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Birational rigidity of singular Fano hypersurfaces

TOMMASO DE FERNEX

Abstract. We establish birational superrigidity for a large class of singular pro-
jective Fano hypersurfaces of index one. In the special case of isolated singulari-
ties, our result applies for instance to: (1) hypersurfaces with semi-homogeneous
singularities of multiplicity asymptotically bounded by twice the square root of
the dimension of the hypersurface, (2) hypersurfaces with isolated singularities
whose Tyurina numbers satisfy a similar bound, and (3) hypersurfaces with iso-
lated singularities whose dual variety is a hypersurface of degree sufficiently close
to the expected degree.

Mathematics Subject Classification (2010): 14J45 (primary); 14B05, 14E05,
14E08, 14E18 (secondary).

1. Introduction

The interest in birationally rigidity originates from the realization that, differently
from the surface case, higher dimensional Fano varieties and Mori fiber spaces
present a wide spectrum of possible birational characteristics, with rational varieties
at one end of the spectrum and birationally superrigid varieties at the other end. The
problem of determining birational links between different Mori fiber spaces finds
its motivation in the minimal model program, and can be viewed as the counterpart
of the question asking about the existence of flops between minimal models.

Birational rigidity has been extensively studied in dimension three, and several
examples of birationally rigid Fano manifolds are also known in higher dimen-
sions. Starting with Iskovskikh and Manin’s theorem on smooth quartic threefolds,
the case of smooth hypersurfaces of projective spaces has been studied and progres-
sively understood, over the arc of forty years, in the papers [2, 6, 10, 15, 20, 22, 23],
culminating with the following theorem.

Theorem 1.1 ([6, Theorem A]). For N � 4, every smooth hypersurface V of de-
gree N in PN is birationally superrigid.
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This means that there are no birational modifications of V into Mori fiber
spaces other than isomorphisms, and it implies that V is not rational. Since no other
smooth Fano hypersurface is birationally superrigid, one obtains from this fact the
complete list of smooth birationally superrigid Fano hypersurfaces. Actually, the
proof in [6] has a gap, and the main result of the present paper (see Theorem 1.3
below) provides a new proof which works, in the smooth case, for all N � 7,
the lower dimensional cases already being established in the earlier papers on the
subject cited above.1

The main purpose of this paper is to extend this study to singular hypersurfaces,
a setting that is still far from being understood.

The property of birational rigidity is quite sensitive to the singularities. For
example, smooth quartic threefolds are birationally superrigid, but those with a
double point are only birationally rigid since the projection from the point induces
a birational automorphism. Furthermore, quartic threefolds that are singular (with
multiplicity two) along a line can be birationally modified into conic bundles.

In low dimensions, there are sporadic results on the birational rigidity of quar-
tic threefolds and sextic fivefolds with mild singularities (mostly ordinary double
points) obtained in [3, 5, 19, 21]. A contribution in higher dimensions was given by
Pukhlikov in [24, 25], where hypersurfaces with semi-homogeneous singularities
are studied under a certain “regularity” condition requiring that, at each point of the
variety, the intermediate homogeneous terms of the local equation of the hypersur-
face form a regular sequence. We recall that semi-homogeneous singularities (also
known as ordinary multiple points) are isolated hypersurface singularities whose
tangent cone is smooth away from the vertex.

Singular Fano hypersurfaces provide a rich setting to explore. The works on
quartic threefolds show that, in low dimensions, the problem becomes rather del-
icate already when dealing with very mild singularities. The main result of this
paper should be viewed as complementing those studies, by showing that the situ-
ation stabilizes in the strongest possible terms when the dimension is let grow and
the “depth” of the singularities is maintained, in some suitable sense, asymptotically
bounded in terms of the dimension.

We allow positive dimensional singularities, and avoid to impose any “regular-
ity” conditions on the local equations of the hypersurface. The following defines
the type of condition on singularities we consider.
Definition 1.2. Let V ⇢ PN be a hypersurface, and let P 2 V be a closed point.
For any pair of integers (�, ⌫)with � � �1 and ⌫ � 1, we say that P is a singularity
of type (�, ⌫) if the singular locus of V has dimension at most � near P and given
a general complete intersection X ⇢ V of codimension c = min{� + 2, dim V }

through P , the (⌫ � 1)-th power of the maximal ideal mX,P ⇢ OX is contained in
the integral closure of the Jacobian ideal JacX of X .

For instance, regular points are singularities of type (�1, 1), and semi-homo-
geneous hypersurface singularities of multiplicity ⌫ are singularities of type (0, ⌫).

1 The erratum [8] with an amended proof in the smooth case has been written to accompany [6].
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More generally, every isolated hypersurface singularity of multiplicity ⌫ whose tan-
gent cone is smooth away from a set of dimension two is a singularity of type (0, ⌫).
In general, singularities of type (�, ⌫) are also of type (�0, ⌫0) for every �0

� � and
⌫0

� ⌫.
We can now state our main result.

Theorem 1.3. Let N , � and ⌫ be fixed integers with � � �1, ⌫ � 1, and

2� + ⌫ + 7 

2(N + 1)
p

N
.

Then every hypersurface V ⇢ PN of degree N with only singularities of type (�, ⌫)
is a Fano variety with Picard number 1 and factorial terminal singularities, and is
birationally superrigid. In particular, V is not rational and Bir(V ) = Aut(V ).

The proof of this theorem combines the method of maximal singularities with
inversion of adjunction, Nadel’s vanishing theorem, and properties of Mather log
discrepancies. Even assuming that there are not singularities, the core of the proof
is quite different from the original proof given in the smooth case in [6].

