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Twisted cohomology of arrangements of lines and Milnor fibers

MARIO SALVETTI AND MATTEO SERVENTI

Abstract. Let A be an arrangement of affine lines in C2, with complement
M(A). The (co)homology ofM(A) with twisted coefficients is strictly related
to the cohomology of the Milnor fibre associated to the conified arrangement,
endowed with the geometric monodromy. Although several partial results are
known, even the first Betti number of the Milnor fiber is not understood. We
give here a vanishing conjecture for the first homology, which is of a different
nature with respect to the known results. Let 0 be the graph of double points
of A: we conjecture that if 0 is connected then the geometric monodromy acts
trivially on the first homology of the Milnor fiber (so that the first Betti number
is combinatorially determined in this case). This conjecture depends only on the
combinatorics of A.We prove it in some cases with stronger hypothesis.

In the final parts, we introduce a new description in terms of the group given
by the quotient of the commutator subgroup of ⇡1(M(A)) by the commutator of
its length-zero subgroup. We use that to deduce some new interesting cases of a-
monodromicity, including a proof of the conjecture under some extra conditions.

Mathematics Subject Classification (2010): 55N25 (primary); 57M05 (sec-
ondary).

1. Introduction

Let A := {`1, . . . , `n} be an arrangement of affine lines in C2, with complement
M(A). Let L be a rank-1 local system onM(A), which is defined by a unitary
commutative ring R and an assignment of an invertible element ti 2 R⇤ for each
line `i 2 A. Equivalently, L is defined by a module structure on R over the fun-
damental group ofM(A) (such structure factorizes through the first homology of
M(A)). By “coning”A one obtains a three-dimensional central arrangement, with
complement fibering over C⇤. The Milnor fiber F of such fibration is a surface of
degree n + 1, endowed with a natural monodromy automorphism of order n + 1. It

Partially supported by INdAM and by Università di Pisa under the “PRA – Progetti di Ricerca
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is well known that the trivial (co)homology of F with coefficients in a commutative
ring A, as a module over the monodromy action, is obtained by the (co)homology
ofM(A) with coefficients in R := A[t±1], where here the structure of R as a
⇡1(M(A))-module is given by taking all the ti ’s equal to t and the monodromy
action corresponds to t-multiplication. For reflection arrangements, relative to a
Coxeter group W, many computations were done, especially for the orbit space
MW(A) := M(A)/W, which has an associated Milnor fiber FW := F/W : in
this case we know a complete answer for R = Q[t±1], for all groups of finite
type (see [11, 12, 21]), and for some groups of affine type [6–8] (based on the tech-
niques developed in [13, 30]). For R = Z[t±1] a complete answer is known in
case An (see [5]). Some results are known for (non quotiented) reflection arrange-
ments (see [25, 31]). A big amount of work in this case has been done on related
questions, when R = C, in that case the ti ’s being non-zero complex numbers,
trying to understand the jump-loci (in (C⇤)n) of the cohomology (see for exam-
ple [9, 10, 16, 18, 24, 34]).

Some algebraic complexes computing the twisted cohomology ofM(A) are
known (see for example the above cited papers). In [22], the minimal cell struc-
ture of the complement which was constructed in [33] (see [15, 28]) was used to
find an algebraic complex which computes the twisted cohomology, in the case of
real defined arrangements (see also [23]). The form of the boundary maps depends
not only on the lattice of the intersections associated to A but also on its oriented
matroid: for each singular point P of multiplicity m there are m � 1 generators in
dimension 2 whose boundary has non vanishing components along the lines con-
tained in the “cone” of P and passing above P.

Many of the specific examples of arrangements with non-trivial cohomology
(i.e., having non-trivial monodromy) which are known are based on the theory of
nets and multinets (see [19]): there are relatively few arrangements with non trivial
monodromy in cohomology and some conjecture claim very strict restrictions for
line arrangements (see [37]).

In this paper we state a vanishing conjecture of a very different nature, which is
very easily stated and which involves only the lattice associated to the arrangement.
Let 0 be the graph with vertex setA and edge set which is given by taking an edge
(`i , ` j ) iff `i \ ` j is a double point. Then our conjecture is as follows:

Conjecture 1.

Assume that 0 is connected; thenA has trivial monodromy. (1.1)

This conjecture is supported by several “experiments”, since all computations we
made confirm it. Also, all non-trivial monodromy examples we know have discon-
nected graph 0.We give here a proof holding with further restrictions. Our method
uses the algebraic complex given in [22] so our arrangements are real.

An arrangement with trivial monodromy will be called a-monodromic. We
also introduce a notion of monodromic triviality over Z. By using free differential
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calculus, we show that A is a-monodromic over Z iff the fundamental group of
the complementM(A) of the arrangement is commutative modulo the commutator
subgroup of the length-zero subgroup of the free group Fn. As a consequence, we
deduce that if G := ⇡1(M(A)) modulo its second derived group is commutative,
thenA has trivial monodromy over Z.

In the final section we give an intrinsic characterization of the a-monodromicity.
Let K be the kernel of the length map G ! Z.We introduce the group H :=

[G,G]

[K ,K ]
,

and we show that such group exactly measures the “non-triviality” of the first ho-
mology of the Milnor fiber F, as well as its torsion. Any question about the first
homology of F is actually a question about H. To our knowledge, H appears here
for the first time (a preliminary partial version is appearing in [32]). We use this de-
scription to give some interesting new results about the a-monodromicity of the
arrangement. First, we show that if G decomposes as a direct product of two
groups, each of them containing an element of length 1, then A is a-monodromic
(Theorem 8.11). This includes the case when G decomposes as a direct product
of free groups. As a further interesting consequence, an arrangement which de-
composes into two subarrangements which intersect each other transversally, is a-
monodromic.

Also, we use this description to prove our conjecture under the hypothesis that
we have a connected admissible graph of commutators (Theorem 8.13): essentially,
this means to have enough double points `i\` j which give as relation (mod [K , K ])
the commutator of the fixed geometric generators �i ,� j of G.

After having finished our paper, we learned about the paper [2] were the graph
of double points is introduced and some partial results are shown, by very different
methods.

2. Some recalls

We recall here some general constructions (see [36], also as a reference to most of
the recent literature). Let M be a space with the homotopy type of a finite CW-
complex with H1(M; Z) free Abelian of rank n, having basis e1, . . . , en. Let t =

(t1, . . . , tn) 2 (C⇤)n and denote by Ct the Abelian rank one local system over M
given by the representation

� : H1(M; Z) �! C⇤

= Aut(C)

assigning ti to ei .
Definition 2.1. With this notation one calls

V (M) =

�
t 2 (C⇤)n : dimC H1(M; Ct ) � 1

 
the (first) characteristic variety of M .

There are several other analogous definitions in all (co)homological dimen-
sions, as well as refined definitions keeping into account the dimension actually
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reached by the local homology groups. For our purposes here we need to consider
only the above definition.

The characteristic variety of a CW-complex M turns out to be an algebraic
subvariety of the algebraic torus (C⇤)b1(M) which depends only on the fundamental
group ⇡1(M) (see for example [10]).

