  max{dim(T L
ur ), dim(T L

r )}. Since the left square in
(4.2) is Cartesian (where L 0 = Hm) and A,C ⇢ U = X \ Hm , it follows that the
loci T L

r and T L
ur are contained in U .

Let S ,! ((A ⇥ C) \ 1X ) ⇥ Gr(N � d � 1, Hm) be the incidence variety
S = {(a, c, L)|`ac \ L 6= ;}. We have the projections A ⇥ C

pr1
 � S

pr2
�! Gr(N �

d � 1, Hm). Since L \ X = ;, we see that for any point (a, c) 2 ((A ⇥ C) \1X ),
pr�11 ((a, c)) = {L 2 Gr(N � d � 1, Hm)|dim(L \ `ac) = 0}. Consider the map
⇡ : pr�11 ((a, c))! `ac given by ⇡(L) = L \ `ac.
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Our hypothesis says that (A [ C) \ Hm = ; and this implies that `ac 6⇢
Hm . In particular, xac = `ac \ Hm is a single closed point of PN

k . This implies
that ⇡�1(`ac \ {xac}) = ; and ⇡�1({xac}) = pr�11 ((a, c)) = {L 2 Gr(N � d �
1, Hm)|xac 2 L} ' Gr(N � d � 2, PN�2

k ). It follows that dim(pr�11 ((a, c))) =

(N � d � 1)(N � 2� (N � d � 2)) = d(N � d � 1). We conclude from this that

dim(S)  dim(A) + dim(C) + d(N � d � 1)
= dim(A) + dim(C) + d(N � d)� d
= dim(A) + dim(C) + dim(Gr(N � d � 1, Hm))� d.

(4.3)

Let pC : S ! A ⇥ C ! C be the composite projection. We now observe that c 2
T L
ur if and only if there exists a 2 A such that a 6= c and `ac\L 6= ;. Since c 2 C as
well, this means that (a, c) 2 pr�12 (L). In other words, T L

ur ⇢ pC(pr�12 (L)). On the
other hand, it follows from (4.3) that there is a dense open subset U A,C

ur ✓ Gr(N �
d�1, Hm) such that pr�12 (L) is either empty or has dimension dim(A)+dim(C)�d
for every L 2 U A,C

ur . We conclude that:

(?) There is a dense open subset U A,C
ur ✓ Gr(N�d�1, Hm) such that dim(T L

ur ) 

dim(A) + dim(C)� d for each L 2 U A,C
ur .

Since U is smooth, given any point x 2 A \ C , our hypothesis implies that
Tx (X) is a locally closed subscheme of PN

k of dimension d such that Tx (X) 6⇢
Hm . We can therefore apply Lemma 4.2 to find a dense open subset of Gr(N�
d�1, Hm)whose elements do not meet Tx (X). But this means that x /2 RL(X)
for every L in this dense open subset. We can repeat this for any chosen point
in A and C as well. Since 6 ⇢ A, we therefore conclude that:

(??) There is a dense open subset U A,C
r ✓ Gr(N � d � 1, Hm) such that RL(X)

does not contain any component of A,C or A \C and it does not intersect 6,
whenever L 2 U A,C

r .
For any L 2 U A,C

r , we have dim(T L
r ) = dim(RL(X)\A\C)  max{dim(A\

C) � 1, 0}. Combining (?) and (??) with Lemma 4.2 and setting U A,C
X =

U A,C
ur \ U A,C

r , we conclude that U A,C
X is a dense open subset of Gr(N � d �

1, Hm) such that e(L+(A) \ C)  max{e(A,C)� 1, 0} for L 2 U A,C
X .

The proof of (5) is clear if k is algebraically closed. In general, let k be an algebraic
closure of k and let ⇡Y : Yk ! Y denote the base change to k for any Y 2 Schk .
For any x 2 6, let Sx = ⇡�1X (x) and let S =

S
x26 Sx . Then S ,! Xk is a finite

set of closed points contained in Ak . Let W
0 be the union of lines lxy in PN

k such
that x 6= y 2 S. Since S ⇢ Ak and A \ Hm = ;, we see that W 0 6⇢ Hm,k . Since
d � 1 = dim(W 0), we can apply Lemma 4.2 to assume that W 0 \ L = ; for all
L 2 U A,C

Xk
:= U Ak ,Ck

Xk
.

Since Gr(N � d � 1, Hm,k) contains an affine space Ad(N�d)

k as a dense open
subset, we can replace U A,C

Xk
by U A,C

Xk
\Ad(N�d)

k and assume that U A,C
Xk
✓ Ad(N�d)

k .
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Since k is infinite, the set of points in Ad(N�d)

k with coordinates in k is dense in
Ad(N�d)

k . Hence, there is a dense subset of U A,C
Xk

each of whose points L is defined
over k, i.e., L 2 Gr(N � d � 1, Hm). Let L 2 Gr(N � d � 1, Hm) be such that (1)
⇠ (4) hold and W 0 \ Lk = ;. We consider the Cartesian square

Xk

⇡X

✏✏

�Lk // Pdk
⇡Pd

✏✏
X

�L // Pdk .