To illustrate Theorem 1.3 when V is singular, we present three special cases in
which the singularities are isolated. In order to keep the formulas in the statements
as simple as possible, we apply the theorem under the stronger assumption that

2� + ⌫ + 7  2
p

N .

We start with the case of semi-homogeneous singularities.

Corollary 1.4. Every hypersurface V ⇢ PN of degree N with semi-homogeneous
singularities of multiplicity at most 2

p

N � 7 is birationally superrigid.

Comparing this with the results of Pukhlikov, one sees that while the bounds
on multiplicity in the corollary are more restrictive than those in his papers, no
“regularity” assumption is required in our result. Furthermore, the hypothesis on
the singularities being semi-homogeneous can be relaxed by allowing, for instance,
the tangent cones to have singularities in dimension 1 or 2.

Another special case of the theorem can be formulated in terms of the Tyurina
numbers of the singularities. Let ⌧P(V ), ⌧ 0

P(V ) and ⌧ 00

P(V ) be, respectively, the
Tyurina numbers (at P) of V , of a general hypersurface in V passing through P ,
and of a general complete intersection of codimension 2 through P .

Corollary 1.5. Let V ⇢ PN be a hypersurface of degree N with isolated singular-
ities, and assume that for every P 2 V

min
�
⌧P(V ), ⌧ 0

P(V ), ⌧ 00

P(V )
 

 2
p

N � 8.

Then V is birationally superrigid.
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Since the Tyurina number is bounded above by the Milnor number, a similar
corollary can be formulated in terms of the Milnor numbers of general restrictions
of V , which are known as the Teissier-Milnor numbers of V [27]. Using then a
result of Teissier [28], we obtain the following result, which comes unexpected to
us.

Corollary 1.6. Let V ⇢ PN be a hypersurface of degree N with isolated singular-
ities, and assume that the dual variety V̌ ⇢

ˇPN is a hypersurface of degree

deg V̌ � N (N � 1)N�1
�

⇣
4
p

N + 2s � 18
⌘
,

where s is the number of singular points of V . Then V is birationally superrigid.

Properties of singularities of type (�, ⌫) are discussed in Section 2, and the
three corollaries above are proven in Section 3. The subsequent section gathers sev-
eral definitions and properties of singularities and multiplicites; in order to deal with
the singularities of the hypersurface, we work with Mather log discrepancies, which
are recalled there. Finally, the last section is devoted to the proof of Theorem 1.3.
All varieties are assumed to be defined over the field of complex numbers C.

ACKNOWLEDGEMENTS. We thank János Kollár for several useful comments and
for pointing out an error in a lemma of [6] which was used in a previous version
of this paper. We also thank Roi Docampo, Lawrence Ein, Mircea Mustaţă, and
Fumiaki Suzuki for useful comments and suggestions.

2. Singularities of type (�, ⌫)

In this section we discuss some properties of singularities of type (�, ⌫) introduced
in Definition 1.2. For ease of notation, it is convenient to focus on affine hypersur-
faces. Throughout this section, fix n � 1, and let X ⇢ An be a hypersurface. Recall
that if h(x1, . . . , nn) = 0 is an equation for X , then the Jacobian ideal JacX ⇢ OX
is cut out, on X , by the partial derivatives of h:

JacX =

✓
@h
@x1

, . . . ,
@h
@xn

◆
·OX .

We say that a closed point P 2 X is an isolated singularity if X is smooth in
a punctured neighborhood of P . Note that this includes the possibility that X is
smooth at P . For an isolated singularity P 2 X , we define

⌫P(X) := min
�
⌫ 2 Z>0 | (mX,P)⌫�1

⇢ JacX
 
,

where the bar in the right-hand side denotes integral closure.
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Remark 2.1. A closed point P on a normal hypersurface V ⇢ PN is a singularity
of type (�, ⌫) if and only if the singular locus has dimension at most � and ⌫P(X) 

⌫ for a general complete intersection X ⇢ V of codimension c = min{�+2, dim V }

through P .

Proposition 2.2. Assume that n � 2, and let P 2 X be an isolated singularity.
Then for every general hyperplane section H ⇢ X through P we have

⌫P(H)  ⌫P(X).

Proof. Teissier’s Idealistic Bertini Theorem [28, 2.15 Corollary 3] implies that
JacX |H = JacH . By the definition of integral closure, there is an inclusion JacX |H ⇢

JacX |H . Since mX,P |H = mH,P , the proposition follows.

Remark 2.3. It follows by Proposition 2.2 that a singularity of type (�, ⌫) of a
hypersurface V ⇢ PN is also of type (�0, ⌫0) for every �0

� � and ⌫0
� ⌫.

A special case where ⌫P(X) is easy to compute is when P 2 X is a semi-
homogeneous hypersurface singularity. We denote by eP(X) the multiplicity of X
at P , given by the degree of the tangent cone CP X .

Proposition 2.4. If P 2 X is a semi-homogeneous hypersurface singularity, then

⌫P(X) = eP(X).

Proof. Let for short m := eP(X). Let f :
eX ! X and g :

eAn
! An be the blow-

ups of X and An at P , and let F and G be the respective exceptional divisors. TheneX ⇢
eAn is the proper transform of X and g⇤X =

eX + mG. If (x1, . . . , xn) are
affine coordinates centered at P , and h(x1, . . . , xn) = 0 is an equation defining X ,
then multP(h) = m, and thus multP(@h/@xi ) = m�1. By hypothesis, F =

eX \G
is a smooth hypersurface of degree m in G ⇠

= Pn�1, defined by the vanishing of the
degree m homogeneous form hm of h. It follows that the homogeneous ideal✓

@hm
@x1

, . . . ,
@hm
@xn

◆
⇢ C[x1, . . . , xn],

has no zeroes in Pn�1. This implies that JacX · OeX = OeX (�(m � 1)F), and thus
JacX = f⇤OeX (�(m � 1)F). The assertion follows then by the fact that (mX,P)k ·

OeX = OeX (�kE).