Let now A be a complex hyperplane arrangement in Cn . One knows that
the complementM(A) = Cn

\

S
H2A H has the homotopy type of a finite CW-

complex of dimension n. Moreover, in this case one knows by a general result
(see [1]) that the characteristic variety of M is a finite union of torsion translated
subtori of the algebraic torus (C⇤)b1(M).

Nowwe need to briefly recall two standard constructions in arrangement theory
(see [26] for details).

Let A = {H1, . . . , Hn} be an affine hyperplane arrangement in Cn with coor-
dinates z1, . . . , zn and, for every 1  i  n, let ↵i be a linear polynomial such that
Hi = ↵�1

i (0). The cone cA of A is a central arrangement in Cn+1 with coordi-
nates z0, . . . , zn given by {

fH0,fH1, . . . ,fHn} wherefH0 is the coordinate hyperplane
z0 = 0 and, for every 1  i  n, eHi is the zero locus of the homogenization of ↵i
with respect to z0.

Now let eA = {
eH0, . . . , eHn} be a central arrangement in Cn+1 and choose co-

ordinates z0, . . . , zn such that eH0 = {z0 = 0}; moreover, for every 1  i  n;
let e↵i (z0, . . . , zn) be such that fHi = e↵i�1(0). The deconing of eA is the arrange-
ment d eA in Cn given by {H1, . . . , Hn} where, if we set for every 1  i  n,
↵i (z1, . . . , z1) = e↵i (1, z1, . . . , zn), Hi = ↵�1

i (0). One easily sees thatM(cA) =

M(A) ⇥ C⇤ (and converselyM( eA) =M(d eA) ⇥ C⇤).
The fundamental group ⇡1(M( eA))) is generated by elementary loops �i ,

i = 0, . . . , n, around the hyperplanes and in the decomposition ⇡1(M(A)) '

⇡1(M(dA)) ⇥ Z the generator of Z = ⇡1(C⇤) corresponds to a loop going around
all the hyperplanes. The generators can be ordered so that such a loop is represented
by �0 . . .�n. Choosing eH0 as the hyperplane at infinity in the deconing A = d eA,
one has (see [10])

V ( eA) =

�
t 2 (C⇤)n+1 : (t1, . . . , tn) 2 V (dA) and t0 · · · tn = 1

 
.

It is still an open question whether the characteristic variety V ( eA) is combinatori-
ally determined, that is, determined by the intersection lattice L( eA). Actually, the
question is partially solved: thanks to the above description we can write

V ( eA) = V̌ ( eA) [ T ( eA),

where V̌ ( eA) is the union of all the components of V ( eA) passing through the unit
element 1 = (1, 1, . . . , 1) and T ( eA) is the union of the translated tori of V ( eA).

The “homogeneous” part V̌ ( eA) is combinatorially described through the reso-
nance variety

R1( eA) :=

�
a 2 A1 : H1(A•, a ^ ·) 6= 0
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introduced in [18]. Here A• is the Orlik-Solomon algebra over C of eA. Denote by
V( eA) the tangent cone of V ( eA) at 1; it turns out that V( eA) ⇠

= R1( eA). So, from
R1( eA) we can obtain the components of V ( eA) containing 1 by exponentiation.

It is also known (see [10,24]) thatR1( eA) is a subspace arrangement: R1( eA) =

C1 [ · · · [ Cr with dimCi � 2, Ci \ C j = 0 for every i 6= j .
One makes a distinction between local components CI of R1( eA), associated

to a codimensional-2 flat I in the intersection lattice, which are contained in some
coordinate hyperplanes; and global components, which are not contained in any
coordinate hyperplane of A1. Global components of dimension k � 1 are known to
correspond to (k, d)-multinets [19]. Let A be the projectivization of eA. A (k, d)-
multinet on a multi-arrangement (A,m), is a pair (N ,X ) whereN is a partition of
A into k � 3 classesA1, . . . ,Ak and X is a set of multiple points with multiplicity
greater than or equal to 3 which satisfies a list of conditions. We just recall that
X determines N : construct a graph 00

= 00(X ) with A as vertex set and an edge
from l to l 0 if and only if l \ l 0 /2 X . Then the connected components of 00 are the
blocks of the partitionN .

3. The Milnor fibre and a conjecture

Let Q : C3 ! C be a homogeneous polynomial (of degree n + 1) which defines
the arrangement eA. Then Q gives a fibration

Q
|M( ˜A) : M( ˜A) ! C⇤ (3.1)

with Milnor fibre F = Q�1(1) and geometric monodromy ⇡1(C⇤, 1) ! Aut(F)

induced by x ! e
2⇡ i
n+1 · x (see for example [35,38]).

Let A be any unitary commutative ring and

R := A
⇥
t, t�1

⇤
.

Consider the Abelian representation

⇡1(M( eA)) ! H1(M( eA); Z) ! Aut(R) : � j ! t ·

taking a generator � j into t-multiplication. Let Rt be the ring R endowed with this
⇡1(M( eA))-module structure. Then the following it is well-known:

Proposition 3.1. One has an R-module isomorphism

H⇤(M( eA), Rt ) ⇠
= H⇤(F, A)

where t-multiplication on the left corresponds to the monodromy action on the right.
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In particular for R = Q[t, t�1], which is a PID, one has

H⇤

⇣
M( eA), Q

⇥
t±1
⇤⌘

⇠
= H⇤(F, Q).

Since the monodromy operator has order dividing n + 1, H⇤(M( eA); Rt ) decom-
poses into cyclic modules either isomorphic to R or to R

('d )
, where 'd is a cyclo-

tomic polynomial with d|n + 1 . It is another open problem to find a (possibly
combinatorial) formula for the Betti numbers of F.

It derives from the spectral sequence associated to (3.1) that

n + 1 = dim(H1(M( eA); Q)) = 1+ dim
H1(F; Q)

(µ � 1)

where on the right one has the coinvariants with respect to the monodromy action.
Therefore

b1(F) � n;

actually
b1(F) = n , µ = id.

Definition 3.2. An arrangement eA with trivial monodromy will be called
a-monodromic.

Remark 3.3. The arrangement eA is a-monodromic if and only if
H1(F; Q) ⇠

= Qn
⇣
equivalently: H1(M( eA); R) ⇠

=

⇣
R

(t�1)

⌘n ⌘

LetA = d eA be the affine part. In analogy with Definition 3.2 we say
Definition 3.4. The affine arrangementA is a-monodromic if

H1(M(A); R) ⇠
=

✓
R

(t � 1)

◆n�1
.

By the Kunneth formula one easily gets (with R = Z[t±1] or R = Q[t±1])

H1(M( eA); R) ⇠
= H1(M(A); R) ⌦

R
(tn+1 � 1)

�

R
(t � 1)

. (3.2)

It follows that ifA has trivial monodromy then eA does. The converse is not true in
general (see the example in Figure 6.7).