(4.4)

Claim. For a closed point x 2 U and y := �L(x), one has |⇡�1Pd (y)|  |⇡�1X (x)|,
and the equality holds if and only if [k(x) : k(y)]sep = 1. Furthermore, this equality
holds if the map �Lk : ⇡�1X (x)! ⇡�1Pd (y) is injective.

It is an elementary fact that |⇡�1X (x)|=[k(x) :k]sep and |⇡�1Pd (y)|=[k(y) :k]sep.
The inclusions k ,! k(y) ,! k(x) and therefore the equality [k(x) : k]sep =

[k(y) : k]sep · [k(x) : k(y)]sep implies the first assertion. Next, the injectivity of
the map �Lk : ⇡�1X (x) ! ⇡�1Pd (y) implies that |⇡�1Pd (y)| � |⇡�1X (x)|. The second
part of the Claim follows.

To prove (5) in general, it suffices to show that the finite field extension
k(�L(x)) ,! k(x) is separable as well as purely inseparable for each x 2 6. Now,
the separability of this extension is equivalent to the assertion x /2 RL(X), and this
is guaranteed by (3). To prove inseparability, it is enough to show, using the above
claim, that �Lk : ⇡�1X (x)! ⇡�1Pd (�L(x)) is injective. But this follows immediately
from the fact that W 0 \ Lk = ;. The proof of the lemma is complete.

Lemma 4.4. Let ↵ 2 zq(X |Hm, n) be an admissible cycle. Let C ⇢ X \ Hm be
a locally closed subset as in Lemma 4.3. We can then find a dense open subset
U Z ,C
X ⇢ Gr(N � d � 1, Hm) such that the following hold for every L 2 U Z ,C

X .

(1) X \ L = ;;
(2) For every irreducible component Z of ↵, no irreducible component of the sup-

port of the cycle �⇤L � �L⇤([Z ])� [Z ] coincides with Z .

Proof. It is enough to consider the case when ↵ = [Z ] is an irreducible admissible
cycle. For any L 2 Gr(N�d�1, Hm) satisfying (1), we need to prove the following
to obtain (2):

(i) the ramification locus RnL(X) of �nL does not contain Z , where �
n
L := �L ⇥

Id⇤n
k
;

(ii) �nL |Z : Z ! �nL(Z) is birational.
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Let prX : X ⇥ ⇤n
k ! X and pr⇤n

k
: X ⇥ ⇤n

k ! ⇤n
k be the projection maps. We

fix a closed point z 2 Z and set x = prX (z), y = pr⇤n
k
(z),W = �nL(Z) and A =

prX (Z). Then A is a finite disjoint union of locally closed subsets of X . Since Z is
an admissible cycle having modulus Hm , we must have A \ Hm = ;. In particular,
x 2 U . It is shown in the proof of Theorem 5.4 that ({y}⇥ X) \ Z is a finite set of
closed points away from ({y}⇥ Hm). In particular, D := prX (({y}⇥ X) \ Z) is a
finite set of closed points of X containing x and contained in A. This implies that
Sec(x, D) is a closed subset of PN

k of dimension one which is not contained in Hm .
Hence, we conclude from Lemma 4.2 that Gr(Sec(x, D), N � d � 1, Hm) is dense
open in Gr(N � d � 1, Hm).

We have shown in the proof of Lemma 4.3 that there is a dense open subset
UZ ,1 ⇢ Gr(N � d � 1, Hm) such that Tx (X) \ L = ; for each L 2 UZ ,1. Since
the left square in (4.2) is Cartesian and �L is finite, it follows that its restriction
�UL : U ! Pdk \ Hm is also finite. Since U is furthermore smooth, it follows that
�UL is a finite and flat morphism of smooth schemes.

The flatness of �UL now implies that there is an open neighborhood V ⇢ U of x
such that �L : V ! Pdk is étale. In particular, �nL : V⇥⇤n

k ! Pdk⇥⇤n
k is étale. This

implies that there is an open subset V 0 of Z containing z such that �nL |V 0 : V
0
! W

is unramified. We set U Z ,C
X = Gr(Sec(x, D), N�d�1, Hm)\UZ ,1\U A,C

X , where
U A,C
X is as in Lemma 4.3.
We fix any L 2 U A,C

X . Since RnL(X) = RL(X)⇥⇤n
k and no component of A

is in RL(X) by Lemma 4.3, it follows that Z 6⇢ RnL(X), proving (i). To prove (ii), it
suffices to show that z /2 RnL(Z), {z} = (�nL)

�1(�nL(z)) \ Z and k(�
n
L(z))

'

�! k(z),
because they imply that the map OW,�nL (z) ! OZ ,z is an isomorphism, and hence
induces isomorphism of the function fields.