The Jacobian ideal retains important information of a singularity. For instance,
it is a theorem of Mather and Yau [18] that, for an isolated hypersurface singularity
P 2 X , the Jacobian C-algebra OX,P/JacX determines the analytic isomorphism
class of the singularity. The dimension of this algebra is called the Tyurina number
of the singularity. If, as above, X is defined by h(x1, . . . , xn) = 0 in An and
P = (0, . . . , 0), then the Tyurina number is given by

⌧P(X) := dimC
C[[x1, . . . , xn]]⇣
h, @h

@x1 , . . . ,
@h
@xn

⌘ .
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The Tyurina number is closely related to the Milnor number of the singularity,
which is the number of spheres in the bouquet homotopically equivalent to the Mil-
nor fiber and is computed by the dimension

µP(X) := dimC
C[[x1, . . . , xn]]⇣

@h
@x1 , . . . ,

@h
@xn

⌘ .

For every i , we define the i-th Tyurina number ⌧
(i)
P (X) and the i-th Teissier-Milnor

number µ
(i)
P (X) of X at P to be, respectively, the Tyurina number and the Milnor

number of a general complete intersection of codimension i passing through P .2
For i = 0, 1, 2, we just write ⌧P(X), ⌧ 0

P(X), ⌧ 00

P(X) and µP(X), µ0

P(X), µ00

P(X).
Proposition 2.5. With the above notation, we have

⌫P(X)  ⌧P(X) + 1.

Proof. Let for short ⌫ := ⌫P(X). By definition, we have (mX,P)⌫�2
6⇢ JacX . In

view of the valuative interpretation of integral closure, this means that there is a
divisorial valuation v on the function field of X , with center P , such that

(⌫ � 2) · v(mX,P) < v(JacX ).

Consider the sequence of ideals qk := (mX,P)k + JacX ⇢ OX . Since v(qk) =

k · v(mX,P) for 1  k  ⌫ � 2, we have a chain of strict inclusions of ideals

OX ) q1 ) q2 ) · · · ) q⌫�2 ) JacX .

This implies that ⌧P(X) � ⌫ � 1.

Remark 2.6. The inequality in Proposition 2.5 may look weak at a first glance,
and in fact much stronger inequalities hold in many cases (for instance, for semi-
homogeneous singularities). The inequality is however optimal as stated. Examples
where equality is achieved for each possible value of ⌫P are given by the hypersur-
faces Xd = (x21 + · · · + x2n�1 + xdn = 0) ⇢ An , d � 1, for which ⌫P(Xd) = d and
⌧P(Xd) = d � 1, P being the origin in An .

3. Proofs of the corollaries

In this short section we prove the three corollaries stated in the introduction.

Proof of Corollary 1.4. By Proposition 2.4, P 2V is a singularity of type (0,eP(X))
for a general complete intersection X ⇢ V of codimension two passing through P .
Since eP(X) = eP(V ), the corollary follows directly from Theorem 1.3.

2 The reader is cautioned that the notation adopted here differs with the notation originally used
by Teissier [27] where the index i refers to the dimension of the projective subspace cutting out
the section, rather than the codimension of the section in X .
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Proof of Corollary 1.5. Let P 2 V be one of the singularities of V , and fix i 2

{0, 1, 2} such that ⌧ (i)
P (V )  2

p

N � 8. If V (i)
⇢ V denotes a general complete

intersection of codimension i through P , then we have ⌫P(V (i))  2
p

N � 7 by
Proposition 2.5. Since i  2, it follows by Proposition 2.2 that if V 00

⇢ V is a
general complete intersection of codimension two then ⌫P(V 00)  2

p

N � 7. Then
the corollary follows from Theorem 1.3.

Proof of Corollary 1.6. Let P1, . . . , Ps 2 V be the singular points. It is proven
in [29, Appendice II.3] that the dual variety has degree

deg V̌ = N (N � 1)N�1
�

sX
j=1

⇣
µPj (V ) + µ0

Pj (V )
⌘

.

It follows by our assumption of the degree of V̌ that
sX
j=1

⇣
µPj (V ) + µ0

Pj (V )
⌘

 4
p

N + 2s � 18.

Bearing in mind that, for every j , both µPj (V ) and µ0

Pj (V ) are positive integers,
we deduce that µPj (V ) + µ0

Pj (V )  4
p

N � 16 for any given j , and hence

min
n
µPj (V ), µ0

Pj (V )
o

 2
p

N � 8.

Since ⌧
(i)
Pj (V )  µ

(i)
Pj (V ), we conclude by Corollary 1.5.

4. Log discrepancies and multiplicities

In this section we review some results related to singularities of pairs and multiplic-
ities. General references on the subject are [16,17].

Let X be a variety, and let E be a prime divisor on a resolution of singularities
f : X 0

! X . We say that E is a divisor over X ; the image of E in X is called the
center of E . When X is normal, we say that the divisor E is exceptional over X if
its center has codimension � 2 in X .

The divisor E defines a valuation valE over X , with valuation ring OX 0,E . If
Z ⇢ X is a proper closed subscheme and IZ ⇢ OX is its ideal sheaf, then we set
valE (Z) := valE (IZ ). If Z =

P
ci Zi if a finite formal Q-linear combination of

proper closed subschemes Zi ⇢ X , then we denote valE (Z) :=

P
ci valE (Zi ).