We can now state the conjecture presented in the introduction.
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Conjecture 1. let 0 be the graph with vertex set A and edge-set all pairs (`i , ` j )
such that `i \ ` j is a double point. Then if 0 is connected thenA is a-monodromic.

Conjecture 2. let 0 be as before. Then if 0 is connected then eA is a-monodromic.
By formula (3.2) Conjecture 1 implies Conjecture 2.

A partial evidence of these conjecture is that the connectivity condition on the
graph of double points gives strong restrictions on the characteristic variety, as we
now show.
Remark 3.5. Let t = (t, . . . , t) 2 (C⇤)n+1 give non-trivial monodromy for the
arrangement eA. Then t 2 V ( eA). Moreover, t can intersect V̌ ( eA) only in some
global component.
The next theorem shows how the connectivity of 0 is an obstruction to the existence
of multinet structures.

Theorem 3.6. If the above graph 0 is connected then the projectivizedA of eA does
not support any multinet structure.

Proof. Choose a set X of points of multiplicity greater than or equal to 3 and build
00(X ) as we said at the end of Section 2. This graph 00(X ) has A as the set of
vertices and the set of edges of 0 is contained in the set of edges of 00(X ). Since
by hypothesis 0 is connected then 00(X ) has at most two connected components
and so X cannot give a multinet structure anA.
Corollary 3.7. If the graph 0 is connected, there is no global resonance component
inR1( eA).

So, according to Remark 3.5, if 0 is connected then non trivial monodromy
could appear only in the presence of some translated subtori in the characteristic
variety.

4. Algebraic complexes

We shall prove the conjectures with extra assumptions on the arrangement. Our
tool will be an algebraic complex which was obtained in [22], as a 2-dimensional
refinement of that in [33], where the authors used the explicit construction of a
minimal cell complex which models the complement. Since these complexes work
for real defined arrangements, this will be our first restriction.

Of course, there are other algebraic complexes computing local system coho-
mology (see the references listed in the introduction). The one in [22] seemed to us
particularly suitable to attack the present problem (even if we were not able to solve
it in general).

First, the complex depends on a fixed and generic system of “polar coordi-
nates”. In the present situation, this just means to take an oriented affine real line
` which is transverse to the arrangement. We also assume (even if it is not strictly
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necessary) that ` is “far away” from A, meaning that it does not intersect the clo-
sure of the bounded facets of the arrangement. This is clearly possible because the
union of bounded chambers is a compact set (the arrangement is finite). The choice
of ` induces a labelling on the lines {`1, . . . , `n} inA,where the indices of the lines
agree with the ordering of the intersection points with `, induced by the orientation
of `.

Let us choose a basepoint O 2 `, coming before all the intersection points of
` withA (with respect to the orientation of `). We recall the construction in [22] in
the case of the Abelian local system defined before.

Let Sing(A) be the set of singular points of the arrangement. For any point
P 2 Sing(A), let S(P) := {` 2 A : P 2 `}; so m(P) = |S(P)| is the multiplicity
of P.

Let iP , i P be the minimum and maximum index of the lines in S(P) (so iP <
i P ). We denote by C(P) the subset of lines inAwhose indices belong to the closed
interval [iP , i P ].We also denote by

U(P) := {` 2 A : ` does not separate P from the basepoint O}.

Let (C⇤, @⇤) be the 2-dimensional algebraic complex of free R-modules having one
0-dimensional basis element e0, n 1-dimensional basis elements e1j , j = 1, . . . , n,
(e1j corresponding to the line ` j ) and ⌫2 =

P
P2Sing(A)m(P)�1 2-dimensional

basis elements: to the singular point P of multiplicity m(P) we associate gen-
erators e2P,h, h = 1, . . . ,m(P) � 1 . The lines through P will be indicized as
` jP,1, . . . , ` jP,m(P) (with growing indices).

As a dual statement to [22, Theorem 2], we obtain:

Theorem 4.1. The local system homology H⇤(M(A); R) is computed by the com-
plex (C⇤, @⇤) above, where

@1
�
e1j
�

= (t j � 1) e0

and

@2(e2P,h) =

X
` j2S(P)

0
BB@

Y
i< j so that
li2U(P)

ti

1
CCA
0
BB@

Y
i2[ jP,h+1! j)

ti �

Y
i< j so that
li2S(P)

ti

1
CCAe1j

+

X
` j2C(P)\U(P)

0
BB@

Y
i< j so that
li2U(P)

ti

1
CCA
0
BB@1�

Y
i jP,h ,i< j
li2S(P)

ti

1
CCA
0
BB@

Y
i� jP,h+1, i< j

li2S(P)

ti �

Y
i� jP,h+1
li2S(P)

ti

1
CCAe1j ,

(4.1)

where [ jP,h+1 ! j) is the set of indices of the lines in S(P) which run from jP,h+1
(included) to j (excluded) in the cyclic ordering of 1, . . . , n.

By convention, a product over an empty set of indices equals 1.
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When R = A[t±1] and ti = t, i = 1, . . . , n, we obtain the local homology
H⇤(M(A); R) by using an analogue algebraic complex, where all ti ’s equal t in
the formulas. In particular (4.1) becomes

@2
⇣
e2P,h

⌘
=

X
` j2S(P)

t#{`i2U(P):i< j}
⇣
t#[ jP,h+1! j)

� t#{`i2S(P): i< j}
⌘
e1j

+

X
` j2C(P)\U(P)

t#{`i2U(P):i< j}+#{`i2S(P):i� jP,h+1,i< j}

⇥

⇣
1�t#{`i2S(P):i jP,h ,i< j}

⌘ ⇣
1� t#{`i2S(P): i� jP,h+1, i� j}

⌘
e1j .

(4.2)

By separating in the first sum the case j � jP,h+1 from the case j  jP,h we have:

@2
⇣
e2P,h

⌘
=

X
` j2S(P)
j� jP,h+1

t#{`i2U(P):i< j}+#{`i2S(P): jP,h+1i< j}
⇣
1�t#{`i2S(P):i jP,h}

⌘
e1j

+

X
` j2S(P)
j jP,h

t#{`i2U(P):i< j}+#{`i2S(P):i< j}
⇣
t#{`i2S(P): jP,h+1i}

�1
⌘
e1j

+

X
` j2C(P)\U(P)

t#{`i2U(P):i< j}+#{`i2S(P):i� jP,h+1,i< j}

⇥

⇣
1�t#{`i2S(P):i jP,h ,i< j}

⌘ ⇣
1� t#{`i2S(P): i� jP,h+1, i� j}

⌘
e1j .