We have shown above that z /2 RnL(Z). Since the map k(�L(x)) ! k(x) is
an isomorphism by Lemma 4.3, it follows that the map �nL : ⇤n

k(x) ! ⇤n
k(�L (x))

is also an isomorphism. In particular, the map k(�nL(z)) ! k(z) is an isomor-
phism. To show {z} = (�nL)

�1(�nL(z)) \ Z , note that if there is a closed point
z0 2 ((�nL)

�1(�nL(z)) \ Z) \ {z}, then x 0 := prX (z0) 2 D \ L+(x), where we recall
that L+(x) = ��1L (�L(x)) \ {x}. But this can happen only if `xx 0 \ L 6= ;, which is
not the case because L 2 Gr(Sec(x, D), N � d � 1, Hm). This concludes the proof
of (ii) and the lemma.

Remark 4.5. We a make few comments on Lemma 4.3. To some readers, this
result may appear similar to [13, Lemma 3.5.4]. But we caution the reader that the
context, the underlying hypotheses and the proofs of the two results are different.
We explain these differences:

(1) The proof of Lemma 4.3 does not work if we replace X by X\AN
k . The reason

is that even if X intersects Lm,1 properly, we may not be able to find points
on A \ C whose tangent spaces will intersect Lm,1 properly, and this breaks
the second part of the proof of Lemma 4.3.
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Since [13] considers the affine case, Levine cannot therefore use the above
argument. Instead, he uses the idea of reimbedding X into a big enough pro-
jective space which allows him to take care of the above intersection problem
associated to the tangent spaces;

(2) Contrary to [13], we cannot use the reimbedding idea. The reason is that we
may not be able to realize our modulus Hm as pull-back of any hypersurface on
the bigger projective space under the reimbedding. This in turn may not allow
us to realize Hm as pull-back of a hypersurface under a linear projection;

(3) The modulus condition imposes more severe restrictions on the choice of L
than in the situation of [13]. Thus we need to make more refined choices and
without changing the given embedding of X .

Let W = {W1, · · · ,Ws} be a finite collection of locally closed subsets of X \

Hm and let e : W ! Z�0 be a set function. Let K denote the function field of
Gr(N � d � 1, Hm) and let Lgen 2 Gr(N � d � 1, Hm)(K ) be the generic point of
Gr(N � d � 1, Hm). This can be seen as a K -rational point of Gr(N � d � 1, Hm).

Lemma 4.6. The linear projection away from Lgen defines a finite map �Lgen :

XK ! PdK satisfying the following conditions:

(1) The restriction �ULgen : UK ! PdK \ Hm,K is finite and flat;
(2) DK = �⇤Lgen(Hgen) for the hyperplane Hgen = (Hm \ Pd)K in PdK ;
(3) The pull-back �⇤Lgen : zq(PdK |Hgen, •)! zq(XK |DK , •) is defined;
(4) (�⇤Lgen� �Lgen⇤� pr

⇤

K/k � pr
⇤

K/k) maps z
q
W,e(X |D, •) to zqWK ,e�1(XK |DK ,•).

Proof. Having established Lemmas 4.3 and 4.4, the proof of this lemma is identical
to that of [13, Lemma 3.5.6]. The modulus condition plays no role in this deduction.
Using Lemmas 4.3 and 4.4 and the argument of [13] verbatim, one shows that given
a cycle ↵ 2 zqW,e(X |D, p), there exists a dense open subset U↵X ✓ Gr(N � d �
1, Hm) such that for each L 2 U↵X , the linear projection away from L defines a
finite map �L : X ! Pdk satisfying the required conditions. This map is flat on U
as shown in the proof of Lemma 4.4. Taking L = Lgen and using Lemma 2.5, we
get (1), (3) and (4). The map �Lgen⇤ is defined by [11, Proposition 2.10].

Item (2) follows at once from our choice of Lgen and the elementary property
of linear projection that a hyperplane section X \ H in PN

k is a pull-back of a
hyperplane of Pdk via �L if and only if L ⇢ H .

We are now ready to prove our main theorem on the moving lemma for the
higher Chow groups of projective schemes with very ample modulus.

Theorem 4.7. Let k be any field and let X be an equidimensional reduced pro-
jective scheme of dimension d � 1 over k. Let D ⇢ X be a very ample effective
Cartier divisor such that X \D is smooth over k. LetW = {W1, · · · ,Ws} be a finite
collection of locally closed subsets of X and let e : W ! Z�0 be a set function.
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Then, the inclusion zqW,e�1(X |D, •) ,! zqW,e(X |D, •) is a quasi-isomorphism. In
particular, the inclusion zqW(X |D, •) ,! zq(X |D, •) is a quasi-isomorphism.

Proof. The second part easily follows from the first part by induction because
zqW(X |D, •) = zqW,0(X |D, •) and zq(X |D, •) = zqW,q(X |D, •). We thus need

to show that the quotient complex zqW,e(X |D,•)

zqW,e�1(X |D,•)
is acyclic.

