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The F-different and a canonical bundle formula

OMPROKASH DAS AND KARL SCHWEDE

Abstract. We study the structure of Frobenius splittings (and generalizations
thereof) induced on compatible subvarieties W ✓ X . In particular, if the compat-
ible splitting comes from a compatible splitting of a divisor on some birational
model E ✓ X 0 ! X (i.e., W is a log canonical center), then we show that the
divisor corresponding to the splitting on W is bounded below by the divisorial
part of the different as studied by Ambro, Kawamata, Kollár, Shokurov, and oth-
ers. We also show that difference between the divisor associated to the splitting
and the divisorial part of the different is largely governed by the (non-)Frobenius
splitting of fibers of E ! W . In doing this analysis, we recover an F-canonical
bundle formula by reinterpreting techniques common in the theory of Frobenius
splittings.

Mathematics Subject Classification (2010): 14F18 (primary); 13A35, 14B05,
14D99, 14E99 (secondary).

1. Introduction

This paper explores several questions that show up naturally in the study of Frobe-
nius splittings, and also appear naturally as one compares the theory of F-singular-
ities to the theory of the singularities of the minimal model program.

Question 1.1 (Frobenius splitting perspective). Suppose X is a Frobenius split
variety with an F-splitting � and thatW is compatibly �-split with induced splitting
�W . Now, �W corresponds to a divisor D on (the normalization of) W .

• What divisor is it?
• Where does it come from?
• How does it vary as the characteristic varies?
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This question turns out to be much more subtle when W has codimension at least
2 in X . The case where W has codimension 1 has already been largely answered
in [9].

As mentioned, a very closely related question also appears in the comparison of
F-singularities with the singularities of the minimal model program. Let us sketch
the situation under some simplifying assumptions.

Suppose that (X,1) is a proper log canonical pair and thatW ✓ X is a normal
(or minimal for simplicity) log canonical center. Suppose the codimension of W
in X is at least 2. Then one would like there to be divisors MW and DiffW (also
denoted 1W,div) on W such that

(KX +1)|W ⇠Q KW + DiffW +MW (1.1)

where:

(a) DiffW is effective and (W,DiffW ) is log canonical (or in the minimal case,
even KLT), and

(b) MW is semi-ample.

While such objects do not exist in general, some weak versions of them do exist, at
least on birational models of W , see [17, 18], [2, Theorem 0.2], [12], [25, Conjec-
ture 7.13], [11] and [7]. These results are consequences of canonical bundle formu-
lae. We state two relevant results for later comparison. The first is itself a version
of a related canonical bundle formula (also known as an adjunction formula) and
the second is frequently used consequence of such formula in characteristic 0 (and
which itself is also an adjunction formula).

Theorem ([2, Theorem 0.2]). Let f : X ! Z be a proper morphism between two
normal varieties over C with f⇤OX = OZ . Let (X,1 � 0) be a log variety such
that KX +1 ⇠Q f ⇤L for some Q-Cartier Q-divisor L on X . Suppose that (X,1)
is KLT near the generic fiber of f . Then we have:

(a) KX +1 ⇠Q f ⇤(KZ +DiffZ +MZ ), for someQ-divisors DiffZ and MZ on Z ;
(b) The b-divisor K+ Diff is b-Cartier;
(c) The b-divisorM is b-nef.

Theorem ([11,17,18]). Let X be a normal projective variety over C and 1 � 0
an effective R-divisor such that (X,1) is log canonical. Let W be a minimal log
canonical center of (X,1). Then there exists an effective R-divisor 1W � 0 on W
such that

(KX +1)|W ⇠R KW +1W

and (W,1W ) has KLT singularities.

In [27], a characteristic p > 0 variant of the second theorem above was shown.
Let us discuss this setup in more detail. In characteristic p > 0, the F-singularities
analog of log canonical singularities are F-pure singularities and log canonical
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centers correspond to F-pure centers (which are a generalization of compatibly
split subvarieties). For instance, every log canonical center becomes an F-pure
center at least in an ambient F-pure pair. Relevant for us, in characteristic p > 0,
if (X,1) is sharply F-pure and the index of KX + 1 is not divisible by p, then
if W ✓ X is a normal F-pure center, there is a canonically determined effective
divisor 1W,F- diff on W such that

(KX +1)|W ⇠Q KW +1W,F- diff (1.2)

where

(a0) (W,1W,F- diff) is F-pure and if W is minimal, (W,1W,F- diff) is strongly F-
regular (an analog of KLT singularities).

Note in this case there does not initially appear to be a moduli part, there is a single
effective divisor. Regardless, because of (1.2), it might also be natural to expect
that there is a Frobenius-version of the canonical bundle formula lurking behind the
scenes. This is exactly what we will show.

Another way to phrase our initial question is:
Question 1.2 (Singularities of the MMP perspective). Suppose that (X,1) is a
sharply F-pure pair and W ✓ X is a normal F-pure center. Consider 1W,F- diff the
F-different on W .

• How does 1F- diff compare with DiffW and MW ?
• Where does it come from?
• How does it vary as the characteristic varies?

Our first result is:
Theorem A (Corollary 4.4). Suppose that (X,1) is a sharply F-pure (and hence
log canonical) pair and W ✓ X is a log canonical center (and hence an F-pure
center). Let ⌫ : WN

! W be the normalization of W and let DiffWN = 1WN ,div
and 1WN,F- diff be the different and F-different respectively. Then DiffWN =

1WN ,div  1WN,F- diff.
It then becomes very natural to study the difference1WN,F- diff�DiffW which

should be viewed as some characteristic p > 0 analog of the moduli part of the
different. Already we know it is an effective divisor.

In characteristic zero, MW , the moduli part of the different comes from ana-
lyzing a family. Consider the following situation. Let (X 0,10) ⇡

�! (X,1) be a
birational model of X with KX 0 + 10 = ⇡⇤(KX + 1), such that 10 � 0 and E
is a normal prime Weil divisor with discrepancy �1 such that ⇡(E) = W . Then
⇡E : E ! W can be viewed as a family, indeed a flat family if W is a curve. Note
E has coefficient 1 in10, and so since KX 0+1

0 is pulled back from the base, if1E
is the ordinary different of KX 0+1

0 on E (in particular, (KX 0+1
0)|E = KE+1E ),

then KE + 1E ⇠Q,⇡E 0. It is then natural to try to study the (moduli part of the)
different via a canonical bundle formula, i.e., find a divisor 1W � 0 such that
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⇡⇤E (KW + 1W ) ⇠Q KE + 1E . This is exactly what is described in [2, Theorem
0.2] which was stated for comparison earlier in the introduction.

It turns out that using a simple method coming from the origins of Frobenius
splitting theory, we obtain a canonical bundle formula in characteristic p > 0.

Theorem B (Theorem 5.2, Corollary 5.14). Suppose that ⇡ : E ! W is a proper
map between normal F-finite integral schemes with ⇡⇤OE = OW . Suppose also
that1 � 0 is aQ-divisor on E such that (pe�1)(KE +1) is linearly equivalent to
the pullback of some Cartier divisor onW . Suppose that the generic fiber of (E,1)
over W is Frobenius split. Then there exists a canonically determined Q-divisor
1W � 0 on W such that ⇡⇤(KW +1W ) ⇠Q KE +1.

Furthermore, we can describe the support of 1W as follows. Assume that W
is 1-dimensional (which we may certainly do if we just care about the support of
1W ) and that 1vert is the vertical part of 1. If additionally the fibers of ⇡ are
geometrically normal, then ⇡⇤1W � 1vert is nonzero precisely over those points
t 2 W where the fiber (Et ,1t ) is not Frobenius split.

Indeed, we also obtain versions of the above result which hold when 1 is not
necessarily effective, see Corollary 5.4. In some cases, we also obtain results on the
singularities of (W,1W ), see Remark 5.5. It also follows that the1W we construct
is essentially the one obtained in (1.2) when W is an F-pure center that is also a
log canonical center and E ! W a divisor with discrepancy�1 mapping toW , see
Corollary 5.6.

Remark 1.3. For those coming from the Frobenius splitting perspective, this result
can be specialized follows. Suppose X is Frobenius split and the splitting extends to
a resolution of singularities X 0 ! X , and there is a compatibly split divisor E ✓ X 0
mapping to the necessarily compatibly split W ✓ X . Then the splitting on W , and
the corresponding divisor onW , is largely governed by the fibers of E ! W which
are not Frobenius split (in a way somewhat compatible with the splitting of X 0).

In characteristic p > 5, if X is 3-dimensional, (X,1) is sharply F-pure and
W is a 1-dimensional minimal log canonical center, then we can obtain E ! W
satisfying the first part of the above theorem via the MMP [3,4,13]. In some cases,
it is also possible to reduce to the case of integral fibers by employing base change,
semi-stable reduction and results onM0,n (see [8, Theorem 4.8]). This gives us a
precise way to describe the F-different, see Algorithm 5.15 for details.

We also tackle the question of how the F-different behaves as the characteristic
varies. To do this, we first need to assume the weak ordinarity conjecture (which
implies that log canonical singularities become F-pure after reduction to character-
istic p > 0 [24,31]).

Theorem C (Theorem 6.2). Let (X,1 � 0) be a normal pair in characteristic
zero with (pe � 1)(KX + 1) Cartier for some e > 0, and W a normal LC-center
of (X,1). Assume that the b-divisor K+ 1div descends to W ;1 and in particular

1 Meaning that the b-divisor KW 0 +1W 0 can be pulled back from W .
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KW +1W,div is Q-Cartier. We consider the behavior of (X p,1p) after reduction
to characteristic p � 0.

Assume the weak ordinarity conjecture. Let Q 2 W be a point which is
not the generic point of W . Then there exist infinitely many primes p > 0 such
that if 1Wp,F- diff � (1W,div)p is the F-different of (X p,1p) along Wp, then
1Wp,F- diff = (1W,div)p near Q. In other words, Q is not contained in
Supp(1Wp,F- diff � (1W,div)p).

ACKNOWLEDGEMENTS. The authors would like to thank Christopher Hacon,
Ching-Jui (Ray) Lai, Zsolt Patakfalvi, David Speyer, Shunsuke Takagi and Chen-
yang Xu for many useful discussions. We would also like to thank Christopher Ha-
con, Shunsuke Takagi and the referee for numerous useful comments on previous
drafts. We also thank David Speyer and Chenyang Xu for stimulating discussions
with the second author where Example 3.2 was first worked out.

2. Preliminaries

Convention 2.1. Throughout this article, all schemes are assumed to be separated
and excellent. All schemes in characteristic zero are of essentially finite type over a
field. All schemes in characteristic p > 0 are assumed to be F-finite. Whenever we
deal with a pair (X,1), it is assumed that X is normal and that KX+1 isQ-Cartier,
unless specified otherwise. If X is an integral scheme, by K (X) we mean either the
field of rational functions of X and also the constant sheaf of rational functions on
X , depending on the context. Whenever ⇡ : X 0 ! X is a proper birational map of
normal integral schemes, we always choose KX 0 and KX such that ⇡⇤KX 0 = KX
(in other words, we implicitly fix the canonical b-divisor).