We will use the following basic fact without further notice. We refer to [12,
Lemma 2.3] for a proof.

Lemma 4.1. Let X ! Y be a dominant morphism of varieties. If E is a divisor
over X , then the restriction of valE to C(Y ) is a valuation of the form q valF for
some divisor F over Y and some positive integer q.
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We consider pairs of the form (X, Z) where X is a variety and Z =

P
ci Zi

is a finite, formal Q-linear combination of proper closed subschemes Zi ⇢ X . The
pair is said to be effective if ci � 0 for all i .

We say that a variety X , or a pair (X, Z), is Q-Gorenstein if X is normal and
the canonical class KX of X is Q-Cartier. The log discrepancy of a Q-Gorenstein
pair (X, Z) along E is defined to be

aE (X, Z) := ordE (KX 0/X ) + 1� valE (Z),

where KX 0/X is the relative canonical divisor. If Z = 0, then we drop it from the
notation and write aE (X). A Q-Gorenstein pair (X, Z) is log canonical (respec-
tively, log terminal) if aE (X, Z) � 0 (respectively, aE (X, Z) > 0) for every prime
divisor E over X . The pair is canonical (respectively, terminal) if aE (X, Z) � 1
(respectively, aE (X, Z) > 1) for every E exceptional over X .

A log resolution of a pair (X, Z) is a resolution f : X 0
! X such that the

exceptional locus Ex( f ) of f and each subscheme f �1Zi ⇢ X 0 is a Cartier di-
visor, and their sum Ex( f ) +

P
f �1Zi has simple normal crossing support. If

Z =

P
ci Zi , then we denote f �1Z :=

P
ci f �1Zi . If (X, Z) is an effective

Q-Gorenstein pair, then one defines the multiplier ideal of (X, Z) to be the ideal
sheaf

J (X, Z) := f⇤OX 0

⇣
dKX 0/X � f �1Ze

⌘
,

where the round-up in the right-hand side is taken componentwise. The definition
is independent of the choice of resolution.

Theorem 4.2 ([17, Theorem 9.4.17]). Let (X, cZ) be an effective Q-Gorenstein
pair where Z is a subscheme and c � 0. Let L and A be Cartier divisors such that
OX (A) ⌦ IZ is globally generated and L � (KX + cA) is nef and big. Then

Hi (X,J (X, cZ) ⌦OX (L)) = 0 for i > 0.

The minimal log discrepancy of a Q-Gorenstein pair (X, Z) along a proper closed
subset T ⇢ X is the infimum of all log discrepancies along divisors with center
in T , and is denoted by mld(T ; X, Z). We will use the following inversion of
adjunction property.

Theorem 4.3 ([13, Theorem 1.1]). Consider an effective pair (X, Z) where X is
a normal variety with locally complete intersection singularities and Z =

P
ci Zi ,

and let Y ⇢ X be a normal, locally complete intersection subvariety of codimension
e that is not contained in

S
i Zi . Then for every proper closed subset T ⇢ Y we

have
mld(T ; X, Z + eY ) = mld(T ;Y, Z |Y ).

The log canonical threshold of an effective Q-Gorenstein pair (X, Z) is defined by

lct(X, Z) := sup{ c 2 R�0 | (X, cZ) is log canonical },
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(where we set sup; = �1). Note that, for any c � 0, lct(X, Z) > c if and only if
J (X, cZ) = OX . We denote by lctP(X, Z) the log canonical threshold of (X, Z)
at P , defined as the the minimum of the log canonical thresholds lct(U, Z |U ) over
all open neighborhoods U of P .

In a similar fashion, we define the canonical threshold of an effective Q-
Gorenstein pair (X, Z) by

ct(X, Z) := sup{ c 2 R�0 | (X, cZ) is canonical }.

Note that ct(X, Z) > 0 if X has terminal singularities. We denote by ctP(X, Z) the
canonical threshold of (X, Z) at P .

A Mori fiber space is a normal projective variety X with Q-factorial terminal
singularities, equipped with an extermal Mori contraction of fiber type g : X ! S
(so that dim S < dim X , g⇤OX = OS , rk Pic(S) = rk Pic(X) � 1, and �KX is
relatively ample over S). A Mori fiber space is said to be birationally superrigid if
there are no birational maps to other Mori fiber spaces other than isomorphisms.

The following result, known as the Noether-Fano inequality, is central for the
method of maximal singularities. The result is essentially due to [15]. A proof using
the minimal model program is given in [4]; see also [7] for a short, self-contained
proof.

Theorem 4.4. Let X be a Fano variety of Picard number 1 with terminal Q-facto-
rial singularities. Suppose that there is a birational map � : X 99K X 0 where X 0 is
a Mori fiber space. Fix an embedding X 0

⇢ Pm , and letH := ��1
⇤

|OX 0(1)| be the
linear system on X giving the map X 99K X 0 ,! Pm . Let B(H) ⇢ X be the base
scheme ofH, and let r be the rational number such thatH ⇢ | � r KX |. If � is not
an isomorphism, then

ct(X, B(H)) < 1/r.

We now turn to a variant (and more general) notion of log discrepancy, called
Mather log discrepancy. While the usual log discrepancy is defined by comparing
canonical divisors, this variant is defined by comparing sheaves of Kähler differen-
tials.

Let X be a variety of dimension n. Let f : X 0
! X be a resolution of singu-

larities, and let Jac f := Fitt0(�X 0/X ) ⇢ OX 0 be the Jacobian ideal of the map. For
every prime divisor E on X 0, we define theMather log discrepancy of a pair (X, Z)
along a prime divisor E over X to be

baE (X, Z) := ordE (Jac f ) + 1� valE (Z).