First suppose that the theorem is true for all infinite fields and let k be a finite
field. Take a homology class ↵ in this quotient. We choose two distinct primes `1
and `2, other than char(k), and take pro-`i -extensions ◆i : Spec (ki )! Spec (k) for
i = 1, 2. Then the case of infinite fields tells us that ◆⇤i (↵) = 0 for i = 1, 2. Hence, a
descent argument implies that there are finite extensions ⌧i : Spec (k0i )! Spec (k)
of relatively prime degrees such that ⌧ ⇤i (↵) = 0 for i = 1, 2. Using the projection
formula for finite and flat morphisms (see [11, Theorem 3.12]), this implies that
d1↵ = 0 = d2↵, where (d1, d2) = 1. We conclude that ↵ = 0.

We can now assume that k is infinite. We setW0
= {W1 \ D, · · · ,Ws \ D}.

Since a cycle in zq(X |D, p) does not intersect D⇥⇤p, we see that zqW(X |D, •) =

zqW0(X |D, •), and we may assume that W \ D = ; for each W 2W .
Since D is very ample, we can choose a closed embedding ◆X : X ,! PN

k
and a hyperplane Hm ⇢ Pnk such that D = ◆⇤(Hm). If X = PN

k , we are done by
Theorem 3.10. So we can assume that 1  d  N � 1.

It follows from Lemma 4.6 that the map

⇣
�⇤Lgen� �Lgen⇤� pr

⇤

K/k� pr
⇤

K/k

⌘
:

zqW,e(X |D, •)

zqW,e�1(X |D, •)
!

zqWK ,e(XK |DK , •)

zqWK ,e�1(XK |DK , •)
(4.5)

is zero. On the other hand, each �⇤Lgen � �Lgen⇤ factors as

zqWK ,e(XK |DK , •)

zqWK ,e�1(XK |DK , •)

�Lgen⇤
���!

zq�Lgen (WK ),e0
�
PdK |Hgen, •

�
zq�Lgen (WK ),e0�1

�
PdK |Hgen, •

�
�⇤Lgen
���!

zqWK ,e(XK |DK , •)

zqWK ,e�1(XK |DK , •)

for some e0 (see [10, Section 6C]). It follows from Corollary 3.11 that the middle
complex is acyclic. This in turn implies that �⇤Lgen � �Lgen⇤ = 0 is zero on the level
of homology. Combining this with (4.5), we conclude that pr⇤K/k is zero on the

level of homology. By Proposition 2.8, the complex zqW,e(X |D,•)

zqW,e�1(X |D,•)
is acyclic. This

concludes the proof of the theorem.
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5. Applications and remarks

In this section we apply our moving lemma to prove certain contravariant functo-
riality for higher Chow groups with modulus. We prove a vanishing theorem on
higher Chow groups with ample modulus. We end the section by explaining why
the very ampleness condition is crucial for proving the moving lemma.

5.1. Contravariance

Let X be a quasi-projective scheme over a field k and let D ⇢ X be a very ample
effective Cartier divisor. Recall from [11, Theorem 3.12] if that X is smooth, there
is a cap product \X : CHq(X, p)⌦ZCHq

0

(X |D, p0)! CHq+q 0(X |D, p+ p0).We
prove the following contravariant functoriality for cycles with modulus.

Theorem 5.1. Let f : Y ! X be a morphism of quasi-projective schemes over a
field k, where X is projective over k. Let D ⇢ X be a very ample effective Cartier
divisor such that X \D is smooth over k. Suppose that f ⇤(D) is a Cartier divisor on
Y (i.e., no minimal or embedded component of Y maps into D). Then there exists a
map

f ⇤ : zq(X |D, •)! zq
�
Y | f ⇤(D), •

�
in the derived category of Abelian groups. In particular, there is a pull-back f ⇤ :

CHq(X |D, p) ! CHq(Y | f ⇤(D), p) for every p, q � 0. If X and Y are smooth
and projective, then for every a 2 CH⇤(Y, •) and b 2 CH⇤(X |D, •), there is a
projection formula f⇤(a \Y f ⇤(b)) = f⇤(a) \X b.

Proof. The proof is a standard application of the moving lemma for Chow groups.
Set E = f ⇤(D). For 0  i  dim(Y ), let Xi be the set of points x 2 X such
that dim( f �1(x)) � i , where we assume dim(;) = �1. LetW be the collection
of the irreducible components of all Xi . The reader can check that W is a finite
collection and the pull-back f ⇤ : zqW(X |D, •) ! zq(Y |E, •) is defined (see [10,

Theorem 7.1]). We thus have maps zq(X |D, •)
q.iso
 zqW(X |D, •)

f ⇤
! zq(Y |E, •)

and Theorem 4.7 says that the arrow on the left is a quasi-isomorphism. This proves
the first part of the theorem.