2.1. Maps and Q-divisors

Suppose that X is an F-finite normal integral scheme. Given a nonzero map � :

Fe
⇤
OX ! OX , we have � 2 Hom(Fe

⇤
OX ,OX ) ⇠= 0(X, Fe

⇤
OX ((1� pe)KX )), and

hence � corresponds to an effective divisor linearly equivalent to (1� pe)KX .

• We use D� to denote this effective divisor corresponding to �;
• We write 1� :=

1
pe�1D� and note that 1� ⇠Q �KX .

It is easy to see that this process can be reversed. Given an effective divisor 1
such that OX ((1 � pe)(KX + 1)) ⇠= OX , one obtains a nonzero map � = �e1
with 1� = 1. The choice of � is also unique up to pre-multiplication by units
of 0(X,OX ). One can also form the self-composition of � =: �e. For instance
�2e = �e � (Fe

⇤
�e) 2 Hom(F2e

⇤
OX ,OX ) and �ne = �e � (Fe

⇤
�(n�1)e) = �2e �

(F2e
⇤
�(n�2)e) = . . .. It is not difficult to check that 1� = 1�2 = 1�3 = . . .. For
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additional discussion of this correspondence between maps and divisors, see [5,
Section 4].

Now suppose that L is an arbitrary line bundle on the F-finite normal inte-
gral scheme X . Then using the same argument, a map � : Fe

⇤
L ! OX yields

an effective Q-divisor 1� with OX ((1 � pe)(KX + 1�) ⇠= L. As before, self-
(twisted)-composition of this map yields the same divisor as 1� (for details, see
[5, Lemma 4.0.1]). Conversely, given an effective Q-divisor 1 � 0 such that
(pe � 1)(KX +1) is Cartier, then settingL = OX ((1� pe)(KX +1)) we obtain
a map �1 : Fe

⇤
L! OX .

2.1.1. Maps and non-effective Q-divisors

We now recall how to interpret non-effective 1. The main idea is that we are
still given a map from Fe

⇤
L but that the image need not be in OX , it might be in

some fractional ideal in K (X). Indeed, suppose we are given an OX -linear map
� : Fe

⇤
L ! K (X). Then it is easy to see (at least locally) that for some effective

Cartier divisor E on X that �(Fe
⇤
L ((1� pe)E)) ✓ OX . This gives us an effective

divisor 10 such thatOX ((1� pe)(KX +10)) ⇠= L ((1� pe)E).
Definition 2.2. Set 1� = 10 � E .

Note that if � : Fe
⇤
L! K (X) induces1� then �(Fe

⇤
L ) ✓ OX (G) where G

is some effective Weil divisor supported where 1� is not effective. Indeed, simply
reflexify �(Fe

⇤
L ).

Lemma 2.3. With notation as above, 1� is independent of the choice of E .

Proof. Suppose that E1, E2 are two effective Cartier divisors with �(Fe
⇤
L ((1 �

pe)Ei )) ✓ OX . Without loss of generality, we may assume that E1  E2. Then
we have the following composition

µ : Fe
⇤
L

�
(1� pe)E1 + (1� pe)(E2 � E1)

�
,! Fe

⇤
L

�
(1� pe)E1

�  
�! OX .

The map  yields 11 = 1 � E1 and the composition yields 12 = 1µ � E2. On
the other hand, straightforward local computation shows that11+(E2�E1) = 12.
Hence 11 � E1 = 12 � E2 as claimed.

With notation as above, suppose that we fix an embedding L ✓ K (X). Then
our map � = �e : Fe

⇤
L ! K (X) yields a map �e : Fe

⇤
K (X) ! K (X). We can

then form �2e = � � (Fe
⇤
�) : F2e

⇤
K (X)! K (X) and more generally

�ne = � �
⇣
Fe
⇤
�(n�1)e

⌘
: Fne
⇤
K (X)! K (X).

We then restrict �ne to Fne
⇤

L 1+pe+...+p(n�1)e yielding:

�ne : Fne
⇤

L 1+pe+...+p(n�1)e
! K (X). (2.1)
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Lemma 2.4. With notation as above, 1�ne = 1�e .

Proof. Choose E such that �e(Fe
⇤
L ((1 � pe)E)) ✓ OX . It follows immediately

that �ne(Fne
⇤

L 1+pe+...+p(n�1)e
((1� pne)E)) ✓ OX since that is how composition

works for effective divisors. Define 10e and 10ne corresponding to the restricted
maps �e|Fe

⇤
L ((1�pe)E) and �ne|Fne

⇤
L 1+...+p(n�1)e ((1�pne)E)

respectively. We know
10e � E =: 1�e and also that 10ne � E =: 1�ne . But 10ne = 10e since they
correspond to compositions of the same map (see [5, Lemma 4.1.2] and [27, Theo-
rem 3.11]). The conclusion follows.

2.2. p�e-linear maps and base extension

The following subsection is only utilized briefly in Algorithm 5.15 and can be
skipped on a first reading.

We start this subsection by summarizing some results from [30]. Suppose that
f : Z ! W is a finite dominant map of normal F-finite integral schemes and
�W : Fe

⇤
LW ! K (W ) is an OW -linear map from a line bundle LW on W . Then

�W corresponds to a divisor1W as above. Let T : f⇤K (Z)! K (W ) be a nonzero
map between the fraction fields of Z andW respectively. Using an argument similar
to that above, the map T| f⇤OZ gives us a Weil divisorRT which should be thought
of as a type ramification divisor. If f is separable, then we typically assume that T
is the field trace in which caseRT is exactly the usual ramification divisor.

Lemma 2.5. With notation as above, fix a divisor KW so that LW = OW ((1 �
pe)(KW +1W )) ✓ K (W ). This lets us extend �W to �W : Fe

⇤
K (W )! K (W ).

(a) There is a unique map �Z : Fe
⇤
K (Z) ! K (Z) so that T � f⇤�Z = �W � T.

This map is called the T-transpose of �W ;
(b) RT ⇠ KZ/W = KZ � f ⇤KW and hence we can fix KZ to be the divisor

f ⇤KW +RT;
(c) Via the inclusion LW ✓ K (W ) we obtain LZ := f ⇤LW ✓ K (Z) and thus

obtain a map �Z := �Z |LW : Fe
⇤
LW ! K (Z) with 1Z corresponding to �Z .

With this notation, f ⇤(KW + 1W ) = KZ + 1Z and hence 1Z � f ⇤1W =

�RT.

Proof. Part (a) is simply [30, Proposition 5.4].
Part (b) follows from viewing the restriction T| f⇤OZ as a rational section of

the sheaf Hom( f⇤OZ ,OW ) ⇠= f⇤OZ (KZ � f ⇤KW ). In the case that all divisors
1W and 1Z are effective, part (c) is simply [30, Theorem 5.7]. But by the sort of
twistings applied in Subsection 2.1.1, one easily reduces to the effective case and
the result follows.

With notation as above, suppose that1W is effective, or in other words that we
are given a map �W : Fe

⇤
LW ! OW . We immediately see that1Z = f ⇤1W�RT
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is not necessarily effective (even when f is separable, T is the trace map and soRT
is the ramification divisor). Now consider

�Z : Fe
⇤
LZ = Fe

⇤
OZ

�
(1� pe)(KZ + f ⇤1W �RT)

�
! K (Z),

and notice that if it so happens that (1 � pe)RT is Cartier, then we can always
restrict �Z to Fe⇤LZ ((1� pe)RT) = Fe

⇤
OZ ((1� pe)(KZ + f ⇤1W )) and obtain a

map corresponding to f ⇤1W ,

�Z : Fe
⇤
OZ

�
(1� pe)(KZ + f ⇤1W )

�
! OZ .

Observe that the image is contained inOZ since f ⇤1W is an effective divisor. Now
for simplicity suppose that LW = OW ((1 � pe)(KW + 1W )) = OW . Then we
obtain Fe

⇤
OZ ((1� pe)RT)! OZ .

We apply this in the following setting.

Proposition 2.6. Suppose that ⇡ : X ! C is a finite type flat family with ge-
ometrically integral generic fiber and X normal over a regular integral F-finite
1-dimensional scheme C with ⇡⇤OX = OC . Suppose that g : D ! C is a finite
map from a regular integral scheme, Y is the normalization of the component of
X ⇥C D dominating D and ⇡Y : Y ! D the induced flat family. Choose a map
T : g⇤K (D)! K (C).

(a) Then there is an induced map TY/X : K (Y ) ! K (X) extending T. Further-
more if Y = X ⇥C D then RTY/X = ⇡⇤YRT. Finally, if K (C) ✓ K (D) is
separable and T = TrD/C , then TY/X = TrY/X .

Further suppose that a nonzero �C : Fe
⇤
OC ! OC extends to a map �X :

Fe
⇤
OX ! K (X), that K (C) ✓ K (D) is separable and that T = TrD/C .

(b) Then the T-transpose of �C , �D : Fe
⇤
OD((1 � pe)RT) ! OD extends to a

map �Y : Fe
⇤
OY ((1� pe)RTY/X )! K (Y ).

Proof. We begin by analyzing this at the level of function fields.
We have K (C) ✓ K (X) a geometrically integral (and hence purely transcen-

dental) finitely generated extension of fields. Consider the map T : K (D) !
K (C). We tensor with K (X) and obtain:

K (D)⌦K (C) K (X) // K (C)⌦K (C) K (X)

✏✏
K (Y )

TY/X
// K (X)

defining the map TY/X . It clearly extends T proving the first part of (a). In the
case that K (C) ✓ K (D) is separable and T = TrD/C , we notice that the basis
{. . . , bi . . .} for K (D) over K (C) also yields a basis for K (Y ) over K (X). Then for



THE F -DIFFERENT AND A CANONICAL BUNDLE FORMULA 1181

any element x 2 K (X) and d 2 K (D), xd acts on the basis first by d and then by
x . It follows immediately that TrY/X (xd) = x TrY/X (d) = xTY/X (d) = TY/X (xd)
and so by linearity, TY/X = TrY/X . This proves the second part of (a).

We now turn to the statement that RTY/X = ⇡⇤YRT from (a). Viewing T as a
rational section of HomOC (g⇤OD,OC) we see that TY/X is obtained as the pull-
back of that same rational section to HomOX ((gY )⇤(OX ⌦OC OD),OX ). Because
we assumed that Y = X ⇥C D, OY = OX ⌦OC OD and we are done (please
forgive the slight abuse of notation where we left off some necessary pushforwards
and sheafy inverse images). This finishes the proof of (a).

Now we handle the statement in (b) involving the map �C : Fe
⇤
OC ! OC

and its extension �X : Fe
⇤
OX ! K (X). We take the T-transpose �D of �C and

the TY/X -transpose �Y of �X . We need only to verify that �Y extends �D at the
level of field of fractions. Since T = TrD/C is the field trace, by [30, Lemma 3.3,
Proposition 4.1] we see that �D = �C ⌦K (C) K (D) and �Y = �X ⌦K (X) K (Y ) =

�X ⌦K (C) K (D). It follows immediately that �Y extends �D since �X extends
�C .