(4.3)

In particular, let P be a double point. Then h takes only the value 1, and jP,1, jP,2
are the indices of the two lines passing through P. So formula (4.3) becomes

@2
⇣
e2P,1

⌘
= t#{`i2U(P):i< jP,2}(1�t) e1jP,2

+ t#{`i2U(P): i< jP,1} (t � 1) e1jP,1

+

X
` j2C(P)\U(P)

t#{`i2U(P): i< j} (t � 1)2 e1j .
(4.4)

Since @2 is divisible by t � 1 we can rewrite (4.4) as

@2
⇣
e2P,1

⌘
= (t � 1) @̃2

⇣
e2P,1

⌘
(4.5)

where
@̃2
⇣
e2P,1

⌘
= t#{`i2U(P): i< jP,2}e1jP,2

� t#{`i2U(P):i< jP,1}e1jP,1

+

X
` j2C(P)\U(P)

t#{`i2U(P): i< j}(1�t) e1j .
(4.6)
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5. A proof in particular cases

We give here a proof of Conjecture 1 with further hypothesis onA.
Notice that the rank of @2 is n � 1 (the sum of all rows vanishes). Then the

arrangement has no monodromy if and only if the only elementary divisor of @2
is '1 := t � 1, so @2 diagonalizes to �

n�1
i=1 '1. This is equivalent to the reduced

boundary @̃2 having an invertible minor of order n � 1.
Let 0 be the graph of double points. A choice of an admissible coordinate

system gives a total ordering on the lines so it induces a labelling, varying between
1 and n, on the set of vertices V0 of 0. Let T be a spanning tree of 0 (with induced
labelling on VT ).
Definition 5.1. We say that the induced labelling on VT = V0 is very good (with
respect to the given coordinate system) if the sequence n, . . . , 1 is a collapsing
ordering on T . In other words, the graph obtained by T by removing all vertices
with label � i and all edges having both vertices with label � i, is a tree, for all
i = n, . . . , 1.

We say that the spanning tree T is very good if there exists an admissible coor-
dinate system such that the induced labelling on VT is very good (see Figure 6.1).
Remark 5.2.

(1) A labelling over a spanning tree T gives a collapsing ordering if and only if for
each vertex v, the number of adjacent vertices with lower label is  1. In this
case, only the vertex labelled with 1 has no lower labelled adjacent vertices (by
the connectness of T ).

(2) Given a collapsing ordering over T, for each vertex v with label iv > 1, let `(v)
be the edge which connects v with the unique adjacent vertex with lower label;
by giving to `(v) the label iv +

1
2 , we obtain a discrete Morse function on the

graph T (see [20]) with unique critical cell given by the vertex with label 1. The
set of all pairs (v, `(v)) is the acyclic matching which is associated to this Morse
function.

Let us indicate by 00 the linear tree with n vertices: we consider 00 as a CW -
decomposition of the real segment [1, n], with vertices { j}, j = 1, . . . , n, and
edges the segments [ j, j + 1], j = 1, . . . , n � 1.
Definition 5.3. We say that a labelling induced by some coordinate system on the
tree T is good if there exists a permutation i1, . . . , in of 1, . . . , n which gives a
collapsing sequence both for T and for 00. In other words, at each step we always
remove either the maximum labelled vertex or the minimum, and this is a collapsing
sequence for T .

We say that T is good if there exists an admissible coordinate system such that
the induced labelling on VT is good (see Figure 6.2).

Notice that a very good labelling is a good labelling where at each step one
removes the maximum vertex.
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Consider some arrangement A with graph 0 and labels on the vertices which
are induced by some coordinate system. Notice that changes of coordinates act on
the labels by giving all possible cyclic permutations, which are generated by the
transformation i ! i + 1 mod n. So, given a labelled tree T, checking if T is
very good (respectively good) consists in verifying if some cyclic permutation of
the labels is very good (respectively good). This property depends not only on the
“shape” of the tree, but also on how the lines are disposed in R2 (the associated
oriented matroid). In fact, one can easily find arrangements where some “linear”
tree is very good, and others where some linear tree is not good.
Definition 5.4. We say that an arrangement A is very good (respectively good) if
0 is connected and has a very good (respectively good) spanning tree.

It is not clear if this property is combinatorial, i.e., if it depends only on the
lattice. Of course,A very good impliesA good.

Theorem 5.5. LetA be a good arrangement. ThenA is a-monodromic.

Proof. We use induction on the number n of lines, the claim being trivial for n = 1.
Take a suitable coordinate system as in Definition 5.4, such that the graph 0 has a
spanning tree T with good labelling. Assume for example that at the first step we
remove the last line, so the graph 00 of the arrangementA0

:= A\{`n} is connected
and the spanning tree T 0 obtained by removing the vertex {`n} and the “leaf-edge”
(`n, ` j ) (for some j < n) has a good labelling.

There are n � 1 double points which correspond to the edges of T : only
one of these is contained in `n, namely `n \ ` j (see Remark 5.2). Let D :=

{d1, . . . , dn�1} be the set of such double points, with dn�1 = `n \ ` j . Let also
D0

:= {d1, . . . , dn�2}, which corresponds to the edges of T 0. Let (C(D)⇤, @⇤)
(respectively (C(D0)⇤, @

0

⇤
)) be the subcomplex of C(A)⇤ generated by the 2-cells

which correspond to D (respectively D0 ): then C(D)2 = �1in�1Re j , and
C(D0)2 = �1in�2Re0j . Notice that, by the explicit formulas given in Section
4, the component of the boundary @2(e j ) along the 1-dimensional generator cor-
responding to `n equals �'1 for j = n � 1, and vanishes for j = 1, . . . , n � 2.
Actually, the natural map taking e0j into e j , j = 1, . . . , n � 2, identifies C(D0)⇤
with the sub complex of C(D)⇤ generated by the e j ’s, j = 1, . . . , n � 2,

@2 =

2
64 @ 0

2 *

0 �'1

3
75 . (5.1)

Then by induction @ 0

2 diagonalizes to�
n�2
j=1'1.Therefore @2 diagonalizes to�

n�1
j=1'1,

which gives the thesis. If at the first step we remove the first line, the argument is
similar, because @ 2 (e j ) has no non-vanishing components along the generator cor-
responding to `1.
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Let us consider a different situation.
Definition 5.6. We say that a subset 6 of the set of singular points Sing(A) of
the arrangement A is conjugate-free (with respect to a given admissible coordinate
system) if 8P 2 6 the set U(P) \ C(P) is empty.

An arrangementA will be called conjugate-free if 0 is connected and contains
a spanning tree T such that the set of points in Sing(A) that correspond to the edges
ET of T is conjugate-free (see Figure 6.3).

Let 6 be conjugate-free: it follows from formula (4.3) that the boundary of all
generators e2P,h, P 2 6, can have non-vanishing components only along the lines
which contain P.

Theorem 5.7. Assume thatA is conjugate-free. ThenA is a-monodromic.

Proof. The sub matrix of @2 which corresponds to the double points ET is '1-
times the incidence matrix of the tree T . Such matrix is the boundary matrix of the
complex which computes the Z-homology of T : it is a unimodular rank-(n �

1) integral matrix (see for example [3]). From this the result follows straight-
forwardly.

We can have a mixed situation between Definitions 5.4 and 5.6 (see Figure 6.4).

Theorem 5.8. Assume that 0 is connected and contains a spanning tree T which
reduces, after a sequence of moves where we remove either the maximum or the
minimum labelled vertex, to a subtree T 0 which is conjugate-free. Then A is a-
monodromic.