To prove the projection formula, we can assume using Theorem 4.7 that b 2
CH⇤(X |D, •) is represented by a cycle Z 2 zqW(X |D, •), where W is as con-
structed above. By [11, Lemma 3.10], there is a finite collection of locally closed
subsets C of Y such that Z 0 ⇥ f ⇤(Z) 2 zq1Y

(Y |E, •) for all Z 0 2 zqC(Y, •). By the
moving lemma for Bloch’s higher Chow groups, we can assume that a 2 CH⇤(Y, •)
is represented by a cycle Z 0 2 zqC(Y, •). In this case, it is straightforward to check
that f⇤(Z 0) ⇥ Z 2 zq1X

(X |D, •) and f⇤ � 1⇤Y (Z 0 ⇥ f ⇤(Z)) = 1⇤X ( f⇤(Z 0) ⇥ Z).
This finishes the proof.

Remark 5.2. We remark that a pull-back map on higher Chow groups with mod-
ulus was constructed in [11, Theorem 4.3]. But Theorem 5.1 cannot be deduced
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from [11, Theorem 4.3]. The reason is that we make no assumption on the map f
while [11] assumes D and E to be the pull-backs of a divisor on a base scheme S
over which both X and Y should be smooth.

We also remark that Theorem 5.1 proves a stronger statement than giving a
pull-back map on the higher Chow groups with modulus. This stronger version
of [11, Theorem 4.3] is not yet known.

Corollary 5.3. Let r � 1 be an integer and let f : Y ! Prk be a morphism
of quasi-projective schemes over a field k. Let D ⇢ Prk be an effective Cartier
divisor such that f ⇤(D) is a Cartier divisor on Y . Then, there exists a pull-back
f ⇤ : CHq(Prk |D, p)! CHq(Y | f ⇤(D), p) for every p, q � 0. If Y is also smooth
and projective, then for every a 2 CH⇤(Y, •) and b 2 CH⇤(Prk |D, •), there is a
projection formula f⇤(a \Y f ⇤(b)) = f⇤(a) \X b.

Proof. If D = 0, then it is just an application of the moving lemma for usual higher
Chow groups. If D 6= 0 then it is very ample, so that Theorem 5.1 applies.

5.2. A vanishing theorem

The following result shows that the higher Chow groups of projective schemes (not
necessarily smooth) with ample modulus are nontrivial only in high codimension.
More precisely:

Theorem 5.4. Let X be a projective scheme of dimension d � 1 over a field k. Let
D ⇢ X be an ample effective Cartier divisor. Then zs(X |D, p) = 0 for s > 0. In
particular, CHs(X |D, p) = 0 for s > 0.

Proof. We can find a closed embedding ◆X : X ,! PN
k and a hyperplane H ,! PN

k
such that nD = ◆⇤X (H) for some n � 0. Suppose zs(X |D, p) 6= 0 for some s 2 Z.
Let ↵ 2 zs(X |D, p) be a nonzero admissible cycle and let Z be an irreducible
component of ↵. Let prPNk : PN

k ⇥⇤p
k ! PN

k and pr⇤p
k

: PN
k ⇥⇤p

k ! ⇤p
k denote

the projection maps. Let y 2 ⇤p
k be any scheme point. For any map W ! ⇤p

k ,
let Wy denote the fiber Spec (k(y)) ⇥⇤p

k
W over y. The modulus condition for Z

implies that Zy is a closed subscheme of PN
y disjoint from Hy . In particular, Zy is a

projective k(y)-scheme which is a closed subscheme of (PN
y \Hy) ' AN

k(y). Hence,
it must be finite. We have thus shown that the projection map Z ! ⇤p

k is projective
and quasi-finite, and hence finite. In other words, we must have dim(Z) = s + p 
p, i.e., s  0. Thus zs(X |D, p) = 0 if s > 0, as desired.

5.3. Sharpness of the very ampleness condition

We now show by an example that we cannot weaken the very ampleness condition
to mere ampleness for the modulus divisor D ⇢ X . This also shows that the moving
lemma for cycles with modulus on smooth affine schemes cannot be proven using
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the method of linear projections, in general. This partly explains the need for the
Nisnevich sheafification of the cycle complex for the moving lemma of W. Kai [7].

Let X be an elliptic curve over an algebraically closed field k and let D ⇢ X
be a closed point. It is clear that OX (D) is ample. We claim that there exists no
pair ( f, D0) consisting of a map f : X ! P1k and an effective Cartier divisor
D0 2 Div(P1k) such that D = f ⇤(D0).

Suppose there does exist such a pair ( f, D0). Observe that we must have d :=

deg(D0) > 0 and D0 is very ample. Let ◆ : P1k ,! Pdk denote the closed embedding
such that OP1k

(D0) ' ◆⇤(OPdk
(1)). This gives a regular map ◆ � f : X ! Pdk such

that (◆ � f )⇤(OPdk
(1)) = OX (D). This implies that OX (D) is globally generated.