Remark 2.7. It would be natural to try to remove the hypothesis that K (C) ✓
K (D) is separable in (b) above. We do not see how to do that however.

2.3. Singularities

Suppose that (X,1) is a pair with X an integral F-finite scheme, 1 a Q-divisor,
and KX +1 Q-Cartier (we do not assume that 1 � 0).
Definition 2.8 (Log canonical singularities). We say that (X,1) is sub-log ca-
nonical if for any proper birational map ⇡ : Y ! X from a normal scheme Y ,
the coefficients of KY � ⇡⇤(KX + 1) are all � �1. We say that (X,1) is log
canonical if it is sub-log canonical and 1 � 0.
Definition 2.9 (F-pure singularities). Suppose further that p does not divide the
index of KX +1. We say that (X,1) is sub-F-pure if for all sufficiently divisible
e > 0 we haveOX ✓ Image

⇣
�e1 : Fe

⇤
OX ((1� pe)(KX +1))! K (X)

⌘
. Here �e1

is the map corresponding to 1 as in Subsection 2.1. We say that (X,1) is F-pure
if it is sub-F-pure and1 � 0. In this case �e1 : Fe

⇤
OX ((1� pe)(KX +1)) ⇣ OX

surjects.
More generally, if (X,1) is F-pure and I ✓ OX is an ideal sheaf and t � 0 is

any real number, then we say that (X,1, I t ) is sharply F-pure if

�e1 : Fe
⇤
I dt (p

e
�1)e

·OX
�
(1� pe)(KX +1)

�
⇣ OX

surjects for any (equivalently all sufficiently divisible cf. the argument of Lemma
2.11 below) e > 0. In this setting, the F-pure threshold of (X,1, I ), denoted
fpt(X,1, I ), is defined to be

sup
�
c � 0 | (X,1, I c) is sharply F-pure

 
.
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Remark 2.10. In [31], Takagi gave a slightly different definition of F-pure pairs
for non-effective divisors 1. We believe that these two notions are indeed distinct,
but we are unsure which is better in general. The notion we work with in this paper
is harder to satisfy, but we do not know if it corresponds to sub-log canonicity even
assuming the weak ordinarity conjecture [24].

Lemma 2.11. Using the notation of Definition 2.9, suppose that

OX ✓ Image
⇣
�e1 : Fe

⇤
OX ((1� pe)(KX +1))! K (X)

⌘

for some e > 0. Then for all integers n � 1,

OX ✓ Image
⇣
�ne1 : Fne

⇤
OX

�
(1� pne)(KX +1)

�
! K (X)

⌘
.

Proof. Since �(Fe
⇤
OX ((1 � pe)(KX +1))) ◆ OX , we see by twisting by appro-

priate line bundles, that �(Fe
⇤
OX ((1� p2e)(KX +1))) ◆ OX ((1� pe)(KX +1)).

So
�2

�
F2e
⇤
OX

�
(1� p2e)(KX +1)

��
= �

�
Fe
⇤
�
�
Fe
⇤
OX ((1� p2e)(KX +1))

��
◆ �

�
Fe
⇤
OX

�
(1� pe)(KX +1)

��
◆ OX .

In general, if �n
�
Fne
⇤
OX ((1� pne)(KX +1))

�
◆ OX , then

�n+1
⇣
F (n+1)e
⇤

OX
�
(1� p(n+1)e)(KX +1)

�⌘
= �

�
Fe
⇤
�n

�
Fne
⇤
OX ((1� p(n+1)e)(KX +1))

��
◆ �

�
Fe
⇤
OX

�
(1� pe)(KX +1)

��
◆ OX .

Unlike the case where1 is effective, it is not clear to us whether (X,1) being sub-
F-pure implies that �e1 has OX in its image for all e such that (pe � 1)(KX +1)

is Q-Cartier. The problem is that �2e1 doesn’t factor through �e1 when 1 is non-
effective. However, when X is normal and 1-dimensional, this is not an issue.

Lemma 2.12. Suppose that X is normal and 1-dimensional and (X,1) is sub-F-
pure. Then for every e > 0 such that (pe � 1)(KX +1) is Q-Cartier, we have that
OX is in the image of �e1.

Proof. The statement is obviously local so we may assume that X is the spectrum
of a DVR and Q is the unique closed point of X . Write 1 = �Q. We leave it as an
exercise to the reader to check that �e1 hasOX in its image if and only if �  1.

We now explain briefly the relation between F-pure and log canonical singu-
larities through several lemmas and corollaries.
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Lemma 2.13. Suppose we are given � : Fe
⇤
L! K (X) corresponding to a divisor

1� . Fix KX so that L = OX ((1 � pe)(KX + 1)) ✓ K (X). We denote by
� : Fe

⇤
K (X)! K (X) the extension to Fe

⇤
K (X) of �.

Consider a divisorial discrete valuation ring OX,E ✓ K (X) centered over X .
Then the map

Fe
⇤
OX

�
(1� pe)(KX +1)

�
⌦OX,E ! K (X)

corresponds to the divisor 1X,E such that KX,E + 1X,E = ⇡⇤(KX + 1) where
⇡ : Spec OX,E ! X is the induced map. Here KX,E is the canonical divisor on
SpecOX,E coming from the uniquely determined b-divisor we selected implicitly
when we fixed KX .

Proof. This is essentially in [14, Main Theorem] using different language, other
proofs can be found in [5, Section 7.2]. We briefly sketch the argument.

Choose ⇡ : Y ! X a proper birational map from a normal Y such that
OX,E appears as the generic point of some divisor E ✓ Y . We first extend �
to Fe

⇤
K (X) = Fe

⇤
K (Y ), and then consider �Y = �|Fe

⇤
⇡⇤(OX ((1�pe)(KX+1))) :

Fe
⇤
⇡⇤(OX ((1 � pe)(KX + 1))) ! ⇡⇤K (X) = K (Y ). This map �Y gives us a

divisor 1Y such that

OY
�
(1� pe)(KY +1Y )

�
= ⇡⇤

�
OX ((1� pe)(KX +1))

�
and hence KY + 1Y = ⇡⇤(KX + 1). However, the divisor 1Y induced from �Y
obviously agrees with 1X wherever ⇡ is an isomorphism. The result follows by
localization.

We next verify that sub-log canonical and sub-F-pure are the same for valua-
tion rings.

Lemma 2.14. Suppose that R ✓ K (X) is a discrete valuation ring with parameter
t 2 R. R ⇠= L ✓ K (X) and � : Fe

⇤
L ! K (X) is any nonzero map inducing a

divisor 1� on Spec R, then (Spec R,1�) is sub-log canonical if and only if it is
sub-F-pure.

Proof. To say that (Spec R,1�) is sub-log canonical is simply to assert that 1� 
1 · div(t). Now, if 8 : Fe

⇤
L ! R generates HomR(Fe

⇤
L , R) as an Fe

⇤
R-module,

then �(Fe
⇤

) = 8(Fe
⇤
uta ) for some unit u 2 R and some a 2 Z. It follows that

1� =
a

pe�1 div(t). On the other hand, it is easy to see that Image(�) ◆ OX if and
only if a  pe � 1. This proves the lemma.

Combining the previous two results, we immediately have the following. This
was first shown in [14, Main Theorem] although they assumed that 1 is effective.

Corollary 2.15. If (X,1) is a pair with (pe � 1)(KX +1) Q-Cartier, and (X,1)
is sub-F-pure, then (X,1) is sub-log canonical.
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Proof. This is easy, if � : Fe
⇤
L ! K (X) corresponds to 1 and �(Fe

⇤
L ) ◆

OX , then, abusing notation and extending � to the fraction field, obviously 1 2
�(Fe
⇤
L ⌦OX OX,E ) and hence OX,E ✓ �(Fe

⇤
L ⌦OX OX,E ) for any divisorial

discrete valuation ring OX,E lying over X . In particular, each (SpecOX,E ,1X,E )
is sub-F-pure (where KX,E + 1X,E = ⇡⇤(KX + 1)). The previous two lemmas
immediately imply that the discrepancy divisor along all such valuations is � �1
and the result follows.

2.4. Global F-splittings

Throughout this subsection, we suppose that (X,1) is a pair and (pe�1)(KX +1)
is Cartier.
Definition 2.16 (Global F-splitting). If 1 � 0, we say that (X,1) is globally
F-split if the map induced by 1 is surjective on global sections

H0
�
X, Fe

⇤
OX ((1� pe)(KX +1))

�
⇣ H0(X,OX ) for some e > 0.

Note that this implies that (X,1) is F-pure and hence sub-F-pure.
For an arbitrary 1, we say that (X,1) is globally sub-F-split if image of

H0(X, Fe
⇤
OX

�
(1� pe)(KX +1))

�
! H0(X, K (X)) for some e > 0

contains 1 (and hence its image globally generates a rank-1-module containingOX ,
and thus (X,1) is sub-F-pure).

We will frequently be interested in splitting relatively, see [13,29].
Definition 2.17 (Relative F-splitting). Suppose that ⇡ : X ! Z is a map of
schemes. We say that a pair (X,1) is globally F-split relative to ⇡ (or over Z)
if there is an open cover {Ui } over Z such that (⇡�1Ui ,1|⇡�1Ui ) is globally F-split
for each i .

Likewise we say that (X,1) is globally sub-F-split relative to ⇡ if there is
an open cover {Ui } over Z such that (⇡�1Ui ,1|⇡�1Ui ) is globally sub-F-split for
each i .

2.5. Log canonical and F-pure centers

We recall certain distinguished subvarieties of log canonical (respectively F-pure)
pairs, the LC centers (respectively F-pure centers).
Definition 2.18 (LC centers). Suppose that (X,1) is a pair. We say that an inte-
gral subscheme Z ✓ X is a log canonical center of (X,1) if

(a) 1 is effective at the generic point Q of Z ;
(b) (X,1) is log canonical at the generic point Q of Z ;
(c) There exists a proper birational map ⇡ : Y ! X from a normal Y such that if

we write KY +1Y = ⇡⇤(KX +1X ), then there exists a prime divisor E on Y
such that coeffE (1Y ) = 1 and ⇡(E) = Z .
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Definition 2.19 (F-pure centers). Suppose that (X,1) is a pair in characteristic
p > 0 with (1 � pe)(KX + 1) Cartier. Say that 1 corresponds to some map
� : Fe

⇤
L! K (X), where L = OX ((1 � pe)(KX +1)). We say that an integral

subscheme Z ✓ X is an F-pure center of (X,1) if

(a) 1 is effective at the generic point Q of Z ;
(b) (X,1) is F-pure at the generic point Q of Z ;
(c) If OX,Q is the stalk at the generic point Q of Z and IZ is the ideal defining Z ,

then �(Fe
⇤
IZ · L) ·OX,Q ✓ IZ ·OX,Q ✓ K (X).