Proof. The thesis easily follows by induction on the number n of lines. In fact,
either T is conjugate-free, and we use Theorem 5.7, or one of the subtrees T \ {`n},
T \ {`1} satisfies again the hypothesis of the theorem. Assume that it is T 00

=

T \ {`n}. Then the boundary map @2 restricted to the 2-cells corresponding to ET 00

has a shape similar to (5.1). Therefore by induction we conclude.

Some examples are given in Section 6.

Remark 5.9. In all the theorems in this section, we have proven a stronger result:
namely, the subcomplex spanned by the generators corresponding to the double
points is a-monodromic.

6. Examples

In this section we give examples corresponding to the various definitions of Sec-
tion 5. We include the computations of the local homology of the complements.

In Figure 6.1 we show an arrangement having a very good tree (Definition 5.1)
and the associated sequence of contractions.
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Figure 6.1.

In Figure 6.2 an arrangement with a good tree is given (Definition 5.3) together with
its sequence of contractions.

Figure 6.2.

An arrangement having a tree which is both conjugate-free (see Definition 5.6) and
good is depicted in Figure 6.3

Figure 6.3.
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In Figure 6.4 we show an arrangement with a tree which after 2 admissible contrac-
tions becomes conjugate free (see Theorem 5.8).

Figure 6.4.
Next we give some example of arrangements with non-trivial monodromy. Notice
that the graph of double points is disconnected in these cases.

Notice also that in the first two examples one has non-trivial monodromy both
for the given affine arrangement and its conifed arrangement inC3; in the last exam-
ple, the given affine arrangement has non trivial monodromy while its conification
is a-monodromic.

Figure 6.5. Deconed A3 arrangement

H1(M(A), Q[t±1]) '

✓Q[t±1]
(t � 1)

◆3
�

Q[t±1]
(t3 � 1)

.

Figure 6.6. Deconed Pappus arrangement

H1(M(A), Q[t±1]) '

✓Q[t±1]
(t � 1)

◆6
�

Q[t±1]
(t3 � 1)

.
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Figure 6.7. The “complete triangle” has non-trivial monodromy but its conification is
a-monodromic

H1(M(A), Q[t±1]) '

 
Q[t±1]
(t � 1)

!4
�

Q[t±1]
(t3 � 1)

.

We focus here on the structure of the fundamental groups of the above examples, in
particular in case of a-monodromic arrangements.

For arrangement in Figure 6.1: after taking line 5 to infinity we obtain an affine
arrangement having only double points with two pairs of parallel lines, namely (the
new) lines 2, 6 and 4, 1. Therefore

⇡1(M(A)) = Z ⇥ Z ⇥ F2 ⇥ F2.

We consider arrangement in Figure 6.2 and in Figure 6.5 together. The deconed A3
arrangement in Figure 6.5 is a well known K (⇡, 1)-arrangement: the fundamental
group of the complement is the pure braid group P4 in 4 strands. Notice that the
projection onto the y coordinate fibers the complement over C \ {2 pts} with fiber
C \ {3 pts}. It is well known that this fibering is not trivial and we obtain a semi-
direct product decomposition

⇡1(M(A)) = F3 o F2.

The same projection gives a fibering of the complement of the arrangement in Fig-
ure 6.2 over C \ {3 pts} with fiber C \ {3 pts}. Notice that this is also a non-trivial
fibering, so we have a semi-direct decomposition

⇡1(M(A)) = F3 o F3.

In particular, we have an a-monodromic arrangement such that the fundamental
group of the complement is not a direct product of free groups.

In the arrangement of Figure 6.3 the line at infinity is transverse to the other
lines. If we take line 5 at infinity we get an affine arrangement with only double
points, with two pairs of parallel lines 1, 3 and 4, 6. Therefore we obtain a decom-
position of ⇡1(M(A)) as in case of Figure 6.1.

The arrangement of Figure 6.4 has only one triple point. By taking line 5
to infinity we get an affine arrangement with only double points and one pair of
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parallel lines 3, 4. Therefore

⇡1(M(A)) = Z4 ⇥ F2.

The complete triangle in Figure 6.7 becomes, after taking any line at infinity, the
affine arrangement A0 which is obtained from the A3 deconed arrangement in Fig-
ure 6.5 by adding one more line l which is transverse to all the others. Therefore

⇡1(M(A)) = Z ⇥ (F3 o F2).

Remark 6.1. It turns out that the arrangement A0 is a-monodromic. This is not a
contradiction: in fact, one is considering two different local systems onM(A0) =

M(A). The a-monodromic one associates to an elementary loop around l the t-
multiplication. This is different from the one obtained by exchanging one of the
affine lines of the arrangement A in Figure 6.7 with the infinity line. In this case
we should associate to an elementary loop around l the t6�multiplication, and then
apply formula (4.1).

7. Free calculus

In this section we reformulate our conjecture in terms of Fox calculus. Let A =

{l1, . . . , ln} be as above; if we denote by �i an elementary loop around li we have
that the fundamental group ⇡1(M(A)) is generated by �1, . . . ,�n and a presenta-
tion of this group is given for example in [29]. Let R = Q[t±1] be as above with
the given structure of ⇡1(M(A))�module.

We denote by Fn the free group generated by �1, . . . ,�n. Let ' : Fn ! < t >
be the group homomorphism defined by '(�i ) = t for every 1  i  n where
< t > is the multiplicative subgroup of R generated by t . As in [4], if w is a word
in the � j ’s, we use the notationw' for '(w). Consider the algebraic complex which
computes the local homology ofM(A) introduced in Section 4. The following
remark is crucial for the rest of this section: if e2P, j is a two-dimensional generator
corresponding to a two-cell which is attached along the word w in the � j ’s, then⇣
@w
@�i

⌘'
is the coefficient of e1i of the border of e

2
P, j . This easily follows from the

combinatorial calculation of local system homology.
Let l : Fn �! Z be the length function, given by

l(�✏1i1 · · ·�
✏r
ir ) =

rX
k=1

✏k .

Then ker' is the normal subgroup of Fn given by the words of lenght 0.
Each relation in the fundamental group ⇡1(M(A)) is a commutator (cf. [17,

29]), so it lies in ker'. So, in the sequel, we consider only words in ker'.
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Remark 7.1. The arrangement A is a-monodromic if and only if (by definition)
the Q[t±1]-module generated by @2(e2j ), j = 1, . . . , ⌫2, equals (t � 1)ker@1. One
has: ker@1 = {

Pn
j=1 x j e1j :

Pn
j=1 x j = 0}.