However, by Riemann-Roch, one checks immediately that h0(D) = 1 in our case,
i.e., dim(|D|) = 0 and the unique element of |D| vanishes at D, a contradiction.

The only technique yet available in the literature to prove the moving lemma
for Bloch’s higher Chow groups of smooth affine schemes is the method of lin-
ear projections. Bloch proved the moving lemma for higher Chow groups of all
smooth quasi-projective schemes (see [3] and [4, Proposition 2.5.2]). But his proof
depends on the moving lemma for smooth affine schemes proven in [2] using linear
projections.

Let us now consider the case of moving lemma for higher Chow groups with
modulus on smooth affine schemes. Let U be a smooth affine scheme over an alge-
braically closed field k of characteristic zero. Let D ⇢ U be a principal effective
divisor (u) such that the induced map u : U \ D ! A1k is smooth. We use the
above example to show that even in this special case, the method of linear projec-
tions cannot be used to prove the moving lemma for the higher Chow groups on U
with modulus D. This makes proving the moving lemma for cycles with modulus
on smooth affine or projective schemes very subtle and challenging.

Let X be an elliptic curve over k as above and let D ,! X be a closed point.
There exists an affine neighborhood V ,! X of D such that D = (u) is principal
on V . Let u : V ! A1k be the induced dominant map. We can find an affine
neighborhood U ,! V of D such that u : U \ D! A1k is étale.
Proposition 5.5. There exists no pair ( f, D0) consisting of a finite map f : U !
A1k and effective Cartier divisor D0 ,! A1k such that D = f ⇤(D0).
Proof. If such pair ( f, D0) exists, then we get a commutative diagram

U
j 0 //

f
✏✏

X

f 0
✏✏

A1k
j // P1k,

(5.1)

where the horizontal maps are open inclusions and the vertical maps are finite. This
finiteness implies that the above square is Cartesian. This in turn implies that we
have a finite map f 0 : X 0 ! P1k and effective Cartier divisor D0 ,! P1k such that
D = f 0⇤(D0) on X . But we have previously shown that this is not possible.



1546 AMALENDU KRISHNA AND JINHYUN PARK

6. Higher Chow groups with modulus of a line bundle

Let X be a quasi-projective scheme of dimension d � 0 over a field k. Let f : L!
X be a line bundle and let ◆ : X ,! L be the 0-section embedding. In this case,
one knows that there is an isomorphism ◆⇤ : CH⇤(L, •)

'

�! CH⇤(X, •) (up to a shift
in dimension) of ordinary higher groups. Since the Chow groups with modulus are
supposed to be the ‘relative motivic cohomology’ of the pair (L, ◆(X)), one expects
CH⇤(L|X, •) to be trivial.

As an application of the moving techniques of Section 3, we show in this sec-
tion that every cycle in zs(L|X, •) can be moved to a trivial cycle so that this com-
plex is acyclic. This gives an evidence supporting the expectation that the Chow
groups with modulus are the relative motivic cohomology. It also provides exam-
ples where the higher Chow groups of a variety with a modulus in an effective
Cartier divisor are all zero. Note that this can never happen for the ordinary higher
groups. The proof closely follows the arguments of Lemmas 3.5 and 3.8, and Propo-
sition 3.9.

Let H : L⇥A1k!L be the standard fiberwise contraction given explicitly as
follows: for an affine open subsetU=Spec (R) ⇢ X such that f |U is trivial, i.e., of
the form f |U : U⇥A1k ! U , writeL|U = Spec (R[t]). Then, H |U : U⇥A1k⇥A1k !
U ⇥A1k is induced by the polynomial map R[x]! R[t, x], given by x 7! t x .

For n � 0, let Hn : L⇥A1k⇥⇤
n
k ! L ⇥ ⇤

n
k be the map H⇥ Id⇤

n
k
. For any

irreducible closed admissible cycle V 2 zs(L|X, n), let H⇤(V ) denote the cycle as-
sociated to the flat pull-back H�1n (V ). Set V 0=(H⇤(V ))red. We extend H⇤ linearly
to all cycles. Let V ,! L⇥⇤

n
k denote the closure of V and let ⌫V : V N

! L⇥⇤
n
k

be the composition of the normalization and the inclusion. Let V 0 denote the clo-
sure of V 0 in L⇥⇤

n+1
k and let ⌫V 0 : V

0N
! L⇥⇤

n+1
k denote the map induced by

the normalization of V 0.
Lemma 6.1. V 0 ,! L⇥⇤n+1

k has modulus X .
Proof. Since the modulus condition is local on L, it is enough to show that V 0 \
( f �1(U)⇥⇤n+1

k ) has modulusU for every affine open subsetU ⇢ X over which f
is trivial. So we may assume X = Spec (R) is affine andL = Spec (R[X]) is trivial.
In this case, H : U ⇥A1k ⇥A1k ! U ⇥A1k is given by H(u, x, y) = (u, xy). Since
U plays no role in this map, we can drop it and assume U = Spec (k) so that H :

A1k ⇥A1k ! A1k is the multiplication map. This map uniquely extends to a rational
map H : P1k⇥P1k 99K P1k , given by H ((X0; X1), (T0; T1)) = (X0T0; X1T1), which
is regular on W = (P1k ⇥ P1k) \ {(0,1), (1, 0)}.