We note that the choice of map � does not change whether or not a particular Z is
an F-pure center since different maps correspond to the same divisor if and only if
the maps are the same up to multiplication by a unit.

We recall the following result about F-pure centers, see [28, Lemmas 3.6 and
3.7] for the case when 1 is effective.

Lemma 2.20. Being an F-pure center is a local condition. In other words, Z is
an F-pure center of (X,1) if and only if V (QOX,Q) ✓ SpecOX,Q is an F-pure
center of (SpecOX,Q,1|SpecOX,Q ), where Q is the generic point of Z .

Proof. Conditions (a) and (b) of Definition 2.19 are certainly equivalent for either
case. Now, if Z is an F-pure center of (X,1), then V (QOX,Q) is also an F-pure
center by localization. On the other hand

�
�
Fe
⇤
(IZ · L ·OX,Q)

�
✓ IZ ·OX,Q

is the same as
�
�
Fe
⇤
IZ · L

�
·OX,Q ✓ IZ ·OX,Q

and the proof is complete.

Remark 2.21. The above definition differs in several ways from the one given in
[28]. One notable way is that we do not assume that 1 � 0 (we also make several
simplifying assumptions).
Remark 2.22. Part (c) for either definition (2.18 and 2.19) can also be interpreted
as follows (also assuming resolution of singularities for 2.18): For any Cartier divi-
sor H > 0 passing through the generic point Q of Z , (X,1 + t H) is not sub-log
canonical at Q (respectively not sub-F-pure at Q) for any t > 0.

Lemma 2.23. Suppose that X is an F-finite normal integral scheme of character-
istic p > 0 and that 1 is a Q-divisor such that (pe � 1)(KX +1) is Cartier and
1 satisfies conditions (a) and (b) from Definition 2.19. Then if Z ✓ X is a log
canonical center of (X,1), then Z is also an F-pure center.

Proof. In the case that1 � 0, this follows from [28]. However, by localizing at the
generic point of Z , we may assume that 1 � 0.
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2.6. The different and divisorial part thereof

Definition 2.24. [19, Chapter 4] Let (X, S + 1) be a log pair, i.e., X is a normal
integral scheme, KX+S+1 isQ-Cartier, S is a reduced divisor and1 is aQ-divisor
with no common components with S. Let SN! S be the normalization of S. There
exists a canonically determinedQ-divisor1SN on SN such that (KX+S+1)|SN ⇠Q
KSN +1SN. The Q-divisor 1SN is called the different of the adjunction or simply
the different.

If 1 � 0, then 1SN � 0. For this and other properties of the different see [20,
Chapter 17] and [19, Chapter 4].
Definition 2.25. Let f : X ! Z be a surjective proper morphism between two
normal integral schemes and suppose KX + 1 ⇠Q f ⇤L , where 1 =

P
di1i is a

Q-divisor on X , and L is a Q-Cartier Q-divisor on Z . Suppose (X,1) is sub-log
canonical over a neighborhood of the generic point of Z , i.e., ( f �1U,1| f �1U ) is
sub-log canonical for some Zariski dense open subset U ⇢ Z . Then we define two
divisors 1div and 1mod on Z in the following way:

1Z ,div=1div=
X

(1�cQ)Q, where Q⇢ Z are prime Weil divisors of Z , and

cQ=sup
⇢
c 2 R

��� (X,1+ c f ⇤(⌘Q)) is sub-log canonical over a
neighborhood of the generic point ⌘Q of Q

�
,

1Z ,mod=1mod=L � KZ �1div, so that KX +1 ⇠Q f ⇤(KZ +1div +1mod).

The divisor1div is called the divisorial part of the adjunction and1mod the moduli
part.
Remark 2.26 (Is 1div an honest divisor?). We do not know whether 1div is an
honest divisor in general (the right hand side of 1div could be an infinite sum).
However if we are working with varieties in characteristic 0, it is not hard to see
that 1div is in fact a finite sum. Indeed, by replacing X with a log resolution of
(X,1) we may assume that (X,1) is a SNC pair (since obviously the definition
of 1div is independent of any birational modification of X). Write 1 = 1h

+1v ,
where each component of 1h dominates Z and no component of 1v dominates Z .
Let 1i , an integral scheme, be a component of 1h .

Consider the induced morphism f |1i : 1i ! Z . By generic smoothness, there
exists a dense open set Ui ✓ Z such that the fibers of f |1i over Ui are all smooth.
Let Q be a prime Weil divisor on Z whose generic point ⌘Q is contained in Ui .
Then ( f |1i )

⇤(⌘Q) is smooth over k(⌘Q). But ( f |1i )
⇤(⌘Q) is the scheme theoretic

intersection of 1i and f ⇤(⌘Q). Therefore 1i intersects f ⇤(⌘Q) transversally. Let
U be the intersection of all such open sets Ui corresponding to all components 1i
of 1h , and V = U \ f (Supp(1v)). Then for any prime Weil divisor Q of Z such
that ⌘Q 2 V , 1 + f ⇤(⌘Q) is a SNC divisor; in particular (X,1 + f ⇤(⌘Q)) is LC
over ⌘Q . Therefore cQ = 1 for all ⌘Q 2 V , and the right hand side of 1div is a
finite sum.

This proof fails in characteristic p > 0 because resolutions of singularities are
not known to exist and even worse, generic smoothness is known to fail. However
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with an additional hypothesis (which appears frequently for us, see Proposition 4.1
and the results immediately following it) we can show that 1div is a finite sum in
char p > 0.

Lemma 2.27. With the same hypothesis as Definition 2.25, assume additionally
that all schemes are F-finite and of characteristic p > 0. Further assume that
(pe � 1)L and (pe � 1)(KX + 1) are Cartier and that (1 � pe)(KX + 1) ⇠
(1� pe) f ⇤L . Fix a map

�1 : Fe
⇤
OX

�
(1� pe) f ⇤L

�
! K (X)

corresponding to 1 as in Subsection 2.1.1. Now assume that2

0 6= �1
�
Fe
⇤
f �1OZ ((1� pe)L)

�
✓ f �1K (Z) ✓ K (X). (2.2)

Let 1Z denote the divisor on Z corresponding to the induced �Z : Fe
⇤
OZ ((1 �

pe)L)! K (Z). Then 1div is an honest R-divisor and 1div  1Z .

While we phrased this in a somewhat funny way involving f �1 and L , the
requirement

0 6= �1

⇣
Fe
⇤
f �1OZ ((1� pe)L)

⌘
✓ f �1K (Z)

of Lemma 2.27 should be thought of as requiring that �1 : Fe
⇤
K (X) ! K (X)

restricts to a nonzero and hence surjective map Fe
⇤
K (Z) ! K (Z). We used f �1

and not f ⇤ because we do not want to tensor up to sheaves ofOX -modules.

Proof. First we show that 1div  1Z . This is local on Z so we assume that Z is
the spectrum of a DVR with parameter x and that z 2 Z is the unique closed point.
For any rational �, we consider the condition that (Z ,1+�z) is sub-F-pure, which
means that

�Z : Fe
⇤
xd(p

e
�1)�e

·OZ ((1� pe)L)! K (Z)

has 1 in its image for sufficiently divisible e > 0. But then since �Z extends to
�1 we see that �1 : Fe

⇤
xd(pe�1)�eOX ((1 � pe) f ⇤L) ! K (X) also has 1 in its

image. Hence (X,1+� f ⇤z) is also sub-F-pure and thus also sub-log canonical by
Corollary 2.15. It follows that

cz := sup
�
c 2 R | (X,1+ c f ⇤z) is sub-log canonical

 
� sup

�
c 2 R | (Z ,1Z + cz) is sub-F-pure

 
.

If we write 1Z = az, then sup{c 2 R | (Z ,1Z + cz) is sub-F-pure} = 1 � a.
Hence cz � 1� a and so 1� cz  a. This proves the inequality 1div  1Z .

For the statement that 1div is actually a divisor we can no longer assume that
Z is the spectrum of a DVR. Since 1div  1Z , we just need to show that 1div can
have at most finitely many components with negative coefficients.

2 Here f �1 is inverse image of sheaves in the category of Abelian groups, as in [15, Chapter II,
Section 1].
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Claim 2.28. If Q is a point of codimension 1 in Z and coeffQ(1div) < 0, then 1v

has a component whose generic point maps to Q.

Proof of claim. By hypothesis, there exists a real number c > 1 such that (X,1+

c f ⇤(⌘Q)) is sub-log canonical over a neighborhood of Q. Let E be an irreducible
component in Supp( f ⇤(⌘Q)). Since (X,1 + c f ⇤(⌘Q)) is sub-log canonical, 1 �
coeffE (1+ c f ⇤(⌘Q)) � coeffE (1) + c, then coeffE (1)  1� c < 0. This proves
the claim.

The claim proves the lemma since 1 has only finitely many components.

Now suppose that W ✓ X is a log canonical center of (X,1). For any proper
birational map W 0 ! W with W 0 normal, we can find a proper birational map
⇡ : X 0 ! X such that there exists a divisor E ✓ X with:
(a) ⇡(E) = W ;
(b) ⇡ |E factors through W 0 ! W ;
(c) the discrepancy along E is equal to �1.
Definition 2.29. The divisorial part of the different on W 0 ! W ✓ X , relative to
E , denoted by1W 0,E,div (or simply by1W 0,div if E is implicit), is defined to be the
divisorial part of the adjunction of E ! W 0 defined as in Definition 2.25.
Remark 2.30. While it is clear that 1W 0,E,div only depends on the valuation of E
(and not the particular choice of X 0), we do not know that it is independent of the
choice of E ✓ X 0 in general. It is because of this that we include E in the defini-
tion and notation for the divisorial part of the different. Note that in characteristic
p > 5, if dim X  3, then by [8, Lemma 4.10] we know that 1W 0,E,div is inde-
pendent of the choice of E in certain cases. We also believe this is true in higher
dimensions in characteristic zero by a similar method. Unfortunately we do not
know of a reference and we feel that proving it here would take us away from our
focus (characteristic p > 0). On the other hand we will see in Section 5 that the F-
different can be deduced via a version of a canonical bundle formula for E ! W 0,
see Corollary 5.6. However, because it can also be obtained independently from E ,
the F-different is independent of the choice of E .
Remark 2.31. Let � : Z 0 ! Z be a birational morphism with Z 0 normal and X 0
the normalization of the component of X ⇥Z Z 0 dominating Z 0 so that X 0 ! X is
birational.

X
f

✏✏

X 0
� 0oo

f 0
✏✏

Z Z 0 .�
oo

(2.3)

We can then define the divisorial part of the adjunction 1Z 0,div for X 0 ! Z 0. It
is clear that �⇤1Z 0,div = 1Z ,div since at points where � is an isomorphism, there
is nothing to do. Therefore we can define 1div the b-divisor over Z picking out
1Z 0,div.

We finally discuss a notion of descent.
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Definition 2.32. Suppose that Z is a normal integral scheme and D is a b-divisor
over Z . For a proper birational map Z 0 ! Z , we say that D descends to Z 0 (as a
Q-Cartier divisor) ifDZ 0 isQ-Cartier and for every further birationalµ : Z 00 ! Z 0,
µ⇤DZ 0 = DZ 00 .