If Z = 0, then we simply writebaE (X).
Remark 4.5. If X has locally complete intersection singularities, then baE (X) =

aE (X) + valE (JacX ) (cf. [9, Corollary 3.5]).
The minimal Mather log discrepancy of a pair (X, Z) along a proper closed

subset T ⇢ X is the infimum of all Mather log discrepancies along divisors with
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center in T , and is denoted bydmld(T ; X, Z). The reader is cautioned that in general
minimal Mather log dicrepancies do not satisfy an inversion of adjunction theorem
analogous to Theorem 4.3.

Proposition 4.6. If P 2 X is a closed point on a variety X of dimension n, then we
havedmldP(X, nP) � 0.

Proof. Let E be an arbitrary divisor over X with center P . Let ⇡ : AN
! Y := An

be a general linear projection, and let Q := ⇡(P). We have valE |C(Y ) = q valF
where F is a divisor over Y with center Q and q is a positive integer. By taking the
projection general enough, we can ensure that

valE (P) = q valF (Q). (4.1)

We can assume that there is a diagram

X 0

g
✏✏

f // X

✏✏

� � // AN

⇡

✏✏
Y 0 // Y An

where X 0
! X and Y 0

! Y are resolutions such that E is a divisor on X 0, and
F is a divisor on Y 0. Note that ordE (g⇤F) = q and ordE (KX 0/Y 0) = q � 1.
Denoting by h : X 0

! Y the composition of f with the projection to Y , we have
ordE (KX 0/Y ) = valE (Jach). If x1, . . . , xn are local parameters in X 0 centered at a
general point of E , then f is locally given by equations yi = fi (x1, . . . , xn), and
Jac f is locally defined by the n ⇥ n minors of the matrix (@ fi/@x j ). For a linear
projection ⇡ : AN

! Y = An , Jach is locally defined by a linear combination of
the n ⇥ n minors of (@ fi/@x j ). If the projection is general, then so is the linear
combination, and we havebaE (X) = valE (KX 0/Y ) + 1. Writing KX 0/Y = KX 0/Y 0 +

g⇤KY 0/Y , we get

baE (X) = valE (KX 0/Y 0) + valE (g⇤KY 0/Y ) + 1 = q aF (Y ). (4.2)

Since E is an arbitrary divisor over X with center P , and q � 1, we deduce from
(4.1) and (4.2) thatdmldP(X, nP) � mldQ(Y, nQ). Then the proposition follows by
observing that, since Y is smooth of dimension n, we have mldQ(Y, nQ) = 0.

We will use the following result from [12], stated here in a special case.

Theorem 4.7 ([12, Theorem 2.5]). Let X ⇢ AN be a Cohen-Macaulay variety of
dimension n, and let E be a divisor over X . Let Z ⇢ X closed subscheme of pure
codimension k whose ideal in X is locally generated by a regular sequence. Then
let

� : X ! An�k+1
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be the morphism induced by restriction of a very general linear projection � : AN
!

An�k+1, so that �|Z is a proper finite morphism and �⇤[Z ] is a cycle of codi-
mension one in An�k+1. Regard �⇤[Z ] as a Cartier divisor on An�k+1. Write
valE |C(An�k+1) = q valG where G is a divisor over An�k+1 and q is a positive
integer. Then, for every c > 0 such thatbaE (X, cZ) � 0, we have

q aG
✓

An�k+1,
ck

kk
�⇤[Z ]

◆
baE (X, cZ).

We end this section by recalling some properties of multiplicities. If Z is a scheme
and ⇠ 2 Z is a (non necessarily closed) point, then the multiplicity of Z at ⇠ is
defined to be the Hilbert-Samuel multiplicity of the maximal ideal of OZ ,⇠ and is
denoted by e⇠ (Z) (cf. [14, Example 4.3.4]). If T ⇢ Z is the closure of ⇠ , then we
also denote this multiplicity by eT (Z).

If Z is pure-dimensional, then the function P 7! eP(Z) is upper-semiconti-
nuous on closed points (cf. [1, Theorem (4)]), and we have eT (Z) = minP2T eP(Z)
for any subvariety T ⇢ Z . Here the minimum is taken over the closed points P of
T , and is achieved for all points of a dense open subset of T . If Z is a complete
intersection subscheme of a variety X , and T ⇢ Z is an irreducible component,
then eT (Z) is the same as the Hilbert-Samuel multiplicity of the ideal of Z inOX,T
(cf. [14, Exercise 7.1.10(a)]).

The definition of multiplicity extends in a natural way to cycles. If ↵ =P
ni [Zi ] is a cycle on a variety X (here each Zi is a pure-dimensional subscheme

of X , without embedded points), and T ⇢ X is a subvariety, then we define
eT (↵) :=

P
ni eT (Zi ), where we set eT (Zi ) = 0 whenever T 6⇢ Zi . This is

well defined (i.e., it does not depend on the way we write the cycle, cf. [14, Exam-
ple 4.3.4]).

Proofs of the following two basic properties can be found in [6, Section 8].

Proposition 4.8. Let D be an effective Q-divisor on a smooth variety X , and sup-
pose that aE (X, D)  1 for some prime divisor E over X . If P is any point in the
center of E in X , then eP(D) � 1.

Proposition 4.9. Let Z be a pure-dimensional Cohen-Macaulay subscheme of Pn ,
and let H ⇢ (Pn)_ be a hyperplane. Then for any general H 2 H we have
eP(Z \ H) = eP(Z) for every P 2 Z \ H .

We close this section with the following property, due to Pukhlikov.