We next observe that since the modulus divisor is U = {0} ,! A1k , to check
the modulus condition for H�1(V ) is equivalent to check the modulus ({0} ⇥ A1k)
for (H |W⇥⇤n

k
)�1(V1), where V1 is the closure of V in P1k⇥⇤n

k . We can thus replace

A1k by P1k as the target space of H and V 0 by its closure in P1k ⇥ ⇤
n+1
k in order to

check the modulus condition for V 0.
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Let ⇡ : 0! P1k ⇥ P1k be the blow-up along 6 = {(0,1), (1, 0)}. It is easily
checked (see the proof of Lemma 3.5) that 0 ,! P1k ⇥ P1k ⇥ P1k is the closed sub-
scheme given by 0 = {((X0; X1), (T0; T1), (Y1;Y0)) |X0T0Y0 = X1T1Y1}. Define
a map H : 0! P1k by H ((X0; X1), (T0; T1), (Y1;Y0)) = (Y1;Y0).

We claim that H |W = H . To check this, let U1 = {((X0; X1), (T0; T1)) |X1 6=
0 6= T0} and U2 = {((X0; X1), (T0; T1)) |X0 6= 0 6= T1} be two open subsets of
P1k⇥P1k . In the affine coordinates (x0, t1) 2 U1 ' A2k , the restriction of H onU1\W
is given by H(x0, t1) = (x0; t1) and the restriction of H on ⇡�1(U1) \W \ (x0 6=
0) is given by H

�
(x0, t1, (1; x�10 t1)

�
= (1; x�10 t1) = (x0; t1) = H(x0, t1). The

restriction of H on ⇡�1(U1) \ W \ (t1 6= 0) is given by H
�
(x0, t1, (x0t�11 ; 1)

�
=

(x0t�11 ; 1) = (x0; t1) = H(x0, t1).
The restriction of H on U2 \ W is given by H(x1, t0) = (t0; x1) and the

restriction of H on ⇡�1(U2) \ W \ (x1 6= 0) is given by H
�
(x1, t0, (x�11 t0; 1)

�
=

(x�11 t0; 1) = (t0; x1) = H(x1, t0). The restriction of H on ⇡�1(U1)\W \ (t0 6= 0)
is given by H

�
(x1, t0, (1; x1t�10 )

�
= (1; x1t�10 ) = (t0; x1) = H(x1, t0). Since ⇡ is

an isomorphism away from U1 [U2, we have shown that H |W = H .
It follows from the claim that there is a commutative diagram

⇡�1(W )
� � j1 //

'

✏✏

0

⇡
✏✏✏✏

H

��@
@

@
@

@
@

@
@

W � � j //
99P1k ⇥ P1k

H // P1k .

(6.1)

Let E = ⇡⇤((0,1)) denote one of the two components of the exceptional divisor
for ⇡ and let D = U = {0} ,! P1k . We have ⇡⇤(D ⇥ P1k) = (D ⇥ P1k) + E .
Similarly, we have ⇡⇤(P1k⇥ {1}) = (P1k⇥ {1})+ E in Div(0). Set En = E⇥⇤

n
k .

Let Z ,! 0⇥⇤
n
k denote the strict transform of V

0. Since Hn(Z \ (⇡�1(W )⇥

⇤n
k )) = V and since Hn is projective, we must have Hn(Z) = V . We remark

at this stage that ensuring the projectivity of Hn was the reason for us to replace
A1k ⇥A1k by P1k ⇥ P1k and A1k by P1k as the source and the target of H .

We now have a commutative diagram

Z N
⌫Z

""EE
EE

EE
EE

E

f //

g

✏✏

V N

⌫V
✏✏

0 ⇥⇤
n
k

Hn //

⇡n
✏✏

P1k ⇥⇤
n
k

V 0
N
⌫V 0

// P1k ⇥⇤
n+1
k ,

(6.2)
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where f and g are the unique maps induced by the universal property of normal-
ization for dominant maps. Since f is a surjective map of integral schemes, the
modulus condition for V implies that (⌫V � f )⇤(P1k ⇥ F1n ) � (⌫V � f )⇤(D ⇥⇤

n
k )

on ZN . In particular, we get (Hn � ⌫Z )⇤(P1k ⇥ F1n ) � (Hn � ⌫Z )⇤(D⇥⇤
n
k ) on ZN .