And we recall the following result of Ambro.

Lemma 2.33. [1, 12] Suppose that Z is an log canonical center of (X,1) relative
to E and that X is a variety of characteristic zero. Then there exists a proper
birational map Z 0 ! Z with Z 0 normal such that the b-divisorKZ +1div descends
to Z 0 as a Q-Cartier divisor.

2.7. The F-different

Now we define the F-different, the primary object of study in this paper. Suppose
that (X,1) is a pair with (pe � 1)(KX + 1) Cartier. Suppose that W ✓ X is an
F-pure center and µ : WN

! W is its normalization. SetL = OX ((1� pe)(KX +

1)) and let �W : Fe
⇤
L |W ! OW (G|W ) ✓ K (W ) be the map induced from the

following diagram. Here G is some effective Cartier divisor not containing the
generic point of W chosen to contain the image of �1

0

✏✏

0

✏✏
Fe
⇤
IW · L

�1 //

✏✏

IW ·OX (G)

✏✏
Fe
⇤
L

✏✏

�1 // OX (G)

✏✏

� � // K (X)

Fe
⇤
L|W

✏✏

// OW (G|W )

✏✏

� � // K (W )

0 0 .

(2.4)

Any map Fe
⇤
L |W ! K (W ) clearly extends to a map �WN : Fe

⇤
µ⇤(L |W ) !

K (WN) (see [23] for more discussion on the divisorial interpretation of this exten-
sion).

Definition 2.34 (The F-different). The F-different of (X,1) on WN is defined to
be the divisor 1WN,F- diff := 1WN corresponding to �WN. More generally, for
any birational map  : W 0 ! W from a normal W 0, we have an induced map
�W 0 : Fe⇤⇤(LW )! K (W 0) and hence a divisor 1W 0 = 1W 0,F- diff = 1W 0,F- diff.
This gives us the F-different as a b-divisor, denoted 1F- diff.
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Remark 2.35. Even though the F-different is a b-divisor, the sum of the two b-
divisors K+1F- diff is in fact Q-Cartier and descends down to any W 0. Indeed for
any birational ⇢ : W 00 ! W 0 between normal integral schemes dominating W , we
have ⇢⇤(KW 0+1W 0,F- diff) = KW 00+1W 00,F- diff. In summaryK+1F- diff descends
all the way to WN .

3. A brief description of computing the F-different and an example

We begin by a description of an algorithm for computing the F-different in explicit
examples.

Lemma 3.1. Suppose that Y = An
=Spec S=Spec k[x1, . . . , xn] and Spec S/I =

X ✓ Y is a closed normal subscheme. Fix 1 � 0 a Q-divisor on X such that
(pe � 1)(KX + 1) is a Cartier divisor for some positive integer e > 0. Suppose
Z = Spec S/J ✓ X is an F-pure center of (X,1). Then

(a) 1 induces a (non-unique) element f 2 (I [pe] : I ), f /2 (I [pe]);
(b) Fe

⇤
f 2 Fe

⇤

J [pe]
:J

J [pe] corresponds to a global section of Fe
⇤
OZ ((1 � pe)KZ ) via

the following isomorphism

Fe
⇤

J [pe]
: J

J [pe]
⇠
= Hom(Fe

⇤
S/J, S/J ) ⇠= H0(Z , Fe

⇤
OZ

�
(1� pe)KZ )

�
.

Using the isomorphism of (b), Fe
⇤
f yields an induced section f 2 H0(Z ,OZ ((1�

pe)KZ )) = !
(1�pe)
R/I whose corresponding divisor is the F-different 1Z ,F- diff.

Furthermore, suppose that (pe � 1)KZ ⇠ 0 and so write J [pe]
: J = hgei +

J [pe]. Then f = hge+g with g 2 J [pe]. In this case the F-different is 1
pe�1 divZ (h).

Proof. The fact that 1 corresponds to f is simply Fedder’s criterion [10, Lemma
1.6]. This f induces a divisor 1Y on Y such that (X,1) is an F-pure center of
(Y,1Y ). For (b), we use the Fedder-type criterion for F-pure centers [28, Proposi-
tion 3.11]. For the final statement, we observe that ge corresponds to the generating
homomorphism 8Z of Hom(Fe

⇤
S/J, S/J ), see [27]. We see that f corresponds to

pre-multiplying the generating homomorphism 8Z by h. The statement about the
different follows.

The following example was first worked out in 2010 by the second author,
David Speyer and Chenyang Xu.
Example 3.2. Suppose that f : X ! Spec k[t] = A1 is a family of cones over
elliptic curves defined by a = zy2 � x(x � z)(x � t z) with a section � : A1 ! X
mapping to the cone points. Further consider the log resolution ⇡ :

eX ! X which
is obtained by blowing up the image of � (which we now call Z ). Finally note that
X is F-pure at the generic point of Z by Fedder’s criterion [10].

Note X is Gorenstein since it is a hypersurface, and set 1 = 0. It then follows
that Z is a log canonical center of (X,1) and hence an F-pure center of (X,1).
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Claim 3.3. The F-different 1Z on Z = V (x, y, z) ⇢ X is supported at exactly
those points (0, 0, 0, s) 2 Z such that the elliptic curve corresponding to f �1(s) is
supersingular, where f : X ! Spec k[t].

We will prove this claim by two different methods. First by direct computation
of polynomials.

Proof #1 of Claim 3.3. We write

a p�1 = h(t)x p�1y p�1z p�1 + G(x, y, z, t)

where G(x, y, z, t) 2 hx p, y p, z pi. This gives us an alternate proof that Z =

V (x, y, z) is an F-pure center again by [28, Proposition 3.11]. We first compute
the F-different via Lemma 3.1. Note that the map F⇤OX ! OX corresponding to
1 lifts to a map �A4 : F⇤k[x, y, z, t] ! k[x, y, z, t] compatible with X ✓ A4 =

Spec k[x, y, z, t], namely take the generating map

8 2 Homk[x,y,z,t](F⇤k[x, y, z, t], k[x, y, z, t])

on A4 and pre-multiply by a p�1 = f . We notice that g1 = x p�1y p�1z p�1 (here
g1 = ge is defined as in the statement of Lemma 3.1). Thus the F-different is sim-
ply 1

p�1 divZ (h(t)) by Lemma 3.1. Note that h(t) is the Hasse polynomial, which
vanishes exactly at those t values where the associated elliptic curve is supersingu-
lar.

Proof #2 of Claim 3.3. Now we study the F-different via geometry, in a way which
will be similar to what we will do in later sections. Note that (X, divX (t � �)) has
a log canonical center at Q = (x, y, z, t � �). Furthermore, by blowing up eX at the
inverse image C� of that point Q, one obtains a log resolution µ : X 0 ! X with
two exceptional divisors, E1 dominating Z and E2 dominating Q. Both of these
exceptional divisors have discrepancy�1 with respect to the pair (X, 1·divX (t��)).
Claim 3.4. If (X, 1 · divX (t � �)) is F-pure, the exceptional divisor E2 is F-split.

Proof. Write �X : Fe
⇤
OX

�
(1 � pe)(KX + divX (t � �))

�
! OX corresponding

to the divisor 1 · divX (t � �). This map is surjective by hypothesis. Since all the
discrepancies on eX are non-positive, this map extends to a map

�X 0 : Fe⇤OX 0
�
µ⇤((1� pe)(KX + divX (t � �)))

�
! OX 0 .

Note µ⇤ of �X 0 is �X and so �X 0 is also surjective, even on global sections (since
1 is in the image along the global sections). Since E2 has discrepancy �1, �X 0 is
compatible with E2 and so by the argument and diagram of (2.4), we obtain a map

�E2 : Fe
⇤
OE2
⇠
= OX 0

�
µ⇤((1� pe)(KX + divX (t � �)))

�
|E2 ! OE2

by restriction. This map also has 1 in its image among global sections, and hence
E2 is Frobenius split. This proves Claim 3.4.

The Claim 3.4 implies that the associated elliptic curve is also F-split since E2
maps onto the elliptic curve ⇢ : E2! C� with ⇢⇤OE2 = OC� , see [6, 21].
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By F-adjunction (X, 1 ·divX (t��)) is F-pure (in a neighborhood of Z ) if and
only if (Z ,1Z + divZ (t � �)) is F-pure. The latter is F-pure at the closed point
V (t � �) ✓ Z if and only if 1Z does not have divZ (t � �) in its support. Putting
this together, if1Z does not have divZ (t��) in its support, then (X, 1 ·divX (t��))
is F-pure, which implies that C� is F-split as we already saw. In other words if �
corresponds to a supersingular elliptic curve C�, then 1Z must have divZ (t � �)
among its components.

Conversely, suppose that � corresponds to an ordinary elliptic curve E�. The
generating map (ie the map corresponding to the dual of Frobenius) on the asso-
ciated elliptic curve  : Fe

⇤
!E�
⇠
= F⇤OE� ! OE�

⇠
= !E� is always the map

induced by the pair (X, divX (t � �)) on eX as above. On the global sections of the
elliptic curve, the map  sends units to units. This implies the map associated to
(X, divX (t��)), when extended to eX , has to send units to non-zero elements which
restrict to units on E�. Thus back on X , units must be sent to elements that are units
near Z and the proof of the second proof of Claim 3.3 is complete.

In conclusion, the F-different can exhibit some quite complicated behavior as
in this case it picks out the supersingular elliptic curves.

4. First properties of F-pure centers and the F-different

F-pure centers and log canonical places above them, can have very nice properties.
Suppose that (X,1) is a sub-log canonical pair in characteristic p > 0 with (pe �
1)(KX + 1) ⇠ 0. Suppose further that ⇡ : X 0 ! X is a proper birational map
from a normal variety X 0 and suppose that ⇡⇤(KX + 1) = KX 0 + 1X 0 . Suppose
that E ✓ X 0 is a prime (usually exceptional) divisor of discrepancy �1 dominating
an integral subscheme W ✓ X such that (X,1) is F-pure at the generic point of
W , which implies that1 is effective at the generic point of W (and hence that W is
an F-pure center and log canonical center). Let �1 : Fe

⇤
OX ((1� pe)(KX +1)) ⇠=

Fe
⇤
OX ! K (X) be the map corresponding to 1 and we abuse notation and, after

fixing KX as an honest divisor, denote by � : Fe
⇤
K (X)! K (X) the induced map

on the fraction field. We use �1X 0 to be the map F
e
⇤
OX 0((1� pe)⇡⇤(KX +1)) ⇠=

Fe
⇤
OX 0((1� pe)(KX 0 +1X 0))! K (X 0) which generically agrees with �. We use

�E and �W to be the maps induced by restricting �1X 0 and �1 respectively to E
and W as in Subsection 2.7.
Proposition 4.1. With notation as above, the map � induces nonzero horizontal
maps in the commutative diagram below.