Let R j , j = 1 . . . , ⌫2, be a complete set of relations in ⇡1(M(A)). We use now
e2j to indicate the two-dimensional generator corresponding to a two-cell which is
attached along the word R j . Then the boundary of e2j is given by

@2(e2j ) =

nX
i=1

✓
@R j

@�i

◆'
e1i , j = 1, . . . , ⌫2. (7.1)

Then by Remark 7.1A is a-monodromic if and only if each element of the shape

P(t) := (1� t)
nX
i=1

Pi (t) e1i ,
nX
i=1

Pi (t) = 0, (Pi (t) 2 Q[t±1], i = 1 . . . , n)

(7.2)
is a linear combination with coefficients in Q[t±1] of the elements in (7.1), i.e.:

P(t) =

⌫2X
j=1

Q j (t)@2(e2j ), Q j (t) 2 Q[t±1]. (7.3)

It is natural to wonder about solutions with coefficients in Z[t±1] instead ofQ[t±1].
We say that A is a-monodromic over Z if there is a solution to (7.3) over Z[t±1]
(when all the Pi (t)’s in (7.2) are in Z[t±1]).

Theorem 7.2. The arrangementA is a-monodromic overZ if and only if ⇡1(M(A))
is commutative modulo [ker', ker']. More precisely, A is a-monodromic over Z if
and only if

[Fn, Fn] = N [ker', ker'],

where N is the normal subgroup generated by the relations R j ’s .

Proof. A set of generators for (t � 1)ker@1 as Z[t±1]-modulo is given by all ele-
ments of the type

Prs := (1� t)(e1r � e1s ) , r 6= s.
Such an element can be re-written in the form (7.1) as

Prs =

nX
i=1

✓
@[�r ,�s]

@�i

◆'
e1i ,

where [�r ,�s] = �r�s�
�1
r ��1

s . Now there exists an expression like (7.3) for Prs,
with all Q j (t) 2 Z[t±1] if and only if

✓
@[�r ,�s]

@�i

◆'
=

0
@@

Q⌫2
j=1 RQ j (�1)

j

@�i

1
A
'

, i = 1, . . . , n. (7.4)
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Here Q j (�1) 2 Z[Fn] is obtained by substituting t with �1 (any word of length
one would give the same here). Moreover, for R, w any words in ker' we set
Rw

:= wRw�1, and for a 2 Z we set Raw := Rw . . . Rw (a factors) if a > 0 and
(R�1)w . . . (R�1)w (|a| factors) for a < 0. Also, we set Raw+bu

:= RawRbu . Then
equalities (7.4) come from standard Fox calculus.

Then from Blanchfield theorem (see [4, Chapter 3]) it follows that

[Fn, Fn] ⇢ N [ker', ker'].

The opposite inclusion follows because, as we said before Remark 7.1, for any
arrangement one has N ⇢ [Fn, Fn].

Remark 7.3. The condition in Theorem 7.2 is equivalent to the equality

Fn
N [ker', ker']

=

Fn
[Fn, Fn]

= H1(M(A); Z).

Since ker' � [Fn, Fn], so [ker', ker'] � [[Fn, Fn], [Fn, Fn]], the next corollary
follows immediately from Theorem 7.2.

Corollary 7.4. Assume that ⇡1(M(A))/⇡1(M(A))(2) is Abelian, which is equiv-
alent to the condition ⇡1(M(A))(1) = ⇡1(M(A))(2), where ⇡1(M(A))(i) is the
i-th element of the derived series of ⇡1(M(A)), for i � 0. ThenA is a-monodromic
over Z.

The condition of Corollary 7.4 corresponds to the vanishing of the so-called Alexan-
der invariant of ⇡1(M(A)).

As a subgroup of the free group Fn, the group ker' is a free group We use the
Reidemeister-Schreier method to write an explicit list of generators. Notice that for
any fixed 1  j  n, the set {�kj : k 2 Z} is a Schreier right coset representative

system for Fn/ker'. Denote briefly by sk,i the element s�kj ,�i = �kj�i (�
k
j�i )

�1
=

�kj�i�
�(k+1)
j . Then

ker' =

⌦
{sk,i : 1  i  n, k 2 Z}; sk,i

↵
,

where sk,i is a relation if and only if �kj�i is freely equal to �
k+1
j ; this happens if

and only if i = j . So ker' is the free group generated by {sk,i : k 2 Z, 1  i 

n, i 6= j}. Its Abelianization

ab (ker') = ker'/[ker', ker']

is the free Abelian group on the classes sk,i of the generators sk,i ’s, i 6= j. Let

ab : ker' �! ab (ker')
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be the Abelianization homomorphism. Now we define the automorphism � of ker'
by

� (sk,i ) = sk+1,i ,

which passes to the quotient, so it defines an automorphism (call it again � ) of
ab (ker'). Therefore we may view ab (ker') as a finitely genereted free Z[�±1

]-
module, with basis s0,i with 1  i  n and i 6= j . In this language Theorem 7.2
translates as:

Theorem 7.5. The arrangement A is a-monodromic over Z if and only if the sub-
module (1 � � )ab(ker') of ab(ker') is generated by ab(R j ), j = 1, . . . , ⌫2, as
Z[�±1

]-module.

Of course, one can give a conjecture holding over Z.

Conjecture 3. Assume that 0 is connected; thenA is a-monodromic over Z.
Conjecture 3 clearly implies Conjectures 1 and 2. Our experiments agree with this
stronger conjecture.

We give explicit computations for the arrangements in Figures 6.1 and 6.5. The
Z[�±1

]-module (1�� )ab(ker') is generated by {(1�� )s0,i , , i 6= j}.We choose
j as the last index in the natural ordering. All Abelianized relations are divisible by
(1�� ), so we just divide everything by 1�� and verify that ab(ker') is generated
by ab(R j )/(1� � ).

For the arrangement in Figure 6.1 we have to rewrite 13 relations coming from
11 double points and 1 triple point. After Abelianization we obtain:

(a) s0,2 � s0,3; (b) s0,2 � s0,4;

(c) s0,3 � s0,4; (d) s0,1 � s0,4;

(e) s0,1 � s0,3; (f) � s0,2 + s0,5;

(g) (1+ � )s0,2 � � s0,5; (h) s0,1+ ��1(1�� )s0,2� ��2(1+� )s0,5;

(i) s0,3 + (��1
� 1)s0,5; (j) s0,4 + (��1

� 1)s0,5;

(k) s0,1 + (��1
� 1)s0,2 � ��1s0,5; (l) s0,1 � s0,2;

(m) s0,3 � s0,5.

The generator s0,5 is obtained as � ( (i) � (m) ). From s0,5 we obtain in sequence
all the other generators s0,3, s0,1, s0,4, s0,2. According to Theorem 7.5 this gives
the a-monodromicity of the arrangement in Figure 6.1.
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For the arrangement A3 deconed in Figure 6.5 we have to rewrite two relations
for each triple point and one relation for each double point. Their Abelianization is
given by:

(a) s0,2 � s0,3;
(b) � s0,2 + s0,4;
(c) (� + 1)s0,2 � � s0,4;
(d) � s0,1 + (1� � )s0,2 + (��1)s0,3 + (��2

� 1)s0,4;
(e) s0,1 + (��1

� 1)s0,2 � (��1)s0,4;
(f) (� + 1)s0,1 + (��1

� � )s0,2 � s0,3 + (��2
� ��1)s0,4.