Proposition 4.10 ([23, Proposition 5]). Let X ⇢ Pn+1 be a hypersurface, and let
↵ be an effective cycle on X of pure codimension k  n/2. Assume that ↵ ⌘

m c1(OX (1))k for some m 2 N. Then eS(↵)  m for every closed subvariety
S ✓ X of dimension dim S � k not meeting the singular locus of X . In particular,
if d = dimSing(X), then we have eT (↵)  m for every closed subvariety T ✓ X
of dimension dim T � d + 1+ k.

Remark 4.11. The statement of [23, Proposition 5] is only given for k < n/2, but
the proof can be extended to include the case k = n/2 (cf. [10, Remark 4.4]).
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5. Proof of Theorem 1.3

We start observing the following general property.

Lemma 5.1. Any normal hypersurface V ⇢ PN whose singular locus has codi-
mension at least 4 is factorial.

Proof. If dim V  3 then V is smooth and hence factorial. Assume then that
dim V � 4. The hypersurface W ⇢ P4 cut out by V on a general linear 4-
space P4 ⇢ PN is smooth. By the Lefschetz hyperplane theorem, both Pic(V )
and Pic(W ) are generated by the respective hyperplane classes, and so the restric-
tion map Pic(V ) ! Pic(W ) is an isomorphism. Since W is smooth, the class
map Pic(W ) ! Cl(W ) is an isomorphism. On the other hand, the restriction
of Weil divisors (which is well-defined in our setting) induces an isomorphism
Cl(V ) ! Cl(W ) by an inductive application of [26, Theorem 1]. It follows that
Pic(V ) ! Cl(V ) is an isomorphism.

Theorem 1.3, whose proof is postponed to the end of the section, will be de-
duced from the following theorem:

Theorem 5.2. Fix integers N , �, ⌫, r such that ⌫, r � 1 and

�1  � 

N
2

� 3.

Let V ⇢ PN be a normal hypersurface of degree N with a singularity of type (�, ⌫)
at a point P and with singular locus of dimension at most �. Let B ⇢ V be a proper
closed subscheme of codimension at least 2, and assume that the sheafOV (r)⌦ IB
is globally generated. Then

r ctP(V, B) � min
⇢
1,

2(N + 1)
(2� + ⌫ + 7)

p

N

�
.

Proof. Since N � � � 5, V is factorial by Lemma 5.1.
After replacing B with the intersection of two general members of D, D0

2

|OV (r) ⌦ IB |, we reduce to prove the theorem when B = D \ D0 is a codimension
2 complete intersection subscheme of V , cut out by two divisors D, D0

2 |OV (r)|.
We denote

c := ctP(V, B),

and henceforth assume that c < 1/r .
Note that N � 4. Since the singular locus of V has at most dimension �,

Proposition 4.10 implies that for every closed subvariety T ⇢ V of dimension
dim T � � + 2 we have eT (D)  r . It follows by Proposition 4.8 that the pair
(V, cB) has terminal singularities away from a set of dimension � + 1.

We cut down by � + 1 general hyperplanes through P . Let PN���1
⇢ PN

be a general linear subspace of codimension � + 1 passing through P , and let
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W ⇢ PN���1 be the restriction of V to this subspace. By inversion of adjunc-
tion (Theorem 4.3), (W, cB|W ) is terminal away from finitely many points, and is
not canonical at P . This implies that mld(P;W, cB|W )  1. Adding P to the pair,
we get

mld(P;W, cB|W + P)  0. (5.1)

We take one more hyperplane section. Let PN���2
⇢ PN���1 be a general hyper-

plane through P , and let
X ⇢ PN���2

be the restriction of W to PN���2. We remark that, under our assumption on � and
N , we have dim X � 2. By (5.1) and inversion of adjunction, we have

mld(P; X, cB|X )  0. (5.2)

Note, on the other hand, that (X, cB|X ) is log terminal in dimension one. In fact,
we have the following stronger property.

Lemma 5.3. The pair (X, 2cB|X ) is log terminal in dimension one.

Proof. If N = 4, then � = �1, X is a smooth surface, and B|X is zero dimensional.
Clearly the lemma holds in this case. We can therefore assume that N � 5.

Let C ⇢ X be any irreducible curve.
Proposition 4.10 implies that for every closed subvariety T ⇢ V of dimension

dim T � � + 3 we have eT (B)  r2. This means that the set of points Q 2 V such
that eQ(B) > r2 has dimension at most � + 2. Since X is cut out by � + 2 general
hyperplane sections of V through P , it follows by Proposition 4.9 that the set of
points Q 2 X such that eQ(B|X ) > r2 is finite. Therefore we have eQ(B|X )  r2
for a general point Q 2 C .

Fix such a point Q 2 C , and let S ⇢ X be a smooth surface cut out by
general hyperplanes through Q. By applying again Proposition 4.9, we see that
eQ(B|S)  r2.

Since B|S is a zero-dimensional complete intersection subscheme of S, the
multiplicity eQ(B|S) is computed by the Hilbert-Samuel multiplicity of the ideal
IB|S,Q ⇢ OS,Q locally defining B|S near Q (cf. [14, Exercise 7.1.10(a)]). Then [11,
Theorem 0.1] implies that the log canonical threshold of (S, B|S) near Q satisfies
the inequality

lctQ(S, B|S) �

2p
eQ(B|S)

.