Fe
⇤
K (E)

�E // K (E)

Fe
⇤
K (W )
?�

OO

�W
// K (W )

?�

OO

Furthermore the vertical maps are simply induced by ⇡E : E ! W .
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Proof. We may assume that X = Spec R is affine and that W = V (I ) = Spec R/I .
We may also assume that 1 � 0. Choose an open affine neighborhood U ✓ X 0
containing the generic point of E where1X 0 |U � 0 and (pe�1)(KX 0+1X 0)|U ⇠ 0.
Note then that the different1E , satisfying (KX 0+1X 0)|E ⇠Q KE+1E , is effective
(that is, 1E |U\E � 0). We may write U = Spec R0 and E = V (J ) = Spec(R0/J ).

We then have a map ↵ : R ,! R0 with R \ J = I . Let �R : Fe
⇤
R ! R be the

map obtained by taking global sections of �1. Now, since R and R0 are birational,
and we have1X 0 |U � 0, we obtain a map �R0 : Fe⇤ R0 ! R0, corresponding to1X 0 ,
such that the following diagram commutes:

Fe
⇤
R� _

Fe
⇤
↵

✏✏

�R // R� _

↵

✏✏
Fe
⇤
R0

�R0
// R0.

Since E has discrepancy�1 in X 0, i.e., coeffE 1X 0 = 1, we see that J is compatible
with �R0 , and we already know that I is compatible with �R , although it also follows
from the diagram above. Since J \ R = I (since ⇡(E) = W ), we have the induced
diagram

Fe
⇤
R/I� _

✏✏

�R // R/I� _

✏✏
Fe
⇤
R0/J

�R0
// R0/J.

Taking fields of fractions gives us exactly the claimed diagram.

We obtain the following corollary.

Corollary 4.2. With notation and assumptions as in and above Proposition 4.1,
every element of K (E) which is algebraic over K (W ) is separable over K (W ), in
particular ⇡⇤OE ◆ OW is separable. Furthermore, if K (W ) ✓ L ✓ K (E) and
K (W ) ✓ L is algebraic and separable, then �E restricts to a map �L : Fe

⇤
L ! L .

Proof. For the first part, we simply refer to [30, Example 5.1].
The second part is essentially the argument given in [30, Proposition 5.2] in

a slightly different context. Note we use the 1/pe notation instead of the Fe
⇤

notation in what follows. We first consider �E |Fe
⇤
L . Since Fe

⇤
L = L1/pe =

L ⌦ K (W )1/p
ee

= LK (W )1/p
e
✓ K (E)1/p

e , for any arbitrary l1/pe 2 L1/pe , write
l1/pe =

P
i liw

1/pe
i for some li 2 L ✓ K (E) and wi 2 K (W ). Then �E (l1/pe) =

�E (
P

i liw
1/pe
i ) =

P
i li�E (w

1/pe
i ). But �E (w

1/pe
i ) = �W (w

1/pe
i ) 2 K (W ) thus

�E (l1/pe) 2 L . Hence �L := �E |L : L1/pe ! L is an extension of �W and extends
to �E .
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Rephrasing Proposition 4.1 in the non-local case, we obtain the following re-
sult.
Corollary 4.3. Suppose that (X,1) is a pair in characteristic p > 0 with (pe �
1)(KX + 1) Cartier. Suppose further that ⇡ : X 0 ! X is a proper birational
map from a normal variety X 0 and that ⇡⇤(KX + 1) = KX 0 + 1X 0 . Assume that
E ✓ X 0 is a normal prime exceptional divisor of discrepancy �1 dominating an
integral subscheme W ✓ X such that (X,1) is F-pure, and hence log canonical,
at the generic point of W . Note that this implies that 1 is effective at the generic
point of W . Suppose that ⇡ |E : E ! W can be written as E ⇢

�! W 0 ! W where
W 0 ! W is birational and W 0 is normal. Then there is a commutative diagram:

Fe
⇤
OE ((1� pe)(KE +1E ))

�E // K (E)

Fe
⇤
⇢�1OW 0((1� pe)(KW 0 +1W 0,F- diff))

?�

OO

�W 0
// ⇢�1K (W ).

?�

OO

Here 1E is the different of KX 0 +1X 0 along E and 1W 0,F- diff is the F-different of
(X,1) alongW 0 which maps to the the F-pure centerW (recall that the F-different
is a b-divisor by Definition 2.34 and Remark 2.35).
Proof. This is just a non-local rephrasing of Proposition 4.1. Note

⇢⇤(pe � 1)(KW 0 +1W 0,F- diff) ⇠ (pe � 1)(KE +1E )

by construction.

We immediately obtain the following.
Corollary 4.4. Suppose (X,1) is a pair such that KX +1 isQ-Cartier with index
not divisible by p. If W ✓ X is a log canonical center that is also an F-pure center
of (X,1), then 1W,E,div  1W,F- diff as b-divisors (here E can be taken as any
E ! W such that E has discrepancy �1). In other words, for any proper and
birational W 0 ! W with W 0 normal and E ! W factoring through W 0, we have
that 1W 0,div  1W 0,F- diff. Furthermore, 1W 0,div is an honest R-divisor.
Proof. We fix ⇡E : E ! W factoring through W 0, where E ✓ X 0 is some nor-
mal prime divisor with discrepancy �1. We apply Corollary 4.3 and obtain the
displayed diagram therein. But this implies that the hypotheses of Lemma 2.27 are
satisfied. We notice that 1W 0,F- diff is induced by the map labeled �W 0 in the same
diagram. We conclude that 1W 0,div  1W 0,F- diff and also that 1W 0,div is an honest
R-divisor by Lemma 2.27.

It would be natural to show that OW ✓ ⇡⇤OE is birational. Using standard
results from the theory of Frobenius splittings, we can do that under the following
situation3.

3 Which is frequently obtainable if we have access to the minimal model program.
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Lemma 4.5. With notation and assumptions as in Corollary 4.3, assume addition-
ally that the following holds:

(a) There is a neighborhood U ✓ X of the generic point of W such that
1X 0 |⇡�1(U) � 0;

(b) ⇡ is an isomorphism over X \ W .

ThenOW ✓ ⇡⇤OE is birational.

Proof. We localize the entire setup at the generic point ofW and hence work locally
over the base. Our hypotheses in (a) can then be translated into assuming that X 0 is
e-iterated Frobenius split compatibly with E . This implies that R1⇡⇤OX 0(�E) = 0
by [6, 1.2.12 Theorem], see [22]. Hence ⇡⇤OX 0 ! ⇡⇤OE is surjective. But we
know ⇡⇤OX 0 = OX since X is normal and so ⇡⇤OE is a quotient of OX . Now
certainly IW annihilatesOE and so we have the factorization

OX ! OW ,! ⇡⇤OE .

The composition is surjective and hence OW ! ⇡⇤OE is an isomorphism. Thus
unlocalizing we conclude thatOW ✓ ⇡⇤OE is birational as desired.

5. A canonical bundle formula and the local structure of the F-different

The first few results of this section work under the following notation and hypothe-
ses.
Setting 5.1. Assume that ⇡ : E ! W is a proper dominant map between normal
F-finite integral schemes of characteristic p > 0 and that ⇡⇤OE = OW . Suppose
that1E is aQ-divisor on E and thatOE ((1� pe)(KE +1E )) ⇠= ⇡⇤LW for some
line bundleLW , hence (pe � 1)(KE +1E ) is Cartier and linearly equivalent to a
Cartier divisor pulled back from W .

Theorem 5.2 (Canonical bundle formula). With notation as in Setting 5.1, sup-
pose that every horizontal component of 1E (those components which dominate
W ) is effective. If the generic fiber (E⌘,1E,⌘) is globally F-split relative to ⇡ ,
then there exists a canonically determined divisor 1W on W such that ⇡⇤(KW +

1W ) ⇠Q KE +1E .

Proof. Suppose that �E : Fe
⇤
OE ((1 � pe)(KE + 1E )) ! K (E) is a map corre-

sponding to 1E (these maps are unique up to multiplication by units of 0(E,OE ),
which are the same as units of 0(W,OW )).

We work locally on the base W , and hence assume that W is affine. Since
the horizontal part of 1E is effective, we have a Cartier divisor D � 0 on W such
that Image(�E ) ✓ OE (⇡⇤D) ✓ K (E), and so we push down �E by ⇡ and by the
projection formula obtain:

�W := ⇡⇤�E : Fe
⇤
LW ! OW (D) ✓ K (W ).
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Since (E⌘,1E,⌘) is globally F-split relative to ⇡ , we see that �W = ⇡⇤�E is
nonzero. The divisor 1W associated to �W satisfies the desired condition since
⇡⇤(1 � pe)(KW +1W ) ⇠ (1 � pe)(KE +1E ). Note that 1W is independent of
choices, since, as already noted, multiplication by units of 0(W,OW ) is the same
as multiplication by units of 0(E,OE ).

Corollary 5.3. With notation as in Theorem 5.2, we may always choose �W :

Fe
⇤
OW (KW+1W )! K (W ) corresponding to1W and �E : Fe

⇤
OX ((1�pe)(KE+

1E )) ! K (E) corresponding to 1E such that �W extends to �E as in Corol-
lary 4.3.
Proof. This follows from the construction of �W in the proof of Theorem 5.2.

We can also work in the following more general setting without the effectivity
hypothesis on 1E

Corollary 5.4 (General canonical bundle formula). With notations as in Setting
5.1, suppose that �E : Fe

⇤
OE ((1� pe)(KE +1E ))! K (E) is a map correspond-

ing to 1E that satisfies the following conditions:
(i) �E

�
Fe
⇤
⇡�1LW

�
✓ ⇡�1

�
K (W )

�
✓ K (E);

(ii) The map induced via ⇡⇤, �W : Fe
⇤
LW ! K (W ), is nonzero 4.

Then there exists a canonically determined 1W (corresponding to �W ) such that
KE +1E ⇠Q ⇡⇤(KW +1W ).
Proof. The proof is the same as the last few lines of the proof of Theorem 5.2.

Remark 5.5. Note that in the setup of Corollary 5.4, if (E,1E ) is globally sub-F-
split relative to ⇡ , then (W,1W ) is locally sub-F-pure, also compare with [21].
Corollary 5.6. Suppose that V is an F-pure center of (X,1) that is also a log
canonical center with E a normal divisor with discrepancy�1 (on some birational
model ⇡ : X 0 ! X) mapping to V . Write KX 0 +1X 0 = ⇡⇤(KX +1) and set V 0

to be the normalization of V and form the Stein factorization E ! W h
�! V 0 ! V

(noting that W is normal since E is). Also suppose that 1E is the different of
KX 0 +1X 0 along E and that 1V 0 is the F-different of (X,1) along V 0. Then 1E
induces 1W by Corollary 5.4 and we have that 1W = h⇤1V 0 � RamW/V 0 . In
particular, if W = V 0, then 1E induces the F-different of (X,1) along W .
Proof. We notice that h : W ! V 0 is separable by Corollary 4.2 and furthermore,
we have the restriction �E |Fe

⇤
K (W ) : Fe

⇤
K (W ) ! K (W ) which extends the map

�V 0 : Fe⇤OV 0((1� pe)(KV 0+1V 0) ✓ Fe
⇤
K (V 0)! K (V 0) from which we compute

the F-different. It follows that the conditions of Corollary 5.4 hold and that the
induced map �W generically agrees with �E |Fe

⇤
K (W ). Hence �V 0 , which computes

the F-different on V 0, extends to �W . This extension is unique and corresponds to
h⇤1V 0 � RamW/V 0 by [30].