We perform the following base changes:

(a0) = (a);
(b0) = (b) � � (a);
(c0) = (c) � (b) � (a);
(d0) = (d) � ��2(b) + ��1(a) � � (e);
(e0) = (e) + ��1(b) � ��1(a);
(f0) = (f) � (��2

+ ��1
+ 1)(b) + � (a) + ��1(c) � (� + 1)(e)

and
s00,1 = s0,1 + ��1 s0,3; s00,2 = s0,2 � s0,3;
s00,3 = s0,3; s00,4 = s0,4 + � s0,3.

It is straighforward to verify, after these changes, that the submodule M generated
by hab(R j ) : j = 1, . . . , 6i equals

D
s00,1, s

0

0,2, (1+ � + � 2)s00,3, s
0

0,4

E
.

So M ( (1� � )ab(ker'), in accordance with Theorem 7.5.

8. Further characterizations

In this section we give a more intrinsic picture. Let eA = {H0, H1, . . . , Hn} be the
conified arrangement in C3. The fundamental group

G = ⇡1(M( eA)) (= ⇡1(M(A)) ⇥ Z)

is generated by elementary loops �0, . . . ,�n around the hyperplanes. Let

F = Fn+1[�0, . . . ,�n]
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be the free group and N be the normal subgroup generated by the relations, so we
have a presentation

1 �! N �! F ⇡
�! G �! 1

The length map ' : F! hti ⇠
= Z factors through ⇡ by a map

 : G! Z.

Next,  factorizes through the Abelianization

G
[G,G]

⇠
= H1(M( eA); Z) ⇠

= Zn+1 ⇠
=

F
[F,F]

.

Let now K = ker so we have

1 �! K �! G  
�! Z �! 1, (8.1)

and  factorizes through

G ab
�!

G
[G,G]

⇠
= Zn+1 �

�! Z.

We have the following commutative diagram:

1

✏✏
N

✏✏

1

1 // ker(') // F
' //

⇡

✏✏

Z //

==
{

{
{

{
{

{
{

{
{

{
{

1

1 //
[G,G]

//

✏✏

G ab //

 

>>
}

}
}

}
}

}
}

}
}

}
}

✏✏

G
[G,G]

//

�

OO

1

K

==
{

{
{

{
{

{
{

{
{

{
{

1

1

<<
yyyyyyyyyyy

.

(8.2)

Remark 8.1. One has ker(�) =
K

[G,G]
so K

[G,G]

⇠
= Zn.
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Therefore diagram (8.2) extends to

1

✏✏
N

✏✏

1 1

1 // ker(') // F
' //

⇡

✏✏

Z //

OO ==
{

{
{

{
{

{
{

{
{

{
{

1

1 //
[G,G]

//

✏✏

G ab //

 

>>
}

}
}

}
}

}
}

}
}

}
}

✏✏

G
[G,G]

//

�

OO

1

K

>>
}

}
}

}
}

}
}

}
}

}
}

}

1 K
[G,G]

OO

1

==
{

{
{

{
{

{
{

{
{

{
{

1

OO

.

(8.3)

Recall the Z[t±1]�module isomorphism

H1(G; Z[t±1]) ⇠
= H1(F; Z) (8.4)

where F is the Milnor fibre, and (by the Shapiro Lemma):

H1(F; Z) ⇠
= H1(K; Z) =

K
[K,K]

. (8.5)

Remark 8.2. There is an exact sequence

1 �!

[G,G]

[K,K]

�!

K
[K,K]

�!

K
[G,G]

⇠
= Zn

�! 1. (8.6)

From the definition before Theorem 7.2 one has

Lemma 8.3. The arrangement eA is a-monodromic over Z if and only if

H1(F; Z) ⇠
= Zn.
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It follows:

Theorem 8.4. The arrangement eA is a-monodromic over Z if and only if

[G,G]

[K,K]

= 0. (8.7)

Proof. It immediately follows from sequence (8.6) and from the property that a
surjective endomorphism of a finitely generated free Abelian group is an isomor-
phism.

Since K � [G,G] it follows immediately (see Corollary 7.4) that:

Corollary 8.5. If

G(1)
= [G,G] = G(2)

= [[G,G], [G,G]],

then the arrangement eA is a-monodromic.

We also have:

Corollary 8.6. Let G have a central element of length 1. Then the arrangement eA
is a-monodromic.

Proof. Let � 2 G be a central element of length 1. From sequence (8.1) the group
splits as a direct product

G ⇠
= K⇥ Z

where Z =< � > . Therefore clearly [G,G] = [K,K].

An example of the situation of the corollary is when one of the generators � j
commutes with all the others, i.e., one hyperplane is transversal to the others. So,
we find again in this way a well-known fact.

Consider again the exact sequence (8.6). Remind that the arrangement eA is
a-monodromic (over Q) if and only if H1(F; Q) ⇠

= Qn. By tensoring sequence
(8.6) by Q we obtain:

Theorem 8.7. The arrangement eA is a-monodromic (over Q) if and only if

[G,G]

[K,K]

⌦ Q = 0.

Remark 8.8. All remarkable questions about the H1 of the Milnor fibre F are ac-
tually questions about the group

[G,G]

[K,K]

.



1484 MARIO SALVETTI AND MATTEO SERVENTI

In particular:

(1) H1(F; Z) has torsion if and only if [G,G]

[K,K]
has torsion;

(2) b1(F) = n + rk
⇣

[G,G]

[K,K]

⌘
.

(There are only complicated examples with torsion in higher homology of the Mil-
nor fiber, recently found in [14].)

Corollary 8.9. One has

n  b1(F)  n + rk
✓

[G,G]

[[G,G], [G,G]]

◆
= n + rk

 
G(1)

G(2)

!
.

Now we consider again the affine arrangement A. Denoting by G0
:= ⇡1(M(A)),

we have
G ⇠

= G0

⇥ Z,

where the factor Z is generated by a loop around all the hyperplanes in eA. As
already said, it follows by the Kunneth formula that if A has trivial monodromy
over Z (respectively Q), so does eA. Conversely, in Figure 6.7 we have an example
where eA is a-monodromic butA has non-trivial monodromy.

The a-monodromicity ofA (over Z) is equivalent to

H1(M(A); R) ⇠
=

✓
R

(t � 1)

◆n�1
, (8.8)

(R = Z[q±1
]). By considering a sequence as in (8.1),

1 �! K0

�! G0
 

�! Z �! 1, (8.9)

we can repeat the above arguments: in particular condition (8.8) is equivalent to

H1(K0

; Z) =

K0

[K0,K0
]

= Zn�1,

and we get an exact sequence like in (8.6) for K0 and G0. So we obtain:

Theorem 8.10. The arrangementA is a-monodromic over Z (respectively overQ)
if and only if

[G0,G0
]

[K0,K0
]

= 0
⇣
respectively [G0,G0

]

[K0,K0
]
⌦ Q = 0

⌘
.
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By considering a presentation for G0

1 �! N0

�! F0
⇡

�! G0

�! 1

where F0 is the group freely generated by �1, . . . ,�n, we have a diagram similar to
(8.3) for G0. From N0

⇢ [F0,F0
] ⇢ ker' we have isomorphisms

[G0,G0
]

[K0,K0
]

⇠
=

⇡�1
[G0,G0

]

⇡�1
[K0,K0

]

⇠
=

[F0,F0
]

N0
[ker', ker']

,

which gives again Theorem 7.2.
Corollary 8.6 extends clearly to the affine case: therefore, if one line ofA is in

general position with respect to the others, thenA is a-monodromic. This result has
the following useful generalization, which has both a central and an affine versions.
We give here the affine one.