Since eQ(B|S)  r2 and c < 1/r , this implies that lctQ(S, B|S) > 2c, and there-
fore (S, 2cB|S) is log terminal near Q. It follows by inversion of adjunction that
(X, 2cB|X ) is log terminal near Q. As Q was chosen to be a general point of an
arbitrary curve C on X , we conclude that (X, 2cB|X ) is log terminal in dimension
one.
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Lemma 5.3 implies that the multiplier ideal J (X, 2cB|X ) defines a zero-di-
mensional subscheme 6 ⇢ X . We have H1(X,J (X, 2cB|X ) ⌦OX (� + 3)) = 0
by Nadel’s vanishing theorem (Theorem 4.2), and therefore there is a surjection

H0(X,OX (� + 3)) ⇣ H0(6,O6(� + 3)) ⇠
= H0(6,O6)

whereO6(� + 3) ⇠
= O6 because 6 is zero dimensional. Keeping in mind that

H0(X,OX (� + 3)) ⇠
= H0

⇣
PN���2,OPN���2(� + 3)

⌘
,

it follows that

h0(6,O6)  h0(X,OX (� + 3)) =

✓
N + 1
� + 3

◆
. (5.3)

Lemma 5.4. There is a prime divisor E over X with center P and log discrepancy

aE (X, cB|X + (� + 2)P)  0, (5.4)

such that the center of E on the blow-up of X at P has dimension � � + 2.

Proof. Let f : X 0
! X be a log resolution of (X, B + P), and let Y ⇢ X be a

subvariety cut out by � + 2 general hyperplane sections through P . We remark that
dimY � 2, given our assumption on � and N . Let Y 0

⇢ X 0 be the proper trans-
form of Y . By Bertini’s theorem, we can ensure that Y 0 intersects transversally the
exceptional locus of f (i.e., Y 0 intersects transversally each stratum of the excep-
tional locus that it meets), and that the induced map Y 0

! Y is a log resolution of
(Y, B|Y + P). By (5.2) and inversion of adjunction, we have mld(P;Y, cB|Y )  0.
This means that there is a prime exceptional divisor F ⇢ Y 0 with center P in Y
and log discrepancy aF (Y, cB|Y )  0. There is a unique prime exceptional divi-
sor E ⇢ X 0 such that F is an irreducible component of E |Y 0 . Note that E |Y 0 is
reduced. Since E is the only prime divisor of X 0 that is contained in either supports
of the inverse images of B|X and P and whose restriction to Y 0 contains F , we
have valE (B|X ) = valF (B|Y ) and valE (P) = valF (P). Then the lemma follows
by adjunction formula.

Let E be as in Lemma 5.4, and let

� :=

valE (P)

c valE (B|X )
.

Lemma 5.5. (N + 1)� > 1.

Proof. For a general linear projection ⌧ : X ! PN���3, let x1, . . . , xN���3 2

mX,P be elements obtained by pulling back a regular system of parameters of
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⌧ (P) 2 PN���3, and let y1, . . . , y�+3 2 mX,P be � + 3 general linear combi-
nations of these elements x1, . . . , xN���3. Since �+3  N���3, we can assume
that y1, . . . , y�+3 are linearly independent.

We claim that if h(y1, . . . , y�+3) is any nonzero polynomial in these variables,
then

valE (h) = mult(h) valE (P).

To see this, let m := mult(h), and let hm be the initial term of degree m of h. The
center C of E in BlP X is contained in the exceptional divisor EP of BlP X ! X .
Note that, by Lemma 5.4,C is a variety of dimension� �+2. By construction, there
is a finite map from EP to the projective space ProjC[x1, . . . , xN���3], and linear
projection (a rational map) from this space to ProjC[y1, . . . , y�+3]. If y1, . . . , y�+3
are general, then C dominates ProjC[y1, . . . , y�+3], and therefore it cannot be con-
tained in the hypersurface defined by the equation hm(y1, . . . , y�+3) = 0 in EP .
Writing EP =

P
ai Ei , we have valEi (h) = mai , and hence

valE (h) =

X
valEi (h) valE (Ei ) =

X
mai valE (Ei ) = m valE (P),

which proves our claim.
Suppose now that d is a positive integer such that

d valE (P)  �aE (X, 2cB|X ).

The lemma implies that for every nonzero polynomial h(y1, . . . , y�+3) of degree
 d we have valE (h)  �aE (X, 2cB|X ), and therefore h 62 J (X, 2cB|X ) ·OX,P .
This means that if V ⇢ OX,P is the C-vector space spanned by the polynomials
h(y1, . . . , y�+3) of degree  d, then the quotient mapOX,P ! O6,P restricts to a
injective map V ,! O6,P . It follows that

h0(6,O6) � dimC V =

✓
d + � + 3

� + 3

◆
.

Comparing with (5.3), we conclude that d  N � � � 2, and hence we must have

(N � � � 1) valE (P) > �aE (X, 2cB|X ).

Keeping in mind the definition of �, this means that

aE (X, (2� (N + 1)�)cB|X + (� + 2)P) = aE (X, 2cB|X � (N � � � 1)P) > 0.

Since, on the contrary, we know that aE (X, cB|X + (� + 2)P)  0 by Lemma 5.4,
we conclude that (N + 1)� > 1, as stated.

Let JX ⇢ X be the subscheme defined by JacX . Since X has locally complete
intersection singularities, we havebaE (X) = aE (X)+valE (JX ) by Remark 4.5, and
hence we have baE (X, cB|X + JX + (� + 2)P)  0
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by (5.4). By hypothesis, V has a singularity of type (�, ⌫) at P . It follows by
Proposition 2.2 that (mX,P)⌫�1

⇢ JacX , and thus we have (⌫ � 1) valE (P) �

valE (JX ). Therefore

baE (X, cB|X + (� + ⌫ + 1)P)  0. (5.5)

The inequality in (5.5) can be rewritten as follows:

baE (X, (1� (N � 2� � ⌫ � 6)�)cB|X )  (N � � � 5) valE (P). (5.6)

The next lemma implies that the pair in the right hand side of (5.6) is effective.