4 This means that the generic fiber is sub-F-split.
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We describe the structure of 1E via analogy with the usual different. In that
setting Definition 2.25, the numbers cQ are defined by local sub-log canonicity.
Here we instead require global sub-F-splitting.

Proposition 5.7. With notation as in Setting 5.1 and suppose that 1E induces 1W
via Theorem 5.2 or Corollary 5.4.

For each point Q 2 W of codimension 1, set

dQ=sup{t |(E,1E+t⇡⇤V (Q)) is globally sub-F-split over a neighborhood of Q}.

Then
1W =

X
(1� dQ)V (Q).

Proof. Since W is normal, codimension 1 points of W correspond to Weil divisors.
For each codimension 1 point Q 2 W we set

bQ = sup{t | (W,1W + tV (Q)) is locally sub-F-pure in a neighborhood of Q}.

Note that bQ is defined using only the data (W,1W ). Working locally near Q
on W , where the stalk OW,Q is a DVR, we see that (W, �Q) is sub-F-pure in a
neighborhood of Q if and only if �  1. Hence we immediately see that:

1W =

X
(1� bQ)V (Q).

The proof will then be completed by the following claim.
Claim 5.8. Suppose t is a rational number without p in its denominator. The fol-
lowing are equivalent:

(a) (W,1W + tV (Q)) is locally sub-F-pure in a neighborhood of Q;
(b) (E,1E + t⇡⇤(V (Q))) is globally sub-F-split over a neighborhood of Q.

Proof of claim. We fix a Q and work on an affine neighborhood of Q where V (Q)
is a Cartier divisor generated by a single element w 2 OW . Choose e so that
(pe�1)t 2 Z. Because we assumed that1W was induced by1E via Theorem 5.2,
condition (a) says that

12 Image
⇣
H0

�
W, Fe

⇤
(wt (pe�1)

·⇡⇤OE ((1�pe)(KE+1E )))
� �W
��!H0(W, K (W ))

⌘
.

But by the projection formula this is the same condition that 1 is in the image of the
map:

H0(E, Fe
⇤
OE ((1� pe)(KE +1E + t⇡⇤V (Q))))

�E
�! H0(E, K (E)).

This proves the claim.

The claim proves the proposition.
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Our next goal is to study1W in terms of the structure of the fibers of E ! W .
We work locally and now typically assume that W is the spectrum of a DVR and
hence we identify OW with the line bundles LW = OW ((1 � pe)(KW + 1W ))
studied earlier.

Lemma 5.9. Let ⇡ : E ! W be a proper dominant map between F-finite integral
schemes with ⇡⇤OE = OW such that W is the spectrum of a DVR, W = Spec A.
Suppose that we have a nonzero map �W : Fe

⇤
OW ! K (W ) that extends to a map

�E : Fe
⇤
OE ! K (E) via the inclusion K (W ) ✓ K (E) and with corresponding

1W and 1E . Let B =

P
bi Bi = ⇡⇤Q be the fiber over the closed point Q 2 W .

Suppose that c = coeffBi (⇡⇤1W ) = coeffBi (1E ) for some Bi . Then bi = 1.
Furthermore, in this case, let �Bi : Fe

⇤
OBi ! K (Bi ) be the map on Bi induced by

1E + (1� c)B as in (2.4). Then (Bi ,1�Bi ) is globally sub-F-split.

Proof. Let w 2 A denote the local parameter for Q 2 W . Since coeffQ(1W ) =

c/bi is a rational number without p in the denominator, we observe that (W,1W +

(1 � c/bi )Q) = (W, Q) is F-pure and so (E,1E + (1 � c/bi )B) is globally
sub-F-split by Claim 5.8. We can choose  W and  E the corresponding maps.
We then observe that the coefficient coeffBi (1E + (1 � c/bi )B) = c + bi � c =

bi � 1. Hence bi Bi is compatible with  E (meaning at the generic point of Bi
that  E (Fe

⇤
(L(�bi Bi )⌘Bi )) ✓ OE (�bi Bi )⌘Bi ). This induces a map on bi Bi as in

Subsection 2.7 and by construction, its image contains 1 (both locally and globally).
Working on an affine chart of Bi , we see that bi Bi must be reduced and so bi = 1.
The rest of the result follows.

In the case that the fiber B is integral and 1E � 0, the above lemma simply
states that if the coefficient c = coeffB 1E is equal to the coefficient of B in 1W ,
then (B,1B) is F-split (where 1B is the different of 1E + (1� c)B along B).

Lemma 5.10. Let ⇡ : E ! W be a proper dominant map between F-finite normal
schemes with geometrically connected and reduced fibers, whereW is the spectrum
of a DVR, W = Spec A, and OW = ⇡⇤OE . Suppose now that 1E is a Q-divisor
on E satisfying the conditions of Corollary 5.4 and let 1W be the divisor on W
induced from 1E . Write 1E = 1h

E +1v
E a decomposition into the horizontal and

vertical parts.
Let ⇡⇤Q = B ✓ E denote the closed fiber and suppose that B is integral.

Let �B : Fe
⇤
L1h

E+B |B ! K (B) denote the map induced by �1h
E+B : Fe

⇤
LE :=

Fe
⇤
OE ((1� pe)(KE +1h

E + B))! K (E) via the method of (2.4).
If �B has 1 in its image on global sections5, then coeffQ(1W ) = coeffB(1E ).

Proof. Let c = coeffQ(1W ) and let w 2 A be the local parameter. Consider
the map �1h

E
: Fe
⇤
OE ((1 � pe)(KE + 1h

E )) ! K (E) and the induced map

5 This just means we can identify �B with a sub-F-splitting since abstractlyLE ⇠= OE .
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 W : Fe
⇤
LW ! K (W ) on W obtained by applying ⇡⇤ (note that the image re-

ally does lie in K (W ) since the image of ⇡⇤�1E lies in K (W )). Let1h
W denote the

corresponding divisor.
Claim 5.11. With notation as above, 1h

W � 0.

Proof of claim. It suffices to show that the image of  W is contained in OW . Cer-
tainly Image( W ) = wnOW for some n 2 Z where w is the local parameter of
the DVR A. If n < 0, this implies that w�1 2 Image( W ) = Image(⇡⇤�1h

E
).

But w�1 generates OE (B) ✓ K (E) as an OE -module. This means that OE (B) ✓
Image(�1h

E
) which forces B to be a component of the negative part of 1h

E , see our
construction in Subsection 2.1. The latter is impossible since1h

E is horizontal. This
proves the claim.

We return to the proof of Lemma 5.10. For any integer a, we notice that the
induced map

 W,a : Fe
⇤
(wa

· LW )! K (W ),

induced from  W , corresponds to the divisor 1h
W +

a
pe�1Q, and is itself induced

from

�1h
E ,a : Fe

⇤
(wa

·OE ((1� pe)(KE +1h
E ))) // K (E)

�1h
E+

a
pe�1 B

: Fe
⇤

⇣
OE

⇣
(1� pe)

⇣
KE +1h

E +
a

pe�1 B
⌘⌘⌘

44hhhhhhhhhhhhhhhhhhhhhh

via pushforward, a map which corresponds to 1h
E +

a
pe�1 B. Note that

Image(�1h
E+B) ✓ OE (G) ✓ K (E)

where G is some effective horizontal Weil divisor (supported where 1h
E is not ef-

fective).
Notice also that the image of the global sections under�1h

E+B lies in ⇡
�1K(W ).

Consider the following diagram induced as in Subsection 2.7:

0(E, Fe
⇤
LE )

✏✏

�
1hE+B

// 0(E,OE (G))

�

✏✏
0(B, Fe

⇤
LE |B)

�B
// 0(B, K (B)).

(5.1)

The left vertical map is clearly surjective (since abstractly this is just Fe
⇤
A =

0(E, Fe
⇤
OE ) ! 0(B, Fe

⇤
OB) = Fe

⇤
A/wA) and the bottom horizontal map has a
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global section mapping to 1 by hypothesis. Hence there exists a � = �1h
E+B(↵) 2

0(E,OE (G)) with �(�) = 1 2 0(B, K (B)).
Claim 5.12. The image �1h

E+B(0(E, Fe
⇤
LE )) in 0(E,OE (G)) equals A and in

particular contains 1.

Proof of claim. We already noted that the image is contained in

K (A) = 0(W, K (W )).

It is also clearly an A-module. Since A is a DVR, we see that the image is equal to
wn A for some n 2 Z. It suffices to show that n = 0. First notice that the image of
�1h

E+B is contained in the image of  W which we already showed was contained
inside A in Claim 5.11. Thus consider � 2 0(E,OE (G)) (defined above with
�(�) = 1) as an element of A but also as an element of OE,⌘B ◆ 0(E,OE (G))
where ⌘B is the generic point of B (we are just using the fact that global section
become sections at stalks). The map � of (5.1), at the stalk of ⌘B , is induced by

OE,⌘B ! OE,⌘B/(w ·OE,⌘B ) = K (B).

Since �(�) = 1, it follows that � /2 w ·OE,⌘B ◆ w · A. Thus � 2 A is a unit. The
claim follows.

We return to the proof of Lemma 5.10. The fact that the top horizontal map
of (5.1) has 1 in its image forces (W,1h

W + Q) to be F-pure and hence that
coeffQ(1h

W+Q)  1. Since1h
W � 0 by Claim 5.11 this means that coeffQ(1h

W ) =

0 and so 1h
W = 0. But now we have just proven that 1h

E +
a

pe�1 B induces
a

pe�1Q
on W . In particular, the vertical part of the fiber has the same coefficient as 1W as
claimed.

We rephrase this in a special case. Note that since B is Cartier, if we write
1h
E |B = 1B , then 1B is the F-different of (E,1h

E ) [9], [27, Proposition 7.2].

Corollary 5.13. Let ⇡ : E ! W be a proper dominant map between F-finite
normal schemes with geometrically connected and normal fibers, where W is the
spectrum of a DVR, W = Spec A, and OW = ⇡⇤OE . Let Q be the closed point
of W and write B = ⇡⇤Q. Suppose that 1E = 1h

E + cB is a Q-divisor on E
satisfying the conditions of Corollary 5.4. If 1h

E |B = 1B is the different on B, and
(B,1B) is globally sub-F-split, then c = coeffB(1E ) = coeffQ(1W ) where 1W
is induced by Theorem 5.2.

Putting together Corollary 5.13 and Lemma 5.9 we obtain the following.