Equivalently, we have

⌫⇤Z
�
0 ⇥ F1n

�
� ⌫⇤Z

⇣
H⇤(D)⇥⇤

n
K

⌘
. (6.3)

Since H⇤(D) = (A1k ⇥ {0}) + ({0}⇥⇤k), we get j⇤1,n � H
⇤

n(D⇥⇤
n
k ) = j⇤1,n(A1k ⇥

F0n,n+1)+ j⇤1,n(D⇥⇤
n+1
k ), where j1 : W ,! 0 is the inclusion. Since A1k⇥ F0n,n+1

and D⇥⇤
n+1
k are irreducible, we get H⇤(D)⇥⇤

n
k � (P1k⇥ F0n,n+1)+ (D⇥⇤

n+1
k )

on 0 ⇥⇤
n
k . Combining this with (6.3), we get

⌫⇤Z
�
0 ⇥ F1n

�
� ⌫⇤Z

⇣
D ⇥⇤

n+1
k

⌘
. (6.4)

This in turn implies that

(⇡n � ⌫Z )⇤
⇣
P1k ⇥ F1n+1

⌘
= (⇡n � ⌫Z )⇤

⇣
P1k ⇥ F1n ⇥⇤k

⌘
+ (⇡n � ⌫Z )⇤

⇣
P1k ⇥⇤

n
k ⇥ {1}

⌘
= ⌫⇤Z

�
0 ⇥ F1n

�
+ (⇡n � ⌫Z )⇤

⇣
P1k ⇥⇤

n
k ⇥ {1}

⌘
� ⌫⇤Z

⇣
D ⇥⇤

n+1
k

⌘
+ (⇡n � ⌫Z )⇤

⇣
P1k ⇥⇤

n
k ⇥ {1}

⌘
= ⌫⇤Z

⇣
D ⇥⇤

n+1
k

⌘
+ ⌫⇤Z (En) + ⌫⇤Z

⇣
P1k ⇥⇤

n
k ⇥ {1}

⌘
= (⇡n � ⌫Z )⇤

⇣
D ⇥⇤

n+1
k

⌘
+ ⌫⇤Z

⇣
P1k ⇥⇤

n
k ⇥ {1}

⌘
� (⇡n � ⌫Z )⇤

⇣
D ⇥⇤

n+1
k

⌘
.

Using (6.2), this gives g⇤(⌫⇤V 0(P1k ⇥ F1n+1)) � g⇤(⌫⇤V 0(D ⇥⇤
n+1
k )). We now apply

Lemma 2.6 to conclude that ⌫⇤V 0(P1k ⇥ F1n+1) � ⌫⇤V 0(D ⇥ ⇤
n+1
k ) and this is the

modulus condition for V 0.

Lemma 6.2. V 0 ,! L⇥⇤n+1
k intersects all the faces properly.

Proof. Since H is flat, V 0 intersects properly all the faces of ⇤n+1
k of the form

F ⇥⇤k . Since ◆⇤n+1,n+1,1(V
0) = V , which intersects the faces of ⇤n

k properly, we
see that V 0 intersects F1n+1,n+1 properly. Since V \ (X ⇥⇤n

k ) = ;, we must have
◆⇤n+1,n+1,0(V

0) = 0. We have thus shown that V 0 satisfies the face condition.
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Theorem 6.3. Let X be a quasi-projective scheme over a field k and let f : L! X
be a line bundle. Let ◆ : X ,! L denote the 0-section embedding. Then the cycle
complex zs(L|X, •) is acyclic for all s 2 Z.

Proof. It follows from Lemmas 6.1 and 6.2 that H : L ⇥ A1k ! L defines a
chain homotopy H⇤ : zs(L|X, •) ! zs(L|X, •)[�1] between H⇤0 = (H |L⇥0)⇤

and H⇤1 = (H |L⇥1)⇤. It is clear that H⇤1 = Idzs(L|X,•) and the modulus condition
implies that H⇤0 = 0. It follows that zs(L|X, •) is acyclic.
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S. Agmon, Spectral Properties of Schrödinger Operators and Scattering Theory, 1975.



M. F. Atiyah, Geometry of Yang-Mills Fields, 1979.
Kac M., Integration in Function Spaces and some of its Applications, 1983 (out of print).
J. Moser, Integrable Hamiltonian Systems and Spectral Theory, 1983.
T. Kato, Abstract Differential Equations and Nonlinear Mixed Problems, 1988.
W. H. Fleming, Controlled Markov Processes and Viscosity Solution of Nonlinear Evolution
Equations, 1988.

# V. I. Arnold, The Theory of Singularities and its Applications, 1991.
# J. P. Ostriker, Development of Larger-Scale Structure in the Universe, 1993.
# S. P. Novikov, Solitons and Geometry, 1994.
L. A. Caffarelli, The Obstacle Problem, 1999.
J. Cheeger, Degeneration of Riemannian Metrics under Ricci Curvature Bounds, 2001.

Nuova serie
1. A. Holevo, Probabilistic and Statistical Aspects of Quantum Theory, 2011.

2. On Some Applications of Diophantine Approximations (a translation of Carl Ludwig Siegel’s
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