Lemma 5.6. (N � 2� � ⌫ � 4)�  1.

Proof. By the definition of � and Proposition 4.6, we have

baE (X, (N � 2� � ⌫ � 4)�cB|X + (� + ⌫ + 1)P) =baE (X, (N � � � 3)P) � 0.

The assertion follows by contrasting this inequality with (5.5).

Let
⇡ : PN���2 99K PN���4

be a very general linear projection. Let Q := ⇡(Q) and A := ⇡⇤[B|X ]. Note that
A is a divisor on PN���4 of degree r2N . The divisorial valuation valE restricts to a
divisorial valuation q valG with center Q on PN���4, where q is a positive integer.
By taking a general projection, we can ensure that q valG(Q) = valE (P). Since, by
Lemma 5.6, the pair in the right hand side of (5.6) is effective, and N � � � 5 � 0,
we can apply Theorem 4.7, which gives

aG

 
PN���4,

(1� (N � 2� � ⌫ � 6)�)2c2

4
A

!
 (N � � � 5) valG(Q).

Using again that we are dealing with effective pairs, we can apply inversion of
adjunction. Thus, looking at the degree after restricting to a general line through Q,
we conclude that

deg

 
(1� (N � 2� � ⌫ � 6)�)2c2

4
A

!
� 1.

Since deg A = r2N and (N + 1)� > 1 (by Lemma 5.5), we get

rc >
2(N + 1)

(2� + ⌫ + 7)
p

N
.

This completes the proof of Theorem 5.2.
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Proof of Theorem 1.3. The inequality assumed in the theorem on the integers �,⌫,N
imply that � 

N
2 � 3, which in turns implies that N � � � 5. Therefore � and N

satisfy the hypotheses of both Lemma 5.1 and Theorem 5.2. In particular, we see
that V is factorial by Lemma 5.1. Adjunction shows that !V ⇠

= OV (1), hence V is
Fano. The Lefschetz hyperplane theorem implies that the Picard group is generated
byOV (1).

The next step is to ensure that V has terminal singularities. Suppose otherwise.
Then there is a prime divisor E over V with log discrepancy aE (V )  1. LetC ⇢ V
be the center of E , and fix a point P 2 C . Note that C has codimension � 2 in
V since V is normal. Let s be a large enough integer so that the base locus of the
linear system |OV (s)⌦ IC | has codimension � 2, and let Z ⇢ V be the subscheme
cut out by two general members of |OV (s) ⌦ IC |. Note that ctP(V, Z)  0, since
V is not terminal at P and P 2 Z . On the other hand, since P is a singularity of
type (�, ⌫), Theorem 5.2 implies that

ctP(V, Z) �

2(N + 1)
r(2� + ⌫ + 7)

p

N
> 0.

This gives a contradiction, and therefore V must have terminal singularities.
In particular, V is a Mori fiber space (over a point), and it makes sense to

inquire whether it is birationally superrigid. Suppose by contradiction that V is
not birationally superrigid. Then there is a birational map � : V 99K V 0 from V
to a Mori fiber space V 0 that is not an isomorphism. Fix a projective embedding
V 0

⇢ Pm , and let H = ��1
⇤

|OV 0(1)|. Note that H ⇢ |OV (r)| for some integer
r � 1. Let B ⇢ V be the intersection of two general members ofH. The Noether-
Fano inequality (Theorem 4.4) implies that the pair (V, B) has canonical threshold

ct(V, B) <
1
r
.

Then Theorem 5.2 implies that

ct(V, B) �

2(N + 1)
r(2� + ⌫ + 7)

p

N
.

By comparing these two inequalities, we obtain

2� + ⌫ + 7 >
2(N + 1)

p

N
,

in contradiction with our assumptions. We conclude that V is birationally super-
rigid.



928 TOMMASO DE FERNEX

References

[1] B. M. BENNETT, On the characteristic functions of a local ring, Ann. of Math. 91 (1970),
25–87.

[2] I. CHELTSOV, On a smooth four-dimensional quintic, Mat. Sb. 191 (2000), 139–160 (Rus-
sian, with Russian summary); English transl., Sb. Math. 191 (2000), 1399–1419.

[3] I. CHELTSOV, On nodal sextic fivefold, Math. Nachr. 280 (2007), 1344–1353.
[4] A. CORTI, Factoring birational maps of threefolds after Sarkisov, J. Algebraic Geom. 4

(1995), 223–254.
[5] A. CORTI and M. MELLA, Birational geometry of terminal quartic 3-folds, I, Amer. J.

Math. 126 (2004), 739–761.
[6] T. DE FERNEX, Birationally rigid hypersurfaces, Invent. Math. 192 (2013), 533–566.
[7] T. DE FERNEX, Fano hypersurfaces and their birational geometry, In: “Automorphisms

in Birational and Affine Geometry”, Levico Terme, Trento, 2012, Springer Proceedings in
Mathematics & Statistics, Vol. 79, 2014, 103–120.

[8] T. DE FERNEX, Erratum: Birationally rigid hypersurfaces, Invent. Math. 203 (2016), 675–
680.

[9] T. DE FERNEX and R. DOCAMPO, Jacobian discrepancies and rational singularities, J.
Eur. Math. Soc. 16 (2014), 165–199.
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l’École Polytechnique Palaiseau, 1976–1977, Lecture Notes in Mathematics, Vol. 777,
Springer, Berlin, 1980, 193-221.

Department of Mathematics
University of Utah
155 South 1400 East
Salt Lake City
UT 48112-0090, USA
defernex@math.utah.edu