Theorem 8.11. Assume that the fundamental group G 0 decomposes as a direct
product

G 0

= A ⇥ B

of two subgroups, each one having at least one element of length one. Then A is
a-monodromic.

In particular, this applies to the case when G 0 decomposes as a direct product
of free groups,

G 0

= Fi1 ⇥ Fi2 ⇥ · · · ⇥ Fik

where (at least) two of them have an element of length one.

Proof. First, observe that any commutator [ab, a0b0
]2 [G 0,G 0

] equals [a, a0
][b, b0

].
Therefore it is sufficient to show that [A, A] ⇢ [K 0, K 0

], and [B, B] ⇢ [K 0, K 0
].

Let a0 2 A, b0 2 B be elements of length one. Let l =  (a), l 0 =  (a0) be the
lengths of a and a0 respectively. Then

[a, a0

] = [ab�l
0 , a0b�l 0

0 ],

and the second commutator lies in [K 0, K 0
] by construction. This proves that

[A, A] ⇢ [K 0, K 0
].

In the same way, by using a0, we show that [B, B] ⇢ [K 0, K 0
].

Remark 8.12. This theorem includes the case when the arrangement is a disjoint
unionA=A0

tA00 of two subarrangements which intersect each other transversally.
It is known that ⇡1(M(A)) is the direct product of ⇡1(M(A0)) with ⇡1(M(A00))
(see [27]) therefore by Theorem 8.11 the arrangement A is a-monodromic. This
remark also seems new in the literature.
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We can use this result (or even Corollary 8.6) to prove the a-monodromicity
of those examples in Section 6 for which the fundamental group splits as a direcy
product of free groups.

Another example is given by any affine arrangement having only double points:
in this case A = [

k
i=1 Ai where the Ai ’s are sets of parallel lines. Then ⇡1(A) =

⇥
k
i=1 Fni where Fni is the free group in ni = |Ai | generators. This gives an easy

prove of the following known fact: if there exists a line in a projective arrange-
ment A which contains all the points of multiplicity greater than 3, then A is a-
monodromic.

To take care also of examples as that in Figure 6.2, where the fundamental
group is not a direct product of free groups, let us introduce another class of graphs
0̃ as follows. Let the affine arrangementA have n lines. Then:

(1) the vertex set of 0̃ corresponds to the set of generators {�i , i = 1, . . . , n} of G 0
;

(2) for each edge (�i ,� j ) of 0̃, the commutator [�i ,� j ] belongs to [K 0, K 0
];

(3) 0̃ is connected.

We call a graph 0̃ satisfying the previous conditions an admissible graph.

Theorem 8.13. IfA allows an admissible graph 0̃ thenA is a-monodromic.

We need the following lemma.

Lemma 8.14. Let Fn = F[�1, . . . ,�n] be the free group in the generators �i ’s.
Let ' be the length function (see Section 7) on Fn. Then for any sequence of indices
i0, . . . , ik one has

[�i0,�i1][�i1,�i2] . . . [�ik�1,�ik ][�ik ,�i0] 2 [ker('), ker(')]

for each “closed” product of commutators.

Proof of lemma. If k  2 the result is trivial. If k = 3, a straighforward application
of Blanchfield theorem ([4]) gives the result. For k > 3, we can write

[�i0,�i1][�i1,�i2] . . . [�ik�1,�ik ][�ik ,�i0]

= ([�i0,�i1][�i1,�i2][�i2,�i0])([�i0,�i2] . . . [�ik�1,�ik ][�ik ,�i0]),

and we conclude by induction on k.

Remark 8.15. Clearly, Lemma 8.14 applied to the generators of G 0 gives that

[�i0,�i1][�i1,�i2] . . . [�ik�1,�ik ][�ik ,�i0] 2 [K 0, K 0

]

for each closed product of commutators.
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Proof of Theorem 8.13. According to Theorem 8.10 what we have to prove is that
any commutator [�i ,� j ] belongs to [K 0, K 0

].

If i, j corresponds to an edge (�i ,� j ) of 0̃, the result follows by definition.
Otherwise, let �i = �i0,�i1, . . . ,�ik = � j be a path in 0̃ connecting �i with � j .
By definition, [�i j ,�i j+1] 2 [K 0, K 0

], j = 0, . . . , k � 1, so
Qk�1

j=0[�i j ,�i j+1] 2

[K 0, K 0
]. By Lemma 8.14 and Remark 8.15

[�i0,�i1][�i1,�i2] . . . [�ik�1,�ik ][�ik ,�i0] 2 [K 0, K 0

].

It follows that [�i0,�ik ] = [�i ,� j ] 2 [K 0, K 0
], which gives the thesis.

We can use Theorem 8.13 to prove Conjecture 1 under further hypothesis.

Corollary 8.16. Let A be an affine arrangement and let 0 be its associated graph
of double points. Assume that 0 contains an admissible spanning tree 0̃. ThenA is
a-monodromic.

Of course, under the hypothesis of Corollary 8.16, the graph 0 is connected. Ex-
amples where 0 contains an admissible spanning tree are the conjugate-free ar-
rangements in Definition 5.6. Here all commutators (corresponding to the edges
of T ) of the geometric generators are simply equal to 1 in the group G 0. Therefore
Theorem 8.13 is a generalization of Theorem 5.7.

Very little effort is needed to show that the whole graph 0 of double points in
the arrangement of Figure 6.2 is admissible: therefore Corollary 8.16 applies to this
case.

For the sake of completeness, we also mention that, for all the examples in Sec-
tion 6 which have non trivial monodromy, all the quotient groups [G 0,G 0

]/[K 0, K 0
]

are free Abelian of rank 2. This fact is in accordance with the monodromy compu-
tations given in Section 6, since in all these cases one has '3-torsion. It also follows
that, for such examples, the first homology group of the Milnor fiber has no torsion.

Remark 8.17. When the graph 0 of double points is not connected, then we can
consider its decomposition into connected components 0 = ti 0i . We have a cor-
responding decomposition A = ti Ai of the arrangement. By definition, every
double point of A is a double point of exactly one of the Ai ’s, while each pair of
lines in differentAi ’s either intersect in some point of multiplicity greater than 2, or
are parallel (we are considering the affine case here). If our conjecture is true, then
each Ai is a-monodromic. At the moment we are not able to speculate about how
the monodromy of A is influenced by these data: apparently, the only knowledge
of such decomposition gives little control on the multiplicities of the intersection
points of different components, which can assume very different values. We are
going to address these interesting problems in future work.
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