Corollary 5.14. Suppose ⇡ : E ! W is a flat proper dominant map between
F-finite normal integral schemes with geometrically connected and normal fibers
and 1E is a Q-divisor on E satisfying the conditions of Corollary 5.4. Let 1W be
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the divisor on W induced by 1E . Then the vertical components of 1E � ⇡
⇤1�W

correspond to the fibers Et = ⇡�1t over codimension 1 points t 2 W , such that
(Et ,1Et ) is not sub-F-split where 1E |Et = 1Et is the different.

Proof. Wework at the stalk of t 2 W which is a DVR. Then if the fiber (Et ,1Et ) is
sub-F-split, we see that coeffEt (1E ) = coefft (1W ) by Corollary 5.13. Conversely,
if coeffEt (1E ) = coefft (1W ) then (Et ,1Et ) is sub-F-split by Lemma 5.9.

This corollary completely matches our example before with the family of ellip-
tic curves. In fact, especially if one starts in characteristic zero, one can frequently
base change the family E ! W (log canonical place mapping to a log canonical
center), followed by a birational transformation of E , so that the family obtained is
exactly of the above type. Indeed, compare with [8, Lemma 4.7, Theorem 4.8]. We
briefly discuss how to perform this procedure and explain how the results we have
so far explained show how to keep track of the F-different as each step is being
performed.
Algorithm 5.15. Suppose that ⇡ : E ! W is a proper dominant map between
normal integral F-finite schemes with W 1-dimensional and 1E is a divisor on E
such that if 1E = 1h

E + 1v
E is the decomposition into the vertical and horizontal

parts, then 1h
E � 0. Suppose further that LE := (1� pe)(KE +1E ) ⇠ ⇡⇤LW .

Finally suppose that 1E corresponds to �E : Fe
⇤
OE (LE ) ! K (E) and re-

stricts to a nonzero map �W : Fe
⇤
OW (LW )! K (W ) as in Corollary 4.3.

Step 1. Let ⇡ : E ⇡1
�! W1

⇢
�! W be the Stein factorization. By Corollary 4.2,

⇢ : W1 ! W is separable and in fact the map �E restricts to a map �W1 :

Fe
⇤
OW1(⇢

⇤LW ) ! K (W1) which extends �W . Of course, ⇡1 has geometrically
connected fibers. The generic fiber (E⌘,1⌘) is generically F-split since the map
�E extends a nonzero map. Hence since (⇡1)⇤OE = OW1 , the E⌘ is geometrically
reduced and hence so are the closed fibers of ⇡1 outside a proper closed subset of
lower codimension.

We notice that �W1 is induced from �E by pushforward by (⇡1)⇤.

Step 1a.While we hope that W1 = W , we do not know whether it holds in general.
However, because ⇢ is separable, we have the divisor 1W1 corresponding to �W1
given by the formula 1W1 = ⇢⇤1W � RamW1/W , see Subsection 2.2.

Thus to compute 1W , it is sufficient to compute 1W1 .

Step 2. Suppose that there exists a proper dominant and separable map ⇢2 : W2 !
W1 such that the multi-sections of E ! W1 corresponding to the components of
1h
E become honest sections of E2 ! W2 where E2 is the normalization of the

component of E ⇥W1 W2 that dominates W2. Let  : E2 ! E,⇡2 : E2 ! W2
be the induced maps. We notice by Proposition 2.6, our maps �E and �W1 extend
uniquely to maps �E2 on E2 and �W2 on W2 and the corresponding divisors are
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1E2 = ⇤1E � ⇡
⇤

2 RamW2/W1 and 1W2 = ⇢⇤21W1 � RamW2/W1 . Furthermore,
1E2 induces 1W2 via Theorem 5.2.

Thus to compute 1W1 , it is sufficient to compute 1W2 .

Step 3. Now suppose that there exists E3 birational to E2 with E2
↵
 � E 0

�
�! E3

birational morphisms with ↵⇤(KE2+1E2) = �⇤(KE3+1E3). Suppose further that
1E3 has effective horizontal part. Finally assume that the fibers of ⇡3 : E3 ! W2
are geometrically normal and integral (see [8] as mentioned above for cases when
this can be arranged).

Note that �E2 and �E3 can be chosen to be the same map generically, and hence
they induce the same map �W2 . In particular:

We can at least compute the locus where 1W2 differs from the vertical components
of 1E3 via Corollary 5.14.

6. The F-different under reduction to characteristic p > 0

Lemma 6.1. Suppose that (R,m) is a normal local F-finite ring of characteristic
p > 0 and that (X = Spec R,1 � 0) is a pair in characteristic p > 0 such
that (pe � 1)(KX + 1) is integral and Cartier. Suppose that c = fpt(X,1,m).
Further suppose that (X,1,mc) is sharply F-pure (so that p does not divide the
denominator of c, cf. [26]). If 10 > 1 is another divisor with 10 � 1 Q-Cartier,
then (X,10,mc) is not sharply F-pure.

Proof. By replacing ewith a larger number, we may also assume that (pe�1)c 2 Z.
Write 10 �1 = t div( f ). Consider

Fe
⇤
(mc(pe�1)) · HomR(Fe

⇤
R(d(pe � 1)10e), R)

= Fe
⇤
(mc(pe�1)

· f dt (pe�1)e) · HomR(Fe
⇤
R((pe � 1)1), R)

✓ Fe
⇤
(mc(pe�1)+1) · HomR(Fe

⇤
R((pe � 1)1), R)

✓ Fe
⇤
(mc(pe�1)) · HomR(Fe

⇤
R((pe � 1)1), R)

eval@1
����! R.

By definition, since c is the F-pure threshold, we see that

Image
⇣
Fe
⇤
(mc(pe�1)+1) · HomR(Fe

⇤
R((pe � 1)1), R)

eval@1
����! R

⌘
✓ m

and so indeed we see that (X,10,mc) is not sharply F-pure.

We refer to [16] for details of the reduction to characteristic p > 0 process.

Theorem 6.2. Let (X,1 � 0) be a normal pair in characteristic zero with KX +

1 Q-Cartier, and W a normal LC-center of (X,1). Assume that the b-divisor
K+1div descends to W as a Q-Cartier divisor; in particular KW + 1W,div is
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Q-Cartier. We consider the behavior of (X p,1p) after reduction to characteristic
p � 0.

Assume the weak ordinarity conjecture [24]. Let Q 2 W be a point which
is not the generic point of W . Then there exists infinitely many primes p > 0
such that if 1Wp,F- diff � (1W,div)p is the F-different of (X p,1p) along Wp, then
1Wp,F- diff = (1W,div)p in a neighborhood of Qp. In other words, Qp is not
contained in Supp(1Wp,F- diff � (1W,div)p).

Proof. Let IQ ✓ OX be the ideal of Q in X . Let cQ denote the log canonical
threshold of (W,1W,div, (IQ ·OW )t ). By shrinking X , we may assume that this is
the log canonical threshold at the generic point of Q. By inversion of adjunction
[12], we see that (X,1, I tQ) is log canonical at Q if and only if (W,1W,div, (IQ ·

OW )t ) is log canonical. We also fix a log canonical place E over Q in some model
X 0 ! X .

We reduce this entire setup to characteristic p > 0. By the weak ordinarity
conjecture and its corollaries we see that (X p,1p, (IQp )

cQ
p ) is sharply F-pure and

likewise that (Wp, (1W,div)p, (IQp ·OX )
cQ
p ) is sharply F-pure for infinitely many

p � 0 [31, Theorem 2.11]. In particular, cQ is then the F-pure threshold of those
pairs as well.

Of course, the F-different satisfies 1Wp,F- diff � 1Wp,Ep,div � (1W,E,div)p
where the first inequality follows by Corollary 4.4 and the second follows from the
fact that if something reduced from characteristic zero is log canonical in some p �
0, then it is log canonical in characteristic zero6. Set B = 1Wp,F- diff � (1W,div)p
and suppose that B > 0 near Q in order to obtain a contradiction. Note that B
is Q-Cartier since KWp + 1Wp,F- diff and KWp + (1W,div)p are both Q-Cartier.
Simply apply Lemma 6.1 to conclude that (Wp,1Wp,F- diff, (IQ · OW )cQ ) is not
sharply F-pure. On the other hand (Wp,1Wp,F- diff, (IQ ·OW )cQ ) is sharply F-pure
by F-adjunction (see [27]), since (X p,1p, I

cQ
Q ) is sharply F-pure. This yields a

contradiction and the result follows.

The main content of the above result is that, assuming the weak ordinarity
conjecture, the moduli part of the different on W 0 is somehow semi-ample (or at
least has no fixed components) if we take the reduction to characteristic p > 0
procedure as a replacement for taking a general member of a linear system. This
holds as long as the K+1div descends to W as a Q-Cartier divisor.

Corollary 6.3. With notation and assumptions as in Theorem 6.2, in particular
still assuming the weak ordinarity conjecture, we know that for every prime divi-
sor D on W , there exists infinitely many p > 0 such that coeffDp 1W,F- diff =

coeffDp (1W,div)p.

6 In fact, we can easily assume that 1Wp,Ep,div agrees with (1W,E,div)p wherever the latter is
supported and over such Qp that there is a vertical divisor on the different on E mapping to Q,
but we do not need this.
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7. Further questions

It would be nice to remove the descent hypothesis from Theorem 6.2.
Question 7.1. It would be natural to generalize Theorem 6.2 in the following way.
Instead of simply fixing W , choose W 0 ! W over whichK+1div descends. Then
for each Q 2 W 0, we would like to show that the moduli part of the F-different,
1W 0p,F- diff�(1W 0,div)p, does not pass through Q (recall that the F-different and the
divisorial part of the different are both b-divisors). It seems to the authors that one
main problem is that if c is the (sub)lct of (W 0,1W 0,div, IQ), then we do not know
that c is also the (sub)fpt of (W 0p, (1W 0,div)p, IQ) after reduction to characteristic
p > 0 since1W 0,div is not necessarily effective (even assuming the weak ordinarity
conjecture). See [31] and notice that S. Takagi used a different definition of F-
purity for pairs with non-effective divisors.

In this paper, we studied F-pure centers that are also log canonical centers.
However, there can be F-pure centers that are not log canonical centers, consider
the origin in [30, Example 7.12].
Question 7.2. Suppose that W ✓ X is an F-pure center of a pair (X,1) but sup-
pose that W is not a log canonical center. Is there a geometric interpretation of the
F-different 1W ? Note that frequently such centers occur when their is some wild
ramification over a divisor E which dominates W . Perhaps in that case there is
some way to use that to characterize 1W by considering an alteration instead of a
birational map?

References

[1] F. AMBRO, “The Adjunction Conjecture and its Applications”, PhD Thesis, The Johns Hop-
kins University, 1999, 54 pp.

[2] F. AMBRO, Shokurov’s boundary property, J. Differential Geom. 67 (2004), 229–255.
[3] C. BIRKAR, Existence of flips and minimal models for 3-folds in char p, Ann. Sci. École
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[20] J. KOLLÁR and 14 COAUTHORS, Flips and abundance for algebraic threefolds, Société
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